
BSc Thesis Applied Mathematics
& Technical Computer Science

Multiscale Convolutions for an
Artificial Neural Network

Ioannis Linardos

Supervisors:
Applied Mathematics: Yoeri Boink
Computer Science: Nirvana Meratnia & Jeroen Klein Brinke

July, 2019

Department of Applied Mathematics
Faculty of Electrical Engineering,
Mathematics and Computer Science



Acknowledgements

Throughout the writing of this thesis, I have received a great deal of support and assistance.
I would like to thank my Applied Mathematics supervisor ir. Yoeri Boink and my Computer
Science supervisors dr. Nirvana Meratnia and ir. Jeroen Klein Brinke. Their expertise was in-
valuable in formulating the research project and carrying out the study at each step. The pa-
tience and interdisciplinary competence they exhibited were of great importance because they
were asked to co-supervise a research project that would fulfill the requirements of two degree
programmes.



Multiscale Convolutions for an Artificial Neural Network

Linardos I. *

July, 2019

Abstract

The study investigates the possibility of using convolutional neural networks across
input of different sampling rates, focusing on one-dimensional convolutions. This is an
idea that has not been adequately studied although it may produce useful results that ex-
pand the usefulness of convolutional neural networks. The problem was approached from
the perspective of algebraic multigrid. Three interpolation methods were tested on audio
classification neural networks trained for input of different sampling rates: nearest neigh-
bor, linear interpolation and inverse distance weighting. The approach was extended to
pooling and fully connected layers. In the case of using a neural network trained for high
sampling rate input with input of low resolution, the method of linear interpolation gave
promising results. Moreover, the results hint that pooling layers should not be changed in
the process of multiscaling. In the case of training for low sampling rate and testing with
input of high sampling rate, there is no unique solution to the system of weight equations.
In dealing with this problem, the approach of directly prolonging the convolution kernels
was tried using the three interpolation methods that were explained above as well as the
method of kernel dilation. The last method, kernel dilation, appeared to be considerably
effective in upscaling.

Keywords: convolutional neural networks, algebraic multigrid, multiscale methods, near-
est neighbor, linear interpolation, inverse distance weighting, kernel dilation

*Email: i.linardos@student.utwente.nl

1



1 Introduction

In this work, we consider the problem of multiscaling convolutional neural networks (CNN).
CNNs are deep neural networks whose learned parameters are the values of discrete convolu-
tion kernels. They are mainly used in processing data that benefit from keeping their original
spatial and structural information. For example, they are used in image, audio and video pro-
cessing. The tasks that can be performed using CNNs include but are not limited to classifica-
tion, denoising or labeling [1].

CNNs are trained to perform a specific task for input of a specific resolution/sampling
rate. In case the same type of processing needs to be performed to input of different reso-
lution/sampling rate, a new CNN is created and trained. This procedure is lengthy because
discovering a functional network architecture usually requires trial and error and the research
in optimal heuristic procedures is still in development [2]. Moreover, the computational cost
of training CNNs is high [3]. Another option would be to resample the dataset to the resolution
in which the CNN has been originally trained but this also adds a considerable computational
overhead.

In order to avoid these costs, we examined whether it is possible to modify an already
trained CNN for input of a different resolution. Modifying a CNN that has been trained for
high resolution input to perform for low resolution is called downscaling the network while the
opposite process is called upscaling.

By finding effective ways to multiscale (upscale and downscale) existing network, the CNNs
will become more versatile; a network could be trained for one input resolution/sampling rate
and then used for another. Furthermore, it is possible to optimize the training of CNNs by first
training the network using input that minimizes the computational costs (i.e. lower resolution)
and then scaling the network for the desired input. Moreover, even if the multiscaled network
does not have adequate accuracy and retraining cannot be completely skipped, these methods
may be used to initialize the training parameters (architecture and weights) of a neural network
and shorten the development time.

Multiscaling methods for CNNs is a new field of research; consequently, there is very limited
research on the subject. Haber et al. explored some ideas with considerable success in two-
dimensional CNNs for image classification [4]. One of the methods they proposed was based
on algebraic multigrid (AMG), a numerical method used to solve large systems of equations
using a multilevel hierarchy. AMG has been used in varied fields of scientific research ranging
from fluid mechanics [5] to queuing theory [6] but its relevance to CNNs just started being
investigated.

The AMG approach requires the construction of different prolongation (interpolation) and
restriction (coarsening) operators and the success of the multiscaling depends on that choice
[7]. In this work, we explored three such methods: nearest neighbor, linear interpolation and
inverse distance weighting. In contrast to the work of Haber et al. [4], the task at hand is
audio classification performed by one-dimensional CNNs. Multiscaling techniques for one-
dimensional CNNs is an area that remained up to this point unexplored. In this study, we
delved into the connection between AMG and CNN multiscaling and explored the practical
implementation of the prolongation and coarsening strategies in specific scenarios. Addition-
ally, in dealing with some deficiencies of AMG in the case of upscaling, the strategy of directly
prolonging the convolution kernels was examined. In order to test the efficacy of these meth-
ods, a dataset was collected and a number of CNN architectures were trained in two different
sampling rates.

2



2 Methodology

In this section, we describe in detail the methods that were used to solve the problem. At first,
the theory of AMG is explained focusing on why it is relevant to multiscaling CNNs. Then, we
explain the specific prolongation and restriction methods that were used and how they were
applied. Afterwards, we discuss how we dealt with the pooling and dense layers that are usually
present in a CNN architecture. Last but not least, we explore a new strategy to upscaling to deal
with a deficiency in the AMG approach.

2.1 Algebraic Multigrid and Multiscaling CNNs

As mentioned, the backbone of the approach in multiscaling followed in this work is the method
of algebraic multigrid. Multigrid is a numerical method developed to solve large systems of dis-
crete partial differential equations. It is based on the idea of coarsening the discretization grid
based on a physical geometric interpretation of the problem using hierarchical algorithms (ge-
ometric multigrid). This inspired the development of algebraic multigrid (AMG) which is used
to solve large (usually sparse) systems of linear equations using the same multigrid principles
but without any references to a geometric origin of the problem; it is based only on the infor-
mation contained in a given matrix K to construct the hierarchy of grids and the corresponding
prolongation and restriction operators [8] [7].

In general, AMG methods are designed to solve linear systems of the form K u = f where
K is a sparse matrix. This system is called "the finest grid problem" and the solution is found
within a hierarchy of coarser grid problems. By finest scale we define the dimension of the
(unknown) vector u. The method transitions to a sequence of coarser grids (grids of coarser
scales) in which the sparse matrix K is transformed to a coarser grid operator using some in-
tergrid transfer (prolongation and restriction) operators [8].

In order to make the connection with our research area, we need to interpret a CNN from
an algebraic point of view where the application of a convolution kernel in an input array is
represented by a matrix multiplication.

Let a coarse scale (low resolution/sampling rate) H and a fine scale (high resolution/sampling
rate) h with h > H . Moreover, let sH and sh the convolution kernels that operate on the low sam-
pling rate (coarse scale) input uH and high sampling rate (fine scale) input uh respectively. In
the case of audio classification, which was the focus of this work, the input is an audio record-
ing represented by a one-dimensional array. The sparse matrices KH and Kh are the matrix
representation of the coarse and fine scale convolution kernels respectively. The form of these
sparse matrices will be explained in the next section.

In this framework, the finest scale problem is the application of a convolution kernel to a
high sampling rate input represented by Khuh . In this approach, the purpose of applying AMG
is not to solve the linear system Khuh = f per se, since both Kh and uh are taken to be known.
In contrast, the main goal is to find a new sparse matrix KH which is equivalent to applying the
fine scale convolution to a coarser grid, meaning to an input of lower sampling rate. Through
this process, given a fine scale convolution kernel, we can derive a coarse scale one, effectively
downscaling the kernel.

AMG is a method used to downscale a problem in pursuance of a configuration that is easier
to solve. However, in the case of CNNs, upscaling the operators is also a point of interest. In
this case, the opposite procedure is followed with known KH and unknown Kh . However, as
we shall see, this is not as straightforward as the case of downscaling and it presents additional
challenges.

In AMG, constructing a coarse scale operator KH given a fine scale operator Kh can be done
with many methods. In this work, the Galerkin method was used because of its purely alge-

3



braic nature. In this method, the coarse scale operator KH is called Galerkin operator and is
computed by KH = RKhP where R and P denote the restriction and prolongation operators
respectively. The common AMG practice is that the prolongation operator is chosen first and
the restriction operator is adjusted to this choice. R and P should be linear transformations so
that they can be represented in a matrix form. Moreover, it is assumed that R and P have full
rank, which means that P should have linearly independent columns and R linearly indepen-
dent rows. Finally, it should be RP = I , meaning that there is an adequate mapping from the
fine scale to the coarse scale and conversely [9].

Given a known fine scale operator Kh , the Galerkin method allows for the immediate cal-
culation of the coarse scale operator KH . In the case KH is known and Kh unknown, then Kh is
a sparse matrix with some unknown variables. As we explain in the next section, the matrices
KH and Kh have a specific form. Thus, the matrix equation KH = RKhP leads to a linear system
of equations. If the size of the convolution kernels sH and sh is the same, then the system has a
unique solution [4] but it will be shown that this is not always the case.

As explained above, the approach to AMG in this case follows a different path than in more
traditional applications because the purpose is not to downscale the operator in order to solve
a linear system but to downscale the operator for its own sake. In the traditional applications
of AMG, the coarser grids are chosen freely so that the system becomes easier to solve while in
the case presented here the different grids are a given to the problem; the purpose is to scale
a CNN to a specific grid. Moreover, AMG includes considerations of other factors such as the
error that appears between the solution that the method converges to and the actual solution
of the system. This error also needs to be approximated to the coarser levels in an appropriate
way to achieve convergence. This is the role of a smoothing operator which usually drives the
choice of the intergrid operators R and P [9]. However, this does not seem to be relevant in the
present case as it is not the unknown u that should be approximated.

The lack of error convergence considerations drove us to a different approach in regards
to the choice of the intergrid operators. Although the Galerkin method is purely algebraic, its
application to a specific case gives a physical meaning to the intergrid operators R and P . In or-
der to comprehend this physical meaning, it is useful to look into the derivation of the Galerkin
operator [4]. The restriction operator restricts a fine scale signal uh to a coarse scale signal uH

through the relation uH = Ruh while the prolongation operator prolongs the coarse scale sig-
nal uh to the interpolated fine scale signal uh . When RP = I , then uh = uh . Let wh the output
signal of applying a fine scale convolution operating on the fine scale signal wh = Khuh . Then,
we have wh = KhPuH . Now, we want to construct a coarse scale convolution KH operating
on the coarse scale signal wH = KH uH which is consistent with applying Kh on uh . Namely,
we want to restrict the convoluted coarse scale signal so that wH = Rwh ⇒ KH uH = RKhPuH .
Therefore, one way to construct the coarse scale operator is by KH = RKhP .

What should be taken out of this process is that R and P should be understood as restriction
and prolongation applied to a signal, which in the cases examined is the input to the CNNs,
that is audio recordings. Namely, R and P are in fact resampling methods that should follow the
restrictions outlined above. In terms of signal processing, the restriction that RP = I means that
after upsampling the signal and then downsampling again, we should return to the original.
The restriction that both matrices should have full rank means that all the points of the signal
should be taken into account when resampling. This physical interpretation of the operators
inspired the choices that were made and that are explained below.

2.2 Convolution as Matrix Multiplication

Before proceeding to the specific prolongation and restriction methods, it should be explained
that applying a convolution to an array can be considered as a matrix multiplication in which

4



the convolution is represented by a sparse Toeplitz matrix [1].
In the case of one-dimensional input that was examined, the Toeplitz matrix is constructed

so that the first column starts with the convolution kernel and is completed with zeros while
the first row starts with the first element of the convolution and is completed with zeros. The
rest of the matrix is completed so that each descending diagonal from left to right is constant.

In the neural networks that are examined, zero padding in the borders of the signal is im-
plemented so that the convoluted output has the same length as the input. Then, the matrix
should be diagonal n ×n with n the length of the signal. Moreover, the first column starts with
the middle element of the kernel and is completed as described above.

Since we deem it important to be consistent with the AMG bibliography, we should apply
the convolution as a matrix multiplication from the left of the signal. Therefore, we used the
transpose of the Toeplitz matrix in the applications. From now on, when the matrix represen-
tation of a convolution kernel is referred, it is implied the transpose of the zero padded Toeplitz
matrix.

So, assuming we have a kernel s = [
x1, x2, . . . , xm

]
where m is an odd number (as commonly

used in CNNs), then the Matrix is:

K =



x m+1
2

x m+1
2 +1 x m+1

2 +2 · · · xm 0 · · · 0

x m+1
2 −1 x m+1

2
x m+1

2 +1 · · · xm−1 xm 0
...

... x m+1
2 −1

. . .
. . .

. . .
...

x1
. . .

. . .
. . .

. . . xm

0
. . .

. . .
. . .

. . . xm−1
...

. . .
. . .

...
...

. . .
. . .

...
0 · · · · · · x1 · · · x m+1

2 −1 x m+1
2


In the case m is even, then the middle element is m

2 . This is rarely used in CNNs but it is
relevant when a fully connected layer is represented as a convolutional layer as we shall see.

It is important to note that the matrix K presented above is the matrix representation of
a kernel that is applied without the use of strides, or with str i de = 1, as in the case of the
networks examined in this study. The case of strided kernels will be briefly examined in the
case of the average pooling layer below as well as in Appendix A.

It should be noted that, in CNNs, applying a convolution to a signal includes an activation
function. However, not all activation functions are linear, meaning that they cannot be rep-
resented as a matrix operation. In fact, more often than not, the activation functions are not
linear and so is the case in the CNNs that will be presented in the practical implementation. In
the methods explored below, we shall deal with the weights of the kernels, leaving the activation
functions as part of the architecture which remains unchanged.

2.3 Prolongation and Restriction Methods

As mentioned above, the success of the AMG depends on the choice of prolongation and re-
striction methods. In this section, the combinations of intergrid operators that were used are
presented.

5



2.3.1 Nearest Neighbor Interpolation

Nearest neighbor is one of the simplest interpolation methods and entails upsampling the sig-
nal by interpolating the nearest sample [10]. The basic idea of the method is shown in Figure 1.
Nearest neighbor interpolation can be used to prolong signals by integer factors.

FIGURE 1: Nearest Neighbor Method

Let a one-dimensional array uH = [
x1, x2, . . . , xm

]T that is to be upscaled to a new finer scale
h by an integer factor N = h

H . Then, the length of uh will be N m and we have:

uh = [
x1, · · · , x1︸ ︷︷ ︸

N

, x2, · · · , x2︸ ︷︷ ︸
N

, . . . , xm , · · · , xm︸ ︷︷ ︸
N

]T

2.3.1.1 Prolongation Matrix

The prolongation matrix P is the transformation matrix of the linear transformation that per-
forms the operation described above. By following well-known methods of linear algebra, the
columns of P are the images of the normal basis of Rm (see Appendix B) [11]. The dimensions
of the matrix are N m×m. It can be seen that the columns of P are linearly independent. There-
fore, the matrix has full rank.

P =



1 0 · · · 0
...

... · · · 0

1 0 · · · ...

0 1 · · · ...

0
... · · · 0

... 1 · · · 1

0 0 · · · ...
0 · · · 0 1


2.3.1.2 Restriction Matrix

Since P is not square and hence not invertible, there is not a unique matrix R that complies
to the requirement RP = I . The most intuitive choice is to restrict by averaging the neighbor-
ing sample points. The shape of the matrix is m ×N m. We can see that the rows are linearly
independent. Last but not least, the requirement RP = I is also fulfilled.

6



R =


N−1 · · · N−1 0 · · · 0 0 0

0 0 0 N−1 · · · N−1 0 · · ·
... 0 0 · · · · · · · · · 0 0
0 0 · · · 0 0 ︸ ︷︷ ︸

N

N−1 · · · N−1


2.3.1.3 Multiscaling

Let a fine scale kernel sh = [
x1, · · · , xm

]
and a coarse scale kernel sH = [

y1, · · · , yk
]

with Kh and
KH their matrix representations. Moreover, let a coarse scale signal with size n and the pro-
longed fine scale signal with size 2n. Since RP = I , the relation can also be seen in reverse
where the coarse scale signal is the restriction of the fine scale one. The two kernels are con-
nected by the relation KH = RKhP , as explained above, where R and P are the restriction and
prolongation operators respectively. In the cases examined here, the scaling ratio was N = 2.
However, the nearest neighbor interpolation can be applied for any integer ratio.

The matrices Kh and KH have a specific form as explained above. In addition, it can be
proven that multiscaling should preserve the strides of the kernel (see Appendix A). Therefore,
the equation KH = RKhP can be solved in the general form for kernels of arbitrary length, some-
thing which returns a set of formulas that relate the weights of the fine scale kernel xi with the
weights of the coarse scale kernel yi . It can be shown that there are four cases depending on
max(m,k).

From the way a convolution kernel is applied in CNNs, it can be seen that padding any
number of zeros at the borders of the kernel does not change the operation. This means that, in
the case k 6= m, the smallest kernel can be extended by zero padding so that k = m. Therefore,
in the general case it is assumed that k = m, namely that the coarse and fine scale kernels
have the same length. If it turns out that one kernel is smaller than the other, this will become
apparent in the formulas as the first and/or the last elements of the smaller kernel will be zero.
It turns out that this is indeed the case; the coarse scale kernel is in fact smaller than the fine
scale one for k,m > 3 which includes all the kernels of interest (kernels with length less than
three were not effective as we shall see when discussing the practical implementation). This
result is repeated in all the methods that were examined and has important consequences in
the case of upscaling because it means that there is no unique fine scale convolution given a
coarse scale one.

In the formulas that are presented below, the length k < m of the coarse scale kernel corre-
sponds to the length after subtracting all the consecutive zero elements from the borders that
appear in the formulas if equal length is assumed. Moreover, a relation between the lengths of
the kernels is also given.

Given a fine scale kernel, a unique coarse scale kernel can be computed using these for-
mulas by substituting the known xi ’s. However, given a coarse scale kernel, the substitution of
the known yi ’s to the formulas returns a linear system with more unknown xi ’s than equations.
In particular, there are k equations for m unknowns with k < m. By examining the coefficient
matrices of the systems in all cases, it can be shown that they have an infinite solution set.

7



When m is odd

When m+1
2 is even

Then k = m+3
2 and:

y1 = 1

2
x1

y2 = 1

2
x1 +x2 + 1

2
x3

...

yk−1 =
1

2
xm−2 +xm−1 + 1

2
xm

yk = 1

2
xm

When m+1
2 is odd

Then k = m+1
2 and:

y1 = x1 + 1

2
x2

y2 = 1

2
x2 +x3 + 1

2
x4

...

yk−1 =
1

2
xm−3 +xm−2 + 1

2
xm−1

yk = 1

2
xm−1 +xm

When m is even

When m
2 is even

Then k = m
2 +1 and:

y1 = x1 + 1

2
x2

y2 = 1

2
x2 +x3 + 1

2
x4

...

yk−1 =
1

2
xm−2 +xm−1 + 1

2
xm

yk = 1

2
xm

When m
2 is odd

Then k = m
2 +1 and:

y1 = 1

2
x1

y2 = 1

2
x1 +x2 + 1

2
x3

...

yk−1 =
1

2
xm−3 +xm−2 + 1

2
xm−1

yk = 1

2
xm−1 +xm

2.3.2 Linear Interpolation

There are many definitions of linear interpolation. In this work, it was defined as the interpo-
lation between two sample points [12]. The method is explained visually in Figure 2.

Let a discrete signal uH = [
x1, x2, . . . , xm

]T that is to be upsampled to a new signal uh by a

factor N = 2. Then, the length of uh will be 2m and we have uh = [
x1, x1+x2

2 x2, . . . , xm , xm
2

]T . As
shown in Figure 2, the first point of the prolonged signal is the same as the first of the coarse
scale signal. However, when it comes to the last point of the prolonged signal, there is no point
"to the right" in order to interpolate. It was chosen to deal with this by padding a zero as a new
element in the coarse scale signal and calculate the last element of the fine scale signal by xm+0

2 .
This method can be used to upscale by a factor of 2. Iteratively, it can be used to upscale by

a factor 2 j , with j the number of iterations.

8



FIGURE 2: Linear Interpolation Method

2.3.2.1 Prolongation Matrix

The matrix representation of this method is calculated by using methods of linear algebra as
explained in the case of nearest neighbor (see Appendix B). We can verify that the matrix has
full rank as it is required by the AMG method.

P =



1 0 · · · 0
1
2

1
2 · · · 0

0 1 0
...

0 1
2

1
2

...
0 0 · · · 0
...

... · · · 1
2

0 0 · · · 1
0 · · · 0 1

2


We can see that the first row and column of the matrix do not follow the same pattern with

the last row and column. The reason for this is the different treatment of the border elements of
the array that was presented in Figure 2. When applying the Galerkin method KH = RKhP , this
discrepancy creates an inconsistent system of equations. In particular, there are two inconsis-
tent formulas for some coarse scale weights. In order to solve this problem, it was decided to
ignore the first row and column of P when multiscaling. The physical meaning of this choice is
that the upscaled signal has one element less, the first element is missing (equivalently, it could
be chosen that the last element would be ignored). Since the signals are in the range of tens of
thousands, this is not expected to have a great influence on the whole method.

2.3.2.2 Restriction Matrix

There are many possible matrices to perform the opposite transformation. The range of choices
is restricted by the fact that the rows should be linearly independent.

Let the coarse scale signal be uH = [
a1, a2, · · ·am

]
and the interpolated uh = [

A1 = a1, A2 =
a1+a2

2 , A3 = a3, · · · A2m−3 = am−1, A2m−2 = am−1+am
2 , A2m−1 = am , A2m = am

2

]
. One solution to the

problem of restriction is the formula ai = 2A2i − A2i+1,1 ≤ i ≤ m, with A2m+1 = 0. It can be
shown that the corresponding matrix R has full rank. The shape of the matrix is m ×2m. It is
not difficult to verify that RP = I .

9



R =


0 2 −1 0 · · · 0 0 0
0 0 0 2 −1 0 · · · 0
... 0 0 · · · 0 2 −1 0
0 0 · · · 0 0 0 0 2


Following the same reasoning as in the case of the prolongation matrix, the first column and

row are subtracted from the matrix when multiscaling since this would create a matrix with a
distinct pattern while keeping the requirement that RP = I .

2.3.2.3 Multiscaling

By following the same process that was explained in the section of the nearest neighbor, we can
derive the formulas that relate the weights of the coarse scale kernel sH = [

y1, · · · , yk
]

and the
fine scale kernel sh = [

x1, · · · , xm
]
. Once more, we shall see that given a fine scale kernel it is

possible to calculate a unique coarse scale one while in the opposite case we have an under-
determined system of linear equations with an infinite solution set. There are again four cases
depending on the size of the fine scale kernel m.

When m is odd

When m+1
2 is even

Then k = m+3
2 and:

y1 = 3

2
x1 +x2

y2 = x4 + 3

2
x3 − 1

2
x1

...

yk−2 = xm−1 + 3

2
xm−2 − 1

2
xm−4

yk−1 =
3

2
xm − 1

2
xm−2

yk =−1

2
xm

When m+1
2 is odd

Then k = m+3
2 and:

y1 = x1

y2 = x3 + 1

2
x2

y3 = x5 + 3

2
x4 − 1

2
x2

...

yk−1 = xm + 3

2
xm−1 − 1

2
xm−3

yk =−1

2
xm−1

10



When m is even

When m
2 is even

Then k = m
2 +2 and:

y1 = x1

y2 = x3 + 1

2
x2

y3 = x5 + 3

2
x4 − 1

2
x2

...

yk−2 = xm−1 + 3

2
xm−2 − 1

2
xm−4

yk−1 =
3

2
xm − 1

2
xm−2

yk =−1

2
xm

When m
2 is odd

Then k = m
2 +1 and:

y1 = 3

2
x1 +x2

y2 = x4 + 3

2
x3 − 1

2
x1

...

yk−1 = xm + 3

2
xm−1 − 1

2
xm−3

yk =−1

2
xm−1

2.3.3 Inverse Distance Weighting

The third multiscale method that was explored in the paper was inverse distance weighting. In
this technique, the points of the fine scale signal are produced by the weighted average of the
two closest points in the coarse grid [10]. In contrast to the previous two methods, the points
of the coarse scale signal are not a subset of the points of the fine scale one.

In Figure 3, it is shown how the distances are defined when upscaling by a factor of 2. The
method can be theoretically used to upscale for any ratio, even non-integer ones. Every box
represents one sample point and it has a center. The distance is measured from the midpoint
of the interpolated sample to the midpoints of the two closest coarse scale samples. The unit of
distance is half the length of the interpolated points. The value of the new sample is calculated
as the weighted average of the two original samples, where the weights are the distances.

FIGURE 3: Inverse Distance Weighting Method

11



2.3.3.1 Prolongation Matrix

The matrix representation of this prolongation approach is presented below (see Appendix B
for how it was derived). It can be proven to have full rank.

P =



5
6

1
6 0 · · · · · · 0

3
4

1
4 0 · · · · · · 0

1
4

3
4 0 · · · · · · 0

0 3
4

1
4

. . .
. . .

. . .

0 1
4

3
4

. . .
. . .

...
... 0

. . .
. . .

. . . 0
... 0

. . .
. . .

. . . 0
... · · · · · · 3

4
1
4 0

... · · · · · · 1
4

3
4 0

... · · · · · · 0 3
4

1
4

... · · · · · · 0 1
4

3
4

0 · · · · · · 0 1
6

5
6


The first and last row of P follow a different pattern. This is because the first and last ele-

ment of the interpolated signal should be calculated using coarse scale sample points that are
further than the points in the middle of the signal. This is similar to the case of the last element
in the linear interpolation. When P is used in the Galerkin method, the difference in these two
rows created an inconsistent system of equations. Therefore, it was decided that they should
not be taken into consideration. The physical meaning of this choice is that the two end points
of the signal are not interpolated. Since the length of the signals at hand is in the range of tens
of thousands, it is not expected to cause problems.

2.3.3.2 Restriction Matrix

Once more, there are many possibilities in picking a restriction matrix that performs the inverse
transformation. In a manner similar to the case of the linear interpolation the choice was:

R =


−1

2
3
2 0 · · · 0 0 0

0 0 −1
2

3
2 0 · · · 0

...
...

...
...

...
...

...
0 · · · 0 −1

2
3
2 0 0


R conforms to the restrictions set by AMG. It should be noted that R was chosen to corre-

spond to P after the deletion of the first and last column.

2.3.3.3 Multiscaling

Once more, following the Galerkin method we can derive the formulas that relate the weights
of the coarse scale kernel sH = [

y1, · · · , yk
]

with those of the fine scale kernel sh = [
x1, · · · , xm

]
.

Again, we see that given a fine scale kernel we can find a unique coarse scale kernel while the
opposite is not the case; there are infinite solutions to the problem of finding a fine scale kernel
given a coarse scale one. There are four cases depending on the size of the fine scale kernel m.

12



When m is odd

When m+1
2 is even

Then k = m+5
2 and:

y1 =−1

8
x1

y2 =−1

8
x3 + 3

4
x1

y3 =−1

8
x5 + 3

4
x3 +x2 + 3

8
x1

...

yk−2 =−1

8
xm + 3

4
xm−2 +xm−3 + 3

8
xm−4

yk−1 =
3

4
xm +xm−1 + 3

8
xm−2

yk = 3

8
xm

When m+1
2 is odd

Then k = m+3
2 and:

y1 =−1

8
x2

y2 =−1

8
x4 + 3

4
x2 +x1

y3 =−1

8
x6 + 3

4
x4 +x3 + 3

8
x2

...

yk−2 =−1

8
xm−1 + 3

4
xm−3 +xm−4 + 3

8
xm−5

yk−1 =
3

4
xm−1 +xm−2 + 3

8
xm−3

yk = xm + 3

8
xm−1

When m is even

When m
2 is even

Then k = m
2 +2 and:

y1 =−1

8
x2

y2 =−1

8
x4 + 3

4
x2 +x1

y3 =−1

8
x6 + 3

4
x4 +x3 + 3

8
x2

...

yk−2 =−1

8
xm + 3

4
xm−2 +xm−3 + 3

8
xm−4

yk−1 =
3

4
xm +xm−1 + 3

8
xm−2

yk = 3

8
xm

When m
2 is odd

Then k = m
2 +2 and:

y1 =−1

8
x1

y2 =−1

8
x3 + 3

4
x1

y3 =−1

8
x5 + 3

4
x3 +x2 + 3

8
x1

...

yk−2 =−1

8
xm−1 + 3

4
xm−3 +xm−4 + 3

8
xm−5

yk−1 =
3

4
xm−1 +xm−2 + 3

8
xm−3

yk = xm + 3

8
xm−1

2.4 Pooling Layers

There are two types of pooling layers that are used in CNNs: max pooling and average pooling
[13].

13



2.4.1 Average Pooling

There are two ways to interpret an average pooling layer. In the first interpretation, the pooling
layer is interpreted as a way to reduce the size of the representation and consequently to reduce
the learned parameters[1]. Following this line of thought, a multiscaling algorithm would treat
the pooling layers as part of the architecture, as it does with the number of layers and the num-
ber of nodes per layer. The algorithms that were examined in this work left the architecture
unaffected and focused on scaling the learned parameters. Hence, the pooling layers would
also remain unaffected.

In the second approach, an average pooling layer can be seen as a fixed strided convolution
kernel sp that operates on the data. As a matter of fact, an average pooling layer of size n is
equivalent to a strided convolutional layer with str i de = n and kernel

k = [
n−1,n−1, · · · ,n−1︸ ︷︷ ︸

n

]
The activation function is the unit function and no zero padding in the borders is used.

Moreover, the application of this operator to a signal of size N can be represented as a matrix
multiplication from the left with the matrix Kp with dimensions N

n × N , where N
n is rounded

down when it is not an integer. In the case of an average pooling layer of size 2, as is the case in
the CNNs that were used, the matrix is:

Kp =



1
2

1
2 0 · · · 0 0 0

0 0 1
2

1
2 0 · · · 0

...
...

...
...

...
...

...
0 · · · 0 1

2
1
2 0 0

0 · · · 0 0 0 1
2

1
2


Therefore, when this layer is analyzed from the multigrid perspective, there is no restriction

in applying the same multiscale methods that were used in the convolutional layers. That is, let
sp be the kernel applied to the fine scale data and sP the kernel for the coarse scale. Then, with
R and P the restriction and prolongation matrices that were explained above, we have KP =
RKp P . However, since the application of the kernel reduces the size of the data, the dimensions
of the restriction and prolongation matrices should be adjusted accordingly.

2.4.1.1 Downscaling

Applying the Galerkin method in the average pooling layer with size 2, we have:

Nearest neighbor interpolation: The kernel remains the same when downscaling.

Linear interpolation: When downscaled, the average pooling layer is transformed to a convo-
lutional layer with str i de = 2 and kernel

[3
2 ,−1

4 ,−1
4

]
, no zero padding in the borders.

Inverse Distance Weighting: When downscaled, the average pooling layer is transformed to a
convolutional layer with str i de = 2 and kernel

[− 1
4 , 1

2 , 3
4

]
, no zero padding in the borders.

2.4.2 Upscaling

Nearest neighbor interpolation: The new kernel is a convolution with str i de = 2 and sp =[
a,1− a

]
, a ∈ R. We see that when upscaling, there is no unique solution. However, the

original kernel sP = [1
2 , 1

2

]
is part of the solution set.

14



Linear interpolation: The system that arises from the matrix equation KP = RKp P is inconsis-
tent.

Inverse Distance Weighting: The system that arises from the matrix equation KP = RKp P is
again inconsistent.

2.4.3 Max Pooling

A max pooling layer performs a non-linear transformation to the input. The max function
cannot be represented in a matrix form. Consequently, when multiscaling a max pooling layer
was left unchanged.

2.5 Dense Layers

A dense (fully connected) layer can be viewed as a convolutional layer with kernel length equal
to the length of the input. Then, the same multiscaling methods that were applied in the con-
volutional layers can also be applied to the fully connected layers.

The resulting "kernel" should then have length equal to the new input signal (bigger when
upscaling and smaller when downscaling). In the cases examined above, the scaling ratio was
set to 2, which means that the upscaled dense layer "kernels" should have twice the length in
the case of upscaling and half in the case of downscaling.

As it was presented above, when a kernel of length m is downscaled, the new kernel has
length m

2 + c1 where the small constant c1 depends on the method. Similarly, in the case of
upscaling the new kernel has length 2m + c2. In all the cases, we had with −3 ≤ c1,c2 ≤ 3.
Therefore, the length of the multiscaled "kernel" of the dense layer has length equal to the size
of the input signal plus or minus a small integer. This constants means that the new multiscaled
fully connected layer will either be slightly smaller or slightly bigger than the new input length.

In the case it is larger, the "convolution kernel" has length larger than the input in which it
should be applied, so it was applied by ignoring the extra weights as it would be if it was indeed
a convolutional layer.

In the case it is smaller, we have a more traditional application of a convolution kernel to
a signal. However, hardware limitations did not allow for that implementation. Instead, an
appropriate number of zeros was padded at the end of the "kernel" to reach the appropriate
length. Considering that the input size to the dense layer, and therefore the number of weights
of the dense layer, is on the scale of tens of thousands while the constants c1,c2 are small, the
effect of this choice is expected to be small.

2.6 Direct Kernel Prolongation

The main approach to the topic of multiscaling followed in this study was based on AMG. How-
ever, as it was presented above, this strategy failed to return a unique weight configuration in
the case of upscaling. This led to the consideration of a different strategy.

As it was explained in the relevant section, AMG focuses on constructing an operator in a
new grid that is consistent with applying a known operator in the original grid. This is done
by changing the convolution kernels in a way that incorporates the signal resamlping. In other
words, the prolongation and restriction operators should be thought as being implicitly applied
to the signal by becoming part of the new kernels.

A different approach to upscaling would be to explicitly prolong the convolutional opera-
tors. Let wH = KH uH the convoluted signal in the coarse scale. Now we set out to prolong wH

itself in order to arrive to a finer scale convoluted signal wh = P wH = PKH uH . Therefore, the
fine scale operator could be calculated as Kh = PKH .

15



On the one hand, this strategy lacks the rigid mathematical foundation of AMG. In partic-
ular, the main deficiency of the strategy is that it prolongs the coarse scale operator so that it
can be applied to the fine scale signal without accounting for an adequate mapping back to the
coarse scale. In mathematical terms, there is no restriction operation R with RP = I included in
this method. On the other hand, this method ensures that there is always a unique prolonged
kernel for each coarse scale one.

Practically, this strategy entailed directly applying the three interpolation methods that
were explained above to the coarse scale kernels. In addition, a fourth method was included
in the experiments, that of dilating the kernels. Dilating can be applied by interpolating zeros
between the weights as shown in Figure 4; it is a strategy that is frequently used while training
CNNs. All these methods produce fine scale kernels with twice the length of the coarse ones
when applied in the case of scaling with ratio N = 2, as in the experimental design of this study.

FIGURE 4: Dilating a convolution kernel

3 Practical Implementation

3.1 The dataset

The dataset consists of audio recordings from five devices that can be found in an average
household or around it, they are sound sources that most people would recognize as famil-
iar. These five classes are: a vacuum cleaner, a microwave oven, a truck, a sewing machine and
a mixer. The duration of each audio track is 4 seconds and they were recorded using the "MP3
Recorder" app for Android [14] in the WAV file audio format with 320 Kbps bitrate and 48 kHz
sampling rate (the highest quality possible).

In general, the sound produced by these devices is largely repetitive. Although they are gen-
erally distinct to a human ear, they also share similarities. The main sound source in each class
was some moving parts (even in the microwave the main sound source was the ventilation).
Additionally, with the exception of the truck which used a diesel internal combustion engine,
the source of motion was an electric motor. These similarities created a challenge to the neural
network.

In order to create some variability within the tracks that belong to the same class, the
recordings were conducted from various distances from the source and the machines were
used in different intensities. The recordings took place in relative sound insulation to avoid
noise in the dataset.

The dataset consists of 750 tracks, 150 tracks for each class. The tracks are equally divided
between classes to prevent the dataset from becoming biased. The training set consisted of 650
audio tracks (130 tracks from each class) and the testing set of 100 tracks (20 per class). The
training testing split was done randomly and after shuffling the trucks. Moreover, a part of the

16



training set was used as a validation set during training. The training-testing-validation split
was 70/15/15, 70% of the dataset was the training set while the testing and validation sets were
15% each, which is a common rule of thumb for small datasets and the default split used in
MATLAB [15].

The dataset was downsampled to two different datasets, one with 12 kHz sampling rate
and one with 24 kHz. Hardware limitations did not allow for higher sampling rates to be used
in training the neural networks. The choice of 12 kHz and 24 kHz was made so that the differ-
ent sampling rates have an integer ratio because this would make the implementation of the
multiscale methods simpler. The downsampling was done using the librosa Python library for
audio signal analysis [16]. The default resampling method in librosa is Kaiser’s best [17].

The testing sets will have a dual function in this work, the usual function of testing the
efficacy of the training and comparing the success of the multiscaling methods. In order to
eliminate the possibility that the differences depend on the testing set variability, the training
and testing data in the two datasets (12 and 24 kHz) consist of exactly the same audio recordings
in different sampling rates.

3.2 The convolutional neural networks

Ten one-dimensional CNNs were developed in order to test the different multiscale techniques,
five for the 12 kHz sampling rate dataset and five for the 24 kHz one. They were developed using
the Keras API [13] with TensorFlow backend [18]. The architectures of the CNNs trained on the
12kHz dataset are shown in Appendix C and on the 24kHz dataset in Appendix D.

In order to determine the appropriate architecture of the CNNs, a heuristic iteration over
the parameter space was performed. The parameters that were fine-tuned with this approach
were: the number and size of the convolutional layers, the kernel size, the size and type of the
pooling layer, the dropout rate, the number and size of the dense layers, the activation func-
tions, the batch size and the number of training epochs. Hardware limitations also affected the
choice of architecture. The optimal networks were chosen based on the categorical accuracy
metric.

For the sake of facilitating the implementation of the multiscale methods, some simplifica-
tions were made. All the convolutional layers of each CNN were formulated with equal kernel
size and with the same activation function. The convolutions were applied with zero padding
in the borders to make the length of the output of each layer equal to the input. The biases were
ignored in the multiscale process.

With a view to preventing overfitting, dropout was used during training with a rate that
was determined by the heuristic described above. This was important because the dataset was
rather small. Since it was only used during training, it will not be considered in the phase of
multiscaling which is conducted post-training. In all cases, the Adam optimization algorithm
was used because it is computationally efficient and it has low memory requirements [19]. The
loss function was categorical cross-entropy which is commonly used in classification tasks.

4 Results and Discussion

The different multiscale methods that were explained in the methodology section were imple-
mented in the target CNNs and the resulting networks were tested using the appropriate testing
set. In particular, the 24kHz CNNs were downscaled and tested with the 12kHz testing set and
conversely for the 12kHz CNNs.

As it is explained by Stuben [8], the implementation of an AMG method can take a con-
siderable amount of human effort but the computational complexity is small. The human ef-

17



fort consists of formulating the appropriate prolongation and restriction strategies and solving
large sparse systems of linear equations. In this work, the Galerkin method was applied for the
general form of the fine and coarse scale operators (Toeplitz matrices) and a number of formu-
las were extracted that connect the weights of the fine scale kernels to the weights of the coarse
scale kernels.

Given the fine scale kernels, the unique corresponding coarse scale kernels can be com-
puted by substitution to these formulas. Therefore, the computational cost of the implemen-
tation is negligible. However, given the coarse scale kernels, the fine scale ones are the solution
of an underdetermined system with an infinite solution set. In order to determine a particular
numerical solution to this problem, the method of least squares was used [20].

In order to deal with the problems arising from the lack of a unique solution when applying
AMG in upscaling, the kernels were directly prolonged using the three interpolation methods
that were explained above as well as the method of kernel dilation.

As a baseline of comparison, the CNNs that was trained on the 24kHz dataset were tested
for the 12kHz dataset and conversely without the application of any multiscale method. In this
case, the dense layer was treated as a convolutional layer.

The only other related work that these results can be compared with is the work of Haber
et al [4]. However, such a comparison may not be appropriate because they focused on image
classification networks with larger architectures and datasets. Moreover, they did not use the
three interpolation methods described in this study.

4.1 Downscaling

The dual interpretation of the pooling layers gave rise to two different cases in downscaling the
kernels. In the first approach, the average pooling was viewed as a strided convolutional layer
and was downscaled as such while in the second it was viewed as part of the architecture and
left unaffected. In the networks that used max pooling, there was only one choice, to leave the
layers unaffected . The categorical accuracy rates of the CNNs over the 12kHz testing set are
shown in Table 1. For the sake of comparison, the accuracy over the 24kHz dataset for which
they were trained is also presented in parentheses beside the model name.

The first noticeable result is that the accuracy of the CNNs in which the average pooling
layers remained unaffected was higher. In particular, when downscaled using linear interpola-
tion or inverse distance weighting, the accuracy was around 20%. Since there are five classes,
a result in the neighborhood of 20% indicates random prediction. In the case of the nearest
neighbor method, the result is the same in the two cases, something which was expected as
this method leaves the average pooling layer unaffected when applied to it.

This result does not support the interpretation of average pooling as a convolutional layer.
This explanation seems plausible as, in contrast to convolutional and fully connected layers,
the pooling layers do not contain learned parameters which means that they cannot be trained
to detect features of the input.

Interestingly, when the CNNs were not changed, the accuracy rate on the 12kHz testing set
was high (15% to 20% lower than the accuracy in the original 24kHz dataset), meaning that
the CNN configuration is transferable across different scales. This puts the bar of success of a
downscale method high since for a strategy to be considered useful it should at least perform
better than applying no method at all. It should be noted that in the work of Haber et al. in
image classification CNNs, the original architecture also gave a high accuracy rate [4].

Another important finding is that, when the pooling layer remained unaffected, linear in-
terpolation performed considerably higher than the other downscaling strategies (ranging from
15% to 39% higher) and slightly higher than the unchanged network (ranging from 8% to 20%),
with the exception of network A24 where the linear interpolation scored significantly low (33%).

18



Model
(accuracy in

original
dataset)

Pooling
No

Downscaling
Nearest

Neighbor
Linear

Interpolation
Inverse Distance

Weighting

A24 (100%)

Pooling as
Convolution

- 80% 20% 20%

Pooling
Unaffected

86% 80% 33% 77%

B24 (93%)

Pooling as
Convolution

- 80% 15% 1%

Pooling
Unaffected

79% 80% 95% 78%

C24 (95%)

Pooling as
Convolution

max pooling max pooling max pooling max pooling

Pooling
Unaffected

80% 67% 90% 53%

D24 (97%)

Pooling as
Convolution

- 40% 20% 20%

Pooling
Unaffected

70% 40% 78% 44%

E24 (78%)

Pooling as
Convolution

max pooling max pooling max pooling max pooling

Pooling
Unaffected

57% 40% 77% 38%

TABLE 1: The categorical accuracy of the downscaled CNN with the presented methods

In fact, it is the only method that may be of some use since it clearly surpasses the accuracy rate
of leaving the weights unaffected in most cases.

Moreover, with the exception of network D24, the nearest neighbor method gave better
results than the inverse distance weighting, although by a small margin (2% to 3% higher apart
from C24 where it was 14% higher), and even in the case of D24 the difference was very small
(the nearest neighbor scored 4% lower). However, in all but one cases, the CNN downscaled
with the nearest neighbor interpolation had lower accuracy rate than applying no method at
all (ranging from 6% to 30%) and in the exceptional case of B24 the accuracy was practically the
same (79% for nearest neighbor and 80% for no downscaling).

When a CNN is trained to perform a specific task, the different components of the network
architecture acquire a specific function in the process of training. This is easier to visualize in
the case of image processing networks but arguably more difficult in the case of audio, as is the
case here. For example, a node in a layer may be trained to detect edges (in image processing) or
a specific frequency (in audio processing). Hypothetically, a robust multiscaling strategy would
preserve the function of the edges across different scales. It would be difficult for a component
of the network to adjust to a new function without further training.

A possible explanation for the fact that using the same network is rather successful with
the new data is that the features of the signal that are detected by the different components of
the network can be transferred to a signal of a different resolution. Namely, an audio record-
ing of the same source in two different sampling rates keeps some of its spatial, temporal and
structural information that can be detected by the same component (i.e. node in a layer) of the

19



network.
Using this line of thought, the failure of the nearest neighbor and inverse distance weight-

ing may be interpreted as a failure to transfer these acquired functions. The nearest neighbor
interpolation is the simplest interpolation method and it usually does not have the desired ef-
fect in signal processing [10]. It should not come as a surprise that it did not give useful results
in this case either. When it comes to the inverse distance weighting method, as we mentioned
in the relevant section, the sample points of the coarse scale array are not a subset of the sample
points of the fine scale one. Moreover, the new sample points come from a weighted average
formula meaning that the information contained in the new sample is not a balanced sum of
the information in the original, based on a distance which is defined in a specific yet not unique
way. The combination of these two factors possibly destroys the function of the CNN compo-
nents when transferred to the coarse scale.

The method of linear interpolation seems to be better in preserving the functionality of
the network. A possible explanation is that the reasons that make inverse distance weighting
a problematic strategy are the reasons that make the linear interpolation successful. Namely,
the method preserves the original sample points while interpolating a balanced average in be-
tween. The success of the unchanged architecture hints that the original sample points should
be preserved instead of discarded in a successful method, which is what the linear interpo-
lation does. This view is reinforced by the fact that the nearest neighbor interpolation gave
slightly better results than inverse distance weighting since it is also a method in which the
original sample points are a subset of the interpolated signal.

A note of caution is due here since the results do not appear to be universal. For example,
the accuracy rates of nearest neighbor and inverse distance weighting were relatively high in
the networks A24, B24 and C24 but quite low in the networks D24 and E24. After examining the
architectures of the CNNs closer (see Appendix D), it can be seen that there is a difference be-
tween the two groups. Namely, network A24, B24 and C24 consist of a number of convolutional
layers with pooling layers between them while the networks D24 and E24 consist of consecu-
tive convolutional layers and one pooling layer in the end. This indicates a relation between
the appropriate downscaling method and the network architecture. Furthermore, the general
pattern of the success of linear interpolation is disturbed by the network A24 in which it gave
the lowest accuracy rate. In fact, the accuracy rate was in the neighborhood of 20%, indicating
random classification. This exception shows that the method is not universally valid and the
conditions of its success can inform a new study.

In the work of Haber et al. we can see that their implementation of the AMG method gave
better results in comparison to the present study. In fact, the accuracy rates of the downscaled
networks were close to the accuracy rates of the networks that have been trained for the target
dataset [4]. However, as mentioned above, a more detailed comparison is not possible because
the prolongation and restriction operators that we used were different since we focused on the
one-dimensional case.

4.2 Upscaling

As it was explained in the relevant section, the application of the AMG multiscaling methods to
the average pooling layer with the purpose of upscaling returned an inconsistent linear system.
Therefore, the upscaling strategies that were tried left the pooling layers unaffected. It should
be noted though that the results of the previous section seem to support the idea that the pool-
ing layers should remain unchanged across scales. The categorical accuracy over the testing
set using AMG with the three interpolation methods is shown in Table 2.

Table 2 shows that the accuracy of all the upscaling methods is on the neighborhood of 20%
which can be interpreted as a random prediction in the present case.

20



Model
(accuracy in

original
dataset)

No Upscaling
Nearest

Neighbor
Linear

Interpolation

Inverse
Distance

Weighting

A12 (100%) 80% 20% 20% 20%
B12 (99%) 86% 20% 20% 1%
C12 (98%) 78% 19% 19% 19%
D12 (98%) 83% 20% 20% 20%
E12 (98%) 80% 20% 20% 30%

TABLE 2: The categorical accuracy of the upscaled CNN with the presented prolonga-
tion methods using AMG

A possible explanation for these results may be the lack of a unique solution to the upscaling
problem. As explained before, an effective multiscaling strategy may be preserving the func-
tion of the CNN components across different scales. However, an infinite solution set would
possibly also contain solutions that alter the nature of the learned parameters. As mentioned
above, the least square algorithm was used to calculate a particular solution. This algorithm,
although of proven general efficiency, may not be appropriate in identifying a fitting solution
in this particular problem.

Another important result is that leaving the network unchanged performs with consider-
able success (with accuracy rates in the neighborhood of 80%). This indicates that a solution to
the problem of upscaling is indeed possible, although none of the suggested methods seem to
work.

In Table 3, the categorical accuracy rates of applying direct kernel prolongation are pre-
sented. It can be seen that the method of kernel dilation consistently outperforms all the other
methods as well as leaving the kernels unaffected, having accuracy rates that range between
80% and 90%. The other three interpolation methods create networks with accuracy rates con-
siderably lower in comparison to not changing the weights. In particular, leaving the weights
unchanged leads to accuracy rates in the neighborhood of 80% while the three methods have
results that stretch from 28% to 69%. Therefore, they do not seem to be of some use. Compar-
ing the three interpolation methods, linear interpolation and inverse distance weighting have
similar results while the nearest neighbor generally scores relatively lower. However, finding a
general pattern is not as clear as in the previous cases since the differences are relatively small
(around 10%). Finally, it can be seen once more that treating the average pooling layers as
convolutional does not work since it practically leads to CNNs that classify randomly.

The results of applying direct kernel prolongation appear to reinforce the idea that the orig-
inal CNN configuration should not be overly altered. Kernel dilation, a method which simply
interpolates zeros between the original weights, seems to be a quite effective strategy in up-
scaling albeit the simplest one.

In the case of upscaling, Haber et al. managed to upscale the kernels of their image classifi-
cation CNNs with a high accuracy rate. However, they did so by using an approach of CNNs as
an optimal control problem, something that went beyond the scope of the present work.

21



Model
(accuracy in

original
dataset)

Pooling
No

Upscaling
Nearest

Neighbor
Linear

Interpolation

Inverse
Distance

Weighting

Kernel
Dilation

A12 (100%)

Pooling as
Convolution

20% 20% 20% 20% 20%

Pooling
Unaffected

80% 43% 54% 49% 90%

B12 (99%)

Pooling as
Convolution

20% 20% 20% 20% 20%

Pooling
Unaffected

86% 36% 28% 28% 91%

C12 (98%)

Pooling as
Convolution

max pooling max pooling max pooling max pooling max pooling

Pooling
Unaffected

78% 59% 61% 68% 84%

D12 (98%)

Pooling as
Convolution

max pooling max pooling max pooling max pooling max pooling

Pooling
Unaffected

83% 40% 40% 40% 93%

E12 (98%)

Pooling as
Convolution

20% 20% 20% 20% 20%

Pooling
Unaffected

80% 59% 69% 69% 80%

TABLE 3: The categorical accuracy of the upscaled CNN with the presented interpola-
tion methods using kernel prolongation

5 Conclusion

This study set out to discover whether it is possible to use CNNs across resolution scales differ-
ent from the ones for which they were trained. The focus was on one-dimensional CNNs. The
approach to multiscaling was inspired by algebraic multigrid, following a matrix interpretation
of applying the convolution kernels. Based on this theory, three combinations of prolongation
and restriction operators were investigated: nearest neighbor, linear interpolation and inverse
distance weighting. Moreover, the analysis was extended to include the non-convolutional lay-
ers of CNNs, the pooling and fully connected layers. In order to test the efficacy of the proposed
methodology, a dataset was collected and used to train CNNs in audio classification across two
different sampling rates.

One of the interpolation methods that were used, linear interpolation, seems to be useful
in the case of downscaling. In particular, the accuracy rate of applying linear interpolation was
higher than leaving the network unaltered in all but one experiment. Moreover, there were
some indications regarding the correct approach in treating the pooling layers in downscal-
ing. In particular, it seems that they should remain unchanged. In the case of upscaling, the
three methods that were applied in the framework of algebraic multigrid failed to give a unique
weight configuration. When one possible solution was tried, the results were not promising.
However, when the kernels were directly prolonged, kernel dilation was considerably effective.
It is worth noting that using the same network across scales without changing the weights was

22



rather successful.

6 Limitations and Future Work

It is important to state that the study had many limitations. Firstly, the experiments were con-
ducted using a limited dataset and a small number of neural networks. In order to verify the
results, more research is needed using larger datasets, different network architectures and dif-
ferent processing tasks (e.g. image classification, denoising, etc).

In addition, the study was limited to a small number of interpolation methods, meaning
that many more prolongation and restriction strategies may be tested. It should be noted that
the interpolation methods are restricted to integer scaling ratios in the case of nearest neighbor
and kernel dilation and ratios that are powers of 2 in the case of linear interpolation. Inverse
distance weighting can be used for non-integer ratios but it did not seem to be successful in the
experiments. This means that there is a gap for multiscaling methods that could successfully
multiscale CNNs without ratio limitations, something that could be further investigated.

Furthermore, in the implementation of AMG, the smoothing operation was ignored, an as-
sumption which may need reconsidering. Especially in the case of upscaling, there may be
strategies to restrict the solution sets or iterative methods that converge to an appropriate so-
lution as suggested in [4]. Moreover, algebraic multigrid and direct kernel prolongation are not
the only potential strategies that can be used in multiscaling CNNs and different approaches
may render better results.

In the preceding analysis, the focus was on multiscaling the weights of the convolution
kernels while the network architecture was left unchanged. An interesting idea that was dis-
cussed was the possible relationship between different network architectures and multiscal-
ing methods, something that could inspire further study. Finally, a natural progression of this
work would be to investigate strategies in which the architecture itself is altered along with the
learned parameters.

23



References

[1] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

[2] Claudio Ciancio, Giuseppina Ambrogio, Francesco Gagliardi, and Roberto Musmanno.
Heuristic techniques to optimize neural network architecture in manufacturing applica-
tions. Neural Computing and Applications, 27(7):2001–2015, 2016.

[3] Roi Livni, Shai Shalev-Shwartz, and Ohad Shamir. On the computational efficiency of
training neural networks. In Advances in neural information processing systems, pages
855–863, 2014.

[4] Eldad Haber, Lars Ruthotto, Elliot Holtham, and Seong-Hwan Jun. Learning across
scales—multiscale methods for convolution neural networks. In Thirty-Second AAAI Con-
ference on Artificial Intelligence, 2018.

[5] RD Lonsdale. An algebraic multigrid solver for the navier stokes equations on unstruc-
tured meshes. International Journal of Numerical Methods for Heat & Fluid Flow, 3(1):3–
14, 1993.

[6] Qianshun Chang, Shuqing Ma, and Guangyao Lei. Algebraic multigrid method for queue-
ing networks. International journal of computer mathematics, 70(3):539–552, 1999.

[7] Klaus Stüben. A review of algebraic multigrid. In Numerical Analysis: Historical Develop-
ments in the 20th Century, pages 331–359. Elsevier, 2001.

[8] Klaus Stüben. Algebraic multigrid (amg): experiences and comparisons. Applied mathe-
matics and computation, 13(3-4):419–451, 1983.

[9] Ulrich Trottenberg, Cornelius W Oosterlee, and Anton Schuller. Multigrid. Elsevier, 2000.

[10] Mathieu Lepot, Jean-Baptiste Aubin, and François Clemens. Interpolation in time series:
An introductive overview of existing methods, their performance criteria and uncertainty
assessment. Water, 9(10):796, 2017.

[11] Stephen H Friedberg, Arnold J Insel, and Lawrence E Spence. Algebra lineal. Publicaciones
Cultural, 1982.

[12] Steven Schlegel, Nico Korn, and Gerik Scheuermann. On the interpolation of data with
normally distributed uncertainty for visualization. IEEE transactions on visualization and
computer graphics, 18(12):2305–2314, 2012.

[13] François Chollet et al. Keras. https://keras.io, 2015.

[14] Smart Mobile Tools. Mp3 recorder. https://play.google.com/store/apps/details?
id=com.fragileheart.recorder&hl=en, 2019.

[15] Divide data for optimal neural network training. https://nl.mathworks.com/help/
deeplearning/ug/divide-data-for-optimal-neural-network-training.html.
Accessed: 2019-26-06.

[16] Brian McFee, Colin Raffel, Dawen Liang, Daniel P.W. Ellis, Matt McVicar, Eric Battenberg,
and Oriol Nieto. librosa: Audio and Music Signal Analysis in Python. In Kathryn Huff and
James Bergstra, editors, Proceedings of the 14th Python in Science Conference, pages 18 –
24, 2015.

24

https://keras.io
https://play.google.com/store/apps/details?id=com.fragileheart.recorder&hl=en
https://play.google.com/store/apps/details?id=com.fragileheart.recorder&hl=en
https://nl.mathworks.com/help/deeplearning/ug/divide-data-for-optimal-neural-network-training.html
https://nl.mathworks.com/help/deeplearning/ug/divide-data-for-optimal-neural-network-training.html


[17] J. Kaiser and R. Schafer. On the use of the i0-sinh window for spectrum analysis. IEEE
Transactions on Acoustics, Speech, and Signal Processing, 28(1):105–107, February 1980.

[18] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Good-
fellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz
Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,
Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol
Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. Software
available from tensorflow.org.

[19] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[20] Christopher C Paige and Michael A Saunders. Lsqr: An algorithm for sparse linear equa-
tions and sparse least squares. ACM Transactions on Mathematical Software (TOMS),
8(1):43–71, 1982.

25



A Strided Convolution Kernels

In this section, we shall prove that, when using the Galerkin method in algebraic multigrid to
multiscale convolution kernels using the interpolations outlined in the main text, the strides of
the convolutions cannot change. During the analysis, we had to solve the matrix equation KH =
RKhP in the general form. Therefore, it was important to know the structure of the matrices
Kh and KH . In particular, given a convolution kernel, we should examine whether the strides
would change across scales.

When using strides, the matrix representation of the convolution operation changes. Specif-
ically, the diagonals of the matrix are not fixed. In comparison to the matrix representation
of a convolution with str i de = 1, each row is shifted to the right by the number of strides.
Namely, the matrix representation of the kernel s = [

x1, x2, · · · , xn
]

with str i de = m without
zero padding in the borders is:

Kh =


x1 x2 · · · xn 0 · · · 0 0

0 · · ·0︸ ︷︷ ︸
m

x1 x2 · · · xn 0 · · · 0

...
. . .

. . .
. . .

. . .
. . .

. . .
...


The number of columns should equal the size of the input signal while the number of rows

should equal the size of the output signal, which will be smaller than the input depending on
the number of strides.

When two matrices P and R are the prolongation and restriction matrices explained in the
main text, the product RKhP should also have the form of the above matrix, it will have the
form of a matrix representation of a convolution operation with str i des = m. Namely, the
prolongation and restriction strategies that were examined do not change the strides of the
kernel. Therefore, when moving from the fine scale to the coarse scale, the coarse scale will
have the same number of strides.

Conversely, when moving from the coarse scale to the fine scale where the coarse scale
operation has str i de = m, the matrix will be:

KH =


y1 y2 · · · yn 0 · · · 0 0

0 · · ·0︸ ︷︷ ︸
m

y1 y2 · · · yn 0 · · · 0

...
. . .

. . .
. . .

. . .
. . .

. . .
...


If the fine scale operation has str i des = k 6= m, then the product RKhP will have the form:

RKhP =


w1 w2 · · · wn 0 · · · 0 0

0 · · ·0︸ ︷︷ ︸
k

w1 w2 · · · wn 0 · · · 0

...
. . .

. . .
. . .

. . .
. . .

. . .
...


When equating the two matrices, we have two cases:
Case 1: k > m

Then, we will have y j = w j ,0 < j < m from the first row but y j = 0,0 < j ≤ k − m and
y j = w j+m−k ,k −m < j ≤ m from the second row. Therefore, we have y j = w j = 0,0 < j ≤ k −m
and y j = wi ,k −m < j ≤ m,0 < i ≤ k −m. Therefore, the only solution is for the zero matrices.

26



Case 2: k < m

The same result follows by a similar reasoning.

27



B Matrix Representations of the Prolongation Operators

B.1 Nearest Neighbor

Let F : Rn −→ RN n be the nearest neighbor transformation. The transformation matrix of the
operation is the prolongation matrix P . The shape of the matrix is N n ×n and the columns are
the vectors ai = F (ei ),1 ≤ i ≤ n where ei the normal basis of Rn [11].

a1 = F (
[
1,0, · · · ,0

]T ) = [
1, · · · ,1,0, · · ·0]T

a2 = F (
[
0,1,0, · · · ,0

]T ) = [
0,0,1, · · ·1,0 · · · ,0

]T

...

an = F (
[
0, · · · ,0,1

]T ) = [
0,0, · · · ,0,1, · · ·1︸ ︷︷ ︸

N

]T

If we create a matrix with rows the vectors ai , we can see that it will be in the echelon form
and prove that a1, . . . , an are linearly independent from the relevant theory of linear algebra
[11].

B.2 Linear Interpolation

Let now F : Rn −→ R2n be the linear interpolation transformation. We need to find the trans-
formation (prolongation) matrix P . The shape of the matrix will be 2n×n and the columns are
the vectors ai = F (ei ),1 ≤ i ≤ n where ei the normal basis of Rn [11].

a1 = F (
[
1,0, · · · ,0

]T ) = [
1,

1

2
,0, · · ·0]T

a2 = F (
[
0,1,0, · · · ,0

]T ) = [
0,

1

2
,1,

1

2
,0, · · · ,0

]T

...

an = F (
[
0, · · · ,0,1

]T ) = [
0, · · · ,0,

1

2
,1,

1

2

]T

If we create a matrix with rows the vectors ai , we can see that it will be in the echelon form
and that a1, . . . , an are linearly independent [11].

B.3 Inverse Distance Weighting

Let now F : Rn −→ R2n be the inverse distance weighting transformation applied with scaling
ratio 2. We need to find the transformation (prolongation) matrix P . The shape of the matrix
will be 2n×n and the columns are the vectors ai = F (ei ),1 ≤ i ≤ n where ei the normal basis of
Rn [11].

28



a1 = F (
[
1,0, · · · ,0

]T ) = [5

6
,

3

4
,

1

4
,0, · · ·0]T

a2 = F (
[
0,1,0, · · · ,0

]T ) = [1

6
,

1

4
,

3

4
,

3

4
,

1

4
,0, · · · ,0

]T

a3 = F (
[
0,0,1, · · · ,0

]T ) = [
0,0,0,

1

4
,

3

4
,

3

4
,

1

4
,0, · · · ,0

]T

...

an−2 = F (
[
0, · · · ,0,1,0,0

]T ) = [
0, · · · ,0,

1

4
,

3

4
,

3

4
,

1

4
,0,0,0

]T

an−1 = F (
[
0, · · · ,0,1,0

]T ) = [
0, · · · ,0,

1

4
,

3

4
,

3

4
,

1

4
,

1

6

]T

an = F (
[
0, · · · ,0,1

]T ) = [
0, · · · ,0,

1

4
,

3

4
,

5

6

]T

By creating a matrix with ai as rows and bringing it to the echelon form using elementary
row operations, we can see that a1, . . . , an are linearly independent [11].

29



C 12 kHz CNNs

The architectures of the CNNs for the 12 kHz dataset are shown in Figures 5, 6, 7, 8 and 9. The
input size of the networks was i nput_si ze = dur ati on · sampli ng _r ate = 4 ·12000 = 48000.
The optimal batch size was 3 and training lasted netween two and three epochs, afterwards it
started overfitting possibly because of the small dataset. The dropout rate that was used was
0.5.

FIGURE 5: Model A12 for the 12kHz dataset. The categorical accuracy over the testing
set is 100%. The training was performed with batch size was 1 and it lasted for two
epochs, before overfitting. The dropout rate that was used was 0.5.

FIGURE 6: Model B12 for the 12kHz dataset. The categorical accuracy over the test-
ing set is 99%, The training was performed with batch size was 1 and it lasted for two
epochs, before overfitting. The dropout rate that was used was 0.5.

30



FIGURE 7: Model C12 for the 12kHz dataset. The categorical accuracy over the test-
ing set is 98%. The training was performed with batch size was 1 and it lasted for two
epochs, before overfitting. The dropout rate that was used was 0.5.

FIGURE 8: Model D12 for the 12kHz dataset. The categorical accuracy over the testing
set is 98%. The training was performed with batch size was 3 and it lasted for three
epochs, before overfitting. The dropout rate that was used was 0.5.

FIGURE 9: Model E12 for the 12kHz dataset. The categorical accuracy over the testing
set is 98%. The training was performed with batch size was 3 and it lasted for three
epochs, before overfitting. The dropout rate that was used was 0.5.

31



D 24 kHz CNNs

The CNNs for the 24 kHz dataset is shown in Figures 10, 11, 12, 13 and 14. The input size of
the networks was i nput_si ze = dur ati on · sampli ng _r ate = 4 · 24000 = 96000. The batch
size was between 1 and 3 and training lasted between two and three epochs, before starting
overfitting. The optimal dropout rate was 0.5. The accuracy over the training set was 97%.

FIGURE 10: Model A24 for the 24kHz dataset. The categorical accuracy over the testing
set is 100%. The training was performed with batch size was 1 and it lasted for tweo
epochs, before overfitting. The dropout rate that was used was 0.5.

FIGURE 11: Model B24 for the 24kHz dataset. The categorical accuracy over the test-
ing set is 93%. The training was performed with batch size was 1 and it lasted for two
epochs, before overfitting. The dropout rate that was used was 0.3.

32



FIGURE 12: Model C24 for the 24kHz dataset. The categorical accuracy over the test-
ing set is 95%. The training was performed with batch size was 1 and it lasted for two
epochs, before overfitting. The dropout rate that was used was 0.4.

FIGURE 13: Model D24 for the 24kHz dataset. The categorical accuracy over the testing
set is 97%. The training was performed with batch size was 3 and it lasted for three
epochs, before overfitting. The dropout rate that was used was 0.5.

FIGURE 14: Model E24 for the 24kHz dataset. The categorical accuracy over the testing
set is 78%. The training was performed with batch size was 3 and it lasted for three
epochs, before overfitting. The dropout rate that was used was 0.5.

33


	Introduction
	Methodology
	Algebraic Multigrid and Multiscaling CNNs
	Convolution as Matrix Multiplication
	Prolongation and Restriction Methods
	Nearest Neighbor Interpolation
	Linear Interpolation
	Inverse Distance Weighting

	Pooling Layers
	Average Pooling
	Upscaling
	Max Pooling

	Dense Layers
	Direct Kernel Prolongation

	Practical Implementation
	The dataset
	The convolutional neural networks

	Results and Discussion
	Downscaling
	Upscaling

	Conclusion
	Limitations and Future Work
	Strided Convolution Kernels
	Matrix Representations of the Prolongation Operators
	Nearest Neighbor
	Linear Interpolation
	Inverse Distance Weighting

	12 kHz CNNs
	24 kHz CNNs

