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Management summary 
The Sint Maartenskliniek (SMK) is a hospital group in the Netherlands specialized in movement and 

posture, excelling in complex procedures. 

Currently, the flow of patients across departments fluctuates during the day. These fluctuations 

result in additional waiting time for patients, uneven workload for staff, and staff overtime. The 

hospital wants to control patient flows in the orthopaedic care chain to reduce these issues. 

Patients that have a consultation at the Orthopaedic Outpatient Department (OOD) often need to 

visit other departments as well. The current patient flow patterns show workload arrival variability at 

departments downstream from the OOD, with peaks during the day at the Radiology department 

and follow-up consultations at the OOD. The waiting time also shows an upward trend in the 

morning for all departments, with the Orthopaedic Outpatient department showing the strongest 

increase. 

We want to control the workload at downstream departments caused by patients from the OOD. 

Data analysis shows the probability, duration, and timing of this downstream workload is different 

for each consultation type and unit, which combine into a demand profile for the consultation type. 

By spreading consultation types with high demand evenly throughout the day a more even spread of 

workload at downstream departments can be achieved. 

An automated method of generating these schedules is needed. We define a mathematical (MILP) 

model that is able to generate blueprint session schedules based on the demand profile of 

consultation types. The model can generate multiple blueprint schedules in one session 

simultaneously, matching the combined outflow of patients as close to the desired pattern as 

possible. The desired pattern might be a flat line throughout opening hours of the department, but 

the norm can also be set to different values during the day for each department. 

Figure M.1 shows the reduction of demand peaks and variability in downstream demand, achieved 

by changing the sequence and starting time of consultations in the schedule. The model achieves 

reduction of demand peaks to 40% of the original schedule, the sum of deviation from the desired 

pattern to 60% of the original schedule, and the reduction of demand variability to 50% of the 

original schedules.  
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Figure M.1 – The achieved reduction of demand peaks and variability for 6 schedules (lower is better) 

The experiments are performed on six blueprint session schedules that have been used in the 

hospital. The original schedule is entered into the model it calculates the expected workload pattern 

and the objective value. The model then schedules the same consultations, but it is free to adjust the 

sequence and starting time of the consultations. It attempts to match the desired pattern as close as 

possible. 

Since the model incorporates a norm, its application becomes flexible. It is possible to achieve a very 

even spread of patient flow throughout the day, but other scenarios where less capacity is available 

at certain times of day the model can adjust the outpatient schedules to match. 

The model shows promising results. Some further validation is needed to check if all constraints on 

schedules are present in the model. The main hurdle for complete implementation is the interface 

with schedule software HiX. At this time automatic import of the schedules is not possible, which 

means manual copying is needed. The recommendation is to generate certain standard blueprint 

schedules using the model and at the same time consult with HiX to hopefully allow automatic 

imports in the future. By using the new blueprint session schedules patient waiting time, staff 

workload fluctuations and perhaps staff overtime can be reduced.  

Other articles have implemented methods that block complete parts of the day, or specifically book 

appointments for a patient. Our method for blueprint scheduling during the day can also be of 

interest for other researchers that seek a way to manage patient flow patterns during the day, with 

many adjustments possible in the model through the use of the norm.   



 
iii 

Preface 
I want to thank the Sint Maartenskliniek and Rhythm for the interesting research subject and all the 

support during the project. It was a pleasure to work with you and see integral capacity management 

in action in a hospital. It was a pleasure to be able to discuss the content and approach of the project 

with people of similar background during more in-depth meetings. I am especially grateful for the 

extensive collaboration and support by Mijke during our weekly meetings in Nijmegen. Your advice 

was really helpful throughout the entire project. I also want to thank Rob for the meetings and advice 

during the more challenging stages of the project. 

I also want to thank the staff of the Sint Maartenskliniek that set aside time for interviews which 

were essential for this research. 

Furthermore, I would like to thank my first supervisor Gréanne for the discussions at the university 

even during busy periods, and the solid advice, and my second supervisor Erwin for the final 

meetings. 

I enjoyed the research of optimising patient blueprint schedules, and I hope you – the reader – will 

enjoy it as well.   



 
iv 

Table of contents 
Management summary ............................................................................................................................ i 

Preface ..................................................................................................................................................... iii 

1 Introduction ..................................................................................................................................... 1 

1.1 Organisation and departments involved ................................................................................. 1 

1.2 The orthopaedic care chain ..................................................................................................... 1 

1.3 Overview of planning hierarchy .............................................................................................. 2 

1.4 Impact of the blueprint session schedule ............................................................................... 2 

1.5 Problem statement .................................................................................................................. 3 

1.6 Research goal .......................................................................................................................... 4 

1.7 Research questions.................................................................................................................. 4 

2 The current situation ....................................................................................................................... 6 

2.1 Current blueprint session schedule design ............................................................................. 6 

2.2 Key performance indicators .................................................................................................... 7 

2.3 Current performance ............................................................................................................... 9 

2.4 Downstream demand characteristics of consultations ......................................................... 13 

2.4.1 Transition probability .................................................................................................... 13 

2.4.2 Demand duration .......................................................................................................... 14 

2.4.3 Travel time ..................................................................................................................... 15 

2.4.4 Combining characteristics into the downstream demand profile ................................ 15 

2.5 Conclusion ............................................................................................................................. 16 

3 Literature review ........................................................................................................................... 17 

3.1 Positioning our research question in literature .................................................................... 17 

3.2 Multi-appointment planning ................................................................................................. 17 

3.3 Conclusions ............................................................................................................................ 19 

4 Model ............................................................................................................................................ 20 

4.1 Goal ....................................................................................................................................... 20 

4.2 Assumptions .......................................................................................................................... 20 

4.3 Linear programming model definition .................................................................................. 21 

4.3.1 Sets and elements ......................................................................................................... 21 

4.3.2 Input parameters ........................................................................................................... 21 

4.3.3 Decision variables .......................................................................................................... 22 

4.3.4 Auxiliary decision variables ........................................................................................... 22 

4.3.5 Constraints..................................................................................................................... 22 

4.3.6 Objective function ......................................................................................................... 25 

4.3.7 Model choices commentary .......................................................................................... 25 



 
v 

4.4 Model implementation in software ...................................................................................... 29 

4.5 Model verification and validation ......................................................................................... 29 

4.6 Model extension options ....................................................................................................... 29 

4.6.1 5-minute time slots ....................................................................................................... 30 

4.6.2 Downstream workload multiple time slots offset ......................................................... 30 

4.6.3 Create multiple blueprint schedules simultaneously .................................................... 31 

4.6.4 Specify units, with different appointment characteristics per unit .............................. 32 

4.6.5 Model DUO and TRIO sessions ...................................................................................... 33 

4.6.6 Synchronised consultation starts across schedules ...................................................... 34 

4.7 Conclusion ............................................................................................................................. 35 

5 Experiments and results ................................................................................................................ 36 

5.1 Experiment design ................................................................................................................. 36 

5.2 Parameter settings ................................................................................................................ 36 

5.3 Algorithm running time ......................................................................................................... 37 

5.4 Experiments ........................................................................................................................... 38 

5.5 Monte Carlo simulation ......................................................................................................... 41 

5.6 Conclusion ............................................................................................................................. 43 

6 Implementation ............................................................................................................................. 44 

6.1 Additional validation ............................................................................................................. 44 

6.2 User interface ........................................................................................................................ 44 

6.3 Organisational support .......................................................................................................... 45 

6.4 Model in use .......................................................................................................................... 45 

6.5 Conclusion ............................................................................................................................. 46 

7 Discussion ...................................................................................................................................... 47 

7.1 Conclusions ............................................................................................................................ 47 

7.2 Limitations ............................................................................................................................. 48 

7.3 Future research ..................................................................................................................... 49 

7.3.1 Stochastic version of the model .................................................................................... 49 

7.3.2 Using the model at the operational level ...................................................................... 50 

7.4 Recommendations................................................................................................................. 50 

Bibliography ........................................................................................................................................... 51 

Appendix ................................................................................................................................................ 53 

A. Appendix data set columns ....................................................................................................... 53 

B. Appendix data analysis description ........................................................................................... 54 

i. Location filtering ......................................................................................................................... 54 

ii. Department filtering .................................................................................................................. 54 



 
vi 

iii. Unit classification ...................................................................................................................... 55 

iv. Consultation type classification ................................................................................................ 56 

v. Timestamp reliability ................................................................................................................. 57 

vi. Completed activities ................................................................................................................. 58 

vii. Identify source appointments .................................................................................................. 58 

viii. Determine the linked appointments from each source appointment ................................... 59 

ix. Downstream demand characteristics ....................................................................................... 59 

x. Determining transition percentage before and after the consultation..................................... 60 

xi. Travel time ................................................................................................................................ 61 

xii. Downstream activity duration ................................................................................................. 62 

xiii. Combining results into the final demand profiles .................................................................. 63 

C. Appendix waiting time data quality check ................................................................................ 64 

D. Appendix literature review papers ............................................................................................ 65 

E. Appendix appointment slot optimization papers ..................................................................... 68 

F. Appendix sliding window........................................................................................................... 69 

G. Appendix base version of MILP model ...................................................................................... 70 

H. Appendix sets and parameters for Thursday afternoon case ................................................... 73 

I. Appendix experiment results .................................................................................................... 75 

i. Performance difference in minutes ............................................................................................ 75 

ii. Complete overview of measures for the generated schedules ................................................. 76 

J. Appendix Monte Carlo graphs ................................................................................................... 76 

i. Thursday afternoon – OOD ......................................................................................................... 76 

ii. Thursday afternoon – RAD ........................................................................................................ 77 

iii. Thursday afternoon – Plaster room .......................................................................................... 77 

iv. Thursday afternoon – Screening ............................................................................................... 78 

K. Appendix Monte Carlo script in R .............................................................................................. 78 

 



 
1 

1 Introduction 
The Sint Maartenskliniek (SMK) is a hospital group in the Netherlands specialized in movement and 

posture. It is a specialised hospital performing complex procedures. The hospital aims to make its 

organisation and processes as excellent as the medical care. 

Currently the flow of patients across departments is fluctuating during the day. These fluctuations 

result in additional waiting time for patients, uneven workload for staff, and staff overtime. The 

hospital wants to control patient flows in the orthopaedic care chain and to reduce these issues. 

Section 1.1 introduces the hospital and relevant departments. In Section 1.2 the orthopaedic care 

chain is discussed. Section 1.3 describes the planning hierarchy, and Section 1.4 the blueprint session 

schedule, which is what this research will focus on. Section 1.5 discusses the problem statement, 

Section 1.6 the research goal, and Section 1.7 the research questions. 

1.1 Organisation and departments involved 
The SMK currently has five locations in the Netherlands, of which Nijmegen is the largest. The 

hospital in Nijmegen contains four medical specialties: orthopaedics, rheumatology, rehabilitation, 

and pain treatment. In 2017 over 44.000 unique patients were treated across all locations, and 1.100 

FTE was employed (‘Sint Maartenskliniek | cijfers jaarverslag 2017’, n.d.). 

The healthcare logistics department ‘Logistiek Bedrijf’ (LB) advises and supports departments in the 

SMK in decision making regarding logistics decisions. Their goal is to optimise the planning and 

control decision making for the hospital as a whole, accounting for impact of one department to 

other departments – i.e. over entire care chains. This research concerns the planning and control of 

one specific care chain, the orthopaedic care chain. 

1.2 The orthopaedic care chain 
The orthopaedic care chain consists of all steps a patient might take before, during, and after an 

orthopaedic intervention, such as a consultation at the outpatient clinic, diagnostics at Radiology, 

surgery, and inpatient care. An important step in this process is the outpatient consultation. New 

patients arrive at the outpatient clinic for a consultation, might get referred to other departments, 

for example to the ‘Plaster and wound treatment’ or ‘Radiology’ department on the same day on a 

walk-in basis. During their treatment patients return to the outpatient clinic multiple times for 

consultations. Figure 1.1 shows the possible patient flows for elective orthopaedic patients. The 

focus of this research is the orthopaedic outpatient department and the directly related 

departments. 

 

Figure 1.1 – Overview of patient flows for elective orthopaedic patients 
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1.3 Overview of planning hierarchy 
The planning process for the orthopaedic outpatient department consists of the following steps: 

Strategic 

The production outline for the entire year is derived from the strategic goals of the hospital and the 

desired case mix. It describes for each type of activity (e.g. surgery, consultation) the target of how 

many will be performed in the entire year. 

Tactical 

Based on that, the production plan per week is derived. It specifies which activities take place in 

specific weeks. 

Each day of the week is divided into a morning and afternoon session. The staff schedule per session 

is determined from the weekly plan. It specifies which doctors work in a session. 

The blueprint session schedule determines in what timeslots the consultations start, and it specifies 

what type of consultation can be scheduled into each slot. For example, in the first two timeslots 

only new consultations can be scheduled, not repeat or discharge consultations. Per doctor currently 

different blueprint session schedules exists. 

Operational 

Every two weeks the staff schedule per session for the orthopaedic outpatient department is created 

for 12 weeks ahead. This specifies for each morning and afternoon if a doctor is scheduled in the 

operating room or for outpatient consultations. If a doctor is scheduled for outpatient consultations, 

the appropriate blueprint session schedule is applied, for example an afternoon session for unit 

‘Knee’ for this doctor. 

Once a blueprint session schedule is applied, patients can be booked in the slots in the way the 

schedule dictates. This means a new patient can be booked in the slots reserved for new patients, 

repeat consultations in the ‘repeat’ slots, and discharge consults in the ‘discharge’ slots. 

The scope of this research is the design of the blueprint session schedule. 

 

1.4 Impact of the blueprint session schedule 
The sequence of consultation types dictated by the blueprint session schedule has an impact on other 

departments, because patients might visit these departments before and/or after their consultation 

at the orthopaedic outpatient department (see Figure 1.2 for an example). 

 

Figure 1.2 – Example of demand for other departments before/after a consultation at the OOD 

We expect that the probability a patient needs to visit a downstream department is different per 

consultation type (e.g. ‘new’ or ‘repeat’). The downstream activity duration is expected to be 

different per consultation type. Furthermore, whether activities at other departments happen more 

often before or after the main consultation is expected to be different. 

This means the timing and amount of workload at the downstream departments can likely be 

changed by changing the sequence of consultation types in the blueprint session schedule. 
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1.5 Problem statement 
Currently several issues are experienced at the orthopaedic outpatient department and the related 

(downstream) departments in the orthopaedic care chain. Figure 1.3 displays the causal relationships 

between the experienced problems. 

 

Figure 1.3 – Problem cluster indicating current problems and the causal relationships 

Staff indicate consultations starts are often delayed, because the previous consultation takes longer, 

or the patient arrives late. These delays cause patients to wait for their appointment to start. The 

delays can remain or increase throughout the day, meaning staff can run into overtime in order to 

serve all the patients scheduled. 

One of the reasons consultations take longer than planned is because insufficient time is scheduled 

for all these consultation types, or certain physicians takes longer than scheduled. Currently all 

consultation types have the same planned duration (15 minutes), however in interviews staff often 

noted that more time is needed for ‘new’ consultations. Another reason consultations take longer 

than planned is certain physicians typically take more time for their consultations as compared to 

their colleagues. 

A reason the patient arrives late is when their previous appointment at another department ends 

later than planned. Other departments experience peaks in demand during certain times of the day. 

When these demand peaks occur and more patients arrive than can be served simultaneously, 

patient waiting time increases. The staff workload also increases during these times. If patients are 

spread more evenly over the day, patients would experience minimal waiting time, and staff 

experience minimal workload fluctuations. 

Currently the outflow pattern of patients to other departments is not considered when scheduling 

patients at the orthopaedic outpatient department (the problem highlighted in red in Figure 1.3), the 

design of the blueprint session schedule does not take these same-day patient flows into account. 

Core problem 
We choose to focus on the right side of the problem cluster, the core problem that outflow of 

patients to other departments is not considered in the orthopaedic outpatient planning. By 

improving the blueprint session schedule the other problems listed in the problem cluster will likely 

decrease. 
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1.6 Research goal 
The goal of this research is to investigate how the orthopaedic outpatient department patient 

planning can be improved, in order to achieve a more even spread of patient outflow to other 

departments during the day, reducing demand peaks and reducing problems related to the demand 

peaks. 

We expect the design of the blueprint session schedule can improved, to evenly spread same-day 

patient outflow to other departments and thereby reduce delays, reduce patient waiting time, staff 

overtime and uneven workload. In order to have optimal blueprint session schedules for the many 

different situations, a method to automatically generate the schedules is desired. 

An additional hope for Logistiek Bedrijf is to find an approach or a model that is generic, so it can also 

be used in other situations or hospitals.  

The scope of this research is limited to the same-day patient flow effects of the blueprint session 

schedule on all directly related departments. 

 

 

1.7 Research questions 
The main research question is: 

How can blueprint session schedules be generated for elective patients at the 

orthopaedic outpatient department, that match the expected pattern of same-day 

patient flows with the desired pattern?  

The research question is answered with the following sub questions: 

1. How does the blueprint session schedule currently work and perform? 

How are the current blueprint session schedule designed, and how do they perform? Which 

measures are most appropriate to assess performance? Which factors (e.g. patient no-shows) are 

most relevant to this research? How does the Orthopaedic Outpatient Department relate to other 

departments? This is discussed in chapter 2. 

2. What options for forming the blueprint session schedule exist? 

What alternative methods for forming the blueprint session schedules exist? What is mentioned in 

other research on this subject? Which alternative method is most promising for the Sint 

Maartenskliniek? This is discussed in chapter 3. 

3. How can the selected method for blueprint session schedule design be modelled and 

validated? 

How can the most promising method be modelled? How do we check the model works as we expect 

it to and deliver valid results? What are the assumptions that the model is based on? What is the 

model capable of? This is discussed in chapter 4. 

4. How does the performance of the model compare to the current performance? 

How does the performance of the new method of creating blueprint session schedules compare to 

the current way of working? Does it improve the performance in a case study with several blueprint 

session schedules that have been used in practice? This is discussed in chapter 5. 
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5. How can this method be implemented at the Orthopaedic Outpatient Department? 

How could the new method for creating blueprint session schedules be implemented at the 

Orthopaedic Outpatient Department? What steps need to be taken? This is discussed in chapter 6. 

 

Finally chapter 7 will conclude with discussion on the strengths and the limitations of this research, 

and opportunities for future research. 
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2 The current situation 
This chapter will discuss the research question “How does the blueprint session schedule currently 

work and perform?”. Section 2.1 describes the current blueprint session schedule design. Section 2.2 

discusses on what measures the blueprint session schedule will be evaluated. Section 2.3 discusses 

the current performance, and Section 0 discusses the downstream demand profiles of consultation 

types. Section 2.5 concludes this chapter. 

2.1 Current blueprint session schedule design 
The blueprint session schedule dictates for each slot what type of consultation can be booked into it, 

the sequence of these slots, and the appointment duration in minutes. Figure 2.1 is an example of a 

blueprint session schedule for the orthopaedic outpatient department. 

 

Figure 2.1 – Example of a blueprint session schedule  

In each slot one of the following four consultation types is specified: 

• NK – “Nieuwe klacht”: A consultation for a patient experiencing a new medical issue 

• VC – “Vervolgconsult”: A repeat consultation, the patient has been in the hospital before for 

this issue 

• OC – “Ontslagconsult”: A discharge consultation after surgery to check if the patient can be 

discharged from the hospital 

• POP – “Preoperatief gesprek”: A preoperative meeting between the patient and the 

orthopaedic doctor that will perform their surgery 

Blueprint session schedules are currently different between units, and are different between doctors 

within the same unit. Figure 2.2 shows all blueprint session schedules belonging to just one doctor. 

 

Figure 2.2 – Blueprint session schedules belonging to one doctor (each row is one blueprint session schedule) 
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The morning shifts run approximately from 08:30 to 12:00, and the afternoon shifts typically run 

from 13:00 to 16:15. However, many different start times and end times currently exist between 

blueprint session schedules. Some start at 08:00, other schedules at 09:00, run until 11:45, 12:20 or 

12:30. The afternoon blueprint session schedule can start at 12:45, 12:55 or 13:00, and last until 

15:45, 16:00, 16:20 or 16:30. 

A different blueprint session schedule is available per unit and UNO, DUO and TRIO versions exist. 

The UNO schedule is for a doctor without support, DUO for one additional employee (such as a 

doctor in training), and TRIO for a doctor with two support employees. The schedules with more 

support can see more patients, but some time for supervision is also needed. See Figure 2.3 for an 

example of a TRIO blueprint session schedule. 

 

Figure 2.3 – A TRIO blueprint session schedule 

The current blueprint session schedule designs do not consider the pattern of patient flow to other 

departments. The current blueprint session schedule templates do not change, when in some cases it 

might be beneficial to change the ratios of NK, VC and OC, or adapt to the combination of doctors in 

a session. 

 

2.2 Key performance indicators 
To evaluate the current blueprint session schedule and compare it with a different design, 

performance measures need to be chosen. We need to know what needs to be optimised. The 

research goal is to achieve an even spread of patient flow throughout the day, i.e. reducing the 

variability in minutes of workload that arrives at downstream departments. By reducing this 

variability the aim is to reduce the waiting time for patients, workload fluctuations of staff, and staff 

overtime. 

For the measurement of workload, the number of patients or the minutes of workload they 

introduce can be measured. Since the time needed to help two different patients can be vastly 

different, the most appropriate measure is the minutes of workload they add to a department. 
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These research goals translate into the following key performance indicators: 

Workload arrival variability 

The blueprint session schedule is expected to influence how much workload is added to other 

departments, and at what time the patients arrive. This indicator measures how much the workload 

fluctuates during the day. Ideally the workload is evenly spread over the day. This also represents the 

workload fluctuations of staff. 

Perspective: Staff 

Definition: (minutes of workload arrived in interval – average workload per interval for this day) 

Aggregate: Per time interval (e.g. 1 hour) 

Average waiting time for an appointment 

This measures the average waiting time for an appointment per time interval, to check trends of 

waiting time during the day. For the  

Perspective: Patient 

Definition: Start appointment – MAX(planned start time; actual arrival time of patient) 

Aggregate: Per time interval (e.g. 1 hour), based on start time appointment 

Overtime 

This indicator measures how much overtime occurs per department. Ideally no overtime would 

occur. 

Perspective: Staff 

Definition:  MAX(0; Actual end time of shift – closing time of department) 

Aggregate: Per day 

 

Additionally, because the initial idea is to control the workload arrival at other departments based on 

changing the sequence of consultation types in the blueprint session schedule, it is important to 

know if the expected workload is different per consultation types. If all consultation types have very 

similar outflow, changing the sequence of consultations will not impact the workload arrival pattern 

at downstream departments. 

The three components that determine the workload pattern of a consultation type are: 

• The transition probability to a downstream department per consultation type 

• The minutes of workload one patient introduces at a downstream department (per 

consultation type) 

• The timing of the workload, does the demand at downstream departments occur before or 

after the consultation at the outpatient department? Is there a different delay before the 

demand arrives for certain consultation types? 
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2.3 Current performance 
The current performance of the blueprint session schedules is analysed with a data set containing 

two years of data on patient outpatient appointments. It contains the department of the activity, 

anonymised patient ids, the activity type (e.g. a ‘repeat consultation’), and timestamps related to the 

patient arrival, activity start time, and activity end time. See Appendix A for the full list of columns. 

Figure 2.4 gives an overview of the data set, and the number of appointments per department in 

Nijmegen. From the relevant departments the number of completed and cancelled appointments are 

counted to give an idea of the proportions of each department.  

 

Figure 2.4 – Number of appointments per department over 2017 and 2018 (Sint Maartenskliniek) 

Workload arrival variability 
The patients that have an outpatient consultation at the Orthopaedic Outpatient Department (OOD) 

sometimes need to visit other departments on the same day as their outpatient consultation. We 

assume (based on interviews) that all visits to other departments by the same patient on the same 

day can be linked to the original consultation at the OOD. 

Appendix B describes the data analysis steps in detail. Appendix sections B.vii and B.viii describe how 

appointments at other departments are linked to the main consultation at the OOD. 

It is reasonable to assume the schedule of the OOD will influence the pattern of arriving patients at 

the downstream departments. To ensure we only analyse the arriving patients that originate from 

the OOD, we select only the activities that have been ‘linked’. 
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For each individual day the following calculations are made: 

1. Sum of workload arrival per time interval: Each patient that arrives at a department 

represents a certain amount of work, expressed in minutes of workload. At each time 

interval of 1 hour, the sum of workload from ‘linked’ activities that arrives is counted. 

2. Average workload arrival: The overall average of workload arrivals of linked activities is 

calculated for that day: 

𝑡𝑜𝑡𝑎𝑙 𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 | 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑙𝑖𝑛𝑘𝑒𝑑

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠
= 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑 𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑠 𝑝𝑒𝑟 𝑡𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 

3. The difference from the average per time interval: Given the average workload that arrives 

in any time interval, the difference between the average and the actual workload arrival can 

be calculated per time interval on that day: 

𝑠𝑢𝑚 𝑜𝑓 𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑 𝑖𝑛 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑 = 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 

Now the sum of differences is aggregated over all days. This method of calculation shows the 

pattern of patient arrivals throughout the day. 

 

 

These graphs show workload arrival distributions for each department. It shows how much the 

arrivals (measured in minutes of workload) in that hour are different from the mean arrivals on the 

same day. The box plot displays the 5th, 25th, 50th, 75th, and 95th percentile. Especially for the 

Orthopaedic outpatient department and the Radiology a clear trend over the day is visible. For the 

Plaster room no standard trend is visible. For the preoperative screening the pattern seems to be 

stable over the day. 
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Overtime 
The overtime is calculated by determining for each day the time the last linked patient left. If this 

time is before closing time of the department, the overtime on that day is 0 minutes. Otherwise the 

overtime of that day is the amount of time the patient left after regular opening hours of the 

department.  

 

Figure 2.5 – Box plot of overtime per department (whiskers are 5th and 95th percentile) 

Figure 2.5 shows the distribution of overtime for the four downstream departments. The results 

suggest this is quite an common occurrence. Especially at the orthopaedic outpatient department 

itself the overtime stands out. A caveat with this calculation is we assumed closing hours of 16:15, 

where in some cases the session schedules exceed 16:15. However 16:15 closing time was agreed in 

accordance with the department to be a suitable closing time for the analysis, and overtime for 

certain doctors was repeatedly mentioned in interviews. Based on the box plot a 25% of the days 

seem to run at significantly past 16:15 which will definitely be overtime. Overall linked patients 

arriving late seems to mostly affect the Orthopaedic Outpatient Department.  
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Waiting time per appointment 

 

Figure 2.6 – Average waiting time per time interval for each department 

Figure 2.6 shows the average waiting time per time interval, for each department except for the pre-

operative screening department, they as waiting time is not recorded separately for the linked 

appointments in my data set. Most notable is the large increase in waiting time at the Orthopaedic 

OD during the day. The data has been cleaned so incorrect or contaminated data is not influencing 

these results, this is discussed further in Appendix C, but the data is cleaned. The same pattern is also 

visible in the median waiting time per hour, meaning the pattern cannot be explained by outliers. 

A likely explanation is currently revisits to the OOD are not scheduled in, but rather the patient is 

called in when the doctor has downtime. This issue does not apply to the other departments, since 

far more is done on walk-in basis, thus they are not waiting to fit into a busy pre-booked schedule. 
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2.4 Downstream demand characteristics of consultations 
The idea for the research project is to modify the pattern of patient flow that results from the 

blueprint session schedule, and the sequence of consultation types it defines. A core assumption that 

needs to be tested is if the different consultation types cause different patterns in demand at 

downstream departments.  

As discussed in Section 2.2 the three components that will combine into the demand profile for a 

consultation type are: 

• The transition probability 

• The downstream demand duration (workload in minutes) 

• The travel time or demand timing 

The following sections will discuss the method of calculation, and finally combine the parts into the 

demand pattern per consultation type. 

2.4.1 Transition probability 
Source consultation 
A patient might need to visit a different department before or after the consultation at the OOD. We 

identify for each patient the first consultation of that day at the OOD, this is considered the ‘source 

consultation’. All other outpatient demand of that patient on the same day is assumed to be caused 

by the source consultation. See Appendix B.vii for a detailed description of identifying source 

consultations. 

Link downstream demand to source consultations 
We identify all other appointments and activities at the downstream departments (follow-up 

consultations at the OOD itself, visits to Radiology, Plaster room, or Preoperative screening), and we 

link them to the source consultation. The exact method for linking these activities is described in 

Appendix B.viii. 

The intermediate results show that indeed the transition probabilities are different between 

consultation types and between units. The transition probabilities are different between the 

consultation types, as well as different between the units. 
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Determine whether demand occurred before or after the source consultation 
Only a general transition probability is not specific enough, it is important to know if the downstream 

activity occurred before or after the source consultation. 

Based on the linked appointments, we determine based on the timestamps if the activity at the 

downstream department occurred before or after the source consultation. If a patient gets a scan at 

Radiology from 10:00 until 10:10, and has their consultation at 10:30, it is clear the downstream 

demand at Radiology occurred before the source consultation. We label each transition as either 

‘before’, ‘after’, or in case the timestamps are missing as ‘missing’. 

Calculate transition probabilities (for each consultation type) 
Now that for each source consultation the transitions (linked activities) are identified, and they are 

labelled as ‘before’, ‘after’, or ‘missing’ the transition probabilities for all consultation types can be 

calculated. 

As an example, with 1000 source appointments, 130 transitions might be labelled as ‘before’, and 

180 transitions might be labelled as ‘after’. Then the transition probabilities are 13% and 18% to 

before and after this source appointment.  

However, sometimes the timestamps are missing. These linked appointments cannot be ignored, 

because the exact timing might be unknown, but it is certain the transition occurred. If the 

transitions with missing timestamps are ignored, the transition probability is underestimated. 

We correct for the missing timestamps in the following way: 

1. Count all transitions ‘before’, ‘after’, and with missing timestamps 

2. Determine the proportion of ‘before’ and ‘after’ 

3. Add the transitions with missing timestamps to the ‘before’ and ‘after’ categories, while 

preserving the proportions calculated at step 2 

After these steps we have successfully calculated the probability a patients will visit a downstream 

department before their consultation, and the probability they visit a downstream department 

afterwards. 

Calculate transition probabilities (for each combination of consultation type and unit) 
The previous calculations just considered the transition probabilities for each consultation type. 

However the model could be extended to simultaneously consider the consultation type and the 

unit. This involves more complex analysis, and since the unit is not always classified in the data, a 

smart way of dealing with those missing unit classifications is also required. Appendix B.x discusses 

how that is calculated. 

 

2.4.2  Demand duration 
The amount of time needed for a patient at a downstream department is also expected to be 

different per source consultation type and/or per unit. So if a patient comes in for a ‘New’ 

consultation, the amount of time needed at Radiology might be more than if a ‘repeat’ patient visits 

Radiology after their consultation. 

We use the same basis of source consultations and linked appointments as described in the previous 

section, however instead of checking if a transition occurred, we check how much time the patient 

needed at the downstream department, given that a transition did occur. We filter out the unreliable 

timestamps in the way described in Appendix B.v.  
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First we perform an initial check to see if the downstream demand duration is indeed different per 

source consultation type and per unit. Again, like with the transition probabilities the demand 

duration is different between the different consultation types and units. 

The differences between consultation types and units are present. We perform the more elaborate 

and reliable calculation, where the duration is calculated for each set of consultation type and unit, 

before and after separately. If too few observations are available a reasonable measure (such as the 

average of the unit) is used. The detailed description for the entire duration analysis is discussed in 

Appendix B.xii. 

 

2.4.3 Travel time  
When a patient completes a consultation and needs to visit a different department, the patient will 

not arrive their immediately, which means the workload the patient represents also does not arrive 

immediately. The most fundamental reason for this is simply travel time, the patient needs time to 

walk from one department to the next. 

The travel time can be determined by analysing the timestamps of two appointments by the same 

patient on the same day. If the patient has their consultation at the OOD from 10:00 until 10:15, and 

arrives at the waiting room of the Plaster room at 10:20, the travel time was 5 minutes. In order to 

limit the effect of outliers in this analysis the median travel time is used. The calculation of travel 

time is discussed in detail in Appendix B.xi. 

 

2.4.4 Combining characteristics into the downstream demand profile 
The three characteristics transition probabilities, demand durations, and travel time are combined 

into the overall downstream demand profile of a consultation type and unit combination. This 

defines the amount of workload in minutes that can be expected, and the timing of that workload. 

Table 2.1 shows an fictitious example of a demand profile. Appendix B.xiii describes the calculations 

in detail. 

 

Table 2.1 – Demand profile for the expected workload after a source consultation 
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2.5 Conclusion 
The data analysis shows distinct transition probabilities and resulting minutes of downstream 

workload between consultation types and units, which means changing the sequence can impact the 

workload arrival pattern at downstream departments.  

For downstream workload arrival variability, the peaks at the Radiology department and follow-up 

consultations at the orthopaedic outpatient department show a trend during the day. For the Plaster 

room no strong trend during the day seems to be there, but the arrivals are still variable. 

The waiting time shows an upward trend in the morning for all departments, but the Orthopaedic 

Outpatient department shows the strongest increase. Some of the solutions are not directly in scope 

of this project, such as adjusting the time per consultation or reserving time for patient revisits, but it 

is a good idea to accommodate these in a our proposed solution. 

Considering in the new situation blueprint session schedules will be standardized per unit, it is 

important to look at how to achieve an even spread of workload arrivals over the day.  
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3 Literature review 
This chapter will discuss existing research in this field. Section 3.1 breaks down the research question 

into key components. Section 3.2 will look at individual papers related to the decisions that need to 

be made for this research to find best practices. Section 3.3 will conclude with lessons learned from 

the literature. 

3.1 Positioning our research question in literature 
The goal of this research is to develop a model that can generate blueprint schedules, where the 

sequence of appointment types in the schedule is optimized to minimize the workload variability in 

downstream departments. 

Hulshof, Kortbeek, Boucherie, Hans, & Bakker (2012) created a taxonomic framework to classify 

healthcare planning decisions. The design of a blueprint appointment schedule is classified as a 

tactical problem, in the ambulatory care services category. 

In terms of multi-department or multi-disciplinary planning, A distinction between flow shop, open 

shop, and a hybrid mixed shop is made by Leeftink, Bikker, Vliegen, & Boucherie (2018). In the flow 

shop, related jobs (or multiple appointments for the same patient) have a fixed sequence, which 

applies to this research. 

In order to recognise literature that applies to this problem, even for problem contexts that are 

different, we list the key problem characteristics: 

- Single server (main department) – Appointments at the main department can only be 

fulfilled by a specific doctor  

- Downstream departments (multi-server) – Multiple downstream departments are involved, 

where patients do not need appointments made beforehand. No single server is  

- Uncertain care pathway – It is uncertain if a patient needs a follow up at downstream 

departments  

- Flow shop – The sequence of multiple appointments for a single patient on the same day is 

assumed to be fixed 

- No walk-in patients – All acute patients go to the acute outpatient clinic 

- Capacity is constant – During one day (the time horizon of this schedule) the staff levels are 

constant  

3.2 Multi-appointment planning 
Developing the blueprint session schedule while minimizing the downstream workload variability can 

be classified as a multi-appointment planning problem, where the sequence of certain appointment 

types is changed to improve the situation in downstream departments. 

In the review by Ahmadi-Javid, Jalali, & Klassen (2017) the research into appointment slot 

optimization is classified. These articles consider the problem of a single stage system, so no 

downstream departments are considered. The overwhelming majority minimize the patient waiting 

time, idle time and overtime using either a 1-stage or 2-stage stochastic program. See Appendix E for 

the complete overview. 

We are interested in papers that handle multi-appointment planning, in our case over multiple 

departments, and with the objective to spread the workload. We use the literature review ‘Multi-

disciplinary planning in health care: a review’ Leeftink, Bikker, et al. (2018) to find relevant papers 

and describe their approach. 
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Appointment slot optimization & multi-disciplinary scheduling 
Dharmadhikari & Zhang (2013) reserve timeslots in different departments at different times of day, 

to increase the probability patients with appointments at multiple departments can be scheduled on 

one day. Different number of timeslots can be blocked to deal with different levels of multi-

department demand. This approach with mutually exclusive blocks is not applicable in our case, since 

consultations need be scheduled all day, and it is unknown beforehand which patients need to visit 

downstream departments. 

Liang, Turkcan, Ceyhan, & Stuart (2015) develop a mixed-integer linear programming (MILP) model 

that evenly distributes patients into timeslots to balance the workload throughout the day on two 

departments. The care pathway is assumed to be known, patient types are created for each pathway 

(e.g. type 1: only department 1, type 2: visits department 1 and 2, type 3: only visits department 2). 

The objective function minimizes the difference between the maximum and minimum workload. The 

output of the MILP model is input for a simulation model to evaluate operational decisions and 

improve on patient waiting time and clinic overtime. 

Leeftink, Boucherie, et al. (2018) develop a 3-stage batch scheduling algorithm. The batch completion 

times are spread evenly over the day to reduce workload variability in the downstream department. 

The minimum interval between batch completion times is maximized to ensure the most spread of 

workload. All jobs need processing in all stages, which is different from our problem where the care 

pathway is uncertain. 

Leeftink, Vliegen, & Hans (2019) develop a two-stage stochastic integer program for patients that 

have an appointment with a nurse practitioner, and afterwards have an uncertain care pathway to 

one the relevant clinicians (which is unknown beforehand). The downstream clinician is analogous to 

the downstream department in our research topic. In addition to the multi-disciplinary patients, 

regular patients that only need a single appointment at a known clinician (downstream department) 

also need to be scheduled. In the first stage the optimal blueprint schedule is determined, in the 

second stage for different scenarios with patient arrival realisations the overtime, waiting time and 

idle time is minimized. 

 

Figure 3.1 – Optimizing the patient sequence (nurse schedule) with downstream resources (Leeftink et al., 2019) 

Their approach is to reserve a slot, where a patient might make use of with a certain probability. Our 

situation is different in the sense the downstream departments are more similar to multi-server 

queues, since no appointments are needed for the patients, and they can be helped by various staff 

members. Matching the expected workload to a norm, without booking appointments can be a 

suitable approach. 
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Surgery scheduling literature 
In addition to the literature on appointment slot optimization or multi-disciplinary scheduling, the 

research into surgery schedules is closely related to our problem. Usually the sequence of surgery 

types need to be optimized, and a number of articles incorporate the downstream demand when 

optimizing the surgery type sequence. The time scale is different (usually one time slot equals one 

day), however the same approach can be useful in our blueprint schedule optimization problem. 

Fügener, Hans, Kolisch, Kortbeek, & Vanberkel (2014) develop a master surgery schedule while 

considering the downstream demand, where the sequence of blocks is changed in order to minimize 

the downstream costs. The time scale is discrete, one time slot is one day. An exact multinomial 

distribution is derived to indicate the probability of x number of patients at a downstream resource 

at time t. Fixed costs are incurred by costs for beds, higher demand peaks mean more beds need to 

be available. In this way the model is incentivised to reduce demand peaks since this will lead to 

lower costs. 

van Essen, Bosch, Hans, van Houdenhoven, & Hurink (2013) develop a model similar to Fügener et al. 

(2014), and evaluate two different approaches. The first approach is to use the exact multinomial 

distribution, and use a local search algorithm (Simulated Annealing) to approximate the global 

optimum solution. The second approach is to approximate the objective function by linearizing it in 

an MILP model. The MILP model returned better results solving the expected length of stay 

comprehensively instead of approaching the exact multinomial distribution with heuristics. 

 

3.3 Conclusions 
For appointment slot optimization problems where no downstream resources are considered, a 1-

stage or 2-stage stochastic program is the most applied method to optimize the schedule. Typically a 

weighted sum of waiting time, idle time and overtime is minimized. These models are able to deal 

with stochastic service times, and alter the planned starting time and time between appointments in 

order to minimize the objective function. 

For models that consider downstream departments various approaches exist. The article by Leeftink 

et al. (2019) models the problem with a two-stage stochastic programming approach to optimize the 

appointment sequence for the nurse (main department), considering an uncertain care pathway to 

clinicians (downstream departments). Our situation is different in the sense the downstream 

departments are more similar to multi-server queues, since no appointments are needed for the 

patients, and they can be helped by various staff members. 

The literature for surgery schedule sequencing is similar with multiple downstream resources and 

stochastic length of stay (or appointment duration in our research). The article by Fügener et al. 

(2014) considers the exact multinomial distribution of length of stay, while van Essen et al. (2013) 

find that in their problem setting the expected length of stay outperformed the exact objective 

function with local search. This suggests that working with expected values rather than exact 

distributions might yield comparable or in some cases better results. 

The research of Leeftink et al. (2019) and the linearized approach of van Essen et al. (2013) are quite 

similar to our approach, and both use an linear programming model. The possibility even exists to 

expand a MILP model into a Stochastic Linear Program to explicitly model uncertainty. This suggests 

using a MILP formulation of our problem to optimize the blueprint session schedules is a promising 

approach.  
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4 Model 
In this chapter the mathematical model is defined. Section 4.1 describes the goal of the model. The 

assumptions we make are listed in Section 4.2. The model is defined in Section 4.3.  

4.1 Goal 
The goal of the model is to create a blueprint schedule that determines the optimal sequence and 

starting time of consultation types, where the expected downstream workload is as close to the norm 

per time slot as possible. Different consultation types can be specified, which have different expected 

workload at downstream departments. 

For each downstream department a score is calculated based on how closely expected workload 

matches the norm. The final score of a blueprint schedule is the weighted sum of all downstream 

department scores. 

Figure 4.1 shows a simplified example of a blueprint schedule. Figure 4.2 is a visual representation 

what the model tries to achieve at each downstream department. 

Time slot 
08:00- 
08:15 

08:15-
08:30 

08:30-
08:45 

08:45-
09:00 

Consultation  
type 

New Repeat New Discharge 

Figure 4.1 – Simplified example of a blueprint schedule  

 

Figure 4.2 – Simplified representation of the goal of the model 

 

4.2 Assumptions 
The model has a scope of one day. The following assumptions are made in the model: 

- Service times at the main department are assumed to be deterministic.  

- The care pathway is uncertain. The transition probabilities to downstream departments are 

static, but are different for each appointment type. 

- Patients and physicians are assumed to be punctual.  

- One physician can only see one patient in a time slot (no overbooking) 

- No walk-in patients in the OOD 
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4.3 Linear programming model definition 
We model this optimization problem as a Mixed Integer Linear Programming (MILP) model. It 

consists of sets, parameters, variables, constraints and the objective function that are defined in this 

section. 

4.3.1 Sets and elements 
Set Element Description 

C c Consultation types 

D  d Departments 

S  s Schedules 

U  u Units 
 

Time sets: 

Set Element Description 

T = {1, …, numberOfSlots} t, tt Time slot 

SW = {1, …, (numberOfSlots - 
slidingWindowWidth + 1)} 

sw Sliding time window. Used to 
aggregate workload of multiple time 
slots, similar to a moving average. 

I i Time offsets, used to define a demand 
profile 1..i time slots before the start 
of the consultation, and 1..i time slots 
after the end of a consultation. 

 

4.3.2 Input parameters 
Parameter Range Description 

consultationDurations,c,u ∈ ℕ \{0} The duration of a consultation of type 
c for unit u in schedule s in number of 
time slots  

consultationsToBeScheduleds,c,u ∈ ℕ The number of consultation type c of 
unit u to be scheduled in schedule s 

normd,t [0, ∞) The capacity norm for total minutes of 
workload arriving at department d, 
per time slot t 

expectedWorkloadBeforec,u,d,i [0, ∞) Expected workload (in minutes) at 
department d, i time slots before the 
start of consultation type c for unit u 

expectedWorkloadAfterc,u,d,i [0, ∞) Expected workload (in minutes) at 
department d, i time slots after the 
end of consultation type c for unit u 

firstSlot {tmin, …, tmax} First timeslot a consultation can be 
booked into 

lastSlot {tmin, …, tmax} Last timeslot a consultation can be 
booked into 

numberOfSlots ∈ ℕ The total number of timeslots 

departmentWeightd [0, 1] Weight of each department for 
objective function  

slidingWindowWidth ∈ ℕ Specifies the number of time slots one 
sliding window covers. The first 
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window starts at time t=1, to 
t=1+slidingWindowWidth. The second 
window starts at time t=2, to 
t=2+slidingWindowWidth 

bigM 150 Parameter to enable certain ‘either-
or’ constraints to work 

 

4.3.3 Decision variables 
Variable Range Description 

Xs,c,u,t {0, 1} Binary Start consultation type c of unit u at 
time slot t in schedule s (1=yes, 0=no) 

 

4.3.4 Auxiliary decision variables 
Variable Range Description 

Ys,c,u,t {0, 1} Binary Consultation type c of unit u is taking 
place at time t in schedule s (1=yes) 

Workloadd,t [0, ∞) Workload for department d, at 
timeslot t 

WorkloadGroupedd,sw [0, ∞)  Workload grouped, Workloadd,t 
grouped into sliding time windows SW 

DeviationFromNormd,t ∈ ℝ Absolute deviation from norm for 
department d in time window sw 

DeviationFromNormGroupedd,sw ∈ ℝ The absolute deviation from the norm 
for each time slot t is summed for 
sliding time window sw  

MaxDevd ∈ ℝ The maximum deviation from the 
norm for department d across all time 
slots 

 

4.3.5 Constraints 
1. Schedule the correct number of consultations for each schedule, consultation type and unit 

∑ 𝑋𝑠,𝑐,𝑢,𝑡

𝑡

= 𝑐𝑜𝑛𝑠𝑢𝑙𝑡𝑎𝑡𝑖𝑜𝑛𝑠𝑃𝑒𝑟𝑇𝑦𝑝𝑒𝑠,𝑐,𝑢                       ∀𝑠, 𝑐, 𝑢 

2. Block time slots for consultation duration 

When a consult c is planned at time t=5 in schedule s, Xs,c,u,5=1, with consultationDuration=2, then 

Ys,c,u,5 and Ys,c,u,6 need to be 1. When looking from the perspective of Ys,c,u,t we need to look back 

(consultationDurations,c,u-1) time slots. 

𝑌𝑠,𝑐,𝑢,𝑡 = ∑ 𝑋𝑠,𝑐,𝑢,𝑡−𝑡𝑡

𝑡𝑡=𝑐𝑜𝑛𝑠𝑢𝑙𝑡𝑎𝑡𝑖𝑜𝑛𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑠,𝑐,𝑢−1

𝑡𝑡=0

                    ∀𝑠, 𝑐, 𝑢, 𝑡 

To ensure the calculation 𝑡 − 𝑡𝑡 does not result in a value below 1 (out of bounds for the time 

horizon), the constraint is adjusted: 
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𝑌𝑠,𝑐,𝑢,𝑡 = ∑ 𝑋𝑠,𝑐,𝑢,𝑡−𝑡𝑡

𝑡𝑡=𝑀𝐼𝑁(𝑡−1; 𝑐𝑜𝑛𝑠𝑢𝑙𝑡𝑎𝑡𝑖𝑜𝑛𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑠,𝑐,𝑢−1)

𝑡𝑡=0

                    ∀𝑠, 𝑐, 𝑢, 𝑡 

 

3. Ensure total time blocked is correct 

This constraint is necessary to ensure the model does not place a consultation close to the lastSlot, 

where not the entire consultation would fit. 

∑ 𝑌𝑠,𝑐,𝑢,𝑡

𝑡

= 𝑐𝑜𝑛𝑠𝑢𝑙𝑡𝑎𝑡𝑖𝑜𝑛𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑐 ∗ ∑ 𝑋𝑠,𝑐,𝑢,𝑡

𝑡

                        ∀𝑠, 𝑐, 𝑢 

 

4. Maximum one consultation per time slot within one schedule 

 

∑ ∑ 𝑌𝑠,𝑐,𝑢,𝑡

𝑢𝑐

≤ 1                       ∀𝑠, 𝑡 

 

5. No consultations before first slot 

 

∑ 𝑌𝑠,𝑐,𝑢,𝑡

𝑡=𝑓𝑖𝑟𝑠𝑡𝑆𝑙𝑜𝑡 − 1

𝑡=1

= 0             ∀𝑠, 𝑐, 𝑢 

 

6. No consultations after last slot 

 

∑ 𝑌𝑠,𝑐,𝑢,𝑡

𝑇

𝑡=𝑙𝑎𝑠𝑡𝑆𝑙𝑜𝑡 + 1

= 0             ∀𝑠, 𝑐, 𝑢 

 

7. Maximum of two adjacent ‘New’ consultations in one schedule 

We choose to allow no more than two ‘New’ consultations adjacent to each other. After two ‘New’ 

consultations only consultations of a different type can be scheduled (or that time is not booked at 

all, which also relieves the schedule in the desired way). 

∑ ∑ 𝑋𝑠,𝑁𝑒𝑤,𝑢,𝑡+𝑡𝑡

𝑢

𝑡𝑡=𝑐𝑜𝑛𝑠𝑢𝑙𝑡𝑎𝑡𝑖𝑜𝑛𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑁𝑒𝑤∗2+𝑀𝐼𝑁(𝑐𝑜𝑛𝑠𝑢𝑙𝑡𝑎𝑡𝑖𝑜𝑛𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑠,𝑐)−1

𝑡𝑡=0

≤ 2          ∀𝑠, 𝑡 

To ensure the calculation 𝑡 + 𝑡𝑡 does not go above the latest time slot T, the constraint is adjusted: 

∑ ∑ 𝑋𝑠,𝑁𝑒𝑤,𝑢,𝑡+𝑡𝑡

𝑢

𝑡𝑡=𝑀𝐼𝑁(𝑇−𝑡; 𝑐𝑜𝑛𝑠𝑢𝑙𝑡𝑎𝑡𝑖𝑜𝑛𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑁𝑒𝑤∗2+𝑀𝐼𝑁(𝑐𝑜𝑛𝑠𝑢𝑙𝑡𝑎𝑡𝑖𝑜𝑛𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑠,𝑐)−1)

𝑡𝑡=0

≤ 2          ∀𝑠, 𝑡 
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8. Set downstream workload 

𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝑑,𝑡 = ∑ ∑ ∑ ∑(𝑋𝑠,𝑐,𝑢,𝑡+𝑖 ∗ 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝐵𝑒𝑓𝑜𝑟𝑒𝑐,𝑢,𝑑,𝑖)

𝐼

𝑖=1𝑢𝑐𝑠

+  ∑ ∑ ∑ ∑(𝑋𝑠,𝑐,𝑢,𝑡−𝑐𝑜𝑛𝑠𝑢𝑙𝑡𝑎𝑡𝑖𝑜𝑛𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑠,𝑐,𝑢−𝑖+1

𝐼

𝑖=1𝑢𝑐𝑠

∗ 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝐴𝑓𝑡𝑒𝑟𝑐,𝑢,𝑑,𝑖)      ∀𝑑, 𝑡 

To ensure the calculation 𝑡 + 𝑖 does not exceed maximum time slot T, and calculation 

 𝑡 − 𝑐𝑜𝑛𝑠𝑢𝑙𝑡𝑎𝑡𝑖𝑜𝑛𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑠,𝑐,𝑢 − 𝑖 + 1 does not reach values below 1, the constraint is adjusted. 

The set time offsets I needs to start from i=0. 

𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝑑,𝑡 = ∑ ∑ ∑ ∑ (𝑋𝑠,𝑐,𝑢,𝑡+𝑖 ∗ 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝐵𝑒𝑓𝑜𝑟𝑒𝑐,𝑢,𝑑,𝑖)

𝑖=𝑀𝐼𝑁(𝑇−𝑡; 𝐼)

𝑖=0𝑢𝑐𝑠

 

 

+ ∑ ∑ ∑ ∑ (𝑋𝑠,𝑐,𝑢,𝑡−𝑐𝑜𝑛𝑠𝑢𝑙𝑡𝑎𝑡𝑖𝑜𝑛𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑠,𝑐,𝑢−𝑖+1

𝑖=𝑀𝐴𝑋(0; 𝑀𝐼𝑁(𝑡−𝑐𝑜𝑛𝑠𝑢𝑙𝑡𝑎𝑡𝑖𝑜𝑛𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑠,𝑐,𝑢; 𝐼))

𝑖=0𝑢𝑐𝑠

∗ 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝐴𝑓𝑡𝑒𝑟𝑐,𝑢,𝑑,𝑖)     ∀𝑑, 𝑡  

9. Group workload into sliding time windows 

All workload of time slots t is aggregated to the workload per sliding window sw, which functions 

similar to a moving average. 

𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝐺𝑟𝑜𝑢𝑝𝑒𝑑𝑑,𝑠𝑤 =  ∑ 𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝑑,𝑡

𝑠𝑤+𝑠𝑙𝑖𝑑𝑖𝑛𝑔𝑊𝑖𝑛𝑑𝑜𝑤𝑊𝑖𝑑𝑡ℎ−1

𝑡=𝑠𝑤

             ∀ 𝑠𝑤, 𝑑 

 

10. Calculate positive and negative deviation from norm 

The following constraints linearize the absolute deviation from the norm variable. 

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝐹𝑟𝑜𝑚𝑁𝑜𝑟𝑚𝑑,𝑡  −  𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝐹𝑟𝑜𝑚𝑁𝑜𝑟𝑚𝑑,𝑡  =  𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝑑,𝑡  −  𝑛𝑜𝑟𝑚𝑑,𝑡    ∀𝑑, 𝑡 

11. Ensure positive deviation and negative deviation are >0 

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝐹𝑟𝑜𝑚𝑁𝑜𝑟𝑚𝑑,𝑡, 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝐹𝑟𝑜𝑚𝑁𝑜𝑟𝑚𝑑,𝑡  ≥ 0           ∀𝑑, 𝑡 

12. Ensure only positive OR negative deviation takes a value >0  (constraint one) 

The variable DeviationIsPositived,t is a binary variable. It is 0 if the deviation from the norm is 

negative, 1 if the deviation from the norm is positive. Using this variable in combination with bigM 

ensures only one of the deviation variables can take a value other that 0. 

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝐹𝑟𝑜𝑚𝑁𝑜𝑟𝑚𝑑,𝑡 ≤ 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝐼𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑑,𝑡 ∗ 𝑏𝑖𝑔𝑀                ∀𝑑, 𝑡 

13. Ensure only positive OR negative deviation takes a value >0  (constraint two) 

𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝐹𝑟𝑜𝑚𝑁𝑜𝑟𝑚𝑑,𝑡 ≤ (1 − 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝐼𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑑,𝑡) ∗ 𝑏𝑖𝑔𝑀      ∀𝑑, 𝑡   
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14. Calculate the absolute deviation from the norm 

Now that the deviation has been split into its positive and negative parts, we can take the sum to get 

the absolute difference between workload and the norm (without losing linearity). 

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝐹𝑟𝑜𝑚𝑁𝑜𝑟𝑚𝑑,𝑡

= 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝐹𝑟𝑜𝑚𝑁𝑜𝑟𝑚𝑑,𝑡 + 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝐹𝑟𝑜𝑚𝑁𝑜𝑟𝑚𝑑,𝑡       ∀𝑑, 𝑡 

15. Calculate DeviationFromNormGrouped per sliding time window 

For each sliding time window, sum the deviation from the norm for individual time slots, for all time 

slots that belong to sliding window sw 

𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝐹𝑟𝑜𝑚𝑁𝑜𝑟𝑚𝐺𝑟𝑜𝑢𝑝𝑒𝑑𝑑,𝑠𝑤 =  ∑ 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝐹𝑟𝑜𝑚𝑁𝑜𝑟𝑚𝑑,𝑡

𝑠𝑤+𝑠𝑙𝑖𝑑𝑖𝑛𝑔𝑊𝑖𝑛𝑑𝑜𝑤𝑊𝑖𝑑𝑡ℎ−1

𝑡=𝑠𝑤

    ∀𝑑, 𝑠𝑤 

 

16. Calculate maximum deviation from norm 

For each department, determine the maximum deviation from the norm over all the sliding windows 

𝑀𝑎𝑥𝐷𝑒𝑣𝑑  ≥  𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝐹𝑟𝑜𝑚𝑁𝑜𝑟𝑚𝐺𝑟𝑜𝑢𝑝𝑒𝑑𝑑,𝑠𝑤                      ∀𝑑, 𝑠𝑤 

 

4.3.6 Objective function 

𝑚𝑖𝑛 ∑(𝑀𝑎𝑥𝐷𝑒𝑣𝑑  ∗  𝑑𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡𝑊𝑒𝑖𝑔ℎ𝑡𝑑)

𝑑

 

 

 

4.3.7 Model choices commentary 
Some model choices deserve further explanation, these are discussed in the following paragraphs. 

First slot and last slot 

closed closed closed 
first 
slot     

last 
slot 

closed closed closed 

Figure 4.3 – Example of schedule setup with first slot and last slot 

Not all time slots in the model are used to schedule appointments. A certain number of time slots at 

the start and end of the schedule can be closed. The reason to include this in the model is that the 

expected workload at downstream departments can occur at an offset of multiple time slots before 

or after the consultation.  

For example: the first 3 time slots are closed. If the downstream department (e.g., Radiology) is also 

closed at those times, the norm of workload for Radiology is set at 0. The model will then try to 

schedule a consultation type with low ‘expected workload before’ in the first open slot (slot 4 in this 

example), to keep expected workload at the closed time slots as close to 0 as possible. 

Expected workload – one consultation 
The expected workload indicates the expected time (in minutes) a department will spend to help a 

patient. The expected workload is calculated as follows: what is the probability a consultation of type 
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c results in a patient visiting downstream department d? If a patient visits a downstream 

department, what is the average total number of minutes of work per patient? The expected 

workload is the product of the transition probability and the average minutes of workload. 

Let’s say the probability a patient coming for a ‘New consultation’ visits the Plaster room afterwards 

is 15%. When a patient visits the Plaster room, the average minutes of workload is 28 minutes.  

Expected workload in minutes at Plaster room for a new consultation: 0.15 * 28 = 4.2 minutes. 

When the expected workload is determined, a choice is to be made on how to allocate this to time 

slots. We want the expected workload to span 28 minutes, and then be reduced to 15%, to give a 

good representation. See the second row of Table 4.1 – Example of placing expected workload (in 

minutes) into 5-minute time slots of what we want to do. 

 t=1 t=2 t=3 t=4 t=5 t=6 
1. Wrong 4.2 0 0 0 0 0 
2. Right 5*0.15 = 

0.75 
5*0.15 = 

0.75 
5*0.15 = 

0.75 
5*0.15 = 

0.75 
5*0.15 = 

0.75 
3*0.15= 

0.45 
Table 4.1 – Example of placing expected workload (in minutes) into 5-minute time slots 

The example above was about the expected workload to the Plaster room after the consultation. For 

each consultation type the expected workload before and after is calculated for each downstream 

department. Figure 4.4 shows an example of all expected workload for a single consultation type. 

 

Figure 4.4 – Example of expected workload (in minutes) before and after for all downstream departments of one 
consultation 

Expected workload – all workload at time t for department d 
The calculation of workload from one consultation for one downstream department is discussed in 

the previous paragraphs, this section explains how the expected workload of multiple consultations 

and multiple schedules is aggregated. Figure 4.5 shows the example schedules. Doctor 1 starts a 

‘Repeat’ consultation at time t=6, doctor 2 starts a ‘Discharge’ consultation at time t=1, and doctor 3 

starts a ‘New’ consultation at time t=7. 

 

Figure 4.5 – Example of three schedules for workload aggregation explanation 

A consultation may cause workload for downstream departments during a certain time before the 

consultation starts, and a certain time after the consultation has ended. The index i indicates the 

number of slots before (or after) the start (end) of the consultation. For this simplified example 

workload for downstream departments has a maximum offset of 3 time slots (i=3). For reference the 

real problem has a maximum offset i=16. 
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expectedWorkloadBefore i=1 i=2 i=3 

New 4.3 minutes 4.3 minutes 4.1 minutes 

Repeat 3.9 minutes 3.9 minutes 1.2 minutes 

Discharge 3.5 minutes 3.5 minutes 0.2 minutes 

Table 4.2 – Mock figures of expected workload after for Radiology for each time offset i  

expectedWorkloadAfter i=1 i=2 i=3 

New 3.8 minutes 3.8 minutes 3.2 minutes 

Repeat 3.6 minutes 3.6 minutes 2.1 minutes 

Discharge 1.7 minutes 1.7 minutes 1.1 minutes 

Table 4.3 – Mock figures of expected workload after for Radiology for each time offset i 

The tables above show some mock figures for expected workload at Radiology before (Table 4.2) and 

after (Table 4.3) the consultations. We will show two example calculations. The first example is 

simplified and only checks for workload before consultation starts. The second example calculation is 

complete and shows what the model does to calculate the total expected workload for a department 

per time slot. 

Calculation example one: The expected workload for the Radiology department at time t=3 is 

calculated as follows. 

+ i=1, does any consultation start one time slot later (t+i → 3+1 → t=4)? No 

+ i=2, does any consultation start two time slots later (t+i → 3+2 → t=5)? No 

+ i=3, does any consultation start three time slots later (t+i → 3+3 → t=6)? Yes, the repeat 

consultation of Doctor 1. The amount of workload expected i=3 time slots before its start is 

1.2 minutes 

Thus, the total expected workload for the Radiology department at time t=2 is 1.2 minutes. It works 

by checking if any consultations start at time 𝑡 + 𝑖. Calculation example one is simplified since it only 

looked at workload before consultations. The second calculation example will be complete because it 

includes both the calculation of workload before and after consultations. 

Calculation example two: the expected workload for the Radiology department at time t=4 is 

calculated as follows: 

+ i=1 

o does any consultation start one time slot later (t+i → 4+1 → t=5)? No 

o does any consultation end one time slot before? 

▪ Consultations with duration 3: (t-consultationDuration-i+1 → 4 - 3 - 1 + 1 → 

t=1). Yes, the discharge consultation of Doctor 2 has a duration of 3 time 

slots, and starts at time t=1, and ends at t=3. The amount of workload 

expected i=1 time slot after its end is 1.7 minutes. 

▪ Consultations with duration 4: (t-consultationDuration-i+1 → 4 - 4 - 1 + 1 → 

t=0). No 
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+ i=2 

o does any consultation start two time slots later (t+i → 4+2 → t=6)? Yes, the repeat 

consultation of Doctor 1. The amount of workload expected i=2 time slots before its 

start is 3.9 minutes 

o does any consultation end two time slots before? 

▪ Consultations with duration 3: (t-consultationDuration-i+1 → 4 - 3 - 2 + 1 → 

t=0). No 

▪ Consultations with duration 4: (t-consultationDuration-i+1 → 4 - 4 - 2 + 1 → 

t=-1). No 

+ i=3 

o does any consultation start three time slots later (t+i → 4+3 → t=7)? Yes, the new 

consultation of Doctor 3. The amount of workload expected i=3 time slots before its 

start is 4.1 minutes 

o does any consultation end three time slots before? 

▪ Consultations with duration 3: (t-consultationDuration-i+1 → 4 - 3 - 3 + 1 → 

t=-1). No 

▪ Consultations with duration 4: (t-consultationDuration-i+1 → 4 - 4 - 3 + 1 → 

t=-2). No 

The total expected workload at the Radiology department at time t=4 is 9.7 minutes (1.7 + 3.9 + 4.1). 

The calculation works by checking if any workload from before a consultation needs to be added, and 

thus checks if any consultations start at time 𝑡 + 𝑖. The model also checks if any workload from after 

a consultation needs to be added, and checks if any consultations end at time 𝑡 −

𝑐𝑜𝑛𝑠𝑢𝑙𝑡𝑎𝑡𝑖𝑜𝑛𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 − 𝑖 + 1. 

This calculation example was for one department. For each department the calculation is performed 

separately (with the respective expected workload parameters for that department) to reach a total 

expected workload at each time slot t for each separate department d. 

Sliding window 
For the cases where matching the expected workload and the norm is not important at the time 

scale of one time slot (5 minutes in this case), the sliding windows give the option to aggregate 

deviation from the norm over multiple time slots. How many time slots are aggregated can be chosen 

by the user. If the smallest time scale is important, the sliding window width can be set to 1. See 

Appendix sliding window for a visualisation of how the aggregation spans multiple time slots. 
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4.4 Model implementation in software 
The MILP model is implemented in the software package AIMMS. 

 

Figure 4.6 – Screenshot of the model implementation in AIMMS 

See Figure 4.6 for a screenshot of the model implementation in the AIMMS software package and 

shows the result page. An overview of the generated schedule for each doctor is given at the top of 

the page, and the expected workload graphs at the bottom of the page. These visual representations 

give a clear image of expected downstream demand of the generated blueprint schedule.  

4.5 Model verification and validation 
Model verification and validation is performed. During model verification the model is checked to run 

like we expect it to. A few examples of items that are verified: 

✓ The model schedules the correct number of consultations for each schedule 

✓ The model blocks the correct number of time slots corresponding with the consultation 

durations 

✓ The model adds expected workload before consultations correctly 

✓ The model adds expected workload after consultations correctly 

✓ The absolute deviation from the norm is calculated correctly 

For model validation the output of the model is presented to hospital staff responsible for the 

session schedules to ask if the output is expected, to spot any irregularities and to ask if any 

requirements (constraints) are missing. Based on the feedback of hospital stakeholders and the 

problem owner in Logistiek Bedrijf the model is extended from the first version through a number of 

iterations to finally reach the model as described above in Section 4.3. In the following section the 

model extensions and how they are implemented in the model are discussed. 

4.6 Model extension options 
All extensions add to the base version of the model, see Appendix G for the base model definition. 

The new model definitions described in these sections are relative to the base model and the model 

extension options before it. 
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4.6.1 5-minute time slots 
The first version of the model has one consultation per time slot. The limitation of this is all 

consultations need to be of identical duration. If all consultations are e.g. 15 minutes this works, but 

if one consultation type takes 10 minutes and another type takes 20 minutes it is impossible to use 

the first version of the model. 

An interesting model extension is to work with smaller time slots, where a consultation can span 

multiple time slots. One slot can be chosen to represent 5 minutes. Consultation durations can then 

be defined as a multiple of that (e.g. 10 or 15 minutes). 

Decision variable 𝑋𝑐,𝑡 now indicates if a consultation of type c starts at time t. A new variable is 

added to the model: 𝑌𝑐,𝑡 which indicates if a consultation of type c is taking place at time t. The 

parameter 𝑐𝑜𝑛𝑠𝑢𝑙𝑡𝑎𝑡𝑖𝑜𝑛𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑐 is added to specify per consultation type the number of time 

slots it takes. 

Variable Range Description 

Yc,t {0, 1} Binary Consultation type c is taking place at 
time t (1=yes) 

Parameter Range Description 

consultationDurationc ∈ ℕ \{0} The duration of a consultation of 
type c in number of time slots  

Constraint ∑ 𝑋𝑐,𝑡𝑐 ≤ 1   ∀𝑡 is changed to restrict no more than 1 consultation taking place at the 

same time: ∑ 𝑌𝑐,𝑡𝑐 ≤ 1   ∀𝑡. Similarly, the constraints that ensure no consultations before first slot 

and after last slot switch 𝑋𝑐,𝑡 for 𝑌𝑐,𝑡. For the constraint that sets the downstream workload the 

second term is adjusted to take consultation duration into account, the new formulation is: 

𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝑑,𝑡 = ∑(𝑋𝑐,𝑡+1 ∗ 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝐵𝑒𝑓𝑜𝑟𝑒𝑐,𝑑)

𝑐

+  ∑(𝑋𝑐,𝑡−𝑐𝑜𝑛𝑠𝑢𝑙𝑡𝑎𝑡𝑖𝑜𝑛𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑐+1 ∗ 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝐴𝑓𝑡𝑒𝑟𝑐,𝑑) 

𝑐

     ∀𝑑, 𝑡 

Two new constraints are added. One constraint so the variable Yc,t is 1 when Xc,t is 1, and for the 

correct number of time slots  - the consultation duration - after Xc,t as well. The other constraint to 

ensure if a consultation lasts three time slots, three time slots are blocked (Yc,t is 1), to avoid a 

consultation with duration three to start at the last slot, which would effectively schedule it as a 

consultation with duration one. 

𝑌𝑐,𝑡 = ∑ 𝑋𝑐,𝑡−𝑡𝑡

𝑡𝑡=𝑐𝑜𝑛𝑠𝑢𝑙𝑡𝑎𝑡𝑖𝑜𝑛𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑐−1

𝑡𝑡=0

                                      ∀𝑐, 𝑡 

∑ 𝑌𝑐,𝑡

𝑡

= 𝑐𝑜𝑛𝑠𝑢𝑙𝑡𝑎𝑡𝑖𝑜𝑛𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑐 ∗ ∑ 𝑋𝑐,𝑡

𝑡

                        ∀𝑐 

 

4.6.2 Downstream workload multiple time slots offset 
In the base model the workload at downstream departments either arrives before the consultation 

at t-1, or afterwards at t+1. However, if workload for a patient takes longer than one time slot (in our 

case longer than 5 minutes) a better representation is to spread the workload over multiple time 

slots (as explained in Section 4.3.7). Additionally, some demand at downstream departments will not 

arrive right before or after the consultation, but after some travel time. 
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The parameters 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝐵𝑒𝑓𝑜𝑟𝑒𝑐,𝑑 and 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝐴𝑓𝑡𝑒𝑟𝑐,𝑑 are extended with 

index i that represents the number of time slots offset. The set I defines the time offsets {1..i}. 

Set Element Description 

I i Time offsets, used to define a demand 
profile 1..i time slots before the start 
of the consultation, and 1..i time slots 
after the end of a consultation. 

 

Parameter Range Description 

expectedWorkloadBeforec,d, i [0, ∞) Expected workload (in minutes) at 
department d, i time slots before the 
start of consultation type c 

expectedWorkloadAfterc,d, i [0, ∞) Expected workload (in minutes) at 
department d, i time slots after the 
end of consultation type c 

 

The workload constraint is also adjusted to call the correct expected workload at the correct time. 

See Section 4.3.7 for an explanation of the workload calculation. 

𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝑑,𝑡 = ∑ ∑(𝑋𝑐,𝑡+𝑖 ∗ 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝐵𝑒𝑓𝑜𝑟𝑒𝑐,𝑑,𝑖)

𝐼

𝑖=1𝑐

+  ∑ ∑(𝑋𝑐,𝑡−𝑐𝑜𝑛𝑠𝑢𝑙𝑡𝑎𝑡𝑖𝑜𝑛𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑐−𝑖+1 ∗ 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝐴𝑓𝑡𝑒𝑟𝑐,𝑑,𝑖)

𝐼

𝑖=1𝑐

    ∀𝑑, 𝑡 

 

4.6.3 Create multiple blueprint schedules simultaneously 
In the base model only one blueprint schedule is created, however ideally the model can create 

multiple blueprint schedules simultaneously. If the same blueprint schedule is used multiple times 

the positive effect of the model for one schedule will likely be undone because the multiple identical 

schedules will amplify the low and high points of patient flow. 

We extend the model to allow for multiple separate schedules to be generated by the model and it 

can optimize the combined outflow of all schedules simultaneously. The set of Schedules S is added, 

and the 𝑐𝑜𝑛𝑠𝑢𝑙𝑡𝑎𝑡𝑖𝑜𝑛𝑠𝑇𝑜𝐵𝑒𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑𝑠,𝑐 parameter now specifies the number of consultation type 

c to be scheduled in schedule s. Variables 𝑋𝑠,𝑐,𝑡 and 𝑌𝑠,𝑐,𝑡 now specify the schedule s. 

Set Element Description 

S  s Schedules 

 

Parameter Range Description 

consultationsToBeScheduleds,c ∈ ℕ The number of consultation type c to 
be scheduled in schedule s 
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Variable Range Description 

Ys,c,t {0, 1} Binary Consultation type c is taking place at 
time t in schedule s (1=yes) 

Xs,c,t {0, 1} Binary Start consult type c at time slot t in 
schedule s (1=yes, 0=no) 

 

Many constraints are extended such that each schedule has the same restrictions as the single 

schedule in the base model. The maximum of one consultation taking place at one time per schedule: 

∑ 𝑌𝑠,𝑐,𝑡𝑐 ≤ 1    ∀𝑡, 𝑠. The correct number of consultations need to be scheduled in each schedule: 

∑ 𝑋𝑠,𝑐,𝑡𝑡 = 𝑐𝑜𝑛𝑠𝑢𝑙𝑡𝑎𝑡𝑖𝑜𝑛𝑠𝑃𝑒𝑟𝑇𝑦𝑝𝑒𝑐,𝑠    ∀𝑐, 𝑠. No consultations before firstSlot or after lastSlot: 

∑ 𝑌𝑠,𝑐,𝑡
𝑡=𝑓𝑖𝑟𝑠𝑡𝑆𝑙𝑜𝑡 − 1
𝑡=1 = 0    ∀𝑐, 𝑠  and  ∑ 𝑌𝑠,𝑐,𝑡

𝑇
𝑡=𝑙𝑎𝑠𝑡𝑆𝑙𝑜𝑡 + 1 = 0    ∀𝑐, 𝑠. 

The calculation of workload now also sums over all schedules s: 

𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝑑,𝑡 = ∑ ∑ ∑(𝑋𝑠,𝑐,𝑡+𝑖 ∗ 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝐵𝑒𝑓𝑜𝑟𝑒𝑐,𝑑,𝑖)

𝐼

𝑖=1𝑐𝑠

+ ∑ ∑ ∑(𝑋𝑠,𝑐,𝑡−𝑐𝑜𝑛𝑠𝑢𝑙𝑡𝑎𝑡𝑖𝑜𝑛𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑐−𝑖+1

𝐼

𝑖=1𝑐𝑠

∗ 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝐴𝑓𝑡𝑒𝑟𝑐,𝑑,𝑖)                              ∀𝑑, 𝑡 

 

 

 

4.6.4 Specify units, with different appointment characteristics per unit 
Another request is to add the unit specification (e.g. Knee or Spine) to the model. The transition 

probabilities for workload are different between units, and doctors will only see certain type of 

patients (e.g. knee or hip) anyways, so the information is available when the staff schedule is made 

(and before the blueprint session schedules are applied). 

The set of units U is added to the model. Many parameters are extended with index u to specify the 

unit. 

Set Element Description 

U  u Units 
 

Parameter Range Description 

consultationsToBeScheduleds,c,u ∈ ℕ The number of consultation type c of 
unit u to be scheduled in schedule s 

expectedWorkloadBeforec,u,d, i [0, ∞) Expected workload (in minutes) at 
department d, i time slots before the 
start of consultation type c for unit u 

expectedWorkloadAfterc,u,d, i [0, ∞) Expected workload (in minutes) at 
department d, i time slots after the 
end of consultation type c for unit u 
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Variable Range Description 

Ys,c,u,t {0, 1} Binary Consultation type c of unit u is taking 
place at time t in schedule s (1=yes) 

Xs,c,u,t {0, 1} Binary Start consult type c of unit u at time 
slot t in schedule s (1=yes, 0=no) 

 

Again, many constraints are extended with index u for unit. The correct number of consultations to 

be scheduled: ∑ 𝑋𝑠,𝑐,𝑢,𝑡𝑡 = 𝑐𝑜𝑛𝑠𝑢𝑙𝑡𝑎𝑡𝑖𝑜𝑛𝑠𝑃𝑒𝑟𝑇𝑦𝑝𝑒𝑠,𝑐,𝑢    ∀𝑠, 𝑐, 𝑢. Block time slots for consultations: 

𝑌𝑠,𝑐,𝑢,𝑡 = ∑ 𝑋𝑠,𝑐,𝑢,𝑡−𝑡𝑡
𝑡𝑡=𝑐𝑜𝑛𝑠𝑢𝑙𝑡𝑎𝑡𝑖𝑜𝑛𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑠,𝑐,𝑢−1

𝑡𝑡=0    ∀𝑠, 𝑐, 𝑢, 𝑡. Ensure total time blocked is correct: 

∑ 𝑌𝑠,𝑐,𝑢,𝑡𝑡 = 𝑐𝑜𝑛𝑠𝑢𝑙𝑡𝑎𝑡𝑖𝑜𝑛𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑐 ∗ ∑ 𝑋𝑠,𝑐,𝑢,𝑡𝑡    ∀𝑠, 𝑐, 𝑢. A maximum of one consultation per time 

slot in one schedule: ∑ ∑ 𝑌𝑠,𝑐,𝑢,𝑡𝑢𝑐 ≤ 1     ∀𝑠, 𝑡. No consultations before firstSlot or after lastSlot: 

∑ 𝑌𝑠,𝑐,𝑢,𝑡
𝑡=𝑓𝑖𝑟𝑠𝑡𝑆𝑙𝑜𝑡 − 1
𝑡=1 = 0      ∀𝑠, 𝑐, 𝑢 and ∑ 𝑌𝑠,𝑐,𝑢,𝑡

𝑇
𝑡=𝑙𝑎𝑠𝑡𝑆𝑙𝑜𝑡 + 1 = 0    ∀𝑠, 𝑐, 𝑢. 

The calculation of workload now includes the sum over all units U: 

𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝑑,𝑡 = ∑ ∑ ∑ ∑(𝑋𝑠,𝑐,𝑢,𝑡+𝑖 ∗ 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝐵𝑒𝑓𝑜𝑟𝑒𝑐,𝑢,𝑑,𝑖)

𝐼

𝑖=1𝑢𝑐𝑠

+  ∑ ∑ ∑ ∑(𝑋𝑠,𝑐,𝑢,𝑡−𝑐𝑜𝑛𝑠𝑢𝑙𝑡𝑎𝑡𝑖𝑜𝑛𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑠,𝑐,𝑢−𝑖+1

𝐼

𝑖=1𝑢𝑐𝑠

∗ 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝐴𝑓𝑡𝑒𝑟𝑐,𝑢,𝑑,𝑖)      ∀𝑑, 𝑡 

 

4.6.5 Model DUO and TRIO sessions 
The base model considers UNO schedules (just a physician without supporting staff). However, DUO 

and TRIO sessions are common, but they are different from UNO sessions in the following ways: 

- Support staff may need longer per consultation 

- Supervision time needs to be scheduled, for the physician to give advice and training to the 

support staff 

At the present we do not have information on the exact rules of current DUO/TRIO sessions (when 

exactly is support needed, how often), and from interviews an indication that the current way might 

not be the best suited either. This is likely not a straightforward extension. Two approaches are 

possible. We will first discuss the simpler extension, which is also the final version described in 

Section 4.3. The second more elaborate extension described in Section 4.6.6 is not used for this 

research, but is promising for further research and as part of a broader implementation. 

The definition of consultation duration for support staff means we add index s to the 

𝑐𝑜𝑛𝑠𝑢𝑙𝑡𝑎𝑡𝑖𝑜𝑛𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑐 parameter so different durations can be set per schedule. Additionally, the 

feedback from stakeholders was to allow for different durations per unit u. 

Parameter Range Description 

consultationDurations,c,u ∈ ℕ \{0} The duration of a consultation of type 
c for unit u in schedule s in number of 
time slots  

 

Constraints containing parameter 𝑐𝑜𝑛𝑠𝑢𝑙𝑡𝑎𝑡𝑖𝑜𝑛𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 are updated to include the s and u 

indexes. For the addition of supervision time, a new consultation type ‘Supervision’ is added to set C. 
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4.6.6 Synchronised consultation starts across schedules 
A likely requirement of DUO or TRIO session schedule is that supervision occurs at the same time for 

all linked schedules. So, if Doctor 1 has two support staff assigned, supervision time starts at the 

same time in all three schedules. 

We model this by defining 𝐶𝑠, the subset of consultation types that need to have a synchronised start 

in all linked schedules. To define which schedules are linked, we define set 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝐺𝑟𝑜𝑢𝑝𝑠 (SG), 

and parameter 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝐼𝑠𝐼𝑛𝐺𝑟𝑜𝑢𝑝𝑠,𝑠𝑔 which is 1 when schedule s belongs to schedule group sg. 

Finally new decision variable 𝑆𝑡𝑎𝑟𝑡𝑆𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑖𝑠𝑒𝑑𝐶𝑜𝑛𝑠𝑢𝑙𝑡𝐴𝑡𝑇𝑖𝑚𝑒𝑇𝑠𝑔,𝑐,𝑢,𝑡 is added that is 1 when 

consultation type c and unit u starts at time t for all schedules in schedule group sg. 

Set Element Description 

SG  sg Schedule groups, is used to link 
schedules that need synchronised 
starts of certain consultation types 

 

Subset Element Description 

Cs C (consultation types) Synchronised consultations, a subset 
of consultations that need to have the 
same starting time in all schedules s in 
a schedule group sg 

 

Parameter Range Description 

scheduleIsInGroups,sg {0, 1} Binary Indicates if schedule s belongs to 
schedule group sg 

 

Variable Range Description 

StartSynchronisedConsultAtTimeTsg,c,u,t {0, 1} Binary Start (synchronised) consult type c of 
unit u at time slot t for all schedules in 
schedule group sg 

 

Additional constraints are needed to make the synchronised consultation starts work. 

Each schedule belongs to at most one schedule group: 

∑ 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝐼𝑠𝐼𝑛𝐺𝑟𝑜𝑢𝑝𝑠,𝑠𝑔 ≤ 1                          ∀𝑠

𝑠𝑔

 

If the decision is to not start a synchronised consultation, ensure no schedule in the group starts it: 

∑ 𝑋𝑠,𝑐,𝑢,𝑡

𝑠 ∈ 𝑠𝑔

    ≤   𝑏𝑖𝑔𝑀 ∗ 𝑆𝑡𝑎𝑟𝑡𝑆𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑖𝑠𝑒𝑑𝐶𝑜𝑛𝑠𝑢𝑙𝑡𝐴𝑡𝑇𝑖𝑚𝑒𝑇𝑠𝑔,𝑐,𝑢,𝑡                 ∀𝑠𝑔, 𝑐 ∈ 𝐶𝑠, 𝑢 , 𝑡  

When the decision is made to start the synchronised consultation, ensure all in the group start it: 

∑ 𝑋𝑠,𝑐,𝑢,𝑡

𝑠 ∈ 𝑠𝑔

 ≥  ∑ 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝐼𝑠𝐼𝑛𝐺𝑟𝑜𝑢𝑝𝑠,𝑠𝑔

𝑠 ∈ 𝑠𝑔

∗ 𝑆𝑡𝑎𝑟𝑡𝑆𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑖𝑠𝑒𝑑𝐶𝑜𝑛𝑠𝑢𝑙𝑡𝐴𝑡𝑇𝑖𝑚𝑒𝑇𝑠𝑔,𝑐,𝑢,𝑡                               ∀𝑠𝑔, 𝑐 ∈ 𝐶𝑠, 𝑢 , 𝑡   
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4.7 Conclusion 
We have defined and implemented a MILP model that is able to generate blueprint schedules based 

on a given number of consultation types. It can generate multiple blueprint schedules 

simultaneously, where the number of consultations to be scheduled can be different for each 

schedule. Each schedule can contain consultation types from different units (e.g. Spine, or Knee), and 

the correct demand profile will be applied.  

To accommodate different units and also doctors in training, the consultation duration can be set for 

each combination of schedule, consultation type, and unit. 

The results of the model are checked to satisfy the requirements as derived from interviews with 

staff and an staff member experienced with the session schedules. More extensive validation was 

not possible due to insufficient spare time of schedulers and planners at during this stage of the 

research project. However, I expected no large changes during further validation. See Section 6.1 for 

more discussion about additional validation. 

The model will determine the optimal sequence and consultation starting time to minimize the 

difference between expected downstream workload and the norm and create more smooth demand 

patterns at downstream departments. It achieves this by minimizing the maximum deviation from 

the norm for each department. In the next chapter the model will be tested with real world blueprint 

schedules that are currently in use in the hospital.  
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5 Experiments and results 
In this chapter the model will be tested with blueprint schedules to check how much improvement 

can be expected by using this model over the current way of working. Section 5.1 discusses the setup 

of the experiments. Section 5.2 discusses the parameter settings used in the experiments. Section 5.3 

discusses the algorithm running time, and Section 5.4 discusses the experiments. Section 5.5 

describes the approach for Monte Carlo simulation used to asses the transitions in a stochastic 

manner. 

5.1 Experiment design 
For a sample of 6 sessions the used blueprint schedules are retrieved. These contain the schedules of 

multiple doctors in the same session.  

 Number of doctors Total number of 
consultations 

Wednesday morning 6 99 

Wednesday afternoon 6 80 

Thursday morning 5 74 

Thursday afternoon 8 111 

Friday morning 6 88 

Friday afternoon 5 61 

Table 5.1 – Sample of blueprint schedules for used for the experiments 

From each individual blueprint schedule the number of each consultation type is counted. The model 

then generates a blueprint schedule, given the same number of each consultation type for each 

doctor. The model outputs a weighted sum of the maximum absolute deviation from the norm, 

indicating how well the generated blueprint schedule matches expected workload to the desired 

norm. 

This figure is compared with the score the original blueprint schedule gets from the model. The 

model in AIMMS allows for a schedule to be entered manually. By comparing the figure for the 

generated blueprint schedule and the original schedule, we get an impression of the type of 

improvement that can be achieved by using this model. 

5.2 Parameter settings 
Set Values 

Consultation types New, repeat, discharge, POP, 
Supervision, Empty 

Departments OOD, RAD, Plaster, PREO 

Schedules Depends on the case 

Units Upper extremities, Hip, Knee, 
Spine, Foot  

 

Parameter Values 

consultationDurations,c,u Depends on the case 

consultationsToBeScheduleds,c,u Depends on the case 

normd,t The total workload for that department divided by the 
number of open slots. Depends on the case 
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expectedWorkloadBeforec,u,d,i Identical for all experiments. Maximum offset is 16 
time slots.  

expectedWorkloadAfterc,u,d,i Identical for all experiments. Maximum offset is 16 
time slots. 

firstSlot 19, which means 18 slots beforehand (that represent 
90 minutes) are closed. A minimum of 16 slots is 
needed because of the maximum workload offset 

lastSlot 60, which gives 3.5 hours of scheduled time. If the 
existing schedule in a case needs more slots, the last 
slot is increased until exactly that number. 

numberOfSlots 84, since this allows for at least 16 closed slots before 
the first slot and after the last slot. In total this spans 7 
hours. 

departmentWeightd 0.25 for all four departments 

slidingWindowWidth 3, meaning workload is aggregated over a moving 15 
minute window 

bigM 150, since the expected workload in one time slot is 
not going to exceed 150 minutes of workload in the 5 
minutes one time slot represents. 

 

The sets and parameters indicated with ‘depends on the case’ for the example case of Thursday 

afternoon are specified in Appendix H. 

 

5.3 Algorithm running time 
The experiments are performed on a laptop with the Intel i7-7600U CPU, with a clock speed of 3.05 

GHz. Table 5.2 shows the running time for the largest problem instance (Thursday afternoon). The 

model seems to find a good solution quite fast. However since the problem is tactical in nature we 

choose a maximum running time of 8 hours which will allow a run overnight. 

Creation 
method 

Time limit WeigthedDeviationFromNorm Absolute 
improvement 

% 
improvement 

Improvement 
per second  

Original 
 

19.3 
   

Model (15s) 15 12.1 7.232 37.3% 0.02489 

Model (30s) 30 12.1 7.232 37.3% 0.01245 

Model (60s) 60 12.1 7.250 37.4% 0.00624 

Model (2 
min) 

120 12.1 7.250 37.4% 0.00312 

Model (5 
min) 

300 11.8 7.480 38.6% 0.00129 

Model             
(10 min) 

600 11.8 7.505 38.8% 0.00065 

Model            
(30 min) 

1800 11.8 7.565 39.1% 0.00022 

Model               
(8 hours) 

28800 11.7 7.622 39.4% 1.4E-05 

Table 5.2 – Running time and improvement of objective function 
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Smaller problem instances need less time as show in Table 5.3, where most schedules reach their 

optimum before 8 hours. 

Schedule Runtime 
(sec) 

Score 
manual 

Score 
generated 

Integrality gap Iterations Nodes 

Wednesday 
morning 

1762 8.94 3.48 0.00% 31239976 120271 

Wednesday 
afternoon 

28800 7.82 3.22 0.29% 207899699 317600 

Thursday 
morning 

19588 9.76 3.02 0.00% 164409378 218645 

Thursday 
afternoon 

28800 12.12 7.06 6.19% 144145462 859417 

Friday morning 1351 7.41 2.89 0.00% 24124870 48289 

Friday afternoon 476 7.17 2.78 0.00% 7977590 21395 
Table 5.3 – Running time used for the experiments 

 

5.4 Experiments 
For each of the six sessions the experiments are performed. The original schedule is entered into 

AIMMS, and the maximum deviation from the norm is calculated. Then the model is used to generate 

a new schedule and the same calculation is used to get a score for the generated schedule. The 

runtime of the model is set to max. 8 hours, however some models reach their optimum earlier. 

For the quality of the generated schedule we compare three performance measures against the 

original (manual) schedule: 

• The maximum deviation from the norm 

• The sum of deviations from the norm 

• The coefficient of variation from the norm 

The maximum deviation from the norm is calculated for each downstream department and is the 

biggest absolute difference between the desired amount of workload and the amount of workload 

the model expects. 

The sum of deviations from the norm is the total absolute deviation difference between the norm 

and expected workload over all time slots. 

The coefficient of variation (CV) is defined as the standard deviation divided by the mean of a data 

set: 
𝜎

𝜇
. It gives a good indication of how large the variability is relative to the mean, and allows 

comparison between departments. 

These three measures are calculated per downstream department, and a weighted sum calculates 

the final measure, for now we have used a weight of 0.25 for each department. For all measures a 

lower score is better. The results of the generated schedules are discussed in the following 

paragraphs. 
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Figure 5.1 – The performance of the generated schedules in % of the original schedule 

Figure 5.1 shows the solution quality on the three measures as compared to the original. The score 

for the original (manual) schedules is 100% for each of these measures. The results show a significant 

improvement in all three measures. The maximum deviation is reduced to approximately 40% of the 

original. The sum of deviation from the norm over all time slots is also reduced to approximately 60% 

of the original schedules. Finally, the coefficient of variation is significantly reduced to approximately 

50% of the original schedules.  

Appendix I.i contains the difference in performance in absolute difference in minutes. Appendix I.ii 

contains a complete overview of all percentage and absolute differences, split per department for a 

detailed overview. 

For Thursday afternoon the workload graphs before and after are shown. Figure 5.2 shows the 

expected demand pattern, each colour is a different downstream department. This is made with a 

moving average (sliding window) of 3 time slots, and yet the fluctuations in expected workload are 

quite noticeable.  

 

Figure 5.2 – Demand pattern for the original schedules on Thursday afternoon 
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Figure 5.3 – Demand pattern for generated schedules on Thursday afternoon 

Figure 5.3 shows the demand pattern of the generated schedules. It shows the maximum peaks of 

demand are reduced. In addition, the workload is spread much move evenly throughout the day. 

Finally, the green downstream department represents the preoperative screening department, 

where walk-in spots are available at the end of the afternoon. The norm for desired workload for the 

preoperative screening department is increased near the end of the afternoon, and the model 

behaves as expected and schedules the consultations with patients that are likely to go to 

preoperative screening closer to the available walk-in screening spots, reducing waiting time 

between departments for the patients. The changes in the sequence of consultation for all schedules 

are shown on the next page by Table 5.4 and Table 5.5. 

 

Table 5.4 – Original schedule for Thursday afternoon 

Doctor 1 Doctor 2 Doctor 3 Doctor 4 Doctor 5 Doctor 6 Doctor 7 Doctor 8

1 POP POP POP New New New New New

2 New New New Repeat Repeat Repeat POP POP

3 Repeat Empty Empty Repeat New New Repeat Repeat

4 POP POP POP POP New Repeat New New

5 Repeat Repeat New New Repeat New POP Repeat

6 New New Empty Discharge New New Repeat New

7 Discharge Empty Repeat New Repeat Repeat New Repeat

8 Repeat Repeat New POP New New POP New

9 New POP Empty Repeat Repeat Discharge Repeat Repeat

10 POP New Repeat New Repeat New Repeat Repeat

11 New Empty POP Repeat Repeat New Discharge Repeat

12 Discharge Repeat New POP Repeat Repeat Discharge

13 Repeat New Empty Repeat Repeat

14 Repeat Discharge New Discharge Repeat

15 Repeat New

16 Discharge New

17 Discharge New



 
41 

 

Table 5.5 – Generated schedule for Thursday afternoon 

5.5 Monte Carlo simulation 
The MILP model uses averages for the expected workload of the consultations. However, in reality 

the patient either transitions to the downstream departments or not, meaning either 0% or 100% of 

the workload for that specific transition is realised. We want to investigate whether the expected 

workload calculated by the MILP model gives a reasonable indication of the workload to expect, or if 

the interaction between multiple transitions produces unwanted patterns. If the actual workload 

distribution is heavily skewed to more or less workload than the MILP model predicts, then 

adjustments might need to be made to the MILP model, or it will at least aid with the appropriate 

interpretation of the expected workload results. 

We approach this stochastic evaluation of the transitions through numerical experiments with the 

Monte Carlo method. The Monte Carlo method is based on repeated random sampling to obtain 

numerical results (Metropolis & Ulam, 1949). We develop a Monte Carlo simulation in the statistical 

software package R in order to test the behaviour of expected workload around the mean predicted 

by the MILP model. 

In short, our Monte Carlo simulation takes the following input: 

• Transition probabilities for each consultation type and unit, to each department, before or 

after the consultation 

• The expected workload pattern for each consultation type, unit, for each department (given a 

100% transition probability) 

• Consultation durations for each consultation type, unit, and schedule 

• The generated schedule from the MILP with the starting time for each consultation 

In each Monte Carlo iteration the entire generated schedule from the MILP model is traversed, and 

for each consultation it is determined if any transitions to downstream departments occur. 

For example, if a New consultation is scheduled, we determine if the patient will visit the 

Orthopaedic OD, Radiology, the Plaster room, and/or Screening before the consultation, and/or after 

the consultation. This means in total eight possible transitions are checked for each scheduled 

consultation. 
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We take eight independent draws from the binomial distribution to determine the realisation of each 

transition. The binomial distribution is appropriate since only two possible outcomes exist: either 

that transition occurs, or it does not. The binomial distribution has the following probability mass 

function (Hirsch, 1957): 

𝑃(𝑋 = 𝑘) = (
𝑛
𝑘

) 𝑝𝑘(1 − 𝑝)𝑛−𝑘 

The formula describes the probability of getting exactly k successes in n trials where the probability 

of success in a single trial is equal to p. The number of trials (n) for each individual transition is  1. If 

the outcome is a transition occurs to that department, the appropriate workload is added to that 

department at the correct times. We perform 10,000 iterations in each Monte Carlo run, to reduce 

the stochastic uncertainty to a large extent, and the run time of the model is relatively short at 

approximately 20 minutes. The code can even be optimized further to utilize more than 1 CPU core 

for even quicker run times. Appendix J contains the complete R script used for the analysis. 

From simulation output to workload graphs 
The output of the simulations is analysed, and converted to graphs indicating the spread of workload 

for each department at each time t. See Figure 5.4 and Figure 5.5 for examples of the workload 

graphs that are calculated with the Monte Carlo simulation results. We show the spread of the 

workload through the following percentiles: 5th, 25th, 50th (median line), 75th, 95th. In addition, we 

plot the deterministic average (as predicted by the MILP model) in red, and the average value from 

the Monte Carlo runs in yellow. Finally the dotted red line indicates the norm per time slot, what the 

model tries to match the workload to. 

The meaning of the percentiles is as follows. For example in Figure 5.4 the 95th percentile indicates at 

time t=33 is approximately 23 minutes of workload. This means that in 95% of the 10,000 iterations 

in the Monte Carlo simulation, the actual workload at time t=33 is 23 minutes or less. The 75th 

percentile is approximately 18 minutes, so in 75% of the cases the workload is 18 minutes or less.  

 

 

Figure 5.4 – A workload graph for the Radiology department, based on Monte Carlo simulation 
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Figure 5.5 – A workload graph for the Screening department, based on Monte Carlo simulation 

These two graphs show the average workload predicted by the MILP model (red line) is exactly  

matched by the average of workload from the Monte Carlo simulation (yellow line), which is correct. 

The mean and median are very close, and the percentiles are approximately the same distance above 

or below the median. This means the average workload used by the MILP model can give a 

reasonably good indication of the workload to expect per department. Some time slots do seem to 

have a wider spread than others, for example in Figure 5.4 the spread at time slot 19 is more narrow 

than time slot 27, but not at the level that we deem it a necessity to incorporate it into the model. 

Appendix J contains the Monte Carlo graphs for the Thursday afternoon experiment of all 

departments. 

 

 

5.6 Conclusion 
The model improves on the original schedules significantly. The blueprint schedules generated by the 

model cause less demand fluctuation, reduce the height of expected demand peaks and can take 

timing into account, like with the preoperative screening patients to reduce waiting time for patients 

by simply switching the sequence of appointments. The Monte Carlo simulation is a useful tool to 

predict the spread of workload around the average, however the results from the MILP model still 

hold up, and give a good indication of the workload that can be expected. 

In addition to this, the hospital is moving towards more standardized blueprint schedules. If identical 

schedules are used for multiple doctors, the demand patterns will be amplified, and will likely be 

worse than the current ‘original’ schedules, since they are currently quite different from each other.  
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6 Implementation 
The model shows promising results with regards to reducing the variability of downstream demand, 

and Logistiek Bedrijf sees potential in the model. This chapter discusses what steps are needed for 

implementation of the model. Section 6.1 discusses the additional validation steps. Section 6.2 

describes improvements in user interface. Section 6.3 discusses support in the organisation. Section 

6.4 describes the first steps if the model is in use. 

6.1 Additional validation 
Validation with planners and schedulers 
The model has been validated to a certain extent. The output of the model is checked with staff from 

Logistiek Bedrijf, and the schedules generated are generate reasonable schedules. However, the 

operational planners and schedulers did not have the time during this stage of the project to 

validate. Additional sanity checks need to be done with more hospital staff, in particular the planners 

and schedulers since they are aware of the requirements and wishes of doctors the schedules are 

created for. 

Investigate additional doctor’s requirements and wishes 
Additionally, the doctors are likely to have more requirements and wishes that are not known until a 

schedule that violates an ‘unwritten rule’ is proposed. The valid requirements can be added as hard 

constraints to the MILP model, and wishes can be disregarded, or implemented as soft constraints 

with a certain penalty that depends on the extend the soft constraint is violated. 

Implementation of model extension for DUO and TRIO schedules (synchronised consultations) 
The model extension described in Section 4.6.6 is not yet implemented in the model. It allows for 

linking individual schedules, and defining which consultation types need to be scheduled at the same 

time for these schedules. By implementing this in the model the model should be ready for overall 

implementation, however additional checks with planners and schedulers is needed to check if all 

requirements for DUO and TRIO schedules are met. 

6.2 User interface 
Improve visual representation of generated schedule to match HiX 
At this time, the AIMMS model produces clear graphs on the expected workload per department that 

results from a schedule, and it specifies for each schedule (e.g. doctor 1, doctor 2) the exact starting 

time of each consultation, and the consultation type and unit. The consultation duration is also 

specified. 

Currently the generated schedule needs to be manually converted to a blueprint session schedule in 

scheduling software HiX. A visual representation that matches the user interface for input in HiX is 

recommended for easier use, and to make input error less likely. This can be achieved in AIMMS or 

by creating an automatic export to Excel. 

Automatic loading of parameters from Excel 
Currently the expected workload parameters, the norm, consultation duration etc are manually 

copied and pasted from many excel files. Merging parameters into one excel file, and configuring 

AIMMS to automatically load the parameters from this file will increase ease of use. Having all 

parameters in one file will also increase ease of use. 

Input validation 
Currently AIMMS will simply state the problem is not feasible if some parameters are set incorrectly. 

However, some validation on input should be performed to check the consultations actually fit in the 
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schedule, if no consultations overlap in the manual schedule, if consultation durations are defined, 

etc.  

6.3 Organisational support 
Support from people in the organisation is critical for successful implementation. The schedulers, 

doctors, and managers need to be involved in the discussion to present the benefits of the new way 

of working by using the blueprint session schedules generated by the model. Depending on the 

hierarchical organisation of the hospital, not all staff need to agree before it can be implemented, 

but all stakeholders concerns should be considered seriously. Expected benefits of patient waiting 

time, and more stable workload are hopefully benefits they also want to strive for. The costs of 

implementation are increased complexity of scheduling, and a different order of consultations for 

doctors. 

The daily operation will not become more complex for the doctors, since the booking of 

consultations is not performed by them. For the planners that schedule patients in specific slots the 

situation will be the same, only the sequence of consultations will be different, but this will be 

defined in HiX. The only step where additional operational complexity is introduced is for the 

scheduling staff that manages and applies the blueprint session schedules into HiX. 

A problem that remains is how to import the generated blueprint session schedules into HiX. At this 

time no automated way is available, which means generated schedules need to be entered manually 

which is time consuming. The manual entry will be the main costs for implementation of the model. 

A suggestion is to have more standardised session schedules ready for the most common 

combinations. The schedules can be manually edited, and taking the generated schedules as a 

starting point will not reach the optimal value, it will still improve on the current situation 

significantly. Changes to the schedules can also be entered into the AIMMS model to evaluate if the 

changes will result in severe workload variability. If this is not the case, the manual adjustment in HiX 

can be carried out without completely importing an entirely new schedule into HiX. 

The schedules can be made to still adhere to doctors requirements, while balancing the downstream 

demand simply by changing the sequence and starting time of consultations. It seems plausible the 

organisation can be convinced of this new way of working. 

6.4 Model in use 
Use in tactical planning 
The model is suitable to use in the tactical level. Manual entry of certain standard blueprint 

schedules is recommended while automatic import into HiX is not possible. 

Staff training 
Scheduling staff will need to be trained to use this model. This should be relatively straightforward. 

The department Logistiek Bedrijf has a lot of experience with these type of models, and is able to 

understand the working of the model. They can train some scheduling staff on how to use the model, 

and check with them during the initial stages. The model itself should be relatively easy to use if the 

user interface improvements are completed. The expected workload 

Initial manual checks on generated schedules 
Initially the generated schedules will need to be checked by hand. If some problems arise, small 

adjustments can be made manually. If the number of adjustments is not too high, the performance is 

likely still better compared to the old blueprint session schedules. The adjusted version can be 

entered into the model again as a manual schedule, to check if the adjustments do not degrade the 
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downstream demand pattern too much. Once the manual check is ok, the blueprint session schedule 

can be entered into HiX. 

 
AIMMS license 
The hospital already has a license for AIMMS, that is billed based on hours of use. This means the 

model could be immediately put to use, there is no need to implement the MILP model in different 

software. 

 

6.5 Conclusion 
In short, the most effort for implementation will be in the additional validation, and convincing the 

organisation on the new way of working. A rough guess for the time needed for additional validation 

is 4 weeks. Improvements in user interface should be possible in  approximately 1-2 weeks. 

Convincing the organisation is likely possible since the required changes are limited for most staff. 

Implementation of the model in the hospital seems possible.   
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7 Discussion 

7.1 Conclusions 
The current patient flow patterns show downstream workload arrival variability, with peaks during 

the day at the Radiology department and follow-up consultations at the Orthopaedic Outpatient 

Department. The waiting time also shows an upward trend in the morning for all departments, but 

the Orthopaedic Outpatient department shows the strongest increase. 

The data analysis shows distinct downstream demand patterns for the consultation types and units, 

which means the idea to change the sequence of consultations in the blueprint session schedule 

holds promise, and it could reduce the variability of patients flows across departments. 

In the literature review different approaches are considered. Many studies consider only the 

outpatient department itself when optimizing the consultation schedules. They usually apply a 1-

stage or 2-stage stochastic linear program and minimize a weighted sum of waiting time, idle time 

and overtime. For studies that consider downstream departments in their schedule various 

approaches exist. Most do not meet certain requirements for this project such as uncertain care 

pathways. Multi-appointment studies that are similar to our needs use linear programming to solve 

their scheduling problems, which confirms that creating a MILP model is a valid solution approach. 

We define a MILP model that is able to generate blueprint schedules based on a given number of 

consultation types. It can generate multiple blueprint schedules simultaneously, matching the 

combined outflow of patients as close to the desired pattern as possible. The model is extended 

based on feedback, and it provides a relatively flexible and easy way to generate blueprint session 

schedules. 

The results from using the model in experiments are promising. It shows the current blueprint 

session schedules maximum demand peaks can be reduced to roughly 40% of the original schedule, 

while smoothing out the patient outflow throughout the day. Adjusting the workload norm works, 

and the model reacts by scheduling certain consultation types at different times to approach the 

desired pattern of downstream workload as close as possible. 

Implementation of the model will need more validation with planners and schedulers, and the 

requirements and wishes of doctors with regards to the blueprint session schedule should be 

inquired. However, additional constraints should be relatively straightforward to add to the model. 

To put the model into use only few employees need to be trained to work with the model. Once the 

blueprint session schedule is applied into HiX, the remainder of the processes stay the same for 

patient planners and doctors. The main usage costs will be the manual entry of schedules into HiX. 

To answer the research question: 

How can blueprint session schedules be generated for elective patients at the 

orthopaedic outpatient department, that match the expected pattern of same-day 

patient flows with the desired pattern?  

The blueprint session schedules of the Orthopaedic Outpatient Department can be improved by 

generating them through the MILP model that is developed, and workload arrival variability will be 

reduced, the maximum peaks of demand can be reduced to approximately 40% of the original 

schedule. 
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Our approach of generating patient blueprint schedules for outpatient department is different from 

other studies. The consideration of downstream departments in outpatient scheduling is present in 

the literature, however the consideration of opening and closing hours into the model, and the 

ability to set different norms per time slot for each of the downstream departments is not discussed 

in the papers found in literature review papers. It can be used to manage patient flows during the 

day, and the model is flexible. If other departments are closed at certain times of day, or have 

reduced capacity available for walk-in patients, this model can spread the patients differently over 

the day to match supply (staff availability) and demand (expected patient workload). 

 

7.2 Limitations 
This research is has some limitations which are discussed in this section. 

Deterministic consultation starting time and duration at the OOD itself 
The scope of the research is limited to the patient outflow to other departments, so in order to limit 

the complexity we chose to model the part of the OOD itself as deterministic: consultation starting 

time and duration are assumed to be deterministic in our model. In reality, the delays that are 

currently occurring over the day will still occur when the new blueprint schedules are used. 

Consultation starts might be delayed, and consultations can take longer than planned. We still expect 

the patient flow pattern to achieve roughly similar or a slight degradation of performance as 

calculated in the experiments. Demand will likely shift more towards later time slots as the delay 

increases, but the same sequence of consultations will still be carried out. 

The delays could be reduced by setting more appropriate consultation durations, and thus reduce the 

chance the planned duration will be exceeded, and reduce delays in the OOD in this way. The 

stochastic models that optimize the schedule of only the outpatient department typically schedule 

some slack (empty slots) to allow the doctor to catch back up to the schedule and reduce delays later 

in the day.  

Unpunctual patients and all patients no-shows 
Patients are assumed to be punctual in our model, and the no shows are not considered. If patient 

tardiness is high, and/or the no show rate is high, different schedule designs can be considered such 

as planning two patients per slot, and making the block twice the duration. The first patient that 

shows up gets server. This increases the waiting time for the patients that arrive second, but 

increases capacity utilization and decreases doctor idle time. The no show rate is approximately 

1.5%, and patients punctuality was not an issue based on interviews, so we expect this to not be an 

likely issue. 

Deterministic transitions 
The model works with average transition probabilities. The model will consider a 100% probability on 

30 minutes of workload identical to two times 50% probability of 30 minutes of workload. If a 

consultation type exists that is rare, but if a transition occurs a lot of workload is added this can lead 

to some sub optimal performance.  

For example a consultation type with 5% probability of 2 hours of work. In a stochastic model the 

consultations would probably be scheduled to not overlap because of the chance the workload of 

both consultations is realised. The deterministic model uses the expected value of probability * 

workload and allows the two consultations to be scheduled at the same time. 

This is mainly an issue when these transitions add high workload, have a low transition probability 

and are rare in the schedule, so scheduling them together can be avoided. In our case, the workload 
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to the Plaster room has the longest consultation durations, but many consultations have somewhat 

comparable workload for the Plaster room, so the outflow is not as rare and there is not as much 

room to separate these consultation types. It will still be interesting to extend the model into a 

Stochastic Linear Program and evaluate transitions on a stochastic basis, however we expect the 

current deterministic to deliver quite good results, since not many high workload, low transition 

probability and mostly rare consultations are present. 

Data quality – linking of appointments, timestamps and unit classification 
The expected workload demand patterns are derived from the data set. However missing 

timestamps occur often (approximately 50% of the activities have reliable timestamps). The linking of 

appointments was also performed manually, since the dataset did not indicate which appointments 

were part of the same clinical issue for the patient. Additionally, the unit could not always be 

classified based on the activity code. The data analysis has corrected for this in a sensible way (by 

preserving the proportions) but higher accuracy of the downstream demand profile can be achieved 

with better data. This is only an issue for the calculation of the parameters however. If better data is 

available, the parameters simply need to be recalculated and entered into the model. The model 

itself will be unaffected and can continue to be used. 

Similarly, if the demand characteristics change over time, the parameters can be updated and the 

model will be accurate again, no changes to the model itself will be needed.  

 

7.3 Future research 
Two aspects are of interest for further research, which are discussed in the following sections. 

7.3.1 Stochastic version of the model 
The most interesting area of further research will be to compare the current model with one where 

stochastic transitions are considered. The current model delivers relatively good results quite quickly, 

even within one minute. The run time seems to allow for extension into a Stochastic Linear Program. 

Does the output change a lot compared to the current model? We expect that consultations with low 

transition probability, high workload, and that are relatively rare (so overlap can be avoided) to be 

scheduled farther apart. It will be interesting to see how much the schedules improves. This could be 

done by generating a blueprint schedule with the current model, and scoring it by the stochastic 

model. Then let the stochastic model generate the schedule with the same constraints to check what 

performance increase it predicts. 

We expect it the improvement to be relatively small, especially for the current case. It will be 

interesting if the additional run time is worth it. A few components that can be evaluated as 

stochastic: 

1. The transitions to downstream departments 

2. The service times of the main department  

3. The downstream demand durations 

4. The effect of stochastic travel time to downstream departments 

The Monte Carlo simulation model discussed in Section 5.5 takes the first component (stochastic 

transitions) into account, and it can be extended to evaluate the other components in a stochastic 

manner as well. 
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7.3.2 Using the model at the operational level 
The initial implementation of the model would be to generate the blueprint session schedules that 

are applied approximately twelve weeks in advance. However in those twelve weeks many changes 

can occur. Maybe a different doctor from a different unit is scheduled, or the number of specific 

consultation types change. An example is when a doctor performs more surgeries then planned, 

more ‘discharge’ consultations will be needed. 

When these changes occur, the changes will are made manually. A possible use of the model is to 

update the parameters, fix the consultations that have a patient booked, and let the model optimize 

the remaining consultations. When many consultations are already booked, those starting positions 

will be fixed, and the solution space for the new run of the model will be smaller, leading to short run 

times. 

A trade-off needs to be made if the additional effort of running the model again is worth the 

improvements in patient flow, but it an application to consider. Perhaps for small adjustments it is 

not worthwhile, but if doctors are switched it is probably more worthwhile. A necessity is a good 

interface with HiX however, automatic import of the generated schedules might be necessary, or the 

time needed is likely to be too expensive. 

7.4 Recommendations 
We recommend Logistiek Bedrijf to implement the model and use it to generate the blueprint 

session schedules. Some additional validation is required, but no major issues are expected there. 

The implementation has potential since for most staff the day-to-day process would not change, only 

for the scheduling staff that creates and applies the blueprint session schedules. The main 

consideration is the amount of time needed to enter the blueprint schedules into HiX, my 

recommendation is to generate generic session schedules and enter those into HiX. 

If the model is implemented, it is advisable to perform periodic checks if the parameters are still 

accurate, and update them if needed. 

Additionally, we advise to look into data quality of timestamps, unit classification and the 

identification of linked appointments throughout the day. If the timestamps and identification of 

linked appointments is improved, the experience of a patient with multiple appointments can be 

investigated and possibly improved. The time a patient spends between appointments on a single is 

interesting, since it is not directly recorded. The waiting time only starts once the patient enters the 

waiting room for the next appointment, but he or she might be waiting elsewhere in the hospital. 

The system for timestamp registration of the Preoperative screening department is not suited for the 

many steps the patient moves through. The current system is only suited for a single appointment. 

Increased quality of timestamps can reveal additional areas of improvement, and will give a more 

reliable indicator of patient and staff experience. 

Implementation of these recommendations will contribute to operational excellence of the Sint 

Maartenskliniek.  
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Appendix 

A. Appendix data set columns 
The data set available for analysis of the outpatient appointments contains the following information 

for each appointment: 

Column name English translation Description 

AfspraakNr Appointment id The unique id for an activity or 
appointment (anonymised) 

PatientNr Patient id The unique id for a patient 
(anonymised) 

Locatie Location The 2 or 3 letter location code, 
it specifies which hospital, and 
the location within the hospital 

LocatieOmschrijving Location description The location description in text 

Specialisme Specialism The medical specialism, e.g. 
‘ORTH’ for Orthopaedic 

Agenda Calendar The calendar code for the main 
category  

AgendaNaam Calendar name The calendar name for the 
main category 

SubAgenda Sub calendar The code for the sub calendar. 
The sub calendar is where 
actual appointments can be 
booked into. Each sub calendar 
belongs to one main calendar 
type. 

SubAgendaNaam Sub calendar name The name of the sub calendar. 
Usually the name of the doctor 
that the patient appointment 
is booked to. 

AfspraakDatum Appointment date The date of the appointment 
or activity 

AfspraakBeginTijd Appointment start time The scheduled starting time of 
an appointment 

AfspraakDuur Appointment duration The planned duration of the 
appointment or activity 

AfspraakCode Appointment code The 2-6 letter appointment 
code that specifies the exact 
activity type 

AfspraakCodeOmschrijving Appointment code description The description of activity type 
in text 

AANKOMST Arrival The arrival timestamp, to 
indicate when the patient 
arrives at waiting room of the 
department for this activity. 

OPROEP Call-in moment The timestamp of the patient 
being called in for the start of 
the activity. 

VERTREK Departure The timestamp of the end time 
of the activity. 
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AfspraakType Appointment type A single letter code to indicate 
if the activity is an 
appointment for a single 
patient, a group appointment. 

Voldaan Completed Indicates if the appointment or 
activity has been completed or 
cancelled 

RedenNietVoldaan Reason not completed The reason in text why the 
appointment or activity was 
cancelled 

 

B. Appendix data analysis description 
The source data are all activities (consultations, scans, screenings, etc.) of all locations of the Sint 

Maartenskliniek. Each activity is one row in the dataset. 

The source data contains 524 086 data rows, from 02-01-2017 to 31-12-2018. 

i. Location filtering 
The hospital group has multiple locations throughout the Netherlands. We use the orthopaedic 

outpatient department at Nijmegen for the case study, so we isolate that data. Based on discussion 

with Logistiek Bedrijf the following highlighted location codes are selected. 

A B BK BO BQ C CR DO GE KL LV N ND

 NF NG NK NM NO NP1 NQ NV O OG OL OM

 OW P RF RH T VN W ZG 

This results in 394 342 data rows. 

ii. Department filtering 
The dataset contains multiple departments at location Nijmegen. We select only the OOD and 

departments a patient might visit on the same day as the OOD consultation.  

These departments are: 

- Orthopaedic Outpatient Department (OOD / ORT) 

- Radiology department (RAD) 

- Plaster and Wound treatment (GIPS) 

- Preoperative screening (PREO)  

The dataset contains columns that indicate medical specialism, and the name of the calendar 

appointments are booked into. A combination of both is used to define the department of the 

activity. The code below is used to classify the department of each activity. The first condition that 

matches is applied. 

CASE 
   WHEN t1.AfspCode="BMDPHA" 
      THEN "Multi-disciplinair" 
   WHEN t1.Specialisme="GIPS" AND t1.AgendaNaam="GIPS"  
      THEN "Gipskamer" 
   WHEN t1.Specialisme="ORT" AND t1.AgendaNaam="PREO"  
      THEN "Pre-operatief onderzoek" 
   WHEN t1.Specialisme="RAD" AND t1.AgendaNaam="Radiologie Nijmegen" 
      THEN "Radiologie" 
   WHEN t1.Specialisme="ORT" AND (t1.AgendaNaam="NPPA" OR t1.AgendaNaam="ORTH") 
      THEN "Orthopedie poli" 
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   WHEN t1.Specialisme="REU" AND (t1.AgendaNaam="NPPA REUM" OR t1.AgendaNaam="REUM") 
      THEN "Reumatologie" 
   WHEN t1.Specialisme="REV" AND (t1.AgendaNaam="NPPA REV" OR t1.AgendaNaam="REV") 
      THEN "Revalidatie" 
   WHEN t1.Specialisme="ORT" AND (t1.AgendaNaam="NPPA REV" OR t1.AgendaNaam="REUM" OR 
t1.AgendaNaam="REV") 
      THEN "Multi-disciplinair" 
   WHEN t1.Specialisme="REU" AND t1.AgendaNaam="ORTH" 
      THEN "Multi-disciplinair" 
   WHEN t1.Specialisme="REV" AND (t1.AgendaNaam="ORTH" OR t1.AgendaNaam="REUM") 
      THEN "Multi-disciplinair" 
   ELSE "Onbekend" 
END 

 

A corner case are the emergency and urgent care activities (‘spoed’) at the outpatient department. 

These can be filtered based on the activity code. Since the urgent care outpatient clinic operates 

entirely separate from the regular outpatient clinic, we filter the urgent and emergency patients with 

the following regular expression: 

CASE   
   WHEN PRXMATCH('(SC[^AF]\w)', t1.AfspCode) > 0 
   THEN "Spoed poli" 
   ELSE "Niet spoed poli" 
END 

Meaning all activity codes that start with “SC” are labelled as urgent outpatient clinic (‘spoedpoli’), 

except for activity code “SCAF” which are preoperative screening appointments. This matches 1081 

cases in the dataset. 

After filtering other departments and the urgent outpatient clinic activities, 271 778 rows are left. 

iii. Unit classification 
The activities for the OOD can be labelled with the unit (e.g. Knee). We label the OOD activities with 

the following regular expressions: 

CASE  
   WHEN t1.Afdeling="Orthopedie poli" AND (t1.AfspCode="POSC" OR t1.AfspCode="POSK" OR 
t1.AfspCode="VCSCH") THEN "Not classified" 
   WHEN t1.Afdeling="Orthopedie poli" AND PRXMATCH('(\w{2}BE)', t1.AfspCode)>0 THEN "Bovenste Extremiteit" 
   WHEN t1.Afdeling="Orthopedie poli" AND PRXMATCH('(\w{2}HE)', t1.AfspCode)>0 THEN "Heup" 
   WHEN t1.Afdeling="Orthopedie poli" AND PRXMATCH('(\w{2}KN)', t1.AfspCode)>0 THEN "Knie" 
   WHEN t1.Afdeling="Orthopedie poli" AND PRXMATCH('(\w{2}SC)', t1.AfspCode)>0 THEN "Rug" 
   WHEN t1.Afdeling="Orthopedie poli" AND PRXMATCH('(\w{2}VO)', t1.AfspCode)>0 THEN "Voet" 
   WHEN t1.Afdeling="Orthopedie poli" AND PRXMATCH('(\w{2}WE)', t1.AfspCode)>0 THEN "Rug" 
   WHEN t1.Afdeling="Orthopedie poli" AND PRXMATCH('(\w{2}WK)', t1.AfspCode)>0 THEN "Rug" 
   WHEN t1.Afdeling="Orthopedie poli" AND PRXMATCH('(\w{2}CW)', t1.AfspCode)>0 THEN "Rug" 
   WHEN t1.Afdeling="Orthopedie poli" AND PRXMATCH('(\w{2}VO)', t1.AfspCode)>0 THEN "Voet" 
   WHEN t1.Afdeling="Orthopedie poli" AND PRXMATCH('(\w{2}HS)', t1.AfspCode)>0 THEN "Heup" 
   WHEN t1.Afdeling="Orthopedie poli" AND PRXMATCH('(\w{2}KS)', t1.AfspCode)>0 THEN "Knie" 
   WHEN t1.Afdeling="Orthopedie poli" AND PRXMATCH('(\w{2}VS)', t1.AfspCode)>0 THEN "Voet" 
   ELSE "Not classified" 
END 

 

For some activity codes the unit cannot be determined (e.g. POSC -> preoperative screening). In 

these cases the label ‘Not classified’ is applied. 
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Figure 7.1 – Unit not classified 

iv. Consultation type classification 
The OOD consultations can be grouped into 4 main types that will be used in the blueprint session 

schedules: 

- New 

- Repeat 

- Discharge 

- Preoperative conversation with physician (POP) 

Some other activities like a consultation by phone (‘telefonisch consult’) or taking a blood sample 

(‘Prik’) are distinguished. For the Radiology department a distinction is made between scans that are 

done on a walk-in basis, and scans that are only performed with pre-booked appointments. 

Especially the classification of level 1 CT scan is complicated and requires the following extensive 

regular expression: 
'(CT00(\d\d)(\w*)|CT1301(\w*)|CT20(\d\d)(\w*)|CT30(\d\d)(\w*)|CT40(\d\d)(\w*)|CT50(\d\d)(\w*)|CT700(\d)(\w*)|CT900(\d)

(\w*)|CT9011(\w*)|CT910(\d)(\w*)|CT911(\d)(\w*)|CT9202(\w*))' 

We achieve this with classification based on the activity code: 

CASE 
   WHEN t1.Afdeling="Orthopedie poli" AND UPPER(t1.AfspCode) LIKE UPPER('BP%') THEN '1. ORT New' 
   WHEN t1.Afdeling="Orthopedie poli" AND UPPER(t1.AfspCode) LIKE UPPER('HNR') THEN '2. ORT Repeat' 
   WHEN t1.Afdeling="Orthopedie poli" AND UPPER(t1.AfspCode) LIKE UPPER('NK%') THEN '1. ORT New' 
   WHEN t1.Afdeling="Orthopedie poli" AND UPPER(t1.AfspCode) LIKE UPPER('OC%') THEN '3. ORT Discharge' 
   WHEN t1.Afdeling="Orthopedie poli" AND UPPER(t1.AfspCode) LIKE UPPER('POS%') THEN '4. ORT POP' 
   WHEN t1.Afdeling="Orthopedie poli" AND UPPER(t1.AfspCode) LIKE UPPER('SC%') THEN '1. ORT New' 
   WHEN t1.Afdeling="Orthopedie poli" AND UPPER(t1.AfspCode) LIKE UPPER('SO%') THEN '1. ORT New' 
   WHEN t1.Afdeling="Orthopedie poli" AND UPPER(t1.AfspCode) LIKE UPPER('VC%') THEN '2. ORT Repeat' 
   WHEN t1.Afdeling="Orthopedie poli" AND UPPER(t1.AfspCode) LIKE UPPER('TC%') THEN 'ORT Telephone consult' 
   WHEN t1.Afdeling="Orthopedie poli" AND UPPER(t1.AfspCode) LIKE UPPER('BELCON%') THEN 'ORT Telephone 
consult' 
   WHEN t1.Afdeling="Orthopedie poli" AND UPPER(t1.AfspCode) LIKE UPPER('PRIK') THEN 'ORT PRIK' 
   WHEN t1.Afdeling="Radiologie" AND UPPER(t1.AfspCode) LIKE UPPER('CR%') THEN 'RAD Bucky + CT niveau 1' 
   WHEN t1.Afdeling="Radiologie" AND UPPER(t1.AfspCode) LIKE UPPER('MR%') THEN 'RAD Overig' 
   WHEN t1.Afdeling="Radiologie" AND UPPER(t1.AfspCode) LIKE UPPER('US%') THEN 'RAD Overig' 
   WHEN t1.Afdeling="Radiologie" AND UPPER(t1.AfspCode) LIKE UPPER('RF%') THEN 'RAD Overig' 
   WHEN t1.Afdeling="Radiologie" AND UPPER(t1.AfspCode) LIKE UPPER('VE%') THEN 'RAD Overig' 
   WHEN t1.Afdeling="Radiologie" AND UPPER(t1.AfspCode) LIKE UPPER('WO%') THEN 'RAD Overig' 
   WHEN t1.Afdeling="Radiologie" AND 
(PRXMATCH('(CT00(\d\d)(\w*)|CT1301(\w*)|CT20(\d\d)(\w*)|CT30(\d\d)(\w*)|CT40(\d\d)(\w*)|CT50(\d\d)(\w*)|CT700(\d)(\
w*)|CT900(\d)(\w*)|CT9011(\w*)|CT910(\d)(\w*)|CT911(\d)(\w*)|CT9202(\w*))', t1.AfspCode) > 0) 
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      THEN 'RAD Bucky + CT niveau 1' 
   WHEN t1.Afdeling="Radiologie" AND UPPER(t1.AfspCode) LIKE UPPER('CT%') THEN 'RAD Overig' 
   WHEN t1.Afdeling="Gipskamer" THEN 'GIPS all' 
   WHEN t1.Afdeling="Pre-operatief onderzoek" THEN 'PREO all' 
   WHEN t1.Afdeling="Multi-disciplinair" THEN 'Multi disciplinary all' 
   ELSE "Not classified" 

 

v. Timestamp reliability 
Timestamp input for patient arrival in the waiting room, being called in by the physician, and the end 

time of the activity are all manually recorded. In interviews staff indicated timestamps are not always 

entered correctly. We check if timestamps are reliable. The following 3 timestamps are available: 

1. Patient arrival (AANKOMST) 

2. Patient called in (OPROEP) 

3. Patient leaves consultation/activity (VERTREK) 

 

The timestamps of an activity are only marked ‘reliable’ when: 

• The time between a patient arriving (AANKOMST) and being called in (OPROEP) is positive or 

zero, i.e. a patient cannot be called in before he/she arrives. 

• The time between a patient being called in (OPROEP) and leaving (VERTREK) and is positive, 

i.e. an activity needs to last at least 1 minute 

• The time between a patient arriving (AANKOMST) and the patient leaving (VERTREK) is 

positive, i.e. the total time a patient is present at the department is at least 1 minute 

All negative durations, and other occurrences with impossible sequences, or when timestamps are 

missing, in all these cases the timestamps of these activities are labelled ‘not reliable’. 
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Table 7.1 – Overview of timestamp quality per department 

vi. Completed activities 
For the analysis we do not need the cancelled appointments. Only 1.5% of activities were cancelled. 

We select only the completed activities which results in 267 585 data rows. 

vii. Identify source appointments 
We assume the first OOD consultation of the day for a patient is the consultation that ‘causes’ the 

other demand for that patient on the same day. We call this consultation the ‘source consultation’, 

because we assume in the model this consultation is the source for other same-day visits by the 

same patient. 

We exclude a few consultation types as possible source activities: 

• HNR – revisit at the OOD after a Radiology visit 

• PRIK – taking a blood sample 

• BELCON – consultation by phone 

• TC – consultation by phone 

With these four excluded, we find the consultation with the earliest scheduled starting time on each 

day per patient. We perform an INNER JOIN where the following three match: 
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• Date 

• Patient id 

• Consultation start time 

Now the data is enriched again with all original columns (like department, activity type, etc.). 

viii. Determine the linked appointments from each source appointment 
For each source appointment, we check for each department if the same patient has any other 

appointments/activities on the same day. 

 

Figure 7.2 – Overview of the structure of source appointment and join data analysis 

We perform a LEFT JOIN with the source appointments as the source (left) table where the following 

match: 

• Date 

• Patient id 

If there is no match, that patient did not have any walk-in visits to other departments. If there is one 

match the information of that other consultation is added to the same row. 

 

ix. Downstream demand characteristics 
In order to determine the demand associated with a certain consultation type three components are 

required: 

• The probability a patient visits another department on the same day as an outpatient 

consultation 

• The minutes of workload per transition 

• The travel time or delay between the consultation and the downstream demand 

This section discusses the first part, the transition probabilities. Given that a patient comes in for an 

outpatient consultation, what is the probability he/she visits another department on the same day? 

And does this typically occur before or after the outpatient clinic consultation? Based on interviews 

we expect some source consultation types more often cause demand at other departments 

beforehand, other consultation types afterwards. 
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x. Determining transition percentage before and after the consultation 
Based on the linked appointments described in Section viii, we determine if the secondary activity at 

the downstream department occurred before or after the source consultation. 

• Before: when the ‘patient called in’ timestamp of the linked appointment is before the 

‘patient called in’ of the source appointment 

• After: when the ‘patient called in’ timestamp of the linked appointment is after the ‘patient 

called in’ of the source appointment 

As an example, with 1000 source appointments, 130 might be labelled as ‘before’, and 180 might be 

labelled as ‘after’. Then the transition probabilities are 13% and 18% to before and after this source 

appointment.  

However, sometimes the timestamps are missing. These linked appointments cannot be ignored, 

because the exact timing might be unknown, but it is certain the transition occurred. If the 

transitions with missing timestamps are ignored, the transition probability is underestimated. 

We correct for the missing timestamps in the following way: 

4. Count all transitions ‘before’, ‘after’, and with missing timestamps 

5. Determine the proportion of ‘before’ and ‘after’ 

6. Add the transitions with missing timestamps to the ‘before’ and ‘after’ categories, while 

preserving the proportions calculated at step 2 

 

Figure 7.3 – Example of correction for missing transition timestamps 

Figure 7.3 shows an example of this correction method, and it arrives at the correct total transition 

probability of 50% (32.9% + 17.1%). If the correction was not applied, the total transition probability 

would have been underestimated at 35% (23% + 12%). 

The source appointments can be all OOD consultations, which means the calculated transition 

probabilities are the overall transition probabilities. The interesting analysis for our research is the 

transition probabilities per source consultation type and source unit. Based on the analysis the 

following questions can be answered: 

Source appointments Before After Missing Total transitions

10000 2300 1200 1500 5000

23% 12% 15% 50%

Before After

Percentage of available 

transition timestamps 65.7% 34.3%

Add missing timestamps 

proportionally 985.7 514.3

New total 3285.7 1714.3

Check still same 

proportions 65.7% 34.3%

Before After

32.9% 17.1%

Original data

Redistribute missing timestamp transitions

Calculate corrected transition percentage
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• What is the probability a patient visits Radiology before a ‘New consultation’ for unit ‘Knee’? 

• What is the probability a patient visits the Plaster room after a ‘Repeat consultation’ for unit 

‘Spine? 

• Etc. 

For each set of consultation type and unit the transition probability analysis is performed. However, 

yet another correction needs to be made for the source appointments where unit is not classified. 

They are a significant portion of the total number of source appointments, especially for the Plaster 

room (49.7%) and Preoperative screening (76.6%). 

The correction works similar to the correction for missing timestamps mentioned above. 

1. Select data from one department (e.g. Radiology) 

2. Calculate the proportions of source units (e.g. 7% from Knee, 15% not classified) 

3. Recalculate the proportions without unit ‘not classified’ (9% Knee, etc.). 

4. Now all the data that belonged to unit ‘not classified’ is redistributed to the other units, 

while keeping the proportion of units the same. 

5. Recalculate the transition probability of the other units with the added data from unit ‘not 

classified’ 

 

Table 7.2 - The unit proportion calculation for the Plaster room department 

Finally, the transition probabilities per set of source consultation type and source unit are calculated. 

xi. Travel time 
When a patient visits a different department before or after the source appointment, some delay is 

expected before the patient arrives at the other department, simply because the patient has to travel 

there. We need to incorporate this in the model for a more accurate prediction of workload arrival. 

In this analysis the median travel time is used to limit the effect of outliers and unusual situations. 

The travel time is calculated as the time between the patient leaving department one and arriving at 

department two. For the departments Radiology, Plaster room, and Preoperative screening we only 

use a different travel time for before and after the source consultation, but make no distinction 

between source consultation types and source units. The detailed analysis was performed but figures 

were very similar (fluctuations of one or two minutes). 

RAD before/after OOD appointment? Median travel time 

Before 5 minutes 
After 4 minutes 

 

Plaster before/after OOD appointment? Median travel time 

Before 20 minutes 
After 7 minutes 
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Screening before/after OOD appointment? Median travel time* 

Before 5 minutes 
After 5 minutes 

*figures not reliable in data, but Screening counter is at same location as OOD, so 5 minutes for 

travel + arriving at the desk for filling in forms is assumed. 

For the Orthopaedic Outpatient department we analyse different travel times per source 

consultation type and source unit combination, since those revisits somewhat often occur after a 

visit to a different department. This means the service time of the other departments is also included 

in the travel time to a follow up activity at the OOD. 

For the analysis of the travel times to OOD, not all combinations of source consultation type and 

source unit have a big enough sample size for a reliable estimation. If 10 or less observations are 

seen we disregard the calculated travel time of the ‘consultation type – unit’ set, and overall median 

of that unit is used. If the overall travel time of that unit also does not include enough data points, 

the median of all observations that also happened before the source appointment is taken (if this 

appointment occurred before, if this appointment also occurred before). 

 

xii. Downstream activity duration 
Now that the transition probability and travel time are determined, the amount of demand needs to 

be determined. Given that a patient visits a downstream department, how many minutes of work 

does this add to the department? 

For the duration the median is used in order to limit the effect of outliers in the data. The duration is 

specified on three levels: before or after the source consultation, the source consultation type, and 

the source unit. 
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xiii. Combining results into the final demand profiles 
The three key items are analysed: the transition probabilities, travel time, and activity durations. For 

set of consultation type and unit a demand profile is calculated for all 4 downstream departments. 

Table 7.3 – Workload spreading (expected workload ). Table 7.3 shows the first step: spreading the 

workload into multiple time slots. We define each time slot to span 5 minutes. If the activity duration 

is 13 minutes, first two time slots both contain the full 5 minutes of work, and the third time slot 

contains 3 minutes of work. 

 

Table 7.3 – Workload spreading (expected workload fictious example) 

The second step is correcting the workload with the transition probabilities. If a consultation has a 

15% chance of occurring, the workload from step one is multiplied by 0.15 to get the expected 

workload per time slot. See Table 7.4 for the example. 

 

Table 7.4 – Correcting for transition probability (expected workload fictious example) 

The third step is to correct the timing of downstream demand. If the travel time is 10 minutes, the 

demand should not start in time slot 1, but in time slot 3. See Table 7.5 for an example of this 

correction. 
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Table 7.5 – Incorporating travel time (expected workload fictious example) 

After these three steps, a full expected workload pattern is calculated for each source consultation 

and unit set, to each downstream department. The demand patterns are different between 

consultation types. By changing the sequence of consultation types in the blueprint session schedule 

the variability of patient outflow could possibly be reduced. 

 

 

C. Appendix waiting time data quality check 
Analysis of Orthopaedic OD direct waiting time, to check if incorrect data is distorting the results. For 

each day (n=525) the minimum, average, and maximum direct waiting time is calculated. The 

minimum direct waiting time each day was 0 minutes (except for a few days with <10 observations, 

which we consider as outliers). 

The results do not seem to reveal heavily contaminated or wrong data. We conclude these figures for 

waiting time are correct and paint an accurate image of direct waiting time. 
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D. Appendix literature review papers 
Google Scholar is used with the following queries, and results from the first 3 pages (30 results) the 

papers with a promising title and abstract are selected. Papers older than 10 years are excluded. 

Search query Number of results Review papers found 

elective patient planning multiple 
departments 

17900 a, f 

healthcare appointment planning 
overview 

58500 c, e, f 

integrated appointment scheduling 
literature review 

57200 e 

multi appointment planning 
blueprint 

40200 d, f 

patient appointment planning 
literature review 

17200 b, f 

 

a. A Survey of Health Care Models that Encompass Multiple Departments (Vanberkel, 

Boucherie, Hans, Hurink, & Litvak, 2010) 

b. Appointment scheduling in health care: Challenges and opportunities (Gupta & Denton, 

2008) 

c. Literature review on multi-appointment scheduling problems in hospitals (Marynissen & 

Demeulemeester, 2019) 

d. Multi-disciplinary planning in health care: a review (Leeftink, Bikker, et al., 2018) 

e. Outpatient appointment systems in healthcare: A review of optimization studies (Ahmadi-

Javid et al., 2017) 

f. Taxonomic classification of planning decisions in health care: a structured review of the state 

of the art in OR/MS (Hulshof et al., 2012) 

Papers (a) and (b) are excluded since 3 recent review papers are available (c, d, e). Paper (f) is used to 

classify the research question in a standardised way. 

 

Hulshof et al. (2012) classify the design of an appointment schedule blueprint as a tactical problem, 

and in the ambulatory care services. On the offline operational level, scheduling appointments can 

be distinguished between three types. Single appointments apply if only one appointment at a time 

is considered for patients. Combination appointments apply when multiple appointments for a 

patient are planned on the same day. Appointment series apply for example when a patient needs an 

appointment every month. 
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Figure 7.4 - The taxonomy for resource capacity planning and control decisions in health care (Hulshof et al., 2012) 

The following decisions are named: number of patients per consultation session, patient overbooking, 

length of the appointment interval, number of patients per appointment slot, sequence of 

appointments, queue discipline in the waiting room, and anticipation for unscheduled patients. 

 

Marynissen & Demeulemeester (2019) recognise that multi-appointment scheduling problems in 

hospitals cannot be seen separate from hybrid instances where some departments schedule 

appointments, and other departments do not schedule but take a queueing approach (patient flow). 

The scope of the paper is limited to cases where all related departments schedule appointments, 

which is different from the context of this research. 

The main challenges they identify for outpatient departments are uncertain service times and patient 

no-shows. Approaches to the objective function are single objective, multi-objective (with weights), 

and multi-objective (with different stages). 

 

Leeftink, Bikker, et al. (2018) discuss designing a blueprint schedule. Objectives include combining 

consultations, minimize waiting time, minimize access time, and minimize throughput time. 

Robustness to different patient arrival realisations is important for the blueprint. Different design 

choices for the blueprint schedule are possible. The negative effects of patient tardiness can be 

reduced by scheduling multiple patients in a time slot. 
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Figure 7.5 – Visualisation of flow-shop, open-shop, and mixed-shop systems (Leeftink, Bikker, et al., 2018) 

The multi-appointment system can be characterised as a job-shop system. In a flow-shop a fixed 

sequence is followed. In an open-shop system the activities can be performed in any sequence. 

Finally a mixed-shop system is a combination of the two. This characterisation is useful to find papers 

dealing with the same type of scheduling problem. In this research a mixed-shop is appropriate. 

Patient performance measures used in mixed-shop systems are direct waiting time, length of stay, 

and levelled care load. System performance measures are the number of patients admitted, 

makespan, and completion times. Performance measures not found in the literature but deemed 

important are resource idle time, overtime, and utilisation. 

Variability exists in patient arrivals, appointment durations, resource capacity, and care pathway. Not 

taking variability into account may influence the robustness of the obtained solution, however 

adopting the stochastic approach often increased the model complexity and computation time. For 

all four variability sources mentioned here both deterministic approaches and stochastic approaches 

are available. 

Finally, to increase the generality of the model, a wide range of parameter settings needs to be 

evaluated. A comparison of the performance of the proposed approach with the performance of 

relevant approaches can be made to increase scientific relevance. 

 

Ahmadi-Javid et al. (2017) identify three major stakeholder groups: patients, system owners, and 

staff. The most common performance measures are patient waiting time, server idle time, system 

overtime, number of patients seen, and number of rejected (or deferred) patients. Indirect waiting 

time (time in between appointments for the same patient) is considered in a few recent papers. 

Rarely used performance measures include number of patients exceeding waiting time targets, 

congestion, unfairness, and continuity of care. The fairness measure can be formulated as the 

difference between the minimum and maximum waiting time. Most papers use a weighted sum to 

reach a single objective function. Non-linear, pareto and risk-averse objective functions are also 

possible. 

Decisions related to this research problem are the appointment intervals (slots), where the optimum 

depends on service time distribution, interruption, physician lateness, patient lateness and no-

shows. The block size (number of patients per appointment slot) can reduce the negative effects of 
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patient no-shows. The number of appointments per consultation session can be adjusted to minimize 

patient waiting time and staff overtime. A decision can be made to assign a different priority per 

patient group, soft priorities can be set by applying different weights to waiting time per patient 

group. The patient sequence can be first-come first-serve, or ordered variance, or increasing no-show 

probability. The ordered variance is analysed in a paper and determined to be optimal if the service 

time distribution is positively skewed. 

Important environmental factors for the optimal appointment system design are patient 

unpunctuality, physician lateness, interruption, patient no-show, patient preference, service time 

distribution, patient heterogeneity, type of appointment required by patients. 

E. Appendix appointment slot optimization papers 
The literature review “Outpatient appointment systems in healthcare: A review of optimization 

studies” (Ahmadi-Javid et al., 2017) classifies articles.  

Title Authors Tactical & 

operational 

decisions 

Single (S) 

or 

multiple 

(M) 

servers 

Walk-ins 

allowed 

Objective Modeling 

approach 

Solution 

method 

 Anderson, Zheng, 

Yoon, & 

Khasawneh, 2015 

T2 (appointment slots) S No Min. costs of waiting 

time, idle time, and 

overtime 

1-SSP (single 

stage stochastic 

programming) 

S-SBO 

(Simulation 

based 

optimization) 

 Berg et al., 2014 T2/O3/O6 (T2/O3: OBA, 

O6: OBA, RBA) 

(integrated) 

S No Max. profit (revenue 

of patients seen – 

costs of waiting time, 

idle time, and 

overtime) 

2-SSP (two stage 

stochastic 

programming) 

AM (Analytical 

method) /BB 

(Branch & 

bound) /LD (L-

shaped 

decomposition) 

/H (heuristic) 

 Bikker, Kortbeek, 

van Os, & 

Boucherie, 2015 

TO (physician’s scheme 

design) 
M No Min. weighted sum 

of lower bound of 

indirect waiting time, 

and difference 

between daily supply 

and demand 

MILP (Mixed-

integer linear 

programming) 

SC (CPLEX) 

 Chen & Robinson, 

2014 
T2/O3/O6 (T2/O3: OBA, 

O6: RBA) (T2/O3: 

integrated, (T2/O3)/O6: 

sequential) 

S No Min. costs of waiting 

time, idle time, and 

overtime 

1-SSP BD (Benders 

decompositionn) 

/Heuristic (for 

O6) 

 Denton & Gupta, 

2003 

T2/O3 (OBA) 

(integrated) 

S No Min. costs of waiting 

time, idle time, and 

overtime 

2-SSP AM/LD 

 Erdogan & 

Denton, 2013 

T2/O3 (OBA) 

(integrated) 

S No Min. costs of waiting 

time and overtime 

a. 2-SSP 

b. M-SSP 

a. – 

b. ND (nested 

decomposition) 

 Erdogan et al., 

2015 

T2/O3/O6 (T2/O3: OBA, 

O6: OBA, RBA) 

(integrated) 

S Yes Min. costs of direct 

and indirect waiting 

times, idle times, and 

overtime 

2-SSP AM/LD 

 Hassin & Mendel, 

2008 

T2/O3 (OBA) 

(integrated) 

S No Min. costs of waiting 

time and server 

availability 

1-SSP O 

 Huang, Hancock, 

& Herrin, 2012 

T2 S No Min. waiting time 

and idle time 

1-SSP S-SBO 

 Klassen & 

Yoogalingam, 

2009 

T2/O3 (OBA) 

(integrated) 

S No Min. costs of waiting 

time, idle time, and 

overtime 

1-SSP S-SBO 

 Klassen & 

Yoogalingam, 

T2/O3 (OBA) S No Min. costs of waiting 1-SSP S-SBO 
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2013 (integrated) time and idle time 

 Klassen & 

Yoogalingam, 

2014 

T2/O3 (OBA) 

(integrated) 

S No Min. costs of waiting 

time and idle time 

1-SSP S-SBO 

 Kong et al., 2013 T2/O3 (OBA) 

(integrated) 

S No Min. costs of waiting 

time and overtime 

2-SSP/SP-O 

(DRO) Robust 

optimization /C-

SDP Semi-

difinitive 

programming 

SO (numerical, 

accurate 

method, general 

purpose 

optimization 

software, other 

items) 

 Kuiper et al., 2015 T2/O3 (OBA) 

(integrated) 

S No Min. costs of waiting 

time and idle time 

1-SSP/O (QT) SO 

 Kuiper & 

Mandjes, 2015 

T2/O3 (OBA) 

(integrated) 

M No Min. costs of waiting 

time and idle time 

1-SSP/O (QT) AM/SO 

 Luo et al., 2012 T2/T5/O3 (OBA) 

(integrated) 

S Yes (urgent) Max. profit (revenue 

of patients seen – 

costs of waiting time 

and overtime) 

1-SSP AM/SO 

 Mak et al., 2014a T2/O3/O6 (T2/O3: OBA, 

O6:OBA, RBA) (T2/O3: 

integrated, (T2/O3)/O6: 

sequential) 

S No Min. costs of waiting 

time and overtime 

SP-O (DRO)/C- 

SDP/SOCP/LP 

AM 

 Robinson & Chen, 

2003 

T2/O3 (OBA, RBA) 

(integrated) 

S No Min. costs of waiting 

time and idle time 

2-SSP AM/O 

 Tang et al., 2014 T2/O3 (RBA) 

(integrated) 

S No Min. costs of waiting 

time, idle time, and 

overtime 

1-SSP/O (QT) AM/SO 

 Vink et al., 2015 T2/O3 (OBA) 

(integrated) 

S No Min. costs of waiting 

time, idle time, and 

overtime 

1-SSP H (heuristic) 

Table 7.6 – Overview of appointment slot optimization articles and solution methods in (Ahmadi-Javid et al., 2017) 

F. Appendix sliding window 

 

Figure 7.6 – Sliding window width 3 results in 5 sliding windows (with 7 time slots) 

 

Figure 7.7 – Sliding window width 5 results in 3 sliding windows (with 7 time slots) 

Figure 7.6 and Figure 7.7 give a quick visualisation of the sliding windows, and verify the formula for 

determining the number of sliding windows: 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑙𝑖𝑑𝑖𝑛𝑔 𝑤𝑖𝑛𝑑𝑜𝑤𝑠 =  𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑆𝑙𝑜𝑡𝑠 − 𝑠𝑙𝑖𝑑𝑖𝑛𝑔𝑊𝑖𝑛𝑑𝑜𝑤𝑊𝑖𝑑𝑡ℎ + 1 

E.g. 

time slots

Sliding window # 1 2 3 4 5 6 7

1

2

3

4

5

time slots

Sliding window # 1 2 3 4 5 6 7

1

2

3
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𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑙𝑖𝑑𝑖𝑛𝑔 𝑤𝑖𝑛𝑑𝑜𝑤𝑠 = 7 − 5 + 1 = 3 

G. Appendix base version of MILP model 
The model described in Chapter 4 is the final version. The most basic version of the model is 

described in this appendix section, and all model extensions described in Section 4.6 are applied on 

top of this base model.  

Set Element Description 

C c Consultation types 

D d Departments 
 

Time sets: 

Set Element Description 

T = {1, …, numberOfSlots} t Time slot  

SW = {1, …, (numberOfSlots - 
slidingWindowWidth + 1)} 

sw Sliding time window. Used to group 
workload into, similar to a moving 
average. 

 

 

Parameter Range Description 

consultationsToBeScheduledc ∈ ℕ The number of consultations to be 
scheduled of type c 

normd,t [0, ∞) The capacity norm for total minutes 
of workload arriving at department 
d, per time slot t 

expectedWorkloadBeforec,d [0, ∞)  Expected workload (in minutes) at 
department d before the start of 
consultation type c 

expectedWorkloadAfterc,d [0, ∞)  Expected workload (in minutes) at 
department d after the end of 
consultation type c 

firstSlot {tmin, …, tmax} First timeslot a consultation can be 
booked into 

lastSlot {tmin, …, tmax} Last timeslot a consultation can be 
booked into 

numberOfSlots ∈ ℕ The total number of timeslots 

departmentWeightd [0, 1] Weight of each department for 
objective function  

slidingWindowWidth {1..numberOfSlots} Specifies the number of time slots 
one sliding window covers. The first 
window starts at time t=1, to 
t=1+slidingWindowWidth. The 
second window starts at time t=2, to 
t=2+slidingWindowWidth 
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Variable Range Description 

Workloadd,t [0, ∞) Workload for department d, at 
timeslot t 

WorkloadGroupedd,sw [0, ∞)  Workload grouped, Workloadd,t 
grouped into sliding time windows 
SW 

DeviationFromNormd,t ∈ ℝ Absolute deviation from norm for 
department d in time window sw 

DeviationFromNormGroupedd,sw ∈ ℝ  The absolute deviation from the 
norm for each time slot t is summed 
for sliding time window sw  

MaxDevd ∈ ℝ The maximum deviation from the 
norm for department d across the 
whole schedule 

 

 

Decision variable Range Description 

Xc,t {0, 1} Binary Schedule consultation type c at time 
slot t (1=yes, 0=no) 

 

1. Maximum one consultation per time slot 

 

∑ 𝑋𝑐,𝑡

𝑐

≤ 1                       ∀𝑡 

 

2. Schedule the correct number of consultations for each type 

∑ 𝑋𝑐,𝑡

𝑡

= 𝑐𝑜𝑛𝑠𝑢𝑙𝑡𝑎𝑡𝑖𝑜𝑛𝑠𝑇𝑜𝐵𝑒𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑𝑐                        ∀𝑐 

3. No consultations before first slot 

 

∑ 𝑋𝑐,𝑡

𝑡=𝑓𝑖𝑟𝑠𝑡𝑆𝑙𝑜𝑡 − 1

𝑡=1

= 0             ∀𝑐 

 

4. No consultations after last slot 

 

∑ 𝑋𝑐,𝑡

𝑇

𝑡=𝑙𝑎𝑠𝑡𝑆𝑙𝑜𝑡 + 1

= 0             ∀𝑐 

 

5. Maximum of two adjacent ‘New’ consultations 

∑ 𝑋𝑁𝑒𝑤,𝑡𝑡

𝑡𝑡=𝑡+2

𝑡𝑡=𝑡

≤ 2          ∀𝑡 

 



 
72 

 

6. Set downstream workload 

𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝑑,𝑡 = ∑(𝑋𝑐,𝑡+1 ∗ 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝐵𝑒𝑓𝑜𝑟𝑒𝑐,𝑑)

𝑐

+ ∑(𝑋𝑐,𝑡−1 ∗ 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝐴𝑓𝑡𝑒𝑟𝑐,𝑑) 

𝑐

     ∀𝑑, 𝑡 

 

7. Group workload into sliding time windows 

All workload of time slots t needs to be aggregated to the workload per sliding window sw. 

𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝐺𝑟𝑜𝑢𝑝𝑒𝑑𝑑,𝑠𝑤 =  ∑ 𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝑑,𝑡

𝑠𝑤+𝑠𝑙𝑖𝑑𝑖𝑛𝑔𝑊𝑖𝑛𝑑𝑜𝑤𝑊𝑖𝑑𝑡ℎ−1

𝑡=𝑠𝑤

             ∀ 𝑠𝑤, 𝑑 

 

8. Calculate deviation from norm per time slot 

For each time group and department, calculate how much the workload deviates from the norm 

𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝐹𝑟𝑜𝑚𝑁𝑜𝑟𝑚𝑑,𝑡  = 𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝑑,𝑡 − 𝑛𝑜𝑟𝑚𝑑,𝑡                ∀𝑑, 𝑡 

 

9. Calculate positive and negative deviation from norm 

As a step towards the absolute deviation from the norm without losing the linear property. 

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝐹𝑟𝑜𝑚𝑁𝑜𝑟𝑚𝑑,𝑡  −  𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝐹𝑟𝑜𝑚𝑁𝑜𝑟𝑚𝑑,𝑡  =  𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝑑,𝑡  −  𝑛𝑜𝑟𝑚𝑑,𝑡    ∀𝑑, 𝑡 

10. Ensure positive deviation and negative deviation are >0 

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝐹𝑟𝑜𝑚𝑁𝑜𝑟𝑚𝑑,𝑡, 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝐹𝑟𝑜𝑚𝑁𝑜𝑟𝑚𝑑,𝑡  ≥ 0           ∀𝑑, 𝑡 

11. Ensure only positive OR negative deviation takes a value >0  (constraint one) 

The variable DeviationIsPositived,t is a binary variable. It is 0 if the deviation from the norm is 

negative, 1 if the deviation from the norm is negative. Using this variable in combination with bigM 

ensures only one of the deviation variables can take a value other that 0. 

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝐹𝑟𝑜𝑚𝑁𝑜𝑟𝑚𝑑,𝑡 ≤ 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝐼𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑑,𝑡 ∗ 𝑏𝑖𝑔𝑀                ∀𝑑, 𝑡 

12. Ensure only positive OR negative deviation takes a value >0  (constraint two) 

𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝐹𝑟𝑜𝑚𝑁𝑜𝑟𝑚𝑑,𝑡 ≤ (1 − 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝐼𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑑,𝑡) ∗ 𝑏𝑖𝑔𝑀      ∀𝑑, 𝑡   

13. Calculate the absolute deviation from the norm 

Now that the deviation has been split into its positive and negative parts, we can take the sum to get 

the absolute difference between workload and the norm (without losing linearity). 

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝐹𝑟𝑜𝑚𝑁𝑜𝑟𝑚𝑑,𝑡

= 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝐹𝑟𝑜𝑚𝑁𝑜𝑟𝑚𝑑,𝑡 + 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝐹𝑟𝑜𝑚𝑁𝑜𝑟𝑚𝑑,𝑡       ∀𝑑, 𝑡 
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14. Calculate DeviationFromNormGrouped per sliding time window 

For each sliding time window, sum the deviation from the norm for individual time slots, for all time 

slots that belong to sliding window sw 

𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝐹𝑟𝑜𝑚𝑁𝑜𝑟𝑚𝐺𝑟𝑜𝑢𝑝𝑒𝑑𝑑,𝑠𝑤 =  ∑ 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝐹𝑟𝑜𝑚𝑁𝑜𝑟𝑚𝑑,𝑡

𝑠𝑤+𝑠𝑙𝑖𝑑𝑖𝑛𝑔𝑊𝑖𝑛𝑑𝑜𝑤𝑊𝑖𝑑𝑡ℎ−1

𝑡=𝑠𝑤

    ∀𝑑, 𝑠𝑤 

15. Calculate maximum deviation from norm 

For each department, determine the maximum deviation from the norm over all the sliding windows 

𝑀𝑎𝑥𝐷𝑒𝑣𝑑  ≥  𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝐹𝑟𝑜𝑚𝑁𝑜𝑟𝑚𝐺𝑟𝑜𝑢𝑝𝑒𝑑𝑑,𝑠𝑤                      ∀𝑑, 𝑠𝑤 

 

Objective function 

𝑚𝑖𝑛 ∑(𝑀𝑎𝑥𝐷𝑒𝑣𝑑  ∗  𝑑𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡𝑊𝑒𝑖𝑔ℎ𝑡𝑑)

𝑑

 

 

H. Appendix sets and parameters for Thursday afternoon case 
For Thursday afternoon the set of schedules is set to the names of the 8 doctors. In this report we 

will simply name them by Doctor 1 through Doctor 8. 

Set Values 

Schedules {Doctor 1, Doctor 2, Doctor 3, 
Doctor 4, Doctor 5, Doctor 6, 
Doctor 7, Doctor 8} 
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consultationsToBeScheduled consultationsToBeScheduled
Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 1 Unit 2 Unit 3 Unit 4 Unit 5

Doctor 1 New 4 Doctor 1 New 3

Repeat 5 Repeat 3

Discharge 2 Discharge 3

POP 3 POP 1

Supervision Supervision 1

Empty Empty 1

Doctor 2 New 5 Doctor 2 New 3

Repeat 3 Repeat 3

Discharge 2 Discharge 3

POP 3 POP 1

Supervision Supervision 1

Empty Empty 1

Doctor 3 New 4 Doctor 3 New 3

Repeat 6 Repeat 3

Discharge Discharge 3

POP 1 POP 3

Supervision Supervision 1

Empty Empty 1

Doctor 4 New 4 Doctor 4 New 3

Repeat 5 Repeat 3

Discharge 2 Discharge 3

POP 3 POP 1

Supervision Supervision 1

Empty Empty 1

Doctor 5 New 5 Doctor 5 New 3

Repeat 3 Repeat 3

Discharge 2 Discharge 3

POP 3 POP 1

Supervision Supervision 1

Empty 4 Empty 1

Doctor 6 New 5 Doctor 6 New 3

Repeat 7 Repeat 3

Discharge Discharge 3

POP POP 1

Supervision Supervision 1

Empty Empty 1

Doctor 7 New 7 Doctor 7 New 3

Repeat 4 Repeat 3

Discharge 1 Discharge 3

POP POP 1

Supervision Supervision 1

Empty Empty 1

Doctor 8 New 6 Doctor 8 New 3

Repeat 6 Repeat 3

Discharge 2 Discharge 3

POP 3 POP 1

Supervision Supervision 1

Empty Empty 6
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I. Appendix experiment results 

i. Performance difference in minutes 

 

This graph shows the difference with the original schedule in minutes, with the weighted total. 
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ii. Complete overview of measures for the generated schedules 

  

This table shows the complete overview of the measures for each department and the weighted 

total, in percentage of the original, for each of the six experiments. 

 

J. Appendix Monte Carlo graphs 

i. Thursday afternoon – OOD 
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ii. Thursday afternoon – RAD 

 

iii. Thursday afternoon – Plaster room 
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iv. Thursday afternoon – Screening 

 

 

K. Appendix Monte Carlo script in R 
 
setwd("G:/13. Monte Carlo simulatie") 
 
# Libraries 
library(tidyverse) 
library(readxl) 
 
# Clear workspace 
rm(list=ls()); gc(); 
 
# --- Custom functions --- 
transposeTibble <- function (tibbleInput, customColumnNames = FALSE, stripFirstColumn = FALSE) { 
  firstColumn <- tibbleInput[[1]] 
   
  if (class(customColumnNames) == "logical") { 
    if (customColumnNames == FALSE) { 
      columnNames <- firstColumn 
    } else { 
      stop("No column names provided") 
    } 
  } else { 
    if (length(customColumnNames) != length(firstColumn)) { 
      stop("Incorrect number of columnNames entered"); 
    } 
    columnNames <- customColumnNames 
  } 
   
  dataFrame <- as.data.frame(tibbleInput) 
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  if (stripFirstColumn == TRUE) { 
    dataFrameTransposed <- t(dataFrame[,-1]) 
  } else { 
    dataFrameTransposed <- t(dataFrame)  
  } 
   
  colnames(dataFrameTransposed) <- columnNames 
  outputTibble <- as_tibble(dataFrameTransposed) 
   
  return(outputTibble) 
} 
 
 
# --- Prepare data input 
 
# ---> FILE NAMES <--- 
consultationDurationsFileName <- "consultationDurations.xlsx" 
generatedSchedulesFileName <- "generatedSchedules.xlsx" 
 
# Specify case name (make sure to match the folder name on disk) 
caseName <- "1. woensdagMorgen" 
numberOfSchedules <- 6 
numberOfTimeSlots <- 84 
 
# Generic settings 
departmentNames = c("OOD", "RAD", "Plaster", "PREO") 
numberOfDepartments = length(departmentNames) 
units = c("UpperExtr", "Hip", "Knee", "Spine", "Foot") 
consultationTypes = c("New", "Repeat", "Discharge", "POP", "Supervision", "Empty") # Warning: 
make sure order matches excel files 
numberOfConsultationTypes <- length(consultationTypes) 
maximumOffset <- 16 
 
# Build a key value pair list, that can return the index of a given consultation type 
# Purpose: To access the correct row in tibbles, since rows are not named 
i = 1 
consultationTypeIndex <- list() 
for (consultationType in consultationTypes) { 
  consultationTypeIndex[[consultationType]] <- i 
  i = i+1 
} 
rm(consultationType, i) 
 
# --- Create data templates: 
# 1. expectedWorkloadBefore 
# 2. expectedWorkloadAfter 
# 3. transitionProbabilitiesBefore 
# 4. transitionProbabilitiesAfter 
# 5. consultationDurations 
# 6. schedules 
# 7. workload 
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# - 1&2: Create expectedWorkloadBefore & expectedWorkloadAfter objects 
# Create tibbleTemplate 
vectorTemplate <- rep(0, maximumOffset) 
tibbleTemplateWorkload <- tibble("OOD"=vectorTemplate, "RAD"= vectorTemplate, 
"Plaster"=vectorTemplate, "PREO"=vectorTemplate) 
tibbleTemplateWorkload 
 
rm(vectorTemplate) 
 
# Construct object for expectedWorkloadBefore and expectedWorkloadAfter 
# level 1: consultationType 
#   level 2: unit 
#     level 3: tibble with departments in columns, each row is one time offset i 
expectedWorkloadBefore <- list() 
expectedWorkloadAfter <- list() 
for (consultationType in consultationTypes) { 
  expectedWorkloadBefore[[consultationType]] <- list() 
  expectedWorkloadAfter[[consultationType]] <- list() 
   
  for (unit in units) { 
    expectedWorkloadBefore[[consultationType]][[unit]] <- tibbleTemplateWorkload 
    expectedWorkloadAfter[[consultationType]][[unit]] <- tibbleTemplateWorkload 
  } 
} 
rm(consultationType, unit) 
 
# - 3&4: Create transitionProbabilityBefore & transitionProbabilityAfter objects 
vectorTemplate <- rep(0, length(consultationTypes)) 
tibbleTemplateTransitionProbabilities <- tibble("OOD"=vectorTemplate, "RAD"=vectorTemplate, 
"Plaster"=vectorTemplate, "PREO"=vectorTemplate) 
 
transitionProbabilitiesBefore <- list() 
transitionProbabilitiesAfter <- list() 
 
for (unit in units) { 
  transitionProbabilitiesBefore[[unit]] <- tibbleTemplateTransitionProbabilities 
  transitionProbabilitiesAfter[[unit]] <- tibbleTemplateTransitionProbabilities 
} 
rm(vectorTemplate) 
 
 
# - 5: Create consultationDuration object 
# No preparation needed (otherwise number of schedules would need to be hardcoded) 
# structure will be a single tibble with rows=schedules, columns=consultationTypes 
 
# - 6: Create schedules object 
# level 1: scheduleName 
#   level 2: unit 
#     level 3: tibble with rows=time index, columns=consultationTypes 
schedules <- list() 
scheduleNames <- list() 
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vectorTemplate <- rep(0, numberOfTimeSlots) 
tibbleTemplateSchedule <- tibble("New"=vectorTemplate, "Repeat"=vectorTemplate, 
"Discharge"=vectorTemplate, "POP"=vectorTemplate, "Supervision"=vectorTemplate, 
"Empty"=vectorTemplate) 
tibbleTemplateSchedule 
 
for (i in 1:numberOfSchedules) { 
  scheduleName <- paste("Schedule_", i, sep = "") 
  scheduleNames[i] <- scheduleName 
  schedules[[scheduleName]] <- list() 
   
  for (unit in units) { 
    schedules[[scheduleName]][[unit]] <- tibbleTemplateSchedule 
  } 
} 
rm(vectorTemplate, scheduleName, i, unit) 
 
 
 
# --- Load data 
 
# - 1. Load expectedWorkloadBefore 
# Prepare for data import of excel file 1 
excelFileName = "expectedWorkloadBefore all.xlsx" 
 
# Define columns for each unit 
startColumns <- list() 
endColumns <- list() 
 
# Unit UpperExtr 
startColumns[[ units[[1]] ]] <- "C" 
endColumns[[ units[[1]] ]] <- "R" 
# Unit Hip 
startColumns[[ units[[2]] ]] <- "S" 
endColumns[[ units[[2]] ]] <- "AH" 
# Unit Knee 
startColumns[[ units[[3]] ]] <- "AI" 
endColumns[[ units[[3]] ]] <- "AX" 
# Unit Spine 
startColumns[[ units[[4]] ]] <- "AY" 
endColumns[[ units[[4]] ]] <- "BN" 
# Unit Foot 
startColumns[[ units[[5]] ]] <- "BO" 
endColumns[[ units[[5]] ]] <- "CD" 
 
startColumns 
endColumns 
 
# Define the first row with data 
firstRow = 4 
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# Import first excel file with parameters 
currentRow = firstRow 
i = 1 
for (consultationType in consultationTypes) { 
  j = 1 
  for (unit in units) { 
     
    # Calculate current starting row 
    currentRow = firstRow + (i-1)*numberOfDepartments 
    rng = paste(startColumns[[unit]], currentRow, ":", endColumns[[unit]], 
currentRow+numberOfDepartments-1, sep="") 
     
    # Read correct range from excel file 
    originalData <- read_excel(excelFileName, col_names = FALSE, range = rng) 
     
    # transpose the data so each row=offset, each column=department 
    transposedTibble <- transposeTibble(originalData, customColumnNames = departmentNames, 
FALSE) 
 
    # Enter data into prepared object 'expectedWorkloadBefore'     
    expectedWorkloadBefore[[consultationType]][[unit]] <- transposedTibble 
     
    # increment unit counter j 
    j = j+1 
  } 
  # increment consultationType counter i 
  i=i+1 
} 
 
# Clear unnecessary objects 
rm(excelFileName, startColumns, endColumns, firstRow, currentRow, i, j, consultationType, unit, rng, 
originalData, transposedTibble) 
 
 
# - 2. Load expectedWorkloadAfter 
# Prepare for data import of excel file 2 
excelFileName = "expectedWorkloadAfter all.xlsx" 
 
# Define columns for each unit 
startColumns <- list() 
endColumns <- list() 
 
# Unit UpperExtr 
startColumns[[ units[[1]] ]] <- "C" 
endColumns[[ units[[1]] ]] <- "R" 
# Unit Hip 
startColumns[[ units[[2]] ]] <- "S" 
endColumns[[ units[[2]] ]] <- "AH" 
# Unit Knee 
startColumns[[ units[[3]] ]] <- "AI" 
endColumns[[ units[[3]] ]] <- "AX" 
# Unit Spine 
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startColumns[[ units[[4]] ]] <- "AY" 
endColumns[[ units[[4]] ]] <- "BN" 
# Unit Foot 
startColumns[[ units[[5]] ]] <- "BO" 
endColumns[[ units[[5]] ]] <- "CD" 
 
startColumns 
endColumns 
 
# Define the first row with data 
firstRow = 4 
 
# Import first excel file with parameters 
currentRow = firstRow 
i = 1 
for (consultationType in consultationTypes) { 
  j = 1 
  for (unit in units) { 
     
    # Calculate current starting row 
    currentRow = firstRow + (i-1)*numberOfDepartments 
    rng = paste(startColumns[[unit]], currentRow, ":", endColumns[[unit]], 
currentRow+numberOfDepartments-1, sep="") 
     
    # Read correct range from excel file 
    originalData <- read_excel(excelFileName, col_names = FALSE, range = rng) 
     
    # transpose the data so each row=offset, each column=department 
    transposedTibble <- transposeTibble(originalData, customColumnNames = departmentNames, 
FALSE) 
     
    # Enter data into prepared object 'expectedWorkloadBefore'     
    expectedWorkloadAfter[[consultationType]][[unit]] <- transposedTibble 
     
    # increment unit counter j 
    j = j+1 
  } 
  # increment consultationType counter i 
  i=i+1 
} 
 
# Clear unnecessary objects 
rm(excelFileName, startColumns, endColumns, firstRow, currentRow, i, j, consultationType, unit, rng, 
originalData, transposedTibble) 
 
 
 
 
# - 3. Load transitionProbabilitiesBefore 
excelFileName <- "transitionProbabilitiesBefore all.xlsx" 
for (unit in units) { 
  transitionProbabilitiesBefore[[unit]] <- read_excel(excelFileName, sheet = unit) 
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} 
rm(excelFileName) 
 
# - 4. Load transitionProbabilitiesAfter 
excelFileName <- "transitionProbabilitiesAfter all.xlsx" 
for (unit in units) { 
  transitionProbabilitiesAfter[[unit]] <- read_excel(excelFileName, sheet = unit) 
} 
rm(excelFileName) 
 
# syntax example: 
transitionProbabilitiesAfter[["Knee"]][["RAD"]][[consultationTypeIndex[["Discharge"]]]] 
 
# - 5. Load consultationDurations 
 
excelFilePath <- paste("Cases/", caseName, "/", consultationDurationsFileName, sep = "") 
consultationDurations <- read_excel(excelFilePath) 
rm(excelFilePath) 
 
# - 6. Load schedules 
excelFilePath <- paste("Cases/", caseName, "/", generatedSchedulesFileName, sep = "") 
 
# Define columns for each unit 
startColumns <- list() 
endColumns <- list() 
 
# Unit UpperExtr 
startColumns[[ units[[1]] ]] <- "C" 
endColumns[[ units[[1]] ]] <- "CH" 
# Unit Hip 
startColumns[[ units[[2]] ]] <- "CI" 
endColumns[[ units[[2]] ]] <- "FN" 
# Unit Knee 
startColumns[[ units[[3]] ]] <- "FO" 
endColumns[[ units[[3]] ]] <- "IT" 
# Unit Spine 
startColumns[[ units[[4]] ]] <- "IU" 
endColumns[[ units[[4]] ]] <- "LZ" 
# Unit Foot 
startColumns[[ units[[5]] ]] <- "MA" 
endColumns[[ units[[5]] ]] <- "PF" 
 
# Define the first row with data 
firstRow = 4 
 
# Import first excel file with parameters 
currentRow = firstRow 
i = 1 
for (scheduleName in scheduleNames) { 
  j = 1 
   
  # Determine first row of the range for this schedule 
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  currentRow <- firstRow + (i-1)*numberOfConsultationTypes 
   
  #print(paste("CurrentRow: ", currentRow)) 
   
  for (unit in units) { 
     
    # Determine the cell range in excel for this (schedule, unit) combination 
    rng <- paste(startColumns[[unit]], currentRow, ":", endColumns[[unit]], 
currentRow+numberOfConsultationTypes-1, sep = "") 
     
    # Read schedule from excel file 
    data <- read_excel(excelFilePath, col_names = FALSE, range = rng) 
     
    # Transpose so rows=time, columns=consultationTypes 
    transposedTibble <- transposeTibble(data, customColumnNames = consultationTypes, FALSE) 
     
    # Store schedule in object 
    schedules[[scheduleName]][[unit]] <- transposedTibble 
     
    # increment unit counter j 
    j = j+1 
  } 
   
  # increment schedule counter i 
  i = i+1 
} 
rm(excelFilePath, startColumns, endColumns, firstRow, currentRow, i, j, scheduleName, unit, rng, 
data, transposedTibble) 
 
 
 
 
# ------------------------------------------------------------------------------------------------------------- # 
#                                           BEGIN SIMULATION SECTION 
# ------------------------------------------------------------------------------------------------------------- # 
# Number of Monte Carlo iterations 
numberMonteCarloIterations <- 10000 
 
# Prepare Workload object 
# rows=time, columns=departments, cell value is minutes of workload 
vectorTemplate <- rep(0, numberOfTimeSlots) 
tibbleTemplateWorkloadResults <- tibble("OOD"=vectorTemplate, "RAD"=vectorTemplate, 
"Plaster"=vectorTemplate, "PREO"=vectorTemplate) 
workload <- list() 
for (i in 1:numberMonteCarloIterations) { 
  workload[[i]] <- tibbleTemplateWorkloadResults 
} 
rm(vectorTemplate) 
 
 
# --- Perform Monte Carlo simulation 
for (MCiteration in 1:numberMonteCarloIterations) { 
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  # --- Start of monte carlo iteration 
  # set a different seed for each iteration 
  set.seed(MCiteration) 
   
  if (MCiteration==1 | MCiteration%%50==0) { 
    print(paste("Start of Monte Carlo iteration", MCiteration)) 
  } 
   
  # start iterating over each schedule 
  s = 1 
  for (schedule in schedules) { 
     
    # iterate over units 
    for (unit in units) { 
       
      # iterate over consultationTypes 
      for (consultationType in consultationTypes) { 
         
        # iterate over time slots 
        for (t in 1:numberOfTimeSlots) { 
           
          # Check if value is 1 
          value <- schedule[[unit]][[consultationType]][t] 
          if (value > 0) { 
            #print(paste("In schedule", scheduleNames[s], "and unit", unit, "a consultation of type", 
consultationType, "is started at time", t)) 
             
            for (department in departmentNames) { 
               
              # --- Determine if a transition BEFORE will occur 
              # Get the average probability 
              probability <- transitionProbabilitiesBefore[[unit]][[department]][[ 
consultationTypeIndex[[consultationType]]  ]] 
              #print(paste("Transition probability before for unit", unit, "to department", department, "for 
consultation type", consultationType, "is:", probability)) 
               
              # Draw a single time from the binomial distribution 
              transitionBeforeOccurs <- rbinom(n = 1, size = 1, prob = probability) 
              #print(transitionBeforeOccurs) 
               
              if (transitionBeforeOccurs) { 
                #print("Transition before occurs!") 
                 
                # Add the workload for this department 
                for (i in 1:maximumOffset) { 
                   
                  timeIndex = t-i 
                  #print(paste("t:", t, "i:", i, "timeIndex:", timeIndex)) 
                   
                  # Check if not reaching out of bounds 
                  if (timeIndex >= 1) { 
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                    # Add workload to the correct time  expectedWorkloadBefore$Repeat$UpperExtr$OOD 
                    workloadToAdd <- expectedWorkloadBefore[[consultationType]][[unit]][[department]][i] 
                    #print(paste("workloadToAdd:", workloadToAdd)) 
                     
                    #print(paste("workload beforehand:", workload[[department]][timeIndex])) 
                    workload[[MCiteration]][[department]][timeIndex] <- 
workload[[MCiteration]][[department]][timeIndex] + workloadToAdd 
                    #print(paste("workload afterwards:", workload[[department]][timeIndex])) 
                  } 
                } 
              } 
               
               
               
              # --- Determine if a transition AFTER will occur 
              # Get the average probability 
              probability <- transitionProbabilitiesAfter[[unit]][[department]][[ 
consultationTypeIndex[[consultationType]]  ]] 
              #print(paste("Transition probability after for unit", unit, "to department", department, "for 
consultation type", consultationType, "is:", probability)) 
               
              # Draw a single time from the binomial distribution 
              transitionAfterOccurs <- rbinom(n = 1, size = 1, prob = probability) 
              #print(transitionAfterOccurs) 
               
              if (transitionAfterOccurs) { 
                #print("Transition after occurs!") 
                 
                # get duration of the consultation 
                consultationDuration <- consultationDurations[[consultationType]][s] 
                #print(paste("Consultation duration for type", consultationType, "and schedule", s, "is:", 
consultationDuration)) 
                 
                # Add the workload for this department 
                for (i in 1:maximumOffset) { 
                   
                  timeIndex = t+consultationDuration+i-1 
                  #print(paste("t:", t, "i:", i, "timeIndex:", timeIndex)) 
                   
                  # Check if not reaching out of bounds 
                  if (timeIndex <= numberOfTimeSlots) { 
                     
                    # Add workload to the correct time  expectedWorkloadBefore$Repeat$UpperExtr$OOD 
                    workloadToAdd <- expectedWorkloadAfter[[consultationType]][[unit]][[department]][i] 
                    #print(paste("workloadToAdd:", workloadToAdd)) 
                     
                    #print(paste("workload beforehand:", workload[[department]][timeIndex])) 
                    workload[[MCiteration]][[department]][timeIndex] <- 
workload[[MCiteration]][[department]][timeIndex] + workloadToAdd 
                    #print(paste("workload afterwards:", workload[[department]][timeIndex])) 
                  } 
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                } 
              } 
               
            } 
          } 
        } 
      } 
    } 
     
    # increment schedule counter s 
    s = s+1 
  } 
} 
 
 
# ------------------------------------------------------------------------------------------------------------- # 
#                                           END SIMULATION SECTION 
# ------------------------------------------------------------------------------------------------------------- # 
 
 
 
# --- Gather results, create tibble per department, rows=iterations, columns=timeslots 
columnNames <- character(numberOfTimeSlots) 
for (i in 1:length(columnNames)) { 
  columnNames[i] <- paste("t=", i, sep = "") 
  #columnNames[i] <- i 
} 
columnNames 
 
# Construct OOD table 
OOD <- tibble("Workload" = workload[[1]]$OOD) 
OOD <- transposeTibble(OOD, customColumnNames = columnNames, FALSE) 
for (i in 2:length(workload)) { 
#for (i in 2:15) { 
  tibbleFromTable <- tibble("Workload" = workload[[i]][["OOD"]]) 
  transposed <- transposeTibble(tibbleFromTable, customColumnNames = columnNames, FALSE) 
  OOD <- bind_rows(OOD, transposed) 
} 
 
# Construct RAD table 
RAD <- tibble("Workload" = workload[[1]]$RAD) 
RAD <- transposeTibble(RAD, customColumnNames = columnNames, FALSE) 
for (i in 2:length(workload)) { 
  tibbleFromTable <- tibble("Workload" = workload[[i]][["RAD"]]) 
  transposed <- transposeTibble(tibbleFromTable, customColumnNames = columnNames, FALSE) 
  RAD <- bind_rows(RAD, transposed) 
} 
 
# Construct Plaster table 
Plaster <- tibble("Workload" = workload[[1]]$Plaster) 
Plaster <- transposeTibble(Plaster, customColumnNames = columnNames, FALSE) 
for (i in 2:length(workload)) { 
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  tibbleFromTable <- tibble("Workload" = workload[[i]][["Plaster"]]) 
  transposed <- transposeTibble(tibbleFromTable, customColumnNames = columnNames, FALSE) 
  Plaster <- bind_rows(Plaster, transposed) 
} 
 
# Construct PREO table 
PREO <- tibble("Workload" = workload[[1]]$PREO) 
PREO <- transposeTibble(PREO, customColumnNames = columnNames, FALSE) 
for (i in 2:length(workload)) { 
  tibbleFromTable <- tibble("Workload" = workload[[i]][["PREO"]]) 
  transposed <- transposeTibble(tibbleFromTable, customColumnNames = columnNames, FALSE) 
  PREO <- bind_rows(PREO, transposed) 
} 
 
 
# --- Write Monte Carlo results to excel files for each department 
library(writexl) 
 
departmentName <- "OOD" 
outputPath <- paste("G:/13. Monte Carlo simulatie/Cases/", caseName, "/MC_results/",  
departmentName,".xlsx", sep = "") 
write_xlsx(OOD, outputPath) 
 
departmentName <- "RAD" 
outputPath <- paste("G:/13. Monte Carlo simulatie/Cases/", caseName, "/MC_results/",  
departmentName,".xlsx", sep = "") 
write_xlsx(RAD, outputPath) 
 
departmentName <- "Plaster" 
outputPath <- paste("G:/13. Monte Carlo simulatie/Cases/", caseName, "/MC_results/",  
departmentName,".xlsx", sep = "") 
write_xlsx(Plaster, outputPath) 
 
departmentName <- "PREO" 
outputPath <- paste("G:/13. Monte Carlo simulatie/Cases/", caseName, "/MC_results/",  
departmentName,".xlsx", sep = "") 
write_xlsx(PREO, outputPath) 
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