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ABSTRACT
Energy demand is rising, exhibiting more and more fluctu-
ations, and smart grids need to be able to adjust accord-
ingly. Therefore, an accurate way of predicting the energy
consumption of a household is needed. In this research,
the Pearson Correlation Coefficient is used to determine
the effects of using internal and external influencing fac-
tors that influence the energy consumption of a household.
These internal and external influencing factors are taken
into account and are combined with existing and experi-
mental knowledge about Multilayer Perceptrons. Next to
that, two data resolutions are compared. The study found
that using a 1-hour data resolution produces a more accu-
rate prediction. Additionally, by using influencing factors,
a possible manner of improving the accuracy of energy
prediction is found. By these means, the research aims to
aid future research on this topic.
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1. INTRODUCTION
Nowadays, an ever-increasing amount of energy is con-
sumed by residential buildings worldwide. On average,
they consume about 40% of the global primary energy
and this rate grows with 1.5% per year within Europe
alone [21]. Consequently, the growth of urbanization and
electricity demands asks for new requirements for future
power grids. To satisfy the demands, power grids need
to be able to predict, learn, schedule and monitor local
energy production and consumption [14]. Additionally, to
improve the flow of energy, energy predictions over vari-
ous time horizons are needed when connecting residential
buildings to future smart grids [15].
Energy consumption is difficult to predict, due to uncer-
tainty of fluctuations. Fluctuations might be caused by
the complexity of a building’s energy producing and con-
suming technologies, or by unpredictable consumer be-
haviour. Other influencing factors can be found outside
the physical building, such as the price of energy or the
weather. Demand Response (DR) or Demand Side Man-
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agement (DSM) programs can help keep fluctuations in
energy use as low as possible. Modeling and predicting en-
ergy consumption can aid Demand Response or Demand
Side Management programs.

Energy usage can be modeled as a time series, a value
that changes over time, and can be predicted using many
different methods. Predicting the value of this type of
time series is challenging, given its highly non-linear char-
acter. Over the course of time, many different methods
have been used to predict energy usage. Energy demand
forecasting was also extensively pursued in the literature,
mostly by applying various time series and machine learn-
ing methods. Some of these methods find their origin
in the field of mathematics, such as Linear Regression
(LR) [6] or ARIMA[5]. Other methods have a statisti-
cal background. These methods include Hidden Markov
Models (HMM)[15] or Factorial Hidden Markov Models
(FHMM)[10].
Deep learning was used for energy prediction from 2014
onward. At that moment, methods such as Conditional
Restricted Boltzmann Machine (CRBM) [15] and factored
Conditional Restricted Boltzmann Machine (FCRBM) [16]
were introduced. Next to that, Long Short-Term Memory
(LSTM) was used for building energy prediction in [23].
Recently, Artificial Neural Networks (ANNs) [9] and Sup-
port Vector Machines (SVMs) [4] became popular choices
for the forecasting of energy consumption.

Figure 1. A summary of the Scopus-indexed pub-
lications focusing on energy prediction since the
beginning of the 21st century until now (i.e. 2000-
2018)

To provide a broader perspective, in Figure 1 an overview
of the evolution of machine learning methods applied to
energy prediction problems since the beginning of this cen-
tury is presented. Deep learning is a relatively new concept
and has clear advantages over traditional machine learning
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methods [20]. In [16], several deep learning methods were
found to be successful for energy prediction. Following
that, in [20] a detailed study concerning Multilayer Per-
ceptrons (MLPs) was conducted, proving that MLP could
drastically improve the accuracy of building energy predic-
tion. However, the optimal usage of MLP for this problem
has not yet been found. Therefore, this research will try to
improve MLP to increase the accuracy of building energy
prediction.

2. RESEARCH QUESTION
This paper addresses the research question listed below.
The main question can only be answered when the three
subquestions have been answered.

RQ Can MLP be improved in such a way that it increases
the accuracy of energy prediction?

RQ1 What are the benefits of using MLP when com-
pared to other machine learning models?

RQ2 How can MLP be improved for energy predic-
tion?

RQ3 What are the results of the new found method?

3. RELATED WORK
Machine learning has been studied for many years. Deep
learning, however, was only introduced in 2006 by Ben-
gio, Hinton and Le Cun [12]. The first mention of deep
learning as a solution for energy prediction was in 2016
in [15]. Also in 2016, Long Short-Term Memory (LSTM)
was applied to energy prediction of buildings in [13], as
well as studies concerning building energy prediction us-
ing Conditional Restricted Boltzmann Machines (CRBM)
and Factored Conditional Restricted Boltzmann Machines
(FCRBM) in [17] and [16].
In 2017, the use of MLPs for energy prediction is first
compared with the most commonly used machine learn-
ing methods, such as Support Vector Machines, Gaussian
Processes, Regression Trees, Ensemble Boosting and Lin-
ear Regression in [20]. It was concluded that MLPs present
better prediction accuracy, with higher accuracy in terms
of RMSE and NRMSE, and therefore outperform these
traditional machine learning methods in accurate and re-
liable prediction outcomes. However, there still exists a
challenge in finding the optimal parameters for the MLP
model. Next to that, the use of MLP in combination with
influencing factors (i.e. features that influence the total
energy usage of a building) in building energy prediction
is mentioned in [18]. Although this study concludes Deep
Belief Networks are a more accurate prediction method
when presented with influencing factors, MLPs produce
promising results over all.

This research uses the same approach, as it will apply
MLP to predict energy used in buildings. The difference is
that it will build upon the existing research to improve the
accuracy of the predictions done by MLP. To the authors
knowledge, making use of influencing internal and external
factors while optimizing MLP through several parameters
has not yet been researched with regards to energy predic-
tion. A clear understanding of the use of MLP for building
energy prediction might be able to satisfy the future de-
mands of energy grids and inspire further research in this
topic.

4. BACKGROUND

4.1 Supervised learning
In the field of machine learning, supervised learning is the
task of learning a function that maps a given input to
an output, based on example input-output pairs. The al-
gorithm learns a function from so-called ’labeled training
data’, which consists of a set of training examples. The
algorithm analyzes the training data and produces a func-
tion, which can then be used for the following training
examples.
Ideally, the algorithm can correctly determine the function
and is able to optimally predict unseen examples.This re-
quires the supervised learning algorithm to generalize the
training data to be able to adapt to unseen situations in
the most ”reasonable” manner.

4.2 Deep learning
Deep learning are representation-learning methods with
multiple layers of abstraction. Based on the structure of
the brain (like neural networks), a deep learning model
consists of a multi-layer, interconnected network of neu-
rons, each layer transforming the data to a higher, more
abstract representation. Using sufficient layers, very com-
plex functions can be learned.
In other words, deep learning allows for computational
models that are composed of multiple processing layers to
represent data with multiple levels of abstraction. The
key aspect of deep learning is that the function or task of
each layer is learned from the data, and thus not designed
by human engineers. In 2006, deep learning was already
capable of solving problems that the best of the artificial
intelligence community could not crack [12]. Moreover, it
turned out that deep learning is very good at discovering
intricate structures in high dimensional data.

4.3 Multilayer Perceptron
MLPs [22] were first introduced in the 1980s as a machine
learning solution for speech and image recognition, trans-
lation software, etc. However, Support Vector Machines
(SVMs) introduced strong competition in the 1990s, since
they were simpler and more effective. Since deep learning
is gaining popularity, MLPs have found a renewed popu-
larity.

Figure 2. A perceptron

MLPs are made up of Perceptrons; a single neuron model
from which large neural networks are derived (see Figure
2). MLPs consist of an input layer that uses neurons to
represent the input data, an output layer that uses neurons
to represent the output data, and an arbitrary number of
hidden layers that use neurons to automatically discover
features of the input data (see Figure 3). The layers of an
MLP are connected consecutively, and any two consecu-
tive layers are fully connected.
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Each connection between two neurons is defined by a weight.
This weight determines how significant the value is that
is passed over the connection, by multiplying the value by
the weight. Next to that, each neuron has an activation
function that sums all the incoming values and creates
and output value for the neuron. The passing of values
through the network in a forward motion like this is called
feed forward. Using this method, an MLP learns to model
the correlation between the inputs and outputs.
Next to that, MLPs use back-propagation to re-calculate
and update the weights used in the network. This allows
the model to learn to become more accurate. When using
supervised learning, the model can compare the predicted
output to the expected output and use the error between
the two to update its weights. This is done using an opti-
mization function (Section 5.3.2. MLPs with one hidden
layer are able to approximate any continuous function. In
other words, it was proven that MLPs are universal func-
tion approximators [11]. This means that they can be used
to model any kind of regression model.

Figure 3. An example of the structure of an MLP

5. METHOD
5.1 Pecan Street Dataset
The Pecan Street [8] dataset is used, as it is the largest
source of disaggregated customer energy data. Pecan street
is located in Austin Texas and is part of research cen-
ter on energy and water usage, amongst others, spanning
multiple years. The Pecan Street database provides ac-

Figure 4. The energy consumption on January
7th, 2018, of the household used in this experi-
ment, including individual appliances, with a res-
olution of 15 minutes.

cess to the energy usage of hundreds of individual house-
holds at one-hour, fifteen-minute and one-minute intervals
recorded over several years. Next to that, the dataset pro-
vides both the total energy consumption of a household
and the energy consumption of a single appliance (e.g.
electric vehicle, dishwasher, etc.) or circuit (e.g. a combi-
nation of lights, fans and wall outlets) in kWh. An exam-
ple of the energy consumption of a household, including
the energy used by individual appliances, is displayed in
Figure 4.
The Pecan Street dataset also provides data about exter-
nal factors, such as the weather, energy price alerts and
surveys. This research uses the data about the weather;
specifically the temperature, the apparent temperature
and the wind speed.

5.1.1 Data
The total energy usage of an individual household over
the course of several weeks is used as training data. Six
weeks of data are used for the training of the model and
one week is used for the testing of the model. Both data
with 1 hour and 15 minute resolution is used, in order to
compare the results. Next to that, feature selection (see
Section 5.2) will determine which specific features are used
as influencing factors.

5.2 Feature selection
Using a week of data as training data, the model uses 168
data points per feature with a 1-hour resolution and 672
data points per feature with a 15-minute resolution. The
particular household that is used in this research has 6
internal influencing features and, additionally, four exter-
nal influencing features can be used for training. Using
all features can lead to a long processing time and a low
efficiency of the model. Feature selection is used to se-
lect the features that influence the total energy use the
most. These features are then used in the MLP. Using in-
fluencing features might increase the accuracy of the model
and, at the same time, it reduces the dimensionality of the
data. Dimensionality reduction is a process in which an
n-dimensional vector is represented as an m-dimensional
vector with m << n. Several approaches can be used for
dimensionality reduction, like Principal Component Anal-
ysis (PCA) or Pearson Correlation Coefficient (PCC). This
study uses PCC, since it was successfully used in [18] and
[20].
The PCC that is defined later in Section 5.4 is used to
identify influencing factors. Influencing factors are defined
as factors that greatly contribute to the total energy us-
age (i.e. a circuit or appliance that uses much of the total
energy used at that moment). This is done by identifying
the influencing factors that have the highest PCC value
with respect to the total energy usage.

5.2.1 Internal features
Internal influencing features are single appliances or cir-
cuits that greatly influence the total energy consumption.
To determine which features are influencing features, the
PCC between the features and the total energy consump-
tion is determined. If the PCC is higher than a set thresh-
old, the features is deemed an influencing feature. The
influencing feature is used as input for the MLP.

5.2.2 External features
External features are features like the weather, energy
prices, etc. In other words, they are features that are out-
side of a consumer’s influence. To determine if external
features influence the total energy consumption, the PCC
between the feature and the total energy consumption is
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calculated. Like internal influencing features, an external
influencing feature is used as input for the MLP.

5.3 MLP and the back propagation algorithm
In Section 4.3, MLP was shortly explained. The super-
vised learning problem of MLP can be solved with the
back-propagation algorithm. The back-propagation algo-
rithm consists of two steps; the forward pass and the back-
ward pass. The models internal learning parameters are
used to compute the output based on the input of the
model. The properties of MLP are analyzed and used to
try and improve the method. The number of hidden layers
and the number of neurons per hidden layer will vary, as
it is part of the research.

5.3.1 The forward pass - activation function
Each neuron uses an activation function to determine its
output. A Rectified Linear Unit (ReLU) and its variations
allow for faster and more effective training for deep neural
architectures when compared to the sigmoid function or
similar activation functions [19].

5.3.2 Backward pass with SGD
In the second step, partial derivatives of the cost func-
tion with respect to the different parameters are propa-
gated back through the network. An optimization func-
tion helps minimizing the error in the output. This study
uses Stochastic Gradient Descent (SGD), as it was used
many times before, for example in [20] and [18]. SGD is
given by

θ = γθ − α∇θJ(θ) (1)

where θ represents the weights of the connections in the
model, γ represents the weight decay and α the learn-
ing rate. Furthermore, ∇θJ(θ) represents the gradient de-
scent, where J(θ) is the error function (i.e. Mean Squared
Error) and ∇ takes the partial derivative of the error func-
tion for each weight. The whole process is iterated until
the weights have converged.

5.4 Metrics used for accuracy assessment
To evaluate the prediction method, various metrics are
used. These metrics evaluate the error between the pre-
dicted output and the measured values. The root mean-
square error (RMSE), given by the following, is used to
display the error

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2, (2)

where N is the number of data samples, yi is the input
data and ŷi is the expected output data. The RMSE is
then normalized to transform the error into a percentage.
The NRMSE is given by

NRMSE =

√
1

N

∑N
i=1(yi − ŷi)2

(ymax − ymin)
· 100 (3)

Furthermore, the Pearson Correlation Coefficient (PCC) is
used to evaluate the similarities between yi and ŷi. When
a high positive correlation occurs the PCC approaches 1,
while PCC approaches −1 when a high negative corre-
lation occurs. If there is little to no correlation, PCC
approaches 0. The difference between the current y and

its related mean µy is determined and multiplied by the
difference between ŷ and its mean µŷ. E indicates that
the expected value of this multiplication is taken. The
expected value is an indication of the long-term average
value of repetitions of the same experiment. Next. the ex-
pected value E is divided by a multiplication of the stan-
dard deviation of both y and ŷ. The PCC is given by the
following

PCC =
E[(y − µy)(ŷ − µŷ)]

σy · σŷ
(4)

5.5 Implementation details - Libraries
The MLP model is created by TensorFlow [7], an open
source framework developed by Google that is used to
implement and train custom neural networks. Next to
that, the Keras Deep Learning library [1] and Pandas[3],
a data structures and data analysis tool for Python, are
used. Pandas has build-in functionalities for time series.
Furthermore, NumPy [2], a Python package for scientific
computing, is used. The code used in this research can be
found on Git1.

6. EXPERIMENT AND RESULTS
The data set obtained from the Pecan Street database was
complete; there were no missing values or time stamps.
The energy data of an individual household was extracted
over eight weeks, leading to a total of 1344 data samples
per factor for a 1-hour resolution and 5376 data samples
for a 15-minute resolution. The data has a mean value of
1.33 kWh and a standard deviation of 1.71 kWh.

Table 1. List of Scenario’s
Time horizon Resolution

Scenario 1 Energy data 1 day 1 hour
Scenario 2 Energy data 1 day 15 minute
Scenario 3 Energy data + 1 day 1 hour

internal factors
Scenario 4 Energy data + 1 day 15 minute

internal factors
Scenario 5 Energy data + 1 day 1 hour

external factors
Scenario 6 Energy data + 1 day 1 hour

internal factors +
external factors

6.1 Range of experiments
Two main aspects are considered essential in order to de-
fine six different scenario’s, namely the resolution and the
use of influencing factors. Figure 1 shows a list of sce-
nario’s that were conducted to test the model, with and
without internal and external factors, and with two reso-
lutions. These were chosen with a 1-hour and a 15-minute
resolution, as to evaluate the effect on accuracy. More-
over, Scenario 1 and Scenario 2 are used as a benchmark
for Scenario’s 3 until 6.
Scenario 1 and 2 look at the prediction capacity of MLP
using just the energy data (i.e. total energy use) over a
1-hour and a 15-minute resolution. Scenario 3 and 4 use
the energy data and the internal influencing factors, both
over a 1-hour and 15-minute interval. Furthermore, Sce-
nario 5 uses energy data and external factors over a 1-hour
interval, and Scenario 6 uses energy data and both inter-
nal and external influencing factors over a 1-hour interval.
Unfortunately, the data used for the external factors is

1https://gitlab.com/snippets/1869498
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only available in a 1-hour interval, and could not be ex-
trapolated to create accurate data to be used as external
influencing factors with a 15-minute resolution.
Table 2 refers to the results of the different scenario’s. The
number of hidden layers, the number of nodes and the
number of epochs were changed during the experiments.
Highlighted in blue are the best results for each scenario.

6.2 Building energy prediction
Scenario 1 and 2 (Table 2) seem to imply that the MLP
creates the most accurate prediction with 4 hidden lay-
ers and at least 500 nodes per layer when no influencing
factors are taken into account. Increasing the number of
hidden layers or nodes in these scenario’s does not increase
the accuracy further.

6.2.1 Resolution
One of the goals of this experiment is to look at the dif-
ference in accuracy when using different resolutions for a
prediction. Scenario 1 (1-hour resolution) and Scenario 2
(15-minute resolution) can be compared and Scenario 4
(1-hour resolution) and Scenario 5 (15-minute resolution)
can be compared when looking for the most accurate pre-
diction method.
When comparing the above-mentioned scenario’s, it im-
mediately stands out that the scenario’s using data with
a 1-hour resolution produce more accurate results when
looking at the RMSE and the NRMSE. Interestingly, also
the PCC value is much lower when using a 15-minute res-
olution.

6.2.2 Zero-correction
It stood out that the predicted energy values tend to dip
below zero sometimes when working with data with a 1-
hour resolution. Because it was assumed that the energy
usage cannot be negative (i.e. we do not take into account
energy sources that a household may have that provide
energy to the grid), the following was done: if a value is
predicted to be below 0,it is set to 0 . The results of this
zero-correction can be found in Table 2.
Applying a zero-correction to the prediction seems to in-
crease the accuracy of the prediction. While using zero-
correction, the best predictions for Scenario 1 are done by
3 hidden layers with 500 nodes per layer. Scenario 3 and
4, on the other hand, seem to make the best predictions
using 3 or 4 hidden layers with 500 nodes per layer. An
example of Scenario 4 with 3 hidden layers of 500 nodes
per layer with zero-correction can be found in Figure 5.

Figure 5. Example of a prediction of 24 hours of
energy use by the MLP, with a 1-hour resolution
and internal influencing factors

6.3 Building energy prediction and feature
selection

The PCC that was proposed in 5.2 and defined in 5.4
is used to identify internal and external factors that po-
tentially influence the energy demand profiles. Table 4
displays the statistical characteristics of each external fac-
tor, along with the PCC value of the different factors with
respect to the total energy consumption. Additionally, Ta-
ble 3 displays the same for the internal factors. Next to
that, Figure 6 displays a correlation matrix between all
the factors considered in the analysis.

Figure 6. The PCC between multiple internal and
external features obtained from the Pecan Street
Database, using data of a 1-hour resolution

6.3.1 Internal features
Table 3 displays a high correlation for the internal fac-
tors Furnace and Poolpump (i.e. a PCC value above 0.5),
and a very high correlation for the factor Airconditioning.
These internal factors are deemed internal influencing fea-
tures, as they seem to have a big effect of the total energy
use. The factors Dryer, Oven and Refrigerator are disre-
garded, as their PCC value is close to 0.
The results of using the internal influencing features in the
MLP model can be found in Table 2.
Looking at Scenario 1 and 4, it becomes clear that the re-
sults of Scenario 4 are only slightly better than the results
of Scenario 1. The improvement in accuracy between these
scenario’s is not enough to draw a solid conclusion about
the effects of using internal factors. However, the improve-
ment in accuracy between Scenario 1 and Scenario 4 with
zero-correction seems to be more significant. When look-
ing at Scenario 2 and Scenario 5, both with a 15-minute
resolution, there seems to be no improvement in accuracy
whatsoever.

6.3.2 External features
Table 4 displays a low to average negative relation between
the total energy use and the Temperature and between
the total energy use and the Apparent temperature. This
would imply that the total energy use decreases when the
temperature increases. Also, both the Temperature and
the Apparent temperature have a negative correlation with
the Airconditioning and the Furnace (see Figure 6), im-
plying that these external factors might influence the total
energy use indirectly through their influencing on the in-
ternal influencing factors. The effects in accuracy of using
one or both the external features in the MLP model can
be found in Table 2.
Looking at Scenario 1 and Scenario 3, taking external fac-
tors (i.e. the Apparent temperature into account makes
the MLP’s predictions less accurate. It is only when using
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Table 2. Day-ahead building energy prediction results, with accuracy expressed in terms of RMSE,
NRMSE and PCC for experiments using data with one hour resolution (Scenario 1, 3 and 4) and 15
minutes resolution (Scenario 2 and 5). Number of neurons is counted per layer.
Scenario 3 (+ zero-correction) uses the influencing factor Apparent temperature, Scenario 4 (+ zero-
correction) uses the influencing factors Air conditioning, Furnace and Poolpump and Scenario 5 uses the
influencing factors Air conditioning and Furnace.

R
M

SE

N
R
M

SE

PC
C

H
id

de
n[

#
]

N
um

be
r
of

ne
ur

on
s

N
um

be
r
of

ep
oc

hs

N
um

be
r
of

fa
ct

or
s

Scenario 1

1,02 16,10 0,60 1 500 200
1,00 15,87 0,59 2 500 200
0,98 15,47 0,67 3 500 200
0,97 15,42 0,69 4 500 100
1,02 16,13 0,66 5 500 100

Scenario 2

1,84 21,14 0,32 1 500 100
1,62 18,52 0,37 2 500 100
1,62 18,55 0,44 4 2000 100
1,57 18,04 0,43 4 500 200
1,58 18,17 0,45 6 1000 100

Scenario 3

0,95 14,98 0,60 2 1000 100 3
0,94 14,94 0,61 3 500 100 3
0,99 15,80 0,59 3 1000 100 3
0,96 15,11 0,65 4 500 100 3
1,01 15,93 0,67 5 500 100 3

Scenario 4

1,76 20,17 0,36 3 500 100 2
1,63 18,74 0,44 4 500 100 2
1,61 18,49 0,44 5 500 100 2
1,61 18,49 0,46 6 1000 100 2
1,60 18,36 0,48 8 500 100 2

Scenario 5

1,03 16,40 0,63 3 500 100 1
1,08 17,12 0,61 3 1000 100 1
1,08 17,06 0,64 4 500 100 1
1,03 16,40 0,63 3 500 100 1

Scenario 6

1,04 16,52 0,60 3 500 100 4
0,97 15,31 0,65 4 500 100 4
1,05 16,64 0,65 5 500 100 4
1,00 15,87 0,65 6 500 100 4

Scenario 1 + zero-correction

0,93 14,73 0,68 3 500 100
0,98 15,50 0,69 4 500 100
0,99 15,65 0,70 5 500 100

Scenario 3 + zero-correction

0,95 14,98 0,52 2 500 100 3
0,99 15,60 0,64 2 1000 100 3
0,97 15,34 0,63 3 500 100 3
0,95 15,07 0,65 4 500 100 3
0,91 14,33 0,67 5 500 100 3

Scenario 5 + zero-correction

1,00 15,96 0,61 3 500 100 1
0,96 15,21 0,67 4 500 100 1
0,94 14,89 0,66 5 500 100 1

Scenario 6 + zero-correction

0.99 15,61 0,57 3 500 100 1
0,99 15,81 0,67 4 500 100 4
0,95 15,07 0,68 5 500 100 4
0,99 15,81 0,65 6 500 100 4
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Table 3. Table containing statistical characteristics
of some internal factors and the PCC value with
respect to the total energy use using data of a 1-
hour resolution

Influencing internal
factors

Min Max Mean Std.dev.PCC

Energy [kWh] 0.04 8.56 1.33 1.71 1
Airconditioning [kWh] 0.0 4.91 0.80 1.20 0.900
Dryer [kWh] 0.0 2.71 0.11 0.39 0.239
Furnace [kWh] 0.01 1.58 0.10 0.16 0.769
Oven [kWh] 0.0 2.26 0.02 0.14 0.148
Poolpump [kWh] 0.01 3.32 0.39 0.63 0.622
Refrigerator [kWh] 0.01 0.07 0.01 0.01 -0.173

Table 4. Table containing statistical characteristics
of some external factors and the PCC value with
respect to the total energy use using data of a 1-
hour resolution

Influencing external
factors

Min Max Mean Std.dev.PCC

Energy [kWh] 0.038 8.562 1.334 1.714 1
Temperature [F] 16.41 79.76 52.73 12.87 -0.408
Apparent temp. [F] 7.56 81.62 51.49 14.85 -0.427
Wind speed 0.05 17.83 5.97 3.50 0.048
Cloud cover 0.00 1.00 0.54 0.71 0.29

zero-correction that an improvement in accuracy can be
seen.

7. CONCLUSION AND DISCUSSION
This paper presented the use of MLP for energy predic-
tion of a household in combination with the use of internal
and external influencing factors. It looked to improve the
accuracy of the predictions using the influencing features
and two different time horizons. Also, it proposed zero-
correction as a way to improve accuracy in this specific
case of energy prediction.
We see an outstanding difference in RMSE, NRMSE and
PCC between Scenario 2 and 4, and the other scenario’s.
These results show that using data with a 15-minute reso-
lution in this type of MLP produces less accurate results in
terms of RMSE, NRMSE and PCC than using data with
a 1-hour resolution. This could be caused by the fact that
data with a 15-minute resolution has more data points,
and has therefore a more accurate result than data with
a 1-hour resolution. Next to that, it could be the case
that data with a 15-minute resolution has overfitted more
quickly, and has therefore reduced the accuracy. More-
over, Scenario 2 produces slightly better results is terms
of RMSE and NRMSE when compared to Scenario 4, while
Scenario 4 produces a slightly better PCC than Scenario
2.
Next to that, making use of influencing factors in the MLP
seems to increase the accuracy of the prediction slightly
at best, as can be seen when comparing Scenario 1, Sce-
nario 3, Scenario 5 and Scenario 6, both with and without
zero-correction. When looking at the scenario’s without
zero-correction, it stands out that only Scenario 3 than
Scenario 1 in terms of RMSE and NRMSE. Both Scenario
5 and 6 seem to show little to no improvement when look-
ing at the same metrics. In terms of PCC, there is no
improvement in accuracy when comparing the scenario’s.
It is hard to draw any conclusions from these results, be-
cause Scenario 3, Scenario 5 and Scenario 6 tend to predict
values below 0 sometimes. This decreases the accuracy im-
mensely. Therefore, we should look at the results of these
scenario’s when using zero-correction.
When looking at the scenario’s that use zero-correction, we

see an immediate improvement in all metrics when com-
pared to the same scenario’s without zero-correction. It
seems that the accuracy increases slightly when using in-
ternal factors in the MLP, while external factors to not
seem to influence the accuracy. This could be caused by
the fact that the internal influencing factors influence the
total energy consumption directly, so there is a strict cor-
relation. Moreover, the correlation between the total en-
ergy consumption and the external influencing factors was
lower than the correlation between the total energy con-
sumption and the internal influencing factors, which could
explain why internal influencing factors seem to have a
greater influence on the accuracy. In other words, an in-
fluencing factor with a low negative correlation does not
seem help the model to improve the accuracy.

7.1 Future work
Future work could include a research to the optimal res-
olution for energy prediction of buildings using MLP, as
to research if a 1-hour resolution is the optimal resolution,
and why certain resolutions produce a more accurate pre-
diction than others in order to use this knowledge in possi-
ble applications. Next to that, future work could look into
the effects of influencing features on energy prediction in
more detail, especially to features that show a strong neg-
ative correlation with the total energy consumption, as to
see if influencing features can improve predictions. Also,
further research could take into account the correlation
between influencing features amongst themselves, to see if
that has an effect on the accuracy of a prediction. Fur-
thermore, the benefits of using influencing factors could
not only be in the accuracy of predictions, it could also
improve the efficiency of the algorithm that is used. This
could benefit the use of this method when applied in the
real world.
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