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ABSTRACT

Being able to create accurate building energy predictions
models can allow for more efficient energy production and
save resources. Creating accurate building energy predic-
tion models is a difficult problem, there are many external
factors that can influence it, for example the behaviour of
people, the weather and electric vehicles. To tackle this
problem we create building energy prediction models with
new techniques in machine learning. We will investigate
the multi-input and multi-output inferencing approach,
then investigate this approach in combination with con-
volutional operations. We will investigate the Attention
Mechanism to attempt to further enhance the model. The
empirical results are promising. This leads us to new in-
sights into how to build more accurate building prediction
models with these techniques.
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1. INTRODUCTION

Electricity is the foundation of our current civilized soci-
ety. A growing population, the enhancement of building
services and systems (like Heating, Ventilation and Air
Conditioning (HVAC)) and an increase of time spent in-
side buildings have increased building energy consump-
tion. Residential and commercial building energy con-
sumption lies between 20-40% [28]. Because of this it is
useful to be able to predict future energy usage of build-
ings. Being able to predict energy consumption from build-
ings can allow producers to plan and adapt their produc-
tion to the actual need, which can save resources, ensure
a sufficient amount is produced and increase reliability
within a grid.

There are many reasons why it’s difficult to accurately
predict energy usage. First of all there’s the human el-
ement. Humans control all appliances within a building,
when they are in use and to what intensity. The behaviour
of people is difficult to predict and this can cause large
fluctuations in energy usage without much or any prior
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indication from sensors or energy usage patterns.

Another factor is the weather. Weather in itself is hard to
predict and has a direct impact on both building energy
generation and consumption. Generation is impacted by
e.g. photovoltaic generation from solar panels. Consump-
tion is impacted by e.g. the temperature, which leads to
increased consumption from HVAC systems.

The increase in usage of Electric Vehicles (EV) also has
an impact on energy consumption patterns. The amount
of EVs increased by 64% from 2017 to 2018 [21]. EVs can
cause voltage deviations when charging and increase peak
loads, too large voltage deviations cause reliability prob-
lems which should be avoided to ensure energy demand
is satisfied [13]. EVs can even be used as a battery for a
building, being able to use energy stored in an EV instead
of energy from the grid when prices peak.

The list of reasons mentioned are a non exhaustive and
definitely not complete list of reasons which give an indi-
cation that building accurate energy models is difficult.
The building energy prediction problem can be viewed
as a Multivariate Time Series (MTS) problem. MTS re-
quires models to learn both temporal dependencies and
relational dependencies between variables, which means
complex models are necessary to recognize these compli-
cated patterns. In this research, our aim is to build more
accurate building energy prediction models using state-of-
the-art machine learning techniques.

1.1 Problem Formulation

The building energy prediction problem is a supervised
learning task. To formally describe the problem, let i €
N be the index of available instances, ¢ € N to denote
time, R? a d-dimensional feature space and t —n : ¢ — 1
the temporal window of observations recorded in the n
timesteps before t. Given a data set {a:(i), y(i)},Vi, where
@ e R>(=m=1) jg 3 d(n — 1) dimensional input collect-
ing information from the temporal window, and ygi) eR?
is a multidimensional output vector over the space of the
real-valued outputs. Define p(X), where X = {zV},Vi
and where p is a predictive function, resulting in ;th €
R?, which is a multidimensional output vector over the
space of the predicted outputs. Determine D(Y,Y), with
Y = {y},Vi and Y = {p(z¥)}, Vi representing the real-
valued outputs and predicted outputs respectively, and D
representing a distance function between the real-valued
and predicted outputs of the model. We must find a p for
which D(Y,Y) is minimized.

2. BACKGROUND

In order to perform research in this field it is important
to understand the machine learning techniques that will
be used. In this section, first recurrent and convolutional



neural networks will be elaborated upon, then sequence to
sequence inferencing and the attention mechanism.

2.1 Convolutional Neural Networks

When building an artificial neural network (ANN) one
must select features to use as input for it. Selecting the
most relevant features from raw data, or an extensive set
of features can be difficult and might also cause some de-
pendencies or relationships between variables to not be
captured by the ANN, as they are being left out.

This is where Convolutional Neural Networks (CNN) can
aid. CNNs can automate feature learning from raw inputs
in a systematic way [31] and has the potential to outper-
form NNs in which features are selected manually [27].

The CNN architecture is based on the work of Yann Le-
Cun [24]. A high level view of a CNN can be seen in
Figure 1. A CNN takes an input and performs a con-
volutional step. First a filter is used to produce a fea-
ture map. It does this by taking strides of size n, which
moves the filter n steps over the input every stride. This
filter contains values which perform element wise multi-
plication and places the result in a feature map. The pro-
duced feature map then goes through a rectified linear
unit (ReLU) function. ReLu is an activitation function
introduced by Hahnloser et al. [17], which is described by
f(x) = max(0,z). ReLu mutates the values in the fea-
ture map element wise. Lastly, the CNN can pool the
produced values from the feature map, which reduces its
dimensionality. Pooling strides with a filter over the pro-
duced feature map and extracts the information that is
deemed most relevant by the CNN. This process can be
performed multiple times and in the end generates a result
with high level features that can be used as an input for a
neural network.
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Figure 1. High level structure of a CNN

2.2 Recurrent Neural Networks

A Recurrent Neural Network (RNN), based on a paper by
David Rumelhart from 1986 [29], is an ANN which, unlike
the ”vanilla” ANN, preserves a state in which it can keep
track of previously learnt information. This gives RNNs
a significant advantage over ANNs, as an RNN has more
potential to learn temporal dependencies.

One problem that the RNN has though is the vanishing or
exploding gradient problem. There are variants of RNNs
which are made to deal with these issues, one variant is
Long Short-Term Memory (LSTM), proposed by Hochre-
iter & Schmidhuber in 1997 [19]. Another variant is the
Gated Recurrent Unit (GRU) proposed by Cho et al. in
2014 [10]. Both of these have proven themselves to be the
most effective method of dealing with this problem [16].
In a paper by Chung et al. [12], the performance of the
GRU and LSTM are comparable. In terms of computa-
tion time the GRU is better than the LSTM, as the GRU
only keeps track of one single state while an LSTM keeps
track of two different states, which is why we will be using

the GRU in this paper.

2.3 Sequence to Sequence

Multi-input and multi-output (MIMO) inferencing can be
implemented by making use of a sequence to sequence
(seq2seq) structure. In seq2seq, the model exists out of
two parts, the encoder and the decoder. The encoder is an
RNN which encodes an input sequence into a fixed-length
vector, which is called a context vector. This vector is the
cell state computed after iterating over the whole input
sequence, from t — n until ¢ — 1, where n is the length of
the input. After the input is encoded into a context vec-
tor, the decoder receives it as an initial state, each output
step can then be computed [30]. During inferencing, the
output of the prediction at the previous timestep is fed
into the next GRU cell as input, when predicting the first
step however, the real-valued output of ¢ — 1 is fed into ¢.
During training, instead of feeding the computed output
at timestep ¢t +x into ¢ +x + 1, the real-valued output can
be given, this is called guided training. Seq2seq is known
for its success in natural language processing, but can also
be applied to time series (TS) [7]. A diagram of seq2seq
can be seen in Figure 2.
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Structure of a sequence to sequence

2.4 Attention Mechanism

The Attention Mechanism (AM) is an enhancement to
the encoder-decoder structure, it was originally proposed
by Bahdanau et al. [6] in the context of Neural Machine
Translation (NMT). An inherent problem with seq2seq
models is that the context vector produced by the en-
coder is of a fixed-length, which limits such structures in
learning and remembering relevant information in longer
sequences, as the amount of information increases as the
sequence increases in size, but the size of context vector
does not. The performance of seq2seq models suffers sig-
nificantly with the length of sequences in the context of
NMT [9]. AM was proposed to address this problem.
AM works as follows: instead of the context vector be-
ing passed only once at the start of decoding, a unique
context vector cv; is calculated at every time step ¢t. All
the intermediate hidden states from the encoder are used
for this [hi,...ht—1]. A separate ANN receives all inter-
mediate internal states of the encoder and the internal
state of the decoder from the previous time step as an
input and calculates a score for each of the intermediate
state [s1,...st—1]. Afterwards, the scores are normalized
with softmax, these normalized scores result in the atten-
tion weights [e1,...e;—1]. After this, the context vector for



a single decoding step is calculated by multiplying each
attention weight with its corresponding state and sum-
ming all the resulting vectors together. A diagram of an
encoder-decoder structure with attention can be seen in
Figure 3.
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Figure 3. Structure of seq2seq model with Atten-
tion

3. RELATED WORK

In this section we will cover prior research and other work
related to the topic of building energy prediction and ma-
chine learning. In the end we will mention the possible
impact this research can have in the area of creating more
accurate building energy prediction models.

3.1 Neural Networks

In 1991, Kreider [23] did research into the viability of
ANNSs for buildingn energy prediction when the ANN was
still relatively new. They found that the ANN could pre-
dict future energy usage with good accuracy.

A paper by Yang et al. [32] analyzes the accuracy that a
vanilla ANN has for short-term load forecasting compared
to RNNs. The papers also compares the ANN and RNNs
to several most commonly used methods for energy pre-
diction. These are support vector regression (SVR) [§],
decision trees (DT) [18], autoregressive integrated moving
average model (ARIMA) [5] and random forest (RF) [20].
This research concluded that the NNs outperformed all the
baseline models, with the RNN being the most effective in
short-term load forecasting.

3.2 RNN Variations and Inferencing

Quite some research has already been done into the appli-
cation of RNNs for building energy prediction. In a paper
by Fan et al. [15], many different strategies of implement-
ing RNNs for TS in the context of energy prediction were
investigated. This research compares the “vanilla” RNN,
GRU and LSTM with each other for three different in-
ferencing methods. These inferencing methods being the
recursive approach, the direct approach and the MIMO ap-
proach, the latter approach being achieved with seq2seq.
The study concludes that the GRU and LSTM outperform
the ”vanilla” RNN, but have comparable performance to
one another. The GRU however did have faster compu-
tation times. This research also concluded that the direct
approach outperforms the recursive and MIMO approach.
However, the MIMO approach showed promising results.

3.3 Convolutional Neural Networks

CNNs are used in combination with RNNs in a paper
by Fan et al. [15]. They concluded that the CNNs did
not necessarily impact accuracy but can significantly re-
duce the overall training time. A paper by Maggiolo and

Spanakis [26] however, investigates the use of a multi-scale
CNN (MS-CNN). They show that the combination of a
CNN and RNN can be very effective. They concluded
that a feature extractor was more effective than a simple
recurrent encoding in the case of MTS.

3.4 Contribution

This research focuses on creating building energy predic-

tion models with RNNs using MIMO inferencing, which

is a state-of-the-art inferencing approach that was intro-

duced in 2014 by Sutskever et al. [30], which will be achieved
with seq2seq. To improve these models even further, an-

other state-of-the-art technique is implemented, AM, which
was introduced by Bahdanau et al. [6] as an enhancement

to existing seq2seq structures. Lastly, 1d-convolutions are

used to investigate its potential impact on accuracy, but

most importantly, its impact on computation time. All of

these techniques are then analyzed on four different ag-

gregation levels, in order to determine what impact these

techniques can have on the accuracy, when there is a dif-

ferent frequency of sudden fluctuations within the data.

4. RESEARCH QUESTIONS

In this research the following research questions will be
answered. RQ1 will be answered first, but before RQ1 is
answered, the three subpoints will be investigated. After
RQ1, RQ2 can be answered.

RQ1 To what extent can we build energy prediction mod-
els using RNNs?

RQ1.1 Can we implement a seq2seq for making energy
predictions?

RQ1.2 Can we implement convolutional operations for
our seq2seq model?

RQ1.3 Can we implement AM for our seq2seq model?

RQ2 How do these machine learning techniques impact
the performance of the models?

5. METHODOLOGY
5.1 Data

The data used for this research is from the Pecan Street
Inc. database [3]. There are two categories of data col-
lected. The first category contains the building energy
consumption data, which is collected on 15-minute inter-
vals. For this category, data from 121 buildings was col-
lected, in total spanning two years, from 2014-2015. All
buildings are located in Austin, Texas, and mostly consist
of residential buildings, containing single-family homes.
An excerpt of the aggregated data from the 121 buildings
can be seen in Figure 4.

The average energy usage on a day of all buildings can be
seen in Figure 5.

Within the building consumption data, there is data that
describes the amount of energy used by each individually
connected circuit and appliance in the building. There are
a total of 67 variables that describe the building consump-
tion data. Important to note is that this research focuses
on how much the building uses, and not how much energy
is taken from the grid, meaning energy generation is not
taken into account. The second category of data is mete-
orological data, collected from the same time period. The
meteorological data is also collected from the Pecan Street
Inc. database. The meteorological data is collected every



160 -

I
S

Energy use [kwh]
5
[=]

,_.
o
S

80

60

T T T T T T T T T
00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00
Time (15-min interval)

Figure 4. Example of total building energy use for
one day for 121 buildings.
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Figure 5. Average energy pattern throughout a
day of 121 buildings

hour, the missing datapoints for the 15-minute intervals
are interpolated. In total, ten meteorological variables are
considered, these are summarized in the Table 1.

Additionally, three more features, which describe the time
of the observations, are added, i.g. month, weekday and
hour. In order to represent the cyclic nature of time, each
of these features is converted into two variables, these two
variables represent the sine and cosine of the time feature,
calculated as in Equation 1 and 2.

sin(t) = sin(2w - t/T) (1)

cos(t) = cos(2m - t/T) (2)

Where T is the total amount of time units.

In order to prepare the data, NumPy[1] and Pandas[2] are
used. The data is split in half to create the testing and
training sets. The entirety of 2014 is used for the training
set and the entirety of 2015 is used for the testing set.

From the collected data, four different datasets are created
with different building aggregation levels, i.g. 1, 25, 50 and
75. Each dataset is then merged with the meteorological
data, where the meteorological data is interpolated to fill
the 15 minute resolution.

Meteorological variables  Range Mean
Temperature [20.7-102.9] 68.1
Dew point [2.8-77.3] 56.3
Humidity [0.11-0.99] 0.70
Visibility [0.3-10.0] 9.3
Apparent temperature [9.1-107.7] 68.4
Pressure [996.7-1042.8] 1016.6
Wind speed [0.00-23.55] 5.64
Cloud cover [0.00-1.00] 0.36
Precipitation intensity [0.000-0.568]  0.004
Precipitation probability  [0.00-1.00] 0.06

Table 1. Summary of meteorological variables

After these preparatory steps the data is normalized. The
mean (p) and standard deviation (o) of each feature is
calculated and the data is normalized by means of feature
standardization. Feature standardization is described as
in Equation 3.

x = (3)

Where x is the original value, and z’ is the computed
standardized value.

5.2 Proposed network structures

Each proposed network has an input layer that receives 96
timesteps, amounting to an input sequence with a length of
24 hours, and 83 features, representing the energy, weather
and time features as described in the previous section. The
networks output 96 timesteps as well, making predictions
on a 24-hour prediction horizon.

Five different structures are evaluated. As a baseline, a
simple ANN is used. The ANN has three dense layers, the
amount of hidden units per layer being 1024, 256 and 96
respectively.

There are four flavours of seq2seq models that were evalu-
ated in this research. The first is a seq2seq model without
any additions. The state size is 128 (as is with all the
other seq2seq models). Next a seq2seq model is built with
1-dimensional convolutions as an addition. Two convo-
lutional layers are used, both reducing the length of the
given sequence to half of its original size. The convolu-
tional layers make use of 64 filters. A representation of
the convolutional layers can be seen in Figure 6.

length = 96, depth = 64

length = 48, depth = 64

length = 24, depth = 64

A 4

Seq2seq Model

Figure 6. Structure of a seq2seq model with con-
volutions

The last two network structures are seq2seq models with
attention, of which one model has the same convolutional
layers as described in Figure 6.



For the seq2seq models, guided training is used. However,
to ensure the models don’t become overly reliant on the
previous output, some noise is added to the inputs of the
decoder. The noise generated is Gaussian noise, with a
standard deviation of 0.2.

5.3 Training

To build and train the models, Keras [11] is used with
Tensorflow [4] as the backend. All of the code can be
found on github!. Some parameters were selected to train
the models with. In order to make a fair comparison, each
model is trained with the same parameters. Each model
makes use of the Adam optimizer [22] and they are trained
with a learning rate of 0.00045. Each model is trained for
a maximum of 300 epochs, with 50 steps per epoch and
a batch size of 128. An early-stopping mechanism was
implemented with a patience of 20, to prevent the network
from overfitting. Meaning that if there is no improvement
over the validation data for 20 iterations, the training will

terminate. The loss function used is mean squared error
(MSE).

5.4 Performance evaluation

For the performance evaluation we look at two aspects,
i.g. the prediction accuracy and computation time. To
evaluate the accuracy of the models, we look at two differ-
ent aspects. The first aspect is the performance over the
whole prediction horizon. The second aspect is the per-
formance at each timestep. To measure the performance
over the whole prediction horizon we use five different ac-
curacy metrics. First of all, we use the normalized root
mean squared error (NRMSE), this allows us to express
the error of the model in a percentage. Additionally we
will also look at the mean error (ME) and the standard
deviation (SD), in order to evaluate if a model predicts too
high or too low on average and how variable its outcomes
are. Lastly, we look at the mean absolute error (MAE)
and the root mean squared error (RMSE). All models are
compared for all mentioned aggregations.

The second aspect is measured by evaluating the models
with their RMSE at each timestep. The equations for the
accuracy metrics can be found in Equations 4-7, in which
y is the real-valued output and ¢ is the predicted output.

ME = % (4)
MAE = 9= vl (5)

n
RMSE = M (6)
NRMSE = —TMSE (M)

Ymax — Ymin

The performance over the whole prediction horizon and
the performance at each timestep is evaluated on the same
selection of sequences from the testing data. This data is
selected such that each possible starting point in a day
appears as much as any other starting point.

Lastly, in order to evaluate the computation time, we take
the mean and standard deviation of the time it takes to
complete an epoch in seconds and compare these results.

"https://github. com/MaukWM/energy_prediction

6. RESULTS

Table 2 shows the accuracy of each proposed network with
the metrics mentioned in in previous section. For the
seq2seq models, the ”-1dconv” addition indicates the model
included one dimensional convolutions. The ”-a” addition
indicates the model included attention. In the table, mod-
els are grouped by aggregation level. For each metric, the
model with the best performance in that metric is high-
lighted. The accuracies reported in the table are calcu-
lated with a 24-hour (96-step) ahead prediction on the
testing set. For an aggregation level of 1, the ANN out-
performs the seq2seq models. But at higher aggregation
levels (i.g. 25, 50 and 75) the ANN is outperformed by
the seq2seq models.

In general, attention does not seem to add much to in-
crease the performance of the model, being better in some
cases but not all. At an aggregation level of 25, the seq2seq
model with attention and 1d-convolutions is the best per-
forming model. For an aggregation level of 75, attention
actually seems to be detrimental to the model, greatly im-
pacting its accuracy compared to seq2seq models without
attention.

Overall, for the higher aggregation levels (i.g. 50 and 75),
the seq2seq models without attention outperform all of
the other models in most metrics. For the seq2seq models
without attention, 1d-convolutions don’t seem to add any
significant impact to the accuracy, this is the case for any
aggregation levels.

The ME of each model at almost all aggregation levels
is negative, indicating that most models predict a lower
energy use than what it is in actuality. This can be a
consequence of the models, but can also be a consequence
of the testing data (e.g. higher peaks in 2015 because of
external factors, like temperature, or increase in use of
EVs).

An example of a building energy prediction for an aggre-
gation level of 25 can be seen in Figure 7. More examples
can be found for other aggregation levels in Appendix B
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Figure 7. Example of predictions for an aggrega-
tion level of 25

As can be seen from the example predictions, the models
can predict the trend relatively well, but most fluctua-
tions remain unpredicted. For an aggregation level of 1,
the models don’t fully predict peaks, as the data is very
chaotic. However, in general the models can slightly follow
trends of peaks.

For an aggregation level of 1, the seq2seq models with



Agg  Model RMSE NRMSE ME SD MAE
1 ANN 1.10 4.52% -0.02 1.10 0.68
s2s 1.18 4.85% 0.02 1.18 0.72
s2s-1d 1.16 4.78% -0.07 1.16 0.69
s2s-a 1.16 4.80% -0.04 1.16 0.71
s2s-1dconv-a 1.16 4.77% -0.12 1.15 0.68
25 ANN 7.15 6.70% -1.21 7.05 5.33
s2s 6.96 6.52% -0.65 6.93 5.25
s2s-1d 7.17 6.71% -1.05 7.09 5.34
s2s-a 7.28 6.82% -1.59 7.10 5.41
s2s-1dconv-a 6.91 6.47% -0.56 6.89 5.13
50 ANN 11.76 6.06% -3.18 11.33 8.69
s2s 11.20 5.77% -1.75 11.06 8.45
s2s-1d 11.43 5.88% -1.93 11.26 8.41
s2s-a 11.64 6.00% -1.04 11.59 8.68
s2s-1dconv-a 11.76 6.06% -1.21 11.70 8.71
75 ANN 18.77 6.75% -4.58 18.20 13.95
s2s 15.66 5.63% -2.84 15.40 11.51
s2s-1d 15.16 5.45% -3.65 14.72 11.12
s2s-a 23.24 8.36% -5.37 22.61 17.72
s2s-1dconv-a 21.51 7.73% -4.68 20.99 16.45

Table 2. Accuracy of predictions for each approach

attention were on par with the seq2seq models without
attention in terms of performance. However, the seq2seq
models with attention did converge faster than the seq2seq
models without attention, as can be seen in Figure 8. This
did not occur for other aggregation levels. In Appendix C
other graphs can be found for the validation loss after ev-
ery epoch. These graphs exclude the validation loss of the
ANN, as the ANN increases the scale by a large factor,
making the validation losses for the seq2seq models un-
readable. The trends in the graphs stop early because of
the implemented early-stopping mechanism.
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Figure 8. Validation loss for seq2seq models for an
aggregation level of 1

When observing the NRMSE at each aggregation level,
the error declines the higher the aggregation level becomes
(considering the best models at each aggregation level).
Interestingly enough, an aggregation level of 1 seems to
get the best performance, when expressed with NRMSE.
This can be caused by consistent low levels of energy con-
sumption throughout the day, when there is little to no
activity. Models are able to predict this trend relatively

well, which results in a very low RMSE, with most of the
error coming from short and sudden peaks.

In Appendix A there are four graphs, which show the aver-
age RMSE per step for each aggregation level. In general,
for each aggregation level, there is a trend of error accu-
mulation overtime. These graphs add to the result from
Table 2. It is clear from Figure 12 that the seq2seq mod-
els without attention, for aggregation level 75, accumulate
the error at a lesser rate than the seq2seq models with
attention. Interestingly enough, this error accumulation
spikes from timesteps 20-40, after which it decreases.

In Table 3, the average training time per epoch can be
seen for each model in seconds.

Model mean(p) std(o)
ANN 4.20 0.26
s2s 11.84 0.43
s2s-1d 8.08 0.16
s2s-a 76.73 1.57

s2s-1d-a  23.23 0.26

Table 3. Training time per epoch in seconds

The ANN is the fastest model to train, while the seq2seq
models require much more time to complete an epoch.
This is because in a seq2seq model, each intermediate state
must be calculated consecutively, removing the possibility
to perform calculations concurrently. The models with
attention implemented require a lot more time per epoch.
The seq2seq models with 1d-convolutions require less time
to train per epoch. Convolutions can be computed in par-
allel, thus shortening the sequence that must be computed
consecutively. This makes 1d-convolutions an effective ad-
dition to reduce time required per epoch, without having
a negative impact on the model.

6.1 Discussion

A possible issue with the early stopping policy is the pos-
sibility that models seem to converge, but in reality are
in a valley (local optimum) and might improve more if



trained longer. For this research a maximum of 20 it-
erations was chosen as the cut-off point. In Figure 18
(Appendix C), it can be observed that the validation loss
for the seq2seq models with attention, on an aggregation
level of 75, starts to increase around epoch 15. At epoch 25
the validation loss stops rising and stabilizes, these mod-
els could potentially have improved more but due to the
chosen early-stopping policy the models had no chance to
improve. Tweaking this number and allowing the models
to train longer could result in better models.

To produce the results, only one run was done with each
model. This does not always produce reliable results, es-
pecially when using an early-stopping policy. The initial-
ization of the model can have influence on the speed and
the level at which it converges.

Currently, all predictions were done on a 24-hour predic-
tion horizon. With seq2seq inferencing however, longer
forecasts can be made without having to alter the model
in any way. It is possible to make longer predictions with
a model trained for 24-hour predictions, this however, is
unlikely to produce good results the larger the predic-
tion horizon becomes. The model trained to make 24-
hour ahead predictions can be used as a starting point to
continue training on longer prediction horizons. Without
having to change the structure, the model does not have to
start all over when training for new predictions horizons.

7. CONCLUSION

In this paper, four neural network based methods are pro-
posed for multi-step day-ahead building energy prediction,
and furthermore benchmarked with the well known ANN
method. All proposed method are tested using real-world
data with a 15 minute resolution. Independent of the
building aggregative level, the evaluation shows very good
results with all models achieving less than 9% error. On
high aggregation levels (i.g. 50 and 75) some of the best
performing models achieve less than 6% error. In addi-
tion, a deeper look into the convergence capabilities of the
models provide us with more insides into the computa-
tional requirements of the proposed models.

More specifically, this research investigates the MIMO in-
ferencing approach for recurrent models on creating build-
ing energy prediction models. Additionally 1d-convolutions
and the Attention Mechanism are investigated, to see if
these can improve the performance of the models. The
models were assessed on four different aggregation levels,
ig. 1, 25, 50 and 75. The MIMO approach seems to
be more effective for higher levels of aggregation than a
standard ANN, achieving a better performance than the
ANN on the three highest aggregation levels. The Atten-
tion Mechanism did not seem to improve the accuracy of
the seq2seq models at any aggregation level, and was even
detrimental to the performance at a high aggregation level
of 75. This might indicate that a recurrent model already
has enough capacity to learn the temporal dependencies
that exist within the building energy prediction problem.
However, the Attention Mechanism shows promise at low
aggregation levels, as the seq2seq models with attention
converged faster than the seq2seq models without atten-
tion. Additionally, it is shown that 1d-convolutions are
an effective way of reducing the time required to train a
seq2seq model per epoch, without having a negative im-
pact on the model. This method of reducing training time
per epoch is not limited to a model with MIMO infer-
encing, but can be applied to any inferencing technique
that requires consecutive computations (e.g. the recursive
approach or the direct approach).

7.1 Recommendations/Future work

For future work there are many aspects that can still be
investigated or improved. Some possible additions that
could improve the speed of convergence and reduce over-
fitting are regularization, dropout, or batch normalization,
of which the latter can now also by applied to RNNs with
techniques proposed by Cooijmans et al. [14] or Lei Ba et
al. [25].

Other aspects that could be researched are different pre-
diction horizons and different resolutions of data. Our
results also suggest that the Attention Mechanism may
be very useful for building energy prediction with lower
resolution (e.g. 1 min, 5 min), where the energy pattern
has a larger number of fluctuations (a higher level of non-
linearity and uncertainty).

Another way to possibly improve the models is to investi-
gate the impact of different recurrent cells for the accuracy
of seq2seq models (e.g. 7vanilla” RNN, LSTM).

Another part of the models that can be optimized is the
state size. Currently, a state size of 128 is used, but the
models could have a better performance with a different
state size.

Since MIMO inferencing is used, the seq2seq models can
consume and produce sequences of any length. For fu-
ture research, it could be valuable to investigate the per-
formance of different models on different input and out-
put sequence lengths, on which the models have not been
trained, to see if this can increase performance without
having to train models on lengthy sequences.

For future research it can be valuable to investigate to
what extent 1d-convolutions can be used. For example,
investigating to what extent the input sequence can be
reduced without impacting accuracy. Possibly also inves-
tigating the viability of reducing input sequences with 1d-
convolutions with other inferencing techniques.
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