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ABSTRACT
The market for blockchain technologies, systems to record
transactions in a distributed, verifiable and permanent
way, has grown significantly over the past years and still
continues to introduce new blockchain-based products into
our daily lives. Due to the nature of these systems, it is
quite difficult to change the core software that these prod-
ucts are based upon, which in turn causes a strong need for
tools and frameworks to quickly analyze and verify such
systems, before it becomes nearly impossible to change
them on the fly. This paper describes a structured way to
model a probabilistic part, the consensus algorithm within
a blockchain-backed system, using the Modest Toolset,
then proposes a method to use this model for performance
measurements of this algorithm, and finally provides a
proof of concept by applying this method to the BFT con-
sensus algorithm of the Exonum blockchain framework by
Bitfury. The results are remarkable: Even though it is
possible to use the constructed model to analyze network
behaviour, not every blockchain network can be compared
to each other in a trivial way. Instead there are different
categories of blockchain networks among which compar-
isons can be made.

1. INTRODUCTION
When Nakamoto introduced the concept of peer-to-peer
electronic cash systems 11 years ago [18], it did not only
lead to the creation of the Bitcoin digital currency, but it
also introduced the concept of a blockchain. A blockchain
is essentially a distributed ledger that can efficiently record
transactions between parties in a permanent and verifi-
able way. In order to make these guarantees, different
algorithms are used together in order to record data as
mathematical structures (blocks) that are recursively de-
pendent on their historical predecessors (parent blocks).

This overall structure makes it impossible to alter data
without having to rewrite all history after the original en-
try that was altered [18]. It is however of vital importance
that the algorithms used to properly assert the perma-
nent and verifiable nature of the entire blockchain actually
do guarantee the required mathematical properties, even
though some of these algorithms involve probability and
chance.
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The Bitcoin project itself has been subject to a variety of
research projects studying its security and safety [11, 4, 3].
However, with the introduction of many new projects that
provide a so called ‘private blockchain’ or ‘managed ledger’
[28], a need arises for new and efficient ways to model
the implementations of the core algorithms of blockchain
projects in order to be able to verify safety and compare
performance of these systems.

To that end, a collaboration was sought with the com-
pany Bitfury and one of their projects, Exonum, was used
for analysis. Exonum is a framework for creating custom
blockchain applications for private use [10]. This research
therefore focusses specifically on the BFT consensus algo-
rithm implemented in Exonum.

The main goal of this research is to obtain a quick and
structured way of modelling blockchain network consensus
algorithms, and provide a proof of concept by applying
this structured way to the Exonum blockchain software
framework by Bitfury [10].

The main research question to answer is therefore: “Does
the Exonum BFT consensus algorithm provide the
same level of performance as the Bitcoin consen-
sus algorithm?” In order to obtain the answer to this
question, the following sub-questions have been identified:

• RQ 1: In what ways does a consensus algorithm re-
late to blockchain performance?

• RQ 2: Which metrics are needed to measure consen-
sus algorithm performance in a decentralized block-
chain based system?

• RQ 3: Which tools and models are needed to de-
scribe consensus algorithm performance?

• RQ 4: Is it possible to compare blockchain perfor-
mance measurements?

This paper is organized as follows: Section 2 discusses
the literature research findings, Section 3 discusses the
modeling preparations, Section 4 discusses the constructed
model, Section 6 discusses the results and findings of this
research, and Section 7 concludes the research.

2. BACKGROUND
This section describes existing research, related work and
theory upon which the rest of the research is built. The
following subsections each introduce existing research in a
specific field, itś relevance, and provide a quick summary of
the theory. Finally this section concludes with a summary
of silimar related work to this research.
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2.1 Bitcoin
As mentioned in Section 1, Bitcoin uses a blockchain to
provide a decentralized digital currency. In this decen-
tralized network, there is no notion of trust or any as-
sumptions made based upon trust. Instead, the network
assumes that the information agreed upon by the major-
ity of the computing power used for the network will be
trustworthy. In order to achieve this, Bitcoin uses a sys-
tem called “Proof-of-Work”.

Bitcoin transactions are combined into“blocks”, which ref-
erence the hash of the previously last known block, and a
proof the block creator had access to a certain amount
of computing power. This is done by searching for par-
tial hash collisions with the hash of the previous block
and embedding the match, resulting in a proof the block
creator actually spent time and resources on this specific
block. The longest chain of blocks will be considered the
proper blockchain, and in case a transaction ended up on
a shorter branch of blocks, it will simply be considered as
illegitimate. Unfortunately, in this assumption also rests
a significant source of possible vulnerabilities [6]. A trans-
action can only be considered legitimate by an observer
when this observer is sure the transaction ended up in the
longest chain [5]. However, due to the decentralized nature
of the blockchain, it is impossible to guarantee it actually
did end up in this chain, for there may be some (yet) un-
known longer chain of blocks which is, either artificially or
by accident, unknown to the observer [24]. Therefore, it
is only possible to denote the chance of a transaction be-
ing in the largest chain of blocks, by taking a look at the
amount of succeeding blocks that occurred after the block
containing the transaction. As the amount of succeeding
blocks increases, the chances of the transaction being ille-
gitimate decreases. There is however no amount of blocks
for which the chance becomes completely nonexistent.

The amount of blocks after which a transaction is deemed
“most likely legitimate” is determined by the receiver and
can vary on a case to case basis. If the transaction amount
was low, for instance the purchase of a pizza, a relatively
low amount like one or two blocks suffices to mitigate the
risks [20]. On the other hand, if the transaction involved
a high value, for instance a mortgage, a relatively high
number of blocks will be needed such as ten in order to
mitigate the risks. Most public systems deem a transac-
tion valid when the number of succeeding blocks reaches
six [21]. Bitcoins are also prone to different kind of attacks,
such as private key theft [25] and timejacking[23].

2.2 Byzantine Fault Tolerance
The Byzantine Fault Tolerance concept originates in the
Byzantine Generals Problem[16]. Although several varia-
tions of this problem exist referring to this made-up his-
torical event, the gist of the story is always the following.
The Byzantine army has surrounded an enemy city. The
army is led by a number of Byzantine generals and each
of the generals leads their own division. However, there
are traitors among the generals who are interested in the
Byzantine army failing.

In order for the battle to reach a successful or a neutral
outcome, all the loyal generals must agree on the same
plan of actions. The problem formulation allows for two
possible actions on their behalf: attack or retreat. In case
only a part of the divisions led by loyal generals attacks,
and the other loyal generals retreat, the entire Byzantine
army will be defeated by the enemy city forces. This is why
it is essential for the loyal Byzantine generals to reach a
consensus regarding their battle plan.

Lamport has shown [16] an algorithm exists for loyal gen-
erals to always reach a consensus if the number of the loyal
generals is strictly larger than 2
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of all generals. This holds

for a system in which messages between the generals may
be lost.

In general, a distributed system is deemed Byzantine fault
tolerant if it is able to properly function in the presence
of arbitrarily behaving or malicious participants[9].

2.3 Exonum by Bitfury
Bitfury is a blockchain technology company that offers
both software and hardware products. Exonum is one of
such software products. It is a software framework for
creating private blockchain-based projects for custom use
cases, mainly targeted at companies and governments. Ex-
ample use cases provided by Bitfury include E-voting, P2P
lending, E-auction and a government registry[10].

Exonum provides the permissioned kind of blockchain [7].
This means that blockchain participants can be identified,
moreover different blockchain participants can be assigned
different set of permissions. In practice this means that
certain nodes of a blockchain have the right to partic-
ipate in decision-making (consensus), while other nodes
are simply observers. The details depend on the specific
implementation of the framework.

Unlike in the Bitcoin network, where no assumptions about
trust between anonymous participants are made, the Ex-
onum framework assumes an environment of semi-trust.
This is due to the application specifics of the Exonum
framework. Since the framework finds its main use cases in
the corporate/government environment where the block-
chain network nodes are pre-approved and can be iden-
tified, some level of trust can be assumed. However, the
Exonum framework does takes into account the fact that
a node might malfunction or might be compromised and
thus acts in a malicious way. According to its specifica-
tions, Exonum-based systems can withstand up to strictly
fewer than 1
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improperly behaving nodes out of the total

number of nodes in a network, and still reach a correct
consensus under such conditions[27]. This makes the Ex-
onum consensus algorithm Byzantine Fault Tolerant.

2.4 Stochastic Modelling
Modelling a consensus algorithm requires, due to the dis-
tributed nature of blockchain networks, a modelling toolset
which is capable of simulating parallel processes, and is
also able to deal with stochastic modelling – i.e., modelling
under probabilistic uncertainty. For instance, this applies
to packet loss, or a malicious attack occurring, since such
events are subject to probability and chance.

2.5 Modest & The Modest Toolset
The Modest modelling language and Toolset [8, 14, 15]
is an example of a toolset that fulfills the above require-
ments. Modest is a high-level compositional modelling lan-
guage. The Modest Toolset supports the modelling of real-
time and stochastic systems, among other features[13].
Being able to model check a real-time stochastic system is
relevant to measuring blockchain performance, since both
time and probability-based events are key factors in the
functioning of a blockchain.

The Modest Toolset includes modelling support for a vari-
ety of model formalisms such as Markov automata, stochas-
tic timed automata, Markov decision processes and la-
belled transition systems. The above formalisms can be
seen as special cases of SHA – stochastic hybrid automata,
the modelling of which is supported by Modest[13].
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The Modest Toolset includes tools to perform two types
of model verification: exhaustive model checking and sta-
tistical model checking. The tool mcsta is an exhaustive
model checker that performs the full state space explo-
ration of a model. The tool modes is a statistical model
checker that bases its results on the statistical measure-
ments obtained after a specified number of model runs.

2.6 Related Work
Significant research into BFT consensus performance al-
ready exist. In this research [22] a Stochastic-Reward-
Network [17] is used to perform performance analysis of
the BFT consensus algorithm of the Hyperledger Fabric
[2]. The current research will perform a different approach
to this, as a Modest model can be used to perform differ-
ent types of analysis, among which the possibility exists to
use SRNs [12] to compare Exonum performance to Hyper-
ledger performance by comparing the results of these two
researches. Research into the differences between PoW
consensus and BFT consensus also already exists. Abra-
ham [1] provided a comparison that introduces analogies
and connections between PoW-based consensus protocols,
and BFT-based consensus algorithms, making it possible
to partially bridge between these two paradigms. Finally,
Nguyen [19] provided a survey of different types of consen-
sus algorithms, providing a taxonomy which can be used
to segment performance comparisons.

3. TOWARDS A MODEST MODEL
3.1 Consensus in Exonum
Operating in a semi-trust environment with pre-approved
blockchain participants, the Exonum framework utilizes a
BFT consensus algorithm as the means to reach agreement
between blockchain nodes regarding every block that is
proposed by a blockchain participant node. Depending on
the outcome of a multiple-round vote, the proposed block
is either added to the blockchain or discarded. When a
block is committed to the blockchain as a result of con-
sensus, all of the transactions contained in that block are
deemed valid and will never be rescinded.

More specifically, the consensus algorithm in Exonum is
implemented as follows[27]. The Exonum network con-
sists of two types of participant nodes with different pre-
approved permission sets. Auditor nodes have read-only
rights and do not participate in consensus reaching. Val-
idator nodes, on the other hand, are the ones that partic-
ipate in the consensus algorithm. In this paper, validator
nodes are referred to as simply “nodes”, since only valida-
tor nodes are a part of the consensus algorithm.

The process of reaching block consensus consists of mul-
tiple rounds, which might run in parallel. Within each of
the rounds, a new block is considered for addition to the
blockchain. Each round has a leader node which is elected
for one round only using a separate algorithm. The leader
sends a proposal (a block) consisting of transactions that
are needed to be added to the blockchain. The validator
nodes check if said transactions are valid and have not
been committed yet. If certain transactions from the pro-
posal do not make sense to the nodes, they ignore the pro-
posal. In case all transactions in the proposal are valid, the
full proposal stage is reached, and the nodes start a pre-
vote on the proposal. A supermajority, defined as strictly
more than 2
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prevotes, is needed to reach the stage called

availability of 2
3

+ prevotes. When that stage is reached,
a lock occurs. A lock means that nodes who have the in-
formation about availability of 2

3
+ prevotes regarding a

proposal, lock on that proposal and do not cast any other

prevotes in favor of proposals from other ongoing rounds.
Finally, the node sends a precommit message. Similarly to
prevotes, there must be strictly more than 2

3
precommits.

When that happens, then nodes reach the commit stage,
which means that the block (proposal) has been success-
fully committed to the blockchain.

It is important to note that all messages are simply broad-
cast across the network, meaning that they can arrive out
of order or be lost due to network errors. In case a certain
message does not make sense to a node, that node is able
to request missing information from the peer nodes.

3.2 Exonum vs Bitcoin Consensus
In the Bitcoin network, participating nodes are not pre-
approved [18]. Anyone is able to join the Bitcoin block-
chain, moreover, all the participants are equal in terms
of their permissions. Since all the participant nodes are
anonymous, a zero-level of trust is assumed here. To solve
the problem of no trust, a different (compared to Exonum)
approach to consensus is utilized in the Bitcoin blockchain.
Unlike in Exonum, no explicit voting takes place, instead,
Bitcoin relies on the “Proof-of-Work” type of consensus.
Unlike in Exonum, blocks with false transactions can in
principle be added to the Bitcoin blockchain. However,
since every Bitcoin block references the hash of the previ-
ous block, it is in practice impossible for one entity to keep
indefinitely finding new blocks and maintaining the fraud-
ulent chain. Compared to Exonum, the Bitcoin network
requires significantly more computational power from the
participants in order to maintain integrity.

3.3 Metrics
In order to perform analysis and comparisons of the con-
sensus algorithms, Metrics must be identified that influ-
ence the overall network performance, together with fac-
tors which may influence these metrics. These factors
should be easy to modify in the model, in order to make it
possible to quickly execute new measurements with varia-
tions in these factors.

Exonum BFT performance can be measured in amount of
actions per node before a block becomes committed. This
could, for instance, be influenced by network packet loss,
percentage of badly behaving nodes, network size, and by
timeout duration. Bitcoin however, does not have a clear
moment at which a block officially becomes committed,
due to the fact that it requires multiple new block commits
to know if a committed block was used and referenced in
a newer block and thus accepted [21].

Therefore, it is not possible to measure Bitcoin perfor-
mance based on time to commit a block. Instead, for Bit-
coin performance modeling, it is needed to define a mini-
mal amount of blocks to be committed after a block com-
mit. Unfortunately, this produces an initially unforeseen
side-effect; a single block commit is independent of other
nodes, and therefore always achieves better performance
compared to Exonum’s BFT consensus algorithm on large
scale networks, but adding the requirement of multiple
succeeding blocks, adds a higher-order complexity to the
analysis, which therefore influences any performance com-
parison to such an extend, that the outcome will depend
entirely on the number of required additional blocks.

Because of this, it is important to make proper compar-
isons between consensus algorithms while keeping the type
of consensus algorithm in mind. Proof-of-Work consensus,
should not be compared with BFT consensus, for the re-
quired assumptions will entirely determine the outcome of
the comparison.
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4. A MODEST MODEL
This section presents the Modest model of the Exonum
BFT consensus algorithm. The subsections describe the
parts of this model including actions, processes and par-
allelization instances that are used to represent different
elements of the consensus algorithm. Furthermore, this
section explains the assumptions and the design choices
that were made when creating the model.

4.1 Exonum Round Process
The first thing that requires modelling is the actual inter-
nal workings of a validator node for a single round. Par-
allelization can then be used to extend the process into
multiple rounds or multiple nodes. A node can be in sev-
eral stages for a specific round:

• Full proposal

• Availability of 2
3
+ prevotes

• Lock

• Commit

Figure 1 shows a code excerpt in which the process Node
represents the set of actions a properly functioning val-
idator node triggers throughout the consensus reaching
process, depending on the internal state and on the vote
counters. The Node process has a parameter that indicates
the id number of each node.

process Node(int id)
{

int(0..3) state;
int(0..number_of_nodes) prevotes;
int(0..number_of_nodes) precommits;

do {
:: when(state == 0) rcv_proposal {= state++ =}
:: when(state == 1) send_prevote {= =}
:: when(state == 1) rcv_prevote {= prevotes++ =}
:: when(state == 1 && prevotes >= supermajority)

tau {= state++ =}
:: when(state == 2) send_precommit {= =}
:: when(state == 2) rcv_precommit {= precommits++ =}
:: when(state == 2) rcv_prevote {= prevotes++ =}
:: when(state == 2 && precommits >= supermajority)

tau {= state++, block_commited[id]=true =}
}
}

Figure 1. Internal workings of a node

State 0 represents the starting stage before receiving a
proposal. State 1 represents the Full proposal stage. In
that state, a node is able to send and receive prevotes.
When a prevote is received, the node updates the counter.
When the number of prevotes reaches supermajority, the
node goes into the next state.

State 2 corresponds to both Availability of 2
3

+ prevotes
stage and the Lock stage. In that state, the node is able
to send and receive precommits. It is also able to receive
prevotes. Although this leads to no progress regarding
reaching consensus, it represents the ability of nodes to
receive messages out of order. When the recorded pre-
commits number reaches supermajority, the state is incre-
mented once again, and the block is deemed commited for
this particular node. State 3 corresponds to the Commit
stage.

It is important to note that in the do-block of the Node
process a non-deterministic choice occurs between all the
listed actions. However, the state-related constraints limit
the non-determinism to the stage-level.

4.2 Exonum Message Validation
The second thing to model, is the validity of network mes-
sages. By modelling the message validation separately, it
becomes easy to model bad behaviour. The inner work-
ings of a node can be changed into anything, but the paral-
lelization of the processes makes sure only“legal”messages
are received and processed.

Figure 2 depicts a code excerpt in which the NetworkNode
process represents the public side of a node. This process
safeguards the network behaviour: only the messages that
were sent can be received.

process NetworkNode(int PER)
{
int(0..2) sent_pv_state;
int(0..2) sent_pc_state;

do {
:: when(sent_pv_state == 0) send_prevote palt {

:100-PER: {= sent_pv_state++ =}
:PER: {= =}}

:: when(sent_pv_state == 1) rcv_prevote {= sent_pv_state++ =}

:: when(sent_pc_state == 0) send_precommit palt {
:100-PER: {= sent_pc_state++ =}
:PER: {= =}}

:: when(sent_pc_state == 1) rcv_precommit {= sent_pc_state++ =}
:: rcv_proposal
}
}

Figure 2. Behavior of a node within the network

Moreover, the NetworkNode process simulates the net-
work’s property of being able to lose sent messages. The
extent of this property can be changed with the parame-
ter “PER” – packet error rate. This parameter can be set
to integer values from 0 to 100 representing the error rate
from 0% up to 100%.

The process has two counters: one for prevotes and one for
precommits. The palt keyword is used to indicate a prob-
abilistic alternative: either a sent message will be success-
fully received by the nodes or it will be dropped with the
probability specified as the parameter PER. Furthermore,
the process allows for receiveing a proposal at any time.

4.3 Exonum Network
By taking multiple round processes, multiple message val-
idation processes, and creating a parallelism of these, a
network of nodes can be simulated.

Figure 3 shows code representing a Network process of
four nodes. Unlike the Node and NetworkNode processes,
Network has no states of its own. Instead, it connects
network behaviours of the nodes by means of relabeling
and parallelization. After all the generic actions in Net-
workNode have been relabeled with Node-specific action
names and the NetworkNode processes are parallelized, the
receiving-related actions are relabeled back with generic
names. This is due to the fact that it does not matter for
a node from which specific node a vote is received to be
counted.

4.4 Remaining Model Details
In addition to local actions contained inside the processes
depicted in Figures 1 to 3, the model also includes actions
declared globally due to them being utilized by multiple
processes. These are depicted in Figure 4.

Finally, the final composition of the model processes is
depicted in Figure 5. Here, a process for each of the par-
ticipating nodes is started, with sending-related actions
relabeled by node-specific names.
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process Network()
{

action rcv_prevote0, rcv_prevote1,
rcv_prevote2, rcv_prevote3;

action rcv_precommit0, rcv_precommit1,
rcv_precommit2, rcv_precommit3;

do {
:: relabel
{rcv_prevote0, rcv_prevote1,
rcv_prevote2, rcv_prevote3,
rcv_precommit0, rcv_precommit1,
rcv_precommit2, rcv_precommit3}
by
{rcv_prevote, rcv_prevote,
rcv_prevote, rcv_prevote,
rcv_precommit, rcv_precommit,
rcv_precommit, rcv_precommit}
{
par {
:: relabel {send_prevote, send_precommit,

rcv_prevote, rcv_precommit}
by {send_prevote0, send_precommit0,

rcv_prevote0, rcv_precommit0} NetworkNode(PER)

:: relabel {send_prevote, send_precommit,
rcv_prevote, rcv_precommit}

by {send_prevote1, send_precommit1,
rcv_prevote1, rcv_precommit1} NetworkNode(PER)

:: relabel {send_prevote, send_precommit,
rcv_prevote, rcv_precommit}

by {send_prevote2, send_precommit2,
rcv_prevote2, rcv_precommit2} NetworkNode(PER)

:: relabel {send_prevote, send_precommit,
rcv_prevote, rcv_precommit}

by {send_prevote3, send_precommit3,
rcv_prevote3, rcv_precommit3} NetworkNode(PER)

}
}
}
}

Figure 3. The network parallelization

action rcv_proposal, rcv_prevote, rcv_precommit;
action send_prevote, send_precommit;

action send_prevote0, send_prevote1,
send_prevote2, send_prevote3;

action send_precommit0, send_precommit1,
send_precommit2, send_precommit3;

Figure 4. Global actions

As mentioned previously, this model includes exactly four
participating nodes, for which a Network process is started.
By using parallelization, the internal workings of a node
round are synchronized with a network that safeguards al-
lowed messages and is capable of losing messages with a
specified probability.

4.5 Modelling the Misbehaving Node
Naturally, malicious and malfunctioning nodes are not an
intended part of the Exonum consensus algorithm. How-
ever, according to the specifications, the Exonum consen-
sus algorithms is able to withstand up to strictly fewer
than 1

3
nodes that function improperly, and still reach a

correct decision regarding a block.

An attempt was made to model a misbehaving node that
participates in the Exonum consensus algorithm. It is de-
picted in Figure 6. The behavior of the misbehaving node
is chosen to be as generalized as possible, meaning that
the misbehaving node selects actions at random. At all
times, this node is able to send any kind of message or
internally register a block as committed.

par {
:: relabel {send_prevote, send_precommit} by

{send_prevote0, send_precommit0} Node(0)
:: relabel {send_prevote, send_precommit} by

{send_prevote1, send_precommit1} Node(1)
:: relabel {send_prevote, send_precommit} by

{send_prevote2, send_precommit2} Node(2)
:: relabel {send_prevote, send_precommit} by

{send_prevote3, send_precommit3} Node(3)
:: Network()
}

Figure 5. The final composition

process BadNode(int id) {
do {
:: rcv_proposal
:: send_prevote
:: rcv_prevote
:: send_precommit
:: rcv_precommit
:: tau {= block_commited[id]=true =}
}
}

Figure 6. The misbehaving node

4.6 Remarks and Areas for Improvement
In the current version of the Modest model, the number
of nodes participating in the consensus algorithm is hard-
coded, which requires manual addition or removal of lines
of code in case the node number requires changing.

The concept of rounds of the consensus algorithm is mod-
elled in a simplified way compared to the actual Exonum
algorithm. The created model simulates a round during
which a consensus must be reached, as opposed to multi-
ple rounds with multiple proposals happening in parallel.
It is also assumed that all of the transactions included
in a proposal are valid. Since it is assumed that internal
checking of transaction validity takes no time, the part
was excluded.

The misbehaving node in the current version of the model
is rather generic. It is possible to extend the node with dif-
ferent types of behavior, possibly making its actions more
intelligent. Furthermore, a group of malicious nodes can
be created that coordinates their actions

5. MEASUREMENTS
5.1 Networks of Legitimate Nodes
The Modest model of the Exonum consensus algorithm
allows for simulating a lossy network; the probability of the
network losing broadcast messages can be specified when
running the model. Figures 8 and 9 show the influence of
the message loss probability on the time to commit a block
after reaching consensus. In these graphs, the probability
of a message loss is referred to as “Packet Error Rate”
(PER), and the time it takes for all the network nodes to
reach consensus and successfully commit a block is referred
to as “Time to Commit”. Packet error rate is measured
in percentages, and time to commit is measured in the
number of messages exchanged between the nodes before
successfully committing a block.

The tool from the Modest Toolset that was used to plot the
graphs in Figures 8 and 9 is mcsta, the exhaustive model
checker. After exhaustively exploring the state space, the
sequences of non-deterministic choices that lead to the
most and the least amount of time to commit a block are
known. The two properties that were verified with mcsta
are depicted in Figure 7.
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property time_to_commit_max =
Xmax(S, forall_committed(number_of_nodes));

property time_to_commit_min =
Xmin(S, forall_committed(number_of_nodes));

Figure 7. The verified properties

More specifically, the time to commit max property rep-
resents the maximum amount of time it can take for a
block to be committed, according to all of the nodes in
the network.

Similarly, the time to commit min property retrieves the
minimum amount of time the nodes can take to commit
a block. These two properties are plotted correspondingly
as “MAX” and “MIN” in Figures 8 and 9.

Figure 8 demonstrates the results for a network consisting
of four well-functioning nodes. Figure 9 demonstrates the
same for a network of seven well-functioning nodes. In
both, the dependency between the specified packet error
rates and the MAX/MIN time values is shown.
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Figure 8. PER vs Time to Commit (4 nodes)
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Figure 9. PER vs Time to Commit (7 nodes)

5.2 Networks with Misbehaving Nodes
In the following measurement results, a network of four
nodes is used. Three of the nodes are legitimate fully-
functioning nodes, and one is a misbehaving node, as de-
scribed in Section 4.5.

The X and Y axes are identical to the one from Section
5.1, they correspondingly depict the packet error rate mea-
sured in percentages and the time to commit a block mea-
sured in the messages exchanged between nodes before a
block is committed. However, by using the mcsta tool
it was discovered that in the worst case the misbehaving
node is able to flood the network with messages, so that
reaching a consensus becomes impossible. This is a limita-
tion of the model: in practice, a node sending a considerate
amount of packets above a certain rate would be prevented
by different means such as lower level network congestion
control. However, such a model behavior makes the MAX
time to commit a block go to infinity. Surprisingly, in the
MIN case, the time is slightly decreased compared to the
MIN case from Section 5.1. This can happen when the
misbehaving node accidentally makes the consensus pro-
cess faster due to the randomness of its actions.

Due to the specified behavior of the misbehaving node,
the results obtained by mcsta are not particularly use-
ful. Instead, in this section the modes tool is used. It
is a statistical model checker that is used here to obtain
the mean time it takes to commit a block. Using a sta-
tistical model checker on the existing model gives rise to
non-determinism between existing actions. This problem
is solved by assigning a uniform distribution to the non-
deterministic actions. The graph depicting the results is
in Figure 10.
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Figure 10. PER vs Time to Commit (4 nodes,
network with one misbehaving node)

6. DISCUSSION
As seen in the results of Section 5, varying the packet
loss for the network slows down the speed at which a new
block gets committed. However, according to pre-existing
Bitcoin models [5], this is not the case for Bitcoin. Varying
the packet error rate for Bitcoin does however increase the
chances of a Bitcoin split occurring, where two branches
of the blockchain exist at the same time. As soon as these
branches get in touch with the same network member, the
longest of these branches wins and the other transactions
are rolled back.
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Similarly, in the case of a misbehaving node, the influence
on the network is different compared to misbehaving nodes
in the Bitcoin Blockchain. In a Bitcoin blockchain, a mis-
behaving node would either need access to a considerable
amount of computing power, or work together with other
nodes to actually influence the network at all [6].

7. CONCLUSIONS
The constructed model can be used to analyze the BFT
Consensus algorithm, and determine the performance im-
pact of variations in factors such as packet error rate and
number of misbehaving nodes. The constructed model
can also be further extended to account for more edge-
cases and reduce the number of assumptions and simpli-
fications. It is however, not possible to answer the initial
research question “Does the Exonum BFT consensus algo-
rithm provide the same level of performance as the Bitcoin
consensus algorithm?”. This is due to the fact that the
definition of measurable network performance is consider-
ably different for both projects, causing the assumptions
to counter these differences to have more impact on the
outcome of the comparison than the actual analysis would
have, thus making it possible to end up with any outcome
one may want to achieve. While proper comparison be-
tween different consensus algorithm types is impossible, it
still might be possible to compare equal types of consensus
algorithms. This, however, requires further research.

8. FURTHER RESEARCH
Using the presented models and results, it is now possible
to conduct further research. For instance, the following
questions could be further explored and answered:

• Is it possible to compare Exonum BFT consensus
with other BFT consensus algorithms such as the
Hyperleger Fabric consensus [2]?

• Is it possible to automate (partial) verification of
blockchain software using the results of this research?

• In which ways can probabilistic models be used to
increase the performance of blockchain based net-
works?

• Do custom blockchain frameworks actually provide
added value (either through performance, security,
or in another way) compared to other blockchain net-
works, such as Ethereum [26]?
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