
DoS attack on recursive resolvers with DNSSEC key-tag
collisions

D.A. Bleeker
University of Twente

P.O. Box 217, 7500AE Enschede
The Netherlands

dex@bleeker.nl

ABSTRACT
DNSSEC was implemented to strengthen DNS and enable
resolvers and end-users to validate the the integrity and
origin of responses by using digital signatures. To speed
up this verification, key-tags were introduced. In this pa-
per we analyse an attack that uses key-tag collisions to
generate enough computational overhead to render a re-
cursive resolver unavailable (DoS attack). A zone with
65 keys with the same key-tag was set up on an author-
itative name server, along with a resolver (Unbound and
BIND) and an attacker, to simulate this attack. This pa-
per concludes attempting to DoS a recursive resolver using
DNSSEC key-tag collisions is viable, at least in theory.

Keywords
DNS, DNSSEC, key-tag collision, attack, DoS, resolver,
RSA, CPU utilisation, Unbound, BIND

1. INTRODUCTION
DNS is hierarchical and decentralised which makes it pos-
sible to use the internet with more easily memorizable
names, rather than using IPv4 (or even worse, IPv6) ad-
dresses. This system was developed in the 80’s[10, 11] to
replace the cumbersome lists for this mapping, which had
to be updated and maintained by hand.

The Domain Name System works properly, but was not
developed with security in mind as in the 1980s the in-
ternet was very small. With the explosive growth of the
internet (and the World Wide Web), the lack of proper se-
curity poses more and more of a problem[8]. For example,
by changing the response from a DNS-server (resolver),
one could lead a user to an other server than intended.
This server could be a malicious server in the hands of
the ‘hacker’ that is intended to pilfer the user’s password,
as detailed in 1990 by Steven M. Bellovin[6]. Since the
Domain Name System is hierarchical, a ‘user’ in the pre-
vious example could also be another resolver. When a
(recursive) resolver queries an authoritative server, it has
no way of validating the validity and authenticity of the
response. If a resolver higher in the chain is compromised,
not just one user is redirected to a wrong server, but all
users that query any of the resolvers lower in the chain

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
31th Twente Student Conference on IT July 5th, 2019, Enschede, The
Netherlands.
Copyright 2019, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

from the compromised resolver are redirected wrongly. It
is easy to see why this is a significant problem. Hence the
need for DNSSEC (DNS Security Extensions).

The development of DNSSEC started in the 1990s, with
the initial RFC by Eastlake & Kaufman[2] and improves
security on DNS by using signatures based on public-key
cryptography. The DNS data itself that is transferred be-
tween resolvers and users is cryptographically signed, from
the ‘top’ (highest name server) to ‘bottom‘ end user. This
is not to be confused with techniques like DNS over TLS[9],
which secure the transmission only from one single point
to another.

This paper will address the following points:

Research goal Can we render a recursive resolver un-
available (exhaust its resources, DoS-attack) by abus-
ing the added computational overhead that occurs
when querying a DNS zone containing multiple keys
with the same key-tag?

RQ 1 What is the maximum computing overhead
generated by key-tag collisions in a crafted DNS
zone? This zone will contain a specific amount
of RSA keys (variable per test) with identical
key-tags.

RQ 2 How do the different signing algorithms com-
pare in generated computing overhead when deal-
ing with key-tag collisions?

RQ 3 Can we increase the impact of a key-collision
attack by combining other attack vectors, like
a sub-domain attack or a phantom-domain at-
tack?

RQ 4 What can be done to mitigate key-tag colli-
sion attacks? Are the attacks completely pre-
ventable or is the impact reducible?

2. BACKGROUND
2.1 DNSSEC
Every DNSSEC-signed zone (specific and distinct name
space for which the administrative responsibility is in hands
of one or a few nameservers, the authoritative name servers),
for example the .nl-zone, has a public/private key pair.
This key pair is used by the zone owner (SIDN) to sign
the zone’s data and to generate corresponding signatures.
Any resolver that queries the authoritative name server
receives the response (with signatures) and the public key
with its corresponding key-tag. The public key can be
used to validate the received response. To do this, the
querying resolver calculates the hash of the DNS data and
compares that to the -with the public key decrypted- sig-
nature. If they match, the DNS data is verified. See also
figure 1:

KSK ZSK

DNSKEY set

RRs DS

root zone

signs

signs contains

KSK ZSK

DNSKEY set

RRs DS

.nl zone

signs

signs contains

KSK ZSK

DNSKEY set

RRs “www”

example.nl zone

signs

signs contains

hash of

hash of

Figure 1. A schematic overview of DNSSEC[12].

The security advantages of DNSSEC can be enumerated
in the following two points:

Origin authentication DNSSEC allows a resolver to ver-
ify the source of the response.

Integrity protection DNSSEC allows the resolver to ver-
ify that the data has not been modified (during trans-
mission) since it was originally signed with the pub-
lic/private key pair of the zone’s manager.

2.2 DNSSEC key-tags
The public key is accompanied by a key-tag [1], a 16-bit
value that indicates between resolvers which key to match
a signature to. Because it is very inefficient to check a
signature against every key in a zone, the key-tag (hint)
enables much faster matching of signatures to keys. This
in turn means that a resolver that aims to verify some
received DNS data, can more effectively operate and does
not have to check keys that are more or less guaranteed to
not match the received signature.

It is assumed that it is unlikely for key-tag collisions to
occur. However, they do occur (often), as only 25% of
the available key-tags are used (16k of 64k)[4, 16]. This
is because the key-tag is not completely random. Dur-
ing calculation, the protocol, algorithm and exponent are
incorporated in generating the key-tag.

When key-tag collisions do occur, the resolver has to val-
idate the signature against all keys that have a matching
key-tag, until the correct key is found. This has an impact,
as this results in a lot of extra computational overhead be-
cause cryptography operations are very CPU intensive.

The extra computational overhead is small in itself, but
quantifiable. Even more so when ECDSA (Elliptic Curve
Digital Signature Algorithm) is used rather than RSA,
as verifying signatures with this algorithm is significantly
slower[17]. In this research, it will be explored whether this
extra computational overhead can be misused by some at-
tacker in a DoS-attack to render the resolver unavailable
by crumbling it with workload. The attacker could query
the resolver very often and the resolver in turn would have
to check many keys (the amount depends on the amount
of key-tag collisions) for every query.

To further intensify the attack, the attacker could query
the resolver for some domain name of which the author-
itative name server is also in the hands of the attacker.
If the attacker has a DNS zone set up at the authorita-
tive name server with many key-tag collisions, the resolver
would likely have to check significantly more keys as op-

posed to when the attacker only uses the key-tag collisions
that occur in the wild by default.

3. RELATED WORK
3.1 Attacks with DNSSEC
In the paper ‘DNSSEC and its potential for DDoS attacks:
a comprehensive measurement study’, by van Rijswijk-
Deij et al.[18], the potential for abuse of DNSSEC-signed
domains by using amplification attacks is analysed and
discussed, as well as a number of mitigation strategies.

One of these amplification attacks is executed by send-
ing many DNS queries to one or more open resolver(s),
of which the sender’s IP address is spoofed to be the tar-
get’s IP address. An open resolver is a resolver that is
misconfigured; it does not restrict which clients can query
them. The resolver(s) will then send their response to the
target. The amplification comes from the fact that usu-
ally the queries are small, whereas the responses are large.
This attack can be intensified by setting up a domain for
which certain DNS queries return even larger responses.
The attacks discussed in the paper from van Rijswijk-Deij
et al., are Distributed Denial-of-Service attacks and any
system can be the target. This is different from the spe-
cific attack discussed in this paper, because this attack is
a DoS attack (rather than DDoS) and only a resolver can
be the target of this attack.

3.2 Attacks on recursive resolvers
In their paper, R. Perdisc et al. discuss ‘WSEC DNS: Pro-
tecting recursive DNS resolvers from poisoning attacks’[13],
a new attack for poisoning the cache of recursive resolvers.
A mitigation for this problem -Wild-card SECure DNS
(WSEC DNS)- is proposed, which decreases the proba-
bility of success for this attack by several orders of mag-
nitude. The attack discussed in their paper (poisoning
attack) is different from the DoS attack discussed in this
paper, as the cache poisoning attack impacts all clients of
a resolver, rather than the resolver itself. All clients are
given the wrong information (when they query the resolver
for example.com) and will be redirected to the IP address
given by the attacker for as long as the poisoned cache is
used by the resolver. The resolver is the direct target of
the poisoning attack however, as the attack is performed
on the resolver instead of its clients.

‘Mitigating DNS DoS Attacks’[5] by Ballani et al. is a
paper discussing a proposal of the cache implementations
of resolvers, to mitigate a DoS attack. The DoS attack in
their paper is not defined; they refer to any DoS attack
on (authoritative) name servers. When an authoritative
name server is subject to a successful DoS attack, no re-
cursive resolver can resolve the domain the authoritative
name server is responsible for. This means that the entire
domain name is not resolvable once the caches of the re-
solvers expire. Ballini et al. propose that resolvers change
their caching implementations slightly, to accommodate a
‘stale cache’ where records are stored when they have ex-
pired. If the resolver does not get a response from one of
the name servers during its recursive resolving for a query,
it can use information stored in the stale cache to answer
the query. The research from Ballini et al. is relevant
when the DoS attack discussed in this paper is performed
successfully.

4. METHODOLOGY
To analyse the potential of this type of DoS attack, the
attack was simulated. For this, three (virtual) machines

and a hypervisor to run them on were needed. The needed
virtual machines are (see also figure 2):

• Authoritative resolver
• Recursive resolver
• Attacker

Authoritative
name server

Recursive
resolverAttacker

Figure 2. Overview of which system queries which.

4.1 The hypervisor
Each virtual machine should have all its resources avail-
able for the only program that runs (the resolver, the au-
thoritative name server or the attack script). The amount
of available processing power or RAM should not fluctu-
ate (because processes have to compete for resources), like
the case in type-2 - hypervisors[20]. A type-1 hypervisor is
strongly preferred. Initially VMware ESXi was chosen,
but because the installer of the newest version would not
run and there would be need to obtain and activate a li-
cense, Xen1 was used instead. Xen is highly tweakable,
easy to install and supports ‘full-virtualisation’ because it
is a type-1 hypervisor. This means that, when the resolver
is under attack, the attacker and authority can continue
to do their work.

Authority

ResolverAttacker

Host system

Figure 3. Schematic overview of the virtual ma-
chines on the host machine.

Debian Stretch (version 9.9) was installed on the test sys-
tem. This system is equipped with a Intel Core i3-6100
processor2 (2 cores, 2 threads per core), has 1GB of RAM
at its disposal and a 256GB SSD for storage. The re-
quired virtual machines are set up and have one thread
and 256MB of RAM dedicated to them (figure 3), which
leaves one thread and 256MB RAM for the host operat-
ing system. The file systems of the VM’s are located as
an .img-file on the file system of the host, which makes it
easy to clone or backup the virtual machines.

4.2 The virtual machines
Four virtual machines are set up. An authoritative name
server, an attacker, a resolver running Unbound3 and a re-
solver running BIND4. The virtual machines run Debian
Buster. This version is only due for release on July 6th
2019 but is more than stable enough for this kind of us-
age. This version was chosen as it includes more recent
software, so packages like BIND or Unbound are more up
to date. Some debugging tools (like dnsutils, htop, tel-
net and sudo) were installed on all machines, alongside
the specific software for each machine. This means BIND
for the authoritative name server and one of the resolvers

1https://xenproject.org/
2https://ark.intel.com/content/www/us/en/ark/products
/90729/intel-core-i3-6100-processor-3m-cache-3-70-
ghz.html
3https://nlnetlabs.nl/projects/unbound/about/
4https://www.isc.org/downloads/bind/

on the resolver machine. The first one used was Unbound,
version 1.9.0. The next resolver that was used was BIND,
version 9.11.5.P4. The attacker does not need any spe-
cific software, as the ‘dig’-command was already installed
with the debugging tools. The virtual machines are man-
aged through virt-manager5.

4.3 The zone file
The next step is creating the zone (appendix B.1), from
which a signed zone could be created. Setting up the zone
was fairly straightforward, as it only needed to include
one (TXT) record. This record was later changed from
an @-record (TXT record on highest level) to a *-record
(TXT record on all levels). This is necessary to perform a
subdomain- or phantom-domain attack. It is worth noting
that this zone has to have a TTL (time to live) as small
as possible to prevent caching reducing the impact of the
attack. A TTL of one second was used.

4.4 Key generation
Now the zone file is ready to be signed. This turned out
to be not as easy as anticipated. It is not possible to use
arbitrary keys in the collision attack, by manually mod-
ifying the key-tag. This is because the integrity of the
key becomes compromised and it will not be validated[15].
Proper keys with the same key-tag needed to be generated.
The script used for this can be found in Appendix A.3. It
generates keys in a temporary directory and moves it to
directory ‘1’. If this directory already contains a key with
the same key-tag, it will be placed in directory ‘2’, and
so on. Multiple keys with the same key-tag in the same
directory is not possible, as the file name is identical. In
order to be able to generate a significant amount of keys, a
file system with lot of inodes[21] was needed. After creat-
ing the .img-file, partitioning it and creating the tweaked
file system, the generation could begin. The script from
appendix A.3 has been run for about 16 hours, to create
1051435 RSA and 536743 ECDSA keys. The highest colli-
sion count for the RSA keys is 67, while the ‘best’ ECDSA
key only collided 16 times.

4.5 The signed zone file
The zone should contain at least two keys: The Key Sign-
ing Key (KSK) and the Zone Signing Key (ZSK). The
KSK is used to sign the ZSK, and the ZSK is used to sign
all other records.

To generate different signed zones, a different amount of
RSA keys (keys with key-tag 21033) were included in the
zone (0, 5, 10, 25, 50 and 65). Then, the dnssec-signzone
command was run, to generate a signed zonefile which can
be loaded into BIND. The entire command is as follows:

dnssec -signzone -x -A -N INCREMENT -o
collision.example -f temp.signed
collision.example.zone

The file temp.signed is moved to sub directory zone-

files, with a name corresponding to the amount of keys
included. Then a symbolic link from /var/cache/bind/-

collision.example.zone.signed is created to this file,
which is loaded into BIND.

5https://virt-manager.org/

https://xenproject.org/
https://ark.intel.com/content/www/us/en/ark/products/90729/intel-core-i3-6100-processor-3m-cache-3-70-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/90729/intel-core-i3-6100-processor-3m-cache-3-70-ghz.html
https://nlnetlabs.nl/projects/unbound/about/
https://www.isc.org/downloads/bind/
https://virt-manager.org/

The given flags are:

-x results in that the DNSKEY record is signed using
only the KSK, not with ZSK’s.

-A makes sure that NSEC3 is not used. NSEC3 only
introduces more complexity[7], so the simpler alter-
native NSEC is used by using this opt-out.

-N means, together with INCREMENT, that the SOA serial
format of the signed zone file is incremented.

-o indicates the zone origin, the name of the zonefile.
-f writes the output to the given file (temp.signed in

this case).

By overwriting the symbolic link with a symbolic link
to another file in the zonefiles directory and restarting
BIND, a zone with another amount of key-tag collisions is
loaded.

4.6 Establishing trust
For the attack to work, the resolver must be configured
to perform the lookup for the custom domain name (col-
lision.example) at the authoritative name server, and
not the default nameserver it has configured (the default
nameserver in the virtual network of the hypervisor). This
part of the configuration is called a stub-zone. The non-
default section of the configuration for the Unbound re-
solver can be found in appendix B.2. After configuring
this, the resolver will query the authoritative name server
when it itself is queried for collision.example, but it
cannot yet verify the responses.

Since in this local, virtual setup, this zone is only signed
locally and not part of the global DNSSEC tree, the re-
solver can not verify the responses automatically by look-
ing higher in the chain (see figure 1). This means that
there is no trust established between the resolver and the
authoritative name server. To still be able to perform
the attack, trust must be established. This can be done
by configuring a trust-anchor. The trust-anchor should
contain the KSK of the zone. This key is copied and put in
the configuration of the resolver (appendix B.2). Now the
resolver can be queried for the domain, it will perform a
lookup by querying the authoritative name server (as con-
figured per stub-zone) and then give you the response.
This response should not have the status SERVFAIL. This
is the status for when something has gone wrong, like mal-
formed or unvalidatable. Instead, the status should now
be NOERROR and the ad (authentic data) flag set, which
indicates that the DNSSEC validation has succeeded[14].

4.7 The attack
With a signed zone file loaded and working, the authorita-
tive name server (BIND) is ready to assist the attacker in
attacking the resolver. Just before attacking, the follow-
ing command is run on the host machine to continuously
capture the CPU utilisation of the resolver and write it to
a file:

while true do
xentop -bi2 | awk ‘$1 == "resolver" {

print $4 }’ >> cpu.txt || break
done

With this loop running, the attack (see appendix A.1) can
be started. After the attack, the loop can be stopped
by interrupting the command. Now the file cpu.txt will
contain all the CPU utilisation percentages. The values
from an idling machine (from just before and just after
the attack) are filtered and the file is archived with a name
that indicates the resolver and amount of key-tag collisions
used in the attack. Then the cpu.txt is cleared for the
next use. For example:

cat cpu.txt | grep -v ‘0.0\|0.1 ’ > unbound/
baseline.txt && echo "" > cpu.txt

4.8 Wrapping up
After running the attack on both resolvers, with all colli-
sion counts, the results are processed by GNU datamash6.
With this program, the mean and standard deviation for
all files are calculated. These values can be found in fig-
ure 4. The response times of the queries are processed
for all attacks on the Unbound resolver. This is done by
the script that can be found in appendix A.2. This script
filters all query times from the Unbound logs and writes
them to a file. Again, GNU datamash is used to calcu-
late the mean and standard deviation for the results of all
attacks. These results can be found in figure 5.

All virtual machine disk images and an archive of all gen-
erated keys are available for download here7.

5. RESULTS
This section is arranged in accordance with the research
questions of section 1. The research goal is covered first,
after which RQ 1 is covered. The other research questions
are discussed in section 6.

5.1 Research goal
The research goal: Can we render a recursive resolver un-
available (exhaust its resources, DoS-attack) by abusing
the added computational overhead that occurs when query-
ing a DNS zone containing multiple keys with the same
key-tag?

5.1.1 CPU utilisation
Rendering a resolver unavailable with this attack is possi-
ble in theory, because the CPU utilisation of the resolver
increases significantly when under attack, as demonstrated
in figure 4. The CPU utilisation did not increase enough
in this setup to be rendered unavailable, but it could be.
This is discussed some more in section 6.4.1.

0 5 10 25 50 65
0 %

20 %

40 %

60 %

Amount of collisions

C
P

U
u
ti

li
ty

Unbound

BIND

Figure 4. Average CPU utilisation of resolvers for
10000 queries.

5.1.2 Response times
The response times increased only very marginally (see
figure 5). It seems therefore that legitimate queries are
not hindered by this attack, at least not before the CPU
utilisation of the resolver reaches 100% during the attack.
Accurately measuring the effect on legitimate queries is
future work.

6https://www.gnu.org/software/datamash/
7https://cloud.dexbleeker.nl/s/rMKPFYn8o9AKqSB

https://www.gnu.org/software/datamash/
https://www.gnu.org/software/datamash/
https://cloud.dexbleeker.nl/s/rMKPFYn8o9AKqSB

0 5 10 25 50 65

8·10−4

9·10−4

10·10−4

11·10−4

Amount of collisions

T
im

e
in

se
co

n
d
s

Figure 5. Average response time and error for
10000 queries.

5.2 Research question 1
What is the maximum computing overhead generated by
key-tag collisions in a crafted DNS zone? The maximum
computing overhead is significant. Without collisions, the
CPU utilisation of Unbound is 15.07% on average and
11.4% on average for BIND (see figure 4 again). With 65
collisions, the CPU utilisation reaches 27.02% and 57.45%
on average. This means an overhead of 79.26% and 402.28%
for Unbound and BIND, respectively. These results, in-
cluding the result of an independent sample T-test, are
displayed more clearly in table 1 and figure 4.

Table 1. Average CPU utilisation for 0 and 65 col-
lisions, with the results of an independent sample
T-test.

Resolver
CPU utilisation

Difference Significance0 coll. 65 coll.

Unbound 15.07% 27.02% 11.95% p < 0.0001
BIND 11.4% 57.45% 46.01% p < 0.0001

Another interesting observation from figure 4 is that Un-
bound has a higher CPU utilisation in general than BIND
(without collisions). The significance of this is tested with
an independent sample T-test: The mean difference is
3.635% with a significance of p < 0.0001. Unbound, how-
ever, is much better at withstanding the attack as its CPU
utilisation does not increase as much as that of the BIND
resolver.

6. DISCUSSION
This section covers the discussion of the research. This in-
cludes the sub-questions not mentioned in section 5, some
notes for implementers of resolvers to mitigate this attack
and the limitations of this research.

6.1 Different algorithms
Research question 2 was as follows: How do the different
signing algorithms compare in generated computing over-
head when dealing with key-tag collisions? Comparing the
algorithms in terms of generated computing overhead was
not possible due to time constraints. However, there are
other metrics with which we can compare the algorithms.
The RSA keys take longer to generate (around 100ms on
average) than the ECDSA keys (around 12ms on average).
Generation and this analysis was done on the authority
virtual machine, with haveged installed. But keys gener-
ated with the RSA algorithm tend to collide more often:
There was a key-tag that occurred 67 times when over one
million RSA keys were generated, while the most common

key-tag for keys generated with ECDSA occurred only 16
times. There were more than half a million ECDSA keys
generated, so while it is not very straightforward to di-
rectly compare the two, it seems like RSA keys more often
use the same key-tag.

6.2 Other attack vectors
Research question 3 was: Can we increase the impact of a
key-collision-attack by combining other attack vectors, like
a subdomain attack or a phantom-domain attack? This
attack is pointless without a combined attack vector like
a subdomain attack. Without querying a different subdo-
main every iteration, the resolver will cache the validation
and the key-tag collision that is setup in the zone will be
of no influence. Therefore, this attack always has to be
accompanied by the subdomain attack.

6.3 Mitigation
Lastly, research question 4: What can be done to mitigate
key-tag collision attacks? Are the attacks completely pre-
ventable or is the impact reducible? The impact is signif-
icantly reduced by having a computing capacity surplus.
The machine used in this research only has one processing
thread of 1.85Ghz and it was not even close to its limit.
Resolvers used in production are likely to have much more
resources available and they are likely to be able to with-
stand attacks like these.

Also, since a subdomain-attack is essential for this attack
to work as discussed in section 6.2, the same countermea-
sures used against a ‘normal’ subdomain-attack could be
implemented and used against this attack as well.

Finally, resolvers should have a smart storage for DNS
keys. They should store keys with an index of the do-
main name, so a key with a key-tag from one domain
does not collide with a key with the same key-tag from
another domain. They could also implement that the re-
solver will stop validating after four keys for example, be-
cause it is very unlikely that there are more than four
keys with the same key-tag in the same zone. Then the
attack is significantly limited in its impact, as only four
collisions can occur per query. To analyse whether this
countermeasure can be implemented without further con-
sequences and whether four is the ideal number for the
limit, is future work.

6.4 Limitations
6.4.1 The attack

The success of the attack is still limited, however. The
CPU utilisation of the attacker increases much more (to
around 75%) than that of the resolver (only to around
25%), with the naive way of attacking (see the attack
script in appendix A.1). This could be mitigated by using
a botnet, as the workload would be divided amongst a lot
of machines. Also, the attack is not very straightforward
to setup, given the fact that more than one million RSA
keys were needed to get 67 keys with the same-key tag.
The attack is still very much possible, at least in theory.

6.4.2 Response times
The response times (figure 5) are not measured for resolver
BIND as there was no reliable and accurate method of
obtaining query times. Unbound logs the times each query
took and this was parsed and compiled to come up with
this graph, but BIND has no such feature.

6.4.3 Potential targets
Not all resolvers can be the target of the DoS attack dis-
cussed in this paper, as this attack only works on validat-

ing DNSSEC resolvers. Currently, 25.21% of all queries
in The Netherlands is validated with DNSSEC[3]. This
is about the same as the average for the world, which is
25.40% currently. While this percentage does not directly
correspond to the amount of resolvers with DNSSEC val-
idation enabled, it suggests that there are not that many
relatively, yet.

7. FUTURE WORK
Given that the response times for the queries only increase
marginally (again figure 5), at least when the CPU util-
isation does not reach 100%, one could conclude that le-
gitimate queries are not significantly impacted by this at-
tack. This assumption has to be measured and analysed
properly. This could be done by attacking a resolver that
already has to handle additional query load, or by setting
up a ‘genuine client’ that queries the resolver for common
domain names, thus simulating users.

Although the CPU utilisation increased significantly under
attack, it did not reach 100%. It is not yet clear what
happens when the CPU utilisation of the resolver does
reach 100% and how the system and response times are
influenced. This could be researched further.

Also, more research has to be done to investigate how to
do the attack more efficiently. The attack script (appendix
A.1) could be optimised or distributed by using a botnet
(as discussed in 6.4.1). This is interesting as the effective-
ness of the attack is significantly increased by performing
the attack in an optimised manner.

Finally, the impact of this attack using ECDSA keys could
be investigated. Since the use of ECDSA could (partially)
mitigate the attack[19], it is worth analysing the computa-
tional impact of the DoS attack when using ECDSA keys
and compare that to the impact it has when using RSA
keys (figure 4).

8. CONCLUSION
In this paper, I have analysed and discussed the potential
for using DNSSEC key-tag collisions to DoS a validating
DNSSEC resolver and shown that this is possible in theory.
It is possible because there is a significant CPU overhead
when the resolver has to deal with many key-tag collisions,
as seen in figure 4. The impact of a subdomain-attack is
also discussed and why the attack is not possible without
it. Furthermore, generating keys with key-tag collisions
is faster with the RSA algorithm than with ECDSA, even
though ECDSA keys are generated faster, because the key-
tags of RSA keys collide more often. Moreover, key-tag
collisions that occur ‘in the wild’ and are not crafted ex-
plicitly to be used as an attack, are likely of no significant
influence on the performance of resolvers. This is partly
because resolvers have a capacity surplus, but also because
they cache very effectively. Finally, abusing key-tag colli-
sions and a subdomain-attack has no significant influence
on the response times, at least not when the resolver has
a surplus of computing resources during the attack.

9. ACKNOWLEDGEMENTS
I would like to thank Moritz Müller for his supervision,
help and support during this research. I would also like
to thank all my (peer) reviewers and everyone else that
has provided me with much appreciated feedback and con-
structive criticism.

10. REFERENCES
[1] D. E. E. 3rd. Domain Name System Security

Extensions. RFC 2535, Mar. 1999.

[2] D. E. E. 3rd and C. W. Kaufman. Domain Name
System Security Extensions. RFC 2065, Jan. 1997.

[3] A.-P. N. I. C. (APNIC). Dnssec validation rate by
country, 2019.
https://stats.labs.apnic.net/dnssec, Last
accessed on 2019-06-26.

[4] R. Arends. The quest for the missing keytags.
https://indico.dns-oarc.net/event/22/

contributions/315/, April 2016.

[5] H. Ballani and P. Francis. Mitigating dns dos
attacks. In Proceedings of the 15th ACM conference
on Computer and communications security, pages
189–198. ACM, 2008.

[6] S. M. Bellovin. Using the domain name system for
system break-ins. In USENIX Security Symposium,
1995.

[7] K. Fujiwara, A. Kato, and W. A. Kumari.
Aggressive Use of DNSSEC-Validated Cache. RFC
8198, July 2017.

[8] A. Householder, K. Houle, and C. Dougherty.
Computer attack trends challenge internet security.
Computer, 35(4):sulp5–sulp7, April 2002.

[9] Z. Hu, L. Zhu, J. Heidemann, A. Mankin,
D. Wessels, and P. E. Hoffman. Specification for
DNS over Transport Layer Security (TLS). RFC
7858, May 2016.

[10] P. Mockapetris. Domain names: Concepts and
facilities. RFC 882, Nov. 1983.

[11] P. Mockapetris. Domain names: Implementation
specification. RFC 883, Nov. 1983.

[12] M. Müller, T. Chung, A. Mislove, and R. van
Rijswijk-Deij. Rolling with confidence: Managing the
complexity of dnssec operations. IEEE Transactions
on Network and Service Management, 2019.

[13] R. Perdisci, M. Antonakakis, X. Luo, and W. Lee.
Wsec dns: Protecting recursive dns resolvers from
poisoning attacks. In 2009 IEEE/IFIP International
Conference on Dependable Systems & Networks,
pages 3–12. IEEE, 2009.

[14] S. Rose, M. Larson, D. Massey, R. Austein, and
R. Arends. Protocol Modifications for the DNS
Security Extensions. RFC 4035, Mar. 2005.

[15] S. Rose, M. Larson, D. Massey, R. Austein, and
R. Arends. Resource Records for the DNS Security
Extensions. RFC 4034, Mar. 2005.

[16] R. van Rijswijk-Deij. Tag you’re it! - revisiting the
reality of dnssec keytags.
https://ripe78.ripe.net/, May 2019 (to be
published).

[17] R. van Rijswijk-Deij, K. Hageman, A. Sperotto, and
A. Pras. The performance impact of elliptic curve
cryptography on dnssec validation. IEEE/ACM
Transactions on Networking (TON), 25(2):738–750,
2017.

[18] R. van Rijswijk-Deij, A. Sperotto, and A. Pras.
Dnssec and its potential for ddos attacks: a
comprehensive measurement study. In Proceedings of
the 2014 Conference on Internet Measurement
Conference, pages 449–460. ACM, 2014.

[19] R. van Rijswijk-Deij, A. Sperotto, and A. Pras.
Making the case for elliptic curves in dnssec. ACM
SIGCOMM Computer Communication Review,
45(5):13–19, 2015.

[20] Wikipedia. Hypervisor — Wikipedia, the free

https://stats.labs.apnic.net/dnssec
https://indico.dns-oarc.net/event/22/contributions/315/
https://indico.dns-oarc.net/event/22/contributions/315/
https://ripe78.ripe.net/

encyclopedia.
http://en.wikipedia.org/wiki/Hypervisor, 2019.
[Online; accessed 02-May-2019].

[21] Wikipedia. Hypervisor — Wikipedia, the free
encyclopedia.
https://en.wikipedia.org/wiki/Inode, 2019.
[Online; accessed 13-June-2019].

11. APPENDICES

A. SCRIPTS
A.1 attack.sh

1 #!/bin/bash
2 # Loop 10000 times
3 for i in {0..10000}
4 do
5 # Query the subdomain
6 dig TXT $i.collision.example @192

.168.122.96 +dnssec > /dev/null 2>&1
|| break

7 done
8 exit 0

A.2 parse_unbound_logs.sh
1 #!/bin/bash
2 # This script is to parse attack results and

write them to a file.
3 FILE="results -$(date +"%m-%d-%Y--%T").txt"
4 # Parse query times from logfile and write

them to a new file
5 grep "query took" /var/log/unbound/unbound.

log | awk {‘ print $6 ’} > /root/$FILE
6 # Clear logfile
7 echo "" > /var/log/unbound/unbound.log
8 exit 0

A.3 generate_keys.sh
1 #!/bin/bash
2

3 DIR=/mnt/keys/rsa
4 SUB=1
5 OUTPUT=$DIR/temp
6

7 # Create temp output directory
8 mkdir -p $OUTPUT
9

10 # Generate the keys
11 while true
12 do
13 KEY=‘dnssec -keygen -a RSASHA256 -b 2048 -

n ZONE -K $OUTPUT collision.example ‘
14 # KEY=‘dnssec -keygen -a ECDSAP256SHA256 -

b 2048 -n ZONE -K $OUTPUT collision.
example ‘

15 while true
16 do
17 if [[-f "$DIR/$SUB/$KEY.key"]];

then
18 # Collision found! (key exists

already in this subdir)
19 # Increment dircounter
20 SUB=$((SUB + 1))
21 # Dir does not exist , so we create it
22 mkdir -p $DIR/$SUB
23 else
24 if [[! -d "$DIR/$SUB"]]; then
25 mkdir -p $DIR/$SUB
26 fi
27 break
28 fi
29 done

30 # Finally , move the keys to the proper (
new or old) subdir and set first
subdir

31 mv $OUTPUT/$KEY* $DIR/$SUB
32 sleep 0.1
33 SUB=1
34 done
35 exit 0

B. OTHER
B.1 collision.example.zone

1 $ORIGIN collision.example.
2 $TTL 1
3 $include Kcollision.example .+008+27679. key ;

KSK
4 $include Kcollision.example .+008+21033. key ;

ZSK
5 @ IN SOA ns1.

collsion.example. hostmaster.collison.
example. (

6 1474556905 ; serial
7 10800 ; refresh after 3 hours
8 3600 ; retry after 1 hour
9 604800 ; expire after 1 week

10 1) ; minimum TTL
11 @ IN NS ns.

collision.example.
12 @ IN A

192.168.122.9
13 ns.collision.example. IN A

192.168.122.9
14 * IN TXT "This

is some TXT record"

B.2 unbound.conf
1 server:
2 interface: 0.0.0.0
3 access -control: 192.168.122.0/24 allow
4 access -control: 127.0.0.0/8 allow
5 val -log -level: 2
6 val -permissive -mode: yes
7 logfile: /var/log/unbound/unbound.log
8 log -queries: yes
9 verbosity: 4

10

11 # This part of the configuration makes sure
that the resolver send the queries for
the test domain (collision.example) to
the NS that is running in the other VM.

12 stub -zone:
13 name: "collision.example"
14 stub -addr: 192.168.122.9
15

16 # This part of the configuration makes sure
that the resolver trusts the authority of
collision.example

17 # This should be the KSK!
18 trust -anchor:
19 "collision.example. IN DNSKEY 257 3 8

AwEAAcVhI7x+O<snip the rest of the key >

http://en.wikipedia.org/wiki/Hypervisor
https://en.wikipedia.org/wiki/Inode

	Introduction
	Background
	DNSSEC
	DNSSEC key-tags

	Related work
	Attacks with DNSSEC
	Attacks on recursive resolvers

	Methodology
	The hypervisor
	The virtual machines
	The zone file
	Key generation
	The signed zone file
	Establishing trust
	The attack
	Wrapping up

	Results
	Research goal
	CPU utilisation
	Response times

	Research question 1

	Discussion
	Different algorithms
	Other attack vectors
	Mitigation
	Limitations
	The attack
	Response times
	Potential targets

	Future work
	Conclusion
	Acknowledgements
	References
	Appendices
	Scripts
	attack.sh
	parse_unbound_logs.sh
	generate_keys.sh

	Other
	collision.example.zone
	unbound.conf

