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ABSTRACT
Radiologists are required to write free paper paper text
reports for breast screenings in order to assign cancer di-
agnoses in a later step. The current procedure requires a
lot of time and needs efficiency. To streamline the writing
process and keep up with the specific vocabulary, a word
prediction tool using neural language models was devel-
oped. Challenges as different languages (English,Dutch),
small data sizes and low computational power have been
overcome by introducing EnDuRLM process, able to im-
prove by 25% the current workflow according to RPE mea-
surement. After defining model architectures, EnDuRLM
process involves data preparation, hyperparameters op-
timization, configuration transfer and evaluation. This
work supports future research involving other languages
and also an extensive set of real-world applications.

Keywords
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text generation, natural language processing

1. INTRODUCTION
Breast cancer is the most commonly occurring cancer in
women and the second most common cancer overall. There
were over 2 million new cases in 2018 globally, with The
Netherlands being the third in the top 25 countries with
the highest rates of breast cancer [4]. Early-stage breast
cancer detection could reduce breast cancer death rates
significantly in the long-term. Different screening tech-
niques can be used to diagnose abnormalities, that can
indicate cancer [3], e.g. Mammograms and Computerized
Tomography (CT) that uses x-rays of distinct wavelengths,
Magnetic Resonance Imaging (MRI) which uses magnetic
energy and Ultrasound that uses the sound waves etc.
Screening mammography has been shown to reduce breast
cancer mortality by 38-48% among participants [5].

After applying these imaging techniques by experts (e.g.
radiologists), the findings are communicated to the refer-
ring doctor in a physical form and meanwhile also digital.
To understand the shift to electronic medical records and
radiology data information systems, the increased exten-
sion of Natural Language Processing (NLP) techniques in
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health care in past years allowed clinical applications, as
information retrieval [13], reports structuring [20] or diag-
nosis classification [23]. Such tools improve the speed of
the process, the accuracy of the diagnosis and in the same
time, reduce the number of doctors needed to achieve this
task.

A screening report is the key component of breast cancer
diagnostic process. A study revealed that each Ameri-
can radiologist interprets on average 1777 mammograms
per year, resulting in approximately one new mammogram
each working hour [24]. In this paper, we want to stream-
line the process of unstructured report writing by intro-
ducing a word prediction tool, based on neural language
modelling. Previous studies shown that word prediction
increased the text composition time by at least 22% in
long term use [15].

The main contributions of this paper are:

1. The process English Dutch Radiology Language Mod-
elling (EnDuRLM), developed to overcome challenges
as different languages, optimization difficulty, compu-
tational restrictions and limited corpus size. This ap-
proach involves collecting and preprocessing two data
sets (English and Dutch) for language modelling, fol-
lowed by hyperparameters optimization on the English
dataset with basic LSTM architecture [22]. Then, the
configuration is transferred to the Dutch dataset and
the other model architectures: AWD [17] and FRAGE
[8]. In the end the models are evaluated using perplex-
ity and best models are selected for further analysis.

2. The metric Radiology Process Evaluation (RPE), cre-
ated to evaluate the models by measuring their effi-
ciency in the process of cancer diagnosis.

Using language models developed in EnDuRLM and eval-
uated with RPE allows the development of a vast range of
real world applications. The focus is on next word sugges-
tion, where the model predicts the upcoming word based
on context provided by previous words. Further applica-
tions include: missing data estimation, where lost data can
be generated based on context; quality check, where radi-
ologists receive suggestions about grammatical or spelling
errors; educational training, where students or residents
learn how to write vocabulary and structure specific.

This paper is structured as follows: first, we will present
related work. Second, we will describe the datasets we
have used. Then, we will explain EnDuRLM method in
detail. Finally, we will present the results, draw conclu-
sions and discuss future work. The trained models, the
tool and all other code used will be published at Github1

after publication.
1https://github.com/mihaimdm22

1



DIAGNOSIS

Figure 1. General flow of information for cancer
diagnosis using breast imaging.

2. RELATED WORK
In this section, we will discuss automation initiatives for
the process of cancer diagnosis using breast imaging, fol-
lowed by an overview of the language models architectures
used.

2.1 Breast imaging automations
Because radiologists interpret so many mammograms and
because the proper interpretation of a screening mammo-
gram is often a matter of life or death for the woman
involved, various attempts have been made to streamline
the mammography reporting process and introduce con-
sistent structure and terminology into mammography re-
ports. The main standard for breast cancer radiology re-
porting is ”Breast Imaging-Reporting And Data System”
(BI-RADS) [1]. The BI-RADS lexicon provides specific
terms to be used to describe findings. Along with that,
it also describes the desired report structure, for example,
a report should contain breast composition and a clear
description of findings[20].

In the process of setting a diagnosis based on a breast
image involves a report that describes the observations
on the images. Those reports are usually unstructured
and NLP-based postprocessing can be used to obtain a
structured report [20, 19]. In the end, a doctor sets the
diagnosis based on the unstructured report or structured
report if available. The complete process is illustrated in
Figure 1.

In the last decade Computer Aided Diagnosis solutions [2]
as ’SecondLook’ (made by iCAD) were developed to help
radiologists in reading mammograms. Their efficiency ap-
pears to be contradictory because of limited improvements
on a long period [14] and therefore their accuracy should
be improved to be ultimately considered useful. These lim-
itations have been solved by development of deep learning
solutions, which have been shown to achieve near-human
performances for some applications [11]. If previous meth-
ods rely on regions of interest (parts of image), Zhu et al.
[26] proposed an end-to-end approach based on the whole
mammogram. The results were modest compared to clas-
sic methods, still restricted for a real-world implementa-
tion.

In 2009, an algorithm which is capable of assigning BI-
RADS final assessment categories from English radiology
reports using Natural Language Processing with a preci-
sion of approximately 97% accuracy for correct identifica-
tion [23].

Later on, in 2013, an improvement of language models
for radiology speech recognition using n-gram and word
frequency in unstructured reports dictation has been de-
veloped[21].

More recently, in 2018, using a Conditional Random Field
(CRF) model, Pathak et al.[20, 19] developed an algo-

rithm which structures free-text dutch radiology reports
on breast cancer for quality assurance. The results close to
doctor accuracy (approximately 95%) allowed clinical im-
plementation as annotation tool (TWENTnotator) where
an unstructured report turns into Birads structured report
automatically.

2.2 Language Models
Because of limited research in radiology combined with
natural language processing, we had implemented the ba-
sic LSTM as described in PyTorch documentation, in-
spired from Sherstinsky’s paper [22]. Then, we make use of
two state of the art architectures retrieved from a repos-
itory that tracks the progress in Natural Language Pro-
cessing (NLPProgress) to reach maximum results.

On top of the architecture described above, Merity et al.
proposed a strategy to regularize and optimize the model,
outperforming existing approaches [17]. As displayed by
its naming (AWD-LSTM), the study introduces a non-
monotonically triggered version of the averaged stochas-
tic gradient method (AvSGD) and weight-dropped (WD)
LSTM regularization (DropConnect on hidden weights).

The state of the art method offered by Gong et al. [8]
makes use of a way to learn frequency-agnostic word em-
bedding (FRAGE) using adversarial training. This repre-
sentation technique is build at it’s own on top of a joint
improvement of other’s work: AWD-LSTM-MoS [25] and
dynamic evaluation [12].

3. DATA SETS
This section describes the original data sets, the steps of
preprocessing and feature generation. To provide a fair
comparison between English and Dutch language models,
we have to input similar datasets regarding content, size
and structure.

We decided to choose the following data sets because Dutch
is of interest for ZGT and English is available for compar-
ison:

1. ZGT (Hospital Group Twente) Mammography Re-
ports Database in Dutch Language. This database
provides approx 48000 reports dated from 2012 to
2017.

2. MIMIC-III (Medical Information Mart for Intensive
Care) developed by MIT Lab for Computational Phys-
iology [9] in English Language. This database con-
tains information linked to 53,423 distinct hospital
admissions for adult patients (>16 years old) admit-
ted to critical care units of Boston Hospital (Mas-
sachusetts, U.S.A) between 2001 and 2012. We will
focus on the NoteEvents table specifically, because
it contains free text reports. We will further refer to
this dataset as MIMIC.

Both datasets were subject to de-identification by remov-
ing critical patients data such as id, name, address, date
of birth etc. and are provided under a data use agreement.

3.1 Word Embeddings Overview
According to similar studies [6], a qualitative assesment
of the word embeddings obtained by training a Contin-
uous Bag Of Words model on the MIMIC dataset has
been made. Main objective is to have words with simi-
lar context occupy close spatial positions, thus checking if
the nearest neighbours of a specific word are semantically
similar . A visualization of the ebeidn;dings can be found
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Figure 2. Visualization of the embedding space for
MIMIC corpus learnt by a Word2Vec model, high-
lighting nearest neighbours of the word ’lymph’.
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Figure 3. Flow of data in preprocessing step of
EnDuRLM

in Figure 2. The embeddings were visualized by means
of Principal Component Analysis (PCA), using the top
three principal components to reduce the dimensionality of
the dataset to three dimensions. As described by Mikolov
et al. [18] learnt word embeddings encode many linguis-
tic regularities and patterns that can be represented as
linear translations. Furthermore, computing the nearest
neighbour words reveals the semantic similarity between
neighbouring word vectors. For example, the five nearest
neighbours of ”lymph” are: ”cyst”, ”circumsied nodule”,
”hipoechoic lymph”, ”fibroadenoma”, ”fluid collection”.

3.2 Data preparation
Preprocessing the text is a delicate action which requires
choosing the optimal tools given both the data and lan-
guage models [7]. A typical approach for data preparation
is as follows: each of the sets has to be textually reviewed
first, in order to apply dataset cleaning of irrelevant data
as headings, punctuation, strange names and quoted dia-
log sequences. The next step is lower casing all the words,
so that tokenization can be done. Tokenization is the pro-
cess of segmenting running text into words and sentences.
Figure 3 illustrates clearly step by step the process.

3.2.1 English-Dutch data alignment
The alignment of data is crucial in finding a relation be-
tween two languages regarding modelling. Taking into ac-
count the differences of the datasets structure and mor-
phology, we decided to have the same number of sentences
in both datasets.

Table 1. Aligned examples of report descriptions
for datasets

English (MIMIC) Dutch (ZGT)

Dig diagnostic mammo
bilateral

Echo mamma beiderzijds

R mammography speci-
men right

Mammografie rechts

Mammo needle localiza-
tion left

MRI mamma punctie
links

In order to have the same type of reports, MIMIC’s main
reports table was filtered on category ’Radiology’ resulting
in less than half of the size, 523000 reports. The descrip-
tion of the reports varied from brain scan to left foot bone
x-ray. A list with all the descriptions was sent to the hos-
pital that provided the ZGT dataset, in order to filter and
synchronize with their dataset descriptions as in Table 1.
Filtering again on these description resulted in almost 2
thousand reports, less than 5% compared to ZGT reports.
In order to have the same count again, we randomly se-
lected the same amount of reports from ZGT database.
Then the data cleaning was done individually.

Given the differences in report template and structure, the
inequality problem did not dissolve. We counted the sen-
tences and ensured to have the same number of sentences,
therefore approximately same number of words: almost
150 thousand.

3.2.2 Data cleaning
Given the differences in layout and structure, the data
cleaning was done separately, with the same end goal in
mind: lower cased simple sentences without header, num-
bers or punctuation:

• MIMIC main header (before FINAL REPORT) was re-
moved because it is a computer generated part of the
file and thus irrelevant.
• MIMIC personal data or findings are shifted and marked

between ’[**’ and ’**]’. Those were replaced by tag
’<unk>’ (for unknown).
• ZGT reports have a specific structure, where point is

replaced by comma. Those were replaced back to point
accordingly.
• Measurements values, date and time were also replaced

by tag ’<unk>’.
• Modify common typos and expand common abbrevia-

tions (for e.g. y.o. to years old or dr. to doctor).
• Delete auto generated headers.
• Remove double spaces and tabs.
• Split in sentences using Spacy.
• All sentences were converted to lower case.
• All punctuation was removed.
• Numbers and roman numerals were replaced by N.
• End of each line was replaced by <eos>.

The decision to keep stop words is because on its rele-
vance in final model. In Appendix A, a table showcases
an example of each dataset before and after data cleaning.

3.2.3 Data preprocessing
The file containing same number of sentences of cleaned
text (retrieved randomly) was subject to split. The dataset
was split 80% train and 20% test. The train part was at its
time split again in 80% train and 20% validation. These
decisions were taken in accordance with [16].

Taking into account the small datasets size, we decided
to include all the words in vocabulary. The sizes of the
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Figure 4. Flow diagram of EnDuRLM process

vocabularies were: 3148 for MIMIC and 4443 for ZGT.

4. METHOD
This section describes our systematic approach to solve
the given problem (Section 4.1) and it’s real world imple-
mentation scenario(Section 4.2).

4.1 EnDuRLM
The English Dutch Radiology Language Modelling (En-
DuRLM) framework is designed to overcome challenges as
different languages (English,Dutch), small data sizes and
low computational power and provides a structural way
to obtain good radiology language models. After the data
is preprocessed as in Section 3, the hyperparameters op-
timization is done on the LSTM architecture and MIMIC
data set and later on the best configuration is transferred
to the other models (AWD and FRAGE) and languages
(Dutch: ZGT). In the end evaluation of models by com-
parison is done.

For a better overview the EnDuRLM process is illustrated
in Figure 4, further details following in the next sections.

4.1.1 Model architecture
The LSTM architecture is designed to be better at storing
information and finding and learning long-term dependen-
cies than standard recurrent networks. Recent research
has shown that a well tuned LSTM baseline can outper-
form more complex architectures in the task of word-level
language modeling.

For this approach we make use of three model architec-
tures: LSTM [22], AWD LSTM [17] and FRAGE LSTM
[8]. The code for these implementations is retrieved from
open source repositories and adjusted to fit EnDuRLM
code.

According to previous studies [16], we used a batch size of
20 and unrolled the network for 35 time steps.

4.1.2 Hyperparameters optimization
All networks were trained with SGD. Merity et al. [17]
pointed out that between SGD, Adam, Adagrad and RM-
SProp, SGD provides better performances. We evaluated
our models using the average per-word perplexity on a val-
idation set during training and on a test set after training.
We terminated the training process when the validation
perplexity had stopped improving for five epochs, and kept
the model with the best validation perplexity. Moreover,
following initial tests, we decided to stop the training after
10 epochs if validation perplexity was more than 100. All
models were trained for a maximum number of 100 epochs.
We performed two rounds of random search. In the first
round we varied the following parameters between ranges

specified in previous work of Merity et al. [17], showcased
in Table 2. The second round consisted of restricting the
ranges based on the top 10% models regarding values of
perplexity from the first random search. The best configu-
ration is saved and used for the other model architectures
in the configuration transfer phase.

4.1.3 Configuration transfer
Given the best hyperparameters setting, we apply them
on the remaining models for MIMIC dataset and on all
models for ZGT dataset. Taking into account that AWD
and FRAGE models contain additional hyperparameters
for the added features, for this study we will keep their
default (dropout for RNN layers: 0.3, dropout for input
embedding layers: 0.65, dropout to remove words from
embedding layer: 0.1, amount of weight dropout to ap-
ply to the RNN hidden to hidden matrix: 0.5, alpha L2
regularization on RNN activation: 2, beta slowness reg-
ularization applied on RNN activation: 1, weight decay
applied to all weights: 1.2 · e−6) for a similar dataset, as
described in their original papers [17, 8].

4.1.4 Intrinsic Evaluation
Intrinsic evaluation metrics allow to measure the quality of
a model independent of a particular application [10]. Most
typical metric used to measure the efficiency of a language
model is perplexity. As evident in the last line of equation
1, the perplexity is low if the conditional probability of the
word sequence is high. Therefore, minimizing the perplex-
ity of a test set is equivalent to maximizing the probability
of the test set according to the language model.

The worst model would have a perplexity equal to the size
of vocabulary size, because, on average, for each word in
the sequence of the data, we have the option to choose any
word from the vocabulary. Lowering the perplexity would
narrow our options, therefore a better model.

PP (W ) = P (w1, . . . , wN )−
1
N

=
N

√
1

P (w1, . . . , wN )

= N

√√√√ N∏
i

1

P (wi|w1, . . . , wi−1)

(1)

where: w1, w2, ..., wN are the words from the test set W with

length N

4.2 Real world implementation
Taking into account that consistency is a key feature in
report writing, a tool that suggests the next word, based
on the previous words (similar to mobile phone keyboard)
would streamline the process. The best model for En-
glish/Dutch (separately) will be implemented as a feature
for the previous version of TWENTnotator2, a tool devel-
oped by University of Twente for ZGT Hengelo for man-
ual/automatic annotation of unstructured reports. The
web application has a managerial system for users, stan-
dards, reports and projects, in order to handle the whole
process of conversion from unstructured to structured re-
ports. A mock-up of the feature is illustrated in Appendix
B.

4.2.1 Extrinsic evaluation
Extrinsic evaluation refers to integration of the language
model in an application and measuring how much the ap-

2https://github.com/yannislinardos/annotationTool
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Table 2. Hyperparameters ranges

Parameter
Step
size*

Range
random
search 1

Range
random
search 2

Range
reduction
percentage

Embedding size 10 100-800 500-700 71.42%
Number hidden neurons 100 100-2000 1000-1500 73.68%
Dropout probability 0.05 0.10-0.98 0.50-0.85 60.22%
Learning rate 5 5-100 10-30 78.94%
Gradient clipping norm 0.01 0.01-0.80 0.05-0.45 50%

Total 67.2%
*the step size is the same for both searches

Table 3. Validation and test perplexities for both
datasets

Dataset Model Epochs Valid PPL Test PPL

LSTM 45 14.08 13.47
MIMIC AWD LSTM 39 11.15 10.79

FRAGE LSTM 42 9.87 9.76

LSTM 56 28.15 27.22
ZGT AWD LSTM 43 15.45 14.94

plication improves [10]. Implementation of the language
models as word prediction in TWENTnotator will facili-
tate extrinsic evaluation. Moreover, samples of the gener-
ated text will be sent to the hospital, so that specialists
will evaluate the correctness and relevance of the text.

5. EXPERIMENTS AND RESULTS
Because of computational resources limitations of ZGT (no
graphical card computation power), we made the hyper-
parameters optimization using random search on MIMIC
dataset. In the first round of random search, we trained
and tested 1000 different LSTM models with the param-
eter ranges defined in the Table 2. Figure 5 illustrates
all the models parameters in parallel, highlighting with
colours best 100 models based on test perplexity. This
highlighting helped on constraining the ranges for the sec-
ond round of random search. The reason for a second
search lays in the need for robustness and accuracy. This
time, the step sizes remained the same, while ranges were
reduced by an average of 67.2% accordingly to Table 2.
This round of random search trained and tested 100 dif-
ferent LSTM models and the final best performing model,
considering the validation set perplexity, had the following
configuration:

• Hidden neurons: 1400

• Embedding size: 660

• Learning rate: 30

• Dropout: 0.76

• Gradient clipping norm: 0.28

This configuration was applied to the other model archi-
tectures (AWD and FRAGE) for both datasets. The mod-
els are evaluated using perplexity metric and the results
are shown in Table 3. Comparing the results for MIMIC
dataset, we observe an improvement of perplexity in val-
idation set of almost 35% from LSTM to FRAGE which
is quite good. The value of perplexities is good, taking
into account the small size of the dataset. On the other
side, ZGT dataset has an improvement of 65% from LSTM
to AWD, and we cannot provide an exact result with
FRAGE. The problems encountered when trying to imple-
ment FRAGE were technical related, because of the ab-
sence of a graphical power unit capable of running CUDA

Table 4. Radiologists evaluation

Original Generated

Radiologist MIMIC(3) ZGT(3) MIMIC(2) ZGT(2)
Overall
accuracy
%

1 2 2 2 2 80
2 3 2 2 2 90
3 1 2 2 2 70
4 3 3 2 2 100
5 2 3 2 2 90

Total 86
between () is displayed the number of sentences

environment. We can estimate the value of FRAGE for
ZGT by aligning with the results from MIMIC of 12%
improvement from AWD to FRAGE. The differences be-
tween English and Dutch are normal given their disparity
and incapability to implement FRAGE for ZGT data set.

To display and compare the models accuracy, we plotted
the validation perplexity of the first 50 epochs for each
model arhitecture (LSTM, AWD, FRAGE) and each data
set(MIMIC, ZGT), resulting in 5 models, because ZGT
does not have a FRAGE model. In order to make a clear
illustration of how the models fit during training, we de-
cided to display just the first 15 epochs and perplexity of
maximum 100. Figure 6 shows high convergence for each
setup. The perplexity decrease under 100 in the first 3
epochs and stabilize quite fast for each setup, excluding
the LSTM model with ZGT, where the perplexity con-
verges slower.

We analyzed five sentences generated with the best setup
and the results are surprising because they seem to make
sense and the order of the words is very good. Further
analysis using specialized tools will be made in order to
assign a statement.

In accordance with the best architecture of each language
(FRAGE for English, AWD for Dutch), we created an
evaluation form for ZGT hospital. The process involves
the expertise of the radiologists, because of their extended
knowledge about specific vocabulary and topic. Moreover,
they will benefit the real world implementation in the end.
Their task involves sentences that could have been gener-
ated (entirely) or retrieved from an original report (en-
tirely). The process implies an estimation based on Likert
scale whether the sentence was generated by the language
models or not (e.g. Strongly Disagree would mean re-
trieved from original report, Neutral would mean unsure
and Strongly Agree would mean generated text). Besides
choosing one of the statements of agreement, they have to
motivate the answer or give short explanation about de-
cisive points in the evaluation. The sentences are chosen
by random and do not relate to each other. The tables
with sentences for this part of evaluation are attached to
Appendix D. With this evaluation technique, we want to
check whether they can distinguish between real report
and generated report and see their motivation for this de-
cision. Their arguments can help us further improve the
model and maybe find out some similarities.

We have received feedback from five MRON radiologists,
three of them specialized in the field of mammography di-
agnostics and the other two specialized in other fields. For
a good overview we decided to count the number of correct
guesses and illustrate the results in Table 4. All radiolo-
gists correctly guessed the generated sentences for both
languages with 100% accuracy, arguing that the sentences
make a lot of sense, but there are words that suggest dif-
ferent context. The point where the overall accuracy went
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Figure 5. Hyperparameters optimization. The colorbar contains validation perplexity values.

Figure 6. Perplexity on validation set

to 87% is when trying to estimate the original sentences.
Sometimes, radiologists argue that original sentences are
generated because they have misspellings or do not makes
sense. Using the evaluation of the radiologists, we cannot
state that the generated reports cannot be distinguished
from original reports, although radiologists feedback was
very good regarding the accuracy of the predictions.

The possible methods of accomplishing the task of cancer
diagnosis using breast imaging are defined using existing

Table 5. Process methods and evaluation

Method Accuracy A Speed S Doctors D RPE

Completely human X X X X X X X X X 5
Completely AI X X X X X X X 7
Semi-automated X X X X X X X X X 7
Semi-automated+ X X X X X X X X X 9

automation, explained in detail in Related Work (Section
2.1). For this study, we set the following possibilities:

1. Completely human. In this scenario, all the steps
are done by radiologists.

2. Completely automatic. The automation is done us-
ing work of Zhu et al [26]. In this case it is a end-to-
end approach, where the steps of unstructured and
structured report writing are not done at all. The
method takes the image as input and outputs the
diagnosis.

3. Semi automatic. This case can be implemented with
the existing state of the art methods in the field [20,
23]. In this approach, the writing of the unstructured
report by medical stuff is the only step that restricts
a full automation.

4. Semi automatic plus. This process is similar with
Semi Automatic, but it’s made more efficient with
the addition of the real world implementation of En-
DuRLM (plus).
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RPE = 2 ·A + S −D (2)

To evaluate these methods, we defined our own metric
called Radiology Process Evaluation (RPE). The metric
takes into consideration three aspects:

1. Accuracy (A) - evaluates the correctness of the di-
agnosis.

2. Speed (S) - evaluates the time of the process.

3. Doctor (D) - evaluates the number of doctors in-
volved in the process.

All aspects have a value between 1 and 4, 1 minimum and
4 maximum for accuracy and speed, and reversed scale
for doctor. The ideal case would imply that accuracy is
the highest, speed is the highest and doctor involvement
is the lowest. According to the equation 2, we doubled the
accuracy in the calculation, because it reflects the quality
of the diagnosis.

According to the results of RPE, showcased in Table 5, the
addition proposed by us with EnDuRLM to the existing
method increases the RPE value with 2 points, through
improvements in speed and doctor sections. A high value
of RPE means a better process. The maximum that can
be achieved is 11 and can be achieved with one step im-
provements in the speed and doctor sections.

6. CONCLUSION AND DISCUSSIONS
In this paper we explore and extend the related work on
word modeling process for medical applications. As a
main theoretical contribution, first, we introduce a new
approach for English Dutch Radiology Language Mod-
elling, named by us EnDuRLM. EnDuRLM is equipped
with the state-of-the-art machine learning models for Ra-
diology Language Modelling, and is able to transfer the
knowledge from English to Dutch language. Secondly, we
devise an appropriate metric named Radiology Process
Evaluation(RPE). En-DuRLM was systematically tested
in order to obtain the optimal parameters. The metrics
used to asses the En-DuRLM performance were perplexity
and RPE. Additional evaluation has been done by radiol-
ogists.

In the context of word embeddings (Section 3.1) we made
three key observations. Firstly, we discovered that word
embeddings encode linguistic regularities and patterns which
can be represented as linear translations of word vectors.
Second, we found that the words (or more precisely the
word vectors) closest to some word in the embedding space
are semantically similar to that word. Third, we observed
that medical relationships are encoded in the embeddings.

Future developments include more optimization, but also
using the framework for other languages that have similar-
ities. Besides word prediction, using these models, the fol-
lowing applications can be developed in real world: miss-
ing data recovery, quality check and educational tool.
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APPENDIX
A. EXAMPLE OF DATASETS REPORTS BEFORE AND AFTER DATA CLEANING

MIMIC
Before After

ZGT
Before After

*the reports displayed here are composed from original reports and do not contain real data, thus no privacy issues

B. NEXT WORD PREDICTOR FEATURE - MOCK-UP
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C. GENERATED TEXT USING BEST MODEL FOR EACH LANGUAGE
# MIMIC
1 Screening analog mammography with icad computer aided detection the breasts are predominantly

fatty.
2 There is a N cm opacity seen in the upper outer quadrant.
3 There are vascular calcifications however a single bb likely represents a small lymph node in the

right retroareolar region.
4 There is a N cm opacity seen in the upper outer quadrant.
5 No evidence of malignancy. Birads N benign findings.

# ZGT
1 Goed beoordeelbaar dens klierweefsel rechts mamma compositiebeeld b bij densiteit geen patholo-

gische laesies of stellate laesies.
2 Ter nadele van het tijdsinterval gebied leeg denser als rondom ieder N en drainage aanvullend.
3 Echografie net boven van de areola thans een massa zichtbaar met littekenweefsel van N cm.
4 Dientengevolge bevindingen op de mlo opname subcutis lateraal craniaal in de rechtermamma scherp

densiteit gezien met niet positie.
5 Birads N geen linker uit geesteren voelt sinds N maand knobbeltje in de borst nlateraal.

D. EVALUATION FORM TABLES FOR HOSPITAL
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