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ABSTRACT 

Passenger flow forecasting is essential for identifying 
bottlenecks, dynamic planning and maximizing customer 
satisfaction. Even though this essence is clear, it remains 
unknown whether crowdedness truly results in lower satisfaction 
and whether forecasting techniques are feasible in an airport 
restroom context. These research topics are addressed by 
analysing the performance of three statistical techniques on the 
correlation between crowdedness and cleanliness perception, and 
by evaluating six regression models to forecast the number of 
restroom visitors at Schiphol airport respectively. The real 
dataset from Schiphol and Asito includes 887.822 FeedbackNow 
votes cast in 87 restrooms over a period of 7 months, flight 
information of 3.018 airplanes that arrived at Pier E, and the 
corresponding 97.521 passengers who visited one of the two 
restrooms on the arrival floor. Two of the three statistical models 
confirm the hypothesis that crowdedness results in a negative 
perception. Moreover, Ridge regression is able to predict the 
number of restroom visitors quite successfully (𝑅ଶ = 0.83). It is 
concluded that while the forecasting method is almost advanced 
enough to be used in practice, the correlation hypothesis needs 
further analysis before complete confirmation.  
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1. INTRODUCTION 

Similar to phones, watches and cities, airports are becoming 
smarter by the day. Also Schiphol Airport, the third greatest 
European airport in terms of market share, is investing millions 
to become the smartest airport on the globe. Their purpose is not 
only to increase revenue and profit but also to increase the 
satisfaction of the millions of passengers that come through every 
year. As this satisfaction is highly dependent on the smoothness 
of the passenger flow and the cleanliness of airport facilities, it is 
imperative to research this topic.  

The cleaning company Asito is amongst others responsible for 
cleaning the restrooms at the airport. This cleanliness is measured 
using FeedbackNow; a system that is able to track customer 

satisfaction trends by comparing the number of green, yellow and 
red votes cast in each restroom. At this moment in time, Asito 
does not utilize any tools to aid their cleaning schedule and 
continues to use the same static and unoptimized planning 
mechanics as ten years ago. The FeedbackNow system has 
revealed that the overall average scores are sufficient, but both 
Asito and Schiphol want to improve. Long-time cleaning staff 
members have noticed that the restrooms with high traffic also 
seem to be the ones with the lowest scores. The hypothesis here 
is that crowdedness negatively impacts customer satisfaction and 
thus, the FeedbackNow ratings as well. If these spikes in 
crowdedness can be predicted, the levels of crowdedness can be 
mitigated seamlessly and most importantly, the cleaning staff is 
able to match their cleaning tasks accordingly. Moreover, as the 
number of restroom visitors after each cleaning intervention 
slightly lowers the actual cleanliness of the location as well, it is 
a very useful metric for Asito to plan cleaning activities at the 
ideal moment in time (not too early, but definitely not too late).  

The purpose of this paper is therefore two-fold. Firstly, its 
objective is to test the hypothesis of a correlation between 
restroom crowdedness and the cleanliness perception of restroom 
visitors using three statistical techniques. Secondly, a regression 
technique is proposed to forecast the passenger flow to airport 
restrooms. This is done by estimating the number of passengers 
per flight using the flight schedule of arriving flights and 
additional features such as time and arrival gate. The following 
research questions are answered in order to realize this purpose: 

RQ1 To what extent does crowdedness correlate with the  
  cleanliness perception of restroom visitors? 

RQ2 To what extent can the number of restroom visitors   
  be forecasted?  
All in all, these two results aid in the transition towards smart 
airports and public transport spaces altogether by providing a 
method to increase customer satisfaction and cleanliness 
perception, as well as a way to minimize waiting times and 
bottlenecks.  

2. RELATED WORKS 

Numerous theories and methods relevant to both research 
questions have been published. However, these are primarily 
focused on different contexts and utilize differently structured 
datasets. Besides, neither research question has been answered. 

Regarding RQ1, research on the relationship between cleanliness 
and the presence of others exists to some extent, but as of yet, no 
experiment was ever conducted in an airport environment, nor in 
a restroom setting. Several works have investigated what stimuli 
impact people’s cleanliness perception. Apart from stimuli such 
as scent, actual cleanliness and the condition of the environment, 
several studies conclude that disorder and the presence of others 
often have a negative impact on the perceived cleanliness [17].  
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Cleanliness in an airport restroom setting is not only important 
because people exposed to unclean places tend to have a less 
positive attitude towards that place [14], Lee and Kim (2014) 
concluded that positive cleanliness perceptions influence the 
willingness of customers to spend more money in service 
contexts such as airports [7]. Furthermore, the density-intensity 
hypothesis of Freedman (1975) states that emotions and 
perceptions are reinforced and amplified when it is crowded [3]. 
The application of this theory in the context suggests that a 
negative cleanliness perception results in an intensified negative 
perception when it is crowded. Moreover, crowdedness from 
human density as such can certainly decrease customer 
satisfaction as well [10].  

This paper examines whether these theories hold up in this 
specific context, which is relevant for obtaining new insights into 
how to maximize customer satisfaction in facility management. 

In regards to RQ2, the predictability of the number of passengers 
in contexts other than the airport have been researched by many. 
Zhao et al. (2011) have focused on predicting the number of 
passengers on a bus line in China for approximately 240 
departures [18]. Another research on a bus station in China with 
over 11.996.975 inbound and outbound buses, aggregated to 
hourly intervals, tried building a neural network to predict the 
passenger flow [8]. Both studies conclude that a non-linear model 
approach is effective with minimal prediction error.   

Manataki & Zografos (2009) have created a model to 
approximate the number of passengers coming in and out of an 
airport. The research, conducted at Athens airport, has shown that 
peaks occur roughly at similar times each day and that the usage 
of the model is able to predict when bottlenecks will occur at the 
passport control based on incoming transit [11]. 

State-of-the-art simulation models like these are very data-
intensive, complex to compute, and still yield mediocre 
predictions in reality. As the actual landing time of flights quite 
liable to change, the model should be able to calculate the number 
of real-time flights and their respective passengers continuously. 
This paper will be the first to examine the extent to which the 
number of restroom visitors can be forecasted using relatively 
easily computable regression models and publicly available 
flight schedule data. It will do this by building upon the 
aforementioned model by Manataki & Zografos (2019). 

3. METHODOLOGY 

In order to answer both research questions successfully and 
independently, the method and results are split into two sections.  

3.1 Research Question 1 

3.1.1 Data Collection 

To answer RQ1, FeedbackNow (FBN) data was collected as an 
indicator of the cleanliness perception of restroom visitors at 
Schiphol airport. FBN is a business solution offering real-time 
client satisfaction data to aid in delivering excellent service at all 
times. Each installed FBN device poses the question: “how do 
you rate the cleanliness of this toilet today?” Forrester, the owner 
of the customer experience evaluation system, claims research 
has shown that respondents truthfully answer the question, and 
thus, that other factors such as mood are negligible.   

In total, 887.822 votes were cast between October 3rd 2018 and 
April 30th 2019. These votes were emitted from 44 different toilet 
groups in 8 different sections of the airport. Almost every toilet 
group is composed of male and female restrooms (87 in total). 
Each vote is represented in the data with the location of the 

specific restroom, the distinct timestamp and whether the vote 
was a red, yellow or green smiley-face.   

3.1.2 Data Processing 

The files containing data on all restrooms were loaded in 
PyCharm using the Pandas library. Using the Python 
programming language, all votes of a restroom were split into 
sections with a specific timeframe 𝑡, measured in minutes. For 
example, if 𝑡 = 5, the 7 months are first split into 60.480 sections 
of 5-minute intervals. Then, these sections were aggregated by 
the number of votes within this specific timeframe. Finally, it is 
evaluated how many votes were cast within each aggregated set 
and what percentage of these votes is green and red. This was 
repeated for all 87 restrooms. 

The hypothesis is that the more votes are cast within an interval, 
the lower the percentage of green votes is and the higher the 
percentage of red votes is. Moreover, it is expected that the 
smaller the interval is, the more compelling this relationship will 
be. The underlining assumption here is that the number of clicks 
within a short timeframe is a proxy for crowdedness. 

3.1.3 Statistical Techniques 

After conferring with three statisticians, three techniques were 
proposed to test the hypothesis because this real-life data has no 
perfect mathematical model. The SciPy library was used to apply 
the methods to the stored data. The three techniques are 
explained and their pros and cons are discussed in this section. 
Before any technique could be applied however, a normal 
approximation was applied to each of the sets aggregated by the 
number of votes per interval 𝑡 (𝐺௫, 𝑅௫) where 𝑥 = number of 
votes cast within 𝑡. In the following approximation formula for 
𝐺௫, 𝑛௫  = number of total votes within the set and 𝑛௫

ீ = number of 
green votes within the set:  

∃𝑥: 𝐺௫ ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 ቆ𝑁 = 𝑛௫, 𝑝 =
𝑛௫

ீ

𝑛௫
ቇ (1) 

∃𝑥:  𝐺௫ ~ 𝑁𝑜𝑟𝑚𝑎𝑙 ቌ𝜇 = 𝑛௫
ீ , 𝜎 = ඨ𝑛௫

ீ ቆ1 −
𝑛௫

ீ

𝑛௫
ቇቍ (2) 

To provide an example, suppose that 7 votes are cast within 15 
minutes with  𝑡 = 5, of which 1 green vote is given in the first 
interval of 5 minutes, 3 red votes in the second 5-minute 
timeframe and 3 green votes in the last interval. Then, 

𝐺ଵ ~ 𝐵𝑖𝑛 ቀ1,
ଵ

ଵ
ቁ,  𝐺ଷ ~ 𝐵𝑖𝑛 ቀ6,

ଷ


ቁ, and 𝑅ଷ ~ 𝐵𝑖𝑛 ቀ6,

ଷ


ቁ.  

The first technique, the unpaired two-sample t-test, is used to 
determine if the means of two populations are equal or different. 
The technique, with a confidence interval of 95.0 percent, is used 
to validate whether the mean green percentage of an uncrowded 
number of votes (𝜇௨) is different from the mean green percentage 
of a crowded number of votes (𝜇). The distinction between 
crowded and uncrowded is made based on the assumption that it 

is crowded when 𝑥 > ⌈
ଷ

ଵ
t⌉ with t = time interval in minutes, 𝑥 = 

number of votes cast within t, and the ceiling brackets indicating 
rounding to the upper integer. Using this method it is for instance 
expected that if within 1 minute, 2 or more votes are cast, it is 
crowded and if less than 18 votes are cast within 1 hour, it is 
considered uncrowded. Not only was this method applied to the 
percentage of green votes, it was also applied to the percentage 
of red votes. The null hypotheses for the red percentages (𝐻

ோ) 
and green percentages (𝐻

ீ) are tested against the alternative 
hypotheses for the red percentages (𝐻

ோ) and green percentages 
(𝐻

ீ) as shown in Equation 3 and Equation 4. 
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𝐻
ீ: 𝜇௨ = 𝜇     𝑣𝑒𝑟𝑠𝑢𝑠     𝐻

ீ: 𝜇௨ > 𝜇 (3) 

𝐻
ோ : 𝜇௨ = 𝜇     𝑣𝑒𝑟𝑠𝑢𝑠     𝐻

ோ: 𝜇௨ < 𝜇 (4) 

Unfortunately, the shortcoming of this method is that a 
comparison of only two samples can be made. This means that 
beforehand a distinction needs to be made on how many clicks 
per interval is considered crowded and uncrowded. This is a 
complicated task because of the limited amount of data available 
on the specifications and capacity of each restroom. 

Second of all, the Analysis of Variance (ANOVA) is used to 
potentially mitigate the aforementioned issue as ANOVA 
generalizes the t-test beyond two means [1]. The mean of each of 
the aggregated sets is compared with the others. The null 
hypotheses (𝐻

ீ , 𝐻
ோ) and the alternative hypotheses (𝐻

ீ , 𝐻
ோ) for 

the green and red percentages are as follows:  

𝐻
ீ: ∃𝑖, 𝑗 ∶  𝜇 = 𝜇    𝑣𝑒𝑟𝑠𝑢𝑠   𝐻

ீ: ∃𝑖, 𝑗 ∶  𝜇 ≠ 𝜇 (5) 

𝐻
ோ: ∃𝑖, 𝑗 ∶  𝜇 = 𝜇    𝑣𝑒𝑟𝑠𝑢𝑠   𝐻

ோ: ∃𝑖, 𝑗 ∶  𝜇 ≠ 𝜇 (6) 

The limitation of this method is that the alternative hypothesis 
does not indicate which group diverges from the others and it 
does not indicate whether there exists an upwards or downwards 
trend. 

Therefore, using the third technique, it is examined whether the 
means of the calculated green and red percentages per interval 
follow a linear slope downwards and upwards respectively. For 
this, the male and female restrooms with more than 10.000 votes 
in the aforementioned period were identified and placed in 
separate .csv files. This was done as it was necessary to evaluate 
this data manually. Note that approximately 70.0 percent of all 
votes were given in these 28 restrooms.  

As the data structure is quite unique, an adaptation of the Pearson 
correlation coefficient is proposed to test on the trend of the 
means. It is special because for the aggregated set for 1 vote cast 
within the timeframe, the percentage green can either be 0.0 
percent or 100.0 percent. Hence, these sets are converted into 
mean values with a 95.0 percent confidence interval and 
sequentially weighted by the number of votes composing this 
mean. Then, the correlation (𝜌) between the aggregated number 
of votes per time interval (𝑥) and the percentage of green or red 
votes (𝑦) is calculated using the weighted Pearson correlation 
coefficient (WPCC) shown in Equation 7 and Equation 8 [2, 9]. 
Note that 𝜌 is computed twice: once for 𝑦 = percentage of green 
votes and once for 𝑦 = percentage of red votes.  

𝑐𝑜𝑣(𝑥, 𝑦; 𝑤) =

∑ 𝑤(𝑥 −
∑ 𝑤𝑥

∑ 𝑤
 )(𝑦 −

∑ 𝑤𝑦

∑ 𝑤
 )

∑ 𝑤

(7) 

𝜌(𝑥, 𝑦; 𝑤) =
𝑐𝑜𝑣(𝑥, 𝑦; 𝑤)

ඥ𝑐𝑜𝑣(𝑥, 𝑥; 𝑤)𝑐𝑜𝑣(𝑦, 𝑦; 𝑤)
(8)  

Nonetheless, this technique also has limitations: there is no 
method to calculate a weighted p-value and like the previous 
method, a decision needs to be made ahead of the calculation. 
The first limitation was handled by assuming significance for all 
results because of the high number of observations. To mitigate 
the risk of the latter limitation, it was decided to test using two 
alternative weights to come to a substantiated conclusion.  

                                                                 
1 Shortly after the acceptance of the proposal, the previous 

version of the Schiphol API (version 3.0) was cancelled. This 
is the reason why all data from 2018 became unavailable. 

To confirm that a restroom follows the theory of the previously 
mentioned upwards or downwards trend, the following 
hypothesis (𝐻ீ, 𝐻ோ) needs to be met for the 𝜌 of the green (𝜌ீ) 
and red (𝜌ோ) percentages with 𝑡 = time interval in minutes:  

𝐻ீ: 𝜌௧ୀ
ீ ≥

7

10
𝜌௧ୀଵ

ீ ≤ −
7

20
(9) 

 𝐻ோ: 𝜌௧ୀ
ோ ≤  

7

10
𝜌௧ୀଵ

ோ ≥
7

20
 (10) 

In other words, the hypothesis is supported if the 𝜌 with a short 
interval (𝑡 = 1) shows a strong correlation (𝜌 ≥ |0.5|) and a 

substantially stronger one (|𝜌௧ୀ| ≤


ଵ
|𝜌௧ୀଵ| i.e. more than 

30.0 percent) than for a long interval (𝑡 = 60). This hypothesis 
is analysed for each of the 28 restrooms manually and once for 
the 87 restrooms altogether. The latter is done by collecting the 
aggregated sets of votes with their respective green and red 
percentages for each of the restrooms and then combining these 
sets based on the number of votes cast within the interval (𝑥).  

Because each of the three statistical techniques has its own 
strengths and drawbacks, it is expected that the methods 
complement each other and will provide a thorough overview of 
the relation between the number of clicks per interval and the 
percentage of green and red votes. 

3.2 Research Question 2 

3.2.1 Data Collection 

First of all, data from so-called people counters was collected to 
answer RQ2. Between January 1st 2018 and February 28th 2019, 
7.850.460 restroom visitors have been registered by these sensors 
with promised 99.0 percent accuracy. The devices are installed 
in 14 distinct sections within the airport and in 19 toilet groups. 
For each of these restrooms, the number of visitors per hour is 
known. Second of all, data from the Schiphol API 4.01 was 
sourced. This data is comprised of information on all arriving 
flights between January 1st 2019 and April 30th 2019.  

The overlapping period of interest will subsequently range from 
January 1st 2019 until February 28th 2019. The focus of RQ2 will 
be on Pier E because of the high amount of data available. This 
section of the airport accommodates 14 gates at which 3.018 
airplanes have arrived in this period (of which 8 were excluded 
because the actual landing time was unregistered). Moreover, 
there are 19 toilet groups of which 2, located at the arrival floor, 
have people counters installed (see Figure 1). 

 

Figure 1. Map of Pier E with gates and toilet groups 
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3.2.2 Data Processing 

To approximate the number of passengers present on a specific 
flight, an adapted version of the proposed model by Manataki et 
al. (2009) was used [11]. Instead of using it to estimate the 
number of passengers on departing flights, it will be used to 
approximate the number of passengers on arriving flights.  

For the previously mentioned scope, 96.1 percent of the 2018 
passenger load factors (PLF) of the operating airlines on Pier E 
was gathered. Moreover, 95.9 percent of the maximum aircraft 
capacity of airline specific airplanes (AMAC) was collected and 
99.9 percent of the aircrafts in general (MAC). These percentages 
are not 100.0 percent because the PLF was not published by all 
airlines and the AMAC and MAC for some aircrafts were 
unavailable online. The accumulated data was used to estimate 
the number of passengers on a specific flight using the function 
visualised in Algorithm 1. The subfunctions supporting this 
algorithm can be found in Appendix A.1. 

 

Because the label (number of restroom visitors V) is aggregated 
per hour, the feature (expected number of passengers) should be 
aggregated to the same interval. This is a difficult problem as it 
is hard to determine when passengers will actually visit the 
restroom and for how long if only the landing time (LT) is known. 
To approximate this, two parameters will be optimized. The first 
parameter, time to gate (TTG), is the number of minutes it takes 
for an arrived flight to taxi to the gate in addition to the time it 
takes for the first passenger to be registered at the restroom. The 
second parameter, overlap time (OT), is the time it takes from the 
TTG until the final restroom visitor was registered (see Figure 
2). When identified, these parameters are used to calculate the 
expected number of passengers per hour (E(P)).  

Figure 2. Visualisation of LT, TTG and OT 

 
Two other features that will be used and evaluated are the day of 
the week (D) and the hour of the day (H). Because D and H are 
categorical values and most machine learning algorithms have 
interpretation difficulties with this data type, one-hot-encoding is 
applied before training the model. 

Finally, every gate (G) at which airplanes arrive will be tested as 
features by designating the OT per hour for each gate. In essence, 
G represents the percentage of the hour in which passengers 
originating from that specific gate have visited the restroom. The 
enumerated features and labels are clarified in Table 1. 

In total, 4 combinations of the features will be used to assess the 
performance of the algorithm and influence of the features when 
predicting the number of restroom visitors: 𝐶ଵ = E(P); 𝐶ଶ = E(P) 
and G; 𝐶ଷ = E(P), D and H; and 𝐶ସ = E(P), D, H and G.  

 

Table 1. Range and type overview of the features and label  

 Variables Abbr. Type Min Max 

Features 
(46) 

Expected number of  
passengers per hour 

E(P) Float 0 ∞  

Day of the week (7) D Binary 0 1 

Hour of the day (24) H Binary 0 1 

Gate usage (14) G Float 0 1 

Label 
(1) 

Number of restroom  
visitors per hour 

V Integer 0 ∞  

 

3.2.3 Regression Techniques 

The SciKit-Learn library was utilized to train and evaluate the 
following six supervised regression models: 

 Linear Regression (LIN): a widely used statistical 
technique to model the relationship of multiple 
variables. Simple linear regression will be used to 
predict the dependent variable V using the independent 
variable E(P). In addition, multiple linear regression 
will be tested using the other forenamed features [15].   
 

 Ridge Regression (RID): another linear regression 
technique that suppresses multicollinearity, the 
phenomenon where near-linear relationships exist 
between the independent variables [12]. Such an 
interrelation can be a consequence of one-hot-
encoding. RID might therefore be quite promising. 
 

 Lasso Regression (LAS): a method with a very 
comparable approach to the previous technique. The 
main difference being the feature selection attribute, 
L1 regularization, which is absent in Ridge regression. 
RID uses L2 regularization, which is less radical as it 
never shrinks an independent variable’s coefficient to 
zero [13]. However, this might be useful as it is 
probable that some of the 46 features lower the overall 
performance of the model. 
 

 Support Vector Regression (SVR): an adaptation of the 
Support Vector Machine. Instead of a classifier, SVR 
is a nonparametric regression technique. In contrast to 
the techniques discussed above, SVR can be both 
linear and non-linear. This may be useful as 
comparable studies utilizing non-linear metrics have 
been quite successful [8, 18]. The overarching goal of 
this model is to determine the hyperplane between the 
boundary lines that fits the highest number of data 
points. Values outside of these boundaries are not 
considered [16]. If the margin between the hyperplane 
and boundaries is small, the model is more susceptible 
to overfitting.  
 

 Gradient Boosting Regression (GBR): a technique that 
tries to minimize the loss of the model by turning 
weak-learners into strong-learners. The gradient 
descent procedure aids this process by diminishing the 
loss when adding trees. As it a quite greedy method, 
there is a risk of overfitting [4]. On the other hand, like 
SVR, GBR is able to discover polynomials and is 
highly tuneable in terms of hyperparameters.  
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 Multilayer Perceptron Regressor (MLP): a type of 
neural network that is completely feedforward. It has 
an input and output layer of nodes and at least one 
hidden node. MLP utilizes the backpropagation 
algorithm to train the data [5]. Limited memory BFGS 
(LBFGS) is the optimization algorithm used as the 
solver. Stochastic Gradient Descent and Adam are not 
used because LBFGS tends to perform better and 
converge faster on relatively small datasets. 

To avoid overfitting, discover better variance estimates and 
prevent selection bias, shuffled k-fold cross-validation is used. 
The dataset is split into k (=10) equal sized subsets, of which k-1 
is used for training and 1 is kept for validation. This process is 
repeated k times until for each subset it was attempted to predict 
the values based on the other subsets [6]. 

The six regression techniques are evaluated using uniform 
performance metrics. The coefficient of determination, better 
known as R-Squared (𝑅ଶ), will be used as it provides good 
insight into the goodness of fit. It measures how well the actual 
outcomes compare to the ones produced by the model based on 
the explained variation. In addition, the Root Mean Squared 
Error (RMSE) is used to determine how much on average the 
predictions deviate from the actual values. 

4. RESULTS 

4.1 Research Question 1 

Two of the three statistical techniques support the general 
hypothesis that states that the more votes are cast within an 
interval, the lower the percentage of green votes is and the higher 
the percentage of red votes is. These methods have also shown 
that this relationship is strengthened by decreasing the time 
interval. 

The two-sample t-test method supports the general hypothesis 
for the green percentages as well as for the red percentages. This 
is because the number of restrooms that reject the null hypothesis 
is high for a short interval (e.g. 85.06 percent of the restrooms 
reject 𝐻

ோ for t = 1 minute) and low for a long interval (e.g. 23.08 
percent of the restrooms reject 𝐻

ோ for t = 60 minutes). 

In Table 2 this phenomenon is shown with 𝐻
ோ and 𝐻

ீ  meaning 
the null hypothesis was rejected and the alternative hypothesis 
was accepted. Also, the restrooms that have never been crowded 
according to the split formula discussed in section 3.1.3 (e.g. 48 
restrooms have never had more than 19 votes cast within 60 
minutes), are excluded for the calculation of the percentages. 
Lastly, as it is not always the case that a restroom rejects the null 
hypothesis of both the red percentages and green percentages, the 
total reject percentage reflects the total percentage of restrooms 
that rejects the null hypothesis for at least one of the two.  
 

Table 2. Results for the two-sample t-test hypotheses 

𝐭 Crowded if Restrooms 𝐇𝐚
𝐑 𝐇𝐚

𝐆 𝐇𝐚
𝐑 ∨ 𝐇𝐚

𝐆 

1 𝑥 ≥ 2 87 85.06 % 71.27 % 87.36 % 

2 𝑥 ≥ 2 87 82.76 % 64.38 % 83.91 % 

5 𝑥 ≥ 3 87 70.11 % 51.72 % 72.41 % 

10 𝑥 ≥ 4 87 58.62 % 49.43 % 58.62 % 

15 𝑥 ≥ 6 87 55.17 % 41.38 % 57.47 % 

30 𝑥 ≥ 10 65 26.15 % 16.92 % 32.31 % 

60 𝑥 ≥ 19 39 23.08 % 20.51 % 28.21 % 

The ANOVA method also shows that the percentage of 
hypothesis rejects is high for small intervals and gets lower when 
this interval is enlarged (see Table 3). However, if a restroom 
rejects the null hypothesis (𝐻

ோ or 𝐻
ீ) using the ANOVA 

technique, it signifies that the means of 𝑛௫ are very unlikely to 
originate from the same distribution. The method is thus unable 
to determine whether the differentiating mean is one with a high 
number of votes by itself. Yet, the comparability with the results 
illustrated in Table 2 strongly suggests that this is the case. 
Therefore, this technique also supports the general hypothesis.  

Table 3. Results for the ANOVA hypotheses 

𝐭 𝐇𝐚
𝐑 𝐇𝐚

𝐆 𝐇𝐚
𝐑 ∨ 𝐇𝐚

𝐆 

1 81.61 % 50.57 % 83.91 % 

2 74.71 % 45.98 % 74.71 % 

5 62.07 % 39.08 % 63.22 % 

10 55.17 % 35.63 % 59.04 % 

15 49.43 % 34.48 % 52.88 % 

30 40.23 % 31.03 % 47.13 % 

60 31.03 % 32.18 % 39.08 % 

 

The WPCC method has amongst other things shown that 16 out 
of the 28 restrooms have confirmed the hypothesis for the red 
percentages using 𝑤ଵ = total number of votes of the aggregated 
set. However, the alternative weight, 𝑤ଶ = √𝑤ଵ  provides 
different insights. Table 4 shows what percentage of the 28 
analysed restrooms supports the hypotheses (𝐻ோ from Equation 
10 and 𝐻ீ from Equation 9) for the weights 𝑤ଵ and 𝑤ଶ. 

Table 4. Results for the WPCC hypotheses 

Weight 𝐇𝐑 𝐇𝐆 𝐇𝐑 ∨ 𝐇𝐆 

𝑤ଵ 57.14% 35.71% 57.14% 

𝑤ଶ 25.00% 32.14% 46.43% 

 

Also, Table 5 illustrates correlation coefficients for the 87 
restrooms altogether with the two weights. Here, it is clearly 
shown that for 𝑤ଵ the coefficients of the red percentages 
(𝜌௧

ோ  (𝑤ଵ)) as well as the coefficients of the green percentages 
(𝜌௧

ீ  (𝑤ଵ))  show a decrease in strength in regards to the increase 
of 𝑡. However, 𝑤ଶ does not show this at all, but suggests that 
there is no significant correlation for any 𝑡. In Appendix A.2, the 
identified mean red percentages with a confidence interval of 
95.0 percent and 𝑤ଵ for 𝑡 = 5 are illustrated for a specific 
restroom. This section also shows the same figure for 𝑡 = 60. 

Overall, the WPCC method cannot completely confirm the 
general hypothesis that the means of the red and green 
percentages are linearly correlating with the number of clicks 
within a short interval.  
 

Table 5. Results for the WPCC of all restrooms aggregation 

𝐭  𝛒𝐭
𝐆 (𝐰𝟏) 𝛒𝐭

𝐆 (𝐰𝟐) 𝛒𝐭
𝐑 (𝐰𝟏) 𝛒𝐭

𝐑 (𝐰𝟐) Max 𝐱 (𝐧𝐱) 

5 -0.718 -0.048 0.821 0.169 32 

10 -0.667 -0.004 0.734 0.234 35 

15 -0.620 -0.067 0.635 0.172 39 

30 -0.540 -0.148 0.333 0.083 40 

60 -0.421 -0.227 0.071 0.033 60 
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Even though 𝑤ଵ suggests that the hypothesis is true because 16 
out of the 28 restrooms confirm this individually and Table 5 
shows a clear decrease and increase for the green and red 
percentages respectively, 𝑤ଶ completely contradicts it. Even 
though 𝑤ଵ sounds more reasonable and intuitive, the distribution 
of votes for small restrooms are highly skewed to the left           
(𝑥 ≤ 2), which causes the aggregated means for 1 vote per 
interval and 2 votes per interval to be weighted too 
disproportionately. This phenomenon can be recognized in 
Appendix A.2 as well.  

4.2 Research Question 2 

Multiple regression models were trained and evaluated on two 
restrooms, using different features, and for different time periods. 
It is shown that by optimizing parameters and utilizing all 
available features, the ridge regression model is the most suitable 
method.  

First, the parameters TTG and OT were optimized before training 
the regression models. This was done by attempting all 
combinations where TTG: 0-60 and OT: 0-60 for restroom 124, 
125 and both combined, for January, February and both months.  

Each of the 3.600 combinations was evaluated using two 
correlation techniques: the Pearson correlation coefficient (PCC) 
to test linear correlation and Spearman’s rank correlation 
coefficient (SCC) to test monotonic correlation. Figure 3 shows 
the heatmap of the PCC for the number of restroom visitors for 
both restrooms in total (𝑉ଵଶସ,ଵଶହ) and E(P). The optimum 
correlation here is 𝜌 = 0.88 (p-value = 0.0) for TTG = 9 minutes 
and OT = 37 minutes. The figure clearly shows that this optimum 
is not as precise since the values lying approximately on the 
green diagonal from (0, 30) to (60, 0) are also great for predicting 
the number of total visitors. This essentially proves that each 
flight has a slightly different TTG and OT, which makes sense as 
flights land at different landing strips.  

Also note that the value of 𝜌 increases again above the red 
diagonal from approximately (0, 60) to (60, 30) in the heatmap. 
This is due to the fact that cross-correlation is applied, which 
essentially enables the algorithm to find the time for which the 
correlation coefficient is the highest. Thus, when the 
combination of TTG and OT gets too high, the algorithm is better 
in predicting the values of an hour later than the current hour. 
This lag is compensated for in Figure 3 for values of TTG and 
OT above the aforementioned red diagonal, which causes the 
value of 𝜌 to rise again instead of getting worse. 

 

Figure 3. PCC (𝝆) for 𝑽𝟏𝟐𝟒,𝟏𝟐𝟓 and E(P) 

Even though the SCC provided higher correlation coefficients   
(𝜌 = 0.92 with TTG = 3, OT = 43 and p-value = 0.0), it was 
decided to use the PCC for further usage as extensive 
visualization indicated that a linear relationship between the 
expected number of passengers and actual restroom visitors was 
most probable.  

As the optimal calculation for E(P) is now determined, six 
regression methods were trained using cross-validation with k = 
10. The feature E(P) was used to predict the label V for the full 
two months. This was done using multiple configurations (𝐶ଵ, 𝐶ଶ. 
𝐶ଷ, 𝐶ସ) of the features.  

The observed values for the performance of each of the models 
on restroom 124 are presented in Table 6. Note that these values 
are calculated using the default settings of the regression models, 
excluding the maximum number of iterations to make sure that 
each algorithm is able to converge.  

Three conclusions can be drawn by analysing the tabulated data. 
First and foremost, all of the selected models perform almost 
indistinguishably. This is most likely due to the fact that the 
relationship between the features and number of restroom 
visitors is linear. Even after extensive hyperparameter tuning 
using grid search, all of the 𝑅ଶ scores of the optimized models 
approximated to the 𝑅ଶ score of LIN. The RID and LAS models 
were tweaked using the alpha parameter, which was set to 2.5 
and 0.08 respectively. The MLP model’s activation function for 

Table 6. Cross-validated regression performance results of six models on three datasets (124, 125 and both) 

RR* Model 
Combination 1* Combination 2* Combination 3* Combination 4* 

Rଶ  σ RMSE σ Rଶ σ RMSE σ Rଶ σ RMSE σ Rଶ σ RMSE σ 

124 

LIN 0.728 .04 29.06 12.2 0.735 .04 28.65 11.1 0.783 .02 25.91 09.4 0.791 .02 25.41 08.6 

LAS 0.728 .04 29.06 12.2 0.728 .04 29.05 12.2 0.740 .04 28.41 12.1 0.739 .04 28.43 12.0 

RID 0.728 .04 29.06 12.2 0.735 .04 28.64 11.1 0.783 .02 25.90 09.4 0.791 .02 25.40 08.6 

MLP 0.726 .04 29.16 12.4 0.726 .04 29.15 12.6 0.756 .02 27.53 10.2 0.771 .02 26.59 09.5 

GBT 0.711 .05 30.00 14.2 0.738 .03 28.50 11.0 0.778 .03 26.31 12.0 0.785 .02 25.84 09.7 

SVR 0.726 .04 29.17 12.4 0.734 .04 28.71 11.8 0.763 .03 27.09 10.9 0.775 .02 26.39 09.8 

125 RID 0.658 .03 13.47 05.0 0.678 .04 13.07 05.2 0.712 .04 12.33 04.8 0.728 .05 11.99 05.4 

Both RID 0.766 .03 35.56 14.8 0.771 .03 35.10 13.8 0.821 .02 31.12 12.7 0.828 .02 30.45 11.8 

* RR = Restroom number; Combination 1  = E(P);  Combination 2 = E(P) and G;  Combination 3 = E(P), D and H;  Combination 4 = E(P), G, D and H 
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the hidden layer was set to identity, its learning rate schedule to 
inverse scaling and two hidden layers of 100 and 50 neurons 
were used. The GBT model was optimized by setting the 
learning rate to 0.1, the number of estimators to 200 and the 
maximum number of the individual regression estimators to 1.  

As the scores of the models were also similar for restroom 125 
and both restrooms at once, it was decided to visualise only the 
RID method. It performed at least as well as any other regression 
technique and it is relatively inexpensive to compute. The latter 
is an important criterion for the algorithm to be used in practice. 

The second discovery is the fact that the 𝑅ଶ scores for restroom 
124 are higher than those of restroom 125, while the RMSE is 
significantly higher as well. The presumed argument for this 
phenomenon is the fact that the average number of restroom 
visitors for restroom 124 are higher than those of restroom 125; 
75 and 23 visitors per hour during the day respectively. 

 

Figure 4. RMSE of RID predictions for 𝑽𝟏𝟐𝟒,𝟏𝟐𝟓  

Third of all, the values of the total number of restroom visitors in 
pier E can be predicted best. This is mainly due to the fact that 
the variance of the probability for passengers going to one of the 
restrooms is lower than the variance of the probability for 
passengers going to a specific one. The predictions for the 
restrooms’ combined visitation numbers and the actual values are 
shown in Figure 4 with the colours indicating the RMSE. 

Finally, to demonstrate the performance of the regression model 
on a day-to-day basis, Figure 5 shows the predictions and actual 
registrations of the total number of restroom visitors in Pier E. 
The figure shows that the predictions are very close overall, but 
some important peaks are not always fully forecasted. 

5. DISCUSSION 

To discuss the contribution of this research properly, this section 
is split into two distinct sections. Firstly, the pros and cons of the 
methodology are evaluated. Secondly, the usability of the 
machine learning algorithm in practice is assessed.  

The method for answering RQ1 could be improved tremendously 
if more contextual information is gathered. The reason for this is 
that currently, the variables used for measuring the crowdedness 
and cleanliness perception are likely inadequate. The number of 
votes per interval was used as a proxy because the actual number 
of restroom visitors was unavailable on a relevant timescale in 
regards to measuring crowdedness. The weakness here is that the 
number of clicks can be dependent on a multitude of factors 
while the actual number of visitors is not.  

Even though it seems quite reasonable that the clicks give a good 
indication of the number of visitors, there are two counters to this 
assumption. Firstly, most restrooms have a quite high variance in 
the number of votes. For example, by comparing the number of 
visitors per hour and the number of clicks per hour for restroom 
125, contradictory observations can be made: for 30 visitors 
within an hour, the number of votes ranges between 0 and 30. 
Secondly, because customer feedback systems are a quite 
unexplored research topic, it is still uncertain whether 
respondents actually control their emotions and try their hardest 
to rate the cleanliness objectively as Forrester suggests. This 
research has shown that this assumption may be flawed as 
crowdedness does not directly impact the cleanliness. If this is 
the case however, it also means that other factors influence the 
number of clicks and scores. For example, it is possible that if 
someone has a negative experience, he or she is more likely to 
cast a (negative) vote. Additionally, perceived cleanliness may 
differ based on gender, nationality or other variables. If either is 
the case, the impact of the proxy for cleanliness perception needs 
further investigation as well. 

In short, the results do suggest that the higher the number of votes 
within a small interval are, the lower the average scores tend to 
be. However, it is unclear if this phenomenon is similarly present 
if a high number of actual visitors within a small interval is taken 
as an input opposed to its proxy, the number of clicks. Therefore, 
a non-proxy for crowdedness is required to completely prove the 
hypothesis. 

The method for answering RQ2 is hard to improve upon with the 
current dataset because almost all available features were 
exhausted and the real world remains unpredictable. The 
algorithm might improve when given extra predictors such as 
country of origin or flight duration which were available, but 
excluded because of potential ethical risks. Unavailable 
information such as landing strip, taxi time, offloading floor and 
the actual number of passengers on a flight will improve the 
algorithm without question. However, because of inevitable 
flaws in the real data and the unpredictability of life, it will sadly 

Figure 5. Predicted 𝑽𝟏𝟐𝟒,𝟏𝟐𝟓 and Actual 𝑽𝟏𝟐𝟒,𝟏𝟐𝟓 per hour for February 1st – February 8th 2019 
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never be possible to predict the number of restroom visitors with 
perfect accuracy: sometimes one has to go, and sometimes not. 
This degree of uncertainty becomes apparent from Figure 4 and 
Figure 5 as the predicted number of passengers is almost always 
slightly higher or lower than in reality. 

The ridge regression algorithm is able to approximate this high 
variance relatively well. Before Asito and Schiphol believe they 
can use it however, it is necessary to extend the dataset’s 
timespan to at least a year, identify means to turn the unavailable 
data into usable data and generalize the method for all piers. Even 
though brief exploration into the performance of the algorithm 
on Pier F and G has yielded promising results, more elaborate 
testing is required. After these tweaks and improvements, the 
companies see potential in the applicability of this model in 
practice because of two main reasons. First of all, it is simple to 
compute, which allows for continuous updates to support 
dynamic planning of the cleaning activities. Second of all, 
knowing how many visitors have entered which restroom is not 
only very valuable information for optimizing cleaning activities, 
it is also beneficial in other contexts. Examples include optimized 
use of personnel in the airport stores, passport control and 
security, but also passenger safety in general.  

6. CONCLUSIONS 

In this paper, three statistical techniques were utilized to test the 
hypothesis stating that crowdedness negatively affected 
FeedbackNow scores, and six regression models were employed 
to predict the number of restroom visitors for toilet groups at Pier 
E. Collectively, the obtained insights enable Schiphol and Asito 
to improve overall customer satisfaction.  

Two of the three statistical methods undoubtedly confirm the 
hypothesis that a high number of clicks within a short timeframe 
causes a lower cleanliness perception, while the other neither 
proved nor disproved it. It is concluded that future research is 
required to validate the legitimacy of the used proxies before 
complete confirmation of the general hypothesis.   

After enriching the dataset with information about the 
approximate number of passengers on flights, optimizing the 
parameters time to gate and overlap time and applying 
hyperparameter tuning on the regression models, Ridge 
regression was selected as the best predictor for the number of 
restroom visitors (𝑅ଶ = 0.83). The proposed algorithm has an 
extremely short computation time which empowers both 
companies to maximize staff efficiency using real-time dynamic 
planning and allows for the incredible insight into the 
crowdedness of the restroom facilities. The latter is not only 
advantageous for increasing customer satisfaction within this 
context, but for many other environments inside and outside the 
airport as well. It is concluded that while the algorithm is already 
quite advanced, the time period over which the data was collected 
needs to be extended by at least one year, the algorithm needs 
thorough validation in more sections of the airport and lastly, 
methods to obtain currently unavailable data need to be 
developed before the algorithm can be applied in practice. 
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APPENDIX 

A.1 Algorithms 
The following pseudo-code algorithms illustrate how the passenger load factor (PLF) and maximum aircraft capacity (CAP) are 
calculated per flight. For the PLF it is important to note that it was assumed that charter flights are always completely booked and 
therefore the PLF is always 100.0 percent. Also, note that the average PLF factor is 80.54 percent and the average CAP is 244.52 seats.  

 

           

 

A.2 WPCC Figures 
The figures below illustrate the average percentage of green and red votes based on the aggregation of the number of votes (𝑥) cast in 
timeframe 𝑡. These votes were cast in the male restroom of toilet group 67 between October 1st 2018 and May 1st 2019. Each dot in the 
figure is the mean percentage of green votes based on the number of votes within the parenthesis on the x-axis. Figure 6 clearly shows 
that the more votes are cast within a short period of time (𝑡 = 5 minutes), the lower the percentage of green votes and the higher the 
percentage of red votes. Figure 7 shows a roughly straight line for both colours for 𝑡 = 60 minutes. These figures confirm the general 
hypothesis. It has to be noted however, that not all restrooms have followed this pattern, as mentioned in section 4.1.

               
Figure 6.  Average Percentage of Green/Red Votes for toilet 

group 67 Male with 𝒕 = 5 minutes 

 

 
Figure 7.  Average Percentage of Green/Red Votes for toilet 

group 67 Male with 𝒕 = 60 minutes

 


