Teaching programming using industry tools
Martijn Verkleij

University of Twente
P.O. Box 217, 7500AE Enschede
The Netherlands

m.f.verkleij@student.utwente.nl

ABSTRACT

Education of software development is a field of significant
interest, because there is a substantial shortage of software
developers both in the Netherlands|9] and outside[12]. The
number of students enrolling into programming studies in
the Netherlands is also increasing|l]. Many educational
systems exist to aid educators with teaching program-
ming courses. These systems are built with the specific
goal of aiding teaching, but do little to prepare students
for tools used in professional environments. This research
will trial a combination of tools used in professional envi-
ronments and show if and how these can fulfil the need of
educators when teaching programming. First, the primary
needs of educators of programming courses is determined.
Next, the landscape of professional tools is explored, and a
toolchain is determined. Then, the toolchain will be com-
pared against the learning goals that need to be met for
teaching software development. Finally, a trial with edu-
cators will be conducted with the toolchain, of which the
resulting experiences and insights are reported.

Keywords

Software development education, automated feedback sys-
tems, automated assessment, industry software

1. INTRODUCTION

The job market has a significant demand for software en-
gineering jobs|9} [12]. The influx of students into studies
in this field has increased in response to this demand.

However, an increased influx of students creates a problem
of scalability. Computer science educators need a scalable
assessment system that can be used to track the progress of
students. Automated assessment has the additional ben-
efit of providing an additional means of feedback, which
helps students to directly assess their own work.

Software systems have been designed to help in education
in this field, but these systems do not prepare students for
the workflow found in professional environments. If con-
ventional systems that are in use in software development
can be repurposed to support computer science education,
this not only saves implementation time, but also serves a
secondary goal of familiarizing students with a Continuous

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

31 th Twente Student Conference on IT, June Sth, 2019, Enschede, The
Netherlands.

Copyright 2019, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

Integration workflow.

The problems will be addressed with the following research
questions:

1. Can industry software be used to assist educators in
teaching university programming concepts?

(a) What are the needs of educators for such soft-
ware?

(b) Which industry software can be used for this
purpose?

(¢) Does this software satisfy the needs of educators
and students?

The rest of the paper is structured as follows: Section 2
elaborates on existing educational systems. Section 3 dis-
cusses an exploration into tools used in the industry that
are of interest to our research question. Section 4 explains
the educational needs that have been identified and that
are considered relevant. Section 5 lays out a toolchain
that can be used to assist educators in teaching program-
ming. Section 6 explains recommendations and guidelines
regarding the toolchain. Section 7 evaluates the toolchain
from section 5 and tests it against the educational needs
identified in section 4. Section 8 summarizes the points
made in the above chapters and draws a conclusion.

2. EXISTING EDUCATIONAL SYSTEMS

Over the years, many systems were developed for the pur-
pose of teaching programming. These systems started to
emerge as soon as programming started to be taught, with
the first reported example being Hollingsworth’s system
from 1960 on punch cards that ran student code versus a
model solution program, and reported “assignment com-
plete” or "wrong answer”|4].

Since then, many developments have been made. Auto-
mated assesment systems could use input-output pairs in-
stead of model solutions, they started keeping track of
program execution time and they maintained a gradebook
across multiple exercises and students.

The use of Hollingsworth’s punch-card assessment tool re-
vealed that students could deliberately run malicious code
and system security has been a major point of concern
ever since.

2.1 Introduction of tools

In the early days of automated assessment, most systems
were systems that were developed from the ground up.
Tools that are currently used to do software development
with, like code testing frameworks, operating system and
programming toolchains did not yet exist. As soon as they
did come available however, they started to be used.



In 1989, Isaacson and Scott|7] wrote a very similar pro-
gram to what was already available in earlier ‘first-gen’
systems, but had the convenience of doing it with a shell
script. A significant improvement over what Hollingsworth
used at the time, an IBM 650 that only had an instruction
set. It is capable of compiling student code in multiple
languages and limited execution time. It automatically
compiled and tested code from a directory that students
uploaded their code into.

In the same year, a system was built by Reek|18] that
behaved much the same way, but allowed students to run
the assignment checks.

2.2 Web-based systems

The widespread adoption of the world wide web has re-

sulted in the emergence of web-based assessment systems.

Where earlier systems were essentially manually-ran scripts,
mostly through a command line, web-based systems sig-

nificantly increased usability by providing a user inter-

face. Additionally, web resources can be accessed from

anywhere, further improving usability.

CourseMarker, a system developed and used at Notting-
ham University shows the benefits a web-based system
may have. It has a user interface, a content management
system and provides multiple types of feedback, from as-
sessment on correctness, complexity, speed of implemen-
tation and code style.

2.3 Programming languages

Automated assessment systems were very often built with
the programming languages that were available. The first
systems processed punch cards, then ALGOL, FORTRAN
and Ada. Later systems worked with higher level lan-
guages like C, C++, Java and Python. Systems were also
developed for other programming paradigms like logic pro-
gramming in Prolog and functional programming in Lisp,
Haskell and Scheme.

With the introduction of the world wide web program-
ming languages for the web started to be used like PHP
and Javascript. However, many of these online assesment
systems kept using the higher level languages that were
common in previous assessment systems.

2.4 State of the art

P. Thantola et al. have categorized the developments in
automated assessment software after 2005[6]. They found
that of all the languages seen in recent tools, Java is by far
the preferred language. Other languages include Python
and C/C++.

They also found that unit testing is the most popular
method of feedback generation, followed by output com-
parison. Another recent development is the use of a pool
of correct answers for checking|13].

Further, new systems have been developed that allow man-
ual assessment as well, by allowing the educator to see sub-
mitted code and provide additional feedback per student
if desired.

Security of recent systems is improved by sandboxing, to
increase the security of an automated assessment server.
Other ways of detecting malicious code are done through
Static Analysis|2].

3. EXISTING INDUSTRY TOOLS

Relevant industry technologies considered for use in an au-
tomated assessment system are Version Control Systems,
Continuous Integration Systems and Code Inspection tools

for Java and Python.

3.1 Version control systems

Version Control Systems have existed since the 80’s, when
the first proprietary solutions started to appear. Version
Control Systems can be categorized in Revision Control
Systems, Client-server Version Control Systems and Dis-
tributed Version Control Systems.

Revision Control Systems like RCS and SCCS track revi-
sions of files on a local machine. These are considered the
first version control systems. Today their use is limited,
as other Version Control Systems have superseded these
systems.

At around the same time, client-server version control sys-
tems started to appear. Collaboration is possible in these
systems because all revisions are submitted to a server,
from where changes can be made by multiple users. Popu-
lar open-source implementations are CVS and Subversion.
Closed source alternatives like ClearCase, Perforce Helix
and Team Foundation Source Control also see some use.

Later, distributed version control systems like Git, Bit-
keeper, Mercurial (hg) and Bazaar were developed. These
open source systems take a peer-to-peer approach, all clients
keep full copies of the history of the repository, which al-
lows for offline work and has the advantage of not relying
on a single server for operation.

3.2 Continuous integration

Continuous integration is a software development practise
that focuses on often merging developers’ working copies
into a single main copy. Within the practises used in this
technique, we are most interested in build automation.

Build automation is the practise of using a system that
executes builds on code. These builds are used to check
whether the code compiles and runs, but is also used to
run code inspection tools. The idea is that after every
contribution of code the code is built, such that problems
are identified quickly.

Popular tools in this regard are the open-source Cruise
Control, Gump and Jenkins and the closed-source Bam-
boo, TeamCity, TravisCI and Team Foundation Server.

3.3 Code inspection and code review

Code inspection in industry contexts is usually done by
both dynamic and static code analysis. Dynamic code
analysis techniques usually consist of unit tests, system
tests or simply compiling the code. Static analysis tech-
niques usually check coding convention in terms of syntax,
detecting violations of code style standards.

3.4 Web services

Many web services exist that fulfil some, if not many of
the technologies mentioned above. Some of these services
combine version control with build automation to form
true Continuous Development platforms. Github together
with TravisCI, Gitlab (CI) and Bitbucket with Bamboo
are the most prominent examples. Web services also of-
fer code inspection. Some of these web services include
SonarQube, Codacy and Better Code Hub.

4. EDUCATIONAL NEEDS
4.1 Automated feedback systems

Automated feedback systems have been developed for the
purpose of helping students with learning to program.
Programming is considered to be a hard concept to learn|11]
and helping them individually is becoming too hard given



the increasing amount of students|14]. Giving feedback
to students is important, and helps them in learning new
concepts|19|. By automating this feedback, students can
receive more of it. Feedback received by automated feed-
back systems can be used by students to directly assess
their work, which gives them insight into their learning
progress|3|.

Types of feedback

The most popular types of feedback that exist in auto-
mated feedback systems are knowledge about mistakes and
knowledge about how to proceed[10].

Knowledge about mistakes concerns reporting mistakes stu-
dents make, which can be done through unit tests like in
COALA16| or Testovid|20].

Knowledge about how to proceed helps students take a next
step by giving a hint on how to proceed, either by giving
back explicit help messages based on common mistakes like
Proust|8|, or by guiding the student through by laying out
a structure for the student to fill in[5).

Feedback generation

The technologies most often used to generate feedback are
automated testing, static analysis and program transfor-
mations|10]. Automated testing is usually done by running
unit tests against student code to find problems. Static
analysis finds problems by looking for common syntax er-
rors[15] or calculation of metrics like cyclomatic complex-
ity. Program transformations concerns trying to match
student code with a model solution by abstracting away
differences between the two that do not affect their be-
haviour, such as done in SIPLeS-II|21].

Adaptability

Adaptability describes the extent to which an educator can
define exercises in the system and influence the feedback
given to students. The most often used techniques here
are model solutions, test data and solution templates.
With model solutions frameworks can check student solu-
tions by comparing the outputs or comparing the structure
of the solution. To support multiple algorithms that can
generate the correct answer one can either provide mul-
tiple model solutions, or the framework can use program
transformation techniques.

Test data concerns scripts, unit tests or simply input-
output pairs that check student code.

Solution templates give students a skeleton in which they
have to ‘fill the gaps’. This restricts the student in the
type of solution they can give for a particular problem.

4.2 Interview

In order to get a more accurate insight into the educa-
tional needs as they are experienced by educators a ple-
nary interview was conducted with educators in the field
of Computer Science. The interviewees were asked about
their opinions both in favour and against automated as-
sessment, systems and the importance of feedback types
and feedback generation techniques.

Major arguments in favour of automated assessment were:

e Teaching assistants lose a lot of time on what are
regarded “simple” errors. A system that runs student
code for them and gives them compiler feedback may
already provide answers for some students, reducing
questions.

e Automated assessment is scalable, which means more
students can get feedback than they could get through
waiting for teaching assistants.

e The system may provide an overview for the teacher
on the progress of students. This gives them diag-
nostic information of their course.

Major arguments against automated assessment:

e More complex exercises are hard, if not impossible
to assess well.

e Much time goes into developing an environment that
can assess students’ code. Especially developing tests
that test code for correctness takes a lot of time to
develop.

e Existing systems are hard to use. They provide bad,
if any, user interfaces.

e Automated assessment systems may become a sys-
tem that itself must be debugged often if it is unsta-
ble, or breaks incoherently.

Important feedback generation techniques and feedback
types are:

Through the use of static code analysis, student code
may become much more readable. This conveniences
student assistants when helping students.

The possibility of using secret unit tests is something
that should be considered. The main purpose of such
secret tests are the prevention of fraud with the ex-
ercises or tests.

Unit tests that simply compare values are considered
to simple. More abstract code analysis is preferable.
However, this can only be considered for small exer-
cises. More complex exercises are unsuitable for this
purpose.

e For smaller exercises, constraint-based modelling is
a nice feature. Constraint-based modelling checks
code against modelling constraints like the presence
of a for loop or assignment of certain values.

e Program transformations, in which code is reordered
to fit a model solution for assessment, should also be
considered.

S. TOOLCHAIN

A toolchain is presented that consists of a version control
system on a web service, a “plug-in” website that hooks
into the aforementioned system to distribute an exercise
framework and a Build Server that executes unit tests and
code analysis tools to generate feedback (Figure [5).

5.1 Version Control

A web service to host both the exercise code and the so-
lutions from the students makes the exchange of exercises
and their solution possible. The solution uses Git to host
the files. Git is considered a good choice, since it’s use is
almost ubiquitous for new projects.

The Git repository consists of exercise code, Unit Tests
and a Build tool definition file. The exercise code is code
that is used as a skeleton for the exercises. In a separate
folder one can find the unit tests that can both be used
by the students and the educators to get feedback on their
code. A build tool configuration file instructs the Build
Server to run the unit tests and report their success or
failure, and code inspection tests that assess the code style
of the student.



o/
Feedback IS
Travis CI
Check
Exercises

Makes Receive
ExerC|ses Exercises

Student

GitHub

Student code
* unit tests

Github Classroom
exercise

Retrieve
student

code

Provides

Exercises 0 glt

Design

Exercises O

Teacher

* Exercise code
* Unit Tests

Make
secret
tests

Feedbac

—— Qgit

. student private tests
Jenkins code * Unit Tests
* Checkstyle

Figure 1. Toolchain

5.2 Build Server

The tool used for the assessment of students’ exercises is
a Build Server. The Build Server should be supplied with
a series of unit tests, which test the correct functionality
of the exercises made by the students. This can be done
through supplying the unit tests as part of the repository,
like previously mentioned. This additionaly gives the stu-
dents the possibility to run the tests themselves and see
whether they pass. To encourage this, a Build Server con-
figuration file for an online build tool like TravisCI can
be supplied that executes these tests for them. One could
consider adding tests that test for code style as well.

Another option is to have private tests that only exist on
the Build Server. These can then be used to more thor-
oughly check the supplied answer programs. Once again,
code inspection tests could be added that check for code
style.

5.3 Code inspection

Code style checks are used to make an assessment of how
organised and clean the code of a student is. It allows for
testing an additional dimension of code. Code must not
only be correct, it must also be written in a manner that
is acceptable in collaborative environments.

5.4 Test Setup

To test the feasibility and gauge the opinion of educators
on the toolchain explained above, an implementation has
been made using Github and Github Classroom (version
control), TravisCI ( Build Server for students) and Jenkins
(Build Server for educator).

5.4.1 Github and Github Classroom

Github is a source control web service that is the most
popular of it’s kind. This means the integration with other
software is mature, which is the main reason it was chosen
for the test setup. It offers the possibility to group student
code in an organization, in which the code is private to
other students. Students can upload a Git repository in it
that contains the exercise code, unit tests and Build Server
definition file. This organization is later used by the build
servers to access all the code in one run.

Github Classroom is a tool that automates much of this
process. The teacher can provide a repository to that

language: python
python:
- Il2'7ll
install:
- pip install flake8
env:
- $EXERCISE=test_ex_1
- $EXERCISE=test_ex_2
- $EXERCISE=test_ex_3
script:

- tests $EXERCISE

Figure 2. Example .travis.yml

system, for which Github then creates an organization.
Any student who then “starts” the assignment, forks that
repository in that organization after which they can start
working. The build server for teachers will automatically
detect the students’ fork and run the configured tests.

5.4.2 TravisCI

In order to let students get quick feedback on their code,
the student can be encouraged to let their code be checked
by TravisCI. The syntax between Travis and Jenkins are
fairly different, with Travis being easier. However, Travis
does not offer the functionality of running tests that are
not inside the repository.

5.4.3 Jenkins

Jenkins is used as a build server for the educator. In order
for this to work, one must install the Github Organization
plugin. After it is installed, the organization made by
Github Classroom can be added to Jenkins, after which it
will automatically build all the student repositories.

One can also provide a “pipeline plugin” during adding this
organisation, which should point to a private repository
that contains secret tests from the educator. This private
repository uses the “pipeline plugin” syntax. An example
is given in Figure[5.4.4] This file is put in a /vars/ direc-
tory inside the repository. Any additional files and tests
may be placed in a folder alongside the /vars/ directory/



# This file is put into the public repository. A
# student should not remove it.
@Library(’secrettests’)

node {
# Points to /vars/secrettests.groovy in
# private repository.
secrettests()

# Tricks Jenkins into only showing failed

# tests in red.

currentBuild.rawBuild.@result =
hudson.model.Result.SUCCESS

Figure 3. Example Jenkinsfile

def call(Map pipelineParams){

node {
catchError{
stage (’checkstyle’) {
sh ’pip install flakeS8’
sh ’flake8 --config=
jenkins/flake8.ini search’
}
}
catchError{
stage(*test’) {
sh ’export DISPLAY=:0 &&
cd search &&
python tests.py’
}
}
}

Figure 4. Example /vars/secretexercises.groovy

5.4.4 Exercises

To be able to demonstrate the toolchain a set of test exer-
cises was defined in Python. The toolchain therefore used
the unittest library to run unit tests, along with flake8
(an external library) for code style assessment.

An exercise set for implementing A* search in Pacman,
developed at the Computer Science department at Duke
university was chosen to demonstrate the feature set of the
test suite[17]. It is also suitable to demonstrate inspection
of code style.

6. RECOMMENDATIONS AND GUIDELINES

6.1 Unit tests

The value of assessment with unit tests is entirely depen-
dent on the quality and extent of testing of these unit tests.
Writing unit tests for assessment is a trade-off between the
time available for course development and extensiveness of
testing. One should therefore consider writing tests a con-
tinuous process, better tests can be written by improving
on the tests over successive teachings of a course.

The easiest form of assessment is testing input-output
pairs, in which a predefined method is fed inputs, and
is tested for returning the correct output.

6.2 Course setup

To set up a new course, one needs to set up two Github
repositories:

e A public repository, containing:

— A manual for the student, containing informa-
tion on how to use the code.

— Exercises.
— Unit tests for the student.
— A Jenkinsfile as shown in Figure[5.4.4]

— Optional: A .travis.yml file as shown in Fig-
ure [0.4.2)

e A private repository, containing:

— A .groovy file, inside a /vars/ directory, con-
taining the secret tests.

— The student’ unit tests.

— The secret unit tests.

Additionally, one needs to set up the Github Classroom
exercise. As a start repository, add the public repository.
From this, a github organisation results, which will be used
to set up Jenkins.

In Jenkins, add a Github organisation, pointing to the or-
ganisation made by Github Classroom. Add the private
repository as a ”pipeline library”. Make sure the Jenk-
insfile in the public repository points to this library by
referencing the name of the .groovy file in the /vars/
subdirectory.

If private tests are used, it is strongly advisable to add
student unit tests too. It will direct the students to write
the code in such a way that the private tests actually run
on them.

6.3 Code style

In order to inspect code style, a code style inspection tool
is used. In this toolchain, flake8 was used. flake8 provides
a configuration file, with which one can change the criteria
the code style tool tests for. Caution must however be
kept, since any change made by the educator steers the
style away from what is standard in the industry.

6.4 Additional assessment tools

Along with unit tests, testing was shown with code style
checks. One could consider adding additional tests, such
as code coverage testing, language feature inspection and
adding functionality from other educational tools. This
functionality may however require significant rewriting of
those tools, along with possibly having to redefine the as-
signment testing in those tools’ formats.

7. EVALUATION

To evaluate the proposed toolchain, an evaluation is done
of both the educational needs of educators and of the us-
ability of the proposed toolchain.

7.1 Usability

Usability is an important part of software. In order to
gauge the opinion of educators on usability an interview
was conducted with educators, during which the toolchain
was presented. A demo was given with the software and
an explanation was given on the tasks that a teacher had
to conduct to use this in a course.

Positive notes on usability:



e Jenkins:

— It is considered very convenient to be able to
check all the students’ code in one go.

— You can immediately see if a student has prob-
lems, as the build failure of all students can be
seen in one page.

— Interviewees proposed ideas for high-level tests
like pylint and coverage tests, which indicate
that they understand how they can extend the
system to more accurately assess students.

o Github + Travis:

— Interviewees liked to see Github, as learning to
use it is considered a learning goal by itself.

— The integration with Travis is maintenance-free
for the student. The student only has to mark
their repository for testing.

Negative notes on usability:

e Jenkins:

— Detailed build results are only visible per stu-
dent, not in one overview.

— The toolchain requires a self-hosted Jenkins in-
stance.

o Github + Travis:

— The students can (unknowingly) sabotage the
Jenkins and/or Travis build by deleting the files
from their repository.

In summary, the educators are positive of the proposed
system. They do see a few possible flaws, that need to be
fixed or taken into account when using this in teaching.

7.2 Educational needs

The most important educational needs that were identi-
fied are the presence of both static and automated code
analysis. Static code analysis is present in the toolchain
in the form of code style tests. Dynamic code analysis
is done through unit tests, which must be defined by the
educator.

The system has support for secret exercises, which was
something that was considered important.

The system does not fulfil the requirement of utilizing
constraint-based modelling or program transformations.
These types of feedback generation techniques do not have
a parallel function in industry applications, which results
in their absence.

7.3 Limitations

7.3.1 Github and Github Classroom

The toolchain is using Github and Github education. There
are two main reasons why this is the case. The first is the
fact that Github Classroom is a service that is unique in
it’s implementation. The functionality is unfortunately
limited to Gitlab repositories, which means one cannot
use another Version Control webservice like for example
Gitlab or Bitbucket. One could replicate the method it
uses behind-the-scenes, but this is outside the scope of
this research.

Secondly, the plugin used to let Jenkins scan all the stu-
dent repositories only exists for Github. This once again
means alternatives to Github cannot be used.

Github itself also lacks features that are available in com-
petitor platforms. Github also does not integrate TravisCI
immediately, which means the student needs to set it up
himself, which is an inconvenience. Competitor platforms
like Bitbucket and Gitlab already integrate these services.

The displayed features also require an academic license.
This means a dependency on the framework that could
render the toolchain useless over time.

7.3.2 Jenkins

Jenkins is a self-hosted solution, which has both it’s advan-
tages and disadvantages. To self-host Jenkins, one needs a
server to host it on, and a system administrator to main-
tain it.

Compared to hosted solutions it offers less integration with

the rest of the toolchain, and it’s user interface is quite
dated.

8. CONCLUSION

(1) To better understand the needs of educators of com-
puter science educators a literature study and an interview
was conducted. (2) To find out which industry software
can be used to fulfil these requirements an exploratory
search was conducted in the areas of version control sys-

tems, continuous integration and code inspection. A toolchain

was constructed with the results from (1) and (2). This
toolchain was measured against the requirements found at
(2), and another interview that focused on usability.

RQ 1.a The main needs of educators are the presence of
a scalable solution that can assess student code both stat-
ically and dynamically. It should support exercises that
are exclusive to the educator, because of fraud concerns.
It must be easy to use. It should contain more advanced
static code analysis tools like constraint-based modelling
and program transformations.

RQ 1.b A toolchain can be constructed with Github and
Github classroom for exercise distribution and code host-
ing. Students can check their code using teacher-supplied
unit tests through TravisCI. Teacher can also track the
progress of students through Jenkins, which additionally
offers the benefit of using secret tests to better assess the
students.

RQ 1.c The toolchain is considered convenient to use, it
easily identifies students who have problems. Students can
easily test code themselves, they do not need to set up any-
thing aside from Travis. However, student can sabotage
the system, both intentional and accidentally, by altering
or removing crucial files from the repository.

The toolchain supports most of the features requested by
educators, but is vitally missing constraint-based mod-
elling and program transformations. It also commits the
user to a significant amount of effort due to the amount of
unit tests that need to be written.

RQ 1 Industry software like Github, Jenkins and Travis
can have an assistive role as automated assessment sys-
tem, but they come with a few shortcomings. Some lack
competitive platforms, which could theoretically pose a
problem. Other miss functionality which limits the user
to certain platforms.

9. ACKNOWLEDGEMENTS

I would like to express my gratitude towards my super-
visor, without whom I would not have gotten so far. I
would furthermore like to thank my reviewers, for giving
very valuable advice.



10. REFERENCES

[1] Hoger onderwijs; eerste- en ouderejaarsstudenten,
studierichting. Technical report, Centraal Bureau
Statistiek, 2019.

[2] Chen, M. et al. Design and applications of an
algorithm benchmark system in a computational
problem solving environment. SIGCSE Bull.,
38(3):123-127, June 2006.

[3] Jurado F. et al. elearning standards and automatic

assessment in a distributed eclipse based
environment for computer programming learning.
Computer Applications in Engineering Education,
22:774-787, December 2014.

[4] J. Hollingsworth. Automatic graders for

programming classes. Communications of the ACM,

3:528-529, October 1960.

[5] J. Hong. Guided programming and automated error
analysis in an intelligent prolog tutor. International

Journal of Human-Computer Studies, 61(4):505 —
534, 2004.

[6] P. et al. Thantola. Review of recent systems for

automatic assessment of programming assignments.

January 2010.

[7] Peter C. Isaacson and Terry A. Scott. Automating

the execution of student programs. SIGCSE Bull.,
21(2):15-22, June 1989.

[8] W. Lewis Johnson and E. Soloway. Proust:
Knowledge-based program understanding. In
C. Rich and R.C. Waters, editors, Readings in
Artificial Intelligence and Software Engineering,
pages 443 — 451. Morgan Kaufmann, 1986.

[9] F. Kalkhoven. Factsheet arbeidsmarkt ict. Technical

report, Uitvoeringsinstituut
Werknemersverzekeringen, April 2018.

[10] H. et al. Keuning. A systematic literature review of

automated feedback generation for programming
exercises. ACM Trans. Comput. Educ.,
19(1):3:1-3:43, September 2018.

[11] W. et al. Mccracken. A multi-national,
multi-institutional study of assessment of
programming skills of first-year CS students.
SIGCSE Bulletin, 33:125-180, December 2001.

[12] J. McGrath and J. Behan. A comparison of shortage
and surplus occupations based on analyses of data
from the european public employment services and

labour force surveys. Technical report, ICON
Institute, February 2017.

[13] K.A. et al. Naudé. Marking student programs using

graph similarity. Computers and Education,
54(2):545 — 561, 2010.

[14] A. Nguyen, C. Piech, J. Huang, and L. Guibas.
Codewebs: Scalable homework search for massive

open online programming courses. In Proceedings of

the 23rd International Conference on World Wide
Web, WWW 14, pages 491-502, New York, NY,
USA, 2014. ACM.

[15] E. Odekirk-Hash and J.L. Zachary. Automated

feedback on programs means students need less help
from teachers. SIGCSE Bull., 33(1):55-59, February

2001.
[16] C. et al. Ott. Translating principles of effective
feedback for students into the csl context. ACM

Trans. Comput. Educ., 16(1):1:1-1:27, January 2016.

[17] R. Parr and D. Klein. Search in pacman.
https://www2.cs.duke.edu/courses/springl6/
compsci270/hwl/. Accessed: 2019-06-23.

[18] K.A. Reek. The try system -or- how to avoid testing

student programs. SIGCSE Bull., 21(1):112-116,
February 1989.

V.J. Shute. Focus on formative feedback. Review of
Educational Research, 78(1):153-189, 2008.

B. et al. Vesin. Protus 2.0: Ontology-based semantic
recommendation in programming tutoring system.
Ezxpert Syst. Appl., 39(15):12229-12246, November
2012.

P. Xu and Y. Chee. Transformation-based diagnosis
of student programs for programming tutoring
systems. Software Engineering, IEEE Transactions
on, 29:360— 384, May 2003.


https://www2.cs.duke.edu/courses/spring16/compsci270/hw1/
https://www2.cs.duke.edu/courses/spring16/compsci270/hw1/

	Introduction
	Existing Educational Systems
	Introduction of tools
	Web-based systems
	Programming languages
	State of the art

	Existing Industry Tools
	Version control systems
	Continuous integration
	Code inspection and code review
	Web services

	Educational Needs
	Automated feedback systems
	Interview

	Toolchain
	Version Control
	Build Server
	Code inspection
	Test Setup
	Github and Github Classroom
	TravisCI
	Jenkins
	Exercises


	Recommendations and Guidelines
	Unit tests
	Course setup
	Code style
	Additional assessment tools

	Evaluation
	Usability
	Educational needs
	Limitations
	Github and Github Classroom
	Jenkins


	Conclusion
	Acknowledgements
	References

