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Engineering. I followed mainly courses on circuit design and the underlying physics, and I followed
courses regarding the fabrication processes used for state-of-the-art devices. After an internship on the
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and Systems group, then still the Semiconductor Components group, and was offered the opportunity to
work on the extraction of traps in state-of-the-art FDSOI material from Global Foundries. I could not
let this opportunity pass and am proud to present the findings and conclusions of this 40 ECTS master
thesis project.
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Chapter 1

Introduction

In 1926 the field-effect transistor (FET) was filed for a patent by Lilienfeld. The theoretical description
of the FET presented in this patent steered the industry towards fabricating such a device. In 1947,
some years later, Bardeen and Brattain invented and fabricated the point-contact transistor. Shockley
described the improvements that diffusion contacts would have on this design in 1952. These were the
first steps towards the fabrication of solid-state electronic amplification.

This was the beginning of a new electronics industry when Gordon Moore described the advantages
of cramming more components, mainly transistors, onto integrated circuits, in 1965 [1]. He described
several observations about integrated circuits: the high reliability of integrated circuits in comparison
to conventional electronics at that time, the high yields of integrated circuits and the fact that there is
no fundamental obstacle to achieving yields of 100%. Most importantly, he described that the cost per
component is inversely proportional to the number of components, and that adding more components
on a wafer would result in a decreasing yield such that the cost per component increases. From this he
observed a minimum in costs at any given time in the evolution of the technology and this minimum
in costs decreased over time as more components were being crammed on a certain chip area. [1] This
trend is better known as Moore’s law: the number of components per integrated function that yields
the minimum component costs increases at a rate of roughly a factor of two per year. The number
of transistors, or metal-oxide-semiconductor FETs (MOSFETs), per chip area would thus drastically
increase.

MOSFET scaling
Dennard et al. then described the MOSFET scaling rules for obtaining simultaneous improvements in
the number of components per chip and the transistor switching speed and power dissipation in 1974 [2].
This gave Moore’s law a scientific foundation and was quickly adopted by the semiconductor industry as
the roadmap for providing systematic and predictable transistor improvements [3].

The constant field (CF) scaling scheme they proposed was the beginning of the happy scaling era. The
scheme uses a constant scaling factor κ and scales the device parameters with this such that transistors
can be miniaturized while maintaining the same electric field in the device, e.g. device dimensions such
as the oxide thickness, gate length and gate width are scaled with 1/κ, the doping is scaled with κ and
the supply voltage and resulting current are scaled with κ [2]. The scheme assumes that the effects of
source and drain parasitic resistances and velocity saturation are avoided by attempting to keep the drain
electric field and power density constant [4].

A schematic of the MOSFET is shown in figure 1.1. In the schematic the length, oxide thickness and
channel doping are shown. The width is in y-direction, out-of-plane, and is therefore not shown.

Then, in 1980, two additional schemes were proposed such that the overall scaling trend resembled
the scaling observed in industry more closely. The proposed schemes were the constant voltage (CV) and
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CHAPTER 1. INTRODUCTION

Figure 1.1: Schematic of MOSFET showing the source, drain, substrate and gate with gate workfunction
∆φ. The oxide layer has a thickness tox, the channel doping is denoted by N , the source and drain
junction depth is denoted by xj and the gate field penetration depth is denoted by tdep. The distance
between the two extension regions is called the electrical or effective gate length or channel length L.
The (dielectric) spacers are shown in yellow. The width W of the device is out-of-plane (in y-direction)
and is not shown.

quasi-constant voltage (QCV) schemes [4]. The CV scaling scheme maintains a constant supply voltage
and scales the gate oxide more gradually, with 1/

√
κ, to slow the growth of fields in the oxide. This leads

to high drain fields and hot carrier related reliability problems [5, 6, 7]. Also, transistors scaled down
with this scheme are operated close to severe junction depletion width extensions and oxide breakdown
fields [4].

Therefore, scaling with the CF scheme was generally more desired. However, the industry was reluc-
tant to scale down the operating voltages because of the increased difficulty in designing circuit boards
for chips that operate at different supply voltages and because scaling down the power supply tends to
increase the delay [8]. The industry thus avoided scaling down power supplies for as long as possible.

The QCV scaling scheme scales the supply voltage more slowly than the CF scheme and scales the
oxide more rapidly than the CV scheme. One could say that the QCV scheme adopts the good predictions
of oxide thickness scaling and doping scaling presented by the CF scheme, with the reluctance to scale the
power supply included. Therefore, this scheme is the better indicator of the observed trends in industry
until 1995 [8].
The device scaling laws for the three different schemes are summarized in table 1.1.

Description Parameter Constant Quasi-constant Constant
Field (CF) Voltage (QCV) Voltage (CV)

Device Dimensions L, W 1/κ 1/κ 1/κ
Oxide Thickness tox 1/κ 1/κ 1/

√
κ

Power Supply VDD 1/κ 1/
√
κ 1

Channel Doping N κ κ κ

Table 1.1: Device scaling laws for constant field (CF), quasi-constant voltage (QCV) and constant voltage
(CV) schemes with scaling factor κ.
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CHAPTER 1. INTRODUCTION

MOSFET scaling limits
Scaling of the MOSFET with the discussed scaling schemes could not continue indefinitely. The encoun-
tered problems with scaling the MOSFET and the solutions to these problems had to be re-considered
and are described next.

The scaling rules assumed that the threshold voltage VT would scale along with the operating voltage,
but this ignored the impact of the transistor subthreshold leakage current on the overall chip power
consumption. The subthreshold leakage current between source and drain was relatively low when the
CF scheme was developed and had only a small contribution to the power consumption. After 30 years
of scaling, the leakage current has drastically increased and due to the leakage constraints, difficulties in
further scaling the threshold voltage and thus in scaling the power supply result. [3]

Furthermore, scaling down the oxide thickness eventually resulted in oxides of effectively only 1 - 2
nm thick and thus of only a few atoms thick. It would therefore become physically impossible to further
scale down the oxide thickness. Also, the direct tunneling current for these thin oxides results in a
noticeable gate leakage current. [3] Different insulator materials with a higher dielectric constant, called
high-k dielectrics, were incorporated such that the effective oxide thickness (EOT) still decreased. Here,
EOT= toxεk/εox with εk the dielectric constant of the high-k material and εox the dielectric constant
of silicon dioxide. With these materials implemented the limit for scaling down the oxide thickness was
reached.

Also, reducing the MOFET channel length results in the threshold voltage becoming dependent on
the effective gate length and the applied drain to source voltage. These non-ideal deviations are called
short-channel effects (SCE) and the effect of only the drain to source voltage (VDS) on the threshold
voltage is a typical SCE called drain-induced barrier lowering (DIBL) [9, 10]. The SCE and especially
the DIBL pose a limit for the scaling down of the transistor length, as the ratio between the on-current
and off-current, and the amplification given by the product of the transconductance gm and the drain to
source resistance RDS, significantly reduce [11]. The effects of the SCE and the DIBL can be translated
into electrical parameters with the Voltage-Doping Transformation model proposed by Skotnicki et al.
[12].

The threshold voltage for the MOSFET device can be obtained from:

VT = VT∞ −∆VT,SCE −∆VT,DIBL, (1.1)

with VT∞ the threshold voltage for a long-channel device and with the two ∆VT-terms the influence of
SCE and DIBL, as stated by the subscript. The following equations for the influence of SCE and DIBL
on the threshold voltage can be used [9, 13]:

∆VT,SCE = 0.64 εsi
εox

(
1 +

x2
j
L2

)
toxtdep
L

· φb ≡ 0.64 εsi
εox
· EI · φb (1.2)

and
∆VT,DIBL = 0.80 εsi

εox

(
1 +

x2
j
L2

)
toxtdep
L

· VDS ≡ 0.80 εsi
εox
· EI · VDS, (1.3)

with εsi and εox the dielectric constants of silicon and the oxide, respectively, L the effective or electrical
gate length, or channel length, φb the channel-extension potential barrier (or drain or source built-in
voltage), xj the source and drain junction depth and tdep the penetration depth of the gate field in the
channel region or the depletion region width. The EI parameter is the electrostatic integrity factor and
depends on the device geometry. The parameter describes the influence of the electric field lines from the
drain on the channel region and should be minimized. The EI will be discussed in more detail further on
in this introduction. The observed decrease in threshold voltage due to a decrease in gate length is called
threshold voltage roll-off [9]. Even when keeping the supply voltage constant the threshold voltage thus
decreases for decreasing transistor lengths.
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CHAPTER 1. INTRODUCTION

Figure 1.2: Evolution of electrostatic integrity factor. From left to right: bulk MOSFET, single gate (SG)
FDSOI FET with thick BOX layer, SG FDSOI FET with thin BOX layer and highly doped substrate
and double gate (DG) FET [9]. The silicon channel or film thickness tsi and the BOX thickness tBOX are
indicated. The black arrows depict the electric field lines from source and drain, as represented by the
EI.

Because scaling down of the oxide thickness reached the limit, the depletion depth and junction
thickness control the EI. The technological solutions for improving the EI were an increase of local
channel doping and the implementation of ultra-shallow junction processes [13]. However, the variability
of transistors increased due to the higher channel doping and the resulting threshold voltage mismatch
between transistors became unacceptable for e.g. memory circuits [13].

The scaling laws [2, 4] assumed that the channel doping could continuously increase to enable shorter
channel lengths. Next to the addressed threshold voltage mismatch, there are two other reasons why this
is not the case. For a too high channel doping the impurity scattering increases such that the mobility
degrades. Also, the high fields across the oxide result in a high silicon surface electric field. In the highly
doped overlap region between gate and drain band bending greater than the silicon band gap energy is
produced over a short vertical distance. Band-to-band tunneling can result within this depleted region
and a leakage current from drain to bulk could be formed. This drain junction leakage effect is known
as gate-induced drain leakage (GIDL). [8]

Using thin silicon films for the channel resulted in a better EI because the depletion depth is then
limited to the film thickness (in equations 1.2 and 1.3) such that the channel did not have to be highly
doped anymore, solving the channel doping issues [14]. Since less variability could be achieved by using
undoped (or lightly doped) channels, switching from bulk MOSFETs to thin-film devices was highlighted
as the best solution for improving the EI [13]. The evolution of the electrostatic integrity factor EI for
various device structures is shown in figure 1.2 and will be discussed now.

Thin channels could be realized by placing the silicon channel on a buried oxide (BOX) layer such
that the so-called silicon-on-insulator (SOI) FET is obtained. For thin enough channels, the depletion
region extends all the way through the channel such that the silicon is fully depleted (FD), as explained
in appendix A. The changing depletion width observed for bulk devices is thus circumvented for FDSOI.
However, the integration of the transistor with the thick BOX layer resulted in electrostatic coupling
within the BOX layer due to the penetration of the electric field. This effect was accounted for in the EI
by the λ fitting parameter such that the EI is given by [13, 9]:

EI =
(

1 + t2si
L2

)
tox(tsi + λtBOX)

L
. (1.4)

The bulk MOSFET and the SOI FET with an EI as given above are shown in figure 1.2(a) and (b),
respectively.

Thinning down the BOX layer (reducing tBOX) and increasing the substrate doping directly under
the BOX layer was the solution to this problem since this reduces the electrostatic coupling factor λ in

7



CHAPTER 1. INTRODUCTION

the given equation. Then, the substrate under the BOX layer would function as a ground plane and the
EI became mainly controlled by the silicon channel thickness [13, 9]:

EI =
(

1 + t2si
L2

)
toxtsi
L

. (1.5)

This situation is depicted in figure 1.2(c). Instead of using the substrate as ground plane, a second
gate could could be placed at the other side of the silicon channel such that the charge in the channel is
controlled from two sides. The EI for a symmetrical DG device results and is given by [9]:

EI = 1
2

(
1 + 1

4
t2si
L2

)
1
2
toxtsi
L

. (1.6)

This situation is depicted in figure 1.2(d). For improving the EI, both the silicon channel thickness and
the BOX thickness thus had to be reduced for single gate (SG) FDSOI devices and the silicon channel
had to be reduced for DG devices.

An emerging problem for thin-film devices was the high on-resistance. This problem could be cir-
cumvented with the adaptation of a raised source and drain (RSD) region. Another advantage of this is
the reduced source and drain region resistance as result of the larger geometrical area. Additionally, the
RSD allows for strain engineering such that the mobility in the channel could be improved [15, 16]. This
will be discussed in more detail in theory section 2.12.

From an electrostatic integrity point of view, the DG device has the natural advantage of looking
twice as thin as the equivalent SG (FDSOI) transistor in figure 1.2, as indicated by the factor of 1/2 in
equation 1.6 when compared to equation 1.5. An example of a symmetrical DG device is obtained when
the channel is vertically placed on either the substrate or the SOI layer to form a fin and create a so-called
bulk or SOI FinFET, respectively. The FinFET is a symmetrical DG device and will be elaborated on
in theory section 2.1. This way, a clear comparison with (SG and asymmetrical DG) FDSOI devices can
be made.

Despite the better electrostatic integrity achievable for symmetrical DG devices, the FDSOI platform
has a lot of advantages. The main advantage of FDSOI devices is the separate second gate which can
be biased in order to achieve a variety of threshold voltages. Biasing the second gate, or back-gate, with
a positive voltage results in a lower threshold voltage such that the device can be switched faster. This
is called Forward body biasing (FBB). Applying a negative potential to the back-gate allows for the
threshold voltage to increase such that lower static consumption is obtained [13]. The FDSOI platform is
thus well-equipped for internet-of-things (IoT) and sensing applications [16]. Also, FDSOI devices can be
co-integrated with bulk devices, since the fabrication processes can be adapted without an area penalty
[13]. The technology can thus also be used for systems where the performance of the FDSOI structure is
a disadvantage, such as for electrostatic discharge (ESD) diodes.

In this study we examine the FDSOI devices of the Global Foundries 22FDX platform [15, 16, 17].

Interface traps
The Global Foundries 22FDX platform has technologically feasible, extremely thin BOX and Si channel
layers such that both front- and back-gate of the FDSOI devices have electrostatic control over the charge
in the channel [15, 16, 17]. Mainly interface traps between silicon and front oxide/buried oxide limit the
electrostatic control of the gates as will be discussed in the theory, chapter 2. Quantification of these
traps is thus needed for further improving the technology or for better use of the devices, and comprises
three parameters: the trap density, the energy signature of the traps and the trap time constant.

Conduction in semiconductors involves both drift and diffusion. The free carriers needed for this are
obtained from generation. The trapping of these carriers in crystal defects results in recombination. The
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CHAPTER 1. INTRODUCTION

trapped charges are freed after some time due to lattice vibrations, called de-trapping. These trapping/de-
trapping events result in charge fluctuations and a single trapping/de-trapping event is called a Random
Telegraph Signal (RTS). Such a signal is defined by a waveform with an on-state and an off-state and the
transitions between these two states are characterized by trapping and de-trapping time constants [18].

The trap density describes the number of traps per unit volume or area and can depend on the spatial
coordinates x, y and z. Here, the y- and z-directions describe the trap fluctuations over the oxide interface
and the x-direction describes how deep into the oxide or silicon channel the trap levels are. The energy
signature is expressed as the energy value within the band gap the traps occupy. This gives information
about the type of material or compound responsible for the trap. The trapping and de-trapping time
constants give information about the mean time spent in either state (trapped/not trapped) and about
the interaction speed of traps. In summary, the interface trap density has to be determined as a function
of space and energy and the trapping and de-trapping time constant have to be considered in order to
fully understand the behaviour of traps.

Trap density extraction methods
Several methods for extracting this interface trap density have been reported for bulk devices, usually
assuming a uniformly distributed trap density such that the spatial dependence in y- and z-direction can
be neglected, as summarized by Schroder [19]. The flatband voltage can be related to the trapped charges.
This can be used in combination with capacitance-voltage measurement methods. The theoretical and
experimental capacitance curves for the flatband capacitance, i.e. the capacitance at the flatband voltage,
are then compared in order to extract the trapped charges. Several low frequency (or quasi-static)
and high frequency capacitance measurement methods rely on this approach. Another method, the
conductance method, relies on extracting the conductance divided by frequency as function of frequency
for an MOS capacitor or FET and from that determine the interface trap density and capture time
constant. This is the most complete method and one of the most sensitive methods to determine the
interface trap density. For SOI FETs these approaches are difficult to use, because at low frequencies the
gate leakage is too high and at high frequencies there is a too large series resistance. [19]

The Charge Pumping Method can be used to describe the interface trap density by performing
measurements on a MOS capacitor or FET configuration. This is one of the only reliable methods that
can actually be applied to SOI material, but only an average trap density over the entire subthreshold
regime can be extracted using this method. The interface trap density would thus not be known as
function of energy. Also, a body contact is needed to supply the majority carriers and this contact is
normally unavailable for SOI material. For the Charge Pumping Method the source and drain are tied
together and a pulse is applied to the gate. The resulting charge-pumping current is used to determine
the interface trap density. [19]

The interface trap density can also be extracted from the subthreshold slope. The average subthresh-
old slope over the subthreshold regime has been used to extract an average interface trap density for bulk
devices. However, this method was recently adjusted for the application to SOI FinFETs because body
contacts are unavailable for SOI FinFETs [20]. The method was adjusted using the symmetry of the
FinFET device and uses the subthreshold slope to determine the interface trap density at each specific
gate voltage value. Translating the gate voltage to energy then enables the extraction of the interface
trap density as function of energy. This extended subthreshold method, called gm/ID-method, has the
advantage that it contains a simple and elegant model, can be used on FET devices instead of MOS
capacitor configurations and that it works for a wide variety of FinFET geometries. For the extraction
of the interface trap density in asymmetric FDSOI material a method using the subthreshold slope was
proposed as well [21]. This method assumes no interface traps at one of the interfaces. An extension of
this method which incorporates both interfaces was proposed [22], but this method uses the comparison
of measurement data with an elaborate numerical model and thus significantly reduces the simplicity.
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Additionally, both methods proposed for FDSOI material ([21] and [22]) are tested for devices with thick
front and buried oxide layers as well as the silicon channel and it is therefore inconclusive if these methods
would work for state-of-the-art material.

Report outline
The objective of this research is to find or develop a methodology to extract the trap density at the
interfaces for FDSOI FETs against the energy. The main challenge is that FDSOI FETs are asymmetric
devices; there are different interfaces and the electrostatic control of the two gates is different. Addition-
ally, it is then desired to determine the trap contribution at each interface specifically. A comparison
between symmetric and asymmetric devices is made from an electrostatic viewpoint to exemplify this
challenge. Then, several approaches have been investigated, such as employing the gm/ID method [20, 23]
and employing a combined effort of experiments and analytical modeling [21, 24, 25, 26, 27], compact
modeling [22] or TCAD simulations.
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Chapter 2

Theory

2.1 FDSOI and FinFET structures
A schematic cross-section of a bulk FinFET is shown in figure 2.1. The left inset figure shows a bird’s
eye view of the FinFET with the gate layer over the fin in x-direction. The electrons go from source
to drain in z-direction for an n-type FET (and holes go in z-direction from source to drain for a p-type
FET), following the black arrows depicted. A cross-section of the device along the x-axis over the gate
is taken and zoomed-in. The figure shows the fin width W , the fin height H and the oxide thickness tox
of the gate insulator material between the gate and fin. The silicon substrate on which the fin is placed
is also shown. The source and drain are out-of-plane and are thus not shown. The current thus flows in
the direction of fin length L, which is also out-of-plane. Note that the gate controls the charge in the fin
from left and right side and that the gate can only be controlled by a single voltage, i.e. both sides are
connected to each other. Basically, since the aspect ratio H/W of the fin is relatively high, the structure
can be considered to be a symmetric double gate (DG) FET.

The schematic of an SOI transistor is shown in figure 2.2. The axis system is defined such that the
electrons travel in z-direction and the gate controls the channel in x-direction here as well. The length
of the channel or body L, the front oxide (FOX) thickness tox1 and burried oxide (BOX) thickness tox2

Figure 2.1: A bird’s eye view of a FinFET is shown on the top left with substrate, drain, source, gate
and oxide denoted [28]. A cross-section along the gate is shown enlarged. The fin height H and width
W are shown, just as the gate workfunction ∆φ1 and the oxide thickness tox. The length of the channel
is in the z-direction such that source and drain are not shown.
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Figure 2.2: Schematic of FDSOI device showing source, drain, gate, back-gate and substrate. The gate
workfunction is ∆φ1 and the back-gate workfunction is ∆φ2. The silicon channel or body thickness
is denoted tsi and the front-oxide (FOX) and buried oxide (BOX) thickness are denoted tox1 and tox2,
respectively.

and the channel or body thickness tsi are indicated. The lightly doped silicon area between the BOX and
silicon substrate is called a well. This well can be positively or negatively doped, resulting in a p-well or
n-well, respectively, and can be controlled as a second gate or back-gate. The well is denoted as back-gate
in the figure. If the SOI device is rotated by 90 degrees an electrostatic comparison with the FinFET
device can be made. The left and right part of the FinFET gate are then the equivalent of the gate and
back-gate of the SOI device and the left and right oxide correspond to FOX and BOX. The Fin width thus
translates to the body thickness and the fin height translates to the body width. The major difference
between the two is that the FinFET is in principle symmetric (along the y-axis) and the SOI transistor
is not (along the z-axis); the gate and oxide material and the oxide thicknesses of top and bottom parts
are different for the SOI device whereas they are the same for the FinFET (for the left and right part).
The difference in gate material is denoted by the workfunction ∆φx with x = 1, 2 in the figures. Also,
for the SOI device the gates can be separately controlled while this is not possible for FinFET devices.

2.2 Interface trap density estimation in FinFETs
A method to extract the inferface trap density in SOI FinFETs in the subthreshold regime was proposed
in [20]. For the method, long-channel devices are used such that short-channel effects can be neglected.
We use as criterion that devices with a much higher effective gate length than the characteristic length
exhibit long-channel behaviour, as explained in appendix A. The method is explained for NMOS devices
but can in principle also be applied to PMOS devices. Also, like in most other extraction techniques, the
interface trap density is assumed to be uniform over space and, consequently, only varies as a function
of energy. In more detail, we use Dit(x, y, z, E) = Dit(x,E) where an infinitely thin layer of traps at the
interface is assumed such that the x-dependence of Dit can be described with a δ-function. The main
advantage of this method is that no contact to the silicon film, or body, is required. Also, the method
can be used to extract the interface trap density from actual transistor devices, instead of having to use
MOS capacitor configurations hence capacitance-voltage (C-V) measurements. The question is, however,
whether this interface trap density estimation method could be used for FDSOI devices.

The method is based on the fact that in subthreshold every change in the gate voltage, and thus
change in the amount of charge on the gate, changes the amount of charge in the channel accordingly.
However, some of these counter-charges in the channel are trapped at the silicon channel to gate insulator
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interface, thus reducing the number of free (counter) charges in the channel. This deviation in channel
charge with respect to the expected ideal situation can thus be used to estimate the interface trap density.
The channel charge relates to the drain current, and consequently, the drain current as function of gate
to source voltage can be used to determine the interface trap density.

It should be mentioned that the relation between subthreshold drain current and gate to source voltage
is exponential, and not linear. This is because electrons are minority carriers governed by diffusion. Either
way, the product of number of holes and electrons stays the same in the channel such that an exponential
relation is obtained for the charge carrier density against the gate to source voltage VGS. The basic
methodology behind the extraction of the interface trap density is described below. For a more detailed
analysis, the reader is referred to [20] and [23].

The drain current for a fully depleted SOI FinFET device in subthreshold is given by:

ID = I0 · exp
(
ψs
uT

)(
1− exp

(
−VDS
uT

))
, (2.1)

with thermal voltage uT = kBT/q where kB is Boltzmann’s constant, T is the temperature and q is the
elementary charge, VDS is the applied drain-to-source voltage, ψs is the surface potential at the silicon
channel and gate oxide interface and

I0 = qµnniuT
WH

L
, (2.2)

where µn is the electron mobility, ni is the intrinsic carrier density andW , H an L are the fin width, height
and length, respectively, and where this relation holds for a rectangular channel. The cross-sectional area
WH can be changed to πR2 with wire radius R for the method to be applied to nanowire devices.

The drain current as function of gate voltage in the subthreshold regime is often shown on a log-lin
scale. The slope is called the subthreshold slope and the inverse of this slope is called the subthreshold
swing (SS). The subthreshold swing is given by

SS ≡ dVGS
d log10 (ID) = dVGS

dψs

dψs
dln(ID) ln(10) = m · uT · ln(10), (2.3)

where the surface potential and gate voltage are related to each other through the ideality factor or body
factor [20]:

m ≡ dVGS
dψs

= 1
uT

ID
gm

= 1 + Cit
Cox

. (2.4)

Here, a uniform electric field is assumed and the depletion capacitance is neglected for the fully depleted
device. For the second step the transconductance gm ≡ dID/dVGS is used and the result is rearranged
to obtain m on the left-hand side. For the third and last step a simplified one-dimensional capacitor
configuration scheme is used where Cox is the oxide or insulator capacitance and Cit is the interface trap
capacitance. An elaborated analysis of this last step will be given in the next sections.

Following from the above relation the interface trap density can be expressed as function of the
insulator capacitance and the ratio between drain current and transconductance as [20]:

Dit(ψs) ≡
Cit(ψs)
q2 = 1

q2

( 1
uT

ID(ψs)
gm(ψs)

− 1
)
Cox. (2.5)

For a known temperature and insulator capacitance, the interface trap density can thus simply be obtained
from the ratio between drain current and transconductance in the subthreshold regime. The method is
called gm/ID-method for this reason. Also, the interface trap density can thus be probed with the gate
voltage, corresponding to the value of the surface potential, for FinFET devices. The energy increases in
exactly the same way as the surface potential does with increasing gate voltage such that:

E − Ev = Eg
2 + q · ψs. (2.6)
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(a) (b)

Figure 2.3: Simplified structures without interface traps are schematically shown for a) the FinFET and
b) an SOI FET. A top view (xz-plane in figure 2.1) of the FinFET is shown with the axis of symmetry
indicated by the dashed line. Note thatW = 2tsi when comparing the EI (as discussed in the introduction)
of the symmetric DG devices and asymmetric devices with the second gate as ground plane.

The surface potential can be extracted from the drain current using equation 2.1. A measured
drain current as function of gate to source voltage in the subthreshold regime can therefore be used to
obtain the interface trap density as function of energy, using equations 2.5 and 2.6. The accuracy of the
method is limited by the drain current and transconductance measurement error and by the temperature
measurement error, as can be deduced from equation 2.5. The error propagation derivation is given in
[23].

2.3 Basic electrostatics
The relation between the surface potential and gate voltage in FinFETs is different from that in FDSOI
devices due to the asymmetry in FDSOI devices. In order to comprehend this difference the basic
electrostatics of both devices is first discussed using a single model for both weak and strong inversion.
For a symmetric double gate (DG) device such as a FinFET, the oxide thickness, material and gate
workfunction are the same for gate 1 and 2. For an asymmetric DG device such as a SOI transistor, this
is not the case. Both situations are shown in figure 2.3. The asymmetric device used in the following
example is only asymmetric in workfunction, i.e. gate 1 has an n+ workfunction and gate 2 a p+
workfunction.

The band diagram of a symmetric DG device with a metal workfunction slightly less than at midgap
and the band diagram of an asymmetric device are shown in figure 2.4. The band diagram for the
symmetric DG device is shown in 2.4(a) at thermal equilibrium. For the asymmetric DG device the band
diagram is shown in 2.4(c) at thermal equilibrium. Applying a gate bias of VGS = VT, with threshold
voltage VT the voltage needed for the onset of strong inversion, results in figures 2.4(b) and (d) for the
symmetric and asymmetric cases, respectively. Taur determined the potential profile between the oxide
plates as a function of the distance without an applied drain to source voltage (VDS = 0 V) for a symmetric
DG device [24] and for an asymmetric DG device [25] and he determined the potential profile with an
applied drain to source voltage for symmetric DG devices [26]. The cases without applied drain-to-source
voltage are discussed here.

Starting with the Poisson equation for an n-type device:

d2ψ

dx2 = qni
εsi

exp
(
qψ

kBT

)
, (2.7)
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Figure 2.4: Band diagrams of symmetric and asymmetric double gate (DG) devices. Taken from Taur
et al. [25]. Figures (a) and (c) show the band diagrams in thermal equilibrium for symmetric and
asymmetric devices, respectively. Figures (b) and (d) show the band diagrams when VG = VT is applied.

and integrating twice with respect to x using the symmetry boundary condition (dψdx |x=0 = 0) for a
symmetric DG device yields [24]:

q (ψ − ψ0)
2kBT

= −ln

cos

√ q2ni
2kBT

exp
(
qψ0

2kBT

)
x

 , (2.8)

with ψ0 the lowest potential and thus the potential in the center between the plates, i.e. ψ0 = ψ(x = 0).
The surface potential is obtained from this by noting that ψs = ψ(x = ±W/2) with W the distance

between the plates in figure 2.4. The above equation can simply be extended to the asymmetric case
for situations with gate voltages high enough to ensure that both the left and right surface potentials
are positive. In that case, the profile is still symmetric, but the minimum potential ψ0 is not at x = 0.
In equation 2.8 the x on the RHS can then simply be replaced by x − x0, with x0 the new minimum
potential coordinate which does not have to be between the plates [25].

The minimum potential ψ0 and, in the asymmetric case, x0, can be solved from the boundary con-
ditions that relate the surface potentials to the gate to source voltage on left and right hand sides.
For example, in figure 2.4(d) the minimum potential is approximately at the right interface such that
x0 ≈W/2. For the symmetric case the surface potential at both sides is equal and a minimum potential
ψ0 is observed at the middle between the two oxide plates, where the Fermi level is maximum. For the
asymmetric case the resulting surface potentials at the left and right oxide interface, ψs1 and ψs2 respec-
tively, are different for an equal potential applied to both gates. The potential profile is thus asymmetric
over the distance between the plates.

An FDSOI device is an asymmetric DG device. As was explained, the device has a thinner top (or
front) oxide than bottom oxide, these oxides are mostly made out of a different material, and the top gate
material is different from the bottom gate material such that the gates have a different workfunction. Due
to different processing steps needed for fabricating the FDSOI device, the silicon body/FOX interface is
different from the body/BOX interface, and thus the top and bottom interface trap densities can also be
different. Especially if interface traps are added, it would be difficult to define a single analytical model
that captures the complete transistor behaviour in both weak and strong inversion for FDSOI devices.
Because of this, and since extracting the interface trap density from the subthreshold regime proved
fruitful ([20, 21, 22]), we continue with a description of both symmetric and asymmetric devices in the
subthreshold regime.
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How to operate the FDSOI device, or rather any asymmetric device, in subthreshold then still has
to be discussed. Applying an equal voltage to both gates results in an equal surface potential at both
interfaces for a symmetric device, while different surface potentials are obtained for an asymmetric device.
To obtain a method as elegant as the gm/ID-method for the extraction of interface traps in asymmetric
FDSOI devices, it would make sense to apply a gate voltage, which could be different for the two gates,
such that an equal surface potential at both interfaces results. In that case, we still have a symmetric
potential profile in the channel. However, FDSOI devices are normally operated differently. The front
gate is used the same as the gate in both FinFETs and bulk MOSFETs, but to the back gate a fixed
voltage is applied. This fixed back gate voltage results in an increase or decrease of the threshold voltage
such that more dynamic transistor behaviour is obtained. We would thus like to also examine the possible
application of this varying front gate/fixed back gate voltage configuration, as it is more similar to the
general use of FDSOI devices.

In conclusion: In the following sections we will start with a description of both symmetric and
asymmetric devices in the subthreshold regime. Then, we will investigate the possibility of applying
either 1) a varying front gate voltage with a fixed back gate voltage or 2) a varying voltage to both front
and back gate such that an equal surface potential results.

2.4 Drain current in subthreshold regime
We consider long channel devices only, such that short-channel effects can be neglected. Hence, 1-
dimensional electrostatics are discussed. Considering that the free carrier charge in the channel can be
neglected in the subthreshold region, it follows that a linearly varying potential (LVP) is present across
the body [29, 30, 27]. This is a simplified form of equation 2.8, which is valid only for low gate voltages
hence subthreshold.

The drain current for an n-type ultra-thin body (UTB) DG device in the subthreshold regime is then
given by [31]:

ID = µnQ
∂EFn
∂n

≈ µnuT
dQ

dx
= µnuT

(
QS −QD

L

)
= µnuT

Qi
L

(
1− exp

(−VDS
uT

))
, (2.9)

with Qi the free carrier inversion charge obtained from integration of the carrier density n(x) over the
silicon channel [32]:

Qi = q

∫ tsi

0
n(x) · dx = −qnitsiuT

exp
(
ψs2
uT

)
− exp

(
ψs1
uT

)
ψs2 − ψs1

 . (2.10)

With the relations between the surface potential(s) and gate voltage(s) for symmetric and asymmetric
DG devices the drain current in the subthreshold regime can thus be computed.

In case a symmetric DG device is considered, ψs1 = ψs2 = ψs. A first order Taylor expansion of
equation 2.10 around ψs2 − ψs1 then results in [31]:

Qi = −qnitsi exp
(
ψs
uT

)
, (2.11)

which results in the same drain current as described for the gm/ID-method.
The drain current is now obtained as a function of the surface potentials. Assuming we have negligible

recombination in the hole-devoid channel, the relation between the drain current and the surface potentials
is independent of interface traps. The relation between the surface potentials and the gate voltage, the
electrostatics, does depend on the interface trap density. For the gm/ID-method, the ideality factor
is extracted from the drain current (as function of VGS) using equation 2.3. Then, the interface trap
capacitance is extracted from this using equation 2.4. For asymmetric UTB DG devices, such as FDSOI
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devices, we will therefore evaluate the relations for the surface potentials and ideality factors, with as
goal to obtain an equation similar to equation 2.4. We discuss both symmetric and asymmetric cases for
comparison.

2.5 Electrostatics in subthreshold regime
From the boundary conditions at the silicon-insulator interfaces in combination with the LVP profile
resulting from the Poisson integration the following two relations between front and back gate voltage
and front and back surface potential are obtained by Wouters et al. [29]:

VGS1 = VFB1 + ψs1

(
Csi + Cox1 + Cit1

Cox1

)
+ ψs2

(
− Csi
Cox1

)
+ |QD|

2Cox1
, (2.12a)

VGS2 = VFB2 + ψs2

(
Csi + Cox2 + Cit2

Cox2

)
+ ψs1

(
− Csi
Cox2

)
+ |QD|

2Cox2
, (2.12b)

where VFB1 and VFB2 are front and back flat band voltages, Cox1 and Cox2 are front and back oxide
capacitances per unit area, Cit1 and Cit2 are the front and back interface trap capacitances per unit
area, respectively, Csi ≡ εsi/tsi is the depleted silicon film capacitance per unit area for a silicon body or
channel of thickness tsi, and QD is the depletion charge per unit area. The flat band voltages are defined
by VFBx = ∆φx − Qoxx/Coxx with x = 1, 2 where ∆φx is the workfunction difference between the gate
material and silicon and Qoxx is the oxide trapped charge.

A simple relation without interface traps given by Van der Steen et al. is first discussed to obtain
better insights [31]. To obtain the same simplified relation, we assume QD = 0 for the fully depleted film
and take Cit1 = Cit2 = 0 for the case without interface traps. Also, a negligible drain to source voltage
is assumed, i.e. VDS ≈ 0. The equations are rewritten to the same form as obtained from the charge
conservation relations by using Gauss’ law:

εox
tox1

(VG1 −∆φ1 − ψs1) = εsiF1, (2.13a)

εox
tox2

(VG2 −∆φ2 − ψs2) = εsiF2. (2.13b)

We take VG1 = VG2 = VG for the gate potential and note that in the subthreshold regime ψs2 − ψs1 = −F0 tsi
with F0 = F1 = −F2 a simple relation for the electric field in the channel is obtained [31]:

F0 = ∆φ2 −∆φ1
tox1+tox2

εox
+ tsi

εsi

. (2.14)

Substitution of the above relation into equations 2.13 and rewriting to obtain the surface potentials results
in [31]:

ψs1 = VG −

∆φ1
(
tsi
εsi

+ tox2
εox

)
+ ∆φ2

(
tox1
εox

)
(
tsi
εsi

)
+
(
tox1+tox2

εox

)
 , (2.15a)

ψs2 = VG −

∆φ2
(
tsi
εsi

+ tox1
εox

)
+ ∆φ1

(
tox2
εox

)
(
tsi
εsi

)
+
(
tox1+tox2

εox

)
 . (2.15b)

From this final relation for the front and back surface potential of a DG device some important conclusions
can be drawn. The surface potentials increase linearly with the gate voltage at both the front and back
interface. Only the offset is different. Assuming ∆φ1 = ∆φ2 results in

ψs1 = ψs2 = VG −∆φ1, (2.16)
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such that taking a partially symmetric device or taking a fully symmetric device (where we also have
tox1 = tox2, i.e. a FinFET) results in the same relation for the surface potentials. The relation between
the surface potential and gate voltage is equal for both cases and is independent of the oxide thickness.
The same result is obtained for assuming tox1 � tox2, which is the case for a strongly asymmetric device
(such as an SOI device with a thick BOX layer) [31]. In other words, for both a fully symmetric device,
a partially symmetric device (with only different workfunctions) and for a strongly asymmetric device
(with negligible BOX capacitance) we obtain an ideality factor of unity, ∂VGS/∂ψs1 = ∂VGS/∂ψs2 = 1.

The ideality factor is unity for both symmetric and asymmetric devices, and thus for both FinFETs
and FDSOI devices without interface traps. However, care should be taken for calculating the current,
since the channel thickness has a different influence on the EI for both cases, as depicted by the dashed
lines in figure 2.3. These dashed lines represent axes of symmetry from an electrostatic point of view,
and can be regarded as a virtual ground. Then, it becomes evident that indeed a FinFET device has
only half the effective channel thickness, W ≈ 2tsi. This is in agreement with comparing the EI for SG
FDSOI and DG devices (see introduction, equations 1.5 and 1.6).

Now incorporating the effect of the interface traps in equations 2.13 the charge conservation relations
obtained are:

εox
tox1

[
VG1 −∆φ1 − ψs1

(
1 + tox1

εox
Cit1

)]
= εsiF1, (2.17a)

εox
tox2

[
VG2 −∆φ2 − ψs2

(
1 + tox2

εox
Cit2

)]
= εsiF2. (2.17b)

Figure 2.5: Capacitance division scheme for fully depleted DG devices (QD = 0). The scheme figuratively
describes the electrostatic relation between the gate voltages and the surface potentials. Gate and back
gate leakage currents and thus resistances are neglected. The lateral electric field is negligible for small
VDS such that the Fermi potential is defined by the source in the entire channel. We thus assume VDS ≈ 0
such that the ground of the electrostatic system is defined by the source Fermi potential. Subthreshold
conditions are assumed: minority charge can in principle be ignored for the electrostatics.
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Again using ψs2 − ψs1 = −F0tsi with F0 = F1 = −F2 we now find:

F0 =

(
1 + tox2

εox
Cit2

)
(VG1 −∆φ1)−

(
1 + tox1

εox
Cit1

)
(VG2 −∆φ2)(

1 + tox1
εox

Cit1
)
tox2
εox

εsi +
(
1 + tox2

εox
Cit2

)
tox1
εox

εsi +
(
1 + tox1

εox
Cit1

) (
1 + tox2

εox
Cit2

)
tsi
. (2.18)

Substitution of the above relation into equations 2.17 and rewriting to obtain the surface potentials
then results in:

ψs1 = (VG1 −∆φ1)Cox1 (Csi + Cox2 + Cit2) + (VG2 −∆φ2)CsiCox2
(Csi + Cox1 + Cit1) (Csi + Cox2 + Cit2)− C2

si
, (2.19a)

ψs2 = (VG2 −∆φ2)Cox2 (Csi + Cox1 + Cit1) + (VG1 −∆φ1)CsiCox1
(Csi + Cox2 + Cit2) (Csi + Cox1 + Cit1)− C2

si
, (2.19b)

where Coxx = εox/toxx with x = 1, 2 and where Csi = εsi/tsi. We consider material with negligible oxide
trapped charge, i.e. Qoxx = 0 with x = 1, 2, and thus use VFBx = ∆φx in equations 2.12. Because QD = 0
for the fully depleted device, equations 2.12 and 2.19 are then equal. The result obtained here is thus the
same as that obtained by Wouters et al. [29].

The capacitor division scheme corresponding to equations 2.19 is shown in figure 2.5. This scheme is
valid when considering DC electrostatics and for neglecting leakage currents from the gate and back gate.
The scheme can be used to obtain the surface potentials and from that the charge density, not necessarily
the current. The current can be obtained from the product of the charge density and the electric field
(with the field given by the slope in Fermi energy, Fermi potential, or electrochemical potential).

The relationships for the surface potentials reduce to the previously obtained equations 2.15 for
VG1 = VG2 = VG, ∆φ2 = ∆φ1 and Cit1 = Cit2 = 0. With the same assumptions this also follows from
the capacitor division scheme in figure 2.5: the surface potentials become equal to each other and to the
applied voltage.

When taking the front and back gate voltages equal it can be shown that the rate of change between
surface potential and gate voltage, the ideality factor, is not unity anymore for a fully symmetric DG

(a) (b)

Figure 2.6: (a) Simplified FinFET structure with uniformly distributed interface traps and (b) corre-
sponding capacitance scheme.
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device. This is because the capacitor division scheme now also incorporates the interface trap capacitance.
We substitute Cit1 = Cit2 = Cit, tox1 = tox2 = tox, VG1 = VG2 = VG and ∆φ1 = ∆φ2 and obtain:

ψs1 = ψs2 = ψs = VG −∆φ1

1 + Cit
Cox

. (2.20)

The FinFET structure and capacitor division scheme corresponding to the given relation are shown in
figure 2.6.

The ideality factor can be determined from the given relation to be

m = 1 + Cit
Cox

. (2.21)

This corresponds to the scheme used for the gm/ID-method, i.e. the third term in equation 2.3. Methods
to extract the interface trap density from FDSOI devices using the obtained surface potential and ideality
factor relations will now be discussed. First we discuss the case of varying the front gate at a fixed back
gate voltage, followed by the case with equal front and back surface potentials.

2.6 Single gate sweep for an asymmetric device
A relation for the subthreshold slope of an FDSOI device with varying front gate bias for a fixed back
gate bias was derived in [29], where results are given depending on the applied back gate bias. The most
important results for this work are discussed here and some additional information is added.

Figure 2.7 shows the potential distribution of an FDSOI device for varying front gate voltages at a
fixed back gate voltage. The back surface potential then changes as the front gate voltage varies despite
the fixed back gate voltage. This cross-coupling between front and back surface potentials at least has
to be accounted for, for front and back surface potentials differing by more than uT [29]. The device
behaves differently for this front gate sweep at a fixed back gate bias depending on the major current
contribution. In figure 2.7(a) the front channel drain current ID1, i.e. the current near the front interface,
dominates the total current for all drawn front surface potentials. Figure 2.7(d) denotes a situation
where the back channel drain current ID2 dominates the total current despite the varying front surface
potentials. Figures 2.7(b) and 2.7(c) show intermediate situations.

From the shown potential distributions it becomes intuitively apparent that the back gate voltage
has an influence on the threshold voltage. Since the back gate voltage partially controls the back surface
potential, the potential needed for inverting the channel can be increased or decreased with the back gate
voltage. Therefore, the threshold voltage is influenced by the back gate voltage. A simple relation for
this without accounting for interface traps is given by [13]:

γ = ∆VT
∆VBG

≈ Cox2Csi
Cox1(Cox2 + Csi)

(2.22)

Figure 2.7: Schematic of the potential distribution for a front gate sweep at a different fixed back gate
bias, increasing from (a) to (d) [29].
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(a) (b)

Figure 2.8: Schematically shown simplified capacitance scheme of an asymmetric device for a) VBG = 0
and b) VG = 0. For simplifying the comparison between the ideality factors we use VG = VG1 −∆φ1 and
VBG = VG2 −∆φ2 in the figures.

This threshold voltage control is used in FDSOI circuit design to obtain a more dynamically applicable
transistor. That is, the threshold voltage can be decreased to enhance performance or increased to reduce
leakage. As the device is intended to be used like this, we examine the possibility of applying the varying
front gate/fixed back gate voltage first.

The following discussion starts with obtaining an expression for the ideality factor for single gate
control and continues with incorporating the cross-coupling between front and back surface potentials.
With cross-coupling we mean the variation of the surface potential at the fixed gate interface as result
of the variation of the other surface potential. In figure 2.7 the cross-coupling is schematically shown by
the variation in the surface potential at the right interface, as indicated by the arrow.

We start with equation 2.19(a) and set VG2 − ∆φ2 = 0. Taking the derivative with respect to the
front gate voltage, the following is found for the ideality factor:

m1,1 = dVG1
dψs1

= 1 + Cit1
Cox1

+ Csi(Cox2 + Cit2)
Cox1 (Csi + Cox2 + Cit2) , (2.23)

where the subscript of the ideality factor ma,b corresponds to the two terms in the derivative, VGa and
ψsb.

Starting with the capacitor division scheme given in figure 2.5(b) and taking VBG ≡ VG2 −∆φ2 = 0
we arrive at the capacitor division scheme shown in figure 2.8(a). The scheme corresponds with the given
relation for the ideality factor and is common in literature for describing the subthreshold behaviour of
SOI devices [27, 29, 30]. In the scheme we also use VG ≡ VG1 −∆φ1 because the given scheme can then
more directly be compared to the given ideality factor. It can be noted that the first two terms of the
right-hand side correspond to the ideality factor for a symmetric device, given by equation 2.4. The third
term is the cross-coupling term and is equal to γ (equation 2.22) if the interface traps are neglected.
Assuming the capacitance of the depleted silicon film (Csi) can be neglected, the given expression reduces
to equation 2.4. This is expected since there is no cross-coupling through the silicon film. However, for
devices with thin silicon films, as used here, this capacitance can no longer be neglected.
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We would like to examine the influence of the interface traps on γ and thus check whether the
cross-coupling term needs to incorporate the interface trap dependence. For this, we assume Cox1 =
2.66 µF/cm2 (i.e. tox1 = 1.3 nm), Cox2 = 0.17 µF/cm2 (i.e. tox2 = 20 nm) and Csi = 1.72 µF/cm2 (i.e.
tsi = 6 nm). For Cit2 = 0.1 nF/cm2 the resulting cross-coupling is approximately equal with or without
interface traps, γ = 59.1 mV/V. For Cit2 = 0.1 µF/cm2 we obtain a cross-coupling of 88 mV/V and the
influence of traps is thus significant. Actually, for Cit2 > 1 nF/cm2 the interface traps are significant, as
their influence is ∼ 1 mV/V or more then.

To completely describe the behaviour of the device, the influence of the front gate voltage on the back
surface potential is given as well:

m1,2 = dVG1
dψs2

= (Csi + Cox2 + Cit2) (Csi + Cox1 + Cit1)− C2
si

CsiCox1
, (2.24)

which can be derived both from equation 2.19b and from the capacitor scheme, similar to m1,1.
The influence of the surface potential difference for non-linearly varying fields within the film is

described next. Starting from a basic diffusion current equation, a box shaped carrier profile is used
to approximate the inversion channel thickness as the distance over which the potential drops by uT
[29]. This is done in order to obtain a simple relation for the drain current which depends on the
surface electric field. The dψs

dln(ID) -relation, which contributes to the subthreshold swing in equation 2.3,
is now different from the previously obtained dψs

dln(ID) = uT. The increase in drain current with increasing
surface potential (given by the ID(ψs) relation) is now smaller as result of the increasing surface electric
field. This increasing field results from the increasing front surface potential at a mildly increasing back
surface potential (due to the fixed back-gate bias). The resulting inverse subthreshold slope incorporates
a correction factor for this in the relation between drain current and front surface potential and the
correction factor also incorporates the effect of channel depletion. The given equation for the subthreshold
slope can therefore be applied to both FD and partially depleted (PD) SOI devices [29]:

dln(ID1)
dψs1

= 1
uT
−

∂
∂ψs1

(
∂ψ(x)
∂x

∣∣∣
x=tsi

)
−∂ψs1

∂x

= 1
uT
−

1
tsi

(
1− ∂ψs2

∂ψs1

)
−∂ψs1

∂x

= 1
uT
−

1
tsi

[
1− Csi

Csi+Cit2+Cox2

]
ψs1−ψs2

tsi
+ qNAtsi

2εsi

≡ 1
uT
− C,

(2.25)
where x is the direction along the channel height, as shown in section 2.1, and C is the correction factor.
The numerator of this correction factor relation corresponds to the electric field at the front surface due
to the back surface potential ψs2 and the denominator corresponds to the front surface electric field due
to front surface potential ψs1. The ratio thus shows the relative influence of (the inequality of) the two
surface potentials on the front surface potential. So, for ∂ψs2/∂ψs1 → 1, the correction term C → 0 such
that the same result is obtained as for the FinFET devices (for the relation between drain current and
front surface potential). The qNA-term in the denominator describes the film depletion in the silicon
channel and this term can be neglected for fully depleted films (e.g. FD SOI). Then, the correction term
simplifies to

C = 1
ψs1 − ψs2

· Cit2 + Cox2
Csi + Cit2 + Cox2

, (2.26)

such that
dln(ID1)
dψs1

=
(
uT

(ψs1 − ψs2)(Csi + Cox2 + Cit2)
(ψs1 − ψs2)(Csi + Cox2 + Cit2)− (Cox2 + Cit2)

)−1
. (2.27)

The relation for the correction factor implies that C → ∞ for ψs1 − ψs2 = 0. However, in this case we
have ∂ψs2/∂ψs1 → 1 which results in dln(ID1)

dψs1
= 1

uT
(see equation 2.25) and equation 2.26 is not valid

then.
Combining the ideality factor m1,1 and the corrected relation between surface potential and drain

voltage results in the subthreshold swing of an FD SOI device, for sweeping the front gate voltage at a

22



CHAPTER 2. THEORY

fixed back gate voltage:

∂VGS1
∂ log10(ID1) = uT

(ψs1 − ψs2)(Csi + Cox2 + Cit2)
(ψs1 − ψs2)(Csi + Cox2 + Cit2)− (Cox2 + Cit2)

(
1 + Cit1

Cox1
+ Csi(Cox2 + Cit2)
Cox1 (Csi + Cox2 + Cit2)

)
ln(10).

(2.28)
This equation is valid within the applied front gate voltage range where the front surface potential

is higher than the back surface potential for the entire subthreshold region under consideration, i.e.
ψs1 > ψs2. In other words, the front channel current has to be higher than the back channel current for
the entire subthreshold region under consideration. This is one of the three possible cases for front gate
sweeping at a fixed back bias discussed in [29]. The two other cases are the following; 1) the back surface
potential is higher than the front surface potential, such that the back channel current is dominant, and
2) the back surface potential is so low that the back channel is in accumulation. A severe degradation of
the subthreshold slope results in both cases [29]. As a result, the interface trap density would be more
difficult to extract in the two other cases.

Assuming the front and burried oxide thicknesses and the silicon film thickness to be known and
constant, the interface trap capacitance is described as function of subthreshold swing and front and
back surface potentials. The stated assumptions are the same as for the FinFET interface trap density
extraction [20, 23]. Solely using equation 2.28 would still not enable the extraction of the interface trap
density, as too many parameters remain unknown. A different model for the subthreshold swing was
proposed in [27] and is shown in appendix B. However, this method uses a simplification on the relation
between front and back surface potentials and is therefore too inaccurate for our goal. If a relation
similar to equation 2.28 can be obtained for the back gate voltage at a fixed front gate voltage, it might
be possible to extract the interface trap density using a single gate sweep method.

A method to determine the interface trap capacitance and thus the interface trap densities could
be proposed at which the front channel subthreshold slope and the back channel subthreshold slope are
determined for the same device. The formulation of the back channel subthreshold slope is similar to that
of the front channel subthreshold slope (see equation 2.28) and the derivation is shown in appendix B.
Performing measurements such that both surface potentials change at the same rate during both mea-
surements (such that ψs1 −ψs2 is the same for both measurements) then allows for solving the system of
two equations and two unknowns. However, also the surface potential difference has to be known for this
method and this makes the procedure significantly more difficult to use.

2.7 Dual gate sweep for an asymmetric device
A method to determine the back interface trap density from the subthreshold current as a function of a
simultaneous front and back gate sweep is described in [21]. The method relies on a constant back gate
voltage VGS2 to front gate voltage VGS1 ratio such that VGS2 = kVGS1. From the relations between front
gate and back gate voltage as a function of front and back surface potentials (equations 2.12a and 2.12b)
the derivatives of the surface potentials with respect to the front gate voltage, dψs1

dVGS1
and dψs2

dVGS1
, can be

obtained for substitution of the gate bias ratio k. For the surface potentials we obtain:

ψs1 = Cox1 (Csi + Cox2 + Cit2) + kCsiCox2
(Csi + Cox1 + Cit1) (Csi + Cox2 + Cit2)− C2

si
· VGS1 −

∆φ1Cox1 (Csi + Cox2 + Cit2) + ∆φ2CsiCox2
(Csi + Cox1 + Cit1) (Csi + Cox2 + Cit2)− C2

si
(2.29a)

and

ψs2 = kCox2 (Csi + Cox1 + Cit1) + CsiCox1
(Csi + Cox2 + Cit2) (Csi + Cox1 + Cit1)− C2

si
· VGS1 −

∆φ2Cox2 (Csi + Cox1 + Cit1) + ∆φ1CsiCox1
(Csi + Cox2 + Cit2) (Csi + Cox1 + Cit1)− C2

si
,

(2.29b)
where we separated the gate voltage dependent term (first RHS term) and the gate voltage independent
term (second RHS term), such that the first term can directly be interpreted as the mentioned derivative
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(for the complete derivation, see appendix C). This derivative can also be obtained from the capacitor
scheme shown in figure 2.5. For this, the superposition principle can be used. An example is given for
the front surface potential: we extract the two transfer functions dψs1

dVG1
and dψs1

dVG2
= dψs1

dψs2
dψs2
dVG2

, add the two
contributions and substitute VG2 = kVG1 to arrive at the same result.

The coupling between the front and the back surface potentials can be optimized by making both
surface potentials equal. Otherwise, the surface potentials always effectively counteract each other such
that the control over the channel charge is less ideal. In this study we define the same optimum coupling
for a different reason: when both surface potentials are equal the formalism for defining the subthreshold
swing is more straight-forward.

Optimum coupling can be obtained when the two surface potentials change at the same rate [21]:

dψs1
dVGS1

= dψs2
dVGS1

. (2.30)

The corresponding optimal gate bias ratio is obtained for substituting equations 2.29 into the above
equation. We obtain:

k0 = Cox1 (Cox2 + Cit2)
Cox2 (Cox1 + Cit1) . (2.31)

The front channel subthreshold swing is defined as:

SS1 = dVGS1
d log10 (ID) = ln(10) ·

(
dln(ID)
dψs1

dψs1
dVGS1

+ dln(ID)
dψs2

dψs2
dVGS1

)−1
, (2.32)

where the subscript of SSa indicates with respect to which gate voltage the subthreshold swing is defined,
i.e. with respect to VGSa. Effectively this thus means that e.g. SS1 contains both m1,1 and m1,2 and that
their combined effect is written as m1 here.

It can be assumed that the exact drain current as given by equation 2.9 can be approximated for gate
bias ratios close to the optimal gate bias ratio. In this approximation, the total current is split over two
separate charge channels with each if these channels being related to one of the two surface potentials.
We thus have IDi ∝ exp (ψsi) with i = 1, 2 for the front and back interface, such that we can define two
current ratios; ID1/ID = α and ID2/ID = 1− α. In this case, equation 2.32 can be simplified to [21]’:

SS1 = ln(10) · ID ·
(
dID1
dψs1

dψs1
dVGS1

+ dID2
dψs2

dψs2
dVGS1

)−1
= uTln(10) ·

(
α
dψs1
dVGS1

+ (1− α) dψs2
dVGS1

)−1
, (2.33)

The subthreshold swing is then expressed in terms of the capacitor components by substituting equations
2.29 into equation 2.33:

SS1 = ln(10)uT
(Csi + Cox1 + Cit1) (Csi + Cox2 + Cit2)− C2

si
α (Cox1 (Csi + Cox1 + Cit1) + kCox2Csi) + (1− α) (kCox2 (Csi + Cox1 + Cit1) + Cox1Csi)

.

(2.34)
Substitution of the optimal gate bias ratio, k = k0, then results in the optimal subthreshold swing [21]:

SS1 = ln(10)uT

(
1 + Cit1

Cox1

)
. (2.35)

This subthreshold swing is equal to the subthreshold swing for a FinFET device given by equation 2.3,
because the channel is a virtual ground in case of the optimal gate bias condition, such that the situation
reduces to the described electrostatics for symmetric devices.

First, the situation where there are no interface traps is discussed. In this case we use equation 2.31
to find k0 = 1. This is in agreement with the earlier discussed results (equation 2.16) for the symmetric
and asymmetric devices without interface traps.
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In practice, however, we do have interface traps and the methodology for extracting the interface
trap density at the front and back interface is as follows. The subthreshold swing can be obtained for
a variety of k-values, i.e. choosing a single front gate voltage sweeping range and adjusting the back
gate voltage sweeping range. This results in two situations next to the optimal situation. A non-ideal,
too high, subthreshold swing is observed for too low k-values. This is because the back surface potential
cannot follow the front surface potential increase such that an intermediate case is observed between the
optimal subthreshold swing, as given by equation 2.35, and a higher subthreshold swing for fixed back
gate bias, as given by equation 2.28. On the other hand, a subthreshold swing seemingly better than
optimal is observed for too high k-values. Then, the back channel conducts current because of a high
enough back gate voltage already before the front channel starts conducting current. This could result
in subthreshold swings lower than the ideal value of ln(10)uT. Equation 2.33 should then not be literally
interpreted as an actual SS since this equation relies on the fact that both channels start conducting at
the same time, such that the back channel current can be written as function of the front channel voltage.
This is no longer the case for only back-gate control, such that the subthreshold swing seems to be better
than ideal.

For the described method to extract the interface trap densities, both front and back oxide capaci-
tances are assumed to be known. Then, we have two equations, 2.31 and 2.35, with which three unknowns
have to be found; k0, Cit1 and Cit2. Therefore, this system cannot be directly solved. Assuming a certain
front interface trap capacitance Cit1 allows one to calculate the optimal subthreshold swing and from
that obtain the back interface trap density. In [21] the authors use material in which the front interface
trap density can be neglected with respect to the front oxide capacitance. Then, the system reduces to
a single equation with one unknown and can be solved:

k0 ≈ (Cox2 + Cit2) /Cox2, (2.36)

and
SS1 ≈ ln(10)uT, (2.37)

which is equal to the ideal subthreshold swing. For the material used in this study this assumption is
invalid and the front interface trap density has to be taken into account. Still, this set of equations
provides an estimate for the (maximum) back interface trap density.

Because the same methodology could be applied for the back channel current, the subthreshold swing
referred to the back-gate can be obtained as well. This would result in another set of two equations with
the same unknowns such that the system can be solved. Now using VGS1 = pVGS2 the optimal gate bias
ratio is defined as:

p0 = Cox2 (Cox1 + Cit1)
Cox1 (Cox2 + Cit2) = (k0)−1 . (2.38)

Applying the same procedure with substitution of the optimal gate bias ratio, p = p0, then results in the
optimal subthreshold swing:

SS2 = ln(10)uT

(
1 + Cit2

Cox2

)
. (2.39)

As stated, k0 = (p0)−1, which makes sense since the optimal subthreshold swing should be obtained
at the same optimal gate bias ratio, independent of the reference frame. In other words, referring the
subthreshold swing to the front or back gate should have no effect on the optimal gate bias ratio.

Assuming no back interface traps (Cit2 = 0) an estimate for the (maximum) front interface trap
density can be obtained. Then:

p0 ≈ (Cox1 + Cit1) /Cox1, (2.40)

and
SS2 ≈ ln(10)uT. (2.41)
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In summary, an estimate for either the (maximum) front or back interface trap density can be obtained
from a simplified model. For this, equations 2.36 and 2.37 are used to extract Dit2 and equations 2.40
and 2.41 are used to extract Dit1. In both cases the other interface trap density is assumed to be 0.

In order to obtain the front and back interface trap densities simultaneously, and thus obtain the
correct values, the following procedure has to be used. Assuming Cox1 and Cox2 to be known, the front
and back interface trap densities can now be determined from the total system of equations 2.31, 2.35,
2.38 and 2.39. This can be explained as follows: assuming a certain Cit1, SS1 can be calculated from
equation 2.35. k0 can be obtained for this SS1 from the measurement and Cit2 can then be calculated
from equation 2.31 for the same assumed Cit1. As k0 is known, p0 is also known since its simply the
inverse. For the given p0, SS2 can be obtained from the measurement. Equation 2.39 can then be used
to compare the obtained SS2 with the calculated RHS. For a correctly chosen Cit1, the two values should
ideally be the same. Therefore, this procedure can be applied iteratively until the combination of Cit1
and Cit2 satisfying the convergence criterium is obtained.

A similar method has been applied by [22]. However the devices used had a relatively thick silicon
body (tsi ≈ 85 nm) and BOX layer (tox2 = 200 nm) in comparison to the devices used in this study. Also,
the devices are either enhancement-mode transistors or transistors with a lower threshold voltage than
that for the devices used in this study (judging from the shown ID − VG curves with VT ≈ 0 V). The
error propagation has not been described such that the accuracy of the shown results is unknown and,
finally, the methodology behind the computation of the two drain current contributions was not accurately
described, i.e. it is not stated whether this computation was done by hand or whether a simulation tool
was used. The methodology presented does result in the interface trap densities as function of energy, as
is required here.

For the combination of the front gate referred and back gate referred subthreshold swing under dual
gate operation we have an additional remark with respect to the practical aspect. For the described
method with the subthreshold swing referred to the front gate, the front gate voltage sweeping range
R (VGS1) is maintained constant and the back gate voltage range R (VGS2) is varied to obtain different k.
At a fixed sample number (or fixed number of measurement points) for a fixed R (VGS1), a varying k is
obtained as function of VGS1 where all sample points can be used. In case a varying front gate voltage
range would be used at a fixed back gate voltage range, the resulting data has to be interpolated to
be able to express k for all the same front-gate voltage values. The interpolation between data points
introduces an additional error. Therefore, it is convenient to keep the range of the gate voltage to
which the subthreshold swing is referred constant. For the method described for the back gate referred
subthreshold swing, this implies that the range R (VGS2) is maintained constant and the front gate voltage
range R (VGS1) is varied. Therefore, a trade-off in errors emerges when we choose either of two options.
1) A single measurement series is used. Since the resulting optimal gate bias ratio is inherently the same,
the error between repetitive measurements is eliminated. We do have an interpolation error in this case.
2) Two measurement series have to be used in order to refrain from using interpolation.

2.8 Limits of the subthreshold regime
A description of the limits of the subthreshold regime for symmetric and asymmetric DG devices and
thus for both FinFET and FDSOI devices is needed to utilize the described models to their full extent.

In the subthreshold regime the channel is in weak inversion or depletion. The upper and lower
boundaries of the subthreshold regime are therefore defined by the gate voltage or surface potential at
which the channel either becomes accumulated or strongly inverted. In terms of surface potentials, the
lower limit is defined by the flatband voltage, for which ψs = 0. For a symmetric DG device we can
exclude interface traps and use equation 2.16 or include interface traps and use equation 2.20 to obtain
the same result for the lower limit: VG = ∆φ1. Comparing with equations 2.12 it can be stated that the
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gate voltage is equal to the flatband voltage at the lower limit. Because the angle of the cosine function in
equation 2.8 cannot exceed π/2, ψ0 is pinned to an upper bound [24]. The upper limit of the subthreshold
regime is defined by this maximum value of ψ0 and is given by [20]:

ψ0,max = 2uTln
(

2
tsi

√
2εsiuT
qni

)
, (2.42)

from which the threshold voltage can be approximately expressed as VT = ∆φ1 + ψ0,max [24]. Here, the
contribution of the interface trap density is neglected. In practice, this contribution cannot be neglected
and the dependence of the interface trap density on the surface potential makes the determination of
the threshold voltage complicated. Therefore, the gate voltage value corresponding to the drain current
ID(ψ0,max) is defined as the threshold voltage for a symmetric DG device [20].

For an asymmetric DG device the surface potentials at the two interfaces do not have to be equal
which makes the definition of the lower and upper limits of the subthreshold regime difficult. First of all,
the limits are different depending on how the FET is operated. Only varying the voltage of the front gate
at a fixed back gate bias results in different limits than sweeping both gates. Here we discuss the case
where front and back gate voltages are both varied with a fixed ratio k = VG2/VG1, since that appears to
be the correct method for the interface trap density extraction. See also section 2.7.

Both for the lower limit and for the upper limit we obtain two values, since one of the two interfaces
starts accumulating or inverting before the other. The lower limit can be defined as the front gate
voltage at which the first of the two surface potentials becomes 0. Further decreasing the front gate
voltage would result in this surface potential becoming negative and the second surface potential would
eventually become 0. However, the entire channel should be in depletion for the device to operate in the
subthreshold regime, such that we define the first transition to be the lower limit of the subthreshold
regime for asymmetric DG devices.

We use equations 2.29 with ψs1 = 0 and ψs2 = 0 and obtain:

VG1,s1 = ∆φ1Cox1 (Csi + Cox2 + Cit2) + ∆φ2CsiCox2
Cox1 (Csi + Cox2 + Cit2) + kCsiCox2

(2.43a)

and
VG1,s2 = ∆φ2Cox2 (Csi + Cox1 + Cit1) + ∆φ1CsiCox1

kCox2 (Csi + Cox1 + Cit1) + CsiCox1
. (2.43b)

The first expression is the result for ψs1 = 0, as denoted by the subscript s1, and the second expression
is the result for ψs2 = 0, as denoted by the subscript s2. The highest of the two computed values then
determines the lower limit of the subthreshold regime. A rough estimate for the upper limit can be made
with threshold criteria ψs1 = EG/2q and ψs2 = EG/2q [25]:

VT1 = EG
2q + VG1,s1 (2.44a)

and
VT2 = EG

2q + VG1,s2. (2.44b)

In this case, the lowest of the two computed values determines the upper limit of the subthreshold regime.
Actually, after the first threshold, that interface is inverted and the channel (or body) is screened from
the corresponding gate. For example, in case the front interface inverts first, the ψs1 = EG/2q criterium is
first met and the bottom channel is screened from VG1 by the inverted charge. Thus, the bottom interface
has a different threshold criterium than the one stated above since the electric field can be neglected [25].
Also, the lower and upper subthreshold limits depend on k, where the values decrease with increasing k.
However, for too high k the criteria stated above are no longer valid, because equations 2.29 are not valid
anymore, as was described in section 2.7.
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Figure 2.9: Determination of the threshold voltage using the method of extrapolation in the linear regime
(ELR). Taken from Ortiz-Conde et al. [34].

For our FDSOI devices a high-k metal-gate (HKMG) stack of which the workfunction is around
midgap is placed on top of the silicon channel [33]. The threshold voltage can be tailored with the back-
gate doping type and concentration [16]. Here, we assume the silicon channel to be undoped. Then, the
workfunction difference between the front gate and the silicon channel, i.e. the front gate workfunction
difference, is ∆φ1 ≈ 0. The workfunction difference between the back-gate and the silicon channel, the
back-gate workfunction difference, depends on the n-well doping concentration and is given by:

∆φ2 = −uTln
(
Nwell
ni

)
, (2.45)

with Nwell the doping concentration of the n-well used as back-gate and with ni = 1.2 · 1010 cm−3 the
intrinsic carrier concentration of silicon. For example, Nwell = 5 · 1017 cm−3 results in ∆φ2 = −0.45 eV.
Now assuming tox1 = 1.33 nm, tox2 = 20 nm, Csi = 6 nm and k = 1 results in VG1,s1 = −27.5 mV and
VG1,s2 = −27.9 mV for the lower limits and in VT1 = 510.3 mV and VT2 = 509.9 mV for the upper limits
of the subthreshold regime. We thus have −27.5 mV < Subthreshold regime < 509.9 mV.

However, since the above description for the upper limit of the subtreshold regime for asymmetric
DG devices is only a rough estimate, its practical relevance is limited. In practice, we use the method of
extrapolation in the linear regime (ELR) to determine the threshold voltage [34], where the gate voltage
axis intercept (ID = 0) of the linear extrapolation of the ID-VG curve yields VT. To be more specific,
the extrapolation is performed from the drain current corresponding to the gate voltage at the maximum
drain current slope, or transconductance (gm). Half the drain-source voltage then has to be subtracted
from the obtained gate voltage axis intercept to obtain the threshold voltage. This is shown in figure 2.9.
In summary, the threshold voltage is obtained from:

VT = gm,maxVGS,max − ID,max
gm,max

− 1
2VDS, (2.46)

28



CHAPTER 2. THEORY

where the max subscript indicates that the value is taken at the corresponding maximum value of the
transconductance. The actual upper limit of the subthreshold regime is defined by this threshold voltage,
instead of equations 2.44. It might, however, still be insightful to compare both.

2.9 Conclusion electrostatics
Sections 2.2 to 2.8 are summarized here. The gm/ID method cannot be applied to asymmetric DG
devices, such as the FDSOI devices used in this study. This is because the method relies on symmetry
to establish a simple relationship between the interface trap density and the subthreshold slope ideality.
In other words, the method uses only a single surface potential (ψs1 = ψs2 = ψs) and this is generally
incorrect for asymmetric devices.

Applying a voltage to only one of the two gates while keeping the second gate at a fixed voltage is
also impractical for the extraction of interface traps, because the cross-coupling between the front and
back surface potentials complicates the analysis. This also implies that a model, being either numerical
or analytical, is required for the extraction.

The most promising method for the extraction of the interface trap density for FDSOI devices seems
to be double gate control, where the front and back gate voltages are related to each other with a fixed
ratio of k = VBG/VG. Equations 2.31, 2.35, 2.38 and 2.39 are then used as an analytical model. The
range of validity of this analytical model is described by a lower limit defined by equations 2.43 and an
upper limit defined by equation 2.46.

Using the described electrostatics relations we want to extract Diti(E) with i = 1, 2 for the front or
back interface. The interface trap density has a significant influence on the electrostatics and this can be
used to extract the interface trap density, as has now been extensively discussed. We continue by describ-
ing some additional effects that change the subthreshold swing, such as the lateral field contribution, i.e.
the influence of the relation between current and asymmetric surface potentials.

Additionally, the method for relating the interface trap density to energy has not yet been discussed.
The energy landscape in FDSOI material could be different from that in FinFETs such that equation
2.6 is no longer valid. Also, quantum-mechanical confinement and strain engineering might influence
the band gap energy and therefore the energy landscape. Extracting the energy levels the traps occupy
could be significantly influenced by these band gap energy changes. For this reason, quantum-mechanical
confinement and strain engineering are discussed next.

2.10 Additional subtreshold swing theory
The relation for the subthreshold swing referred to the front gate voltage VGS is redefined as:

SS = dVGS
d log10 (ID) = dVGS

dψs1

dψs1
dln (ID) ln (10) + dVGS

dψs2

dψs2
dln (ID) ln (10)

≡ m11 · δψs1 · ln (10) +m12 · δψs2 · ln (10) ,
(2.47)

where all the terms relate to the partial derivatives in their respective order. We thus need to obtain
relations for myx and δψx, with x = 1, 2 the front or back surface (potential) and with y = 1, 2 the front
or back gate (voltage). Here, the myx-terms describe the electrostatics contribution to the subthreshold
swing, and the δψx-terms describe the transverse field contribution.

The electrostatics and thus how to obtain the myx-terms has already been described (see equations
2.29 and appendix C). Here we study the transverse field contribution, dln(ID)

dψx
, for the two described

analytical models for the subtreshold drain current. Then, we study the impact of a field-dependent
mobility, that of a workfunction difference and that of a depletion capacitance.
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Lateral field contribution for general drain current

The general analytic relation for the drain current of a UTB FDSOI device (from equation 2.9) is:

ID = A · uT ·
exp

(
ψs2
uT

)
− exp

(
ψs1
uT

)
ψs2 − ψs1

. (2.48)

For extracting the SS parameters relating current and surface potential from e.g. TCAD simulations, we
use the central finite difference theorem. We can then define

δψs1 = ψs1 (i+ 1)− ψs1 (i− 1)
ln (ID (i+ 1 ))− ln (ID (i− 1 )) = dψs1

dln (ID) , (2.49)

with index i indicating that the i-th numerical value should be used in case of (numerical) simulation
or measurement data. δψs1 actually denotes a ratio; the ratio between the front surface potential and
the natural logarithm of the drain current. Actually, we then refer the drain current to the front surface
potential and attribute all of its change to the front surface potential. However, we also have the back
surface potential.

In order to include the influence of the front and back surface potentials on the current as referred to
one of the two surface potentials, we include the coupling effects in both surface potentials. We obtain:

δψs1 =
(
dln (ID)
dψs1

+ dln (ID)
dψs2

dψs2
dψs1

)−1
, (2.50a)

δψs2 =
(
dln (ID)
dψs2

+ dln (ID)
dψs1

dψs1
dψs2

)−1
. (2.50b)

Using the definitions for δψsx in equations 2.50 in combination with the analytical model gives the same
results as using equation 2.49 (for δψs1) in combination with TCAD. We substitute equation 2.48 into
the current-surface potential derivatives of equations 2.50 to obtain:

δID1 ≡
dln (ID)
dψs1

=
exp

(
ψs1
uT

)
(ψ1 − ψs2 − uT ) + uT exp

(
ψs2
uT

)
uT
(
exp

(
ψs1
uT

)
− exp

(
ψs2
uT

) )
(ψs1 − ψs2)

(2.51a)

and

δID2 ≡
dln (ID)
dψs2

=
exp

(
ψs2
uT

)
(ψ2 − ψs1 − uT ) + uT exp

(
ψs1
uT

)
uT
(
exp

(
ψs2
uT

)
− exp

(
ψs1
uT

) )
(ψs2 − ψs1)

. (2.51b)

The derivative of both surface potentials with respect to each other in equations 2.50 can be obtained
from the equations given in the electrostatics part (equations C.11). Rewriting equation 2.29 (b) such
that we obtain a function VGS = f (ψs2, k) we find:

ψs1 = f11 + k · f21
f12 + k · f22

ψs2 = f1
f2
ψs2 = m12

m11
≡ fk · ψs2, (2.52)

such that dψs1
dψs2

= fk, with

fk = Cox1 (Csi + Cox2 + Cit2) + k · CsiCox2
k · Cox2 (Csi + Cox1 + Cit1) + CsiCox1

. (2.53)

So, for the symmetric DGFET (with an equal front and buried oxide thickness):

fk = (1 + k)CoxCsi + Cox (Cox + Cit2)
(1 + k)CoxCsi + k · Cox (Cox + Cit1) , (2.54)
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such that we obtain fk = 1, independent of any capacitance, for a symmetric trap distribution with k = 1.
For this symmetric case with k = 1, we have ψs1 = ψs2. Taking equations 2.51 to the limit of ψs2 → ψs1,
we obtain δID1 = δID2 = 1

2uT
. Thus, for the symmetric DGFET we simply obtain δψs1 = δψs2 = uT

such that the subthreshold swing as described for the gm/ID-method is obtained. This confirms that the
methodology used above is correct.

In the general case, which is also applicable for asymmetric DG devices, substitution of equations
2.51, 2.53 into equations 2.50 results in the transverse field contribution of the subthreshold swing.

Lateral field contribution for approximate drain current

The approximate analytic relation for the drain current of a UTB FDSOI device is [21, 22]:

ID = A · 0.5 ·
(

exp
(
ψs1
uT

)
+ exp

(
ψs2
uT

) )
(2.55)

We then obtain:

δID1 ≡
dln (ID)
dψs1

=
exp

(
ψs1
uT

)
uT
(
exp

(
ψs1
uT

)
+ exp

(
ψs2
uT

) ) =
A · 0.5 · exp

(
ψs1
uT

)
uT · ID

(2.56a)

and

δID2 ≡
dln (ID)
dψs2

=
exp

(
ψs2
uT

)
uT
(
exp

(
ψs1
uT

)
+ exp

(
ψs2
uT

) ) =
A · 0.5 · exp

(
ψs2
uT

)
uT · ID

(2.56b)

The relation for fk remains the same, so substitution of equations 2.56 instead of equations 2.51 then
results in the approximate δψx. The subthreshold swing we then obtain is equal to equation 2.33 or 2.34,
which validates this method for obtaining transverse field contribution.

Lateral field contribution with field-dependent mobility

Until now we assumed the mobility to be constant. In practice, the mobility depends on many factors,
such as doping, temperature and electric field strength. Here we discuss the dependence of the mobility
on the electric field. The influence of the mobility on the subthreshold swing only propagates through
the transverse field contribution, i.e. only δψsx changes with a changing mobility. This is because the
mobility influences the current and not the charge density, such that the electrostatics is not changed.

From equation 2.50 we know that we need dln(ID)
dψs1

and dln(ID)
dψs2

. We assumed a relation between current
and surface potentials in the form of ID = A ·h (ψs1, ψs2) (see equation 2.48 and 2.55). We examine what
changes in case the mobility is field dependent and thus surface potential dependent. In that case, the
relation is of the form ID = B · µ (ψs1, ψs2) · h (ψs1, ψs2), where B = A/µ.

We then find
dln (ID)
dψs1

= dµ

dψs1

1
µ

+ dh

dψs1

1
h

= dµ

dψs1

1
µ

+ δID1, (2.57)

Where µ = µ (ψs1, ψs2) and with δID1 the derivative as obtained with a constant mobility (equations 2.51
or 2.56). A similar expression can be obtained with respect to the back surface potential:

dln (ID)
dψs2

= dµ

dψs2

1
µ

+ δID2. (2.58)

We thus simply obtain an additional term in dln(ID)
dψsx

, depending on the mobility. The mobility reduces
due to the transverse field, i.e. dµ

dψsx
is negative. Therefore, with an increase in the difference between

surface potentials, dln(ID)
dψsx

reduces and as a result, δψsx increases. For the electrostatics being the same,
the subthreshold swing thus increases once the field-dependence of the mobility has been included.
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Electrostatics with workfunction difference

For the k-sweep method it was explained that the optimal subthreshold swing could be obtained by
aiming for an equal change in surface potential, i.e. ∂ψs1

∂VGS
= ∂ψs2

∂VGS
. Implicitly, it was assumed that this is

sufficient for obtaining equal surface potentials and thus a symmetric situation.
We consider the case where we have a device with an asymmetric workfunction, i.e. the difference in

workfunction between that of the front gate and the back gate. In that case, only taking the change in
surface potentials to be equal is not sufficient for obtaining a symmetric situation.

We start by looking back at the electrostatics equations (see equations 2.29 and C.1) and give the
relations for the workfunction-dependent parts of the electrostatics equations, g1 (∆φ) and g2 (∆φ):

g1 (∆φ) = ∆φ1Cox1 (Csi + Cox2 + Cit2) + ∆φ2Cox2Csi
(Csi + Cox1 + Cit1) (Csi + Cox2 + Cit2)− C2

si

, (2.59a)

g2 (∆φ) = ∆φ2Cox2 (Csi + Cox1 + Cit1) + ∆φ1Cox1Csi
(Csi + Cox1 + Cit1) (Csi + Cox2 + Cit2)− C2

si

. (2.59b)

So far the workfunctions of both front and back gate have been considered midgap, g1 = g2 = 0. In
general, this is not the case, and we need g1 = g2 in addition to an equal change in surface potentials in
order to obtain equal surface potentials.

In case of the symmetric DG device with a non-midgap workfunction, ∆φ1 = ∆φ2 = ∆φ, Cox1 =
Cox2 = Cox and Cit1 = Cit2 = Cit hence g1 = g2. In case the workfunctions of both gates are the same,
the electrostatics remain the same. The subthreshold swing is thus the same, but the current is higher
(for ∆φ > 0).

For an asymmetric DG device we need an additional degree of freedom to obtain g1 = g2. We use
VBGS = k · VGS + Voff with Voff a correction term for the workfunction difference.

Inserting this in equations 2.19 results in the same m-parameters, but the workfunction-dependent
parameters change to:

g1 (∆φ) = ∆φ1Cox1 (Csi + Cox2 + Cit2) + (∆φ2 − Voff )Cox2Csi
(Csi + Cox1 + Cit1) (Csi + Cox2 + Cit2)− C2

si

, (2.60a)

g2 (∆φ) = (∆φ2 − Voff )Cox2 (Csi + Cox1 + Cit1) + ∆φ1Cox1Csi
(Csi + Cox1 + Cit1) (Csi + Cox2 + Cit2)− C2

si

. (2.60b)

For the case without traps we then find that Voff = (∆φ2 − ∆φ1)/q . The elementary charge is
added here for conversion from energy (eV) to voltage (V). For example, we take an FDSOI device
without traps with a midgap front gate, ∆φ1 = 0 eV, and with a donor-doped well as back-gate with
Nwell = 5 · 1017 cm−3. Then, the (back-gate) workfunction difference is ∆φ2 = −0.45 eV and we should
use Voff = −0.45 V.

For the case with interface traps we obtain:

Voff = ∆φ2 −∆φ1
CsiCox1 − Cox1 (Csi + Cox2 + Cit2)
CsiCox2 − Cox2 (Csi + Cox1 + Cit1) (2.61)

The asymmetric FDSOI devices with midgap front gate workfunction can therefore still be controlled with
Voff ≈ ∆φ2/q. This introduces an error depending on how large the workfunction difference between the
front gate and the silicon channel, ∆φ1, actually is.
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Electrostatics with depletion capacitance of the n-well

Until now we have assumed the device to be a G/tox1/Si/tox2/BG stack with a back-gate workfunc-
tion difference, but the actual device consists of a G/tox1/Si/tox2/Nwell/BG stack. The effect of the
(asymmetric) oxide thickness, the workfunction and the field-dependence of the mobility was described.

Next to the BG workfunction difference resulting from the Nwell doping, we also obtain a depletion
region in the Nwell due to the voltage drop across the stack. The depletion capacitance can be described
as [35]:

Cdep = dQ

dV
= d (qNwellWdep)
d
(
qNwell
2εsi

W 2
dep

) = εsi
Wdep

=

√
qεsiNwell

2
1√

ψs3 − 2uT
, (2.62)

With ψs3 the surface potential at the BOX/n-well-interface which is defined as the difference in potential
at this interface and the potential “in the bulk” of the Nwell. In other words, ψs3 refers to the voltage
across the depletion capacitor. For k = k0, we have ψs1 = ψs2 and thus ψ3 = 0 and for increasing
|ψs2 − ψs1| we have an increasing ψ3.

The depletion capacitance effect is difficult to take into account, as ψ3 is not readily known. We
can see a clear trend with ψ3 and Nwell, however, and will therefore qualitatively analyze the situation
including depletion. For increasing k we see an increasing ψs3 and thus a decreasing Cdep with square-root
proportionality. On the other hand, increasing Nwell increases Cdep with the square-root proportionality.

The effect of Cdep can be incorporated in a new Cbot which is the series capacitance of Cdep and Cox2.
We thus have Zbot = Zdep + Zox2 such that

Cbot = Cox2Cdep
Cox2 + Cdep

. (2.63)

For Cdep � Cox2 we then obtain Cbot = Cox2. Thus, for increasing k we see an increasing effect of
Cdep and for increasing Nwell we see a decreasing effect.

2.11 Quantum-mechanical confinement
The electrostatics of symmetric and asymmetric devices were described with a semi-classical model in
the previous sections; the peak charge density in the silicon channel is at the oxide/silicon interface. We
have to account for quantum-mechanical confinement of the carriers, when the thickness of the silicon
channel is reduced to values in the order of the De Broglie wavelength [11]:

tsi ≤
2π~√

2m∗d,vquT
, (2.64)

where ~ is the reduced Planck constant (~ = h/2π) and m∗d,v the effective mass (to be discussed in more
detail later on in this section). For an electron with a thermal voltage of uT = 26 mV and a mass of
m∗d,v = 0.19m0 [11], with m0 = 9.1 · 10−31 kg being the electron rest mass, the De Broglie wavelength
is about ∼ 17 nm. For silicon channels of only 6 nm thick, as used for this study, quantum-mechanical
confinement effects should thus be considered. For this research, it is important that the effect of quantum
confinement would be an effective increase of the band gap. This could be important for the extraction
of the trap energy levels.

Basics of Quantum-Mechanics

The following description of the influence of quantum-mechanical confinement is adopted from Van der
Steen [11]. In quantum-mechanics, an electron is represented by the three-dimensional wave equation
Ψ(x, y, z) of which the square modulus represents the probability density that an electron resides at
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position (x, y, z). The time-independent three-dimensional Schrödinger equation to which this wave
equation is a solution is given by:

− ~2

2m

(
d2Ψ
dx2 + d2Ψ

dy2 + d2Ψ
dz2

)
+ V (x, y, z)Ψ(x, y, z) = EΨ(x, y, z), (2.65)

with m the electron mass, V the potential energy and E the total energy. Near the conduction band edge
the carriers move approximately according to the following parabolic dispersion relation:

E = ~2k2
x

2m∗x
+

~2k2
y

2m∗y
+ ~2k2

z

2m∗z
, (2.66)

with the effective mass associated with each direction being proportional to the energy dispersion of the
valley minimum, given by

m∗i =
(

1
~2
d2E

dk2
i

)−1

, (2.67)

with i = x, y, z depending on the direction. The energy dispersion is thus assumed to be parabolic such
that a constant effective mass can be used, which is called the effective mass approximation (EMA). This
parabolic energy dispersion holds in close vicinity of conduction and valence band minima, respectively
maxima. Thus, moving away from the conduction band edge the non-parabolicity has to be taken into
account, but this will be omitted here. Also, the valence band energy is anisotropic and non-parabolic in
theory and it is therefore less trivial to compute.

The obtained energy dispersion relation does not include confinement yet and is thus correct near the
conduction band of a bulk MOSFET. Confinement can be generally subdivided in two types: electrical
and structural confinement. Electrical confinement can be achieved in strongly inverted channels and
structural confinement is due to spatial confinement in one or more physical dimensions. We consider
the case of FDSOI devices where solely the thin silicon channel confines the potential. This is only a
limiting case valid within the subthreshold regime, as a combination of both structural and electrical
confinement has to be considered in strong inversion. An elaborate analysis of the different confinement
types is given in [36]. In case of structural confinement, a box-shaped potential well (or square well)
can be used to approximate the conduction and valence band discontinuity which occurs in a thin silicon
channel between two oxide layers. This is important in subthreshold hence in this work.

Potential barrier

Here, the potential profile is assumed to be known and is taken to be an idealized square well with an
infinitely high potential barrier. The solution is simply stated below and the implications are explained.
The derivation of this solution, as well as the solution for a finite confining potential and the solutions
obtained using more elaborate numerical models, can be found in [11].

For the infinitely high potential barrier, the confining potential is infinite (V (x) =∞) outside of the
well and therefore the wave function should be 0 at the boundaries (hence zero gate current). Also, the
confining potential is zero (V (x) = 0) inside the well (−tsi/2 ≤ x ≤ tsi/2). This situation is shown for
the conduction band in figure 2.10(a) and can be mirrored horizontally to obtain the situation for the
valence band. Then, the wave function does not extend into the barrier, i.e. the chance of finding an
electron outside of the square well is 0 and the wave function reads:

Ψ(x) =
√

2
tsi

sin
[
nπ

tsi

(
x+ tsi

2

)]
, (2.68)

with n the subband index, which can take values from 1 to infinity.
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(a) (b)

Figure 2.10: (a) Schematically shown square well with V (x) = 0 between −tsi/2 and tsi/2, in the well
and with V (x) = V outside of the well. The allowed energy levels are quantized to En, with the first
two subbands explicitly indicated. For the infinite potential barrier case V =∞. (b) Energy of the first
subband minimum relative to the conduction band edge as a function of the silicon thickness for silicon
in the (100) direction. The values are shown for the ∆0.916 and ∆0.19 valleys and for an infinite confining
potential (Inf. barrier) and for a potential barrier of V (x) = 3 eV. Taken from Van der Steen [11].

To be more precise, for one electron n = 1, for a second electron we then have n = 2 due to the Pauli
exclusion principle, and so on. The carriers motion is thus restricted in the x-direction, the direction of
confinement, while the carrier is still free to move in y- and z-direction. The resulting total energy is
given by

E(ky, kz) = ~2

2m∗x

(
nπ

tsi

)2
+

~2k2
y

2m∗y
+ ~2k2

z

2m∗z
, (2.69)

with n taking integer values from 1 to infinity. Comparing this result with the previously shown result
without confinement (equation 2.66) it can be noted that the continuous E(kx) is now replaced by a
quantized En:

En = ~2

2m∗x

(
nπ

tsi

)2
, (2.70)

with each value representing the energy minimum of the subband with index n. In more detail, equation
2.66 describes how constant energy surfaces, or iso-energy surfaces, result in all three k-space directions.
Taking a single effective mass the silicon crystal thus has six of these constant energy surfaces, or valleys.
This is usually denoted by the valley degeneracy factor gv. For the bulk silicon case we thus had gv = 6,
while this is no longer the case for the quantized solution given by equation 2.69. There, gv = 2 for the
x-direction and gv = 4 for the two other directions assuming the effective mass in these directions is the
same.

Taking a finite confining potential results in two algebraic transcendental expressions for the even-
and odd-symmetric energy minima, which have to be solved by equating the wave function inside and
outside of the barrier at the boundaries. However, this is outside the scope of this work. The only aspect
to be noted for the finite potential barrier with respect to the infinite potential barrier, is that the chance
of finding an electron outside the well is no longer 0 for a finite potential barrier.
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For silicon confined in the (100) direction the ∆0.916 valley is two-fold degenerate (gv = 2) and the
∆0.19 valley is four-fold degenerate (gv = 4), where the valley subscript denotes the relative value of
the effective mass compared to the electron rest mass [37]. From the results shown in figure 2.10(b) it
can be concluded that the infinite potential barrier results are a worst-case scenario compared to the
finite potential barrier results. For the square well with infinite potential barrier, the first subband
minima can be taken from figure 2.10(b) or calculated from equation 2.70. The first subband minimum
of the ∆0.19 valley is highest with a value of ∆EC ≡ E − EC,0 ≈ 55 meV for tsi = 6 nm and that the
energy offset of the first subband minimum of the ∆0.916 valley is ∆EC ≈ 11 meV. We assume that
the quantum confinement effects are similar for the valence band, where ∆EV ≡ E − EV,0 has to be
obtained. The valence band contains the light-hole (LH) and heavy-hole (HH) valleys that contribute to
the band gap, where the effect of the LH valley (∆0.20) is ∆EV ≈ −52 meV and the effect of the HH
valley (∆0.29) is ∆EV ≈ −36 meV [38]. The effective increase in conduction band energy is determined by
the lowest value, as this determines the lowest allowed energy state. An increase in the band gap energy
of ∆EG ≡ ∆EC−∆EV ≈ 47 meV then results. As the silicon band gap is EG = 1.12 eV, this thus means
that the effective or apparent band gap energy has increased due to quantization to EG,qm = 1.167 eV
for a silicon channel with a thickness of tsi = 6 nm.

Space charge density distribution

In order to obtain the charge density distribution within the silicon film, also the density of states (DOS)
and state occupancy have to be incorporated. The DOS is the number of states associated with a given
energy. The state occupancy then tells us how many of these states are occupied at a certain energy and is
linked to the Fermi energy and thus temperature and gate voltage. By incorporating the square modulus
of the wave equation at each subband n of valley v, with this square modulus defining the probability of
finding an electron at position x, the electron concentration distribution can be obtained [11]:

ρe(x) =
∑
v,n

|Ψv,n(x)|2 ·Dv · ln
[
1 + exp

(
EF − Ev,n − EC,0

kBT

)]
, (2.71)

with the DOS of each valley v given by

Dv =
gvm

∗
d,vkBT

π~2 . (2.72)

For each valley v, Ev,n is the energy minimum of subband n relative to the bulk conduction band edge
EC,0 and m∗d,v is the DOS effective mass of valley v in subband n. The quantum-mechanical electron
concentration can then be obtained from integrating the electron concentration distribution over the
channel. For an infinite confining potential this results in:

nqm =
∑
v,n

gvm
∗
d,vkBT

π~2 · exp
(
EF − Ev,n − EC,0

kBT

)
. (2.73)

It is insightful to compare the quantum-mechanical electron density with the semi-classical electron
density. The semi-classical electron density is implicitly used in equation 2.7 and is given by:

nc = ni · exp
(
qψ

kBT

)
(2.74)

Figure 2.11(a) is taken from [11] and shows the semi-classical and quantum-mechanical electron density
for varying VGS. For weak inversion conditions, the semi-classical electron density is nearly constant and
the quantum-mechanical electron density is 0 at the surface and has a maximum in the middle of the
channel. The value of the classical electron density is approximately equal to the quantum-mechanical
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(a) (b)

Figure 2.11: (a) Electron density as function of silicon channel thickness on a log-lin scale for VGS =
−1,−0.5,−0.25, 0.25, 0.5, 1 V (∆φ = −0.52 eV) for a symmetric DG device. The dashed lines represent
the conventional distribution and the solid lines represent the quantum-mechanical distribution. Taken
from Van der Steen [11]. (b) Schematically shown semi-classical (conventional) and quantum-mechanical
electron density distribution for triangular potential well, with the distance from the edge of the silicon
channel to a certain electron population indicated. For the semi-classical or conventional model the
distance is 〈xc〉 and for the quantum-mechanical model the distance is 〈xqm〉. The difference between the
two distances (∆x) accounts for the extra band bending needed. Taken from Van Dort [39].

electron density maximum. For strong inversion, the classical electron density is highest at the interfaces,
while the quantum-mechanical electron density has two maxima some distance away from the interface.

Usually, the quantum-mechanical confinement effects are accounted for by using the method proposed
by Van Dort et al. [39]. The displacement of the electron distribution effectively increases the oxide
thickness by

tox,eff = tox + εox
εsi

∆x, (2.75)

where ∆x accounts for the extra band bending needed to obtain a certain electron population in the
conduction band, assuming a simple relation for ∆x(E) [39]. The comparison between classical and
quantum-mechanical electron densities is shown in figure 2.11(b), where ∆x is indicated. To give a
numerical example, taking the quantum-mechanical electron density halfway the channel to be equal to
the classical electron density at 1 nm away from the interface, such that ∆x = 2 nm, would result in an
increase in the oxide thickness of 0.66 nm. This effect and the effect of the additional band gap energy
∆EG are summarized by the quantum-mechanical surface potential:

ψs,qm = ψs,c + ∆EG
q

+ F∆x, (2.76)

with ψs,c the classical surface potential and F the electric field perpendicular to the interface. The effect
of ∆x is (approximately) related to that of ∆EG and is incorporated in a new band gap energy, which
is used to obtain the quantum-mechanical electron density in [39]. However, the exact methodology
presented is verified for a triangular shaped potential well, i.e. for electrical confinement hence strong
inversion.
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In this work the subthreshold regime is considered. For a FDSOI FET in subthreshold mode operation
we obtain [9]:

∇2ψ = ∂ψ

∂x
= −ρ(x)

εsi
≈ 0, (2.77)

where ρ(x) is the volume charge density as function of the position along the confinement direction
(assuming uniformity along the y- and z-direction). Looking back at the general relation for the surface
potential of an n-type DG device, equation 2.8, and taking the above approximation, we find:

q (ψ − ψ0)
2kBT

= 0, (2.78)

with a surface potential minimum ψ0. The surface potential profile in subthreshold is thus constant,
hence independent of the charge density, such that the ∆x-term in equation 2.76 can be omitted.

In conclusion, in subthreshold the quantum-mechanical confinement effect only propagates through
an increase in band gap energy of ∆EG ≈ 47 meV.

2.12 Strain-induced mobility enhancement
In order to increase the on-current of FET devices, once approach is to increase the mobility of electrons
and holes in the channel, for which three options can be used. One option is the fabrication of the channel
from materials other than silicon, with a higher mobility. Drawbacks of this are that applicable materials
usually have a lower DOS and are more vulnerable to band-to-band tunneling [14].

A second option is to rotate the wafers (by 45%) to align the transistors with another crystal direction
(from 〈110〉 to 〈100〉), such that the electron distribution among valleys is not changed but the hole
distribution is. This new transport direction corresponds to the most effective hole transport.

The third option is the use of strain engineering to increase the mobility in the silicon channel. For
example, the hole mobility can increase by 40% with a resulting increase in current of 15% for a strained
channel [16]. This third approach is applied to the FDSOI material used in this study.

Effect of strain on the mobility

In order to describe why an increase in strain results in an increase in mobility, we use [14]

µ = qτ

m∗c
, (2.79)

with τ the average scattering time and m∗c the effective conductivity mass. The mobility is thus inversely
proportional to the effective conductivity mass. Also, the effective mass of an electron is different for the
longitudinal (in direction of axis) and transverse (in direction perpendicular to axis) direction.

Starting from the bulk energy dispersion relation (equation 2.66), where gv = 6, a summary of the
influence of strain on the electron and hole mobility is given in table 2.12 [14]. In order to comprehend
the information given in the table, the full analysis for the biaxial tensile train case (which is the first
case in the figure) will be carried out, as adopted from Skotnicki et al. [14].

In the example, compressive stress is applied in the x-direction such that the silicon crystal is squeezed
together in this direction. Indicating the two-fold degenerate valley by ∆2 and the four-fold degenerate
valley by ∆4, the energy of the ∆2 valley is lowered as result of the induced strain. Therefore, the ∆4
valleys lose energy to the ∆2 valleys. The ∆2 valleys are transverse with respect to the direction of
current and the electrons in these valleys thus have a transverse effective mass, which is lower than the
longitudinal effective mass. This is because the effective mass is inversely proportional to the curvature
of the energy of the valley (see equation 2.67). On the other hand, the ∆4 valleys contain two transverse
valleys and two longitudinal valleys. This means that the shift in energy from the ∆4 valleys to the ∆2
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valleys results in more electrons with a transverse effective mass (T-electrons) on average. The average
conductivity mass thus decreases, and from equation 2.79 the mobility increases. The splitting of the
subbands due to quantum confinement reduces the probability of intervalley scattering such that the
average scattering time increases. The electron mobility increase is thus further enhanced by quantum
confinement.

Regarding the holes for the mentioned example, the energy of the light-hole subband decreases under
influence of strain such that the amount of light holes relative to the amount of heavy holes increases.
The average conductivity mass will thus decrease and the hole mobility increases. Interband passages of
holes are prevented due to the subband splitting for adding quantum confinement. The scattering time
thus increases and the hole mobility further increases.

The overall effect of strain and quantum confinement on the mobility can be seen in the last column
of table 2.12, where the effective mobility is shown as function of effective field. The resulting mobility
is compared to the regular mobility curve for both weak and strong inversion. Strain indeed increases
the mobility of holes and electrons depending on the type of stress applied and this effect should thus
be considered for e.g. calculations of the current. The same methodology as applied above can be used
to describe the change in mobility in strong inversion, for which the reader is referred to [14], and to
describe the mobility for the other types of strain.

Effect of strain on the apparent band gap

For this research the impact of strain on the apparent band gap should be highlighted, since this could
influence the extraction of the trap energy level. We therefore focus on the “Impact of quantization”
column and quantize the shown trend in order to develop some insight in the influence of strain relative
to the influence of quantum confinement. The channel stress σ is related to the induced strain ε according
to Hooke’s law [40]:

σi = Eεi, (2.80)

where E is the modulus of elasticity, or Young’s modulus, and where i = x, y, z denotes the direction in
which the stress is applied. If the applied stress is uniaxial, i.e. only in the z-direction, and the material
is isotropic, the constrictions posed on the other two directions can be related to the z-direction with
Poisson’s ratio. Poisson’s ratio is thus defined as the ratio of the lateral and axial strains [40]:

ν = −εx
εz

= −εy
εz
. (2.81)

From the applied stress we can thus determine the strain in all three directions. The effect of the strain
on the conduction and valence band can be summarized as [41]:

∆EC,k = Ξd (εx + εy + εz) + Ξuεk (2.82a)

and

∆EV,k = −a (εx + εy + εz)±

√
b2

2
[
(εx + εy)2 + (εy + εz)2 + (εx + εz)2

]
, (2.82b)

where Ξd, Ξu, a and b are the dilatational deformation potential, uniaxial deformation potential, valence
band deformation potential and valence band shear deformation potential, respectively, where the ±
separates the LH and HH valleys and where εk is the directional strain that results in the minimal
∆EC,k.

Novel FDSOI material contains a strained silicon channel for the NFET and a strained silicon ger-
manium (Si1−xGex) channel, with x = 0.25 the mole fraction of germanium, for the PFET [42]. The
stress is applied by integrated in-situ boron doped (ISBD) Si1−xGex raised source and drain (RSD) for
the PFET and in-situ phosphorous doped (ISPD) Si:C (Silicon with 1 - 2% carbon) RSD for the NFET.
The NFET RSD provides channel stresses as high as 500 MPa [15].
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We first consider the NFET, where the Si:C RSD lattice is smaller than the Si lattice of the channel.
This results in uniaxial tensile stress in the y-direction (channel) and therefore in biaxial compressive stress
in the x- and z-direction. The given situation thus corresponds to the fourth case of table 2.12. Assuming
silicon in the (100) crystallographic direction, E = 130.2 GPa and ν = 0.278 [40]. From equations 2.80
and 2.81 we then obtain εz = 0.38%, εx = −0.1% and εy = −0.1% for a stress of σ = 500 MPa. The
deformation potentials for silicon are Ξd = 1.1 eV, Ξu = 10.5 eV, a = 2.1 eV and b = −2.33 eV [41].
From equations 2.82 we then obtain ∆EC,k ≈ −11 meV and ∆EV,k ≈ 7 meV such that the total band
gap energy becomes smaller, i.e. ∆EG ≈ −19 meV.

Next, we consider the PFET, with a Si0.75Ge0.25 channel. The lattice constant of germanium is larger
than that of silicon, such that biaxial tensile stress results in the channel, perpendicular to the direction
of current. This corresponds to the third case of table 2.12. The band gap energy offset is determined
by the valence band offset for Si1−xGex. That is, ∆EV >> ∆EC such that ∆EG ≈ −∆EV [43]. The
strain-dependent valence band offset and thus band gap offset is given by [43]:

∆EG ≈ −∆EV = 0.74 · x. (2.83)

From this equation we obtain ∆EG = −0.185 eV for the effect of strain on the PFET.
In conclusion, the band gap narrowing due to strain is approximately half the band gap widening due to

quantum confinement for the NFET. Both effects are negligible, such that the band gap is approximately
equal to the bulk value and is EG = 1.15 eV. For the PFET, however, the band gap is significantly
narrower due to the combination of strain and a different channel material than silicon, while the effect
of quantum confinement can be neglected. We obtain EG = 0.98 eV.
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Figure 2.12: Effect of strain on electron and hole mobilities. Indicated are the lenght L, width W and
height H of the transistor, as well as the gate G, source S and drain D. Also, several short notations
are used: T means transverse effective mass, LH means light holes, HH means heavy holes, CB means
conduction band, VB means valence band, WI means weak inversion and SI means strong inversion. Note
that ∆2 valley electrons are transverse to the direction of current flow and are therefore lighter than the
∆4 valley electrons. Taken from Skotnicki et al. [14].
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Measurements

3.1 Measurement method

3.1.1 Wafer Lay-out

This study comprises measurements on FDSOI devices from the 22FDX Global Foundries (GF) technol-
ogy. A single 300 mm diameter wafer was provided by GF. This wafer contains many equivalent dies (or
reticles) with on each die many blocks. These blocks consist of different types of devices, depending on
the block. For this study, measurements were mainly performed on a single block. The measurements
were performed on different dies for the sake of repeating measurements to ensure reproducibility. The
measured block contains many arrays of 25 bond pads, called 25-bond pad arrays, with each of these
arrays containing the connections to the electrical terminals for S, D, G, BG and substrate of many
transistors. The bond pads are 25x25 µm2. Each transistor can thus be controlled using 5 bond pad
connections. However, the number of transistors is more than the nominal 25/5 = 5, because several bond
pads are connected to multiple transistors, i.e. the connections to either of the mentioned terminals is in
parallel for many transistors. The wafer and two zoomed-in pictures of the wafer are shown in figure 3.1.

3.1.2 Device specifications

In this study measurements were performed on both NMOS and PMOS FDSOI FETs. A typical cross-
section of the used NMOS and PMOS transistor is shown in figure 3.2. Both devices contain a high-k
(dielectric) insulating material and a metal gate. The oxide/front gate stack is thus a high-k metal gate
(HKMG) stack, as patterned by the standard gate-first approach [16]. The front gate workfunction is

(a) (b) (c)

Figure 3.1: Picture of (a) the 300 mm wafer, showing several repeated structures and thus dies, (b) a
zoom-in (2x) of part of a die, showing several blocks, and (c) a zoom-in (10x) of part of a 25-bond pad
array. The 25-bond pad array is in vertical direction and several of these arrays (containing different
types of devices) are shown in horizontal direction.
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(a) (b)

Figure 3.2: Typical cross-section of NMOS and PMOS transistors. Taken from Carter et al. [16].

approximately at midgap, i.e. ∆φ1 ≈ 0. The NMOS contains an in-situ phosphorous doped (ISPD)
Si:C raised source/drain (RSD), also called eSiP, and a strained Si channel. The PMOS contains an
in-situ boron-doped (ISBD) SiGe RSD, also called eSiGeB, and a strained SiGe channel [15]. Device
constructions use the flip-well architecture for the NMOS and the regular architecture for the PMOS. Both
types of FETs are thus placed in n-type wells. The flip-well configuration is well suited for performance
enhancement and enables forward body biasing (FBB) such that the devices have a super low threshold
voltage (SLVT) and the regular well configuration allows for a leakage current reduction by increasing
the threshold voltage via reverse body biasing (RBB) [16]. The configurations are schematically shown
in figure 3.3.

Conventionally, transistor devices are distinguished by their effective (front) oxide thickness (EOT):
to a thin oxide (up to 2 nm) is referred as SG, to a regular oxide (2 - 5 nm) as EG and to a thick oxide
(more than 5 nm) as ZG.

The measured devices contain a body or channel of thickness tsi ≈ 6 nm, a buried oxide (BOX) of
thickness tox2 ≈ 20 nm and a front oxide (FOX) of thickness tox1 ≈ 1.3 nm. The described devices are
thus SG devices and are used for all measurements, unless stated otherwise. We used SG devices with
three different channel lengths: L = 20, 70, 1000 nm with W = 1000 nm.

Additionally, devices with a thick front oxide of tox1 ≈ 3.5 nm are used as this results in a more
balanced front and back capacitance ratio. These devices are thus EG devices and only NMOS EG
devices have been obtained and measured for this study. For the EG devices we used L = 150, 500, 2000
nm with W = 2000 nm.

3.1.3 Measurement set-up and protocol

The measurement system consists of a Keithley 4200-SCS semiconductor characterization system con-
nected to a Süss Microtech PM300 probe station with a ProbeShield Faraday cage for external field
cancellation. The signal through two channels of the characterization system was amplified with the
Keithley 4200-PA remote pre-amplifier. The temperature of the workbench chuck can be controlled with
the ATT systems temperature control unit. An EA-3008-24 power supply (28V, 3.6A) was used.
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Figure 3.3: Schematically shown FDSOI transistor with n-type well [44]. The figure corresponds to a
flip-well NMOST with gate (G), source (S), drain (D), back gate (BG), subtrate, channel, burried oxide
(BOX), n-type well (Nwell), n-type deep well (DNwell) and shallow trench isolation (STI) indicated.
Additionally, the diode between DNwell and substrate is indicated. The architecture is similar for a
regular PMOST. In that case, only the DNwell is replaced by a deep p-type well (DPwell). As a result,
a diode between Nwell and DPwell exists as well.

For this study, the drain current was measured as a function of the (front or back) gate to source
voltage, such that the transistor transfer characteristics and thus the characteristics of the subthreshold
regime are obtained. Output characteristics were not measured. At most four SMUs (source measurement
units) were used for the measurements, with Tungsten probe needles of at most 15 µm thick. We
connected the SMUs to the S, D, G and BG bond pads and ground the chuck of the measurement set-up,
i.e. the substrate was grounded. The source voltage was set to 0 V as default and is taken as ground,
i.e. all voltages are referred to the source voltage. As only two pre-amplifiers were available for most
measurements, the drain and front gate terminals were connected via the pre-amplifiers, such that the
data obtained from these terminals is more accurate. For all measurements, the operation speed was set
to “quiet” and the measurement range of at least the drain current was set to “automatic”. This enabled
the most accurate measurement performance throughout a large voltage range. The temperature of the
chuck was set to 298.15± 0.5 K (25± 0.5 ◦C) for all measurements.

First we discuss the general measurement procedure for the NMOST. Then, we give some additional
remarks.

NMOST measurement procedure

For the single sweep measurements, as discussed in theory section 2.6, the drain current was measured
as function of the front gate to source voltage. The back gate is set at a fixed voltage. The default value
for this is VBGS = 0 V, but measurements with VBGS = −1 and VBGS = 1 V were performed. Here, VGS
is VG1 from the theory, when referred to the source, and VBGS is VG2. We set VDS = 25 mV as default,
such that the lateral electric field is negligible. Additionally, some initial characterization was performed
for VDS = 0.8 V. For the front gate voltage we took −0.5 ≤ VGS ≤ 0.8 V with a stepsize of ∆VGS = 5 mV
for the general transfer characteristics and we took a smaller range for the front gate voltage, with limits
depending on the fixed back gate bias, with ∆VGS = 0.2 mV for the subthreshold measurements. The
subthreshold measurement stepsize is near the limit of the measurement device capabilities and could
therefore not be taken much smaller.
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For the dual sweep measurements, as discussed in theory section 2.7, the drain current was measured
as function of gate to source voltage. Both the front gate and back gate were varied, with the two voltages
being related to each other with a constant ratio VGS = kVBGS. The drain to source voltage was taken
the same as for the single sweep measurements and we took 0 ≤ VGS ≤ 0.3 V with ∆VGS = 0.2 mV for
the subthreshold measurements. Measurements were performed for several k-values, ranging between 0
and 25.

All measurement series were started with a measurement for a gate voltage range of −0.5 ≤ VGS ≤
0.8 V and a stepsize of ∆VGS = 20 mV where all currents were observed to check for broken devices or
contact issues. For the accurate measurements only the drain current was saved as function of front gate
voltage (and back gate voltage, for dual sweep measurements), as this saved a lot of time.

Measurement procedure remarks

The well-type has a limit for the back gate voltage range that can be used. In order to explain this, the
reader is referred to figure 3.3. For the flip-well NMOST, applying a potential more negative than the
substrate potential results in a forward-biased DNwell/substrate diode. Thus, VBGsub > 0 V, with VBGsub
the back gate voltage referred to the substrate. For our dual sweep measurement this does not pose any
problem, but for the single sweep measurements we could not apply VBGS = −1 V. In order to solve this
issue, we increased all probe voltages (S, D, G and BG voltages) by 1 V. Then, VBGsub = 0 V while we
still applied VBGS = −1 V. The same voltage level shift is applied for VBGS = 1 V for obtaining equal
measurement procedures. Note that this voltage level shift should not cause any additional problems,
since the only increasing fields are from the S/D/G to the substrate, and these fields are across the shallow
trench isolation (STI) between the devices.

3.1.4 Data analysis

Drain-source voltage

Ideally, no drain-source voltage should be applied such that the influence of the lateral field on the drain
current is non-existent. However, in this situation no current would flow. In order to be able to measure
an appreciable drain current, a small voltage thus has to be applied to the drain. The influence of this
applied voltage on the surface potentials should be negligible in order to ensure that the influence on
the drain current is negligible. We used the change in the surface potentials due to thermal fluctuations
as the criterium. The applied drain to source voltage should be smaller than these thermal fluctuations
to not influence the observed subthreshold characteristics. The surface potentials corresponding to the
thermal fluctuations are ψs1 = ψs2 = uT = 25.8 mV at room temperature. We used VDS = 25 mV such
that the requirement VDS < uT is met.

Regression analysis

Additionally, the drain current measurement exhibits measurement noise. The slope of the drain current,
the transconductance, can be quite noisy because the measurement fluctuations are enhanced for obtaining
the slope such that we additionally obtain numerical fluctuations. Therefore, for subthreshold regime
measurements, we averaged the drain current within a certain interval before taking the derivative. For
the averaging we used a regression analysis of which the window is defined by the thermal voltage. This is
because also the regression window has to be smaller than the change in surface potential due to thermal
fluctuations in order to ensure that the averaging does not influence any physical results. Thus, the
datapoints we used for our regression should in principle be within the same physical limits.

The regression window is given by the gate voltage step size ∆VGS times the number of data points
over which we regress, n. Within this window we use the characteristic of the subthreshold regime that
the drain current (approximately) exponentially depends on the surface potentials, hence gate voltage.
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A linear regression analysis was used on the logarithm of the drain current as function of gate-source
voltage within the window n∆VGS ≤ uT. For our subthreshold measurements with ∆VGS = 0.2 mV we
can take n < 129. We took n = 41 (→ n∆VGS = 8.2 mV), such that enough data points are used for
proper data smoothing but that we were still significantly below the thermal voltage. For n = 41, the
first subthreshold swing value or ideality factor value corresponds to the 21st actual measurement data
point. The last value corresponds to the N + 1− 21st measurement data point, with N the total number
of data points. We thus lost a number of measurement data points equal to the regression window size,
half of which at the beginning and half at the end of the measurement window.

Mathematically, the relation for linear regression is given by

y = b0 + b1 · x, (3.1)

with x the independent variable, y the dependent variable, b0 the offset and b1 the slope. The least-squares
method is then used to determine the slope and offset parameters:
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with n = 41 the regression window.
From the definition of the subthreshold swing (equation 2.3) we find that the log10 of the drain current

is linearly related to the gate-source voltage within the small regression window of size n. Therefore, we
take y = log10(ID) and x = VGS to find b0 and b1. The regression drain current value is then given by:

ID,reg = Ireg,0 · exp(b0 + b1 · VGS), (3.3)

where ID,reg/Ireg,0 is unitless, just as the RHS of the equation, with Ireg,0 = 1 A/µm. From this the
transconductance is given to be gm ≡ dID,reg/dVGS = b1 · ID,reg. The subthreshold swing, or actually the
ideality factor, can then be determined from the ratio of drain current and transconductance according
to equation 2.4 (m = 1

uT
ID
gm

).
As discussed, the drain current exponentially depends on the surface potential(s) for a symmetric DG

device (see equation 2.1) and this is still approximately true for asymmetric DG devices with k around
k0. For the regression window used here (8.2 mV) the difference between the regressed transconductance
and the transconductance obtained using the central finite difference theorem seems to be negligible, as
will be shortly discussed in section 4.2 (in paragraph “Extracting the transconductance”). For cases with
significant differences between the two surface potentials, care should be taken with the regression analysis
described above. In those cases, the given relation for the regressed drain current is not actually true, as
the linear surface potential terms (see equation 2.10) start to dominate. The result is that the obtained
transconductance has an additional analysis-induced error. This error has then also been incorporated
in the extracted ideality factor.

For cases with a significant difference between the two surface potentials and for measurements outside
of the subthreshold regime, the transconductance should be obtained using the central finite difference
theorem.

In summary, for measuring in the subthreshold regime we used the regression analysis. From the
slope and intercept of the regression line within a window of n data points the regressed drain current
was determined and from this the corresponding regressed transconductance. The drain current and
(regressed) transconductance were then used to determine the ideality factor, from which the interface
trap density can in turn be determined. If we simply want to obtain the transconductance, such as for
strong inversion, we used the central finite difference theorem.
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Interface trap extraction

For the interface trap extraction we use the method as described in the theory, section 2.7 [21]. The
measured ideality factor as a function of the gate-source voltage for several k-values is used to extract
k0 from, as a function of the gate-source voltage. Here, k0 is extracted by interpolating between the
datapoints to obtain k at m = 1. We then assume that one of the two interfaces contains no traps and
thus attribute all the traps to the other interface. We use the simplified equations, 2.36, 2.37, 2.40 and
2.41, to obtain the trap capacitance and density at the trap-containing interface.

3.2 Measurement Results & Discussion
We discuss results for both single sweep and dual sweep measurements, in that order. General transistor
characteristics are described for the single sweep measurements, as this is the general use of FDSOI
devices. For the dual sweep measurements we mainly focus on the k-sweep method (see theory section 2.7).
Measurement are performed on SG NMOSTs, unless stated otherwise, and the width of the devices is
W = 1 µm.

3.2.1 Measurement results for single gate sweep

General transfer characteristics

The general NMOST transfer characteristics on a logarithmic (log-lin) and linear (lin-lin) scale are shown
in figure 3.4 for a (long channel) device with L = 1 µm and VBGS = 0 V.

Figure 3.4 (a) shows the absolute drain current, source current and front gate current for VDS = 25 mV,
with the drain current also shown for VDS = 0.8 V, on a logarithmic scale. The back-gate current
is negligible (< 10−14 A/µm) and is not shown. The absolute values are given per unit gate width.
Actually, the source and gate current are negative and the drain current is positive.
Three regions of operation can be distinguished: 1) for high front gate voltages (approximately VGS > 0.4 V)
the drain current starts to saturate. 2) for smaller positive front gate voltages (0 < VGS < 0.4 V) the
device operates in the subthreshold regime and the drain current seems to exponentially depend on the
front gate voltage. 3) for negative front gate voltages (VGS < 0 V) the drain current slightly increases.

In the first two regions of operation the drain current is dominated by the source current contribution.
Thus, the device behaves as intended and we do not have significant gate leakage. In the first region of
operation the gate current does seem to increase more rapidly than drain and source current and care
should thus be taken for further increasing the front gate voltage. Still, the gate current is approximately
more than 3 orders lower than the drain and source current. In the third region of operation the drain
current is dominated by the gate current due to gate leakage.

Additionally, the drain current is shown for VDS = 0.8 V. The same three regions can be distinguished
and the contributions of source and gate current are similar (not shown). Due to the higher drain-source
voltage, the electric field resulting in GIDL is reached at lower front gate voltages, as can be observed.
In the subthreshold regime the curve seems to have shifted to the left for the higher drain-source voltage.
This effect is called drain-induced barrier-lowering (DIBL) and was also mentioned in the introduction.
The higher drain potential effectively pulls down the energy bands in the channel resulting in a lower
threshold voltage. Here the effect is approximately 19 mV/V (shift in front gate voltage in subthreshold
regime per added unit of drain-source voltage).

Figure 3.4 (b) shows the drain current for VDS = 25 mV and for VDS = 0.8 V on a linear scale. Also,
the transconductance for VDS = 25 mV is shown. The maximum transconductance is at approximately
VGS = 0.65 V. The transconductance for VDS = 0.8 V (not shown) does not have a maximum in the
measurement range. The method of extrapolation in the linear regime (ELR), as given by equation 2.46
and shown in figure 2.9 in the theory, is used to determine the threshold voltage for VDS = 25 mV. We
obtain VT = 365 mV.
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(a)

(b)

Figure 3.4: Drain current per unit width as a function of gate-source voltage at VBGS = 0 V for a
W/L = 1/1 µm device on a (a) log-lin scale and (b) lin-lin scale. (a) shows the drain current ID, absolute
source current IS and absolute gate current IG for VDS = 25 mV and the drain current for VDS = 0.8 V.
(b) shows the drain current ID for VDS = 25 mV and VDS = 0.8 V (left y-axis) and the transconductance
gm for VDS = 25 mV (right y-axis).

Back gate bias effect

The effect of applying a fixed back gate bias voltage is demonstrated in figure 3.5 for a device with L = 70
nm. The fixed back gate voltage is taken to be −1 V, 0 V or 1 V.

Figure 3.5 (a) shows the drain current per unit gate width as a function of the front gate voltage,
where the curves shift leftwards/upwards for an increasing back gate voltage. Referring to the shift as
upwards thus shows how the current increases for an increasing back gate voltage. Referring to the shift
as leftwards describes how the increase in back gate voltage translates to a threshold voltage change.
Note that this is just a single physical effect explained in two ways.

This threshold voltage shift can be expressed in device parameters (see equation 2.22) and is expressed
in units of threshold voltage change per unit of back gate bias. From the given figure this threshold
voltage shift can thus be estimated from the shift in the subthreshold curve to the left. For a device with
L = 70 nm, we obtain ∆VT/∆VBGS ≈ 80 mV/V and for a device with L = 1 µm (not shown) we obtain
83 mV/V.
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(a)

(b)

Figure 3.5: (a) Drain current per unit width (left y-axis) as a function of gate-source voltage for a back
gate voltage of VBGS = −1, 0, 1 V for a W/L = 70/1000 nm device and (b) corresponding ideality factor
m1 as a function of gate-source voltage.

Figure 3.5 (b) shows the ideality factor (referred to the front gate voltage) as a function of the front
gate voltage. The shown ideality factor is obtained using the regression analysis. The deviation of the
subthreshold swing from the ideal case (SS= m · ln(10)uT) is thus examined at each front gate voltage
value. Note that, in contrary to what the name suggests, a higher value for the ideality factor actually
means a less ideal subthreshold swing.

The minimal value for the ideality factor is approximately equal for all three back gate voltages and
is m1 ≈ 1.12. The ideality factor curve shifts to the left for increasing back-gate voltages, just as the
curves for the drain current. Note that the ideality factor has already significantly increased before the
threshold voltage. For example, for VBGS = 0 V at VGS = 0.25 V the value of the ideality factor has
doubled with respect to the minimal value. Since the threshold voltage was found to be VT = 365 mV
previously, this non-ideal behaviour sets in for much lower front gate voltages (approximately 100 mV
lower) than expected. This unexpected increased ideality factor is called the apparent conduction band
edge [20].
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(a)

(b)

Figure 3.6: (a) Drain current per unit width (left y-axis) and transconductance per unit width (right
y-axis) as a function of gate-source voltage for a channel length of L = 20, 70, 1000 nm for a 1 µm width
device and (b) corresponding ideality factor m1 as a function of gate-source voltage. Results for each
channel length are given for measurements at two different dies, to show die-to-die variability.

Channel length effect

The effect of the channel length is demonstrated in figure 3.5 for a device with VBGS = 0 V. The examined
channel lengths are 20 nm, 70 nm and 1 µm. The measurement results are shown for measurements on
two different dies and show only a small deviation.

Figure 3.6 (a) shows the drain current per unit gate width as function of the front gate voltage. The
curve shows the same trend as was shown for the different back gate voltages (figure 3.5). The current
increases for shorter devices, as can be expected since the channel resistance decreases. Also, the leftward
shift of the curve means that the decrease in channel length effectively decreases the threshold voltage.
The most important aspect of the shown curves for this work, however, is the subthreshold swing. In the
shown drain current figure it is already clearly visible that the subthreshold swing increases for a 20 nm
device with respect to the other two because of SCE. The difference between the 70 nm and 1 µm devices
is not so apparent.
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Figure 3.6 (b) shows the ideality factor (referred to the front gate voltage) as a function of the front
gate voltage. The ideality factor has a minimum value of m1 ≈ 1.10 for L = 1 µm and m1 ≈ 1.12 for
L = 70 nm, which is the same as for figure 3.5 (b). Devices with these two channel lengths thus show
a minimal subthreshold swing degradation as result of a change in channel length. The main effect is
the threshold voltage change and thus shift of the curve to the left for a decreasing channel length. The
minimum ideality factor value is m1 ≈ 1.35 - 1.5 for a device with a channel length of L = 20 nm. The
ideality factor does not show a minimum plateau such that the bathtub shape obtained for all other cases
is not present. This bathtub shape is well-known and is caused by channel accumulation (left edge) or
depletion (right edge). This right edge should be around the threshold voltage, but it is found that usually
an apparent conduction band edge is observed for lower gate-source voltages [20]. Significant degradation
of the subthreshold swing is observed for decreasing the channel from 70 to 20 nm. So, where using the
interface trap extraction method on a device with a 70 nm channel length might still be valid, this is
definitely not the case for a device with a 20 nm channel length. The observed trend is the result from
short-channel effects (SCE).

Measurement deviations

The influence of measurement deviations is shown in figures 3.7 and 3.8 for a device with VBGS = 0 V
and L = 70 nm. Assessing the measurement deviation is needed as this presents the absolute lower limit
of our accuracy.

In figure 3.7 we examine this accuracy by means of the deviation in the ideality factor. The average
(avg) and standard deviation (std) of the ideality factor for n = 3 measurements are shown.

The std for n = 3 measurements can be determined for each front gate voltage:

std =
n∑
i

(
(xi − xavg)2

n− 1

)
, (3.4)

with x = m1 for the calculation of the std of the ideality factor.
The obtained std is subtracted from and added to the avg ideality factor, and the resulting band is

shown in the figure around the average ideality factor. If we sum the std and avg ideality factor over all
measured VGS and divide the two the total relative std is obtained (=std/avg).

Figure 3.7: Average (avg) ideality factor m1 as function of gate-source voltage with standard deviation
(std) band indicating the std around the average value for n = 3 measurements at VBGS = 0 V for a
W/L = 1000/70 nm device.
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Figure 3.8: Ratio of standard deviation of the drain current to the average drain current as a function
of drain current for measurements performed at “normal” and “quiet” measurement speeds for n = 3
measurements at VBGS = 0 V for a W/L = 1000/70 nm device.

For the given figure we obtain a total relative std of 1 %. This, however, exaggerates the std for
positive front gate voltages, since a higher deviation is observed for negative front gate voltages (because
of the lower and more noisy drain current).

In figure 3.8 the relative std is examined for drain current value. In order to do so, we use equation 3.4
with x = ID and then define the relative std as the ratio std/avg at each front gate voltage value. We
then plot the relative std at each drain current value corresponding to this front gate voltage value to
obtain the shown figure. The procedure is performed for “normal” and for “quiet” measurement speeds.

First of all, the “normal” measurement speed has a higher relative std than the “quiet” measurement
speed. A peak in relative std is shown at ID ≈ 5 · 10−12. This peak corresponds to a front gate voltage
of VGS ≈ −85 mV for the shown measurement. For measurements with a normal speed the relative std
is around 4% for VGS = −0.2 V (lowest drain current value) and slowly decays to 1% at VGS = 0.3 V
(highest drain current value). For quiet measurements the relative std is around 0.5% for VGS > −85 V
or ID > 5 · 10−12. The results obtained with quiet measurements for the described range are therefore
accurate to 0.5%.

The peak in the relative std is attributed to a change in the measurement range (due to the “automatic”
setting). The results obtained at this specific drain current (or front gate voltage corresponding to this,
depending on the measurement method and device parameters) effectively show a measurement artifact.
This artifact is clearly visible in figure 3.4 (b), 3.6 (b) and 3.7.

The Keithly manual describes the measurement errors for various ranges of measured current. In the
range of 0.1 A < I < 0.1 nA the specified measurement error is around 0.1 - 0.2%. For currents smaller
than this, down to the measurement limit, the measurement error increases to approximately 2%. The
shown increase in error for the small currents with the quiet measurement setting is thus expected.

We now assessed the FDSOI device characteristics under standard industry use: varying the front
gate voltage and using the back gate as threshold voltage modulator. Note that the front gate voltage
range for the m1 figures is different from the range of the corresponding ID figures. This is because the
actual range is zoomed in on to obtain the range shown, to better show the minimal ideality factor value
and its bathtub shaped curve.
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3.2.2 Measurement results for dual gate sweep

General k-sweep results

The subthreshold characteristics for a k-sweep measurement are shown in figure 3.9 for a device with
L = 70 nm. We use gate bias ratios k ≡ VBGS/VGS = 0, 1, 2, 3, 5, 7, 10, 15, 20, 25 such that the maximum
back gate voltage is VBGS = 0, 0.3, 0.6, 0.9, 1.5, 2.1, 3.0, 4.5, 6.0, 7.5 V. Thus, the number of back gate
voltage steps is equal to the number of front gate voltage steps, but the stepsize and range are different
depending on k. Note that k = 0 corresponds to a fixed back gate voltage of VBGS = 0 V.

Figure 3.9 (a) shows the drain current as a function of the front gate voltage for different k-values.
The subthreshold swing clearly improves for higher k and the threshold voltage decreases.

The improvement in subthreshold swing is better visualized with the ideality factor in figure 3.9(b).
Solely taking into account the FOX and BOX thickness, the drain current is expected to barely change
with the back gate-source voltage in case of a relatively thick BOX layer. That is, for tox2/tox1 → ∞
it could even be argued that the interface of the BOX and silicon channel is a virtual ground for e.g.
k = 1. This expectation is evidently incorrect for tox2/tox1 = 20/1.3 ≈ 15, as k = 1 already shows a
significant increase in the subthreshold swing with respect to k = 0 (fixed back gate bias at VBGS = 0 V).
For example, increasing k from k = 0 to k = 1 and to k = 25 results in the ideality factor dropping from
m1 ≈ 1.11 to m1 ≈ 1.03 and to m1 ≈ 0.37, respectively.

The ideality factor is shown as a function of k in figure 3.9 (c) at VGS = 23.8 mV. The corresponding
ideality factor values are indicated by the dotted line in figure 3.9 (b). For the given ideality factor m1
as function of k in combination with m2 as function of p the interface trap densities can be extracted.

To start with, we take the cases where one of the two interface trap densities is assumed to be 0
(see equations 2.36 and 2.37 to extract Dit2 and equations 2.40 and 2.41 to extract Dit1). For example,
assuming Cit1 = 0 F/m2 (no front interface traps) we know that m1 = 1. This procedure is denoted in
the figure. The horizontal dotted line denotes m1 = 1 and the solid black dot shows the interpolated
value corresponding to m1 = 1 (equation 2.37). This value is needed to obtain the corresponding value
of k0, as indicated with the vertical dotted line.

For this figure we obtain k0 ≈ 1.37. From this value of k0 we can then determine the back interface
trap density (equation 2.36).

In order to improve the procedure speed and quality, we use less k-values and we take more values
within the range of k = 1 - 2, respectively. Taking less values reduces the needed measurement time.
Taking more values within the mentioned range allows for a smaller interpolation error. Also, we use a
long channel device with L = 1 µm to ensure no SCE are of influence.

Single interface trap extraction

The extraction of the optimal gate bias ratio k0 is demonstrated in figure 3.10 from measurements with
k = 1, 1.2, 1.5, 2 for a device with L = 1 µm.

Figure 3.10 (a) shows the drain current as a function of the front gate voltage. The increasing
subthreshold slope for increasing k is indicated. From the given four curves the optimal gate bias ratio is
extracted at each front gate voltage. The resulting optimal gate bias ratio as a function of the front gate
voltage is shown in figure 3.10 (b). The fluctuations in the ideality factor caused that the optimal gate
bias ratio could not be extracted for all front gate voltages, from the given four k-values. This is because
in some cases m1 < 1 for all k, as can be observed from the gaps at e.g. VGS = 0.05 V. Also, for too
high front gate voltages the ideality factor deviates so much from the ideal value that m1 > 1 for all k.
Therefore, values for the optimal gate bias ratio could only be obtained for approximately VGS < 0.22 V.

From the extracted k0 in combination with the front gate referred subthreshold swing SS1 we can
extract the back interface trap capacitance using equations 2.36 (k0 ∝ Cit1) and 2.37 (ideal SS1, thus
m1 = 1). We can thus simply compute Cit2 assuming Cit1 = 0 F/cm2 from the extracted k0.
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(a)

(b)

(c)

Figure 3.9: (a) Drain current per unit width as a function of gate-source voltage for a back to front
gate voltage ratio of VBGS/VGS ≡ k = 0, 1, 2, 3, 5, 7, 10, 15, 20, 25 for a W/L = 1000/70 nm device, (b)
corresponding ideality factor m1 as a function of gate-source voltage and (c) corresponding ideality factor
m1 as a function of k at a gate-source voltage of VGS = 23.8 mV. This is depicted by the dotted line
in (b). The solid black dot shows an interpolated value for m1 = 1 with which the value of k0 can be
calculated assuming Cit1 = 0 F/cm2, as indicated by the dotted lines.
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(a)

(b)

Figure 3.10: (a) Drain current per unit width as a function of gate-source voltage for a back to front gate
voltage ratio of VBGS/VGS ≡ k = 1, 1.2, 1.5, 2 for a W/L = 1/1 µm device and (b) corresponding value of
k0 as a function of gate-source voltage extracted by assuming Cit1 = 0 F/cm2.

The procedure is repeated for m2 and p to obtain Cit1 for the same device, assuming Cit2 = 0 F/cm2.
We thus use equations 2.40 (k0 ∝ Cit2) and 2.41 (ideal SS2, thus m2 = 1). For this, the same data is
used, but from the data the values of m2 are determined for the VGS-range by interpolating higher k
value data within the given range.

To understand why this is needed we give an example. For a measurement series with k = 1 and
k = 2, we have 0 < VGS < 0.3 V for both measurements and 0 < VBGS < k ·0.3 V for the two measurement
series. Thus, the range for the back-gate voltage is not the same for all measurements and m2 cannot be
easily expressed for a specific range numerically.

In order to do so, we take the range for k = 1 and take the lower half of the range for k = 2, where we
thus obtain 0 < VBGS < 0.3 V. However, the measurement series for k = 2 contains the same number of
datapoints, and thus only half the number of datapoints in the given range. To obtain a value for m2 at
every datapoint as specified by the k = 1-range, we interpolate the measurement series for k = 2 within
the specified voltage range. From this m2 as a function of p = 1/k we then extract p0.

The results for Cit1 are thus less accurate, but they can be compared to the Cit2 results. With the
mentioned procedure the same values should be obtained for both the front and back interface trap

55



CHAPTER 3. MEASUREMENTS

capacitance. This is the case, because the method implies that the surface potentials at the front and the
back side of the channel are the same for the extraction of k0 (p0). Therefore, it does not matter which
interface trap density is assumed to be 0 and which is extracted, since the deviation of the ideality factor
is in both cases fully attributed to the interface traps.

The extracted interface trap capacitance as a function of the gate-source voltage for both cases is
shown in figure 3.11, on a logarithmic and linear scale. The interface trap density Ditx is determined
from this, using a simple division by q (as is evident from equation 2.5). The extracted interface trap
density as a function of the gate-source voltage for both cases is shown in figure 3.12, on a logarithmic
and linear scale. The figures show consistent front and back interface trap capacitances and densities for
the two cases (of either assuming Cit1 = 0 F/cm2 or Cit2 = 0 F/cm2).

The high peak in the Cit- and Dit-curves for Cit2 = 0 F/cm2 around 0.04 V is attributed to the effect of
the measurement range-change artifact on the measurement for k = 1 (as discussed in the “Measurement
deviations” paragraph in this section). See the small discrepancy in the drain current at this gate voltage
in figure 3.10(a), for k = 1.

(a) (b)

Figure 3.11: Interface trap capacitance per unit area as a function of gate-source voltage for aW/L = 1/1
µm device on a (a) log-lin scale and (b) lin-lin scale. The results for the interface trap capacitance at
one interface are obtained for assuming no interface traps at the other interface. For example, Cit1 is
obtained by assuming Cit2 = 0.

(a) (b)

Figure 3.12: Interface trap density per unit area per energy as a function of gate-source voltage for a
W/L = 1/1 µm device on a (a) log-lin scale and (b) lin-lin scale. The results for the interface trap density
at one interface are obtained for assuming no interface traps at the other interface. For example, Dit1 is
obtained by assuming Dit2 = 0.
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For the GF FDSOI material used in this study it is known that the BOX/channel interface is of a high
quality, since this interface consists of a natural SiO2/Si interface and the quality of such an interface is
known to be generally good. However, the front interface consists of HK/Si, where the exact composition
of the HK oxide is unknown to the authors, and the quality of this interface could be poorer [45]. The
assumption that the back interface trap density is 0 and that the front interface trap density can be
determined could therefore be valid.

In that case, we obtain Dit1 ≈ 2 · 1011 cm−2eV−1, away from the band edge. Near the band edge, the
value increases to ≈ 5 ·1012 cm−2eV−1. In case this assumption is found to be invalid, we have determined
the limiting cases here.

3.2.3 Conclusion measurement results

The general single gate sweep measurement characteristics are shown and the effect of the fixed back-gate
bias voltage is demonstrated to be ∆VT/VBGS ≈ 80 mV/V. Also significant short channel effects were
shown for L = 20 nm. We discussed the drain current measurement accuracy of 0.5% and showed that
our measurements contain a measurement artifact, which had to be considered for the processed data.

For the dual gate sweep measurements the effect of k on the drain current is discussed. The resulting
difference in the suthreshold swing (or ideality factor) is demonstrated and we showed how to extract k0
from the given curves. Then we demonstrated how to extract k0 and p0 (not shown) as a function of the
front gate voltage. From this, the interface trap capacitance and interface trap density was determined
for a single interface, assuming the other interface to not contain any traps. From this, considering the
back interface to be much better than the front interface, we concluded that Dit1 ≈ 2 · 1011 cm−2eV−1,
away from the band edge. We thus extracted the total interface trap density at each gate-source voltage
value, i.e. we extracted a value from which the trap density at the front or back interface cannot be
distinguished.

For this extraction, we assumed that no short channel effects played a role. Furthermore, we assumed
the effects of an unequal front and back gate workfunction to be insignificant, just as the effect of back-gate
depletion.

Although not discussed or shown in this chapter, we also performed measurements on PMOS devices.
The same trends were observed as for NMOS devices, such that our conclusions did not change.

We thus obtained the front interface trap density in a simplified manner, which can be used to
benchmark the obtained results for considering both interfaces simultaneously. Before we do so we would
first like to validate the obtained results. For this, we can either use a compact model such as that
developed by the BSIM group, or we can use a technology computer-aided design (TCAD) tool such as
Silvaco Atlas. We continue with validating the extracted total interface trap density at each gate-source
voltage using the BSIM compact model.
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Compact Model Simulations

4.1 Compact modeling method
The compact modeling is described in this section. First we discuss the models, tools and parameters
used. Then, the simulation results and their implications are discussed. The BSIM group of the University
of California, Berkeley, developed the independent multi-gate (IMG) model [46]. With this model the
electrical characteristics of double-gate structures like FDSOI devices can be described by controlling the
two gates separately. We use version 102.9.1 of the model for this research [46]. We use the ProMOST
simulation tool to run the BSIM model.

4.1.1 Default parameters

Several default parameters can be implemented in the BSIM model, where all of these parameters can be
used to fit the electrical characteristics to the measured devices. We used the GF 22FDX default input
file for SLVT devices, which corresponds to the measured devices. The input file was adjusted for this
work, such that several of the normally constant parameters could be varied, e.g. the oxide thickness,
the Nwell doping, the interface trap capacitance and the gate length. For controlling the ProMOST
simulations a MATLAB file was used, in which the variable parameters and the bias conditions to be
used for the simulations were defined. In this way, the bias conditions as needed for the k-sweep method,
i.e. VBGS = k · VGS, could be transferred to the ProMOST. ProMOST then performed the simulation
using the BSIM model with these parameters and the default values from the input file. The required
results were then requested by MATLAB such that the electrical characteristics can be stored locally.
This way, the output data could be analyzed in the same way as the measurement data.

We distinguished between variable parameters and bias conditions in the following way. The variable
parameters are device parameters, i.e. constants for a given device, that we set in MATLAB. These
had to be maintained constant throughout a single simulation. An example would be the gate length.
The bias conditions can be varied during the simulations and only comprise voltages in our case. In
principle, also the device currents or even the interface trap capacitance could be varied. Varying the
current then resembles a current source. Varying the interface trap capacitance resembles the different
interface trap densities per energy (and thus per voltage). The interface trap capacitance is actually a
device parameter but it can be varied with the bias conditions in order to fit the measurement data. We
used the following variable parameters with the respective default values: the device width (W = 1 µm),
gate length (L = 1 µm), the (effective) front oxide thickness (tox1 = 1.3 nm), the (effective) buried oxide
thickness (tox2 = 20 nm) and the Nwell doping (Nwell = 5e17 cm−3). For the bias conditions we use VGS
and k. Therefore, we thus also vary VBGS. We also define VDS = 25 mV and T = 298.15 K (T = 25 oC),
but these values are maintained constant throughout the simulations. The interface trap capacitance is
actually a device parameter, but as it could be voltage-dependent we desire the value to be determined
at each bias condition. The interface trap capacitance had a default value of Cit = 7 · 10−8 F/cm2.
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4.1.2 ProMOST implementations

Several characteristic parameters of the simulated device are difficult to request from ProMOST directly,
as these parameters are used “in the background” of the simulation. That is, they are used in the
calculation but no explicit value is given by ProMOST. For example, the workfunctions are difficult to
extract, but they are used and they can in principle be computed form the available parameters. It
would then be easier to compute the wanted parameter, such as the workfunction, indirectly. This can
be done by consulting the BSIM-IMG technical manual and computing the parameter in the same way
as performed by ProMOST using the BSIM model. The variables needed for the computation can then
either be taken from the input file (which e.g. states the Nwell doping) or they can be requested during
the simulation (such as the voltages or currents).

The interface trap capacitance is implemented in BSIM directly. The effect of the interface trap
capacitance is modeled for the subthreshold slope degradation and the effect is accounted for the in
ideality factor as follows:

mBSIM = 1 + (Cdsc + Cit) (Csi + Cox2)
Cox1 (Csi + Cox2) + CsiCox2

, (4.1)

with Cdsc describing the back-gate bias sensitivity of the coupling capacitance to the channel, depending
on length and the applied VDS (and thus the lateral field).

A simplified form of the Poisson equation (with simplified electrostatics) is then solved using Halley’s
algorithm for x = ψs1

mBSIMuT
. From this, the front surface potential is then obtained and from the simplified

electrostatics the back surface potential can then be obtained from the front surface potential. Thus,
the interface trap capacitance influences the obtained front surface potential. However, the model only
incorporates a single interface trap capacitance. We thus have to remark that the BSIM model cannot
be used to obtain a separate front and back interface trap density; only an “averaged” Cit and thus Dit
can be obtained. We obtained a value for this, which can be used to validate the measurement results.

4.2 Compact modeling results
We discuss results for both single sweep and dual sweep ProMOST (or BSIM) simulations, in that order.
General transistor characteristics are described for the single sweep measurements, as this is the general
use of FDSOI devices. For the dual sweep measurements we mainly focus on the k-sweep method.
Measurements are performed with the specified default parameters, unless stated otherwise.

4.2.1 Compact model results for single gate sweep

Three different threshold voltage input files were available for the GF 22FDX material; the SLVT, LVT
and RVT input files. We compared the drain current as a function of the front gate voltage for all three
input files with the measured drain current, and found that the SLVT input file corresponds closest
with the measurement data. The material used for the measurements is SLVT material according to the
specifications, so this is the expected result.

Interface trap capacitance effect

We continue by showing the single gate sweep characteristics as obtained for different constant (over
the gate voltage range) interface trap capacitance values and for different gate lengths. Figure 4.1
shows the drain current per unit width (black/red) and transconductance per unit width (gray/pink)
for measurements and for two simulated Cit profiles for L = 1 µm, on a logarithmic (Figure 4.1(a)) and
linear (Figure 4.1(b)) scale. Both on logarithmic and linear scale the simulation curves seem to match
reasonably well. Figure 4.1(b) shows clearly that also the measured drain current and transconductance
at higher voltages is well-approximated by the model. The effect of interface traps can be extracted from
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(a)

(b)

Figure 4.1: Drain current (measurements in black, simulations in red, left y-axis) and transconductance
(measurements in gray, simulations in pink, right y-axis) per unit width as a function of gate-source
voltage at VBGS = 0 V for a W/L = 1/1 µm device on a (a) log-lin scale and (b) lin-lin scale. The figures
show the measurement curve and the curves obtained from the compact model with Cit = 0 F/cm2 and
Cit = 7 · 10−8 F/cm2.

the subthreshold regime, where a clear distinction between the curves is observed. On the linear scale,
the difference between the simulation curves is virtually non-existent, especially in comparison to the
difference between simulation and measurement curves.

Channel length effect

Figure 4.2 shows the drain current per unit width as a function of the gate-source voltage for measurements
and simulations (with default Cit = 7 · 10−8 F/cm2), for devices with three different gate lengths: 20 nm,
70 nm and 1 µm. Figure 4.2(a) shows the drain current on a logarithmic scale. The simulation curves
for the larger two gate lengths are in good agreement with the measurement. For the gate length of
20 nm, the difference between simulation and measurement is significant. On the linear scale shown in
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(a)

(b)

Figure 4.2: Drain current per unit width as a function of gate-source voltage at VBGS = 0 V for a
device with L = 1 µm, 70 nm and 20 nm on a (a) log-lin scale and (b) lin-lin scale. The figures
show the measurement curve (black) and the curves obtained from the compact model (red) with Cit =
7 · 10−8 F/cm2.

figure 4.2(b) the same trend is observed. We use the ELR threshold voltage determination method to
obtain the threshold voltage for the simulations. For devices with a gate length of 20 nm, 70 nm and
1 µm we obtain VT = 0.30 V, VT = 0.35 V and VT = 0.37 V for the simulations with the default Cit as
compared to VT = 0.24 V, VT = 0.32 V and VT = 0.36 V for the measurements, respectively. Especially
the values for larger gate lengths match well, as is evident from the drain current figures.

Extracting the transconductance

The drain current and transconductance in the described compact simulation figures were both extracted
directly from ProMOST for the simulations. For the measurements, gm was obtained from the regression
analysis. The effect of the regression analysis was tested on the ProMOST data, where the exact extracted
transconductance could be compared to the transconductance obtained from the regression analysis. It
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was found that no significant error is introduced due to regression, even for the linear regime. Although
applying the regression analysis with an exponential relation to the linear regime is physically incorrect
(and should therefore not be done), the fact that the error introduced by this is only small is an additional
argument in favour of the used regression method. Applying regression within a window of uT did not
alter the extracted characteristics significantly. Within the subthreshold regime, applying regression
with an exponential relation does make physical sense. It should be noted that the actual subthreshold
relation between front gate voltage and drain current is not exactly exponential (see equation 2.48), but
the error introduced by this within the regression window was found to be insignificant with respect to the
measurement limit (|gm,BSIM − gm,regression|/gm,BSIM < 0.01%). Also, from the residuals no unexplained
relation is observed for regression within the subthreshold regime.

(a)

(b)

Figure 4.3: The subthreshold swing expressed as ideality factor m1 is shown as a function of the gate-
source voltage at VBGS = 0 V. (a) The measurement curve (black) and the curves obtained from the
compact model (red) with Cit = 0 F/cm2, Cit = 1 · 10−8 F/cm2 and Cit = 7 · 10−8 F/cm2 For a
W/L = 1/1 µm device are shown. (b) The compact model curves for a device with L = 1 µm, 70 nm
and 20 nm are shown.
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Subthreshold characteristics

Figure 4.3 shows the obtained subthreshold swing expressed as the ideality factor. For obtaining the
ideality factor we use m1 = 1

uT
ID
gm

. In figure 4.3(a) the results are shown for different Cit profiles and in
figure 4.3(b) the results are shown for different gate lengths. Figure 4.3(a) shows simulation results for the
same two interface trap capacitance values as shown in the previous drain current figures (Cit = 0 F/cm2

and default). The curve for the higher (default) Cit might seem to catch the behaviour of the measured
drain current better (see figure 4.1), but when looking at the ideality factor it becomes clear that the
behavior is better described with a lower Cit. The value of Cit = 1 ·10−8 F/cm2 is taken for an additional
simulation curve since no clear trend can be observed for only two curves. The curve for this Cit describes
the subthreshold behaviour well in the range of 0.05 < VGS < 0.15 V. For larger gate voltages a higher
interface trap capacitance value is needed to describe the subthreshold swing. Figure 4.3(b) shows the
effect of the gate length on the subthreshold characteristics for Cit = 0 F/cm2. The short channel effects
are clearly observed, as was also the case for the measurements. Short channel effects in the subthreshold
regime are observed as an upward shift of the subthreshold characteristics. Additionally, the effects of the
apparent conduction band edge (the curvature around VGS = 0.3 V) are observed at a lower gate-source
voltage, i.e. at VGS = 0.3 V the ideality factor is higher.

4.2.2 Compact model results for dual gate sweep

General k-sweep results

In figure 4.4 the simulations for k = 1, 1.2, 1.5 and 2 for Cit = 0 F/cm2, Cit = 1 · 10−8 F/cm2 and
Cit = 7 · 10−8 F/cm2 are compared to measurement results.

Figure 4.4(a) shows the drain current per unit width as a function of the gate-source voltage for k = 1
(measurement in black, simulations in red) for Cit = 0 F/cm2 and Cit = 7 · 10−8 F/cm2 and for k = 2
(measurement in gray, simulation in pink) for Cit = 0 F/cm2. The result for Cit = 1 · 10−8 F/cm2 and
for the other two k-values are not shown in order to keep the figure neat. The curves for k = 2 all have a
steeper slope than the curves for k = 1, as should be. The curves for Cit = 0 F/cm2 start (at VGS = 0 V)
at a lower drain current value and increase more rapidly, to the same drain current value at VGS = 0.3 V
as the curves for Cit = 7 ·10−8 F/cm2. The measured drain current starts at the same value at VGS = 0 V
as the curves for Cit = 7 · 10−8 F/cm2, but then the increase in current with voltage seems to be similar
to that of the curves for Cit = 0 F/cm2. This is to be expected, since the same trend was observed for
the single gate sweep data.

The similarity or difference in slopes can better be interpreted from figure 4.4(b), where the cor-
responding subthreshold swing (expressed as ideality factor m1 = SS1

uTln(10)) is shown as a function of
the gate-source voltage. Results are shown for k = 1 (measurement in black, simulations in red) and
for k = 2 (measurement in gray, simulations in pink) for Cit = 0 F/cm2, Cit = 1 · 10−8 F/cm2 and
Cit = 7 · 10−8 F/cm2. The measurement results are comparable to the simulation curves for low VGS.
Near the apparent band edge (at VGS = 0.3 V) the measurement curve has a more rapidly increasing
value for both k-values. This indicates that we would find an increasingly higher interface trap density
near this apparent band edge, in case we would extract the interface trap density from the measurement
curve using BSIM simulation data.

This can better be illustrated with figure 4.4(c). The ideality factor m1 as a function of k is shown at
VGS = 0.1 V for the measurements (black) and simulations (red) with Cit = 0 F/cm2, Cit = 1·10−8 F/cm2

and Cit = 7 · 10−8 F/cm2. The measurement curve (which misses a data point for k = 0.5) fits the
simulation curve for Cit = 1 · 10−8 F/cm2 well. We can thus conclude that the measured device has an
interface trap capacitance of Cit ≈ 1 ·10−8 F/cm2 at VGS = 0.1 V, as extracted from the BSIM simulation
data.

In this same way, we obtain a similar result in the range of 0.05 < VGS < 0.15 V. However, when
further increasing the gate-source voltage, the extracted interface trap capacitance is found to increase
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(a)

(b)

(c)

Figure 4.4: The effect of interface traps for different k is demonstrated. (a) Drain current per unit
width as a function of the gate-source voltage for k = 1 (measurement in black, simulations in red) for
Cit = 0 F/cm2 and Cit = 7 · 10−8 F/cm2 and for k = 2 (measurement in gray, simulation in pink) for
Cit = 0 F/cm2. (b) The corresponding ideality factor as a function of the gate-source voltage. (c) The
corresponding ideality factor as a function of k at VGS = 0.1 V is shown for measurements (black) and
simulations (red).
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(which we call apparent conduction band edge). For example, at VGS = 0.2 V the measurement curve in
figure 4.4(b) crosses the simulation curve for Cit = 7·10−8 F/cm2, such that this value would be extracted.
We would thus find that the interface trap density (Dit = Cit/q) changes from approximately 6 · 1010 to
4 · 1011 cm−2eV−1 (corresponding to the two mentioned interface trap capacitances, respectively) in the
range of 0.05 < VGS < 0.2 V.

As discussed in theory section 2.7, the subthreshold slope should be ideal without interface traps such
that m = 1 for k = 1. This is not the case for the simulations performed here, where we extract k0 ≈ 1.07
(or m ≈ 1.004 at k = 1) for Cit = 0 F/cm2 from figure 4.4(c). There might be some other source of
non-ideal behaviour which is accounted for in the BSIM model, but not in the analytical model described
in theory section 2.7. In order to be able to trust and understand the results, we need to investigate this
other source of non-ideal behavior.

In order to understand what happens, the reason for the offset in k0 is investigated. Therefore, we
continue by discussing the influence of the drain-source voltage, the oxide thickness and the back gate or
n-well doping (which defines the back gate workfunction and depletion).

Drain-source voltage effect

The drain-source voltage has an influence on the drain current, as was described by the drain current
analytical models (with ID ∝

(
1− exp

(
−VDS

uT

))
, see equation 2.9). However, to the drain current as a

function of the gate-source voltage, this effect only contributes a constant. Thus, no effect of the drain-
source voltage on the subthreshold swing is expected from the model. From the BSIM simulation results
we conclude that this is indeed true for low gate-source voltages, but for higher gate-source voltages
within the subthreshold regime (0.2 < VGS < 0.3 V), an increase in subthreshold swing is observed. That
is, the value of the subthreshold swing apparent conduction band edge increases for increasing VDS. See
appendix D for the results.

Oxide thickness effect

We discuss the BSIM simulation results for the asymmetric case with tox1/tox2 = 1.3/20 nm (correspond-
ing to the measured devices) and compared the BSIM simulation results for asymmetric cases with either
thicker front oxides or thicker buried oxides. For the cases with thicker front oxides we use tox1 = 2 nm
and tox1 = 2.66 nm and for the cases with thicker buried oxides we use tox2 = 100 nm and tox2 = 150 nm.
In both cases the other oxide is left at the default thickness (tox1 = 1.3 nm and tox2 = 20 nm). On the
one hand the oxide thickness might have an influence on the subthreshold swing at k = 1 such that the
observed discrepancy is explained. On the other hand we obtain some qualitative understanding of the
effect of an error in the front or buried oxide thickness of the measured device, according to the BSIM
model.

The drain current per unit width as a function of the gate-source voltage is shown in figure 4.5.
Figure 4.5(a) shows that the current increases for an increasing front oxide thickness, while figure 4.5(b)
shows that the current decreases for increasing buried oxide thicknesses. Intuitively, one might expect
that increasing the oxide thickness reduces the gate control (i.e. worsens the EI). This is thus not the
case for increasing the front oxide thickness.

The reason for this is that the workfunction difference between the front gate and the channel is
∆φ1 ≈ 0 eV, while the workfunction difference between the back gate and the channel is determined by
the n-well doping and is ∆φ2 ≈ −0.45 eV. This negative workfunction difference results in an increased
surface potential at the back interface. Due to the coupling between the two surface potentials, the front
surface potential then also increases. A small applied voltage to the front gate then decreases the surface
potentials. For thicker front oxides the front gate has reduced control over the channel (hence surface
potentials), such that the effect of this back-gate workfunction difference is more significant. Both the
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(a)

(b)

Figure 4.5: Drain current per unit width as a function of gate-source voltage at k = 1 for aW/L = 1/1 µm
device. We compare the results of BSIM simulations performed on the default device (with tox1/tox2 =
1.3/20 nm) with (a) results for tox1 = 2 nm and tox1 = 2.66 nm and (b) results for tox2 = 100 nm and
tox2 = 150 nm.

front and back surface potentials thus increase due to the back-gate workfunction difference for thicker
front oxides. As the surface potentials are higher, the drain current is higher as well.

For increasing the buried oxide thickness, the opposite holds, the back gate workfunction difference
propagates less through the buried oxide and the silicon film and the surface potentials are lower as
compared to the case with a thinner BOX layer. However, for the cases described here, the effect of this
for the relatively thick buried oxides is insignificant. We show the limit of increasing the buried oxide
thickness by the negligible influence of increasing the thickness from 100 to 150 nm.

Figure 4.6 shows that the subthreshold swing decreases for an increasing front oxide thickness and
that the subthreshold swing increases for an increasing buried oxide thickness. The reason for this is the
relative control of the front gate with respect to the back gate, as was explained for the drain current.
For thicker front oxides, the back-gate control increases such that the subthreshold swing as referred to
the front gate seems to improve (and thus has a lower value). The results are shown for k = 1 (black)
and for k = 2 (blue), where the difference between the subthreshold swings for a different thickness
increases for a higher k. In addition to the relative influence of the back-gate workfunction, the relative
influence of the gate voltages also changes for changing the oxide thickness. For thicker front oxides the
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(a)

(b)

Figure 4.6: Subthreshold swing expressed as ideality factor m1 as a function of the gate-source voltage
at k = 1 (black) and k = 2 (blue) for a W/L = 1/1 µm device. We compare the results of BSIM
simulations performed on the default device (with tox1/tox2 = 1.3/20 nm) with (a) results for tox1 = 2 nm
and tox1 = 2.66 nm and (b) results for tox2 = 100 nm and tox2 = 150 nm.

relatively higher back-gate voltage for k = 2 (then VBGS = 2VGS) has an increased influence. Thus, the
subthreshold swing for the different front oxide thicknesses deviates more for higher k. For increasing the
buried oxide thickness, the subthreshold swing increases, since the relative back-gate control is reduced
and the subthreshold swing referred to the front gate thus seems to worsen. Also for the buried oxide
thickness the deviation in subthreshold swing increases for higher k. Notice that the oxide thickness also
influences the apparent conduction band edge significantly.

An overview of the relation between the subthreshold swing and k is shown for all discussed asymmetric
situations in appendix D. Additionally, some simulation results for symmetric cases (tox = 1.33 nm and
tox = 2.66 nm) are shown in appendix D.

Effect of doping concentration of n-well

We performed simulations with an n-well with doping concentrations of Nwell = 5 · 1016, 5 · 1017 (default)
and 5 · 1018 cm−3. The doping concentration influences the back-gate workfunction and the back-gate
depletion and might therefore have an effect on both the drain current and subthreshold swing.
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For the three different doping concentrations, we expect a theoretical workfunction difference between
the back-gate and silicon channel according to ∆φ2 ∝ ln

(
Nwell
ni

)
(assuming an undoped channel, see

equation 2.45) of ∆φ2 = −0.39 eV, ∆φ2 = −0.45 eV and ∆φ2 = −0.51 eV, respectively. The back-gate
depletion effect is more difficult to quantify as it depends on the voltage across the depletion region, which
is not known. We expect the depletion capacitance to depend on the doping concentration according to
Cdep ∝

√
Nwell (see equation 2.62).

In the BSIM model the depletion capacitance can be turned on and off. We investigated the difference
between both and found only an insignificant influence of the back-gate depletion effect. The model is
calibrated against the GF material with the depletion capacitance being turned off, because the model is
known to not accurately describe the back-gate depletion and inversion behavior (from e-mail correspon-
dence with GF [47]). We can therefore draw no conclusion about the back-gate depletion effect from the
BSIM simulation results.

We investigated the influence of the workfunction difference resulting from the different doping con-
centrations. The drain current (as a function of the gate-source voltage) increases for higher doping
concentrations. This corresponds to the increase in the back (and front) surface potential associated with
the increase in (negative) workfunction difference. The only significant influence of the back gate doping
on the subthreshold swing is in the apparent conduction band edge shift to lower voltages for higher back
gate doping densities. That is, the apparent conduction band edge sets in at lower voltages for a higher
n-well doping concentration.

The results for the different n-well doping concentrations are shown in appendix D.

4.2.3 Conclusion BSIM simulations

The BSIM simulation results as obtained using ProMOST have been compared to measurement results.
For single gate sweep simulations, we show that the simulations fit the measured drain current and
transconductance for 70 nm and 1 µm devices well. The effect of interface traps in the BSIM model
are demonstrated and the measured subthreshold swing is compared to that of simulations with several
different interface trap capacitance inputs.

For the dual gate sweep, the BSIM simulation results are compared to measurement results for several
k-values. We show that the obtained simulation results for Cit = 1 ·10−8 F/cm2 fit the measurement sub-
threshold swing curve best in the range of 0.05 < VGS < 0.15 V. This is the same result as obtained from
the single gate sweep subthreshold swing simulation as compared to the measurement. For higher gate
voltages a higher interface trap capacitance value is obtained, corresponding to the apparent conduction
band edge. The obtained interface trap capacitance corresponds well to that obtained using the simplified
k-sweep method (see section 3.2, “Single interface trap extraction”). As explained in section 4.1, only
an averaged Cit or Dit is used in the BSIM model. Therefore, extracting Cit1 and Cit2 separately is not
possible with the BSIM model in ProMOST and for that we need another tool.

We investigated the influence of the drain-source voltage, the oxide thickness and the n-well doping
concentration. The drain-source voltage only has a small influence on the absolute current and the
apparent conduction band edge of the subthreshold swing curve. The front and buried oxide thickness
have an influence on the drain current and subthreshold swing as explained by the back-gate workfunction
difference. Increasing the front oxide increases the current and decreases the subthreshold swing, while
the opposite is observed for increasing the buried oxide thickness. Back-gate depletion is not included
in the BSIM model for the GF material. The workfunction difference resulting from the n-well doping
concentration influences absolute current and the apparent conduction band edge, i.e. increasing the
doping increases the current and apparent conduction band edge. We could not draw a clear conclusion
about the cause of the non-ideal value of the ideality factor at k = 1.

We continue our study with a TCAD tool such as Silvaco Atlas with as goal to extract Cit1 and Cit2
separately. We first validate the extended analytical model and then use it to extract the interface trap
density from both interfaces simultaneously.
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TCAD Simulations

5.1 TCAD Simulation method
For the TCAD simulations described in this section the input decks and the parameters used in these
decks are first discussed. Then, a comparison between TCAD results and the analytical model is made
and the results are described. Finally, the TCAD simulation results are used as “measurements” and
we extract the interface trap density from the TCAD simulations using the validated analytical model.
For our TCAD simulations we use Silvaco Atlas [48] and we run the simulations within the Deckbuild
environment [49].

5.1.1 Input decks

We start by discussing the two used input decks, the “DGFET” deck and the “SOIFET” deck, for which
the schematic cross-section of the devices are shown in figure 5.1. The only real difference between both
decks is the n-well, which is incorporated in the SOIFET deck and not in the DGFET deck. We use
the DGFET deck for initial simulations without having to consider the effects of a non-midgap back-gate
and without having to consider back-gate depletion effects. To start even simpler, we use a symmetric
DG device in our DGFET deck, i.e. tox1 = tox2 = tox, as default. This default DGFET deck is called
“symmetric DGFET”.

We then perform simulations iteratively with adding detail to the DGFET deck such that the obtained

Figure 5.1: Schematic cross-sections used in the TCAD input decks.
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Parameter Description Default value
General parameters
L Gate length or channel length 1 µm
Lspacer Length of spacer and S/D extension region 0.1 µm
tsi Channel thickness 6 nm
φ1 Front gate workfunction 4.73 eV (midgap, i.e. ∆φ1 ≈ 0 eV)
NS/D S/D extension region doping density 1 · 1019 cm−3

ni Intrinsic silicon carried density [∗] 1 · 1010 cm−3

DGFET parameters
tox1 Front oxide thickness 2 nm
tox2 Buried oxide thickness 2 nm
φ2 Back gate workfunction 4.73 eV (midgap, i.e. ∆φ2 ≈ 0 eV)
SOIFET parameters
tox1 Front oxide thickness 1.3 nm
tox2 Buried oxide thickness 20 nm
twell n-well thickness 0.25 µm
Nwell S/D extension region doping density 5 · 1017 cm−3 ( ∆φ2 ≈ −0.45 eV [+])

Table 5.1: Parameters used for TCAD simulations. We spit the table in three sections. In the general
parameters section the parameters equal for all simulations are described, in the DGFET parameters
section we describe the specific default values for DGFET simulations and in the SOIFET parameters
section we describe the specific default values for FDSOI simulations. [*] the intrinsic silicon carrier
density is computed from ni =

√
NCNV exp

(
− EG

2quT

)
with NC = NV = 2.9·1019 cm−3. [+] For calculating

the workfunction difference between the n-well (hence the back-gate) and the undoped silicon channel we
use equation 2.45 (with ∆φ2 ∝ exp (Nwell)).

behaviour becomes more like the SOIFET deck. The first step towards the SOIFET deck is to use oxides
with an unequal thickness. This deck is called “asymmetric DGFET”. After that, we can implement a
workfunction difference and finally the SOIFET deck can be used (which then also contains back-gate
depletion effects). All default values used in the decks are given in table 5.1. The general parameters
are first given, followed by the parameters with specific values for either the DGFET or SOIFET decks.
Note that the default DGFET deck is the symmetric DGFET.

The grid or mesh of the input decks is defined similarly for all three input decks. Mesh lines are
defined at all interfaces, including material interfaces, contact interfaces and doping interfaces. The mesh
gradually changes over the device, with the horizontal grid spacing (in x-direction, i.e. from source to
drain) between 5 and 50 nm and the vertical grid spacing (in y-direction, i.e. from gate to back-gate)
between 0.1 and 50 nm. Especially the mesh at the FOX/channel and BOX/channel interface is fine,
with a (vertical) spacing of 0.1 nm. In comparison, the (vertical) spacing in the n-well of 50 nm is rather
course.

5.1.2 Modeling framework

The general framework for TCAD simulations on the described input decks with Atlas is provided by
three equations. The first equation is the Poisson equation, which relates the surface potential and the
charge density. The second and third equation are the electron and hole carrier continuity equations and
drift-diffusion equations. These equations describe the relation between the electron and hole (charge)
densities, electric fields, and the electron and hole current densities, respectively. Furthermore, certain
physical models should be specified.

For the latter, several physical models are defined in TCAD, which can be grouped in five classes:

70



CHAPTER 5. TCAD SIMULATIONS

mobility, recombination, carrier statistics, impact ionization, and tunneling. For the thin fully-depleted
films we use, with n � p, the effect of recombination is insignificant (as validated with a recombination
model including a concentration-dependent lifetime, the CONSRH model).
Impact ionization only plays a role at high reverse biases and can thus be excluded.

We do not use tunneling models for two reasons. From the measurements it was concluded that the
back-gate leakage current is insignificantly small in the entire range of −0.5 < VGS < 0.8 V. Thus, for the
back-gate we do not need to include a tunneling current. For the measurements, the front-gate leakage
current was much smaller than the drain current, with the minimal difference ID−IG being approximately
2 decades at VGS = 0 V.

It might be more accurate to incorporate the front gate leakage current with some tunneling effect,
as this order of magnitude difference can influence the drain current in such a way that the analytical
model is not correct anymore. However, we do not know the composition of front oxide materials and we
do not know the actual front oxide thickness, only the effective oxide thickness (EOT) of an equivalent
silicon dioxide layer. In conclusion, although this might result in some small error, we did not include
tunneling models in our simulations.

We incorporated two carrier statistics models in order to better model the behaviour of the n-well and
the heavily doped source and drain extension regions. We included the Fermi(-Dirac statistics) model
to account for a reduced carrier concentration and we included the BGN (bandgap narrowing) model
to incorporate a narrower bandgap. Furthermore, to obtain accurate results for FET simulations, the
mobility degradation in inversion layers had to be accounted for.

The degradation due to (transverse) surface electric fields as a function of both doping density and
temperature is incorporated in stand-alone models which incorporate all the effects required for simulating
the carrier mobility. We used the Lombardi CVT model, as it is one of the most complete models for
silicon FETs. In order to test for the effect of a field-dependent mobility, simulations with a constant
mobility of µn = 600 cm2V−1s−1 were also performed.

In addition, the change in device behaviour for spatially or electrically confined devices due to
quantum-mechanics (QM) can be implemented using several independent models. The self-consistent
coupled Schrödinger-Poisson model can be used to self-consistently solve Poisson’s equation for the po-
tential and Schrödinger’s equation for energies and carrier wavefunctions. However, this model should
not be used to look at carrier transport problems.

An easier approach at implementing QM effects is using the Hansch QM model or the Van Dort
model. In these models the shift of the charge density peak away from the interfaces is considered. The
Hansch QM model is a modification of the density of states as a function of depth below the silicon/oxide
interface. The Van Dort model incorporates the QM effects by broadening the bandgap near the surface.
We tested both the Hansch QM and Van Dort model for k = 1, but found no significant change in
behaviour (in the subthreshold regime). Therefore, we did not include any QM effects in our simulations.

5.1.3 Bias conditions

We want to extract the drain current as a function of the gate-source voltage for these devices, just as we
did for the measurements and BSIM simulations. We thus used a temperature of T = 298.15 K (25 ◦C)
and we connected the source to ground. We used VDS = 25 mV unless stated otherwise, and we simulated
for 0 < VGS < 0.3 V with the back-gate voltage range specified by k.

The TCAD simulation results showed to exhibit only a small amount of (numerical) noise. This is in
contrast to the measurements, where we had to use a regression analysis method to extract an acceptable
transonductance and subthreshold swing. For the TCAD simulations we therefore used ∆VGS = 2 mV,
instead of the used ∆VGS = 0.2 mV for the measurements.

For the SOIFET simulations we used VBGS = k · VGS + Voff , with Voff = −0.45 V ≈ ∆φ2 for the
default Nwell. Thus, Voff was used to create a flat-band situation, as described in section 2.10. For the
DGFET simulations this simplified to VBGS = k · VGS, since the back-gate workfunction difference is
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∆φ2 = ∆φ1 ≈ 0 eV so that Voff = 0 V. Here we thus state that the front and back gate workfunction are
the same and the subthreshold swing is unaffected by both. Additionally, both workfunction differences
are approximately 0 eV such that the current is unaffected too.

5.1.4 Trap implementation

Traps are implemented in Silvaco Atlas by adjusting the space charge density term of the Poisson equation.
Normally, this term simply contains all free and doping charge but now a trap charge term should be
added, i.e. q(n + p + ND + NA) + QT. This total trapped charge only consists of interface traps in our
case and is defined by [48]:

QT = q
(
N+

tD +N−tA

)
, (5.1)

where N+
tD and N−tA are the total densities of ionized donor-like and acceptor-like traps, respectively, with

N−tA = 0 cm−2 in our case. The total ionized donor-like density of traps for multiple traps at multiple
energy levels is given by [48]:

N+
tD =

n∑
i=1

N+
tDi, (5.2)

with n the total number of donor-like traps and N+
tDi = FtD · DENSITY , where the probability of

ionization FtD assumes that the capture cross-section σ is a constant for all energies. This probabil-
ity of ionization is a function of the capture cross-sections and the electron and hole emission rates:
FtD = f (σ, enD). For the electron and hole transmission rates we have [48]

enD ∝ ni exp (Et − EFi) (5.3a)

and
epD ∝ ni exp (EFi − Et) . (5.3b)

with Et the trap energy level and EFi the intrinsic Fermi level.
We implemented the interface traps using the INTTRAP statement. With this statement, interface

traps can be implemented at the silicon/oxide interface within a certain defined box. These traps have a
specific trap density DENSITY, cross-section σ and energy level Et.

In order to obtain a uniformly constant continuous trap profile of e.g. Diti = 1 · 1011 cm−2eV−1, we
have to define the interface trap density at each energy in a box around the front interface (for Dit1),
in a box around the back interface (for Dit2) and in a box around both interfaces for obtaining two
to-be-added contributions (for Dit1 and Dit2, addition is done by TCAD with equation 5.2). For defining
a trap density at each energy level, a Python script (provided by Boni Boksteen, author of [20]) was
used. We defined the desirable number of discrete trap energy levels within the range of EG/2 to EC and
used a quadrature integration scheme to integrate the desired interface trap density profile between two
points:

DENSITY (i) =
∫ Et(i)

Et(i−1)
Dit · dE, (5.4)

with i = 1, 2, ...n an integer number defining which of the discrete energy levels we want to obtain the
DENSITY for, where n is the total number of discrete energy levels. An example of an interface trap
density profile as a function of the gate-source voltage that could be used is given in figure 5.2, as well
as the integral of the profile. The shown integral was then used as input for TCAD.

A statement for the INTTRAPS with the DENSITY was printed together with the corresponding
trap energy level Et and the other (default Atlas) parameters for each i, such that n statements are
obtained. The total set of statements was then implemented in the TCAD input file.

72



CHAPTER 5. TCAD SIMULATIONS

(a) (b)

Figure 5.2: Exemplary input Dit profiles and their integrals. We show (a) the desired interface trap
density and (b) the integral of the respective interface trap densities, to be used as input for TCAD.

5.1.5 Fitting procedure

Here we describe how the TCAD data was fitted with the analytical model. We mainly used this fitting
procedure on TCAD data, but the goal would be to fit the measurement data in this way. The data
to-be-fitted was used as input data, from which we used the gate-source voltage, the drain current and
the k-values. From this input data we extracted the subthreshold swing. For the TCAD data we could
do this using the central finite difference theorem. For measurement data we would use the regression
analysis (as described in section 3.1 and verified in section 4.2). The SS is then obtained as a function
of VGS and k. For every VGS-value the SS as a function of k is fitted using the MATLAB fit() algorithm.
This algorithm uses the non-linear least-squares method to fit a given input function (the analytical model
in our case) for a given number of fitting parameters. We thus let this algorithm fit the TCAD SS as a
function of k with the analytical model, where Dit1 and Dit2 are the fitting parameters. The procedure
was repeated for all VGS such that the total system of SS as a function of VGS and k was fitted. At every
VGS-value the optimal-fit parameters (Dit1 and Dit2) were extracted.

5.2 TCAD simulation results
The results obtained from the TCAD simulations are described in this section. We started by testing the
symmetric DGFET deck at k = 1. In that case, we expect SS = SSideal ≈ 59 mV/dec. As it is easier to
interpret the results from the ideality factor m, for k = 1, we used m = SS

uTln(10) and simply looked at the
offset with respect to m = 1.

For the symmetric DGFET deck at k = 1 we found m ≈ 1.0006. This might seem to be close enough
to the ideal value of m = 1, but this was not the case. Every order of magnitude error in the ideal value
of m, i.e. the value of m at k = 1, propagates in the extracted interface trap capacitance as compared
to the oxide capacitance directly (see equation 2.4). If this error cannot be explained by any physical
phenomenon, we might be looking at some numerical limit or noise, and that would be problematic for
the further use of TCAD. A similar problem (with an even higher m at k = 1) was encountered for the
BSIM simulations (section 4.2.2).

We tested the effect of the mesh, the oxide thickness and the drain-source voltage on the offset in the
ideality factor. Using a courser or finer mesh and using thicker or thinner oxides has a similar influence on
the ideality factor. In both cases, we found that m varies between 1.0004 and 1.0007. This is unexpected,
since both factors should have no influence on the ideality factor according to our model. The drain-
source voltage has no influence on the ideality factor, except for the apparent conduction band edge, as
was described for the BSIM simulations too (see 4.2, paragraph “Drain-source voltage effect”).

We found that the mesh/oxide influence is actually a short-channel effect. The width of the depletion
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region at the N+/channel interface changes with the oxide thickness or mesh spacing at this interface.
The depletion width change relative to the channel length is comparable in one order of magnitude to the
m-effect. We thus effectively see a shorter channel for e.g. thicker oxides. We validated this conclusion
with a simulation for L = 5 µm, where indeed the SS dropped to a value closer to 1.0004. This appears
to be about the lower limit, where the remaining “offset” in m is attributed to the neglected inversion
charges (in the channel) for deriving analytical relations. This is discussed later in this section.

For the remainder of the results we studied the subthreshold swing directly. It should be noted that
expressing the subthreshold swing by the ideality factor for any case other than a symmetric device with
symmetric control is actually misleading, as this might give the impression that we expect m = 1 to be
ideal for those cases, which is not true. More importantly, we extensively discuss the electrostatic be-
haviour in this section, and the use of m-parameters for both the electrostatics and the total subthreshold
swing would be confusing. We therefore refrain from further use of the ideality factor to describe the
entire SS for asymmetric devices and for asymmetric control (k 6= 1) and then use the m-parameters to
describe the electrostatics only.

After analyzing the symmetric DGFET for k = 1, we continued with testing and verifying the ana-
lytical model for cases without traps.

5.2.1 Comparison of the analytical model and TCAD results

We discuss the validation of the analytical model using TCAD simulations. For this, we needed to
examine all contributions to the subthreshold swing separately.

In more detail, the subtreshold swing as a function of the gate-source voltage should be obtained from
TCAD directly (using SS = dVGS

d log10(ID)) and indirectly (using SS = m11 ·δψs1 ·ln(10)+m12 ·δψs2 ·ln(10)) as
described in equation 2.47. We studied the subthreshold swing using both methods for two reasons. First
of all, the surface potential as used for the indirectly obtained subthreshold swing has to be obtained from
TCAD simulations. For this, we “probe” the potential at the interfaces (y1 = tox1 and y2 = tox1 + tsi)
at x = L/2. By comparing both subthreshold swing curves we could thus validate this probing method.
For the directly and indirectly obtained SS similar results were obtained. Secondly, after validating
whether or not the direct and indirect extraction result in the same SS, we could use the separate terms

Figure 5.3: Drain current per unit gate width as a function of the gate-source voltage for k = 0.9 and
k = 1.1 on a log-lin scale. The TCAD drain current (symmetric DGFET), the split model drain current
and the full model drain current nicely overlap, such that it appears that only two lines (for the two k)
are shown.
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to determine the contribution of the electrostatics part (the m-parameters) and transverse field part (the
δψsx-parameters) separately. Additionally, we compared the “split” current model (equation 2.55) to the
“full” current model (equation 2.48). For more details on the mentioned equations in this chapter, see
section 2.10.

Symmetric DGFET

We manually fitted the “full” and “split” analytical drain current model with TCAD data. For this,
we simply used the same parameters as used for the TCAD deck. For example, we know that ni =
1 · 1010 cm−3, VDS = 25 mV, tox1 = tox2 = 2 nm and µn = 600 cm2V−1s−1. We calculated the drain
current for a set of k-values using TCAD and the analytical model(s). We used nine k-values with a
difference between the values of 0.025: k = 0.9, 0.925, 0.95, 0.975, 1, 1.025, 1.05, 1.075 and 1.1.

The obtained drain current as a function of the gate source voltage is shown in figure 5.3. We only
show the drain current for the highest and lowest k-values for figure-readability. For both k the split and
full model fit the TCAD current nicely.

Transverse field contribution We then compare both analytical drain current models. We start by
considering the transverse field contribution in order to determine the errors introduced by both models.
The transverse field contribution to the SS (δψsx with x = 1, 2) was extracted from TCAD and calculated
from the “split” and “full” analytical drain current models.

We show the obtained δψsx in figure 5.4 together with uT, which is the value δψsx converges to for
k → 1 according to the analytical models. Figure 5.4(a) shows the transverse field contribution as a
function of the gate-source voltage for k = 1.025 and k = 1.1. Both analytical models describe the
behaviour of the transverse field well for k close to k = 1, i.e. symmetric control of the channel by
the gates. However, for k deviating increasingly more from the symmetric control situation, the results
obtained by the analytical models tend to deviate from the TCAD results. We can clearly see that the
“split” current model describes δψsx rather poorly at k = 1.1, as compared to the “full” current model.
We therefore use the “full” current model in the remainder of this work, and we will refer to this model
as “the analytical model” or simply “analytical”.

Next to the model deviation for higher k, we note that the curves for δψs1 and δψs2 are symmetric
around uT for the analytical model with respect to each other. This is to be expected from the equations,
but interestingly the TCAD curves seem to be symmetric around a value slightly higher than uT.

This offset of the symmetry line is more clearly shown in figure 5.4(b). The transverse field contribu-
tion is shown as a function of k at VGS = 0.1 V. The point where δψs1 and δψs2 cross is at k = 1, and the
corresponding value of δψsx can better be approximated by uT with T = 25.2 oC instead of T = 25 oC
(green dashed line). The described offset might be the result of some minor workfunction difference of
the gates with respect to the channel or of some short-channel effect. We will discuss this in more detail
when describing the behaviour for the asymmetric case.

Electrostatics contribution We discussed the transverse field contribution and found that the ana-
lytical model fits the TCAD results reasonably well, especially for k-values close to k = 1 i.e. symmetric
control. We continue with the electrostatics part, as shown in figure 5.5(a). The front surface potential
to front gate voltage ratio m11 is shown as a function of the gate-source voltage for five k-values. Addi-
tionally, we show m = 1 as a reference. The analytical electrostatics model fits the TCAD results well
and we can clearly see that m11 increases for increasing k. Only for approximately VGS > 0.28 V we
can see some deviation between the analytical model and the TCAD data which represents the earlier
discussed apparent conduction band edge. We obtained a similarly nice fit of the analytical electrostatics
model as compared to the TCAD data for m12. We also found the same band edge discrepancy in the
electrostatics model.
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(a)

(b)

Figure 5.4: Transverse field contribution in mV per factor of e in drain current (mV/exp) (a) as a function
of the gate-source voltage and (b) as a function of k. In (a) the results are shown for δψs1 and δψs2, for
k = 1.025 and for k = 1.1, as indicated by the black circles. The results are shown for the “full” and
the “split” analytical models, and for the TCAD simulations (symmetric DGFET). In (b) the results are
shown at VGS = 0.1 V for the “full” analytical model and for the TCAD simulations. The symmetry
point for the analytical model is uT (solid blue line), and the offset between uT and the symmetry point
of the TCAD simulations (dashed green line) is indicated.

We continue by describing the phenomenon we called “apparent conduction band edge” since the
analytical model does not contain this effect. We compared the analytical electrostatics with the TCAD
electrostatics for k = 1. For doing this, we subtracted the TCAD m11 from the analytical one and took
the absolute value, as shown in figure 5.5(b). The figure shows the mentioned difference, or analytical
model error, as a function of the gate-source voltage for VDS = 25 mV and VDS = 1 mV. The result for
VDS = 25 mV is fitted and the inverse of the slope of the fit (dotted blue line) is found to be ≈ 59 mV/dec.

The observed trend is similar for the asymmetric DGFET and SOIFET. We tested the influence of
the Fermi(-Dirac statistics) model and BGN model on this trend. Also, we tested the influence of VDS
and L. The trend shifts down for a higher drain-source voltage (indicated by the black arrow), but the
slope remains the same. The other cases (not shown) had no effect on the observed trend.

We attribute the observed behaviour to inversion charge carriers in the channel, which was ignored
for the derivation of the analytical models.
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(a)

(b)

Figure 5.5: (a) Electrostatics parameter m11 as a function of the gate-source voltage for k =
0.9, 0.95, 1, 1.05 and 1.1 for the analytical model and TCAD simulations (symmetric DGFET). The ideal
symmetric situation is indicated in the legend (m = 1, blue dotted line) for comparison. (b) The absolute
value of the difference between the analytal m11 and the extracted m11 from TCAD (symmetric DGFET)
is shown as a function of the gate-source voltage. Curves are shown for VDS = 1 mV and VDS = 25 mV.
The latter is fitted (dotted blue line) and the inverse slope of the fit is ≈ 59 mV/dec.

The behaviour of the inversion charge is expected to increase the electrostatics ∝ uTln(10), as is
shown by the inverse of the slope of the fitted curve here.

Subthreshold swing The combined effect of the transverse field contribution and the electrostatics
is now demonstrated in figure 5.6, which shows the subthreshold swing. Figure 5.6(a) shows SS as a
function of the gate-source voltage for five k-values. The analytical model captures the behaviour for all
k well. As expected, we see that the apparent band edge propagates into the SS.

We can also show how well the analytical model describes the TCAD SS with figure 5.6(b), where
the subthreshold swing is shown as a function of k at VGS = 0.1 V. Only a minor offset, resulting from
the transverse field contribution, can be observed.

The errors obtained from the analytical electrostatics and transverse field contributions as compared
to the TCAD results are similar in magnitude for VGS > 0.25 V.
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(a)

(b)

Figure 5.6: The subthreshold swing is shown for TCAD simulations (symmetric DGFET) and the ana-
lytical model (a) as a function of the gate-source voltage for k = 0.9, 0.95, 1, 1.05 and 1.1 and (b) as a
function of k at VGS = 0.1 V.

For smaller gate-source voltages the error induced by the transverse field contribution dominates.

Asymmetric DGFET

We considered the asymmetric DGFET deck (with tox1 = 1.3 nm and tox2 = 20 nm) and found that the
electrostatics model also fits the TCAD data nicely. However, the effect of k on the spacing between the
curves of m11 as a function of the gate-source voltage has reduced, as can be expected for a thicker BOX
layer.

This minor influence of k (due to a weaker back-gate control) also results in a significant deviation
between the analytical and TCAD transverse field contribution. Referring back to the transverse field
contribution as obtained with the “split” and “full” current model for the symmetric DGFET, we notice
that the reduced influence of k as observed for the asymmetric DGFET would result in the errors intro-
duced by the “split” model to be even more significant, as compared to the spacing between the curves
for several k-values.

Figure 5.7(a) shows the transverse field contribution as a function of the gate-source voltage for
k = 1.025 and for k = 1.1. The offset between the analytical and TCAD curves is indicated (black arrows)
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(a)

(b)

Figure 5.7: (a) Transverse field contribution in mV per factor of e in drain current (mV/exp) as a
function of the gate-source voltage for the analytical model and TCAD simulations (asymmetric DGFET,
tox1 = 1.3 nm and tox2 = 20 nm). The results are shown for δψs1 and δψs2, for k = 1.025 and for k = 1.1,
as indicated by the black circles. The analytical δψsx is symmetric around uT (solid blue line). (b)
Subthreshold swing as a function of k for the analytical model and TCAD simulations (asymmetric
DGFET, tox1 = 1.3 nm and tox2 = 20 nm). Results are shown at VGS = 0.02, 0.1, 0.2 and 0.3 V. The
analytical model is gate-source voltage independent (black lines overlap) and for the TCAD simulations
the trend for increasing VGS is indicated (red arrow). For both (a) and (b) the offset between the analytical
model and the TCAD simulations is indicated (black arrows).

and is approximately 0.04 mV/exp. Additionally we found that the TCAD results show a considerable
slope as a function of the gate-source voltage, whereas no such slope exists for the analytical model. The
offset between TCAD and analytical model was already described for the symmetric case, and comparing
the offset for both cases shows that the offset is the same for low VGS. However, the offset increases
with the gate-source voltage for the asymmetric case with a thicker BOX layer, as indicated by the
considerable slope. This effect might be due to a workfunction difference. We tested what happened to
δψsx by changing the back-gate workfunction to φ2 = 4.7 eV for the symmetric DGFET deck, and we
observed no change. We therefore expect this effect to be the result of short-channel effects. For the
relatively thin oxides used for the symmetric DGFET this results in an almost constant offset with respect
to the “spacing” in δψsx as obtained by k. The more closely-spaced curves for the asymmetric DGFET
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experience a relatively large offset. Especially the significant slope of the transverse field contribution is
due to the oxide being so thick that the length of the channel is of a more significant influence. This
expectation has not been supported by any simulation data yet and still has to be validated.

The mentioned offset and slope propagate through in the subthreshold slope. We show the SS as
a function of k in figure 5.7(b), at four gate-source voltage values: VGS = 22 mV, 0.1, 0.2 and 0.3 V.
The offset due to the transverse field contribution is shown (black arrow), together with the effect of the
gate-source voltage on the curve (red arrow). It must be noted that the effect of VGS for high VGS-values
is partially due to the apparent band edge of the electrostatics model.

The offset in SS of the TCAD results for the asymmetric DGFET as compared to the analytical
results, for VGS < 0.2 V, is in the range of 0.04 to 0.1 mV/dec. For the symmetric DGFET in this
VGS-range, the offset is in the range of 0.04 to 0.06 mV/dec. The lower limit of the offset corresponds
to the obtained error in SS for k = 1 (discussed in the first paragraph of this section), which further
supports our claim for the observed trend to be a short-channel effect.

Similar results for the transverse field contribution as discussed here were obtained for the SOIFET
deck. This is expected, as the front and buried oxide thickness of both decks are the same. However,
the SOIFET incorporates depletion effects such that we obtain slightly different results in general. The
effects of the back-gate depletion capacitance on the results will be discussed now.

SOIFET and depletion

For determining the influence of back-gate depletion we use the SOIFET deck with (default) Nwell =
5 ·1017 cm−3 (such that ∆φ2 = −0.45 eV). As a reminder, some other default parameters of the deck that
were used for the TCAD simulations discussed here are ∆φ1 = 0 eV, tox1 = 1.3 nm and tox2 = 20 nm.
Also, we used VBGS = k · VGS + Voff . This effectively renders the effect of the workfunction difference
due to the n-well to be insignificant, as almost all effects introduced by this workfunction difference are
canceled out by Voff .

The electrostatics parameters m11 and m12 are shown in figure 5.8(a) as a function of the gate-source
voltage for the analytical model (where the depletion capacitance is neglected) and that for the TCAD
simulation. The figure shows that the m-curves are more closely spaced for TCAD results than for the
analytical model, i.e. k has a smaller influence (indicated by the black arrows). The reason for this
is the depletion capacitance. As explained in the theory (section 2.10), a more lightly-doped n-well
results in a smaller Cdep. Because the depletion capacitance and BOX capacitance are in series, the total
bottom capacitance then reduces. Therefore, the electrostatics are less influenced by k explaining the
shown curves. One could also say that the depletion region width results in a thicker “effective” buried
oxide layer. Considering that the spacing between the m-curves decreased for increasing the buried oxide
thickness (for the asymmetric DGFET as compared to the symmetric DGFET), this would be an intuitive
description.

In order to clearly demonstrate this spacing as a function of the Nwell, figure 5.8(b) shows the same
electrostatics parameters as a function of k at VGS = 0.1 V for three different n-well doping concentrations:
Nwell = 5 · 1016 cm−3, Nwell = 5 · 1017 cm−3 (default) and Nwell = 5 · 1018 cm−3. A clear decrease in slope
of the m-curves as a function of k is observed for decreasing Nwell (black arrows). That is, the TCAD
curves start to deviate more from the analytical model for decreasing n-well doping concentrations.

We found that the slope of the transverse field contribution as a function of k also slightly changed,
with respect to the results obtained for the asymmetric and symmetric DGFET. This is because the
transverse field contribution is slightly influenced by the electrostatics through the coupling between the
surface potentials (dψs1/dψs2, see equation 2.50). This effect is less significant in comparison to the
change in m, however, such that the main change observed in the SS due to back-gate depletion results
from the electrostatics m-parameters.
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(a)

(b)

Figure 5.8: Electrostatics parameters m11 and m12 for TCAD simulations (SOIFET) and the analytical
model (a) as a function of the gate-source voltage for k = 0.9, 0.95, 1, 1.05 and 1.1 and (b) as a function of k
at VGS = 0.1 V. The ideal symmetric situation is indicated in the legend (m = 1, blue line) for comparison.
(a) Results for Nwell = 5 · 1017 cm−3 (TCAD simulations) are more closely spaced than analytical model
results, as indicated (black arrows). (b) Results for Nwell = 5 · 1016 cm−3, Nwell = 5 · 1017 cm−3 and
Nwell = 5 · 1018 cm−3 (TCAD simulations, SOIFET) are shown and the trend with decreasing Nwell is
indicated (black arrows).

CVT mobility model influence

The influence of a field-dependent mobility on the results is demonstrated in this paragraph. The CVT
model incorporates the transverse electric field and is used to model the field-dependent mobility for this
research.

We start by testing the influence of the CVT model as compared to several constant mobilities for
k = 1. In figure 5.9 the subthreshold swing is shown as a function of the gate-source voltage for a
mobility as obtained from the CVT model and for three constant mobilities: µn = 600 cm2V−1s−1, µn =
200 cm2V−1s−1 and µn = 20 cm2V−1s−1. Until now we used a constant mobility of µn = 600 cm2V−1s−1,
and the value taken clearly does not have an influence on the SS. It should be mentioned that the value
does have an influence on the drain current. The SS obtained from calculations using the CVT model is
already slightly different from that obtained with a constant mobility for k = 1.
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Figure 5.9: Subthreshold swing as a function of the gate-source voltage for k = 1 from TCAD simulations
(symmetric DGFET) with a constant mobility of 20, 200 and 600 cm2V−1s−1 and from TCAD simulations
with the mobility as defined by the CVT model.

We found that the drain current for TCAD data with the CVT model can be reasonably well approxi-
mated using a constant mobility of µn = 1050 cm2V−1s−1 in the analytical model, for all used k. However,
the transverse field contribution of the subthreshold swing is severely influenced by the field-dependent
mobility, especially for k 6= 1. This is shown in figure 5.10(a), where δψsx is plotted as a function of
the gate-source voltage for k = 1.1. The TCAD curves clearly deviate from the analytical model curves
and even have an opposite slope as compared to that obtained for considering the asymmetric DGFET
(see figure 5.7(a)). The electrostatics remain the same despite changing the mobility to a field-dependent
one, so the SS is only different because of this transverse field contribution. Figure 5.10(b) shows the
SS as a function of k at four different gate-source voltages. Indeed the TCAD SS at k = 1 is still
well-approximated by the analytical model, and the TCAD SS deviates for increasing or decreasing k
with respect to k = 1. The deviation as obtained with the CVT model seems to slightly diminish for
increasing VGS (black arrows). This was already evident from the decreasing slope with respect to the
gate-source voltage in figure 5.10(a). Additionally, the TCAD curves for the subthreshold swing seem
to be symmetric with respect to the analytical model around k = 1. That is, the difference between
the TCAD curves and analytical curves seems to increase the same for increasing or decreasing k, with
respect to k = 1. We tested the influence of the oxide thickness on this trend, but found that the same
symmetric trend was observed for an asymmetric DGFET with tox2 = 10 nm and tox2 = 20 nm (for
tox1 = 1.3 nm).

The symmetry and deviation of the subthreshold swing (as a function of k) can be explained with
the mobility for the CVT model. Figure 5.11(a) shows the mobility as extracted from TCAD for an
asymmetric DGFET (tox1 = 1.3 nm and tox2 = 20 nm) as a function of the gate-source voltage.

From figure 5.10(b) we observed that any change in k other than k = 1 did not change the behaviour
with respect to the analytical model. This is validated here, where no difference in mobility is obtained
for either a higher or lower k-value (with respect to k = 1). Therefore, we define ∆k = |k − 1|. A
decreasing mobility with respect to the gate-source voltage is observed for an increasing ∆k. That is, the
mobility decreases with the gate-source voltage since increasing the gate-source voltage means increasing
the transverse field. This increase in transverse field is higher for a higher ∆k, such that the mobility
drops more. The mobility was probed halfway the length of the channel at the top and bottom interface,
and in the middle of the channel. This results in 3 curves for each k-value. Additionally, the curves for
higher and lower k-values are close to identical, as was explained. We therefore obtain 6 curves for each
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(a)

(b)

Figure 5.10: (a) Transverse field contribution in mV per factor of e in drain current (mV/exp) as a
function of the gate-source voltage for the analytical model and TCAD simulations (symmetric DGFET).
The results for δψs1 and δψs2 are shown for k = 1.1. The analytical δψsx is symmetric around uT (solid
blue line). (b) Subthreshold swing as a function of k for the analytical model and TCAD simulations
(symmetric DGFET). Results are shown at VGS = 0.02, 0.1, 0.2 and 0.3 V. The analytical model is gate-
source voltage independent (black lines overlap) and for the TCAD simulations the trend for increasing
VGS is indicated (red arrow).

∆k. These 6 curves can be distinguished around VGS = 0.3 V. The mobility drops by approximately
14% for ∆k = 0.1 (k = 0.9 and k = 1.1) at VGS = 0.3 V. In order to comprehend the significance of this
change, we show the surface potentials as a function of the gate-source voltage in figure 5.11(b). The
effect of k is shown (black arrow) to increase the surface potentials. However, the increase in surface
potentials by changing from k = 0.9 to k = 1.1 is only about 3% for ψs2 and 1% for ψs1.

We continue with discussing the influence of the CVT model on the results obtained for the SOIFET
deck. Also for the SOIFET deck the field-dependence of the mobility has no influence on the electro-
statics. We therefore discuss the transverse field component only. Figure 5.12 shows the transverse field
contribution as a function of the gate-source voltage for k = 0.9, 0.95, 1, 1.05 and 1.1. First of all, the
figure shows that also for the SOIFET the analytical model does not describe the transverse field con-
tribution well for a field-dependent mobility. This is indicated by the bad correspondence between black
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(a)

(b)

Figure 5.11: (a) The mobility obtained from TCAD simulations using the CVT model (asymmetric
DGFET, tox1 = 1.3 nm and tox2 = 20 nm) is shown as a function of the gate-source voltage for k =
0.90.925, 0.95, 0.975, 1, 1.025, 1.05, 1.075 and 1.1. The curves for k are grouped according to the same
∆k = |k − 1| having the same color. The trend with increasing ∆k is indicated (black arrow). (b) The
corresponding surface potentials (ψs1 in black, ψs2 in red) are shown as a function of the gate-source
voltage for k = 0.9, 0.95, 1, 1.05 and 1.1. The trend with increasing k is indicated (black arrow).

and red curves. Additionally, the analytical curves for δψs1 and δψs2 are symmetric with respect to each
other around k = 1. This results in the curves (black solid and dashed) to overlap. For the TCAD results
with the CVT model this is clearly no longer the case. The most important observation is the kink in
the TCAD curves for k = 1.1 and k = 1.05 (indicated by the vertical black dotted lines). This kink
is non-physical and is the result from a combination between the back-gate workfunction and the CVT
model. We assume that the offset voltage Voff = −0.45 V completely compensates ∆φ2 = −0.45 eV.
However, if the workfunction difference is overcompensated with the offset voltage, we have a situation
at VGS = 0 where ψs2 < ψs1. Increasing the gate-voltage with e.g. k = 1.1 then eventually results in
ψs2 = ψs1 at some value of VGS. Further increasing the gate-source voltage results in ψs2 > ψs1. We thus
see a change in the sign of the transverse field, and apparently the CVT model cannot cope with this.
Actually, the vertical dashed black lines thus indicate the gate-source voltage at which the surface poten-
tials are equal. The situations for lower and higher gate-source voltages are also indicated (black arrows
with respect to the vertical dashed black lines). It can be noted that the gate-source voltage at which the
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Figure 5.12: Transverse field contribution in mV per factor of e in drain current (mV/exp) as a function
of the gate-source voltage for the analytical model and TCAD simulations (SOIFET). The results for
δψs1 (solid red/black) )and δψs2 (dashed red/black) are shown for k = 0.9, 0.95, 1, 1.05 and 1.1. The
lowest and highest k are indicated. The TCAD simulation results for k = 1.1 and k = 1.05 show a kink
at ψs1 = ψs2, as indicated by the vertical dashed black lines. Left of this kink, ψs2 < ψs1 and right of this
kink ψs2 > ψs1, as indicated (black arrows).

surface potentials are equal shifts to the left for increasing k. This is because the back surface potential
increases more for a higher k, such that the situation of equal surface potentials is already obtained for a
lower gate-source voltage. In case the k-value is so low that the back surface potential is still lower than
the front surface potential at VGS = 0.3 V, no kink is observed. This is the case for k = 1.025 for this
TCAD simulation series (not shown). In general, for k ≤ 1 no problems are encountered. Furthermore,
in case the workfunction difference is not entirely compensated, we obtain a similar situation. In that
case, ψs2 > ψs1 at VGS = 0 V and we obtain ψs2 < ψs1 at some higher VGS-value for k < 1. Then, for
k ≥ 1 no problems are encountered.

In conclusion, we cannot include a field-dependent mobility for an SOIFET deck where the workfunc-
tion difference is not exactly compensated by Voff . This means that our analytical model cannot be tuned
for a field-dependent mobility, as we simply lack an accurate TCAD model to test against.

5.2.2 Analytical model and TCAD simulations with interface traps

We first discuss the influence of interface traps on the analytical model and then compare the analytical
model (including traps) to TCAD simulations (including traps). Finally, we extract the interface trap
densities from both interfaces separately from the TCAD simulations by fitting the analytical model to
the results. We then thus effectively use the TCAD simulations as measurements (or “emulations”) in
order to validate the model, obtain possibly an estimate of the extracted Dit-functions, an estimate of
the error of the fitting procedure and determine the limits of this fitting method.

Analytical model including interface traps

For this part of the work we included interface traps in the analytical model. That is, so far we used
Dit1 = Dit2 = 0 cm−2eV−1 and next we changed this to non-zero values.

Figure 5.13(a) shows the subthreshold swing as a function of k for uniformly distributed symmetric
interface trap density profiles, i.e. for Dit1 = Dit2 = Dit. The SS curves for Dit = 0 cm−2eV−1 and
Dit = 1 · 1010 cm−2eV−1 are difficult to distinguish. For higher interface trap densities the subthreshold
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(a)

(b)

(c)

Figure 5.13: Subthreshold swing as a function of k for the analytical model (hence independent of
VGS) for (a) symmetric interface trap profiles, i.e. Dit1 = Dit2 = Dit, (b) asymmetric interface trap
profiles with only front interface traps, i.e. Dit2 = 0 cm−2eV−1 as compared to a symmetric profile with
Dit = 1 · 1011 cm−2eV−1, where we chose Dit1 for asymmetric profiles such that the symmetric trap
profile is well-approximated, and for (c) asymmetric interface trap profiles with either only front or back
interface traps, i.e. Dit2 = 0 cm−2eV−1 and Dit1 = 0 cm−2eV−1, respectively. In both cases we chose
the trap profile of the other interface such that the symmetric profile with Dit = 1 · 1012 cm−2eV−1 is
well-approximated. For all figures, the units of the indicated interface trap densities (in the legend) are
cm−2eV−1.
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swing clearly increases. For Dit = 1 · 1011 cm−2eV−1 the SS is approximately 1 mV/dec higher than for
Dit = 0 cm−2eV−1 and for Dit = 1 ·1012 cm−2eV−1 the SS is approximately 8 mV/dec higher. We expect
the lower limit of interface trap extraction to be around Dit = 1 · 1010 cm−2eV−1, as originally reported
by Schmitz et al. [23], since smaller values would give an indistinguishable SS as compared to this.

Figure 5.13(b) compares the symmetric interface trap density profile (with Dit = 1 · 1011 cm−2eV−1)
with two asymmetric profiles. The asymmetric profiles only contain front interface traps, i.e. Dit2 =
0 cm−2eV−1. The front interface trap density of the two curves is chosen such that it becomes clear
that the symmetric profile can be well-approximate by an asymmetric profile for such a low interface
trap density. The slope of the asymmetric profile curves is slightly different from the slope for the
symmetric profile, but the curves would be hard to distinguish by trying to fit the curves. Especially
when considering (more noisy) measurement data, the lower limit of extracting the interface trap densities
for the two interfaces separately is expected to be at least 1 · 1011 cm−2eV−1.

Figure 5.13(c) compares the symmetric interface trap density profile (with Dit = 1 · 1012 cm−2eV−1)
with two asymmetric profiles. One of the asymmetric profiles contains only front interface traps, i.e.
Dit2 = 0 cm−2eV−1, the other contains only back interface traps, i.e. Dit1 = 0 cm−2eV−1. For these
profiles with higher values for the interface trap density, the difference in slopes for the two asymmetric
situations and the symmetric situation becomes clear.

Note also that the effect of back interface traps on the slope is similar to the effect of the depletion
capacitance. This results in difficulties for the trap extraction if the effect of the depletion capacitance is
not accurately known. Thus, for extracting the interface trap density from measurements we expect this
to result in errors, next to the field-dependence of the mobility.

TCAD simulations including interface traps

We compare the SS for TCAD simulations (symmetric DGFET) with Dit = 1 · 1011 cm−2eV−1 and
the analytical model for this same symmetric trap profile in figure 5.14. For comparison, the analytical
model curves for Dit = 0 cm−2eV−1 are also shown. In the figure, the subthreshold swing is shown as a
function of the gate-source voltage for five k-values. The analytical model and TCAD curves match well

Figure 5.14: Subthreshold swing as a function of the gate-source voltage for k = 0.9, 0.95, 1, 1.05 and 1.1.
Results shown for TCAD simulations (symmetric DGFET) and the analytical model, with a symmetric
interface trap profile with Dit = 1 · 1011 cm−2eV−1. The analytical model curves for Dit = 0 cm−2eV−1

are shown for comparison. The difference between TCAD simulations and the analytical model (with
traps) for low gate-source voltages is indicated (black arrows).
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for VGS > 0.1 V. The discrepancies between the analytical model and TCAD simulation results within
this range (0.1 < VGS < 0.3 V) are the same in magnitude as those observed for the situation without
traps (see figure 5.6). This indicates that the model is valid both without and with traps.

However, incorporating traps in the TCAD simulations results in strange behaviour for both the
transverse field contribution δψs and the electrostatics m for VGS < 0.1 V. These effects propagate
through in the subthreshold swing and are clearly shown (indicated by the black arrows). The reason
for this behaviour at low voltages is due to the way in which Atlas incorporates the discrete traps. The
discrete trap implementation as used here is compared to a continuous trap implementation in [50]. The
conclusion is that a continuous C-interpreter function is preferred due to the discrepancies in the discrete
trap implementation. One of the discrepancies shown in the article is a higher subthreshold swing for
low gate-source voltages.

For the asymmetric DGFET ( with tox1 = 1.3 nm and tox2 = 20 nm) we obtain qualitatively similar
results. That is, the effect of k is smaller (more closely spaced curves) such that the effect of this erroneous
discrete trap behaviour is more significant. Also, within the range of 0.1 < VGS < 0.3 V the discrepancies
in the obtained subthreshold swing are equal in magnitude as was the case without traps.

In case of only front- or back interface traps, the slope of the TCAD simulation curve changes the
same as was the case for the analytical model (see figure 5.13(a) and (b)).

If we use the CVT model we see the same trend as shown in figure 5.10(b), i.e. the TCAD simulation
curve (for Dit = 1 · 1011 cm−2eV−1) is tangential to the analytical curve (for Dit = 1 · 1011 cm−2eV−1) at
k = 1, and deviates for increasing or decreasing k.

5.2.3 Extracting interface traps from TCAD simulations with the analytical model

Trap extraction from TCAD without input interface traps

We discuss how we could fit the analytical model to “measurement” data for extracting the trap density
at both interfaces separately. We used TCAD simulation data as “measurement” data and fit the total
set of SS Vs. VGS curves for all k. This way, we can investigate the validity of this method.

First the “apparent” interface trap density was extracted from TCAD simulation data (asymmet-
ric DGFET, tox1 = 1.3 nm and tox2 = 20 nm) where the device actually contains no interface traps.
We then obtained the limit of the accuracy of the analytical model for extracting interface traps.
The analytical model was fitted to the TCAD curves as is shown in figure 5.15(a). In this figure,
the subthreshold swing is shown as a function of the gate-source voltage for all nine k-values: k =
0.9, 0.925, 0.95, 0.975, 1, 1.025, 1.05, 1.075 and 1.1. The extracted interface trap densities corresponding to
this fit are shown in figure 5.15(b), as a function of the gate-source voltage.

The extracted interface trap density is noisier for VGS < 0.05 V as the TCAD simulation data is
noisier. This even results in some “fitting artifact” for the first datapoint. Furthermore, the analytical
model showed to be increasingly more inaccurate with increasing the gate-source voltage (see figure 5.6),
due to the “apparent conduction band edge”, which is not accounted for in the model. Here, the extracted
interface trap density is significantly more erroneous for approximately VGS > 0.25 V. At this VGS-value we
find that the difference between the TCAD and analytical subthreshold swing is approximately 0.2%, so
apparently an error larger than this results in an increase in the error in interface trap density extraction.
We therefore define the valid range of interface trap density extraction to be 0 < VGS < 0.25 V, where we
neglect the first datapoint. We obtain a lower limit of the accuracy of approximately 1 · 1010 cm−2eV−1

for the interface trap density within this range.

Trap extraction from TCAD with symmetric input interface traps

We then extracted the interface trap density from TCAD simulation data (same asymmetric DGFET)
where Dit1 = Dit2 = Dit = 1 · 1011 cm−2eV−1 is used as input for TCAD. Figure 5.16(a) shows the
subthreshold swing as a function of the gate-source voltage for all nine k-values, for TCAD simulation
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(a)

(b)

Figure 5.15: (a) Subthreshold swing as a function of the gate-source voltage for k =
0.9, 0.9250.95, 0.975, 1, 1.025, 1.05, 1.075 and 1.1. Results shown for TCAD simulations (asymmetric
DGFET) and the analytical model as fitted to the TCAD results. An input interface trap density profile
of Dit = 0 cm−2eV−1 is used in TCAD. (b) Trap density of the front and back interfaces corresponding
to (a). The input trap density profile is shown (solid blue line) and the valid range (VGS < 0.25 V) is
indicated (vertical dotted black line).

data and the fitted analytical model. The corresponding extracted interface trap densities are shown as
a function of the gate-source voltage in figure 5.16(b).

Within the range of 0 < VGS < 0.1 V the discrete trap implementation results in errors. We therefore
redefine the valid range of interface trap density extraction to be 0.1 < VGS < 0.25 V. Within this
range, an approximately equal interface trap density is obtained for both interfaces, with a value of
approximately 1.1 ·1011. The errors introduced by the discrete trap implementation result in an extracted
interface trap density of 1.5 to 2.5 times higher. For extracting the interface trap density in the apparent
conduction band edge range, the main error is that the trap density is increasingly more attributed to
the back interface. For example, at VGS = 0.3 V we obtain approximately Dit1 = 0.2 · 1011 cm−2eV−1

and Dit2 = 1.8 · 1011 cm−2eV−1.
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(a)

(b)

Figure 5.16: (a) Subthreshold swing as a function of the gate-source voltage for k =
0.9, 0.9250.95, 0.975, 1, 1.025, 1.05, 1.075 and 1.1. Results shown for TCAD simulations (asymmetric
DGFET) and the analytical model as fitted to the TCAD results. A symmetric input interface trap
density profile of Dit = 1 · 1011 cm−2eV−1 was used in TCAD. (b) Trap density of the front and back
interfaces corresponding to (a). The input trap density profile is shown (solid blue line) and the valid
range (0.1 < VGS < 0.25 V) is indicated (vertical dotted black lines).

Trap extraction from TCAD with asymmetric input interface traps

We show the results for extracting traps from TCAD simulation data (same asymmetric DGFET) where
Dit1 = 2.5 ·1011 cm−2eV−1 and Dit2 = 0 cm−2eV−1 are used as input for TCAD. Figure 5.17(a) shows the
subthreshold swing as a function of the gate-source voltage for all nine k-values, for TCAD simulation
data and the fitted analytical model. The corresponding extracted interface trap densities are shown as
a function of the gate-source voltage in figure 5.16(b).

Within the valid gate-source voltage range, we extracted a front interface trap density in the range
of 1.3 · 1011 to 2.5 · 1011 cm−2eV−1, while the extracted back interface trap density is in the range of
3 · 1010 to 8 · 1010 cm−2eV−1. The total interface trap density Dit1 +Dit2 is indicated in the figure (pink)
and corresponds well to the total input interface trap density Dit1 (since Dit2 = 0 cm−2eV−1). However,
attributing the traps to the correct interface is difficult. On average approximately 0.5 · 1011 cm−2eV−1

trap density is incorrectly attributed to the back interface. We thus have an error with respect to
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(a)

(b)

Figure 5.17: (a) Subthreshold swing as a function of the gate-source voltage for k = 0.9, 0.925...1.1
for TCAD simulations (asymmetric DGFET) with an asymmetric input interface trap density profile of
Dit1 = 2.5 · 1011 cm−2eV−1 and Dit2 = 0 cm−2eV−1 and for the analytical model as fitted to the TCAD
results. (b) Corresponding trap density of the front (black) and back (red) interfaces, as well as the total
interface trap density Dit1 + Dit2 (pink). The input trap density profile is shown (solid blue lines) and
the valid range (0.1 < VGS < 0.25 V) is indicated (dotted black lines).

the input front interface trap density of about 20% for a constant trap profile with a magnitude of
2.5 · 1011 cm−2eV−1.

Without taking depletion and a field-dependent mobility into account, we can thus distinguish between
front and back interface traps reasonably well. However, it is expected that taking a lower value (of the
magnitude of the trap density) will result in a significantly increasing difficulty in splitting the interface
trap contributions.

The results shown were for the asymmetric DGFET deck. Results obtained for the symmetric DGFET
deck are similar.

Trap extraction from TCAD incorporating the CVT model and depletion effects

The effects of the CVT model (field-dependent mobility) and depletion capacitance (SOIFET deck) were
also investigated. Both influenced the accuracy significantly.
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From TCAD simulation data for which the CVT model was used, no accurate interface trap density
can be extracted.

For TCAD data with depletion (SOIFET) we obtain approximately the same lower limit of the
accuracy (tested for Nwell = 5 · 1016 cm−3, Nwell = 5 · 1017 cm−3 (default) and Nwell = 5 · 1018 cm−3).
However, for using an input profile with only front interface traps, fitting the analytical model to TCAD
results in a high and incorrect back interface trap density (in the range of Dit2 = 6.0 · 1010 cm−2eV−1

as compared to Dit1 = 2.5 · 1010 cm−2eV−1). This is due to the fact that the slope resulting from the
depletion capacitance is similar to the effect of back interface traps.

Trap extraction from TCAD with δ-peak-like input interface traps

As a final test we investigated the effect of a δ-peak-like input interface trap profile. This input profile was
investigated since the “spread” observed on the y-axis (extracted Dit) and x-axis (VGS could be observed
very locally (in VGS). That is, extracting a profile from a δ-peak clearly indicates the “spreading” of
the input profile. The interface trap density is extracted from TCAD simulation data (same asymmetric
DGFET) where Dit = 1 · 1012 cm−2eV−1 within the energy range of E − EV = 0.745 to 0.755 eV and
Dit = 0 cm−2eV−1 for all other energies.

Figure 5.18(a) shows the subthreshold swing as a function of the gate-source voltage for all nine k-
values, for TCAD simulation data and the fitted analytical model. The corresponding extracted interface
trap densities are shown as a function of the gate-source voltage in figure 5.18(b). The mentioned energy
range of the input interface trap profile is translated to a gate-source voltage range of 0.185 < VGS <
0.195 V (using E−EV = EG/2+q ·ψs, see equation 2.6). The input interface trap density profile is shown
for this translated range (solid blue line). From the figure it becomes clear that the input interface trap
density is “smeared out” for the extracted profiles, as was also reported by Boksteen et al. [20]. That is,
the maximum value decreases significantly but the area under the curve is the same.

We also obtained a maximum front and back interface trap density of Dit1 = 2.4 · 1011 cm−2eV−1

and Dit2 = 1.6 · 1011 cm−2eV−1. Integrating the input profile results in 1 · 1010 cm−2 and integrating the
extracted trap profiles (and correcting for the accuracy, the integral of the result shown in figure 5.15,
approximately 3 · 109 cm−2) results in

∫
Dit1 = 1.2 · 1010 cm−2 and

∫
Dit2 = 8 · 109 cm−2. Thus, adding

the integrals of the extracted front and back interface trap densities (after correction) results in the same
value as adding the integrals of the input front and back interface trap densities.

We also applied a δ-peak-like input trap profile (with the same magnitude and range as used for figure
5.18) to only the front interface, with no traps at the back interface. Then, the maximum front and back
interface trap densities are Dit1 = 1.1 · 1011 cm−2eV−1 and Dit2 = 4.5 · 1010 cm−2eV−1. The corrected
front and back interface trap density integrals are

∫
Dit1 = 6.0 · 109 cm−2 and

∫
Dit2 = 2.5 · 109 cm−2.

So, applying a δ-peak-like input trap profile to both interfaces or to only the front interface results
qualitatively in the same “smeared out” trap profile. We note two interesting aspects of the curves: 1) the
maximum of the total extracted interface trap density is shifted with respect to the input profile and 2) the
extracted trap profile is “smeared out”. For the first observation we need to investigate whether equation
2.6 is correct for asymmetric devices. We calculated the input profile from the input energy range, so
in case the equation used for this is incorrect and the actual input profile is shifted to the right, there
might not be a difference at all. A further investigation regarding this was not performed in this work.
The second observation can partially be explained by thermal spread, which has a characteristic width
of ≈ 25 mV. However, the bumps observed in figure 5.18 seem to be larger than the range explained by
thermal spread. This could be further investigated by taking e.g. δ-like-input profiles at different energy
locations and with different widths.

Thus, extracting a peak in the interface trap density is difficult. A “smeared out” trap density is
obtained for both the front and back interface. The area under the curve is the same for the total input
trap density as for the total extracted trap density, so we can determine the total trap density. The ratio
between the maximum values or the integrals of the interface trap densities is different for a symmetric
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(a)

(b)

Figure 5.18: (a) Subthreshold swing as a function of the gate-source voltage for k =
0.9, 0.9250.95, 0.975, 1, 1.025, 1.05, 1.075 and 1.1. Results shown for TCAD simulations (asymmetric
DGFET) and the analytical model as fitted to the TCAD results. A δ-peak-like input interface trap
density profile of Dit = 1 · 1012 cm−2eV−1 within the energy range of E − EV = 0.745 to 0.755 eV and
Dit = 0 cm−2eV−1 for all other energies is used in TCAD. (b) Corresponding trap density of the front
(black) and back (red) interfaces, as well as the total interface trap density Dit1 +Dit2 (pink). The input
trap density profile is shown (solid blue line) and the valid range (0 < VGS < 0.25 V) is indicated (vertical
dotted black line).

trap profile and an asymmetric front interface trap profile. However, the difference between the two is so
small that we cannot distinguish between the interfaces for the δ-peak-like interface trap density profiles.
Furthermore, we observe an error in determining the energy of the traps. That is, the input and extracted
profiles are shifted. Further research is needed to determine the reason for the mentioned inaccuracies.

5.2.4 Conclusion TCAD simulations

The TCAD simulations as obtained using Silvaco Atlas (with Deckbuild) have been compared to the
analytical model, and to the separate contributions to the subthreshold swing of the analytical model.
We showed that the analytical model matches the TCAD simulations well for a symmetric or asymmetric
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DGFET, for all subthreshold swing contributions. Still, some small discrepancies were obtained and
explained. We found that the subthreshold swing was slightly higher at k = 1 than expected due to
short-channel effects. These same effects are expected to result in the observed small offset between
the transverse field contribution to the subtreshold swing from TCAD as compared to the analytical
model. Additionally, this offset changes for increasing the BOX layer thickness. It was demonstrated
that the apparent conduction band edge observed for the electrostatics is not due to a chosen model, the
drain-source voltage or a length-dependent effect. We expect that the apparent conduction band edge
is caused by the inversion charge carriers, which are neglected in the model. The effect of the depletion
capacitance were shown and the effect of a field-dependent mobility was demonstrated. For the latter,
we encountered an error in the CVT model for simulations where the sign of the transverse field changes.

We compared the influence of traps for the analytical model and for TCAD simulations, and we found
that an error is obtained for low gate-source voltages due to the discrete trap implementation used for this
study. This limits the valid interface trap density extraction range. Then, the trap density was extracted
from the two interfaces separately by fitting the analytical model to the TCAD data. We showed the
lower limit of this extraction method, as well as the results for extracting traps for a symmetric and
asymmetric input trap profile. Finally, we demonstrated how a δ-peak-like trap profile could not be
extracted accurately, as was also reported for a symmetric (FinFET) device [20]. The total trap density
could be extracted, but the interface at which the traps reside could not be determined accurately. Also,
the extracted profiles clearly indicated an unexplained shift in energy of the input and extracted trap
profiles with respect to each other.

5.2.5 Extracting interface traps from measurements with the analytical model

We tested the analytical model by fitting it against TCAD results as if it were measurements in order to
validate the analytical model. The goal was to use the analytical model as a “fitting tool” with which
to fit the measurement results. We would like to end this study by fitting the analytical model to some
actual measurement data. We show these results here, and not in the measurement chapter, since this
better fits the story line of this report.

We show the fitted subthreshold swing for measurements together with the extracted trap density at
the front and bottom interface in figure 5.19. In more detail, figure 5.19(a) shows the subthreshold swing
as a function of the gate-source voltage for k = 0.9, 1 and 1.1, and figure 5.19(b) shows the corresponding
interface trap profiles.

The obtained total interface trap density, Dit1 +Dit2 (pink), corresponds well to the values obtained
using the simplified k-sweep method (chapter 3) and the BSIM compact model (chapter 4). This extended
analytical model can thus be used to extract the total interface trap density.

The measurement data is much noisier than the TCAD data previously shown, even with using the
regression analysis. If we do not use this regression analysis or if we use a smaller regression window (which
we would need to do in case we e.g. take a higher ∆VGS) the results become even noisier. Therefore,
the fitted analytical model results also look noisy. As a result, the extracted trap density of the back
interface takes values that vary by at least 1 · 1011 cm2eV−1, within a small gate-source voltage interval.
The values of the front interface trap density vary even more. Therefore, the analytical model as it is
cannot be used to extract the trap density from the front and back interfaces separately.
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(a)

(b)

Figure 5.19: (a) Subthreshold swing as a function of the gate-source voltage for k = 0.9, 1 and 1.1 for
measurements and for the analytical model as fitted to the measurement results. (b) Corresponding trap
density of the front (black) and back (red) interfaces, as well as the total interface trap density Dit1 +Dit2
(pink). A manually added trend line is shown for the total interface trap density (dotted pink line).
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Chapter 6

Discussion & Future Research

The accuracy of the used extraction methods is discussed. Then, improvements to the TCAD decks are
discussed, followed by the shortcomings of the analytical model, as well as possible model extensions
for future research. Finally, we describe TCAD simulations that could be performed to validate some
assumptions or hypotheses.

6.1 Accuracy of used methods
Several interface trap density extraction methods were used throughout this work. First, in the measure-
ment chapter (3) we used the simplified k-sweep method (section 2.7) to attribute all interface traps to
one of the two interfaces. Then, in the Compact Model Simulation chapter (4) we compared the BSIM
simulation results to the measurement data. Finally, we then fitted the complete analytical model to
TCAD simulations. As discussed, the first two methods can only be used to extract an averaged or total
interface trap density, where we cannot distinguish between the top and bottom interface. The method
of fitting the analytical model to the (TCAD) data can be used to distinguish between the interfaces, but
the method does not seem to be applicable to measurement data. One of the main concerns is that no
accurate prediction of the accuracy of all of these methods was given.

Accuracy of k-sweep method

For the simplified k-sweep method the authors in [21] indicated that the technique was sensitive to
interface trap capacitance values as low as 1 nF/cm2 (for devices with tox2 = 400 nm). This effectively
assumes an accuracy in extracting k0 of approximately 0.1. For our devices (tox2 = 20 nm) this would
mean that the accuracy is around 20 nF/cm2, which corresponds to an interface trap density extraction
accuracy of 1 · 1011 cm−2eV−1. Since we expect (and measured) values in this order of magnitude, the
theoretical limit of this simplified k-sweep method has to be investigated in order to ensure that the
extracted interface trap densities are valid. Also, the accuracy could then be improved upon by e.g.
improving the accuracy of the k0-extraction.

Accuracy of compact modeling simulations

The accuracy of the compact model simulations is difficult to assess. It depends on how well the compact
model fits the measurement data and therefore this is hard to determine. For example, the description
of the interface trap capacitance in BSIM is some averaged value, which might already give some error.
Also, depletion is not accounted for in the model such that directly fitting the compact model curve to
the measurement curve results in some depletion-related accuracy error. This is because the influence
of back interface traps and depletion effects is similar, as was described and investigated in the TCAD
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simulations chapter (5, section 5.2.2). Thus, better understanding the accuracy of the compact model
extraction method is required in order to validate the results.

Accuracy of complete analytical model

The analytical model was fitted against TCAD simulation data. The goals was to validate whether the
analytical model would be used for trap extraction of both interfaces separately and simultaneously.
We determined the lower limit of accuracy (with simple symmetric or asymmetric DGFET decks) to be
around 1 ·1010 cm−2eV−1. However, it would be useful to determine the accuracy of the analytical model
with respect to several parameters analytically, i.e. we would like to determine the theoretical accuracy
of the analytical model. For example, we could determine the influence of temperature, a drain current
measurement error, a transconductance extraction error and oxide thickness fluctuations, by deriving the
error propagation of these parameters as performed in [23].

6.2 TCAD simulation improvements

Quantum-mechanical confinement

We tested the influence of the Hansch and Van Dort TCAD models to incorporate some Quantum-
Mechanical confinement effects, and found that the results were not significantly different (for k = 1)
as compared to the TCAD simulation results without these models. We only tested this for k = 1 and
for the symmetric DGFET deck. Firstly, the results with and without these QM-models might become
(significantly) different in case a transverse field is present across the body. Therefore, testing the effects
for k 6= 1 is recommended. Secondly, the effects have to be tested for an asymmetric deck. Finally, it
might be better to implement and test the density gradient model to account for QM confinement effects,
as done by J. van der Steen [11]. This model then has to be tested for the same conditions as described
for the Hansch and Van Dort models.

Interface trap implementation

We implemented the interface traps in TCAD using the INTTRAP statement. With this statement,
discrete interface traps can be implemented at specific energies. Implementing the traps for multiple
energies then results in a quasi-continuous trap distribution. As mentioned, the discrete implementation
of interface traps has some known disadvantages [50]. The TCAD trap implementation could be improved
by using a C-interpreter to define a continuous trap profile.

Field-dependent mobility

We implemented the CVT (field-dependent mobility) model in TCAD (section 5.2.1). It was found that
the CVT model cannot cope with a sign change in transverse field, which occurs for TCAD simulations
with the SOIFET deck. The reason for this was a combination between the workfunction difference and
the k-sweep method. An improved TCAD model is needed to accurately describe the transverse field
behaviour in thin-film devices around a transverse field of 0 V/cm. For this work it would be beneficial
if also the effects of strain on the mobility could then be implemented in this model.

6.3 Analytical model extensions

Depletion effects

The effects of n-well depletion were examined (section 5.2.1) and it was concluded that the effect is similar
to increasing the BOX layer thickness. Depletion effects could therefore be accounted for (in a first-order

97



CHAPTER 6. DISCUSSION & FUTURE RESEARCH

approximation) by simply fitting the analytical model to the TCAD simulation results with tox2 as fitting
parameter. This way, the additional depletion oxide thickness, tdep = tox2,0− tox2,well, can be obtained as
a function of Nwell. Then, we can use Nwell as input parameter for the analytical model to account for
(first-order) depletion effects. If a more accurate and more complete depletion model is desired, equations
2.62 and 2.63 can be implemented in the analytical model and tuned with TCAD simulations for several
Nwell- and k-values.

Field-dependent mobility

The effects of incorporating a field-dependent mobility were examined (section 5.2.1) by using the CVT
model in TCAD. We concluded that the analytical model cannot describe the subthreshold behaviour
in case the mobility depends on the transverse field. It would therefore be useful to incorporate the
transverse field in the analytical model. However, the CVT model cannot cope with a sign change in
transverse field (see section 6.2). An improved model is thus needed to the describe the effects of a
(transverse) field-dependent mobility. This model can then be incorporated in the analytical model as
explained in section 2.10. Additionally the effects of strain on the mobility have to be investigated in
more detail. In case the mobility increase is field-dependent, we have to add this effect to the analytical
model. In case (mainly) a constant increase in mobility results, the effect of strain on the mobility is not
important for extracting interface traps. Then, we do not have to add this to the model.

Looking at the situation from a different perspective, we can also attempt to measure the mobility
as a function of the gate-source voltage for several k-values. This way, we can check if the mobility in
our FDSOI devices is significantly influenced by the transverse field. If this is not the case, assuming a
constant mobility might still be valid.

Short channel effects

We attributed the offset between the analytical model and the TCAD results for the transverse field
contribution (δψsx, see section 5.2.1) to short channel effects. We have not validated this with TCAD
simulations for devices with a longer channel, e.g. L = 5 µm. First of all, these simulations have to be
performed in order to validate our findings. Secondly, in case we indeed find that SCE results in the
discussed offset, the analytical model can be corrected for this. As a first-order approximation, we can
simply add a constant by e.g. taking a higher value for uT (as was also discussed in section 5.2.1).

Inversion charge

The difference between the analytical model for the electrostatics and the TCAD results were attributed
to the inversion charge in the channel. We tested all other parameters that could result in the discussed
trend, and expect that this trend results from the neglected inversion charge in the channel. However,
we have not actually performed tests where the inversion charge is monitored, such that we did not
fully validate our conclusion. Therefore, additional tests could be performed to establish if the discussed
discrepancy between the analytical model and the TCAD results for the electrostatics is indeed inversion
charge-related. In case it is, the inversion charge can be investigated and the behaviour can be added to
the analytical model.

Interface between n-well and BOX layer

In the entire derivation for the electrostatics of an FDSOI device we only considered the FOX/channel
and BOX/channel interfaces. However, the BOX/n-well interface is also of importance and might contain
interface traps just as well as the other two interfaces. We therefore recommend adding this interface to
the analytical model. It has to be noted that extracting the trap density of three interface simultaneously
where the trap densities have to be distinguishable would be difficult. Therefore, it is advisable to assume

98



CHAPTER 6. DISCUSSION & FUTURE RESEARCH

that the trap densities at the BOX/channel and BOX/n-well interfaces are the same. Although this is
not necessarily true due to the different fabrication techniques for both interfaces, the assumption that
the mentioned two interfaces are similar in trap profile as compared to the FOX/channel interface seems
reasonable, considering that the BOX/channel and BOX/n-well interfaces contain the same materials.

6.4 TCAD simulation tests

Extracting interface traps as a function of energy

In this work we described that the trap density is desired as a function of energy for both interfaces
separately. We showed results where the interface trap density is obtained as a function of the gate-
source voltage. The translation between the gate-source voltage and energy is theoretically described
(equation 2.6) and changes in this translation due to QM-effects and a strained channel are discussed
(sections 2.11 and 2.12), but the results have not been obtained as a function of energy yet. The validity
of equation 2.6 should be investigated for asymmetric devices. The correct relation between the surface
potentials and the energy can then be used to obtain the interface trap density as a function of energy.

Effects of strain

We performed simulations for an undoped and unstrained silicon channel. However, strain affects the
mobility in the channel (see section 6.3 for the discussion on this statement) and the apparant band gap.
The change in the apparent band gap due to strain has only been investigated theoretically in this work.
Checking the presented theoretical results (see section 2.12) using e.g. TCAD would give insight in the
effects of strain on the energy landscape of an FDSOI device.

Testing the analytical model for workfunction differences

For the comparison between the analytical model and TCAD simulations, we used two cases with respect
to the implemented workfunction. In the first case, as used for the DGFET deck, the workfunctions of
the front and back gates are the same. Then, the workfunction has no influence on the electrostatics. In
the second case, as used for the SOIFET deck, the workfunction of the back gate was compensated with
Voff . The workfunction difference was not observed in our simulation results due to this. However, we
have not tested the analytical model for a situation where a minor but significant workfunction difference
is present. Examining this would give insight in the influence of different workfunctions on the obtained
results. Effectively, an error in Voff is then investigated.

6.5 Extraction using TCAD
We mainly discussed how the analytical model can be improved such that it can be used to extract the
interface trap density from measurements. However, after tuning the mobility model for TCAD such
that it is correct, we can also simply use TCAD as “fitting tool” for extracting the interface trap density
from the measurements. We have verified that this would be valid, since the analytical model explains all
basic trends observed in the TCAD simulation results. This way, the (corrected) field-dependent mobility,
the depletion effects and the inversion charge carrier contribution are automatically incorporated in the
extraction method.

6.6 Extraction using BSIM model
We performed simulations with the BSIM model, where the drain current was obtained as a function of
the gate-source voltage for a range of k-values, for several Cit. The measurement data was then visually
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compared to the BSIM curves such that the interface trap density could be determined. An improvement
would be to use a similar fitting algorithm as used for the analytical model with respect to TCAD. In
this case, the BSIM model can be used as “fitting tool” instead of the analytical model. At each specific
VGS the drain current and transconductance could be obtained for severeal k-values. Then, the Cit is
changed until the best fit is obtained. The procedure should be repeated for all desired VGS, such that a
result similar to figure 5.15 is obtained.
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Chapter 7

Conclusion

We described how the interface trap density is theoretically linked to the relation between the surface
potentials and gate voltages. The k-sweep method [21] was described (section 2.7) and improvements
to this k-sweep method were explained (section 2.10), thus resulting in the improved k-sweep method.
With these methods, the interface trap density can theoretically be extracted from the subthreshold
swing, hence from the drain current as a function of the gate-source voltage. We studied whether or not
these interface trap extraction methods can be used to accurately extract the interface trap density from
asymmetric DGFET devices in practice.

For the measurements the drain current was obtained as a function of the gate-source voltage with
∆VGS = 0.2 mV. From this, the subthreshold swing can be extracted using a regression analysis as
described in [20], with a regression window of ≈ 8 mV. In order to demonstrate the (simplified) k-sweep
method, we showed how to extract k0 from measurements for several front to back gate voltage ratios
VBGS/VGS = k. The interface trap capacitance and interface trap density were determined as a function
of the gate-source voltage from k0 for a single interface, assuming the other interface to not contain any
traps. Effectively, the total interface trap density can thus be extracted at each gate-source voltage. For
this extraction, we assume equal front and back gate workfunctions. Additionally, we assume SCE and
depletion effects to be insignificant and we assume the mobility as a function of VGS to be constant at
k0. We concluded that Dit1 ≈ 2 · 1011 cm−2eV−1, away from the band edge (low VGS), considering the
back interface to be much better than the front interface.

We obtained simulation results of the drain current as a function of the gate-source voltage for
several k-values using the BSIM compact model. The effect of interface traps in the BSIM model are
demonstrated and the measured subthreshold swing is compared to that of simulations with several
different interface trap capacitance inputs. Simulation results for Cit = 1·10−8 F/cm2 fit the measurement
subthreshold swing best in the range of 0.05 < VGS < 0.15 V. The corresponding interface trap density
(Dit = 6.3 ·1010 cm−2eV−1) corresponds well to that obtained using the simplified k-sweep method. From
the BSIM model only a total (or an averaged) Cit or Dit can be obtained, just as for the measurements.

The TCAD simulations as obtained using Silvaco Atlas have been compared to an improved k-sweep
analytical model, in order to investigate the validity of this new model. We showed that the analytical
model matches the TCAD simulations well for a symmetric or asymmetric DGFET. Still, some discrepan-
cies were obtained. We found that the subthreshold swing was slightly higher at k = 1 than expected, due
to short-channel effects. The effects of back-gate depletion were shown and the effect of a field-dependent
mobility was demonstrated. For the latter, we encountered an error in the CVT model for simulations
where the sign of the transverse field changes.

For gate voltages in the range of 0.25 < VGS < 0.3 V a higher interface trap density is obtained (as
compared to low VGS), corresponding to the apparent conduction band edge. This effect is attributed to
the increasing number of inversion charge carriers in the channel.

We compared the influence of traps for the analytical model and for TCAD simulations. We found
that an error is obtained for low gate-source voltages, due to the implementation of discrete traps in
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TCAD as used for this study. This limits the valid interface trap density extraction range and should
be improved upon by using a continuous trap implementation method. The trap density was extracted
from the two interfaces of a DGFET separately by fitting the analytical model to the TCAD data. We
showed the lower limit of this extraction method to be 1 ·1010 cm2eV−1. Results for extracting traps for a
symmetric and asymmetric input trap profile were promising. The total trap density could be extracted,
and a first-order indication of the interface at which the traps reside could be given. However, this trap
attribution to a specific interface could not be performed accurately. We demonstrated how a δ-peak-like
trap profile is “smeared out”. This could partially be explained by thermal spreading, but no complete
description of the cause was given. Also, the extracted trap profiles clearly indicated an unexplained shift
in energy of the input and extracted trap profiles with respect to each other.

From fitting the analytical model to measurement data a noisy interface trap density was obtained,
with a total value of Dit1 +Dit2 ≈ 2 · 1011 cm−2eV−1 in the range of 0.05 < VGS < 0.2 V.

We conclude that fitting the BSIM model to the measurement data is the easiest method to accurately
extract the total interface trap density. The improved k-sweep-based analytical model can be used to
extract the total trap density with a reasonable accuracy, but that the method has to be improved upon
in order to correctly attribute traps to specific interfaces. The anlytical model could be improved upon by
incorporating the depletion capacitance and improving the relation for the transverse field contribution
to the subthreshold swing. Another method would be to incorporate the continuous trap model in TCAD
and then simply use TCAD for the trap extraction. This way, the inversion carrier and depletion effects
are automatically accounted for.
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Appendix A

Debye length and characteristic length

Debye Length
The Debye length defines the electrostatic screening effect of a charge resulting in thermodynamic equi-
librium. The potential drops by 1/e for each Debye length such that surrounding charges are effectively
electrically screened. For a device with a single gate, a fully depleted channel is obtained when the
channel thickness is less than about the Debye length [20]:

tsi ≤ η
√
εsiuT
qN

, (A.1)

with tsi the silicon channel thickness, εsi the silicon dielectric constant, q the elementary charge, N the
channel doping and with uT = kBT/q the thermal voltage, where kB is Boltzmann’s constant and T is
the temperature. η has a value of 1 for single gate devices and a value of 2 for double gate devices. This
is because for a device with two gates, the charge is screened from two sides and half the silicon channel
thickness has to be less than about the Debye length. For example, for DG (SG) silicon devices with
N = 1015 cm−3, the channel thickness should be less than ∼ 250 nm (∼ 125 nm).

Characteristic length
For a FD FET (such as a FinFET or FDSOI FET) in subthreshold mode operation we obtain [9]:

∇2ψ = − ρ

εsi
≈ 0, (A.2)

where ρ is the volume charge density. The surface potential following from this is

ψs = ψ0 · exp
(
±x
λ

)
, (A.3)

with a surface potential minimum ψ0, x the confinement direction and with the characteristic or natural
length given by

λ =
√

1
η

εsi
εox

tsitox. (A.4)

The dielectric constants of silicon and the oxide are εsi and εox, respectively, tsi and tox are the silicon
and oxide thickness, respectively, and η is 1 for SG and 2 for DG control, i.e. η is the number of gates.

For example, a FinFET with tsi = 6 nm and tox = 2 nm has λ ≈ 4 nm. Calculating the characteristic
length of an asymmetric DG device is somewhat more difficult. We specify two oxide thicknesses, tox1
and tox2, and calculate the characteristic length separately for both thicknesses to check for single gate
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control. Also, we calculate the characteristic length for tox = tox1 + tox2 for double gate control. The
single gate control values can thus be viewed as limiting cases for the actual FDSOI characteristic length.
We calculate two examples here. 1) Taking tsi = 6 nm, tox1 = 1.3 nm and tox2 = 20 nm we arrive at
λ1 ≈ 5 nm and λ2 ≈ 19 nm for front and back gate control, respectively, and λ ≈ 14 nm for double gate
control. 2) Taking tsi = 6 nm, tox1 = 3.5 nm and tox2 = 20 nm we arrive at λ1 ≈ 8 nm and λ2 ≈ 19 nm
for front and back gate control, respectively, and λ ≈ 14.5 nm for double gate control. The first example
will be explained to correspond to the SG devices and the second example corresponds to the EG devices.

The FET behaves as a long-channel device when the effective gate length is approximately a decade
higher than the characteristic length [9]. For the obtained characteristic length of an FDSOI FET under
DG operation the channel length thus has to be larger than ∼ 140 nm for SG devices and larger than
∼ 145 nm for EG devices.
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Single gate sweep for asymmetric device

Back channel subthreshold slope for an asymmetric device
The same method can be applied to obtain the back channel current as a function of the back gate
voltage for a fixed front gate voltage. We start with equation 2.19b) and set VG1 −∆φ1 = 0. Taking the
derivative with respect to the back gate voltage, the following is found for the ideality factor:

m2,2 = dVG2
dψs2

= 1 + Cit2
Cox2

+ Csi(Cox1 + Cit1)
Cox2 (Csi + Cox1 + Cit1) , (B.1)

which corresponds to the capacitor division scheme shown in figure 2.8b). The influence of the back gate
voltage on the front surface potential is given as well:

m2,1 = dVG2
dψs1

= (Csi + Cox1 + Cit1) (Csi + Cox2 + Cit2)− C2
si

CsiCox2
. (B.2)

The final equation would then be valid as long as the back surface potential is higher than the
front surface potential (by at least the thermal voltage uT) and as long as the front channel is not in
accumulation. The obtained equation for the back channel subthreshold slope is:

∂VGS2
∂ log10(ID2) = uT

(ψs2 − ψs1)(Csi + Cox1 + Cit1)
(ψs2 − ψs1)(Csi + Cox1 + Cit1)− (Cox1 + Cit1)

(
1 + Cit2

Cox2
+ Csi(Cox1 + Cit1)
Cox2 (Csi + Cox1 + Cit1)

)
ln(10).

(B.3)
Since the BOX layer is thicker than the front oxide layer, the correction term C is larger for back

channel control (equation B.3) than for front channel control (equation 2.28), assuming similar interface
trap densities and an equal surface potential difference. Also, the ideality factor is higher for back
channel control, i.e. m2,2 > m1,1. Therefore, controlling the current with the back gate results in a
higher subthreshold swing, in comparison to controlling the current with the front gate.

Simplified model for subthreshold swing
A different model was proposed in [27]. The method is based on using the surface potential relations
(equations 2.19) and the relation for the free carrier inversion charge (equation 2.10). The subthreshold
swing is defined as SS = dVGS1/dln (Qi) · ln(10) [27]. The exact calculation results in the subthreshold
swing without approximations, since the LVP is considered to be exact in the subthreshold regime.
However, no closed-form analytical expression can be obtained from this. The assumption that ∆ψ ≡
ψs1 − ψs2 is small is used in order to make a first-order Tayler expansion of the exact result around ∆ψ,
which results in:

ln (Qi) = ln (qnitsi) + ψs1
2uT

+ ψs2
2uT

. (B.4)
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From this, the subthreshold swing can be expressed as:

SS = ln(10)uT
2

∂ψs1
∂VGS1

+ ∂ψs2
∂VGS1

= ln(10)uT

(
1 + Cit1

Cox1
+ (2Csi + Cox1 + Cit1) (Cox2 + Cit2)

Cox1 (2Csi + Cox2 + Cit2)

)
. (B.5)

Comparing equations 2.28 and B.5 can be insightful. The first equation contains only the influence of
the front surface potential rate of change directly and incorporates the influence of the the back surface
potential using a correction factor. The latter equation contains no explicit correction factor (C in
equation 2.25) and incorporates the effects of both surface potential rates of change directly. Equation
B.5 contains 2Csi instead of the used Csi in equation 2.28. Except for this, the denominators of the two
ideality factors are the same, while the numerator of the last term of equation B.5 contains the front
oxide and interface trap capacitances additionally. These additional two terms in equation B.5 should
thus result in an approximation of the behaviour described by the correction factor in equation 2.28. It
should be mentioned that equation 2.28 shows the correct overall result, but that equation B.5 can be
applied directly.
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General and k-sweep electrostatics

The relations between the surface potentials ψ and the voltages as given by equations 2.19 are of the
form:

ψs1 = f11 (C) · VGS + f21 (C) · VBGS + g1 (∆φ) (C.1a)

and
ψs2 = f12 (C) · VGS + f22 (C) · VBGS + g2 (∆φ) , (C.1b)

with f (C) the functions of all system capacitances that determine the electrostatic coupling and with
g (∆φ) the functions that determine the offset voltage due to workfunction differences. We have:

f11 (C) = Cox1 (Csi + Cox2 + Cit2)
(Csi + Cox1 + Cit1) (Csi + Cox2 + Cit2)− C2

si

, (C.2)

f21 (C) = Cox2Csi
(Csi + Cox1 + Cit1) (Csi + Cox2 + Cit2)− C2

si

, (C.3)

f12 (C) = Cox1Csi
(Csi + Cox1 + Cit1) (Csi + Cox2 + Cit2)− C2

si

, (C.4)

f22 (C) = Cox2 (Csi + Cox1 + Cit1)
(Csi + Cox1 + Cit1) (Csi + Cox2 + Cit2)− C2

si

. (C.5)

For extraction of the wanted parameters from the simulations we use the central finite difference
theorem. For the ideality factor we obtain:

m11 = VGS (i+ 1)− VGS (i− 1)
ψs1 (i+ 1)− ψs1 (i− 1) = dVGS

dψs1
, (C.6)

with index i indicating that the i-th numerical value should be used in case of (numerical) simulation or
measurement data. Actually, this way we see the ratio between the front gate voltage and front surface
potential, while the front surface potential is also influenced by the back gate voltage.

As explained, we use k · VGS = VBGS . Thus, when comparing to the electrostatic equations:

m11 =
(
dψs1
dVGS

+ dψs1
dVBGS

dVBGS
dVGS

)−1
= (f11 + k · f21)−1. (C.7)

The same way we can define the other m-parameters:

m21 = dVBGS
dψs1

=
(
dψs1
dVBGS

+ dψs1
dVGS

dVGS
dVBGS

)−1
=
(
f21 + f11

k

)−1
, (C.8)
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m12 = dVGS
dψs2

=
(
dψs2
dVGS

+ dψs2
dVBGS

dVBGS
dVGS

)−1
= (f12 + k · f22)−1, (C.9)

m22 = dVBGS
dψs2

=
(
dψs2
dVBGS

+ dψs2
dVGS

dVGS
dVBGS

)−1
=
(
f22 + f12

k

)−1
. (C.10)

The given relations can be made more readily interpretative. Substitution of VBGS = k · VGS into
equations C.1 results in equations 2.29 and these equations are of the form:

ψs1 = f1 (C, k) · VGS + g1 (∆φ) , (C.11a)

ψs2 = f2 (C, k) · VGS + g2 (∆φ) . (C.11b)

Where we then note that f1 = f11 + k · f21 and that f2 = f12 + k · f22. Thus, m11 = f−1
1 and m12 = f−1

2 .
m21 and m22 can be obtained by expressing equations C.11 in terms of VBGS and following the same
procedure. Rewriting equations 2.19 in the form of equations 2.29 thus allows for the simulation and
measurement results to be directly comparable to the analytic results when using the k-sweep method.
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Additional Compact Modeling

Drain-source voltage effect
Figure D.1 describes the influence of the drain-source voltage on the subthreshold swing and thus k0
offset. Figure D.1(a) describes the drain current per unit width as a function of the gate-source voltage
for BSIM simulations with two different VDS and for the measurement. The corresponding subthreshold
swing (expressed as m1) is shown in figure D.1(b).

Oxide thickness effect
In figure D.2 the subthreshold swing expressed as m1 is shown as a function of k at VGS = 0.1 V for
the five given cases. At k = 1 we see that increasing the front oxide thickness reduces the subthreshold
swing and that increasing the buried oxide thickness does not really have an influence. The slope of the
subthreshold swing as a function of k clearly improves (becomes more negative) for an increasing front
oxide and deteriorates for an increasing buried oxide thickness. Here it can be noted that the subthreshold
swing for an increased buried oxide thickness at k = 1 is actually improved with respect to the default
case. The reason for this is not yet understood and this does not follow from the described electrostatics
in this report. Therefore, some additional effect which is unaccounted for in the electrostatics has to
result in the mentioned discrepancy.

Oxide thickness effect; a symmetric device
Fig D.3 shows a comparison between the asymmetric case with tox1/tox2 = 1.3/20 nm (corresponding to
the measured devices) and two symmetric cases with tox1 = tox2 = tox. For the symmetric cases we have
tox = 1.33 nm and tox = 2.66 nm.

As the electrostatic total oxide thickness is higher for the asymmetric case, the current is expected to
be lower. The current is expected to be better controlled for a thinner oxide with respect to the thicker
oxide for the symmetric cases, because channel modulation effects play a smaller role for thinner oxides.
Although this effect is expected to be small, a slightly higher current is expected for the symmetric case
with thinner oxides. The BSIM simulations in figure D.3(a) show the drain current per unit width as a
function of the gate-source voltage. The drain current for the asymmetric case is indeed lower than for
the two symmetric cases, but the drain current for the symmetric case with thinner oxides is lower. This
does not match with the described electrostatics in this report. Therefore, some additional effect which
is unaccounted for in the electrostatics has to result in the mentioned discrepancy.
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(a)

(b)

Figure D.1

Nwell doping concentration effect
The effect of the Nwell doping concentration is shown in figure D.4, where the drain current per unit
width as a function of the gate source voltage and the corresponding subthreshold swing expressed as m1
are shown.
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Figure D.2

(a)

(b)

Figure D.3
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(a)

(b)

Figure D.4
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