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ABSTRACT 

The current need for automatic hate speech detection is 

supported by existing research and current implementations of 

natural language processing. The ability to generalize is an 

important characteristic of classification models used in natural 

language processing. In the case of hate speech detection, it 

assures accurate identification of abusive messages aimed at 

various groups, even if the model has not yet been trained on 

messages targeting those specific groups. This research 

measures the generalization performance of a machine learning 

implementation trained on sexist messages and tested on racist 

ones. The word count and term frequency - inverse document 

frequency features are extracted from text messages and used in 

a support vector machine with three different kernels: linear, 

radial basis function and polynomial. There is a substantial 

difference between the training F1 score benchmark of 0.8 and 

the testing F1 score result of hardly 0.3. The results show an 

overall low generalization performance for this classical 

machine learning method. 
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1. INTRODUCTION 
The online medium is an environment that allows people to 

easily communicate and freely express themselves. The rise of 

online social networks creates an increase in user-generated 

content on the internet. Even though most of the generated 

content is respectful, social platforms also constitute a place 

where people can openly publish and share offensive, 

discriminatory messages in the form of hate speech [2]. Hate 

speech is defined as speech that attacks a person or a group based 

on attributes such as race, religion, ethnic origin, national origin, 

sex, disability, sexual orientation, or gender identity [15]. From 

the mentioned categories, online discrimination (on Twitter and 

Whisper) is most prevalent for race, sexual orientation and 

ethnicity. However, other groups are targeted based on behavior, 

physical aspects, class and disabilities [16]. The dynamics of 

online hate speech is influenced by real life events which can 

represent triggers for discrimination against a specific group 

[8,19]. Occasionally, hate speech on popular social platforms 

leads to cyberbullying, harassment and the creation of hate sites 

[14]. Lately, there has been an increasing interest in regulating 

harmful user-generated content on social platforms and 

therefore, suitable hate speech detection tools are needed [2].  

In the past decade, the automation of hate speech detection has 

been researched in the field of natural language processing. This 

resulted in a series of different machine learning 

implementations based on a variety of datasets. The data used in 

research is collected from popular social media platforms like 

Twitter, Instagram, Yahoo! and YouTube. Because data 

collection and labelling for supervised learning is a tedious 

process, there are no large, varied datasets that can be used. The 

existing datasets used for training and testing the current 

classification methods contain hate speech targeting only one or 

two specific groups [15]. Therefore, the performance of 

researched methods is unknown when faced with more diverse 

hate speech, aimed at different populations.  

The ability to generalize hate speech detection from training sets 

that do not cover all possible types of discrimination assures that 

hate speech towards any targeted group will be identified and 

possibly countered. Currently, there is no research on the 

generalization of hate speech detection in this sense. Therefore, 

the following research question is proposed: What is the 

generalization performance of hate speech detection using 

machine learning? By answering the research question, it can be 

determined how well hate speech concepts, learned by a machine 

learning model, apply to new, unforeseen discriminatory 

messages. This will help to better assess the quality of general 

hate speech detection and determine its real applicability on 

social platforms, where content in the form of hate speech is 

constantly changing because of socio-political events.  

2. RELATED WORK 
The state of the art has been summarized in detail in Schmidt and 

Wiegand’s survey focused on hate speech text features; and 

Zhang, Robinson and Tepper’s paper which provides an 

extensive literature review on the existing classification methods 

[15,23]. The most popular classical learning model for hate 

speech detection is Support Vector Machines (SVM). This 

machine learning classifier uses a vector function to define the 

separation between entries of different classes (e.g. Figure 1). 
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Classical methods used in hate speech detection research 

(Support Vector Machines, Naïve Bayes, Logical Regression) 

require the extraction of text features from data before applying 

a learning model. Features are a set of attributes that represent 

the relevant information about a data entry. Support vector 

machines can reach good performances with different 

combinations of features. Surface features, like bag-of-words and 

n-grams, are simple text attributes, that encode the words and 

other characters from text messages in a vector. These features 

yield good performances on their own [7]. Advanced features are 

used in addition to surface features to create more complex 

representations of the data. Word generalization is used to 

discover similar words (e.g. “people” and “person”, “cat” and 

“dog”) [17,20]. Sentiment analysis [4,5] and lexical resources 

[20] are used to derive more about the meaning and associated 

sentiment of words. (e.g. “stupid” has more negative 

connotations and “beautiful” is more positive).  The extraction of 

these two features is usually dependent on external 

preconstructed word datasets. Linguistic features capture 

syntactic information about the text [4,5]. There is no 

comparative study that can prove which complex feature yields 

better results.  

Recently, deep learning methods based on neural networks are 

also emerging to solve the problem of hate speech detection. 

[15,23] These methods do not require feature extraction; they 

derive abstract features from raw data themselves. Deep learning 

methods classify text messages based on the patterns identified 

in the abstract representation of features. Two of the most 

common deep learning approaches are convolutional neural 

networks (CNN) and recurrent neural networks (RNN). The 

former is usually used for extracting features similar to bag-of-

words or n-grams [12,22], while the latter is used to capture 

dependencies between words [1,6]. Support vector machines are 

often used as a comparison benchmark for deep learning 

methods. The F1 score is the most commonly used performance 

measurement metric [23]. Support vector machines reach good 

performances of 0.8, while newly emerged deep learning 

methods can even exceed 0.9.  [1,6,12,22].  

3. METHODOLOGY 
The chosen approach to assess the generalization performance of 

hate speech detection is to train a machine learning classification 

model on a set containing discrimination towards one group and 

then test on a set containing discrimination towards a different 

group. A support vector machine with surface features is 

implemented using python [10]. The generalization performance 

of the model is determined by comparing the measured 

performance on the testing set against the measured performance 

on the training set. The model is tuned such that the training 

performance benchmark is equal to the state-of-the-art value of 

0.8. 

3.1 Data 
The selected dataset was initially developed for another research 

and contains 16,907 Twitter messages labeled under “sexism”, 

“racism” or “neither” [18]. The total number of entries 

containing hate speech (1,970 “racism” + 3,378 “sexism”) is 

5,348 and makes up around 32% of the dataset, while the rest of 

10,556 non-hate entries (“neither”) make up the remaining 68%. 

The unbalanced distribution of hate and non-hate text in the 

dataset is representative of a realistic online sample. Messages 

that do not contain hate speech constitute most of the content on 

social platforms.  For this experiment, the dataset is split into a 

training and a testing set, based on the two different types of 

labeled hate speech. The training set contains all the 3,378 sexist 

messages, with 7,178 non-hate messages and the testing set 

contains all the 1,970 racist messages with the remaining 4,381 

non-hate messages. The newly created training and testing sets, 

of 10,556 respectively 6,351 entries, preserve the unbalanced 

distribution of the initial dataset (~32% hate speech, ~68% non-

hate speech). For both the training and the testing set, only text 

data and binary labels are used. All the other Twitter data (e.g. 

date, user, favorite count) has been excluded. The new binary 

label 1 represents the hate text and replaces the initial labels for 

“racism” and “sexism”, while the label 0 represents the non-hate 

text, previously labeled as “neither” (shown in Figure 2). 

3.2 Features 
The text messages from the training and the testing sets are 

processed into tokens using the NLTK python library [9]. The 

tokenizer package of this tool contains the TweetTokenizer() 

function which allows for the removal of unnecessary words or 

characters that are specific for messages encountered on social 

media platforms. The function is used to discard usernames, 

shorten elongated words and set all letters to lower case, before, 

splitting each message tokens. The function yields a unigram 

representation with each token representing one distinct word, 

punctuation mark, sign or emoticon (e.g. Figure 3). 

The total of 13,756 unique tokens generated from the text 

messages in the training set represents the vocabulary of the 

model. The Scikit-learn python library is used to build the 

vocabulary and extract text features. Each dataset entry is 

transformed into a feature vector with the length of the 

vocabulary. Two different vector representations are used. 

• Count: each text is transformed into a vector of token 

counts with the CountVectorizer() function from the 

feature_extraction.text package. 

• Term frequency – inverse document frequency 

(TFIDF): each text is transformed into a vector of 

token frequencies with the TfidfVectorizer() function 

from the same package. The values for the highest term 

frequencies, specific for common words that hold low 

significance (e.g. “the”, “a”) are inverted in order to 

minimize their influence. 

The representation of a whole dataset is a matrix with one row 

for each entry and one column for each token in the vocabulary. 

Therefore, the dimensions of the training and testing matrices are 

10,556x13,756, respectively 6,351x13,756. Each matrix is 

Figure 2. Dataset split 

Figure 3. Tokenization of a text message 
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mapped one-on-one with a vector of hate speech binary labels. 

The order of elements in the vector is the same as the order of 

messages represented in the matrix, so each entry can be 

correlated with its associated label. 

3.3 Classifier 
The generated matrix-vector representation is used with a 

support vector classifier, implemented with the Scikit-learn 

python library. [13] The SVC() function from the svm package 

has a series of parameters for the customization of this machine 

learning model.  

• Kernel: Three different types of classifiers are created 

based on the kernel parameter that defines the basic 

function of the support vector: linear, radial basis 

function (RBF) and polynomial (of degree 2 and 3).   

• Class weight: Balancing the class weights accounts for 

the uneven distribution of the both the training and the 

testing set, with 30% hate messages and 70% non-hate 

messages. This assures that the classifier is not biased 

towards labeling text as non-hate due to the larger size 

of that class. 

• C, gamma: The values of these two parameters 

influence the creation of the support vector. C is the 

cost of misclassifying an entry and gamma is the 

influence of the distance between an entry and the 

possible vector function that is being defined. The 

gamma value affects only the RBF and polynomial 

function, while the C value affects the linear one as 

well. 

For each classifier, the GridSearchCV() function from the 

model_seelction package is used to select  the best values for C 

and gamma. The grid search yields the combination of values for 

both parameters that leads to the best measured classification 

performance. The grid search selection is based on a 10-fold 

cross validation process that splits the training set in ten subsets. 

For each subset, it trains the model on the remaining nine and 

measures the performance on the tenth. This results in 10 

performance measurements which are then averaged in order to 

obtain the overall performance of the model on the training set. 

Cross validation assures that the measured performance of the 

model is not obtained by training and testing on the same data, 

which would result in an incorrectly high value.  

Due to the high computational time needed to test several 

combinations through cross validation, the grid search is 

restricted at five medium values for C and gamma: [0.01, 0.1, 1, 

10, 100]. This results in 5 trials for the linear classifier and 25 

(5x5) for each of the RBF and polynomial classifiers. For each 

kernel option the parameter value selection is performed for both 

the Count and TFIDF feature vector approach.  

3.4 Metrics 
The performance of the classification model is measured in 

metrics extracted from the confusion matrix of a binary classifier 

(shown in Table 1). 

Table 1. Confusion matrix 

 Predicted Class 

Non-hate Hate 

Observed 

Class 

Non-hate True Negative 

(TN) 

False Positive 

(FP) 

Hate False Negative 

(FN) 

True Positive 

(TP) 

The precision is used to measure how much was predicted 

correctly out of both classes and the recall is used to measure how 

much was predicted correctly out of the hate class. These two 

metrics are most suitable for class imbalanced datasets, where the 

results for the smaller class are more relevant to the overall 

performance of the model. A high number of correctly identified 

non-hate messages can make the performance erroneously seem 

better; therefore, the “true negatives” are avoided. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
              𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃+𝐹𝑁
 

The F1 score combines the two values. This is the final metric 

used to assess the generalization performance of hate speech 

detection by comparing the obtained values for the training and 

the testing set. 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
  

4. RESULTS 
Table 2 briefly displays the results of the classification models 

for comparison. The best C and gamma values resulted from the 

grid search trials for each model can be found in the Appendix, 

together with the extensive results of the classification 

performances for the testing set (containing the confusion matrix 

and values for precision and recall). 

Table 2. Results 

Model Training 

F1 score 

Testing 

F1 score 

Linear Count 0.803 0.329 

TFIDF 0.795 0.389 

RBF Count 0.801 0.311 

TFIDF 0.805 0.265 

Polynomial 

degree 2 

Count 0.759 0.245 

TFIDF 0.775 0.183 

Polynomial 

degree 3 

Count 0.707 0.297 

TFIDF 0.581 0.031 

 

The models based on the linear and radial basis function reach 

the state-of-the-art value of 0.8 for the training set.  The best 

training F1 score is obtained with the RBF TFIDF model, while 

the best testing F1 score is obtained with the linear TFIDF model. 

The polynomial function performs worse overall. The higher the 

degree of the polynomial the more the model overfits, resulting 

in lower scores even for the training set. Overfitting happens 

when the model is tailored too closely for the training set. The 

separation line between hate and non-hate is not suitable 

anymore for the data entries in the testing set. especially low 

values of the polynomial degree 3 TFIDF are excluded from 

further analysis of the results.  

The average training F1 score is 0.778 and the average testing F1 

score is 0.288. The difference between the two averages is 0.489, 

but this value is not consistent between models. A higher training 

F1 score does not always lead to a higher testing F1 score. The 

smallest difference of 0.406 is obtained between the training and 

the testing score of the linear TFIDF and it represents the best 

measured generalization performance.  Nevertheless, this value 

is still too high, showing that the models generally perform bad 
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at correctly classifying hate speech from the testing set, even if 

F1 score values were high for the training set.  

Count has a better F1 training score for the linear 

implementation, while TFIDF has a better score for RBF and 

polynomial of degree 2. For the testing set, it is the other way 

around. The average Count and RBF F1 scores are 0.768, 

respectively 0.792, for the training set and 0.296, respectively 

0.279 for the testing set. The difference between these averages 

is 0.472 for Count and 0.513 for TFIDF. These values suggest 

that, overall, Count has a slightly better generalization 

performance than TFIDF, even though Linear TFIDF has the 

smallest difference among all models. For the special case of the 

polynomial of degree 3, Count outperforms TFIDF by far, with a 

difference of 0.126 on the training set, and an even greater 

performance difference for the testing set. Due to the removal of 

common, high-frequency words, TFIDF gives more importance 

to the specific discriminatory words used in the training set, 

which are not as relevant for the testing set. 

The best F1 scores for the testing set are obtained when the True 

Positive value of the confusion matrix is the highest. The linear 

TFIDF correctly classifies 858 hate text messages. However, the 

False Positive value is also the highest. 1574 messages are 

classified as hate when they do not actually contain hate speech. 

The very low F1 testing score of the polynomial of degree 3 

TFIDF model is caused by the fact that barely any messages are 

classified as hate:  34 True Positives and 213 False Positives. 

There is a tradeoff between better generalization performance 

and censoring messages that are not actually hate speech. 

The inability to correctly classify hate and non-hate text is 

partially caused by the models not being able to recognize a lot 

of the words present in the testing set. There are 11266 tokens 

extracted from the testing dataset, of which 6238 cannot be found 

in the created vocabulary. When creating the feature vector for 

an entry, these out-of-vocabulary words are ignored, while they 

may actually hold significant meaning for the detection of hate 

speech. The created vocabulary is small due to the size of the 

initial dataset; however, the same problem might occur even if 

the dataset was larger. The specific slang used to discriminate the 

group in the testing set might not be present in the training set. 

Among the out-of-vocabulary words there are tokens 

representing terms that are almost exclusively associated with 

racist hate speech (e.g. ching, muslima, turkmen, nazis, soviets, 

#stopislam, all-muslim, islamolunatic, arabs, russ, kalishnikovs, 

#islamicstate, islam.that, islamist, infidels, islamofanatic, 

cleansing, jews, saudis, islamization). This problem would 

persist over time as new slang continuously develops to 

discriminate existing or new target groups. 

5. DISCUSSION 
Even though the measured generalization performance is bad, the 

implemented method is not representative of the large variety of 

hate speech detection methods. There are a lot of different 

classification methods described in existing literature that might 

lead to a better generalization performance [15,23].  

Firstly, only surface features were extracted from the data used 

by the classification model. The use of additional advanced 

features might improve the generalization performance of 

support vector machines. A big limitation of this research was 

the small size of the dataset. The small training set resulted in a 

lot of out-of-vocabulary words. Lexical resources and sentiment 

analysis could be used for identifying the negative slang words 

specific for the testing set. Using word generalization features 

might improve performance by making it easier to generally 

recognize words from the testing set. Word embeddings is a word 

generalization method that creates a vector for each word in a 

text message. The vectors are used to represent the meaning of a 

word. Similar words can be identified by comparing their word 

vectors. External word datasets can be used to create these word 

vectors. Therefore, the identification of words in the testing set 

is no longer dependent on the small sample present in the training 

set. However, because all these features use external data, hate 

speech detection implementations would be dependent on the 

state of the external resources. The word datasets would need to 

be constantly updated according to linguistic changes to assure 

the recognition of any new slang that appears. The problem of 

out-of-vocabulary words is a current challenge in natural 

language processing research. New methods to deal with this 

issue might emerge in the future. 

Secondly, different classification approaches can be 

experimented with. The generalization performance of other 

classical methods like Naïve Bayes and Logical regression, in 

combination with different features, can be tested. Deep learning 

implementations already show better results in existing literature 

and they might lead to better generalization performance values 

as well, due to the more abstract and complex representation of 

features. A combination between deep learning and classical 

methods can be considered as well, where neural networks are 

used only for the feature extraction stage [21]. Finally, transfer 

learning could be employed to train a model on a very large 

dataset to firstly distinguish between positive and negative 

messages [11]. The model can then be tailored for the problem 

of hate speech detection and updated accordingly when new 

slang or target groups appear.  

Furthermore, the observed tradeoff between generalization 

performance and the incorrect classification of non-hate text as 

hate might lead to the restriction of free speech. The 

libertarian/egalitarian dilemma debates the issue of hate speech 

censoring [3]. The egalitarian view promotes censoring because 

hate speech is viewed as an obstacle for the people that are part 

of a discriminated group. On the other hand, the libertarian view 

promotes free speech as liberty of expression even if the speech 

is offensive. The behavior of hate speech classification methods 

can lean towards one of these views. Dealing with the observed 

trade off can be an ethical concern for the future when hate 

speech detection will be actively used in a real context. 

6. CONCLUSION 
The implemented support vector classifier with word count/ term 

frequency – inverse document frequency features, trained on a 

dataset containing sexist Twitter messages and tested on one 

containing racist messages, reveals a low ~0.3 F1 score value on 

the testing set, relative to the high ~0.8 value on the training set. 

The high difference between the two values proves a weak 

generalization performance for this classical machine learning 

method. The classifier is unable to recognize hate speech that is 

different from what it has been trained on. Therefore, it cannot 

recognize new types of discrimination that it has not encountered 

before. The constantly changing environment of the real world 

can lead to new hate speech targets, while machine learning is 

not able to identify discriminatory messages aimed at these new 

groups. This classification method is therefore not suitable for 

use as a hate speech detection tool on a social media platform, as 

it might lead to unfairly allowing discriminatory messages 

towards only specific targets. This research has been limited by 

the available resources, current state of technology and the 

reduced size of the dataset. The research question “What is the 

generalization performance of hate speech detection using 

machine learning?” can be further explored in the future. 

Different approaches from existing literature can be 

experimented with and new methods can be developed to try to 

solve the problem of hate speech generalization. 
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Finally, the generalization performance can represent a new 

dimension for the measurement of hate speech detection. This 

and possibly other new measurements can help guide the 

research in natural language processing in the future. Suitable 

performance measurements are important for the creation of hate 

speech classification methods that can be used to reliably and 

fairly censor content on social media platforms. 
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APPENDIX 
 

Linear Count (C: 0.1) 

training f1 score = 0.795 

 Predicted Class 

Non-hate Hate 

Observed 

Class 

Non-hate 3201 1121 

Hate 1367 609 

testing recall = 0.308 

testing precision = 0.352 

testing f1 score = 0.329 

 

Linear TFIDF (C: 1) 

training f1 score = 0.803 

 Predicted Class 

Non-hate Hate 

Observed 

Class 

Non-hate 2748 1574 

Hate 1118 858 

testing recall = 0.434 

testing precision = 0.353 

testing f1 score = 0.389 

 

RBF Count (C: 10, gamma: 0.01) 

training f1 score = 0.806 

 Predicted Class 

Non-hate Hate 

Observed 

Class 

Non-hate 3212 1110 

Hate 1407 569 

testing recall = 0.288 

testing precision = 0.339 

testing f1 score = 0.311 

 

RBF TFIDF (C: 1, gamma: 1) 

training f1 score = 0.805 

 Predicted Class 

Non-hate Hate 

Observed 

Class 

Non-hate 3244 1078 

Hate 1510 466 

testing recall = 0.236 

testing precision = 0.302 

testing f1 score = 0.265 

 

 

Polynomial of degree 2 Count (C: 0.01, gamma: 1) 

training f1 score = 0.760 

 Predicted Class 

Non-hate Hate 

Observed 

Class 

Non-hate 3423 899 

Hate 1575 401 

testing recall = 0.203 

testing precision = 0.309 

testing f1 score = 0.245 

 

Polynomial of degree 2 TFIDF (C: 0.01, gamma: 10) 

training f1 score = 0.775 

 Predicted Class 

Non-hate Hate 

Observed 

Class 

Non-hate 3524 798 

Hate 1697 279 

testing recall = 0.141 

testing precision = 0.259 

testing f1 score = 0.182 

 

Polynomial of degree 3 Count (C: 10, gamma: 0.1) 

training f1 score = 0.707 

 Predicted Class 

Non-hate Hate 

Observed 

Class 

Non-hate 3300 1022 

Hate 1454 522 

testing recall = 0.264 

testing precision = 0.338 

testing f1 score = 0.297 

 

Polynomial of degree 3 TFIDF (C: 1, gamma: 1) 

training f1 score = 0.581 

 Predicted Class 

Non-hate Hate 

Observed 

Class 

Non-hate 4109 213 

Hate 1942 34 

testing recall = 0.0172 

testing precision = 0.138 

testing f1 score = 0.031 

 


