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ABSTRACT
Model checking is a technique employed in many areas
such as the design of safety critical systems. Designers
of such systems can construct models, which can give in-
sight into the behavior of the system when verified by us-
ing model checking algorithms. One type of information
that could be gained is reachability information (Will the
system ever fail?). Model checking does not come with-
out any challenges however: The state space explosion is
a well-known phenomenon that plagues many techniques
such as model checking [1]. This means that so called ex-
haustive model checking algorithms have to keep track of
very large amounts of states. Most of these algorithms use
sets of these states, which can take up a significant amount
of memory. This research investigates the effectiveness of
using compressed representations of sets in reducing the
amount of memory required by these algorithms, and their
impact on performance. We find that these set represen-
tations are capable of reducing the memory usage of the
model checking algorithms by 74% on average, though at
quite a high performance hit. Due to the relatively small
impact of bit sets on the total memory usage of model
checking, these alternative set representations may have
limited applicability.
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1. INTRODUCTION
The behavior of a finite system can be verified by using a
model checking algorithm. This allows designers of such
systems to create a model of the system, and be certain
that a given bad property will never hold, or that a good
property will always hold. Depending on how accurate
the models are, these models can give insight into their
system counterpart. Because these models are checked
by a computer, even complicated systems can be modeled
and checked, which would otherwise be impossible to do
by hand. By means of probabilistic model checking, even
systems that depend on random events (such as network
protocols that have to deal with packet loss) can be verified
to be working as intended.
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Many of these model checking algorithms depend on using
sets, to indicate that some property holds for the elements
of that set. Due to the so-called state space explosion
problem, the state space generated by a model can easily
exceed millions or even billions of elements [2]. Because of
this, even relatively memory efficient set representations
that require only 1 bit per element (so called bit sets),
can take up significant amounts of memory. This in turn
has an impact on performance, as the increase in memory
usage can increase the amount of cache misses.

The goal of this research is to investigate the possibility
of using compressed set representations in these exhaus-
tive model checking algorithms. These sets would use less
memory, which in turn means that larger models can be
checked before running out of memory. The effectiveness
of compression largely depends on the compressibility of
the input data, however. Furthermore, the performance
of the algorithm will likely degrade, because of the added
steps of compressing and decompressing elements of the
set. This research will give an analysis of the effective-
ness of these compressed set representations in reducing
the amount of memory required and their impact on per-
formance. Additionally, the parallelization opportunities
of these data structures will be analyzed.

The main goal of this research will be to answer the fol-
lowing questions:

RQ1 To what extent can a compressed set representation
reduce the memory usage of model checking algo-
rithms and what impact does this have on perfor-
mance?

RQ1.1 How well suited are these compressed sets
representations for parallelization?

1.1 Related Work
The state space explosion is a well studied problem, mean-
ing that extensive research has been done in reducing the
amount of memory used by these model checking algo-
rithms. This includes research aimed at improving the
algorithms themselves as well as research aimed at im-
proving the underlying data structures, such as sets. One
area of research is the reduction of the amount of states
required for model checking and another is the reduction
of memory required per state.

State Compression and Reduction
Reducing the amount of memory required per state can be
performed by reusing parts of the state that also appear
in different states [3]. A set of values that is the same
across different states will be replaced by a pointer to a
single copy of those values, to avoid storing the same set of
values multiple times. Even though the research tackles
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Figure 1: Basic example of a LTS: a simple lock

the same problem, it does so by focusing on a different
aspect than our research.

PTrie
Jensen et al. [4] describe their creation called PTrie, ca-
pable of reducing memory usage by 60 − 70% while only
degrading performance by 3% on average in their domain
of Petri net model checking. Because these results are for
a different domain, the effectiveness for this research’s do-
main (LTS, MC and MDP model checking) will have to
be measured.

2. BACKGROUND
We will now give some context information about the top-
ics to be discussed in this paper.

2.1 Model Checking
When using model checking, the designer of a system cre-
ates a mathematical model of a system using a modeling
language. Once this model is created, the model can be
used in model checking algorithms to verify properties of
interest. If the model was sufficiently accurate, the results
of the verification of the model can give information about
the original system.

An example for using model checking is a safety criti-
cal system. A complex system such as a nuclear reactor
might have a large amount of states it could be in. Model
checking can then be used to verify that under any cir-
cumstances the reactor cannot reach an undesirable state,
which could be catastrophic for such a system.

There are several techniques for model checking, but this
research will only go into Labeled Transition Systems (LTS),
Markov chains and Markov Decision Processes (MDP). We
will give a very basic and simplified overview of these sys-
tems.

Labeled Transition System.
An LTS is similar to Finite State Machine (FSM) in the
sense that it consists of a collection of states, which are in-
terconnected by means of transitions requiring an action.
These actions are inputs to the model and can be seen as
outside influences such as human interactions (e.g. button
presses). Some differences between FSMs and LTSs are
that LTSs can have infinite states, and that these states
can have labels (which consists of so-called atomic propo-
sitions). Starting with an initial state, a trace is a singular
sequence of actions, indicating a singular execution of the
an LTS. Figure 1 shows a very basic example of an LTS:
a model for a lock. In this example LockAvailable and
LockTaken are atomic propositions.

Markov Chain.
A Markov chain is similar to a LTS, but the transitions
are made by means of random choice: each transition has
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Figure 2: Basic example of an MDP: a coin flipping bet

a probability associated with it, indicating how likely that
particular transition is. This allows modeling systems that
have random behavior, such as packet loss in network pro-
tocols. Unlike LTSs, Markov chains do not take actions,
instead, transitions are performed purely based on the as-
sociated probabilities.

Markov Decision Process.
An MDP is similar to a Markov chain, but each transition
requires an action, just like with LTS. The current action
determines what transitions are available for the current
state, and the probabilistic distribution for taking those
transitions. Figure 2 shows an example MDP model of a
coin flipping bet. First the action is chosen (picking either
tails or heads), which then results in a 50/50 chance to
win.

2.2 State Space Explosion Problem
Systems are rarely constructed monolithically, instead they
are constructed by combining smaller components [1], which
can be done by using parallel composition. One of the
problems with exhaustive model checking is that the amount
of states to be checked can grow exponentially in the amount
of these smaller components. Another extension that eases
the modeling process is the addition of variables. Though
these additions improve the expressiveness of modeling
languages, they can have scaling problems however.

Parallel Composition.
When using parallel composition, two models are com-
bined together into one model which encompasses the be-
havior of both models running side-by-side. This is useful
for modeling systems like network protocols, where each
participant of the communication abides to the same pro-
tocol, but acts independently. The problem that arises
however is that to represent the parallel composition of
two models, both containing n states, requires n2 states
in the worst case. The parallel composition of three models
would require n3 states, continuing to scale exponentially
in the number of models: nm (where n is the amount of
states per model and m is the amount of models).

Variables.
Another method of easing the modeling process is the ad-
dition of variables. Realistic systems typically have a large
number of possible configurations that would need to be
explicitly represented as variables in the form of opaque
states [5]. These variables can be updated and checked for
just like in a normal programming language. The usage
of variables can greatly increase the number of potential
states however, as each state needs to be duplicated the



same number of times as the domain size of the used vari-
ables. This means that adding a 8-bit counter to a model
could potentially increase the amount of states in the state
space by a factor of 256.

Scaling.
Both these additions (parallel composition and variables)
increase the expressiveness of modeling languages, but also
allow relatively small models to have very large state spaces
(state space explosion). The state space can become so
large, that exhaustive model checking is no longer viable:
exploring every state would require either too much mem-
ory or time.

2.3 Compressed Set Representations
A bit set is a representation for a set. Internally a bit set
is a long array of bits, storing a single bit for each element
in the domain of the values to be stored. When a bit in
this array is set to 0, the corresponding element is not a
member of the set, while if it set to 1, the element is a
member of the set. Finally, a one-to-one function maps an
element to be inserted/retrieved from the set to an index
in the bit array so that arbitrary elements can be stored
in the set.

One way to reduce the effect of the state space explosion
is by using a compressed set. Similar elements can be
grouped, or relevant portions of the set can be decom-
pressed when required. This reduces memory usage and
can potentially also increase performance due to better
CPU cache usage.

Run Length Encoding (RLE) in Bit Sets.
RLE can be used to compress bit sets by detecting long
runs of bits having the same value and packing them to-
gether. This packing is performed by storing the index
at which the run stars and the length of the run. When
using the notation 〈start , length〉, the bit string 111001111
becomes 〈0, 3〉 〈5, 4〉.
Though RLE can be very effective at compressing certain
kinds of data (i.e. containing long runs of 0’s and 1’s), it
becomes less useful when used ‘dynamically’ (i.e. requir-
ing frequent insertions or deletions). Retrieving data at a
certain index might require traversing a large portion of
the runs [6]. Furthermore, changing a bit in the very be-
ginning might mean that whole sequence has to be moved
to the right, to make room for the new bit to be inserted.

Trie.
A different way of storing a bit set is by using a trie
(also known as a prefix tree). Although tries were tra-
ditionally used for optimizing string searches, tries can
also be used for bit strings. A trie works by recursively
grouping elements with the same prefix together. Infor-
mally, the words worker ,worked ,works would be stored as:
work + {er , ed , s}, reusing the common prefix work three
times. Similarly, the bit strings 000100, 000110, 000011
can be stored as 000 + {100, 110, 011}

Binary Decision Diagram (BDD).
A bit set can be seen as a Boolean function: an element is
the input to the function, and the function returns whether
the element is a member of the set. A BDD represents this
Boolean function as an acyclic directed graph. Traversing
this graph, using the bits in the input to decide what edges
to follow yields the associated output. Though BDDs are

memory efficient, they can have an unacceptable impact
on performance [7].

2.4 Integer Sets
The model checking algorithms make use of integer sets.
Instead of storing all the states for which a certain prop-
erty holds, an index is stored which corresponds to a state.
This saves having to store the states multiples times, or
computing the hash of a state in the case of a hash based
set. An integer set has the usual set operations, such as
insert, delete and union. A difference with a normal set
however, is that the elements of a integer set are totally
ordered, meaning that normal set operations can also be
applied to ranges of elements. A formal description of the
integer set operations is described below.

Insert(S, i) =S ∪ {i}
Remove(S, i) =S \ {i}

Contains(S, i) = i ∈ S

RangeApply(A,B, r) =

{i |(i ∈ r ∧ i ∈ B)∨(i /∈ r ∧ i ∈ A)}
RangeUnion(A,B, r) =RangeApply(A,A ∪B, r)

RangeIntersect(A,B, r) =RangeApply(A,A ∩B, r)

RangeComplement(S, r) =RangeApply(S, S̄, r)

Where S, A and B are integer sets, r is an integer range,
and i an index.

3. SET USAGE
To ensure that the set representations are effective, it is
important to analyze the usage of these sets in the model
checking algorithms. After all, each set representation will
have their own strengths and weaknesses, so for high effi-
ciency, these will have to match up with the set usage by
the model checking algorithms.

For example, a bit set using RLE will have bad perfor-
mance when it comes to reading/writing at random in-
dices, because such a set would require iterating from al-
ready known position until the requested index is found
(similar to a linked list). Now this might sound like a ma-
jor drawback to such a set, but it all depends on the way
the set is accessed. If the set were used in such a man-
ner that the indices requested are strictly increasing, there
would be no need for backtracking, reducing the overhead.

3.1 Algorithms
To calculate properties of interest, several stages can be
identified. We will only focus on two stages: the precom-
putation and value iteration stage. These two stages both
make use of sets, but in different ways. We will now de-
scribe the two stages to be able to analyze their usage of
the sets.

Precomputations.
During the precomputation stage, the state space is pre-
processed in such a way that it makes the upcoming stages
easier. The Modest Toolset1 makes use of the method
described by [8], by calculating which states are definitely
going to reach a target state, and those states which are
definitely not going to reach a target state. The infor-
mation about these states can then be used in the value
iteration stage.

1Model checking toolset used in this paper, more informa-
tion on this in Section 5.1



By logging every read and write operation to the sets used
by this algorithm in an experiment, we were able to deter-
mine that this algorithm performs read and write opera-
tions in ‘bursts’, which means that a run of write opera-
tions would be followed by a run of read operations. Using
this information, it could be more beneficial to store this
burst of write operations, and only add them to the set
once the first read operation comes in.

Value Iteration.
For calculating the probability of reaching a target state,
the Modest Toolset has multiple options, though we
will only focus on value iteration. Value iteration is an
approach, which calculates the probability of reaching a
target state in a finite n steps. Because these steps are
finite, the final calculated probability is only an approxi-
mate answer. This does not mean it is inaccurate however,
as using more and more steps gives a more accurate an-
swer, allowing for arbitrary precision.

3.2 Effectiveness of Precomputations
The precomputation stage is meant as a way of speed-
ing up the actual value iteration stage, but can take sig-
nificant time to perform. It is therefore only useful to
perform these precomputations if the speedup gained is
greater than than the time it took to perform these pre-
computations.

To check whether these precomputations are actually worth
performing, a small test was performed to investigate the
effectiveness of these precomputations. The results can
be seen in Table 1. Fastest times are underlined. t in-
dicates time spent on value iteration in seconds while p
indicates time spent on precomputations in seconds. S0

and S1 indicate whether that particular precomputation
was performed. Some properties require precomputations
to be performed regardless of the chosen precomputation,
which is why the ‘None’ column has non-zero entries for
p.

The table shows that indeed, precomputations speed up
the value iteration stage, though they can take up signifi-
cant amounts of time. Because the precomputation make
use of several bit sets, they will be turned on for evaluating
the effectiveness of the alternative set representations.

4. SET REPRESENTATIONS
The following set representations will be tested:

Representation Implementation
Uncompressed bit set Existing Modest Toolset

implementation
Prefix tree PTrie
RLE + index list +
uncompressed hybrid

CRoaring.Net

Hash set C# .NET implementation
HashSet<int>

These set representations have been chosen because they
allow read and write operations directly on their repre-
sentation. A higher compression ratio could probably be
achieved by using a more sophisticated compression algo-
rithm such as DEFLATE, though this would have an unac-
ceptable impact on performance, as every read/write op-
eration would require decompression/compression respec-
tively.

4.1 Uncompressed Bit Set

In this form, the set is stored as a long bit string, where
each element of the bit string corresponds to a single state
in the state space. A 1 in that bit string indicates that
the corresponding state is a member of the set, while a 0
indicates the opposite.

Memory Usage.
Because of the way these uncompressed bit set are stored,
they always uses the same amount of memory, regardless
of the amount of elements contained within the set. The
memory usage in bytes of a set in this representation can
be calculated by dividing the amounts of bits stored by 8.

Time Complexity.
The operations insert, delete and contains, all have time
complexity O (1), because they are simple read/write op-
erations on the bit string. Though this scales well, the op-
erations union and intersect have time complexity O (|D|)
(where D is the domain of the indices), because every bit
has to be checked in order to perform these operations. In
the worst case, two completely empty sets get intersected.
Even though the result is trivial (the empty set), it would
still require accessing every single bit of both sets.

Parallelization.
Using a single read/write-lock for a big uncompressed bit
set will likely have a big impact on the performance. If
two threads are writing/reading at opposite ends of the
bit set, there should be no need for locking out either
thread. Instead, the bit set can be divided into chunks,
each having their own read/write-lock. This will prevent
threads from accessing the same data at the same time,
while not having to create a large amount of locks, which
would be a waste of memory.

4.2 PTrie
PTrie is a set implementation that is capable of storing
arbitrary sized elements, without using any hashing func-
tion, while being on par with other optimized set imple-
mentations that are hash based[9].

Memory Usage.
Due to the way PTrie is designed, the last byte of all en-
tries is always stored in a bucket, which means that for
every entry added to the PTrie, at least 1 byte is always
required. Next, the tree structure which leads to those
leaf nodes strongly depends on the kind of data that was
put into the PTrie. Indices with similar prefixes will yield
a small tree, while indices with differing prefixes will re-
sult in a larger tree. Due to the usage of many (64 bit)
pointers in the non-leaf nodes, the actual tree structure it-
self can potentially end up consuming quite a lot of mem-
ory. Accurately calculating the memory usage of a PTrie
can be performed by keeping track of all allocations and
deallocations. This is done by replacing all calls to mem-
ory management functions in the PTrie implementation
by ones that also keep track of the amount of bytes used
by the set. Each call to an allocation function increases
the memory usage counter, and each call to a dealloca-
tions function decreases the counter. This means that this
counter always indicates the current memory used by the
PTrie (assuming the PTrie implementation has no memory
leaks).

Time Complexity.



Table 1: Test results for the effectiveness of precomputations

Model info Precomputation info
None S0 S1 S0 + S1

Model States t p t p t p t p

beb4 N=5 3,492,162 8.60 0.00 9.05 0.65 31.36 23.46 31.08 23.42
consensus6 K=2 1,258,240 167.89 2.39 153.60 2.98 202.57 71.08 203.16 71.19
csma4-2 761,962 8.58 2.40 8.82 2.61 24.30 18.70 23.49 17.91
dpm6-10-4 131,314 6.30 0.10 6.17 0.12 5.73 0.24 5.66 0.28
echoring100 871,634 38.58 0.00 30.84 0.36 67.84 33.56 64.50 33.82
elevatorsb-11-9 538,326 7.72 0.00 8.16 0.24 4.75 1.07 4.96 1.28
zeroconf-1000-4-false 306,585 2.29 0.00 2.35 0.16 10.142 7.873 9.86 7.64

The time complexity was not provided by its creators. It
can however be seen as being similar to a self balancing
search tree: we would expect the basic operations to have
O (logn) time complexity, provided that sometimes some
extra operations are required to keep the tree in an efficient
state. Because the indices store in the PTrie always have
the same amount of bits, the tree will always have the
same depth, leading to a time complexity for the basic
operators to be O (1) instead.

Sadly no specialized intersect or union operations were
provided in the PTrie paper, which means that the naive
implementations (using only the basic operations) leads to
a time complexity of O (|D|).

Parallelization.
Making a PTrie thread-safe can be quite tricky, as a single
delete or insert can drastically change the tree structure.
Putting a read/write-lock on each non-leaf node might not
work as that would be prone to deadlocking. If two inser-
tion operations might require changing the tree structure
owned by each other, resulting in a deadlock. Instead, a
single read/write-lock can be used for the whole PTrie,
though this will likely degrade performance heavily.

4.3 RLE
RLE can be used to store a whole bit set, but this is not
tested in this paper. Instead, it is used as a chunk type of
the Roaring format.

Memory Usage.
The memory usage of run length encoding bit set strongly
depends on the amount of runs present in the set, and
the format that is used to store the runs. In the worst
case, an alternating bit pattern would require 16 times
the amount of memory compared to a uncompressed bit
set when using the format that is used in Roaring, which
uses 16 bits for the starting index and 16 bits for the run
length. A mostly empty or mostly bit set would require
only a fraction the amount of memory of a uncompressed
bit set. The memory usage of a run length encoded bit set
can accurately be calculated by multiplying the amount of
runs with the memory usage of a single run.

Time Complexity.
The time complexity for a run length encoding based bit
set is similar to that of a linked list: for each access of
the bit set, iteration is required from an already known
position. In the worst case this would require iterating
trough the whole list of runs just to access a single index.
This means that the complexity for inserting, deleting and
contains is all O (r) (where r is the amount of runs). The
same hold for union and intersection, each run will be iter-

ated over yielding yet again O (r). This shows that the run
length encoding can be quite efficient, but only if the data
contains very long runs. A pattern which alternates would
ruin both the memory usage as well as the performance.

Parallelization.
A run length encoded bit set becomes really difficult to
parallelize, because making a change in the beginning of
the list of runs can affect everything that comes after that.
One way to solve this however, is to divide the domain of
the indices up in chunks and put a lock on that instead.

4.4 Roaring
Roaring is a hybrid technique for storing compressed bit
sets, and due to its good performance, it has been adopted
by several production platforms (e.g. Apache Lucene,
Apache Spark, Apache Kylin an Druid)[6]. Instead of ap-
plying a single compression technique to the while bit set,
the elements are partitioned in chunks of 216 (65536) bits,
which can have different compression techniques applied
to them.

Memory Usage.
As of the writing of this paper, there are 3 different chunk
types in Roaring: uncompressed, sorted index array and
run length encoding. To accurately calculate the memory
used by a Roaring bit set, the bit set is serialized according
to the Roaring specification [10]. Because this serialization
is really similar to the memory used by the set itself, the
byte count of the serialization is approximately equal to
the memory usage of the set.

Time Complexity.
The uncompressed chunk is similar to the previously men-
tioned uncompressed bit set, causing little overhead over
that representation. Next, the run length encoding chunk
functions similar to previously mentioned run length en-
coding bit set. The sorted index array chunk works by
storing the (16 bit) indices of the states that are a mem-
ber of the set. This allows for more efficient storage of
sparse chunks. A chunk which has only one member can
be stored by only storing a single index of that member.
This does have worse time complexity however. Look-
ing up an index now has to be done in a sorted array,
which can be done using a binary search which has time
complexity O (logn). Insertions and deletions have the
added extra cost of potentially having to move all ele-
ments from the index list one position the right/left, which
has complexity O (n). The union and intersection of two
sets still has to go through all indices of both index lists,
giving O (min{|S1|, |S2|}) complexity for intersection and
O (max{|S1|, |S2|}) complexity for union.



Parallelization.
The Roaring format is already divided up in chunks, so
it makes sense to use a read/write-lock for each chunk.
Making a change to such a chunk could affect the whole
chunk in the case of RLE or index list, so a lock is definitely
necessary to ensure thread safety.

4.5 HashSet
The reason bit sets are being used instead of more conven-
tional set representations such as hash sets, is that they
were expected to be more performant. To make sure that
this is actually the case, the default C# HashSet is used
in the tests.

Memory Usage.
The memory usage of a HashSet scales linearly with the
amount of elements. To calculate the memory usage of a
HashSet in C#, a C# technique called reflection can be
used to determine the size of the internal components of
the HashSet which are normally inaccessible.

Time Complexity.
The basic operations (insert, delete and contains) all have
O (1) time complexity. Because the elements of a HashSet
have no particular order, the range based operations have
O (n) time complexity. In order to get the next element
in the range, each index has to be checked.

Parallelization.
For parallelization, a ConcurrentDictionary from the C#
standard library can be used. This provides fine-grained
locking to ensure thread safety [11].

5. METHODOLOGY
5.1 Implementation
We will now describe the implementation details that are
relevant to testing the set representations in probabilis-
tic model checking. The code written for this paper can
be found in the marckvdv-compressed-sets branch of the
Modest Toolset repository.

Modest Toolset
The Modest Toolset is model checking toolset capa-
ble of checking the model types mentioned in Section 2.1,
among others. The toolset currently makes use of uncom-
pressed bit sets in several sections of the model checking
algorithms. To test the effectiveness of the alternative
set representations in the context of probabilistic model
checking, the set representations mentioned in Section 4
have been implemented for the Modest Toolset. Be-
cause the toolset is written in C#, the set implementations
used also had to be written in C#, or capable of interop-
erating with C#. For the Roaring bit set, an existing
wrapper called CRoaring.Net is used. For PTrie (which
only has a C++ implementation) we created a small C
interface which could then be used in the toolset (using
the C interoperation).
An obstacle in getting different set representations to work
in the toolset, was the fact that the uncompressed bit set
that was already present was tightly woven in to the code.
This was necessary because special tricks were required
to allow the toolset to allocate arrays greater than 232

elements, which is normally the limit for C# arrays.

5.2 Test Setup

Table 2: Test machine specifications

Specification Value

Operating System Windows 10 (Home edition version 1709)
CPU Intel R© CoreTM i7-6700HQ @ 2.60GHz
Memory 8 GiB SODIMM DDR3 @ 1600 MHz
Runtime Microsoft .NET v4.7.2

We will now describe the setup that was used to test
the performance and memory usage of the previously de-
scribed set representations.

QVBS Benchmark Models
Because compression techniques can have different effec-
tiveness based on the data type, it is important to test
using a varied set of input data. The Quantitative Veri-
fication Benchmark Set (QVBS) contains a large number
of models which can be used to test model checking soft-
ware[12]. For testing the set representations we used only
a small subset from QVBS, whereby each model is large
enough such that time and memory measurements are also
accurate. Any constant errors to the time or memory mea-
surements will diminish once the model checking task be-
comes larger. For example, let’s say that the memory
measurement is always 100 bytes too low, then the rela-
tive error for a model checking task which requires only 2
hundred bytes is way higher than that of a task requiring
2 million bytes.

Performance Measurement
As indicated by the research question, we are interested
in both the performance and the memory usage of the
set representations. For measuring the performance, the
Modest Toolset reports the time spent during the dif-
ferent phases of calculating the properties associated with
the model. Determining the memory used by the various
set implementations is more tricky however. The memory
used by these sets contributes to only a small portion of
the total memory used by the model checking algorithms.
This, combined with the fact that C# is a garbage col-
lected language means that the total memory used by the
program is an inaccurate measurement. Instead, accurate
memory usage is calculated by each set itself, using the
method described in the ‘Memory Usage’ sections of 4.
To not degrade the performance too much the memory
usage of a set is only calculated once it is no longer being
used.
All tests were performed on the same machine to make sure
that the performance measurements are comparable. The
specifications for the machine used for the benchmarks can
be seen in Table 2.

6. RESULTS
The raw results of the tests performed can be seen in Ta-
ble 3 and plotted in Figure 3, both in the appendix. We
used a similar set of models as used in Table 1 to test
the selected set representations. In this table, total time
indicates the total time required to perform the model
checking task, which includes time spent on stages which
do not use make use of the new sets, such as state explo-
ration. This in turn means that the total times cannot be
compared as such, i.e. a total that is twice as small does
not necessarily mean that the set representation is twice
as fast. The ‘Precomputation memory’ concerns the total
memory used by the set representations in the precompu-



tation stage, while ‘Atomic proposition memory’ the total
memory used by the sets representing the atomic propo-
sitions. Next, the total memory column is the sum of the
previous two columns.

7. DISCUSSION
Regarding the results shown in Table 3, we will now evalu-
ate the performance of the set representations one by one.

Uncompressed.
This entry acts as a baseline: to improve the current usage
of bit sets in the Modest Toolset, the tested set rep-
resentation should outperform the uncompressed bit set.
The performance of the uncompressed bit set is clearly
the highest, achieving a time which way lower than the
other set representations for almost all the test cases. As
explained in Section 4.1, the memory usage of an uncom-
pressed bit set is constant, wasting memory when the set
it represents is mostly empty, which is the case in the ‘el-
evators’ model.

Roaring.
When comparing Roaring the uncompressed bit set, the
Roaring bit set consistently uses less memory. Within
the tested models, Roaring uses around 74% less memory
on average, while increasing the total run time by 110%.
This degraded performance was to be expected however,
as most operations are insertions and removals, which is
faster on uncompressed bit sets [13].

PTrie.
In the models used in our tests, the PTrie implementa-
tion did not perform well. Even though PTrie is able to
save some memory in some of the bit sets, there are also
plenty of bit set which use way more memory than the
uncompressed variant. In fact, when it comes to total
memory usage, PTrie gets consistently outperformed by
the uncompressed bit set. The creators of PTrie compare
the performance of PTrie to that of conventional set imple-
mentations [9], and indeed, PTrie consistently outperforms
HashSet when it comes to memory usage. Furthermore,
the performance takes quite a hit: the total times of the
PTrie implementation are more than ten times as high as
that of the uncompressed bit set.

HashSet.
The HashSet implementation performs well when it comes
to performance, being slightly slower than the uncom-
pressed bit set. The memory usage of this ‘naive’ method
can be quite bad however, requiring more than 30 times
the memory for some models when compared to the un-
compressed bit set.

8. CONCLUSION
To conclude, alternative set representations are capable of
reducing the memory usage in probabilistic model check-
ing, though it comes at a high price when it comes to per-
formance. In particular, the Roaring bitmap is capable of
providing consistently lower memory usage, while having
a relatively high impact on performance. Cutting out the
interoperation with C and optimizing the library for this
setting would likely decrease this impact on performance.
Due to the bit sets contributing to only a small part of
the total memory required by model checking, using these
alternative set representations might not be worthwhile
unless the models that are being checked become really

large such that any reduction to the memory usage is fa-
vorable.

For the future, it would be interesting to see a Roaring bit
map to be used more passively: using only uncompressed
chunks while memory is available to achieve high perfor-
mance, while using the compressed chunks either memory
is running low or union and intersection operators are be-
ing used more often. This ensures that the compression
is not a hindrance when it is not needed, while still being
present when needed.
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Srba. Ptrie: Data structure for compressing and
storing sets via prefix sharing. In Dang Van Hung
and Deepak Kapur, editors, Theoretical Aspects of
Computing – ICTAC 2017, pages 248–265, Cham,
2017. Springer International Publishing.

[10] Roaringformatspec: specification of the
compressed-bitmap roaring format. https:
//github.com/RoaringBitmap/RoaringFormatSpec.

https://github.com/RoaringBitmap/RoaringFormatSpec
https://github.com/RoaringBitmap/RoaringFormatSpec


[11] Concurrentdictionary.
https://docs.microsoft.com/en-us/dotnet/api/

system.collections.concurrent.

concurrentdictionary-2?view=netframework-4.8.

[12] Arnd Hartmanns, Michaela Klauck, David Parker,
Tim Quatmann, and Enno Ruijters. The
quantitative verification benchmark set. In Tools
and Algorithms for the Construction and Analysis of
Systems - 25th International Conference, TACAS
2019, Held as Part of the European Joint
Conferences on Theory and Practice of Software,
ETAPS 2019, Prague, Czech Republic, April 6-11,
2019, Proceedings, Part I, pages 344–350, 2019.

[13] Samy Chambi, Daniel Lemire, Owen Kaser, and
Robert Godin. Better bitmap performance with
roaring bitmaps. CoRR, abs/1402.6407, 2014.

https://docs.microsoft.com/en-us/dotnet/api/system.collections.concurrent.concurrentdictionary-2?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.collections.concurrent.concurrentdictionary-2?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.collections.concurrent.concurrentdictionary-2?view=netframework-4.8


APPENDIX

Table 3: Memory usage and performance of the tested set representations - raw data

Model States Total time (s) Precomputation memory Atomic proposition memory Total memory

Uncompressed

beb4 N=5 3,492,162 9.42 1,746,112 1,746,112 3,492,224
consensus6 K=2 1,258,240 158.36 2,201,920 1,887,360 4,089,280
csma4-2 761,962 10.08 1,333,472 1,428,720 2,762,192
dpm6-10-4 131,314 6.43 196,992 164,160 361,152
echoring100 871,634 33.93 1,524,440 3,050,880 4,575,320
elevatorsb-11-9 538,326 8.22 134,592 67,296 201,888
zeroconf-1000-4-false 306,585 2.65 153,312 76,656 229,968

Roaring

beb4 N=5 3,492,162 20.78 859,275 167,616 1,026,891
consensus6 K=2 1,258,240 286.97 41,359 6,684 48,043
csma4-2 761,962 33.64 117,813 82,905 200,718
dpm6-10-4 131,314 13.64 39,695 25,385 65,080
echoring100 871,634 114.82 1,097,096 1,439,592 2,536,688
elevatorsb-11-9 538,326 7.43 524 519 1,043
zeroconf-1000-4-false 306,585 3.99 138,736 21,144 159,880

PTrie

beb4 N=5 3,492,162 114.08 12,413,401 978,146 13,391,547
consensus6 K=2 1,258,240 1502.44 23,378,927 12,240 23,391,167
csma4-2 761,962 244.67 11,369,867 2,494,590 13,864,457
dpm6-10-4 131,314 40.26 1,645,196 392,180 2,037,376
echoring100 871,634 982.00 9,126,114 6,861,218 15,987,332
elevatorsb-11-9 538,326 70.32 811,746 1,458 813,204
zeroconf-1000-4-false 306,585 19.08 822,354 42,936 865,290

HashSet

beb4 N=5 3,492,162 13.22 145,993,408 7,419,776 153,413,184
consensus6 K=2 1,258,240 258.44 156,310,944 55,616 156,366,560
csma4-2 761,962 23.21 530,715,146 26,281,200 556,996,346
dpm6-10-4 131,314 8.01 16,182,336 2,909,600 19,091,936
echoring100 871,634 71.62 91,880,384 62,002,304 153,882,688
elevatorsb-11-9 538,326 10.06 10,772,128 6,896 10,779,024
zeroconf-1000-4-false 306,585 3.30 10,651,776 269,408 10,921,184



Figure 3: Graphs of all the models and the set representations


	Introduction
	Related Work

	Background
	Model Checking
	State Space Explosion Problem
	Compressed Set Representations
	Integer Sets

	Set Usage
	Algorithms
	Effectiveness of Precomputations

	Set Representations
	Uncompressed Bit Set
	PTrie
	RLE
	Roaring
	HashSet

	Methodology
	Implementation
	Test Setup

	Results
	Discussion
	Conclusion
	References

