
1

The generalization performance of hate speech
detection using machine learning

Alexandra Coroiu
University of Twente

PO Box 217, 7500 AE Enschede
the Netherlands

a.coroiu@student.utwente.nl

ABSTRACT

The current need for automatic hate speech detection is

supported by existing research and current implementations of

natural language processing. The ability to generalize is an

important characteristic of classification models used in natural

language processing. In the case of hate speech detection, it

assures accurate identification of abusive messages aimed at

various groups, even if the model has not yet been trained on

messages targeting those specific groups. This research

measures the generalization performance of a machine learning

implementation trained on sexist messages and tested on racist

ones. The word count and term frequency - inverse document

frequency features are extracted from text messages and used in

a support vector machine with three different kernels: linear,

radial basis function and polynomial. There is a substantial

difference between the training F1 score benchmark of 0.8 and

the testing F1 score result of hardly 0.3. The results show an

overall low generalization performance for this classical

machine learning method.

Keywords

Hate speech detection, text classification, natural language

processing, machine learning

1. INTRODUCTION
The online medium is an environment that allows people to

easily communicate and freely express themselves. The rise of

online social networks creates an increase in user-generated

content on the internet. Even though most of the generated

content is respectful, social platforms also constitute a place

where people can openly publish and share offensive,

discriminatory messages in the form of hate speech [2]. Hate

speech is defined as speech that attacks a person or a group based

on attributes such as race, religion, ethnic origin, national origin,

sex, disability, sexual orientation, or gender identity [15]. From

the mentioned categories, online discrimination (on Twitter and

Whisper) is most prevalent for race, sexual orientation and

ethnicity. However, other groups are targeted based on behavior,

physical aspects, class and disabilities [16]. The dynamics of

online hate speech is influenced by real life events which can

represent triggers for discrimination against a specific group

[8,19]. Occasionally, hate speech on popular social platforms

leads to cyberbullying, harassment and the creation of hate sites

[14]. Lately, there has been an increasing interest in regulating

harmful user-generated content on social platforms and

therefore, suitable hate speech detection tools are needed [2].

In the past decade, the automation of hate speech detection has

been researched in the field of natural language processing. This

resulted in a series of different machine learning

implementations based on a variety of datasets. The data used in

research is collected from popular social media platforms like

Twitter, Instagram, Yahoo! and YouTube. Because data

collection and labelling for supervised learning is a tedious

process, there are no large, varied datasets that can be used. The

existing datasets used for training and testing the current

classification methods contain hate speech targeting only one or

two specific groups [15]. Therefore, the performance of

researched methods is unknown when faced with more diverse

hate speech, aimed at different populations.

The ability to generalize hate speech detection from training sets

that do not cover all possible types of discrimination assures that

hate speech towards any targeted group will be identified and

possibly countered. Currently, there is no research on the

generalization of hate speech detection in this sense. Therefore,

the following research question is proposed: What is the

generalization performance of hate speech detection using

machine learning? By answering the research question, it can be

determined how well hate speech concepts, learned by a machine

learning model, apply to new, unforeseen discriminatory

messages. This will help to better assess the quality of general

hate speech detection and determine its real applicability on

social platforms, where content in the form of hate speech is

constantly changing because of socio-political events.

2. RELATED WORK
The state of the art has been summarized in detail in Schmidt and

Wiegand’s survey focused on hate speech text features; and

Zhang, Robinson and Tepper’s paper which provides an

extensive literature review on the existing classification methods

[15,23]. The most popular classical learning model for hate

speech detection is Support Vector Machines (SVM). This

machine learning classifier uses a vector function to define the

separation between entries of different classes (e.g. Figure 1).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

31thTwente Student Conference on IT, July. 5th, 2019, Enschede, The
Netherlands. Copyright 2019, University of Twente, Faculty of Electrical

Engineering, Mathematics and Computer Science. Figure 1. A class separation line created by SVM

2

Classical methods used in hate speech detection research

(Support Vector Machines, Naïve Bayes, Logical Regression)

require the extraction of text features from data before applying

a learning model. Features are a set of attributes that represent

the relevant information about a data entry. Support vector

machines can reach good performances with different

combinations of features. Surface features, like bag-of-words and

n-grams, are simple text attributes, that encode the words and

other characters from text messages in a vector. These features

yield good performances on their own [7]. Advanced features are

used in addition to surface features to create more complex

representations of the data. Word generalization is used to

discover similar words (e.g. “people” and “person”, “cat” and

“dog”) [17,20]. Sentiment analysis [4,5] and lexical resources

[20] are used to derive more about the meaning and associated

sentiment of words. (e.g. “stupid” has more negative

connotations and “beautiful” is more positive). The extraction of

these two features is usually dependent on external

preconstructed word datasets. Linguistic features capture

syntactic information about the text [4,5]. There is no

comparative study that can prove which complex feature yields

better results.

Recently, deep learning methods based on neural networks are

also emerging to solve the problem of hate speech detection.

[15,23] These methods do not require feature extraction; they

derive abstract features from raw data themselves. Deep learning

methods classify text messages based on the patterns identified

in the abstract representation of features. Two of the most

common deep learning approaches are convolutional neural

networks (CNN) and recurrent neural networks (RNN). The

former is usually used for extracting features similar to bag-of-

words or n-grams [12,22], while the latter is used to capture

dependencies between words [1,6]. Support vector machines are

often used as a comparison benchmark for deep learning

methods. The F1 score is the most commonly used performance

measurement metric [23]. Support vector machines reach good

performances of 0.8, while newly emerged deep learning

methods can even exceed 0.9. [1,6,12,22].

3. METHODOLOGY
The chosen approach to assess the generalization performance of

hate speech detection is to train a machine learning classification

model on a set containing discrimination towards one group and

then test on a set containing discrimination towards a different

group. A support vector machine with surface features is

implemented using python [10]. The generalization performance

of the model is determined by comparing the measured

performance on the testing set against the measured performance

on the training set. The model is tuned such that the training

performance benchmark is equal to the state-of-the-art value of

0.8.

3.1 Data
The selected dataset was initially developed for another research

and contains 16,907 Twitter messages labeled under “sexism”,

“racism” or “neither” [18]. The total number of entries

containing hate speech (1,970 “racism” + 3,378 “sexism”) is

5,348 and makes up around 32% of the dataset, while the rest of

10,556 non-hate entries (“neither”) make up the remaining 68%.

The unbalanced distribution of hate and non-hate text in the

dataset is representative of a realistic online sample. Messages

that do not contain hate speech constitute most of the content on

social platforms. For this experiment, the dataset is split into a

training and a testing set, based on the two different types of

labeled hate speech. The training set contains all the 3,378 sexist

messages, with 7,178 non-hate messages and the testing set

contains all the 1,970 racist messages with the remaining 4,381

non-hate messages. The newly created training and testing sets,

of 10,556 respectively 6,351 entries, preserve the unbalanced

distribution of the initial dataset (~32% hate speech, ~68% non-

hate speech). For both the training and the testing set, only text

data and binary labels are used. All the other Twitter data (e.g.

date, user, favorite count) has been excluded. The new binary

label 1 represents the hate text and replaces the initial labels for

“racism” and “sexism”, while the label 0 represents the non-hate

text, previously labeled as “neither” (shown in Figure 2).

3.2 Features
The text messages from the training and the testing sets are

processed into tokens using the NLTK python library [9]. The

tokenizer package of this tool contains the TweetTokenizer()

function which allows for the removal of unnecessary words or

characters that are specific for messages encountered on social

media platforms. The function is used to discard usernames,

shorten elongated words and set all letters to lower case, before,

splitting each message tokens. The function yields a unigram

representation with each token representing one distinct word,

punctuation mark, sign or emoticon (e.g. Figure 3).

The total of 13,756 unique tokens generated from the text

messages in the training set represents the vocabulary of the

model. The Scikit-learn python library is used to build the

vocabulary and extract text features. Each dataset entry is

transformed into a feature vector with the length of the

vocabulary. Two different vector representations are used.

• Count: each text is transformed into a vector of token

counts with the CountVectorizer() function from the

feature_extraction.text package.

• Term frequency – inverse document frequency

(TFIDF): each text is transformed into a vector of

token frequencies with the TfidfVectorizer() function

from the same package. The values for the highest term

frequencies, specific for common words that hold low

significance (e.g. “the”, “a”) are inverted in order to

minimize their influence.

The representation of a whole dataset is a matrix with one row

for each entry and one column for each token in the vocabulary.

Therefore, the dimensions of the training and testing matrices are

10,556x13,756, respectively 6,351x13,756. Each matrix is

Figure 2. Dataset split

Figure 3. Tokenization of a text message

3

mapped one-on-one with a vector of hate speech binary labels.

The order of elements in the vector is the same as the order of

messages represented in the matrix, so each entry can be

correlated with its associated label.

3.3 Classifier
The generated matrix-vector representation is used with a

support vector classifier, implemented with the Scikit-learn

python library. [13] The SVC() function from the svm package

has a series of parameters for the customization of this machine

learning model.

• Kernel: Three different types of classifiers are created

based on the kernel parameter that defines the basic

function of the support vector: linear, radial basis

function (RBF) and polynomial (of degree 2 and 3).

• Class weight: Balancing the class weights accounts for

the uneven distribution of the both the training and the

testing set, with 30% hate messages and 70% non-hate

messages. This assures that the classifier is not biased

towards labeling text as non-hate due to the larger size

of that class.

• C, gamma: The values of these two parameters

influence the creation of the support vector. C is the

cost of misclassifying an entry and gamma is the

influence of the distance between an entry and the

possible vector function that is being defined. The

gamma value affects only the RBF and polynomial

function, while the C value affects the linear one as

well.

For each classifier, the GridSearchCV() function from the

model_seelction package is used to select the best values for C

and gamma. The grid search yields the combination of values for

both parameters that leads to the best measured classification

performance. The grid search selection is based on a 10-fold

cross validation process that splits the training set in ten subsets.

For each subset, it trains the model on the remaining nine and

measures the performance on the tenth. This results in 10

performance measurements which are then averaged in order to

obtain the overall performance of the model on the training set.

Cross validation assures that the measured performance of the

model is not obtained by training and testing on the same data,

which would result in an incorrectly high value.

Due to the high computational time needed to test several

combinations through cross validation, the grid search is

restricted at five medium values for C and gamma: [0.01, 0.1, 1,

10, 100]. This results in 5 trials for the linear classifier and 25

(5x5) for each of the RBF and polynomial classifiers. For each

kernel option the parameter value selection is performed for both

the Count and TFIDF feature vector approach.

3.4 Metrics
The performance of the classification model is measured in

metrics extracted from the confusion matrix of a binary classifier

(shown in Table 1).

Table 1. Confusion matrix

 Predicted Class

Non-hate Hate

Observed

Class

Non-hate True Negative

(TN)

False Positive

(FP)

Hate False Negative

(FN)

True Positive

(TP)

The precision is used to measure how much was predicted

correctly out of both classes and the recall is used to measure how

much was predicted correctly out of the hate class. These two

metrics are most suitable for class imbalanced datasets, where the

results for the smaller class are more relevant to the overall

performance of the model. A high number of correctly identified

non-hate messages can make the performance erroneously seem

better; therefore, the “true negatives” are avoided.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃+𝐹𝑁

The F1 score combines the two values. This is the final metric

used to assess the generalization performance of hate speech

detection by comparing the obtained values for the training and

the testing set.

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

4. RESULTS
Table 2 briefly displays the results of the classification models

for comparison. The best C and gamma values resulted from the

grid search trials for each model can be found in the Appendix,

together with the extensive results of the classification

performances for the testing set (containing the confusion matrix

and values for precision and recall).

Table 2. Results

Model Training

F1 score

Testing

F1 score

Linear Count 0.803 0.329

TFIDF 0.795 0.389

RBF Count 0.801 0.311

TFIDF 0.805 0.265

Polynomial

degree 2

Count 0.759 0.245

TFIDF 0.775 0.183

Polynomial

degree 3

Count 0.707 0.297

TFIDF 0.581 0.031

The models based on the linear and radial basis function reach

the state-of-the-art value of 0.8 for the training set. The best

training F1 score is obtained with the RBF TFIDF model, while

the best testing F1 score is obtained with the linear TFIDF model.

The polynomial function performs worse overall. The higher the

degree of the polynomial the more the model overfits, resulting

in lower scores even for the training set. Overfitting happens

when the model is tailored too closely for the training set. The

separation line between hate and non-hate is not suitable

anymore for the data entries in the testing set. especially low

values of the polynomial degree 3 TFIDF are excluded from

further analysis of the results.

The average training F1 score is 0.778 and the average testing F1

score is 0.288. The difference between the two averages is 0.489,

but this value is not consistent between models. A higher training

F1 score does not always lead to a higher testing F1 score. The

smallest difference of 0.406 is obtained between the training and

the testing score of the linear TFIDF and it represents the best

measured generalization performance. Nevertheless, this value

is still too high, showing that the models generally perform bad

4

at correctly classifying hate speech from the testing set, even if

F1 score values were high for the training set.

Count has a better F1 training score for the linear

implementation, while TFIDF has a better score for RBF and

polynomial of degree 2. For the testing set, it is the other way

around. The average Count and RBF F1 scores are 0.768,

respectively 0.792, for the training set and 0.296, respectively

0.279 for the testing set. The difference between these averages

is 0.472 for Count and 0.513 for TFIDF. These values suggest

that, overall, Count has a slightly better generalization

performance than TFIDF, even though Linear TFIDF has the

smallest difference among all models. For the special case of the

polynomial of degree 3, Count outperforms TFIDF by far, with a

difference of 0.126 on the training set, and an even greater

performance difference for the testing set. Due to the removal of

common, high-frequency words, TFIDF gives more importance

to the specific discriminatory words used in the training set,

which are not as relevant for the testing set.

The best F1 scores for the testing set are obtained when the True

Positive value of the confusion matrix is the highest. The linear

TFIDF correctly classifies 858 hate text messages. However, the

False Positive value is also the highest. 1574 messages are

classified as hate when they do not actually contain hate speech.

The very low F1 testing score of the polynomial of degree 3

TFIDF model is caused by the fact that barely any messages are

classified as hate: 34 True Positives and 213 False Positives.

There is a tradeoff between better generalization performance

and censoring messages that are not actually hate speech.

The inability to correctly classify hate and non-hate text is

partially caused by the models not being able to recognize a lot

of the words present in the testing set. There are 11266 tokens

extracted from the testing dataset, of which 6238 cannot be found

in the created vocabulary. When creating the feature vector for

an entry, these out-of-vocabulary words are ignored, while they

may actually hold significant meaning for the detection of hate

speech. The created vocabulary is small due to the size of the

initial dataset; however, the same problem might occur even if

the dataset was larger. The specific slang used to discriminate the

group in the testing set might not be present in the training set.

Among the out-of-vocabulary words there are tokens

representing terms that are almost exclusively associated with

racist hate speech (e.g. ching, muslima, turkmen, nazis, soviets,

#stopislam, all-muslim, islamolunatic, arabs, russ, kalishnikovs,

#islamicstate, islam.that, islamist, infidels, islamofanatic,

cleansing, jews, saudis, islamization). This problem would

persist over time as new slang continuously develops to

discriminate existing or new target groups.

5. DISCUSSION
Even though the measured generalization performance is bad, the

implemented method is not representative of the large variety of

hate speech detection methods. There are a lot of different

classification methods described in existing literature that might

lead to a better generalization performance [15,23].

Firstly, only surface features were extracted from the data used

by the classification model. The use of additional advanced

features might improve the generalization performance of

support vector machines. A big limitation of this research was

the small size of the dataset. The small training set resulted in a

lot of out-of-vocabulary words. Lexical resources and sentiment

analysis could be used for identifying the negative slang words

specific for the testing set. Using word generalization features

might improve performance by making it easier to generally

recognize words from the testing set. Word embeddings is a word

generalization method that creates a vector for each word in a

text message. The vectors are used to represent the meaning of a

word. Similar words can be identified by comparing their word

vectors. External word datasets can be used to create these word

vectors. Therefore, the identification of words in the testing set

is no longer dependent on the small sample present in the training

set. However, because all these features use external data, hate

speech detection implementations would be dependent on the

state of the external resources. The word datasets would need to

be constantly updated according to linguistic changes to assure

the recognition of any new slang that appears. The problem of

out-of-vocabulary words is a current challenge in natural

language processing research. New methods to deal with this

issue might emerge in the future.

Secondly, different classification approaches can be

experimented with. The generalization performance of other

classical methods like Naïve Bayes and Logical regression, in

combination with different features, can be tested. Deep learning

implementations already show better results in existing literature

and they might lead to better generalization performance values

as well, due to the more abstract and complex representation of

features. A combination between deep learning and classical

methods can be considered as well, where neural networks are

used only for the feature extraction stage [21]. Finally, transfer

learning could be employed to train a model on a very large

dataset to firstly distinguish between positive and negative

messages [11]. The model can then be tailored for the problem

of hate speech detection and updated accordingly when new

slang or target groups appear.

Furthermore, the observed tradeoff between generalization

performance and the incorrect classification of non-hate text as

hate might lead to the restriction of free speech. The

libertarian/egalitarian dilemma debates the issue of hate speech

censoring [3]. The egalitarian view promotes censoring because

hate speech is viewed as an obstacle for the people that are part

of a discriminated group. On the other hand, the libertarian view

promotes free speech as liberty of expression even if the speech

is offensive. The behavior of hate speech classification methods

can lean towards one of these views. Dealing with the observed

trade off can be an ethical concern for the future when hate

speech detection will be actively used in a real context.

6. CONCLUSION
The implemented support vector classifier with word count/ term

frequency – inverse document frequency features, trained on a

dataset containing sexist Twitter messages and tested on one

containing racist messages, reveals a low ~0.3 F1 score value on

the testing set, relative to the high ~0.8 value on the training set.

The high difference between the two values proves a weak

generalization performance for this classical machine learning

method. The classifier is unable to recognize hate speech that is

different from what it has been trained on. Therefore, it cannot

recognize new types of discrimination that it has not encountered

before. The constantly changing environment of the real world

can lead to new hate speech targets, while machine learning is

not able to identify discriminatory messages aimed at these new

groups. This classification method is therefore not suitable for

use as a hate speech detection tool on a social media platform, as

it might lead to unfairly allowing discriminatory messages

towards only specific targets. This research has been limited by

the available resources, current state of technology and the

reduced size of the dataset. The research question “What is the

generalization performance of hate speech detection using

machine learning?” can be further explored in the future.

Different approaches from existing literature can be

experimented with and new methods can be developed to try to

solve the problem of hate speech generalization.

5

Finally, the generalization performance can represent a new

dimension for the measurement of hate speech detection. This

and possibly other new measurements can help guide the

research in natural language processing in the future. Suitable

performance measurements are important for the creation of hate

speech classification methods that can be used to reliably and

fairly censor content on social media platforms.

7. ACKNOWLEDGEMENTS
I would like to thank my supervisor Dr. Lorenzo Gatti for the

constructive feedback and suggestions provided throughout the

development of this research work.

8. REFERENCES
[1] Badjatiya, P., Gupta, S., Gupta, M., & Varma, V. (2017).

Deep learning for hate speech detection in tweets.

Proceedings of the 26th International Conference on

World Wide Web Companion, 759–760.

[2] Banks, J. (2010). Regulating hate speech online.

International Review of Law, Computers & Technology,

24(3), 233–239.

https://doi.org/10.1080/13600869.2010.522323

[3] Brink, D. O. (2001). Millian principles, freedom of

expression, and hate speech. Legal Theory, 7(2), 119–157.

https://doi.org/10.1017/S1352325201072019

[4] Burnap, P., & Williams, M. L. (2015). Cyber hate speech

on twitter: An application of machine classification and

statistical modeling for policy and decision making. Policy

& Internet, 7(2), 223–242.

[5] Davidson, T., Warmsley, D., Macy, M., & Weber, I.

(2017). Automated Hate Speech Detection and the

Problem of Offensive Language. Retrieved from

https://www.aaai.org/ocs/index.php/ICWSM/ICWSM17/p

aper/view/15665/14843

[6] Del Vigna, F., Cimino, A., Dell’Orletta, F., Petrocchi, M.,

& Tesconi, M. (2017). Hate me, hate me not: Hate speech

detection on Facebook.

[7] Greevy, E., & Smeaton, A. F. (2004). Classifying Racist

Texts Using a Support Vector Machine. Proceedings of the

27th Annual International ACM SIGIR Conference on

Research and Development in Information Retrieval, 468–

469. https://doi.org/10.1145/1008992.1009074

[8] Hanzelka, J., & Schmidt, I. (2017). Dynamics of cyber

hate in social media: A comparative analysis of anti-

muslim movements in the Czech Republic and Germany.

International Journal of Cyber Criminology, 11(1), 143–

160.

[9] Loper, E., & Bird, S. (2002). NLTK: the natural language

toolkit. ArXiv Preprint Cs/0205028.

[10] Oliphant, T. E. (2007). Python for scientific computing.

Computing in Science & Engineering, 9(3), 10–20.

[11] Pan, S. J., & Yang, Q. (2009). A survey on transfer

learning. IEEE Transactions on Knowledge and Data

Engineering, 22(10), 1345–1359.

[12] Park, J. H., & Fung, P. (2017). One-step and two-step

classification for abusive language detection on twitter.

ArXiv Preprint ArXiv:1706.01206.

[13] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,

Thirion, B., Grisel, O., … others. (2011). Scikit-learn:

Machine learning in Python. Journal of Machine Learning

Research, 12(Oct), 2825–2830.

[14] Perry, B., & Olsson, P. (2009). Cyberhate: the

globalization of hate. Information & Communications

Technology Law, 18(2), 185–199.

https://doi.org/10.1080/13600830902814984

[15] Schmidt, A., & Wiegand, M. (2017). A Survey on Hate

Speech Detection using Natural Language Processing.

Proceedings of the Fifth International Workshop on

Natural Language Processing for Social Media, 1–10.

https://doi.org/10.18653/v1/W17-1101

[16] Silva, L., Mondal, M., Correa, D., Benevenuto, F., &

Weber, I. (2016). Analyzing the Targets of Hate in Online

Social Media. Retrieved from

http://arxiv.org/abs/1603.07709

[17] Warner, W., & Hirschberg, J. (2012). Detecting Hate

Speech on the World Wide Web. Proceedings of the

Second Workshop on Language in Social Media, 19–26.

Retrieved from

http://dl.acm.org/citation.cfm?id=2390374.2390377

[18] Waseem, Z., & Hovy, D. (2016). Hateful symbols or

hateful people? predictive features for hate speech

detection on twitter. Proceedings of the NAACL Student

Research Workshop, 88–93.

[19] Williams, M. L., & Burnap, P. (2015). Cyberhate on social

media in the aftermath of Woolwich: A case study in

computational criminology and big data. British Journal of

Criminology, 56(2), 211–238.

[20] Xiang, G., Fan, B., Wang, L., Hong, J., & Rose, C. (2012).

Detecting offensive tweets via topical feature discovery

over a large scale twitter corpus. Proceedings of the 21st

ACM International Conference on Information and

Knowledge Management, 1980–1984.

[21] Yuan, S., Wu, X., & Xiang, Y. (2016). A Two Phase Deep

Learning Model for Identifying Discrimination from

Tweets. EDBT, 696–697.

[22] Zhang, Z., & Luo, L. (2018). Hate Speech Detection: {A}

Solved Problem? The Challenging Case of Long Tail on

Twitter. CoRR, abs/1803.0. Retrieved from

http://arxiv.org/abs/1803.03662

[23] Zhang, Z., Robinson, D., & Tepper, J. (2018). Detecting

hate speech on twitter using a convolution-gru based deep

neural network. European Semantic Web Conference,

745–760.

https://doi.org/10.1080/13600869.2010.522323
https://doi.org/10.1017/S1352325201072019
https://www.aaai.org/ocs/index.php/ICWSM/ICWSM17/paper/view/15665/14843
https://www.aaai.org/ocs/index.php/ICWSM/ICWSM17/paper/view/15665/14843
https://doi.org/10.1145/1008992.1009074
https://doi.org/10.1080/13600830902814984
https://doi.org/10.18653/v1/W17-1101
http://arxiv.org/abs/1603.07709
http://dl.acm.org/citation.cfm?id=2390374.2390377
http://arxiv.org/abs/1803.03662

6

APPENDIX

Linear Count (C: 0.1)

training f1 score = 0.795

 Predicted Class

Non-hate Hate

Observed

Class

Non-hate 3201 1121

Hate 1367 609

testing recall = 0.308

testing precision = 0.352

testing f1 score = 0.329

Linear TFIDF (C: 1)

training f1 score = 0.803

 Predicted Class

Non-hate Hate

Observed

Class

Non-hate 2748 1574

Hate 1118 858

testing recall = 0.434

testing precision = 0.353

testing f1 score = 0.389

RBF Count (C: 10, gamma: 0.01)

training f1 score = 0.806

 Predicted Class

Non-hate Hate

Observed

Class

Non-hate 3212 1110

Hate 1407 569

testing recall = 0.288

testing precision = 0.339

testing f1 score = 0.311

RBF TFIDF (C: 1, gamma: 1)

training f1 score = 0.805

 Predicted Class

Non-hate Hate

Observed

Class

Non-hate 3244 1078

Hate 1510 466

testing recall = 0.236

testing precision = 0.302

testing f1 score = 0.265

Polynomial of degree 2 Count (C: 0.01, gamma: 1)

training f1 score = 0.760

 Predicted Class

Non-hate Hate

Observed

Class

Non-hate 3423 899

Hate 1575 401

testing recall = 0.203

testing precision = 0.309

testing f1 score = 0.245

Polynomial of degree 2 TFIDF (C: 0.01, gamma: 10)

training f1 score = 0.775

 Predicted Class

Non-hate Hate

Observed

Class

Non-hate 3524 798

Hate 1697 279

testing recall = 0.141

testing precision = 0.259

testing f1 score = 0.182

Polynomial of degree 3 Count (C: 10, gamma: 0.1)

training f1 score = 0.707

 Predicted Class

Non-hate Hate

Observed

Class

Non-hate 3300 1022

Hate 1454 522

testing recall = 0.264

testing precision = 0.338

testing f1 score = 0.297

Polynomial of degree 3 TFIDF (C: 1, gamma: 1)

training f1 score = 0.581

 Predicted Class

Non-hate Hate

Observed

Class

Non-hate 4109 213

Hate 1942 34

testing recall = 0.0172

testing precision = 0.138

testing f1 score = 0.031

