
Walker: Automated Assessment of Haskell Code using
Syntax Tree Analysis

Rick de Vries
University of Twente

P.O. Box 217, 7500AE Enschede
The Netherlands

r.h.devries@student.utwente.nl

ABSTRACT
Programming educators often require students to use spe-
cific language features to ensure that they meet the educa-
tional goals. Verifying such requirements can be very time-
consuming for teaching staff. This research investigates
the usage of (static) syntax tree analysis to automatically
validate the presence of required language constructs in
Haskell programs.
This paper shows the effectiveness of this approach by
testing a prototype written in Haskell (named Walker) on
submissions by students, and discusses the different tech-
niques used for traversing the syntax tree when validating
the requirements. The results show the approach to be
highly accurate, only showing weaknesses when evaluating
student-defined types or deviating function names.

Keywords
Haskell, Functional Programming, Syntax Trees, Auto-
mated Assessment, Static Analysis

1. INTRODUCTION
Learning a new programming language can be a challenge
to novice programmers, especially when this new language
is in a new “paradigm” of programming. Haskell is often
used as an introduction to the paradigm of Functional Pro-
gramming, and features some unique language constructs
that new programmers need to familiarize with.

While doing exercises, students are forced to use specific
language constructs to help them adapt to the new style of
programming. Unfortunately, many students do not read
these exercises carefully, causing teachers and teaching
assistants to have to manually check the code for usage of
compulsory language features.

It would help all parties to have a way to check the student
solutions for adhering to the exercises in an automated
way. However, this is not as trivial as it might seem:
simply comparing text to model solutions does not work for
most programming exercises, including those for Haskell.
Student solutions need to be checked for usage of the
constructs, not for having an answer “similar enough” to
the model solution. A solution for this could be an analysis
of the syntax tree, which includes information about the
language features used.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
Copyright 2019, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

In this paper, we will investigate such use of syntax tree
analysis of Haskell programs for the purpose of automatic
validation of language feature requirements. We will do
so by the creation of a prototype, which we will test on
submissions from first- and second-year students from the
University of Twente.

We will discuss the different challenges that we faced when
building Walker and the solutions we used to solve them,
followed by the results that we obtained from our tests on
real-world submissions. Before that, Section 2 discusses the
various aspects that need to be assessed, after which Sec-
tion 3 describes the existing automated grading solutions
for Haskell and syntax tree-based approaches for education
in general. Sections 4 and 5 then describe the different
challenges that were encountered when building the proto-
type. The results of the testing are described in Section 6
and discussed in Section 7, from which the conclusions are
drawn in Section 8.

2. REQUIREMENTS
The automated assessment should ignore the irrelevant
details of the students’ source code: as long as the (ed-
ucational) requirements set out by the teacher are met
somewhere in the solution, the submission should be ac-
cepted.

This means that students have the freedom to structure
their answer as long as they satisfy those requirements.
It should, for example, be possible for students to meet
the criteria via (global) helper functions, locally defined
helpers in a where-clause or by putting them in a nested
expression (e.g., an argument to another function). In
addition, students should be allowed to use pattern guards.

The assessment criteria should allow for nesting (e.g., a
lambda expression as an argument to a map), and ba-
sic logical aggregators. At least the following language
patterns for the Haskell programming language should be
recognized:

• Use of list comprehension and Monads (and assess inner
statements)

• Use of lambda abstraction (and assess inner expressions)

• Use of recursion

• Use of pattern matches on specific data constructors

• Use of specific (standard library) functions (such as
foldr or map) (and assess arguments given)

In addition, the application should check if the student
applied the desired type signature, as specified by the
grader. The type signature could be polymorphic.

1

The input and output should be easily parseable by external
applications, such as script to process the results into a
spreadsheet or upload them to an online grading portal.

It should be noted that the correctness of the solution does
not need to be tested: other tools already exist for this
purpose, such as the lightweight QuickCheck tool [2]. The
requirements are solely for the purpose of checking the
structure of the solution, not its correctness.

3. EXISTING SOLUTIONS
Automated code assessment is a well-researched field, con-
sisting of many different approaches for different languages
and paradigms [7]. In addition, many researchers have
looked into the structural analysis of source code to mea-
sure code similarity. Both purposes and their relevances
are discussed in this section.

3.1 Automated assessment
The majority of tools for automated assessment rely on au-
tomated testing, program transformations or “basic static
analysis”, including calculations of the cyclomatic complex-
ity or the presence of code structures [7]. This can be
achieved in varying ways, ranging from bytecode analysis
to syntax graph traversal [12].

For Haskell, Jeuring et al. developed the Ask-Elle system
[5]. It uses program transformations to assess a submission.
Program transformations attempt to normalize the source
code of a program, while retaining the behavior. Some
examples of program transformations include:

• the removal of redundant parenthesis;

• the standardization of variable names (alpha-conversion);

• inlining of values in a let-clause or a where-clause;

• replacement of equivalent function calls (e.g., replacing
drop 1 by tail).

Ask-Elle accepts a submission if it matches the model solu-
tion after applying the available program transformations.
As a consequence, a solution will be rejected if the program
transformations are insufficient. Besides that, the inclusion
of (correct) type signatures by the student causes the tool
to reject the solution.

Another noteworthy product is a submission system for a
MOOC in OCaml, which provides a grading library with
syntax tree traversal [1]. However, this software cannot
readily be used for Haskell, as OCaml is substantially
different from Haskell in a number of ways. For example,
OCaml supports imperative constructs (e.g., loops), but
does not support list comprehension or type constructor
polymorphism1.

3.2 Code similarity
While code similarity software obviously cannot be used to
assess language feature usage, the underlying techniques
can provide insights in different approaches for static code
analysis. Code similarity software is often used for aiding
in the detection of plagiarism. Different approaches are
used to abstract from the superficial changes that students
make to mask plagiarism attempts, such as the diff-tool
in in Unix or more sophisticated token stream analysis [4].

1Lack of type constructor polymorphism causes all type
variables to be restricted to kind “*” in OCaml, whereas
in Haskell they can be of other kinds (e.g., “* -> *”) and
applied to each other.

In addition, different graph structures have been used for
plagiarism detection, including call graphs, dependency
graphs, control flow graphs and syntax trees [10]. For
Haskell, the Holmes tool was developed, which relies on
analyzing call graphs [9], token streams and document
fingerprinting to detect code similarity [3].

4. DESIGN AND MODELLING
We made several design choices for the implementation of
Walker. The first question was the language that the tool
should be developed in (Section 4.1). Another considera-
tion was the modelling of the code requirements (assess-
ment criteria) as outlined in Section 2, to allow a teacher
to specify what is expected from the students (Section 4.2).
Finally, a generalized function model was necessary due to
the many ways in which functions can appear in Haskell
(Section 4.3).

4.1 Implementation language
In order to work on syntax trees, the code of the student
solution needs to be parsed first. As such, it is convenient
to write the tool in a language that has library support for
this purpose. In addition, there should be some form of
(de)serialization support to import and export the grading
criteria.

For these reasons, Haskell is used as the language of choice.
The availability of the haskell-src-exts and the aeson li-
braries fulfilled the requirements of parsing Haskell code
and JSON (de)serialization, respectively. There were not
many alternatives for the Haskell parser, partly due to
Haskell being a context-sensitive language, complicating
the creations of parsers.

4.2 Requirements specification
The requirement models should be able to specify the
assessment criteria as listed in Section 2. Due to the
nested nature of the criteria (for example, being able to
specify constraints on arguments to specific functions), a
nested data structure was necessary. The models used can
be found in Listing 1 below.

data LogicOp = And | Or | Not
data Req = EmptyReq {
} | CombinedReq {

reqOptions : : [Req] ,
reqOp : : LogicOp

} | Recurs ive {
i s R e c u r s i v e : : Bool

} | ReqTypeSig {
typeSig : : String

} | FuncUsage {
funcUsageName : : String ,
s e l f D e f i n e d : : Bool ,
argsExpr : : Req

} | LambdaFunc {
numArgs : : Int ,
innerLambdaExp : : Req

} | ListCompr {
innerListComprExp : : Req

} | MonadExp {
innerMonadExp : : Req

} | PatMatch {
constructorName : : String

}

Listing 1. Requirements models

2

Requirements can be combined using logic operations at
any nesting level, since CombinedReq is a requirement in
itself. For example, it is possible to specify that a predicate
in a list comprehension expression should use either the
“<”-operator or the “>”-operator. This can be achieved by
using a CombinedReq (itself consisting of two FuncUsage

instances and the Or operation) inside a ListCompr.

4.3 Function abstraction
Now that the requirements can be communicated to Walker,
they need to be validated on the syntax tree of the submis-
sion. However, the syntax trees as produced by haskell-src-
exts tend to be quite large. In addition, functions appear in
many (syntactical) forms and are consequently represented
differently in the parse tree.

We abstracted away from these syntactical differences in
Walker, and represented all different forms of functions in
one data class that we use instead of the complete syntax
tree as produced by haskell-src-exts.

In particular, the following complicating factors of func-
tions and syntax tree nodes from haskell-src-exts should
be noted:

• When parsing a top-level function, different grammar
rules and non-terminals are applied depending on the
number of arguments. When there are no arguments,
the function is parsed as a PatBind. When arguments
are present, the syntax tree node is a FunBind.

• Functions do not always have a “single” expression as a
result. Consider the use of pattern guards: the outcome
of the function can be any expression on the right-hand
side.

• Functions can be referenced in different ways:

– Lambda functions do not have a name: they are anony-
mous, and often given as arguments to other functions.

– Top-level functions have a single name, followed by
their arguments.

– Pattern bindings can have multiple identifiers that
force their evaluation. For example, (x:xs) = [1..10]

is evaluated when either x or xs is required.

• Functions can have where-clauses, which themselves can
be functions or pattern bindings.

The following (recursive) generalizing class is used in Walker
to overcome these issues.

data Func = Func {
f uncAct iva t i on s : : [String] ,
funcArgs : : [Pat ’] ,
funcRhss : : [Exp ’] ,
funcBinds : : [Func] ,
funcReqs : : [Req]

} deriving (Show, Eq)

Listing 2. Generalized function model

The Pat’ and Exp’ types are shorthand type synonyms
for the Pat l and Exp l classes from haskell-src-exts with
predefined type arguments. More importantly, this gener-
alization is sufficient to solve the aforementioned issues:

• funcActivations generalizes the different call methods
for function bindings, pattern bindings and lambda func-
tions by having different (number of) names in the list.

• funcArgs also allows the function to have zero or more
arguments by virtue of being a list.

• funcRhss allows for pattern guards or having a “normal”
right-hand sides.

• funcBinds contains the different bindings of a where-
clause , and allows for being either a function or a pattern
binding by being a Func itself.

• funcReqs is not necessary for abstraction, but for book-
keeping purposes. It allows Walker to differentiate as-
sessed and non-assessed functions when traversing the
syntax tree.

Together, these properties generalize the different function
syntaxes, but still provide sufficient information to process
the requirements while traversing the functions.

5. SYNTAX TREE PROCESSING
After Walker has parsed the students’ code and converted
the different functions into Func instances, the requirements
are ready to be processed.

5.1 Scoping
Scope management is a vital part of Walker, although its
need may not be immediately obvious. At first glance,
it might seem sufficient to perform a search for a spe-
cific identifier (e.g., map) when usage of that function is
required. To see that this is insufficient, consider the fol-
lowing workarounds for “using” the map-function to square
all numbers in a list.

square [] = []
square (x : xs) = map x : square xs

where map a = aˆ2

square ’ map = [xˆ2 | x <− map]

Listing 3. Working around map-detection

These implementations do not use the map-function, but
use helper functions and arguments with this name in
their (functionally correct) implementation. By using an
identifier with the same name as a function in the outer
scope, the outer reference is “shadowed” (replaced).

For such cases, it is necessary to implement proper scope
management to detect what is being referenced: an argu-
ment, a self-defined function in an earlier scope or function
from an imported module.

The approach Walker uses is similar to those found in many
compilers [6]: while traversing the syntax tree, Walker
builds a symbol table and opens a new scope when a
function from a where-clause is entered. When referencing
a function from an outer scope, the most recent scopes
from the symbol table are removed until the depth is the
same as the nesting depth of the called function.

The symbol table maps an identifier to the most recently
encountered Func instance with that name. When an
identifier name is an argument, that name is “blocked”
in the symbol table: it is not a function reference the
static analyzer can use, since its value is only known when
executing the program.

In the example above, square is recognized not to use the
built-in map, since it references the function in its where-
clause. square’ is recognized not to use map, because the
name is shadowed by the function argument.

3

Figure 1. Syntax trees for right-hand sides of pred-

icate and filterTuples

App

Paren

Var

UnQual

Ident

“even”

Var

UnQual

Ident

“x”

App

Var

UnQual

Ident

“filter”

Var

UnQual

Ident

“predicate”

5.2 Helper functions and nested expressions
Using the symbol table, it is possible to follow the execution
path, and verify the requirements based on the expressions
in the helper functions that the student defined. Consider
the following example, where a student should filter a list
of tuples for even numbers in the first position (required is
the use of the even-function inside filterTuples).

p r e d i c a t e (x ,) = (even) x
f i l t e r T u p l e s = f i l t e r p r e d i c a t e

Listing 4. Filter using a helper function

The function predicate is used, but as an argument to
another function. The requirement is fulfilled inside pred-

icate, which is not the function that is currently being
evaluated.

Walker uses the function references saved in the symbol
table to evaluate the requirements on all functions which
are (transitively) referenced from the main function. More
specifically, it tries to pass a given requirement on any
(possibly nested) expression found in any transitively used
function that it not graded itself. Note: “using” in a
functional language is not limited to having arguments
applied. A function can also be used by passing it to a
higher-order function.

For example, the right-hand sides of the functions in List-
ing 4 yield the syntax trees as found in Figure 1. Walker
finds that this solution satisfies the requirement of using
the predefined even-function in the following steps:

1. It (recursively) discovers all self-defined functions refer-
enced from the main function using the symbol table.
It finds that predicate is used in addition to filter-

Tuples.

2. It removes the called functions that already have re-
quirements associated to them, to prevent a “double
punishment” when code from earlier assignments is re-
used. Both functions remain, since predicate is not
graded itself.

3. All (possibly nested) expressions in the referenced func-
tions are enumerated, along with the scope in which
they appeared. In this example, those would be fil-

ter predicate, filter and predicate, combined with
(even) x, (even), even and x.

4. A reference to the imported function even is found: the
requirement is satisfied.

The Haskell implementation for this algorithm uses the
Traversable and Typeable classes (in conjunction with

the lens library[8]) to efficiently explore the syntax tree,
skipping the exploration of nodes that cannot contain ex-
pressions themselves.

The number of expressions found in the third step rapidly
increases as the nesting of expressions grows deeper. As
such, performance might suffer when assessing require-
ments on submissions with many (helper) functions and
complicated nesting.

5.3 Recursion detection
A naive function discovery algorithm would not terminate
when the student uses recursion, since each self-defined
function would have a call to one or more self-defined
functions, continuing forever.

Walker solves this problem by keeping track of the functions
it has already seen. An option for this would be the
construction of a call graph, like is done in most compilers
[6] or in plagiarism detectors [9]. However, Walker uses a
more basic approach: it stores a set of visited functions
(Func instances), without any explicit links (such as graph
edges) between them.

The reason for this is that, unlike those other tools, it is
not necessary for the requirement validation to know via
which path a function was referenced, but only that it was
referenced.

Keeping track of a set of called functions also greatly re-
duces the complexity of checking if a student used recursion
in their solution. Recursion detection of itself is not trivial,
since it is not enough to check if a function references itself:
it is also possible for multiple functions to form a recursive
loop. Some examples of different forms of recursion are
given in Listing 5.

rD i r e c t x = x : rD i r e c t x

r I n d i r e c t x = rD i r e c t x

rWhere x = rWhereA x
where

rWhereA y = y : rWhere (y + 1)
rWhereB z = z : rWhereA (z + 1)

rChain x = x : rChainB x
rChainB x = (x + 1) : rChainC x
rChainC x = (x + 2) : rChain (x + 3)

Listing 5. Different examples of recursion for an
infinite list of increasing numbers

In order to detect recursion, the exploration of helper
functions is used. Recursion is detected when a to-be-
explored function was explored earlier, implied by the Func

instance appearing in the set of earlier visited functions.

Since bindings in the where-clause are modelled as func-
tions themselves, the recursion in rWhere is detected cor-
rectly as well.

5.4 Function application
When using specific functions, it can be desirable for teach-
ers to require certain (kinds) of arguments to be passed
to a specific function. A typical example would be to use
a higher-order function with a lambda expression as an
argument, which can be specified using the argsExpr field
of FuncUsage (see Listing 2).

Retrieving the arguments of a function is not as trivial as it
might seem, however. Consider the simplified syntax tree

4

of the expression zipWith (+) xs (ys ++ zs). Irrelevant
intermediate nodes have been omitted.

Figure 2. Syntax tree for zipWith (+) xs (ys ++

zs) (simplified)

App

App

App

”zipWith” ”+”

“xs”

Paren

InfixApp

“ys” “++” “zs”

The function zipWith takes three arguments, but due to
Haskell’s partial application, it only has one sibling in the
syntax tree. All other arguments are somewhere on higher
levels of the tree, due to the left-associativity of function
application.

When the algorithm described in Section 5.2 discovers the
node containing zipWith, it must find the arguments to
test the nested requirement on higher in the tree. This
is not trivial using the haskell-src-exts library, since data
structures in Haskell are generally not structured such that
parents are accessible via the children.

Walker works around this problem by using a specific
Traversal that only targets function application nodes
(such as App, InfixApp, RightSection and others), allow-
ing the syntax tree to be flattened into a list containing all
arguments when used at the top-most level (such as the
root in Figure 2). This eliminates the need to manually
traverse until the deepest node containing the required
function identifier.

5.5 Verifying inner requirements
Using the techniques described in the sections above (in
particular Section 5.2), the remaining requirements found
in Listing 2 can be verified relatively easily. Most are solved
in the following way:

1. Enumerate all expressions referenced from the required
function, including nested expressions and those found
in helper functions.

2. Filter on the nodes required, for example list compre-
hension syntax or monads.

3. If necessary, transform the node into a new Func instance
and recursively check the nested requirement on that
instance.

When transforming into nested Func instances, values nor-
mally present (e.g., names and arguments) are often left
empty. In other areas, the conversion does not faithfully
represent the actual expression, but is constructed in a way
that allows requirements checking in a Func-instance.

An example of this is the conversion of list comprehension,
where generator statements (e.g., x <- xs) are treated as
pattern bindings in a where-clause and qualifiers (“filters”
in list comprehension) are converted similarly to pattern
guards.

5.6 Type checking
There is one additional requirement that does not involve
the literal traversal of the syntax tree. The required type
signature of a function does not involve the search for

language constructs in students’ code, but does still require
syntax tree operations.

The requirement is included in Walker to enforce the inclu-
sion of hand-written type signatures in submissions. If code
compiles, the type signature is correct, but the student
might have taken these signatures from GHCi. Examples
of such behavior would be the inclusion of Functor and
Foldable class constraints by students who have not yet
encountered these classes.

Type signature equality is not trivial to verify, however.
Consider the different type signatures in the following code
examples.

f : : a −> b −> c
f : : x −> y −> z

g : : (a , b) −> (,) a b
h : : [] a −> [a] −> a

j : : (Show a , Eq a) => a −> a
j : : (Eq a , Show a) => a −> a

k : : (Show b , Eq a) => ((,) b c −> c)
−> IO ([] a)

k : : (Eq x , Show y) => ((y , z) −> z)
−> IO [x]

Listing 6. Variations in type signatures

We observe the following mutations to the type signatures:

• Free type variables can be renamed (f).

• Special type constructor shorthands can be used (g/h).

• The ordering of type constraints can be mixed (j).

• Types can be parenthesized (k).

• Any of the mutations above can be mixed and nested
(k).

The approach Walker uses is comparable to what Ask-Elle
uses to compare entire functions: program transformations.
Specifically, the following operations are (recursively) ap-
plied to both student and solution type signatures:

• Standardization of type variable names (also known as
alpha-conversion).

• Expand shorthand type constructors.

• Sort type constraints by alphabetical order.

• Removal of parenthesis nodes from the syntax tree.

After these mutations, the syntax trees are compared for
equality to verify the correctness of a type signature. The
mutations ensure that type signatures that are essentially
equal2 are accepted, but that signatures using different
types than intended are rejected.

6. VERIFICATION
In order to test the viability of the syntax-tree based ap-
proach, we tested Walker on different submissions by stu-
dents of Functional Programming (mini)courses. This was
done retroactively; as such, the students were not aware

2The additional information included by haskell-src-exts
(such as line numbers) are excluded from this equality
check.

5

of automated assessment when creating their code. Two
different courses were used for testing, with different (as-
sessment) properties: a relatively small introductory course,
and a substantially larger project.

We created requirements for the final projects of these
courses, and validated the results that Walker produced.
We explicitly differentiate false-negatives (code wrongly
rejected by Walker) from false-positives (code wrongly
passing requirements of Walker).

During testing, no performance issues were encountered.
Walker gave the results for each submission instantly on
all hardware that the tests were performed on.

6.1 Small introductory course
The first course was for first-year students from IT-related
studies, briefly introducing them to the fundamental con-
cepts of Haskell and Functional Programming in general.
As such, the requirements made for these exercises were
relatively basic, use of recursion and re-use of their own
functions being the primary targets.

We did not test the type signatures that some students
included, for the simple reason that it was not explicitly
required for the assignment. Consequently, most students
did not include them, and most of those who did took them
from GHCi’s type inference. Only a handful out of 38 total
submissions included proper type signatures.

We applied Walker to 38 different submissions, and man-
ually checked the instances where a solution did not pass
the requirements. Passing requirements were checked from
a random sample of 10 submissions. In addition, grading
was given as a pass or a fail, but documentation from the
human assessor was not available.

From these 38 submissions, two were not syntactically
correct due to indentation errors, and could thus not be
processed by Walker. The other 29 submissions were as-
sessed correctly: 10 of those contained one or more mistakes
by students, the others were fully correct. The remaining
grading reports for the remaining 7 submissions showed
false-negatives due to renamed functions: students would
often make spelling errors or abbreviate the requested
function names. No other false-negatives occurred.

6.2 Large advanced course
The second course was intended for second-year CS stu-
dents, finalized by a project involving parser combinators,
instances of existing type classes and self-defined EDSL
classes. Official grading criteria were mostly focused on
re-use of existing code and avoidance of certain undesirable
programming patterns.

6.2.1 Requirements creation
The human assessors used a spreadsheet with different
grading criteria for evaluation of the submissions. These
criteria consisted of some maximum number of points, with
possible subtractions for often-seen (stylistic) mistakes and
“other” errors, for which the assessor subtracted points
manually where necessary.

Stylistic requirements for functions covered the in- or exclu-
sion of certain functions and pattern matches, the correct-
ness of particular type signatures and the usage of lambda
expressions and Monads. All of these requirements could
be converted to the FuncReq model, except for the type
signatures using student-defined classes, since the name of
the data class differed among students.

The remaining points were given for the compactness of the
self-defined EDSL, which could not be modelled in Walker.

Table 1. Statistics for the second-year projects. 53
projects were assessed in total.

Phenomenon Number of projects
occurred in

Special style deductions 14
(by human assessor)

Mistakes by human assessor 17
Deviating function names 6

6.2.2 Requirements verification
We applied Walker to 53 student submissions, comparing
all outputs from Walker with the results from the different
human assessors. As described above, it was not possible
to fully grade the project using Walker alone: we only
compared the results of the criteria that could be modelled
in Walker.

During this test, we discovered a significant problem in
the verification of type signatures. Type aliases break the
equality of the syntax tree, while they do not really change
the type: String, [Char] and FilePath all denote file
paths, and result in [Char]. Walker could (in principle)
solve this issue by normalizing using the alias definitions
found in the syntax tree. However, such an approach would
not work for imported aliases such as the examples above.

Besides this issue, Walker worked as expected. Signifi-
cantly less naming errors, as seen for the smaller project,
occurred. Walker also found a number of mistakes by
the human graders, but the human graders also deducted
points manually in some projects. The exact statistics can
be found in Table 1. The mistakes by the human graders
were corrected before the publication of the grades for this
project.

6.2.3 Conclusion
While Walker was not able to fully grade all stylistic as-
pects of the project, it was able to accurately recognize all
predefined grading criteria not involving type signatures
and user-defined type classes. In hindsight, Walker could
have been used to pre-populate those parts of the grad-
ing sheets, but human assessors would still be necessary
to grade the user-defined classes and spot unconventional
construct misuse.

7. DISCUSSION
The results in the preceding section showed very high ac-
curacy for the criteria that were supported by Walker.
While such accuracy is not entirely unexpected, it is im-
portant to discuss the possible shortcomings in our testing
methodology, along with any unexpected results.

Most importantly, not all requirements that Walker can
verify could be evaluated in different scenarios. The re-
quirements least covered by our tests are the recursion
detection and the validation of nested requirements. The
recursion detection was tested on the smaller test group,
but all students submitted code using direct self-recursion
in a very small function. The validation of nested require-
ments (e.g., on the arguments of a specific function) was
not tested in any of the projects, since such criteria were
not used for any of the projects.

While more student-testing would have been preferable,
extensive unit tests based on the examples given in this pa-
per indicate that both recursion and requirements nesting
work as intended. However, those examples were created by
proficient Haskell programmers, rather than relatively in-
experienced students. As such, some exceptionally strange
code patterns might not be covered in the unit tests.

6

For the group of first-year students, all negative results
from Walker were manually reviewed, but only a sample
of the positive results were verified. The reason for this
disparity is that it seemed us more likely to have false-
negatives than false-positives due to the generally strict
nature of pattern searching. Nevertheless, it would have
been more desirable to verify all positive results as well.
This was done on the projects by second-year students,
however, and since those results showed no false-positives,
we find it reasonable to assume those did not occur often
in the first-year submissions as well.

Overall the higher accuracy is not surprising, given that the
syntax tree-based approach was chosen specifically to allow
more flexibility from student solutions (in comparison to
program transformations) at the cost of being able to verify
functional correctness. We verified this on two different
projects and a combined total of 91 submissions. A larger
and more diverse testing sample would help to further
support this hypothesis, however.

Walker worked surprisingly fast, given the suspected perfor-
mance issues as described in Section 5.2. One explanation
is that Haskell’s lazy evaluation prevents all expressions
from being enumerated, since the algorithm will stop once
a match has been found. The alternative is that these
projects were simply not large enough for the problem to
become significant. On the other hand: submissions by
students are typically not very large, so it is unlikely that
the problem would occur on other (types of) projects by
students.

One final note is that, for the second-year students, Walker
worked as expected, which does not imply that it found
the same results as the human assessors. On some details,
the interpretation of the grading criteria differed among
the human graders. Walker behaved like any other grader,
behaving consistently on all projects using a particular in-
terpretation. For this reason, we did not list false-negative
statistics: they would be heavily influenced by the subtle
differences among all graders in general.

8. CONCLUSION
In this paper, we tested the viability of syntax tree-based
assessment for automatic assessment of language constructs.
We discussed different challenges that were recognized
when using this approach, and a selection of techniques
to overcome these issues. The most important issues were
the need for a single function model, scope management
and helper function exploration and expansion, in addition
to variations of essentially equal type signatures. These
techniques have been incorporated into the assessment
prototype Walker.

By applying Walker to 91 submissions for two different
projects, we found syntax tree-based assessment on lan-
guage construct usage to be highly accurate, surpassing
the accuracy of human graders when verifying style cri-
teria such as the presence of lambda functions, recursion,
pattern matches or calls to specific (imported) functions.
The code transformations used for type signature verifica-
tion were less effective, due to the possible incorporation
of (user-defined) types or type aliases. Overall, we found
syntax tree-based analysis to be highly useful for pre-filling
most of the grading sheets, only requiring human assessors
for custom classes and to catch exceptionally strange code
patterns.

9. FUTURE WORK
The verification results showed numerous areas of improve-

ment, to expand the number of grading criteria that can
be automated with high accuracy.

One possible area of improvement is the comparison of type
signatures. The current approach does not incorporate type
aliases, which causes rejection of a signature using String

instead of FilePath, for example. Since such aliases are
not present in the students’ source code, using source code
from the Prelude would be an option. User-defined types
do not need such a step, but the remaining obstacle is the
resolution of type variables passed to the types. While
solvable using a syntax tree-only approach, an alternative
approach involving GHC might be beneficial as well.

Another interesting area is the automated assessment of
self-defined data structures, as was done by humans in the
projects of the second-year students. A possible direction
for this would be to measure the similarity of the syntax
trees of the student and the model solution. Such a solution
should still allow for creative solutions, however.

Finally, the specification of requirements could possibly be
an area of further research. An interesting alternative to
the one presented in this paper is a requirement specified by
a XPath query, allowing for more precise definition of where
intermediate elements are allowed [11]. Another direction
would be the for the grader to give requirement suggestions
based on a model solution, allowing for generation of (for
example) function usage or type signature requirements.

SOURCE CODE AVAILABILITY
The source code used for the prototype can be found at
https://github.com/VriesDeRick/haskell-checker, li-
censed under the MIT license. We encourage interested
educators or researchers to contact the author for possible
questions or other inquiries.

ACKNOWLEDGEMENTS
The author would like to thank Marco Gerards for the
helpful ideas, implementation suggestions and feedback
on the prototype of Walker and this paper. Furthermore,
he thanks the module coordinators from the University
of Twente for granting access to the submissions to test
on. Finally, the reviewers of the research track and the
track chairs are thanked for their helpful comments and
suggestions.

10. REFERENCES
[1] B. Canou, R. Di Cosmo, and G. Henry. Scaling up

functional programming education: Under the hood
of the OCaml MOOC. Proc. ACM Program. Lang.,
1(ICFP):4:1–4:25, Aug. 2017.

[2] K. Claessen and J. Hughes. QuickCheck: a
lightweight tool for random testing of Haskell
programs. In ACM SIGPLAN International
Conference on Functional Programming (ICFP),
pages 268–279. ACM, 2000.

[3] J. Hage, B. Vermeer, and G. Verburg. Research
paper: Plagiarism detection for Haskell with Holmes.
In Proceedings of the 3rd Computer Science
Education Research Conference on Computer Science
Education Research, CSERC ’13, pages 2:19–2:30,
Open Univ., Heerlen, The Netherlands, The
Netherlands, 2013. Open Universiteit, Heerlen.

[4] D. Heres and J. Hage. A quantitative comparison of
program plagiarism detection tools. In Proceedings of
the 6th Computer Science Education Research
Conference, CSERC ’17, pages 73–82, New York, NY,
USA, 2017. ACM.

7

https://github.com/VriesDeRick/haskell-checker

[5] J. Jeuring, L. T. van Binsbergen, A. Gerdes, and
B. Heeren. Model solutions and properties for
diagnosing student programs in Ask-Elle. In
Proceedings of the Computer Science Education
Research Conference, CSERC ’14, pages 31–40, New
York, NY, USA, 2014. ACM.

[6] L. T. Keith D. Cooper. Engineering a compiler.
Elsevier/Morgan Kaufmann, second edition, 2012.

[7] H. Keuning, J. Jeuring, and B. Heeren. A systematic
literature review of automated feedback generation
for programming exercises. ACM Trans. Comput.
Educ., 19(1):3:1–3:43, Sept. 2018.

[8] E. A. Kmett. lens: Lenses, Folds and Traversals.
Available at
http://hackage.haskell.org/package/lens.

Accessed: 2019-06-22.

[9] M. L. Krammer. Plagiarism detection in Haskell
programs using call graph matching. Master’s thesis,
Utrecht University, May 2011.

[10] G. R. Obaido. Structural analysis of source code
plagiarism using graphs. Master’s thesis, University
of the Witwatersrand, Johannesburg, May 2017.

[11] J. Robie, M. Dyck, and J. Spiegel. XML Path
Language (XPath) 3.1. Technical report, W3C, 2017.

[12] M. Striewe and M. Goedicke. A review of static
analysis approaches for programming exercises. In
M. Kalz and E. Ras, editors, Computer Assisted
Assessment. Research into E-Assessment, pages
100–113, Cham, 2014. Springer International
Publishing.

8

http://hackage.haskell.org/package/lens

	Introduction
	Requirements
	Existing solutions
	Automated assessment
	Code similarity

	Design and modelling
	Implementation language
	Requirements specification
	Function abstraction

	Syntax tree processing
	Scoping
	Helper functions and nested expressions
	Recursion detection
	Function application
	Verifying inner requirements
	Type checking

	Verification
	Small introductory course
	Large advanced course
	Requirements creation
	Requirements verification
	Conclusion

	Discussion
	Conclusion
	Future work
	References

