
University of Twente

Automatic instance-based
matching of database schemas of

web-harvested product data

Author
Alexander Drechsel

Supervisors
dr. ir. Maurice van Keulen
dr. ir. Dolf Trieschnigg

dr. Doina Bucur

July 12, 2019

Thesis for completion of a Master’s degree in computer science at
University of Twente

Contents

1 Introduction 1
1.1 Research Questions . 5

1.1.1 Main Research Question 5
1.1.2 Sub-Research Questions 5

1.2 Validation and Approach . 6

2 Related Work 7
2.1 DIKW Pyramid . 8
2.2 Machine Learning . 9
2.3 Data Integration . 10
2.4 Record Linking . 11
2.5 Schema Matching . 12

3 Approach 15
3.1 Processing Systems . 16
3.2 Step 1. Data Homogenization . 18
3.3 Step 2. Null Data Cleaning . 19
3.4 Step 3. Data Type Determination 19
3.5 Step 4. Numerical Identification and Standardization (Numerical

Data only) . 21
3.6 Step 5. Data Sampling . 22
3.7 Step 6 Feature Building . 25
3.8 Step 7. Machine Learner . 27
3.9 Summary . 28

4 Experimentation 30
4.1 Experiments in varying Sampling Methods 32

4.1.1 Full Dataset with randomized samples divided into fixed
size groups . 33

4.1.2 Full Dataset with fixed size samples created from resam-
pling the data . 34

4.1.3 Full Dataset with fixed size samples created from resam-
pling the data with repeat in the same data 37

4.1.4 Issues found based on the tested sampling methods 41

1

4.1.5 Issues found based on the tested sampling methods 41
4.1.6 Full Dataset with fixed size samples created from resam-

pling the data with additional limiters 42
4.1.7 Graphical Comparison between sampling methods 46
4.1.8 Comparison with the exact same datasets 49

4.2 Experiments with using different machine learning algorithms . . 61
4.3 Experiments with prediction . 62
4.4 MacroScale Experiment . 72
4.5 Summary . 74

5 Conclusion 77

6 Future Work 80

7 Acknowledgements 82

2

Abstract

Every day more information becomes available on the internet and companies
can significantly benefit from integration of information from these sources that
is useful to them into their own systems. However there is no set standard for in-
formation on the internet meaning that integrating of this useful information is
time consuming and costly. In this thesis we present a semi-automated method
for matching web-harvested product database schemas on the basis of data char-
acteristics and commonality. We provide a pre-processing system which takes
web-harvested product information and turns it into machine learner ready fea-
ture sets as well as a machine learner which is capable of using these feature
sets to match groups or columns of data from different sources together on the
basis of similarity and thus representing the same property. Multiple methods
were developed and tested for sampling, machine learner algorithm and training
set selection. We used the best results for each of these. For sampling we con-
cluded that a resampler which generates samples of 100 data values that also
has restrictions on how many samples it can generate based on the overall size
of the dataset to prevent overtraining performs best. With regard to machine
learner algorithms, both nearest neighbour and RbfSVC performed well at the
classification task. The system described in the thesis is capable of good match-
ing accuracy scores (in excess of 50% for textual cases and 67% for numerical
cases despite a large amount of possible classes) given not many new properties
are introduced beyond the training set. The thesis describes a number of clear
development ways in which the system could be expanded and further improved.

Chapter 1

Introduction

The general trend is that we register, record and do more and more things digi-
tally. With evermore things happening on a digital level more of their underlying
data sources which could contain valuable information are becoming available
online. However they lack a standardized structure and individual data source
structures can change from day to day. The content within these data sources
is of course also continuously changing and expanding.

If one is able to consolidate the content of continuously changing data
sources, which contain data they are interested in, into a single data source,
and link all data which are about the same entity, in a cost efficient and thus
preferably automatic way they could prove a very valuable source of operational
or competitive advantage. In our research we will focus on data sources har-
vested from websites but the developed system should be applicable to any data
source containing data which is organized and linked together into items and
properties. It should be applicable to all such data sources since in they are
comparable in structure and preprocessing will take care of any difference in
details that are caused by the format of its contents.

To consolidate different data sources, so they are in a single source and can
be compared to each other, you need to determine both how the structures or
schemas are similar to one another and once that has been determined, which
data records refer to the same object. While studies[1, 2, 3, 4, 5, 6, 7] into auto-
matically determining which records are the same across different data sources
(also known as data fusion) as well as into computerized determination of data
source schemas (what properties across data sources are identical in concept but
are identified using different aliases) are not new research areas they both still
remain open for ongoing research. Both topics are a challenge since they have
to do with interpreting the meaning of table and attribute names and semantics
remains a difficult topic for automation.

For a lot of data integration projects it is still common that the most reliable
process is used in which domain experts manually match schemas, determining
what properties are basically the same[1] . But due to the labour and thus cost
intensive nature of manual schema mapping the number of data sources used

1

is often limited in those cases. For businesses as well as researchers for whom
consolidating data is valuable it would be incredibly valuable to be able to more
efficiently automatically consolidate information from big numbers of various
data sources including ones with an unknown schema.

In both web harvesting and in the merging of data sources it often occurs that
across different data sources data items such as products have properties which
while identical in reality, use or concept are registered using different names.
Since this concept is key to our research we will clarify that when we are talking
about Properties we mean data of the same concept across all relevant data
sources regardless of the actual name or alias used within those specific data
sources. By this we mean data which may be grouped under a different name or
alias is meant to mean the same thing in reality or in use. People have a ”first
name” and a ”last name” but these can alternately be referred to as ”given
name” and ”family name” or in different languages such as in dutch a ”first
name” can be referred to as a ”voornaam” and a ”last name” can be referred
to as ”achternaam”. These examples can be grouped into 2 properties, a ”first
name” property which contains the data from ”first name”, ”given name”, and
”voornaam” and a property ”last name” which contains the data from ”last
name”, ”family name”, and ”achternaam”. As an example from the test case of
our research, which is about ball bearings and which was primarily gathered by
harvesting data from webshops, each property of the bearings is described within
each data source using a name or alias but the english name of ”inner diameter”,
the dutch name of ”binnen diameter” and the domain specific abbreviation of
”d” all are referring to the same property. An experienced domain expert would
quickly recognize this, but for a computer this would not be easy to learn.

This thesis proposes a method whereby, using machine learning and similar-
ity in data characteristics, properties which are the same in concept are linked
together. This method which we will call Content-Based Property Match-
ing works on the theory that while properties across different sources may have
different names and the data may even be in a different language the ”shape”
of the data of each property is similar across different data sources. Similar ap-
proaches are also employed in [8, 9]. For our research we worked with a case of
product data harvested from different webshops about ball bearings and we will
use this case to give examples. Bearings themselves are machine components
which are used as part of connectors between moving parts to reduce the friction
between moving parts and to restrict movement in undesired ways. Bearings are
used in a wide variety of applications from dental drills to wheels and gearboxes.

2

Figure 1.1: A page from the webshop BearingBoys of the 6017-2Z with various
properties marked.

3

Figure 1.2: A page from the website of the brand SKF of the 6017-2Z with
various properties marked.

Presented above are two images of the same bearing from different websites.
The two websites share many of the same properties but some properties are
still differently named even though they mean the same thing. The product
data gathered across websites may also be inconsistent such as in our example
images the limiting speed being indicated differently between the websites. De-
spite this similarities of data characteristics should be detectable for properties
across websites. For example generally the product data harvested will contain
a title and description describing each product and this will obviously be dif-
ferent across products and websites. However when comparing the shape of the
title and description properties they should possess similar shapes across the
various data sources. Titles will generally be unique within a data source and
each title will be of roughly similar length. These same data characteristics of
uniqueness and length should also be similar for descriptions though the length
of a description will likely be longer than that of titles.

By using these text similarities we should be able to determine what prop-
erties across different data sources are titles and which are descriptions. We

4

should also be able to use a similar process to automatically determine which
numerical properties across different data sources share the same meaning. In
the case of numerical values such as various dimensions, weight and product
identifiers we should be able to distinguish them from having distinct ranges
and other characteristics.

There are a number of different methods by which data characteristics could
be made comparable and thus to allow matching based on data similarity for
properties. In our case we have chosen to use supervised machine learner based
classification. We create our training data as well as process our test data by
creating sets of characteristics which in the case of training data are labeled
with the correct property. Our characteristics are based on calculations done
over the aggregation of data values. Within each datasource we collect all data
values that concern the same property. To ensure we have enough values to
effectively use machine learning we do not calculate the characteristics based on
all data values but instead split these data values up into a number of samples
and calculate characteristics based on each of these samples.

Finding similarities to be able to link properties together on an aggregated
level would be difficult for a human. Utilizing a machine learner however a
computer should be able to handle most of the work and impartially detect
similarities. By feeding aggregated characteristics about the data sources into
a machine learner it should be able to develop a model capable of predicting
to which already existing property new data would most probably belong to on
the basis of its aggregated characteristics. Using this model and its predictions
it should be possible to determine what properties are referring to the same
concept.

Formally speaking the problem we are working on is one of schema matching.
That is determining what property in one data source matches with a property
in another data source and doing this for all properties involved to be able to
determine a fully matching schema. To reduce the amount of work required to
achieve fully matched schemas we want to develop a mostly automated method.

Our approach to solving this problem is to utilize the similarity of data
values of properties and determine schema matching on the basis of that.

1.1 Research Questions

1.1.1 Main Research Question

1. How can we link properties which represent the same real world property
or concept together, using the characteristics and commonalities of their
data.

1.1.2 Sub-Research Questions

1. What are existing processes for linking properties together in the use of
database merging and web harvesting? Both automatic and manual.

5

2. How can a database or harvested web page be made suitable for linking
properties together?

3. How can we best configure a machine learner and features representing
data characteristics to perform content based property matching?

1.2 Validation and Approach

We intend to validate our research experimentally. By using our process to
develop a machine learner model and to evaluate the predictions of this model.
We will use a collection of data sources created from a web harvesting process.
We will evaluate the results of this on both an individual level, where we examine
why certain properties seem to match better or worse than others, and an overall
level in how it performs overall. We evaluate this mainly by accuracy.

6

Chapter 2

Related Work

As the introduction discussed this research is about the linking of product prop-
erties by the use of a machine learner and features built on data commonalities
of the properties. In this section we will discuss the following:

• DIKW Pyramid: To explain the relation between data, information and
knowledge.

• Machine Learning: As that is our primary method of solving our problem.

• Data Integration: To explain how our problem is placed in a greater whole.

• Record Linking: As the techniques used here can be made applicable to
our problem

• Schema Matching: Which is what our problem is.

7

2.1 DIKW Pyramid

Figure 2.1: DIKW Pyramid

When working with data with the aim of processing it in some manner to gain
more information about it the concept of the DIKW pyramid is often used be
it consciously or unconsciously[10]. Within this thesis we do not explicitly use
the DIKW pyramid but we do use it implicitly, treating data, information, and
knowledge as different levels. The DIKW pyramid is used to describe the re-
lation and definition of data, information, knowledge and wisdom. Data is the
lowest level of the pyramid and pertains to the recorded values. Without any
context data is of no use. The second level of the pyramid is information and
is generally achieved when data becomes useful. Generally this is by providing
context to data be it by description, structure or another way of making data
meaningful or purposeful. The third and fourth levels of the pyramid, Knowl-
edge and Wisdom are considered harder to define. A definition of knowledge is
the insight, understanding and experience gained by working with contextual-
ized information. It is often tacit but embedded in the doing within its domain
(and outside it). Wisdom is not always included in DIKW and sometimes dis-
missed but it could be considered knowledge about knowledge. For our research
we desire to combine the structural information of data sources together using

8

the similarities in their underlying data. In this context the structural informa-
tion could also be considered data and by processing it with our methodology we
can produce contextually useful information. In other terms we explore the data
for commonalities and similar patterns to uncover hidden information. This hid-
den information can then be used to structurally match data sources. By using
the process and working with the data and information, we gain knowledge.

2.2 Machine Learning

Machine Learning is a broad field within computer science with many applica-
tions pertaining to acquiring information from data and is capable of “learning”
as the amount of suitable data increases. The concept of machine learning was
postulated all the way back in 1950 by A.Turing [11] though the actual term was
coined in 1959[12]. Since this research is an application of machine learning and
there are multiple good books and papers available [13][14][15], this section will
merely give a brief summary and how it is relevant for our research, referring
interested readers to the referenced material and other information available.

There are multiple ways to categorise types of machine learning such as
categorising based on its learning system and based on its desired output.

When categorising based on learning system or feedback signal there are
two broad categories: Supervised Learning where the system is provided with
a training set of example inputs and the goal is to learn of to match new data
to the example data (in the form of the target outputs found therein). Within
this category there are a few subcategories, Semi-Supervised Learning where
the target outputs in the example data may be incomplete, Active Learning
where the algorithm can query other data sources and the user for feedback
during the learning in a limited manner and Reinforcement Learning wherein
the training data is generated from a dynamic environment. The other category
is Unsupervised Learning where the training data is not given any labels and he
system is left to find structure and patterns on its own. Finding such patterns
may even be the goal itself in such systems.

A different way of categorization is to base it on the desired output. In gen-
eral machine learning tasks have similar desired output, which is the grouping
or finding patterns in data. There are however a few distinct forms of output
within this.

• Classification: Classifying inputs into distinct classes. Usually this is done
using a learned model which has been built using labeled training data.
Determining whether e-mail is in the class ”spam” or ”not spam” is an
example of this.

• Regression: Similar to classification only the output is continuous, so in-
stead of distinct separate classes it is assignment on a scale.

• Clustering: Forming the input data into groups. The advantage of clus-
tering is that it does not use predefined groups making it well suited for

9

handling unlabeled data. Due to this it is often used to handle unsuper-
vised learning tasks.

• Density Estimation: Used for estimated how a larger dataset may be
distributed from a smaller sample.

• Dimensionality Reduction: A method to separate data into lower dimen-
sionalities such as separating the contents of a library on the basis of
topics.

The task we are working on for this thesis is the matching of database
schemas. To accomplish this task we plan to match the different properties
from databases on the basis of data commonality using supervised classifica-
tion. After some preprocessing each database will have a number of feature
sets created from each property. These feature sets represent the data in a
machine learner processable format which can be used for the comparison and
matching on the basis of data similarity. We also have manually created class
labels for each property so that the correct match is known for the purposes of
training. By taking these inputs we perform supervised classification with ma-
chine learning. Our desired output is then the feature sets classified to belong
to global properties. Combining this classification together with the link from
which database level property each feature set was created from allows us to
generate a database schema match for each used database to a global schema.
The trained machine learner can then also be used to classify new databases to
generate schema matches without the need to manually label the new database.

2.3 Data Integration

Data integration is the combination of different data sources about the same sub-
jects to gain a consolidated and concise view of the data. Broadly speaking there
are two methods by which data integration can be achieved.A <G,S,M>method
such as described in [3] where the databases are not merged in actuality but has
3 elements allowing it to create unified views and process queries.

• A global database schema (G)

• Individual database schemas (S)

• Mappings (M) which define how to transform queries and results between
the global database schema and each individual database schema.

While the individual database schemas should be known, the database matching
and mapping required to create a global database schema and the required map-
ping generally need to be created. In this case for each individual query there
is a processing step applying the necessary transformation for each database.
The second method is more costly to implement but merges the databases in
actuality. This data integration method such as described in [1] has 3 steps:

10

1. Database schema matching and mapping, similar to the <G,S,M> method
this is determining a global schema except the mapping is used to add all
data from the individual databases into the global database instead of how
to transform queries when they are called.

2. Duplicate Detection, determining which records refer to the same real
world entities

3. Data fusion or data merging, merging the duplicates found together and
dealing with the inconsistencies this generates.

This thesis focuses on providing an automated machine learning based method
for the database schema matching step, primarily with the second methodology
of actual database merging in mind but is applicable to the schema matching
required for both methods of data integration.

2.4 Record Linking

While this thesis is interested in linking properties in an effort to provide au-
tomation in schema matching, the techniques used in record linking for ”row-
by-row matching are also relevant and applicable to our concept for data-driven
schema matching. We make these techniques applicable by treating the prop-
erties or columns of each data source as records. Thereby allowing us to match
”column-by-column”. The data contained in each column treated as the data
which composes a record. Record linking is the task of linking records which
refer to the same entity between multiple data sources. By linking records more
complete information about entities can be built up. Record Linking can be
considered a header for a field of linking methods and applications such as du-
plicate detection (Often seen as part of a data integration process as described
in 2.3), entity linking and entity resolution. There is a wide variety of meth-
ods by which record linking can be done and the methods are often used in
conjunction. The following list explains a number of these methods.

• Standardization, as data can come from many different sources it is com-
mon that data that contains the same information is often represented in
different ways. Standardization or data preprocessing[16] works by ensur-
ing all data which represents the same property is represented in the same
way. Thus for example ensuring that dates are ordered in the same order
and constantly use the same numerical or textual representation (2st of
january 2019, 02/01/2019, 2 jan 2019, and 01/02/19 all being standard-
ized to the same representation) or the same unit of measurement is used
(lengths of 5 cm, 0,05 m, and 1.9685 in). Standardization can be achieved
in a number of ways ranging from string replacement, tokenized replace-
ment, or more complex methods such as hidden Markov Models[17].

• Rule-based record linkage is one of the more simple methods where records
are linked on the basis of one or more key identifiers[16], potentially with a

11

threshold based on how many identifiers need to match. A similar method
is also used internally by relational database which link their records to-
gether using specifically defined primary keys.

• Probabilistic record linkage: while rule-based record linkage often looks
for exact comparisons, by using probabilistic or fuzzy linking methods it
is possible to roughly predict which records should be linked to each other.
There is a variety of ways by which this fuzzy linking could be achieved[2]
ranging from the simple addition of a edit distance to string comparison
to the implementation of a Naive Bayes algorithm.

• Machine Learning, the general concepts of the above methods can also be
enhanced and expanded by the application of machine learning techniques
as well as opening other options.

2.5 Schema Matching

When wanting to combine multiple data sources (such as through a process as
described in 2.3) whether it be for the purposes of merging or wanting to view
and compare them with each other, it is important to know which elements or
properties of each data schema are semantically similar or identical. Schema
matching is the task where these semantic links are determined and it is an
important and early phase to when combining data sources. While most of these
semantic links will be a one-to-one relation, where one data entry is comparable
between data sources, this is not necessarily the case and more complex relations
such as a one-to-many link are possible. A common example is a name which
in one source is represented via the name property (which contains both a
person’s first name and last name) and the other source which represents a
person’s name using two separate properties, firstName and lastName. While
schema matching is still commonly done manually, systems which are capable
of (semi-)automatically performing schema matching do exist. A broad variety
of techniques and approaches to perform schema matching exist, [7] provides
us which a large list of approaches. While this list is complete in terms of
techniques it lacks the distinction that instance based matching is not a specific
technique but many of the approaches can be applied either on a schema level
or on an instance level. This distinction is clearly illustrated in [6] though this
source lacks more recent approaches such as matching based on usage statistics.

12

Figure 2.2: Tree Graphs from [6] which classifies schema matching approaches.
The method proposed in this thesis is a instance based method using both
linguistic and constraint approaches.

Regardless of how these approaches are categorized however it is important
to note that what is explained in these sources are general approaches and not
specific techniques on how to implement these approaches which can potentially
be done via simple string comparisons or more complex methods such as using
machine learning. Schema matching systems often combine these approaches in
different ways using different implementations. As an example for how schema
matching systems combine different approaches and implementations together:
[5] describes a schema matching system called LSD which is used to integrate
multiple data sources about real estate together. At its essence LSD uses 5
different techniques to match schemas together:

• Name Matcher which is a schema level linguistic matching approach im-
plemented using a nearest neighbour based classifier called whirl[18] which
has been developed specifically for text.

• Content Matcher which is a instance level linguistic matching approach
based also implemented using whirl.

• Naive Bayes Learner is also an instance level linguistic matching approach
except now implemented using a Naive Bayes learner where each instance
is treated as a bag of tokens.

• County-Name Recognizer which uses auxiliary information to specifically
recognise if a property is a county name.

• Constraint Handler which is a schema level constraint based approach.

13

When considering what schema matching approaches to use it is important to
realize that different approaches requires different information which may not
always be available.

• Constraints based approaches require that those constraints are known to
the schema matcher.

• Using auxiliary information requires that such auxiliary information is
available in a usable format.

• Matching based on usage requires that usage logs or some similar data is
available.

• instance based approaches require that a sufficient number of instances is
available to actually be able to use them to make determinations about
the whole schema rather than just coincidental links.

Our problem is the schema matching of web-harvested product data and due to
this we lack a lot of certainty about the underlying databases and our approach
has been designed to limit what additional information is required. We do not
know the constraints set on each datasource nor do we posses any usage logs.
As we are working with a single product domain of ball bearings we could use
auxiliary information but do not do so beyond generic units of measurement
in an effort to limit additional required information. We do however require a
sufficient number of instance data.

14

Chapter 3

Approach

To merge separate data sources we need to find out how and where these sources
fit together. This is a difficult task with multiple steps required. Our research
attempts to provide a mostly automated method for the schema matching step
of this process. We do this by using machine learning methods to match columns
of tables or their equivalents based on the shape of their data.

Formally our task is to: Classify the properties of each data source such
that those properties that are the same in concept are classified together. The
classification should be based on the characteristics of the data of each property.
To evaluate the success of our task we can exclude part of our data during the
training phase of the classifier and evaluate the classifier using the accuracy
scores of the predictions by the classifier for this excluded part of the data.

The dataset we are working with for this thesis consists of 9 data sources
which contain product data about ball bearings. The data sources are: bearing-
sonline, bearingsdirect, motionindustries, xbearings, rfc, bearingboys, btshop,
eriks, and abf. These data sources are JSON files which have been created by a
web scraper. Each JSON file has a list of elements. Each of these elements have
3 components: A harvestID which is generated by the harvest for each individ-
ual webpage, a property name, and a data value. These elements are generated
for each property the web harvester detects on each page. In addition to the
datasets we manually created a match file where the properties of each file have
been manually classified. We use this match file as our ground truth.

15

3.1 Processing Systems

Figure 3.1: The flow diagram of the full design of the system and through what
steps data go and are transformed into.

The process is divided into multiple steps:
Pre-Processing Phase

Step 1. (Data Homogenization) Separate and transform the data sources into a
homogeneous form. Since we are interested in specifically the properties
of the data and want to determine how they are linked together based on
similarity in shape we do not need to preserve all of the existing structure
but instead only the core of what we are interested in. Since we are
potentially dealing with multiple heterogeneous data sources of differing
formats we can have multiple data transformation systems each of which
designed to deal with a different data format. The end results for each
of these systems will be the same: A series of headers each with a list of
their associated data. We refer to such a data structure as a column.

Step 2. (Null Data Cleaning) Removal of all null and empty Data. This is im-
portant since our test cases are using data harvested from the internet
so we cannot expect 100% clean data and it is a given that this should
be assumed to be the case for most real-life databases. Null and empty
data are not relevant for our matching process and would only hinder our
matching or cause errors.

Step 3. (Data Type Determination) Determination of what is exactly the type

16

of data for each property or column of data. Primarily this would split
the properties into textual and numerical properties though other prop-
erties such as dates and multiple properties concatenated together (such
as Length x Width x Height) could be handled in a different manner and
could be considered part of a different category than numerical and tex-
tual, but we considered that outside our scope.

Step 4. (Numerical Identification and Standardization) Identification of the exact
part of our numerical data that is actually the numeric value. This step
contains 2 sub steps related to dealing with numerical values and their
origin from different sources.

(a) Ensure that decimal and thousands markers are interpreted correctly.
This is important since differing countries can use different characters
to denote these markers.

(b) Identification and standardization of the units of measurements. This
identification and standardization step is quite key since without it
properties of the same type would not be fully comparable since char-
acteristics such as ranges and averages would be calculated incor-
rectly.

Step 5. (Data Sampling) To ensure we have the multiple data points needed for
machine learning-based classification we divide our columns up into sam-
ples of smaller size.

Step 6. (Feature Building) Calculation of sets of features from the samples of
the now cleaned and standardized data. This step contains 2 substeps
applying final data transformations related to the use of machine learning.

(a) Normalization of calculated features using the Unit Standard Devia-
tion technique. We do this to reduce the effects of abnormalities and
to ensure that all features are evaluated equally.

(b) Apply our manually created matches to the associated headers to add
our desired target answers for later training and testing purposes.

Machine Learning Phase

Step 7. (Machine Learner) Train the machine learner to form a classifier using part
of the feature sets and target answers we calculated in the preprocessing
phase.

17

3.2 Step 1. Data Homogenization

Figure 3.2: A visual representation of Data Homogenization.

In the Data Homogenization step we transform heterogeneous input into a ho-
mogenous structured output to be used within the rest of the process. To do
this we would have several systems which each handle one distinct type of input
with the goal of each of these systems to generate the same output.

Within this step we take information from any data source in whatever
format it is and aim to transform it into separate lists of data (each headed
by their own property name) that each of the values within that list belong
to. We are not yet aiming to match property names across data sources in this
step so we only consider values attached to property names when the name of
the property is the same within its own data source and assign an additional
data source related identifier to each resultant list to keep them distinct between

18

different data sources as well as to preserve potential hierarchies within the data
source. Within the context of this paper we refer to this structure of a list of
data values from a single data source headed by the property name they are
associated with concatenated with its data source and hierarchy within that
data source as a column.

Depending on the exact object type format of the data source, different
systems are used. For relational databases the desired output is achieved by
taking each table as an individual datasource and separating their columns into
lists of data values, each headed by a column header which includes the full
hierarchy of this column, meaning the data source, table name and column
header concatenated together. Within our testcase of harvested ball bearing
data from template-based websites such as webshops we have our data provided
in the form of JSON files which have a structure as displayed in Figure 3.2 as
Data Source2. For this type of data we load the JSON file as a list of lists and
work downwards from the top adding each value to a new list of its matching
property name, creating new lists when new property names are encountered.
Similar systems would be created for any other format of data sources.

3.3 Step 2. Null Data Cleaning

Once all data has been translated into a universal format usable for our pre-
processing steps we need to do some data cleansing. While later additional
data cleaning may be required depending on what data type each part of the
data set is determined to, be we can already do some cleaning at this point of
unusable values. Specifically we can remove null and empty values, since those
would only hinder the matching process or cause errors. Most of these values
will be missing data rather than actual empty data that actually has meaning.
To accomplish this, we simple run a checker over each column which removes
unusable values.

3.4 Step 3. Data Type Determination

The next step in the process of turning the data we have into a usable form for
our machine learner is to determine what type the data has, since depending on
the data type we need to treat it differently. Within our research we decided on
two main data types but other specialized data types are imaginable. In theory
different data types should not overlap and will mostly require slightly different
processing thus in all following processing each data type is treated separately
including in the final machine learning classification steps. The first type of
data we have is textual which can also be seen as the default data type and is
considered difficult to look at the content of the data, since natural language
processing is difficult especially for comparison purposes when considering mul-
tiple possible languages. Our second main type is that of numerical data which
is one for which comparison should be significantly easier. Other data types

19

could include types such as datetimes where comparing should be done differ-
ently due to the way days and months roll over and combined data types which
include multiple values such as a dimensions property which includes height,
width and length.

In theory distinguishing between textual and numerical data should be easy
especially if we consider the textual data type to be default and we only really
need to determine if data is numerical. However there are several factors which
make it more difficult in practice. Firstly one of the intended purposes of this
method and our research case is to enable the merging of web harvested data
which mean that we need to be able to deal with dirty data or other forms of
values where a numerical value may not purely consist of numerical characters.
There are two levels where we need to consider when determining if we should
consider data to be numerical. First we need to determine if a specific value is
numerical and a column as a whole is numerical or otherwise.

On the level of columns we decided to use a percentage threshold which needs
to be reached by individual values considered to be numerical. If this threshold
is reached than all individual values that were not determined to be numerical
will be discarded. We decided to discard these values since if the threshold is
reached we are most likely dealing with a numerical based column in which case
the non-numerical values would not be very useful since we are keeping the data
types seperate and using those remaining values as textual data would result in
small columns of data of insufficient size for productive matching.

When determining individual values it is important to consider a numerical
value does not consist purely of numerical characters but that in the end we
would prefer to only end up with numerical values. This means that we need
to make allowances for values containing units of measurement, dots, commas,
odd formats such as fractions and other additional text. At the same time how-
ever there will be instances where we do not want to consider something to be
numerical simple because it contains numeric characters. An example of such
an instance would be alphanumeric codes (such as item codes) and compound
values. While there are multiple approaches possible to solve these issues. The
approach used in this research is a specialized regex or regular expression. Using
the regex we account for the various difficulties but the regex expressions have
been hand-crafted on the specific dataset and a better more generic solution
should be possible. A good example of this specialized nature is the inclusion
of see diagram image as that present due to some data sources containing nu-
merical values where this section of text is present.

The regex expression we used for the data type determination is as follows:
“[0-9]+[.]?[0-9]*[\-]*([0-9]+/[0-9]+—/[0-9]+)?[\-]*(rpm|mm|inch|in|degrees c.
|degrees f.||each|g|n|kn|lbf|kgf|lb|lbs)?[]*(see diagram image)?”

The regex expression is dividablable into a number of sections.

• [0-9]+[.]?[0-9]*[\-]*([0-9]+/[0-9]+|/[0-9]+) identifies the actual number

• [\-]* Scans for spacing characters

20

• (rpm|mm|inch|in|degrees c.|degrees f.||each|g|n|kn|lbf|kgf|lb|lbs)? is an enu-
meration of units of measurement

• []* spacing characters

• (see diagram image)? Section of text which occurs within some data
sources contained within some of their numerical values

This regex expression is meant to identify numerical data within our dataset
by full matching their data value. This also includes any text within the same
data value. Units of measurement included in these data values are useful for
identification and standardization performed in step 4. see diagram image is
not useful in step 4 but is used in the matching process for completeness since
it is present within the data and its inclusion allows us to use full matching
instead of partial matching. Reducing the chance of incorrectly recognising a
textual value as a numerical one because it happens to include a number. Due
use of this regex it is likely that when new data sources are added this regex will
need to be extended due to new units of measurements or other text included
in numerically typed data.

3.5 Step 4. Numerical Identification and Stan-
dardization (Numerical Data only)

While extracting features beyond the shape of the data is difficult for textual
data due to the difficulty in processing natural language this should not be the
case for numerical data. If we want to extract additional features from numerical
data however we do need to determine the actual number contained in each
numerical value. To achieve this we need to take a number of steps. According
to current standards[19] both dots and commas can function as the decimal
separator and no thousands marker should be used this may not necessarily be
the case for the data we are working with. The programing language we used
considers a dot to be a decimal marker with commas having a different use.
Thus we need to remove any possible thousands markers and ensure all comma
decimal separators are replaced by dots.

Once we have accounted for the use of decimal and thousands separators
we should now determine what part of the data values we are checking is the
actual numeric value. Within our datasets we encountered three ways the actual
numeric values were displayed.

• A number potentially with a decimal separator.

– 70.5 is an example of this

• A number displayed as a fraction.

– 2/3 is an example of this

• A number followed by a fraction

21

– 2 1/3 is an example of this

To identify the actual numerical value in each of these cases we once again use
regular expressions.

• Our data values still need to satisfy the regex used in the type deter-
mination process so it should still satisfy “[0-9]+[.]?[0-9]*[\-]*([0-9]+/[0-
9]+—/[0-9]+)?[\-]*(rpm|mm|inch|in|degrees c.|degrees f.||each|g|n|kn|lbf
|kgf|lb|lbs)?[]*(see diagram image)?”

• We check to see how many matches with ’[0-9]+[.]?[0-9]*’ we have.

– If we have a single match this means we are dealing with the first
case and can simply change the string value to numerical value.

– If we have two matches and ’[0-9]+[.]?[0-9]*[\-]*\/[\-]*[0-9]+[.]?[0-
9]*’ can be matched we are dealing with the second case. To acquire
our actual numerical value we use division with our two matches to
acquire our a decimal representation of our fractional

– If we have three matches and ’[0-9]+[.]?[0-9]*[\-]*[0-9]+\/[0-9]+’ can
be matched we are dealing with our third case. To acquire our actual
numerical value we use add our first match to the division with the
second and third matches to acquire our a decimal representation of
our fractional

Once we have identified the actual numeric value we could consider this step
a success but to aid in comparison we would also like to ensure that values of the
same physical quality (Lengths, Weights and Force to give some examples) are
all using the same unit of measurement. For our test case we simply have a se-
quence of if/else statements checking for the presence of units of measurements
and standardizing them towards the most common unit of measurement in their
category. We standardize towards the most common unit of measurement in-
stead of the SI standard since not all numerical values have units of measurement
associated with them so converting to the most common should give the best
results for comparison. The methods we are using here are somewhat simplistic
and more complicated but better performing methods are possible.

3.6 Step 5. Data Sampling

To be able to properly use our data in machine learning for the purposes of
classification we need to turn our data values into features of those values .
However we need a sufficient number of such feature data for machine learning
and not merely a single set of features per property. To have a sufficient number
of feature data per property which each still is sufficiently characteristic enough
about the property we propose to split the data we have up into samples.

In our Data Sampling step we break up the columns we have into samples.
During this research we developed multiple methods by which samples could

22

be created. In the experiment section we will evaluate which of these methods
performs best.

Figure 3.3: Data Split

Our first method Data Split is to simply divide the columns up into samples
of the desired size. We select these values randomly instead of in order to get a
good average of the data and to avoid any potential ordering which was present
in the original input. A column will only coincidentally have a number of values
divisible by our sample size. Columns will generally not be perfectly divisible
by the sample size thus we will generally be left with a remainder. We have two
options within our process. We do not use it regardless of size or we use it if the
remainder is at least half the size of a normal sample.While this method works
fairly well on large columns it is not ideal for smaller columns which may not
generate enough samples for the machine learner to use by simple splitting.

23

Figure 3.4: Resamping

Figure 3.5: Resamping

As an alternative we developed various methods which can resample the
data, meaning that it is possible to extract more samples from a column than
would be possible from splitting the column. In general the resampling methods
work by randomly selecting values from the column to use in creating samples
and keeping the selected values selectable. We developed two resampling meth-
ods called Resampling and Individual Resampling. The differences between
the resampling methods are in when values become reselectable. In Resampling
values only become reselectable once a sample has been created, meaning that

24

within the same sample the same exact value entry cannot occur twice. In In-
dividual Resampling a value never becomes unselectable, meaning that while
extremely unlikely it is possible for a sample to be created from a single value
entry repeated.

Figure 3.6: Resamping with Limiters

A final refinement added into the resampling creation process is the addition
of limiters, clearly defining a minimum size a column needs to use it for the
sampling process. and maximum limit in how many samples may be created
from a column based on the proportional difference between the size of the
column and the size of a sample. We called this method Resampling with
Limiters.

We evaluate the performance of each of these sampling methods in section
4.1.

Since the goal is matching columns together, each created sample also has its
original column and data source name associated with it so that it is traceable.

3.7 Step 6 Feature Building

With the various columns divided into samples the Feature Building step turns
those samples into a format understandable to machine learners. By calculating
various features for each sample we get numerical representations of the shape
of the columns. The created features differ between the various data types since
both what we have to work with and how they differ within their data type is
different.

For numerical data we have the actual numbers to work with and expect the
shape of numerical columns to be found in the form of ranges or in the repeat
of data. Based on this we calculate six features for numerical data.

25

• The value of the most common entry within the sample

• The number of unique entries represented as a percentage to avoid the
sample size from influencing this.

• The minimum numerical value within the sample

• The maximum numerical value within the sample

• The mean of all numerical values within the sample

• Standard Deviation within the sample

In the case of textual data part of the problem is that the machine learning
algorithms that we use cannot utilize text directly, there are multiple ways to
deal with this problem such as a representing it in numbers using a bag of words
or other methods. For our purposes however we are trying to match based on
the shape of the data and are trying to sidestep language issues because of this
we instead calculate most features based on the character and word length of
the data. For textual features we generate the following:

• The number of unique entries represented as a percentage to avoid the
sample size from influencing this.

• The minimum amount of characters in a value within the sample

• The maximum amount of characters in a value within the sample

• The mean amount of characters within the sample

• Standard Deviation within the sample in terms of amount of characters

• The minimum amount of words in a value within the sample

• The maximum amount of words in a value within the sample

• The mean amount of words within the sample

• Standard Deviation within the sample in terms of amount of words

Once the features have been built we have two transformation steps to perform
as well.

Firstly, as mentioned in the section about textual data, machine learning al-
gorithms do no compare text directly this also counts for the associated original
column and data source name which essentially form the target answer which
the machine learner needs classify to. Specifically we want the target answer to
be the attribute we manually matched to the column meaning that the target
answer is the same across all the same columns from each data source. For this
we have a transformation table which we refer to transforming each original
column and data source name to a number we associated with the correct at-
tribute type and if we manually determined columns to contain the same type

26

of attribute the number transformed to will be the same. For example we have
the column called Inner Diameter (d) from the data source xbearings referring
to our manual match file this is associated with the attribute Inside Diameter
and referred to by the number 4. The numbers used to refer to attributes are
generated based on line the attribute is listed in the manual match file.

Secondly, we perform normalization on the generated features. We perform
Unit Standard Deviation Normalization which means we express each feature
in the form of the number of standard deviations it is away from the average
of that feature across all features of its type. For example consider an inner
diameter attribute which has a mean of 30, and a standard deviation of 5. By
applying Unit Standard Deviation Normalization we express values into num-
ber of standard deviations away from the mean instead. In our example this
means that a value of 20 is normalized into -2 and a value of 35 into 1. This
normalization is applied to each attribute meaning that all features are values
roughly around 0. We do this normalization to aid in machine learning algo-
rithms evaluating each feature equally. The functions used to apply this unit
standard deviation normalization is also delivered as an output since the same
normalization function needs to be applied to all data within the same machine
learner. In the case of new data or data kept separate for testing purposes this
normalization function produced as output is used instead of calculating one for
just the new data.

3.8 Step 7. Machine Learner

With all the pre-processing steps finished we now have data in a machine learner
ready format. Having the feature sets with their target answers in hand, the
actual machine learning is fairly straightforward. The problem we are aiming
to solve is the matching of similar columns. This is a classification task with
each target being an attribute to which samples are associated to. We have a
number of possible machine learning algorithms we can use for this task. Each
of these algorithms also have some associated hyperparameters with a number
of possible values. To determine the most optimal hyperparameter values we
use grid search to exhaustively search for the best results within the training set.

Our possible machine learning algorithms with their associated hyperparam-
eters are:

• KNearestNeighbour with N neighbours for 1 to 31 for each odd number
and metric with Euclidean and Minkowski Hyperparameters. This algo-
rithm works by examining the closest neighbours for what attribute they
belong to and based on that information predicts the attribute the fea-
ture set being evaluated belongs to. N neighbours determines how many
nearest neighbours should be checked. The metric parameter determines
how nearest is calculated.

27

• LogisticRegression with a C of 10-3 through 103, increasing in steps of
1 exponent. This algorithm works by a series of boolean tests based on
values of features to divide the dataset between the attributes.

• LinearSVC with a C of 10-3 through 103, increasing in steps of 1 exponent.
This algorithm is a support vector classification (SVC) based algorithm,
which means that attempts to divide the feature space between the differ-
ent attributes by the use of function based lines. LinearSVC uses linear
functions to define these lines.

• PolynominalSVC with a C of 10-3 through 103, increasing in steps of 1
exponent and a degree of 3.This algorithm is a support vector classifica-
tion based algorithm, which means that attempts to divide the feature
space between the different attributes by the use of function based lines.
PolynominalSVC uses polynominal functions to define these lines.

• RbfSVC with a C of 10-3 through 103, increasing in steps of 1 exponent.
This algorithm is a support vector classification based algorithm, which
means that attempts to divide the feature space between the different
attributes by the use of function based lines. RbfSVC uses radial basis
functions (Rbf) to define these lines.

• SigmoidSVC with a C of 10-3 through 103, increasing in steps of 1 ex-
ponent.This algorithm is a support vector classification based algorithm,
which means that attempts to divide the feature space between the dif-
ferent attributes by the use of function based lines. SigmoidSVC uses
sigmoid functions to define these lines.

• Multinomial Naive Bayes which is a Naive Bayes based classifier suitable
for multiple features.

3.9 Summary

By following the steps described in this chapter we can take data from different
data sources and make them matchable on a data similarity level by use of a
classification based machine learner and data characteristic based feature sets
which have been calculated from aggregated samples.

The steps can be summarized as such:

1. Translate the data sources into a single homogenous format.

2. Clean the data from garbage data

3. Determining what type of data each column is

4. Determine the numerical values for numerical data

5. Dividing the data into samples

28

6. Calculating features over those samples

7. Use the feature sets in a classification based machine learner

For a number of these steps we have a number of possible techniques and we
will evaluate which of these techniques perform best in section 4

29

Chapter 4

Experimentation

The previous chapter presented a conceptual approach for schema matching on
the basis of “shape” of the data. The approach has several steps that can be
technically realized with different algorithms and techniques. In this chapter, we
experimentally evaluate these realization options to be able to choose the one(s)
that works best. Secondly once we have made some determinations about which
options to use we evaluate the full methodology on the basis of our experimental
results. As we are working with our data set it is important to describe it in more
detail. Our data set has been collected by a webscraper which has scraped a
number of webshops that sell ball bearings. In total our data set consists of data
from 9 different data sources. While most of the harvested data does concern
ball bearings not all of them do but we have made efforts in the form of filtering
to restrict the data to just bearings. Each of our data sources is structured
as a JSON file with each product being a separate entry, each containing their
respective properties as child entries within each product entry. In total our data
set contains roughly 18500 products each of which have a number of properties
for roughly 225000 data values. When considering properties overall we have 75
different properties though the majority of the data set is distributed over 33
different properties. In general we evaluate the success of our experiments on
the basis of the score() function provided by the machine learner. This score
is based on the ratio by which feature sets are evaluated to the correct class of
properties and is defined as follows1:
nsamples

If ŷi is the predicted value of the i-th sample and yi is the corresponding
true value, then the fraction of correct predictions over nsamples is defined as

accuracy(y, ŷ) =
1

nsamples

nsamples−1∑
i=0

1(ŷi = yi)

13.3. Model evaluation: quantifying the quality of predictions scikit-learn
0.21.2 documentation, https://scikit-learn.org/stable/modules/mode_evaluation.html#
accuracy-score, Accessed: 2019-06-18

30

where 1(x) is the indicator function.
To reduce the effect of any randomness within our experiments we execute each
experiment 5 times and take a mean of these 5 scores. We also calculate a
standard deviation over these 5 scores to be able to detect if we indeed have
large amounts of deviation. In addition to the score and standard deviation we
also collect a number of metadata values for the purposes of gaining an insight
into the data we are working with at that in that exact experiment. We collect 6
different metadata values and collect them separately for textual and numerical
data.

• The number of Samples

– The exact amount different samples or feature sets that have been
used as input. Using this value we can observe how many feature
sets we have and is useful to understand the amount of data being
used.

• Attribute Count

– How many different properties each feature set can potentially be
classified as. This is again useful for understanding the amount of
data used as well as its distribution among different properties.

• Most Common Attribute

– The property which has the largest representation within the data
set. In general this is interesting comparatively.

• Most Common Attribute Count in samples

– A more interesting measurement that the most common attribute is
exactly how common it is. The biggest reason for this is the ZeroR
score described below.

• ZeroR Score

– A ZeroR Score is how accurate a classification algorithm would score
when simply always classifying a sample or feature set as the most
common class (Thus the Most Common Attribute). In general this is
not that great of a classification algorithm but it provides a valuable
baseline which can be used for comparison with how other algorithms
score. A ZeroR Score is simple to calculate by dividing the Most
Common Attribute Count with The number of Samples.

• Pure Random Score

– The Pure Random Score is also a simple classification algorithm
which can be used as a baseline comparison. The pure random al-
gorithm works by simply randomly assigning each sample or feature
to a available class. This means that the score of this algorithm is

31

calculated by dividing 1 by the number of available classes (Attribute
Count).

We have a number of different experiments which can be divided into three
broad categories.

• Sample Methods

– One of the major ways in how our preprocessing can differ is in how
it divides the data up into samples. In section 4.1 we extensively
experiment to find the most suitable sampling method.

• Machine Learning Algorithms

– Machine Learner Based Classification be be done using a large num-
ber of different algorithms. In section 4.2 we experiment to find the
most suitable Machine Learning Algorithms.

• Prediction

– In section 4.3 we shift from our arbitrary train-test split in our earlier
experiments to a more realistic case of a split on a data source level
and utilize the predict function of machine learning to evaluate a
number of different splits.

– Macro Prediction is a special subset of our prediction experiments
where instead of scoring on a per sample level we scale it up one step
and instead score on a column level. We do this by executing our
prediction experiment normally but instead of taking the per sam-
ple score we instead analyze if the majority of samples are correctly
predicted on a per column basis.

4.1 Experiments in varying Sampling Methods

One important aspect of our preprocessing is the creation of samples. By cre-
ating these samples we ensure that there is enough data to work with. It is
important to ensure that resampling is not overused, i.e., does not sample the
same values too many times. To test and validate the performance of our various
potential sampling we performed experiments for each in turn. We kept our op-
tions on other levels the same. This means we always used all the data sources,
used the nearest neighbour algorithm. Initially we set up experiments to test
the data split, resampling without reuse within the same sample, and resam-
pling with reuse within the same sample. A range of sample sizes was tested.
For both resampling methodologies we tested varying numbers of samples to
generate.

32

4.1.1 Full Dataset with randomized samples divided into
fixed size groups

Hypothesis: We expect that different sample sizes should not affect the per-
formance of the methodology, however a too small sample size would not give
an accurate idea of the data and should thus perform poorly. Similarly a too
large sample size may provide too few data points.

Experiment Setup: We process the full Deep Grooved Ball Bearing dataset
using our preprocessing steps with the sampleizer set up to split the data into
chunks of a fixed size discarding any remnants and generating all features. We
transform those features to Unit Standard Deviation. We train and test the re-
sultant processed data using a 90%/10% training/test split on a machine learner
using the nearest neighbour algorithm using default hyperparameters.

Variations in the Experiment: We test with sample sizes of 5, 50, 100,
250, and 500. Any Column which does not meet a minimum size equal to the
sample size will not generate samples since such column are too small to generate
even one sample.

Measurements: For assessing the results of this experiment we perform the
experiment 5 times and utilize the score() function from the machine learner to
calculate a mean score and a standard deviation for those scores. To gain an
insight into the data we are working with we also collect a number of metadata
values. The meta data collected are:

• The number of Samples

• Attribute Count

• Most Common Attribute

• Most Common Attribute Count in samples

• ZeroR Score

• Pure Random Score

Experiment Results:

Sample Size 5 50 100 250 500

Textual Score 0.90 0.96 0.97 0.96 0.94
Textual Score Standard
Deviation

0.003 0.003 0.002 0.008 0.010

Numerical Score 0.87 0.89 0.88 0.93 0.90
Numerical Score Standard
Deviation

0.001 0.003 0.012 0.010 0.015

Table 4.1: Results of experiment Full Dataset with randomized samples divided
into fixed size groups

33

Sample Size 5 50 100 250 500

Textual Feature Sample
Number

37081 3608 1780 663 306

Textual Attribute Count 54 33 33 27 25
Textual Most Common
Attribute

Product ID Product ID Product ID Product ID Product ID

Textual Most Common
Attribute Count

6387 628 309 113 53

Textual ZeroR Score 0.17 0.17 0.17 0.17 0.17
Textual Pure Random
Score

0.02 0.03 0.03 0.04 0.04

Numerical Feature
Sample Number 10618 1012 489 172 79
Numerical Attribute
Count

21 10 9 6 6

Numerical Most Common
Attribute

Width Width Width Width Width

Numerical Most Common
Attribute Count

3206 311 150 54 25

Numerical ZeroR Score 0.30 0.31 0.31 0.31 0.32
Numerical Pure Random
Score

0.05 0.1 0.11 0.17 0.17

Table 4.2: Metadata results of experiment Full Dataset with randomized sam-
ples divided into fixed size groups

Experiment Discussion: When looking at the results of the data we can
see several things. Firstly sample size 5 and 500 do not perform as bad as
expected but do still perform worse. both of these sample sizes have lower
textual scores scores than sample sizes 50, 100, 250 though sample size 500 does
have the second highest numerical score. The ZeroR score remains consistent
across all sample sizes. There is a small amount of variation due to the sample
size acting as a minimum size requirement and not all columns being able to meet
this requirement. Between sample size 5 and 50 there is a significant decrease in
the number of attributes. This indicates that those attributes do not have any
data columns associated with them of a size larger than 50 values. This also
means that those attributes are scarcely present. Looking at performance as well
as the number of attributes present 50, 100 and 250 as sample sizes perform best.
The most common attribute remains the same across all sample sizes which is
logical. It seems that roughly 1/6th of the textual data values is product ID
and roughly 1/3rd of the numerical data is width data. A potential issue when
using this methodology however is that we have relatively few samples to work
with.

4.1.2 Full Dataset with fixed size samples created from
resampling the data

Hypothesis: We expect that different sample sizes should not affect the per-
formance of the methodology,however a too small sample size would not give an

34

accurate idea of the data and should thus perform poorly. Similarly a too large
sample size may provide too few data points.

Experiment Setup: We will process the full Deep Grooved Ball Bearing
dataset using our preprocessing steps with the sampleizer set up to generate a
fixed number of samples from each data source of fixed size and generating all
features. The way each sample is generated is by collecting a random selection
of data values equal to the sample size before returning all the collected val-
ues to the available pool. This means that within the same sample the same
exact entry cannot be repeated but across all samples it may be used several
times. We transform the generated features to Unit Standard Deviation. We
will train and test the resultant processed data using a 90%/10% training/test
split on a machine learner using the nearest neighbour algorithm using default
hyperparameters.

Variations in the Experiment: We will test with 100 and 1000 samples
being generated For each of those 2 sample counts we will generate samples sizes
of 5, 50, 100, 250. and 500. Any Column which does not meet a minimum size
equal to the sample size will not generate samples since such column are too
small to generate even one sample.

Measurements: For assessing the results of this experiment we will perform
the experiment 5 times and utilize the score() function from the machine learner
to calculate a mean score and a standard deviation for those scores. To gain an
insight into the data we are working with we also collect a number of metadata
values. The meta data collected are:

• The number of Samples

• Attribute Count

• Most Common Attribute

• Most Common Attribute Count in samples

• ZeroR Score

• Pure Random Score

Experiment Results:

Sample Size 5 50 100 250 500

Textual Score 0.83 0.96 0.98 0.993 0.99
Textual Score Standard
Deviation

0.006 0.006 0.002 0.001 0.001

Numerical Score 0.79 0.92 0.92 0.91 0.90
Numerical Score Standard
Deviation

0.002 0.004 0.003 0.003 0.004

Table 4.3: Results of experiment Full Dataset with fixed size samples created
from resampling the data for 100 samples.

35

Sample Size 5 50 100 250 500

Textual Feature
Sample Number 12000 8200 7800 5800 4800
Textual Attribute Count 54 33 33 27 25
Textual Most Common
Attribute

Product ID Product ID Product ID Product ID Product ID

Textual Most Common
Attribute Count

1600 1400 1300 900 700

Textual ZeroR Score 0.13 0.17 0.17 0.16 0.15
Textual Pure Random
Score

0.019 0.03 0.03 0.04 0.04

Numerical Feature Sample
Number

5400 3100 2600 1600 1300

Numerical Attribute
Count

21 10 9 6 6

Numerical Most Common
Attribute

Width Width Width Width Width

Numerical Most Common
Attribute Count

1200 900 700 500 400

Numerical ZeroR Score 0.22 0.29 0.27 0.31 0.31
Numerical Pure Random
Score

0.05 0.1 0.11 0.17 0.17

Table 4.4: Metadata results of experiment Full Dataset with fixed size samples
created from resampling the data for 100 samples.

Sample Size 5 50 100 250 500

Textual Score 0.85 0.97 0.98 0.99 0.99
Textual Score Standard
Deviation

0.006 0.003 0.001 0.002 0.002

Numerical Score 0.81 0.94 0.9 0.92 0.90
Numerical Score Standard
Deviation

0.002 0.001 0.002 0.002 0.002

Table 4.5: Results of experiment Full Dataset with fixed size samples created
from resampling the data for 1000 samples.

36

Sample Size 5 50 100 250 500

Textual Feature Sample
Number

120000 82000 78000 58000 48000

Textual Attribute Count 54 33 33 27 25
Textual Most Common
Attribute

Product ID Product ID Product ID Product ID Product ID

Textual Most Common
Attribute Count

16000 14000 13000 9000 7000

Textual ZeroR Score 0.13 0.17 0.17 0.16 0.15
Textual Pure Random
Score

0.02 0.03 0.03 0.04 0.04

Numerical Feature Sample
Number

54000 31000 26000 16000 13000

Numerical Attribute
Count

21 10 9 6 6

Numerical Most Common
Attribute

Width Width Width Width Width

Numerical Most Common
Attribute Count

12000 9000 7000 5000 4000

Numerical ZeroR Score 0.22 0.29 0.27 0.312 0.31
Numerical Pure Random
Score

0.05 0.1 0.11 0.17 0.17

Table 4.6: Metadata results of experiment Full Dataset with fixed size samples
created from resampling the data for 1000 samples.

Experiment Discussion: While the final average scores of this method are
higher than the earlier data split method we can also note that as the number
of samples increase we are having a convergent effect. Examining the ZeroR
and the ratio between the number of samples and the most common attribute
count shows that this is changing significantly as the sample size increases.
Comparing this to the data split method where this ratio (and thus the ZeroR
score) was fairly consistent and we did not have as much of a convergent effect
it seems likely that we have some distortion due to oversampling. Comparing
the generation of 100 and 1000 samples is less significant due to this distortion
but overall it seems that generating 1000 samples performs slightly better.

4.1.3 Full Dataset with fixed size samples created from
resampling the data with repeat in the same data

Hypothesis: We expect that different sample sizes should not affect the per-
formance of the methodology,however a too small sample size would not give an
accurate idea of the data and should thus perform poorly. Similarly a too large
sample size may provide too few data points. This specific form of sampling
may additionally display quirks in datasets of insufficient size since it is now
able to generate such data but the repetition may be too much.

Experiment Setup: We will process the full Deep Grooved Ball Bearing
dataset using our preprocessing steps with the sampleizer set up to generate a
fixed number of samples from each data source of fixed size and generating all

37

features. The way each sample is generated is by collecting a random selection
of data values equal to the sample size with each data value being available for
reuse within the same sample. This means that within the same sample the
same exact entry can be repeated as well as across all samples. We transform
the generated features to Unit Standard Deviation. We will train and test
the resultant processed data using a 90%/10% training/test split on a machine
learner using the nearest neighbour algorithm using default hyperparameters.

Variations in the Experiment: We will test with 100 and 1000 samples
being generated For each of those 2 sample counts we will generate samples sizes
of 5, 50, 100, 250, and 500. Any Column which does not meet a minimum size
equal to the sample size will not generate samples since such column are too
small to generate even one sample.

Measurements: For assessing the results of this experiment we will perform
the experiment 5 times and utilize the score() function from the machine learner
to calculate a mean score and a standard deviation for those scores. To gain an
insight into the data we are working with we also collect a number of metadata
values. The meta data collected are:

• The number of Samples

• Attribute Count

• Most Common Attribute

• Most Common Attribute Count in samples

• ZeroR Score

• Pure Random Score

Experiment Results:

Sample Size 5 50 100 250 500

Textual Score 0.82 0.96 0.97 0.99 0.99
Textual Score Standard
Deviation

0.003 0.004 0.005 0.001 0.002

Numerical Score 0.78 0.92 0.92 0.91 0.89
Numerical Score Standard
Deviation

0.002 0.004 0.007 0.003 0.003

Table 4.7: Results of experiment Full Dataset with fixed size samples created
from resampling the data with repeat in the same data for 100 samples.

38

Sample Size 5 50 100 250 500

Textual Feature Sample
Number

12000 8200 7800 5800 4800

Textual Attribute Count 54 33 33 27 25
Textual Most Common
Attribute

Product ID Product ID Product ID Product ID Product ID

Textual Most Common
Attribute Count

1600 1400 1300 900 700

Textual ZeroR Score 0.13 0.17 0.17 0.16 0.15
Textual Pure Random
Score

0.02 0.03 0.03 0.04 0.04

Numerical Feature Sample
Number

5400 3100 2600 1600 1300

Numerical Attribute
Count

21 10 9 6 6

Numerical Most Common
Attribute

Width Width Width Width Width

Numerical Most Common
Attribute Count

1200 900 700 500 400

Numerical ZeroR Score 0.22 0.29 0.27 0.31 0.31
Numerical Pure Random
Score

0.05 0.10 0.11 0.17 0.17

Table 4.8: Metadata results of experiment Full Dataset with fixed size samples
created from resampling the data with repeat in the same data for 100 samples.

Sample Size 5 50 100 250 500

Textual Score 0.84 0.97 0.98 0.99 0.99
Textual Score Standard
Deviation

0.007 0.003 0.001 0.002 0.000

Numerical Score 0.81 0.94 0.94 0.92 0.90
Numerical Score Standard
Deviation

0.002 0.001 0.001 0.001 0.002

Table 4.9: Results of experiment Full Dataset with fixed size samples created
from resampling the data with repeat in the same data for 1000 samples.

39

Sample Size 5 50 100 250 500

Textual Feature Sample
Number

120000 82000 78000 58000 48000

Textual Attribute Count 54 33 33 27 25
Textual Most Common
Attribute

Product ID Product ID Product ID Product ID Product ID

Textual Most Common
Attribute Count

16000 14000 13000 9000 7000

Textual ZeroR Score 0.13 0.17 0.17 0.16 0.15
Textual Pure Random
Score

0.02 0.03 0.03 0.03 0.04

Numerical Feature Sample
Number

54000 31000 26000 16000 13000

Numerical Attribute
Count

21 10 9 6 6

Numerical Most Common
Attribute

Width Width Width Width Width

Numerical Most Common
Attribute Count

12000 9000 7000 5000 4000

Numerical ZeroR Score 0.22 0.29 0.27 0.31 0.31
Numerical Pure Random
Score

0.05 0.1 0.11 .0.17 0.17

Table 4.10: Metadata results of experiment Full Dataset with fixed size samples
created from resampling the data with repeat in the same data for 1000 samples.

Experiment Discussion: Our observations of this experiment shows mostly
the same result as the resampling method without reuse and the discussion for
that experiment also applies to this experiment.

On the basis of these experiments we see that the resampling methods have is-
sues and are not suitable in their current state. The data split sampling method
does seem to work as a base line method but 1700 and 500 samples for textual
and numerical data respectively seems like a small number.. We have a number
of issues which we need to address if we want to create an improved sampling
method capable of generating more samples than a data split method. We cant
simply resample each data column the same amount of time since if we do so
we lose the proportionality of the data and overtrain on too similar samples
causing a convergent effect. Finally we noted that we do not establish a lower
bound on the data split method resulting in some attributes having only a few
samples associated with them. This number of samples is so low that a machine
learner cannot be effectively trained on those samples but the attribute is still
present in the machine learner. Having determined these issues we devised an
additional sampling method to alleviate these issues. This method is based on
our resampling without reuse within the same sample method however we have
set additional requirements on the minimum size of the dataset as well as an
additional limiter on the number of samples that can be created based on the
size of the dataset.

40

4.1.4 Issues found based on the tested sampling methods

Found Issues: Based on the previous experiments we have found several po-
tential issues with our current methods of sampling. The current requirements
we have set for the data to be considered suitable for use may be incorrect. This
manifests itself into a variety of issues:

• When generating samples for the split into fixed group methodology small
data samples may generate too few samples meaning that there are is not
enough representation of some attributes when creating the training splits.

• In the various resampling methods smaller datasets (not much bigger than
the sample size) may result in too much repeat in the sampled data since
from that small dataset all generated samples are nearly identical, meaning
that scores are artificially inflated and that there is a measure of overtrain-
ing.

• This issue with smaller datasets cuts both ways since we are generating
the same number of samples regardless of how large each dataset is. Since
we are working with multiple datasets each of the same attribute this
means that proportionality is lost. While the effect of this is difficult to
determine we do feel that maintaining this on some level is important.

Having determined these issues we devised an additional sampling method to
alleviate these issues. This method is based on our second sampling method
however we have set additional requirements on the minimum size of the dataset
as well as an additional limiter on the number of samples that can be created
based on the size of the dataset.

4.1.5 Issues found based on the tested sampling methods

Found Issues: Based on the previous experiments we have found several po-
tential issues with our current methods of sampling. The current requirements
we have set for the data to be considered suitable for use may be incorrect. This
manifests itself into a variety of issues:

• When generating samples for the split into fixed group methodology small
data samples may generate too few samples meaning that there are is not
enough representation of some attributes when creating the training splits.

• In the various resampling methods smaller datasets (not much bigger than
the sample size) may result in too much repeat in the sampled data since
from that small dataset all generated samples are nearly identical, meaning
that scores are artificially inflated and that there is a measure of overtrain-
ing.

• This issue with smaller datasets cuts both ways since we are generating
the same number of samples regardless of how large each dataset is. Since
we are working with multiple datasets each of the same attribute this

41

means that proportionality is lost. As we are not trying to compensate
for distribution of data and even of that case this is a rather unguided
method we want to maintain this proportionality.

Having determined these issues we devised an additional sampling method to
alleviate these issues. This method is based on our second sampling method
however we have set additional requirements on the minimum size of the dataset
as well as an additional limiter on the number of samples that can be created
based on the size of the dataset.

4.1.6 Full Dataset with fixed size samples created from
resampling the data with additional limiters

When using our new revised method we once again utilize sampling with return-
ing the data to the pool once each feature is generated however we have added
two additional limiters. For a group of data to be allowed to be sampled it must
be at least 2 times the sample size (50 sample size means a minimum dataset
size of 100) and to attempt to keep some proportionality a group of data may
only be used to generate samples equal to 3 times the dataset size divided by
the sample size (in our example of a sample size of 50 with a data group size of
100 this mean 6 samples of 50 each (3*100/50=6)).

Hypothesis: We believe that with these additional limiters the revised
sampling method will score worse than the previous resampling methods but
that this will mainly be due to the fact that the previous resampling methods
were working with distorted sample data resulting in artificially higher scores.
This revised method should perform roughly similar to the data split method
but should be more robust than that methodology due to the resampling.

Experiment Setup: We will process the full Deep Grooved Ball Bearing
dataset using our preprocessing steps with the sampleizer set up to generate a
fixed number of samples from each data source of fixed size and generating all
features. The way each sample is generated is by collecting a random selection
of data values equal to the sample size before returning all the collected val-
ues to the available pool. This means that within the same sample the same
exact entry cannot be repeated but across all samples it may be used several
times. We transform the generated features to Unit Standard Deviation. We
will train and test the resultant processed data using a 3 fold cross validation
on a machine learner using the nearest neighbour algorithm with grid searching
hyperparameters for each uneven amount of neighbours from 1 to 31 and using
.euclidean or minkowski distance metrics.

Variations in the Experiment: We will test with 100 and 1000 samples
being generated. For each of those sample numbers we will generate samples
sizes of 5, 50, 100, 250, and 500.

Measurements: For assessing the results of this experiment we will perform
the experiment 5 times and utilize the score() function from the machine learner
to calculate a mean score and a standard deviation for those scores. To gain an

42

insight into the data we are working with we also collect a number of metadata
values. The meta data collected are:

• The number of Samples

• Attribute Count

• Most Common Attribute

• Most Common Attribute Count in samples

• ZeroR Score

• Pure Random Score

Experiment Results:

Sample Size 5 50 100 250 500

Textual Score 0.83 0.95 0.97 0.99 0.99
Textual Score Standard
Deviation

0.011 0.005 0.006 0.004 0.007

Numerical Score 0.77 0.83 0.86 0.91 0.90
Numerical Score Standard
Deviation

.0071 0.017 0.014 0.020 0.032

Table 4.11: Results of experiment Full Dataset with fixed size samples created
from resampling the data with additional limiters 100 samples.

43

Sample Size 5 50 100 250 500

Textual Feature Sample
Number

10044 5956 4523 2033 956

Textual Attribute Count 54 33 33 27 25
Textual Most Common
Attribute

Product ID Product ID Product ID Product ID Product ID

Textual Most Common
Attribute Count

1524 962 709 343 161

Textual ZeroR Score 0.15 0.16 0.16 0.17 0.17
Textual Pure Random
Score

0.019 0.03 0.03 0.05 0.04

Numerical Feature Sample
Number

4279 1806 1241 532 247

Numerical Attribute
Count

21 10 9 6 6

Numerical Most Common
Attribute

Width Width Width Width Width

Numerical Most Common
Attribute Count

1110 535 372 168 78

Numerical ZeroR Score 0.26 0.30 0.30 0.32 0.32
Numerical Pure Random
Score

0.05 0.10 0.11 0.17 0.17

Table 4.12: Metadata results of experiment Full Dataset with fixed size samples
created from resampling the data with additional limiters for 100 samples.

Sample Size 5 50 100 250 500

Textual Score 0.88 0.97 0.97 0.99 0.99
Textual Score Standard
Deviation

0.005 0.003 0.004 0.005 0.004

Numerical Score 0.80 0.88 0.88 0.91 0.91
Numerical Score Standard
Deviation

0.004 0.011 0.011 0.022 0.031

Table 4.13: Results of experiment Full Dataset with fixed size samples created
from resampling the data with additional limiters for 1000 samples.

44

Sample Size 5 50 100 250 500

Textual Feature Sample
Number

61525 10917 5413 2033 956

Textual Attribute Count 54 33 33 27 25
Textual Most Common
Attribute

Product ID Product ID Product ID Product ID Product ID

Textual Most Common
Attribute Count

9763 1900 939 343 161

Textual ZeroR Score 0.16 0.17 0.17 0.17 0.17
Textual Pure Random
Score

0.02 0.03 0.03 0.04 0.04

Numerical Feature Sample
Number

19309 3058 1484 532 247

Numerical Attribute
Count

21 10 9 6 6

Numerical Most Common
Attribute

Width Width Width Width Width

Numerical Most Common
Attribute Count

5580 938 453 168 78

Numerical ZeroR Score 0.29 0.31 0.31 0.32 0.32
Numerical Pure Random
Score

0.05 0.10 0.11 0.17 0.17

Table 4.14: Metadata results of experiment Full Dataset with fixed size samples
created from resampling the data with additional minimals and maximals for
1000 samples.

Experiment Discussion: The methodology of resampling with limiters
again scores well but comparing to our other methodologies it actually scores
the worst with the exception of data split when considering higher sample sizes.
Looking at the metadata however this seems to be our most promising method
so far. Firstly unlike the previous resampling methods the distortion we noticed
in the previous resampling methods is significantly less present here. The ZeroR
score (which originates from the ratio between the number of samples and the
most common attribute) is far more consistent with the results from the data
split method. The main issue we had with using the data split method is also
alleviated in that for the samples sizes of 100 and upwards roughly 3 times as
many samples are generated. This combined with the fact that when increasing
the target of generated samples per column from 100 to 1000 there is only a
20% increase in the number of generated samples in the case of sample size 100
and no increase for 250 and 500 sample sizes indicates to us that for most the
main limiting factor in the number of samples is the new limiter we imposed on
how many samples can be generated from a column based on the ratio between
the number of data values within the column and the sample size which with
our setting translated to 3 times that number.

45

4.1.7 Graphical Comparison between sampling methods

To improve the readability and aid in the comparison of the various methods we
have generated a number of graphs from the tabulated scores of each sampling
method.

Figure 4.1: Graph of the textual scores for all previous sampling experiments.

46

Figure 4.2: Graph of the textual scores for all previous sampling experiments.

Figure 4.3: Graph of the ZeroR textual scores for all previous sampling ex-
periments. Resampling 100, Resampling 1000, Individual Resampling 100 and
Individual Resampling 1000 are all identical in this graph.

47

Figure 4.4: Graph of the ZeroR textual scores for all previous sampling ex-
periments. Resampling 100, Resampling 1000, Individual Resampling 100 and
Individual Resampling 1000 are all identical in this graph.

As discussed in the individual experiment discussions we can draw a number
conclusions on the basis of these graphs. Firstly as we initially hypothesized
low sample sizes perform poorly but to our surprise even the sample size of 50
performs fairly well though the larger sample sizes do perform better. When
considering larger sample sizes the various methodologies all perform with higher
scores with the exception of the data split and resampling with limiters meth-
ods. This also brings us to an issue with the resampling methods where they
seem to be overtraining or becoming distorted in different ways. This conclu-
sion is also supported when examining the ZeroR graphs which show that with
the exception of the resampling with limiters with 1000 samples to be generated
there is a significant deviance from the data split method with can be considered
the default. This suggests to use one of those two methodologies considering
that the other methodologies are undesirably distorting the data. Comparing
between these two methodologies suggests to use the resampling with limiters
methodology since this increases the number of available samples which gen-
erally desirable with machine learning. A final observation is that with the
current testing method and machine learning algorithm matching textual data
seems easier than matching numerical data. This is unlike our expectations but
we will not draw any conclusions from this at this point since further experi-
ments will provide more information.

From examining these graphs and the associated tables we can draw a num-
ber of conclusions.

48

• As hypothesized low samples sizes perform poorly but even a sample size
of 50 performs fairly well.

• Larger samples size perform poorly when looking at the data split method
but in the resampling methods this only leads to an increased performance,
if in our new resampling method with limiters to a lesser extent.

• Textual data seems easier to match than Numerical Data.

• There are fairly large ZeroR deviations in the resampling methods com-
pared to the data split method with the exception of the resampling with
limiters method with a sample number of a 1000. To us this seems like a
good indicator of the distortion discussed earlier.

Based upon these results using our resampling with limiters method with a
sample size of 250 and a sample number of 1000 seems to have the best results.

4.1.8 Comparison with the exact same datasets

Until this point we had one additional factor of difference we had not counted
on. For each of these sample sizes and sample counts we have been working with
different restrictions on the data due to requirements of each algorithm. Thus to
truly test and see what algorithm performs best we should test the algorithms
again but with a set of data that satisfies all requirement. To achieve this we
set up a requirement of a minimum size of 750 for each dataset to be considered
and tested each algorithm with this data for the sample sizes of 50,100 and 250.

Hypothesis: We still expect roughly the same results as our previous ex-
periments showed but this experiment should provide important confirmation.

Experiment Setup: We will process the full Deep Grooved Ball Bearing
dataset with a minimum size requirement to columns of 750 data values using
our preprocessing steps with the sampleizer set up to generate samples based on
our various sampling algorithms and generating all features. We transform the
generated features to Unit Standard Deviation. We will train and test the re-
sultant processed data using a 3 fold cross validation on a machine learner using
the nearest neighbour algorithm with grid searching hyperparameters for each
uneven amount of neighbours from 1 to 31 and using .euclidean or minkowski
distance metrics.

Variations in the Experiment: We will generate sample sizes of 50, 100
and 250. We will use the Data Split, Resampling, Individual Resampling and
Resamping with Limiters as our sampling techniques. We will be generating
100 and 1000 samples per column in the case of our resampling algorithms

Measurements: For assessing the results of this experiment we will perform
each experiment 5 times and utilize the score() function from the machine learner
to calculate a mean score and a standard deviation for those 5 scores. To gain an
insight into the data we are working with we also collect a number of metadata
values. The meta data collected are:

• The number of Samples

49

• Attribute Count

• Most Common Attribute

• Most Common Attribute Count in samples

• ZeroR Score

• Pure Random Score

Experiment Results:

Sample Size 50 100 250

Textual Feature Number
of Samples

3406 1691 663

Textual Attribute Count 27 27 27
Textual Most Common
Attribute

Product ID Product ID Product ID

Textual Most Common
Attribute Count

577 286 113

Textual ZeroR Score 0.17 0.17 0.17
Textual Pure Random
Score

0.04 0.04 0.04

Numerical Feature Sample
Number

893 443 172

Numerical Attribute
Count

6 6 6

Numerical Most Common
Attribute

Width Width Width

Numerical Most Common
Attribute Count

282 140 54

Numerical ZeroR Score 0.32 0.32 0.32
Numerical Pure Random
Score

0.17 0.17 0.17

Table 4.15: Metadata results for the Data Split technique when filtering for a
minimum column size of 750 data records.

50

Sample Size 50 100 250

Textual Score 0.96 0.97 0.97
Textual Score Standard
Deviation

0.005 0.007 0.015

Numerical Score 0.89 0.89 0.88
Numerical Score Standard
Deviation

0.011 0.021 0.042

Table 4.16: Results for the Data Split technique when filtering for a minimum
column size of 750 data records.

Sample Size 50 100 250

Textual Feature Sample
Number

5800 5800 5800

Textual Attribute Count 27 27 27
Textual Most Common
Attribute

Product ID Product ID Product ID

Textual Most Common
Attribute Count

900 900 900

Textual ZeroR Score 0.16 0.16 0.16
Textual Pure Random
Score

0.04 0.04 0.04

Numerical Feature Sample
Number

1600 1600 1600

Numerical Attribute
Count

6 6 6

Numerical Most Common
Attribute

Width Width Width

Numerical Most Common
Attribute Count

500 500 500

Numerical ZeroR Score 0.31 0.31 0.31
Numerical Pure Random
Score

0.17 0.17 0.17

Table 4.17: Metadata results for the technique algorithm with 100 samples when
filtering for a minimum column size of 750 data records.

51

Sample Size 50 100 250

Textual Score 0.96 0.97 0.98
Textual Score Standard
Deviation

0.006 0.004 0.003

Numerical Score 0.83 0.86 0.87
Numerical Score Standard
Deviation

0.012 0.015 0.014

Table 4.18: Results for the Resampling technique with 100 samples when filter-
ing for a minimum column size of 750 data records.

Sample Size 50 100 250

Textual Feature Sample
Number

58000 58000 58000

Textual Attribute Count 27 27 27
Textual Most Common
Attribute

Product ID Product ID Product ID

Textual Most Common
Attribute Count

9000 9000 9000

Textual ZeroR Score 0.16 0.16 0.16
Textual Pure Random
Score

0.004 0.04 0.04

Numerical Fea-
ture/Sample Number

16000 16000 16000

Numerical Attribute
Count

6 6 6

Numerical Most Common
Attribute

Width Width Width

Numerical Most Common
Attribute Count

5000 5000 5000

Numerical ZeroR Score 0.31 0.31 0.31
Numerical Pure Random
Score

0.17 0.17 0.17

Table 4.19: Metadata results for the Resampling technique with 1000 samples
when filtering for a minimum column size of 750 data records.

52

Sample Size 50 100 250

Textual Score 0.97 0.98 0.99
Textual Score Standard
Deviation

0.004 0.005 0.002

Numerical Score 0.85 0.87 0.87
Numerical Score Standard
Deviation

0.005 0.003 0.005

Table 4.20: Results for the Resampling technique with 1000 samples when fil-
tering for a minimum column size of 750 data records.

Sample Size 50 100 250

Textual Feature Sample
Number

5800 5800 5800

Textual Attribute Count 27 27 27
Textual Most Common
Attribute

Product ID Product ID Product ID

Textual Most Common
Attribute Count

900 900 900

Textual ZeroR Score 0.16 0.16 0.16
Textual Pure Random
Score

0.04 0.04 0.04

Numerical Feature Sample
Number

1600 1600 1600

Numerical Attribute
Count

6 6 6

Numerical Most Common
Attribute

Width Width Width

Numerical Most Common
Attribute Count

500 500 500

Numerical ZeroR Score 0.31 0.31 0.31
Numerical Pure Random
Score

0.17 0.17 0.17

Table 4.21: Metadata results for the Individual Resampling technique with 100
samples when filtering for a minimum column size of 750 data records.

53

Sample Size 50 100 250

Textual Score 0.96 0.97 0.98
Textual Score Standard
Deviation

0.005 0.004 0.002

Numerical Score 0.83 0.85 0.86
Numerical Score Standard
Deviation

0.011 0.008 0.014

Table 4.22: Results for the Individual Resampling technique with 100 samples
when filtering for a minimum column size of 750 data records.

Sample Size 50 100 250

Textual Feature/Sample
Number

58000 58000 58000

Textual Attribute Count 27 27 27
Textual Most Common
Attribute

Product ID Product ID Product ID

Textual Most Common
Attribute Count

9000 9000 9000

Textual ZeroR Score 0.16 0.16 0.16
Textual Pure Random
Score

0.04 0.04 0.04

Numerical Fea-
ture/Sample Number

16000 16000 16000

Numerical Attribute
Count

6 6 6

Numerical Most Common
Attribute

Width Width Width

Numerical Most Common
Attribute Count

5000 5000 5000

Numerical ZeroR Score 0.31 0.31 0.31
Numerical Pure Random
Score

0.17 0.17 0.17

Table 4.23: Metadata results for the Individual Resampling technique with 1000
samples when filtering for a minimum column size of 750 data records.

54

Sample Size 50 100 250

Textual Score 0.97 0.98 0.99
Textual Score Standard
Deviation

0.004 0.001 0.002

Numerical Score 0.85 0.87 0.87
Numerical Score Standard
Deviation

0.006 0.005 0.003

Table 4.24: Results for the Individual Resampling technique with 1000 samples
when filtering for a minimum column size of 750 data records.

Sample Size 50 100 250

Textual Feature Sample
Number

5328 4245 2033

Textual Attribute Count 27 27 27
Textual Most Common
Attribute

Product ID Product ID Product ID

Textual Most Common
Attribute Count

804 640 343

Textual ZeroR Score 0.15 0.15 0.17
Textual Pure Random
Score

0.04 0.04 0.04

Numerical Feature Sample
Number

1438 1098 532

Numerical Attribute
Count

6 6 6

Numerical Most Common
Attribute

Width Width Width

Numerical Most Common
Attribute Count

446 342 168

Numerical ZeroR Score 0.32 0.32 0.32
Numerical Pure Random
Score

0.17 0.17 0.17

Table 4.25: Metadata results for the Resampling with Limiters technique with
100 samples when filtering for a minimum column size of 750 data records.

55

Sample Size 50 100 250

Textual Score 0.96 0.97 0.98
Textual Score Standard
Deviation

0.004 0.005 0.002

Numerical Score 0.82 0.89 0.91
Numerical Score Standard
Deviation

0.012 0.016 0.011

Table 4.26: Results for the Resampling with Limiters technique with 100 sam-
ples when filtering for a minimum column size of 750 data records.

Sample Size 50 100 250

Textual Feature Sample
Number

10289 5135 2033

Textual Attribute Count 27 27 27
Textual Most Common
Attribute

Product ID Product ID Product ID

Textual Most Common
Attribute Count

1742 870 343

Textual ZeroR Score 0.17 0.17 0.17
Textual Pure Random
Score

0.04 0.04 0.04

Numerical Feature Sample
Number

2690 1341 532

Numerical Attribute
Count

6 6 6

Numerical Most Common
Attribute

Width Width Width

Numerical Most Common
Attribute Count

849 423 168

Numerical ZeroR Score 0.32 0.32 0.32
Numerical Pure Random
Score

0.17 0.17 0.17

Table 4.27: Metadata results for the Resampling with Limiters technique with
1000 samples when filtering for a minimum column size of 750 data records.

56

Sample Size 50 100 250

Textual Score 0.97 0.98 0.99
Textual Score Standard
Deviation

0.003 0.004 0.003

Numerical Score 0.90 0.91 0.91
Numerical Score Standard
Deviation

0.009 0.014 0.021

Table 4.28: Results for the Resampling with Limiters technique with 1000 sam-
ples when filtering for a minimum column size of 750 data records.

Experiment Discussion:

Figure 4.5: Graph of the textual scores for the sampling experiments with the
same dataset by filtering for a minimum column size of 750 data records. Re-
sampling 1000, Individual Resampling 1000 and Resampling with Limiters 1000
are all nearly identical in this graph.

57

Figure 4.6: Graph of the textual scores for the sampling experiments with the
same dataset by filtering for a minimum column size of 750 data records. Resam-
pling 1000 and Individual Resampling 1000 are nearly identical in this graph.

58

Figure 4.7: Graph of the ZeroR textual scores for the sampling experiments with
the same dataset by filtering for a minimum column size of 750 data records.
Resampling 1000, Individual Resampling 1000 and Resampling with Limiters
1000 are all nearly identical in this graph.

59

Figure 4.8: Graph of the ZeroR textual scores for the sampling experiments with
the same dataset by filtering for a minimum column size of 750 data records.
Resampling 1000, Individual Resampling 1000 and Resampling with Limiters
1000 are all identical in this graph.

From examining these graphs and the underlying experiment results we can
again make some observations and draw conclusions.

• Looking at the textual ZeroR graph we can note that with the exception
of Resampling with limiters with a 1000 samples to be generated all re-
sampling methods stil deviate from the ZeroR from data split indicating
that there is still some level of distortion happening.

• In the case of the numerical ZeroR all methods score roughly equal which
is interesting.

– A possible explanation for why the numerical ZeroR remains fairly
consistent in this case unlike our other experiments where it seems
to be a good indicator for the overall data being distorted can be
found in the nature of our data and the fact that we have filtered our
all columns smaller than 750 data values. The nature of our data is
that of products which logically possess all applicable attributes to
describe them. It could be that due to the extra filtering only those
attributes which are core to the product remain. Meaning that each
column is present roughly equally on a per data source level. Due
to this it does not matter what sampling method we use in terms of
the ratios of each column since the starting size is the same for each
column.

60

• When considering the score graph for textual data all resampling methods
which attempt to generate 1000 samples perform best indicating that a
larger amount of samples to work with is beneficial for matching.

• Resampling with limiters with a 1000 samples to be generated has roughly
the same amount of samples as the normal Resampling methods which
generate 100 samples yet there are significant score differences.

• When considering the numerical score graph only Resampling with limiters
with a 1000 samples to be generated scores better than the date split
method.

From our observations so far its seem that Resampling with limiters with a 1000
samples to be generated is the best method. When considering sample sizes
both 100 and 250 score similarly with a minor increase in score for the larger
sample size with both being similar to the data split method when considering
ZeroR. While the 250 sample size technically performed slightly better in these
experiments we chose to use a sample size 100 on the basis that this will result
in more samples to work with overall but still of sufficient size to characterize
attributes.

From this we conclude that using the resampling method with limiters with a
sample size of 100 and 1000 sample number performs the best. When comparing
this to the unfiltered methodology this setup also seems to work there.

4.2 Experiments with using different machine
learning algorithms

Thus far we have used the Nearest Neighbour algorithm for the matching in our
machine learner but there are multiple classification algorithms available to us.
To determine which algorithms perform best we performed experiments testing
to determine which algorithms perform best.

Hypothesis: It is difficult for us to set expectations. We expect that Kn-
earestNeighbour will perform well as it has been performing well so far and that
situation should not change here. Other algorithms will probably also perform
well but the differences between this are hard for use to predict at this point.

Experiment Setup: We will process the full Deep Grooved Ball Bearing
dataset using our preprocessing steps with the sampleizer set up to generate
up to a 1000 samples from each column using the Resampling with Limiters
method. We will only consider columns which have a minimum size of 750 data
values. We generate all features. We transform the generated features to Unit
Standard Deviation. We will train and test the resultant processed data using a
3 fold cross validation on a machine learner using varying classification machine
learning algorithms

Variations in the Experiment: We will test with the following machine
learning algorithms.

61

• KNearestNeighbour with n neighbours for 1 to 31 for each uneven number
and metric euclidean and minkowski Hyperparameters

• LogisticRegression with a C of 10-3 through 103, increasing in steps of 1
exponent and using saga as solver.

• LinearSVC with a C of 10-3 through 103, increasing in steps of 1 exponent.

• PolynominalSVC with a C of 10-3 through 103, increasing in steps of 1
exponent and a degree of 3.

• RbfSVC with a C of 10-3 through 103, increasing in steps of 1 exponent.

• SigmoidSVC with a C of 10-3 through 103, increasing in steps of 1 expo-
nent.

• Multinomial Naive Bayes

Measurements: For assessing the results of this experiment we will use
the score() function from the machine learner.

Experiment Results:

Machine
Learning
Algorithm

KNearest
Neighbour

Logistic
Regression

Linear
SVC

Polynominal
SVC

Rbf SVC Sigmoid
SVC

Naive
Bayes

Textual
Score

0.98 0.90 0.88 0.97 0.98 0.58 0.48

Numerical
Score

0.91 0.82 0.81 0.89 0.92 0.81 0.33

Table 4.29: Results of the Machine Learner Algorithm Experiments

Experiment Discussion: Examining our results we see that KNearest-
Neighbour and a support vector machine using a radial basis function kernel
perform best. The polynominal based support vector machine comes third losing
some points in both textual and numerical cases. Of our remaining algorithms
Sigmoid based support vector machines and Naive Bayes seem non viable but
Logistic Regression and Linear based suppor vector machines seem workable.

On the basis of these results it is difficult to decide on a single algorithm
due to the close results between KNearestNeighbour and Rbf SVC. We decided
that we will test using both algorithms.

4.3 Experiments with prediction

So far we have not split our test and training data beforehand and simply used
build in cross validation generators to split our data into a training set and a
test set. This indicates to us that our theory that matching on the basis of
data characteristics and commonality is correct on at least some level. Due to
the way cross validation generators split data it is however possible that these

62

correct matches are made on the basis of similarity to samples from the same
column. If this is the case this is already valuable and interesting to know but
for more practical purposes we want to test the case where we split our test and
training data on a data source level. This is the more practical case since the
end application is the macro scale task of matching columns of the same prop-
erty together. By splitting on a data source level we make it so that samples
generated from the same column cannot be correctly classified on the basis of
samples generated from that same column but instead on samples from other
data sources which belong to the same property. In this new test we first train a
classifier using the majority of our other data sources with a GridSearchCross-
Validation before evaluating those separate testing sets according to the training
data sources by using the predict function. We evaluate the performance on the
basis of Metrics.accuracy score.

Hypothesis: We may be generating self referencing positives due to sam-
ples generated from the same column being in both the training and the testing
set. By performing experiments where the training and the testing set are com-
posed of separate sources we should be able to determine if such self referencing
positives are influencing our results as well as acquiring results for a more re-
alistic test scenario where from an existing large data source with associated
classifier an additional data source is added.

Experiment Setup: We split our full Deep Grooved Ball Bearing dataset
into a training set and a test set. We will do this on a per data source level.
We excluded the worse performing Motionindustries data source from the test
set in the last two experiments to check if this would dramatically improve our
matching scores. In the final experimental variation we filtered the test set
in such a way that no columns with new attributes were included. We process
each data set separately using our preprocessing steps. We create samples of 100
data value size and use the resampling with limiters method while attempting
to generate 1000 samples for each column. In some cases we added a filtering
to exclude columns that had less than 750 values. We will generate all features.
We transform the generated features to Unit Standard Deviation. In the case
of the test set we use the transformation function based on the training set.
We use the processed training set data to train two machine learners using
gridsearch. One machine learner uses the nearest neighbour algorithm with
hyperparameters for each uneven amount of neighbours from 1 to 31 and using
.euclidean or minkowski distance metrics. The other uses RbfSVC with a C of
10-3 through 103, increasing in steps of 1 exponent as its hyperparameter. Using
the predict function from each of the classifiers we predict the test set.

Variations in the Experiment: We test a number of training and test
set separations as well as a number of additional filters.

• Bearingsonline in the test set with all other data sources in the training
set.

• Bearingsonline in the test set with all other data sources in the training
set. Data filtered to minimum column size of 750.

63

• Bearingsdirect in the test set with all other data sources in the training
set.

• Bearingsonline and Bearingsdirect in the test set with all other data sources
in the training set.

• Bearingsonline and Bearingsdirect in the test set with all other data sources
in the training set. Data filtered to minimum column size of 750.

• BTShop in the test set with all other data sources in the training set.

• Eriks and ABF in the test set with all other data sources in the training
set.

• Xbearings in the test set with all other data sources in the training set.
Data filtered to minimum column size of 750.

• Motionindustries in the test set with all other data sources in the training
set.

• Xbearings and Bearingsdirect in the test set with all other data sources
except motionindustries in the training set.

• Xbearings and Bearingsdirect in the test set with all other data sources
except motionindustries in the training set. Data filtered such that only
columns associated to attributes that are present in both test set and
training set are used.

Measurements: For assessing the results of this experiment we will perform
the experiment 5 times and utilize the metrics.accuracy score function from the
machine learner to determine the results of our predictions.To gain an insight
into the data we are working with we also collect a number of metadata values.
The meta data collected are:

• The number of Samples

• Attribute Count

• Most Common Attribute

• Most Common Attribute Count in samples

• ZeroR Score

• Pure Random Score

Experiment Results:

64

Sample
Number

Attribute
Count

Most Common
Attribute

Most Common
Attribute Count

ZeroR Pure Random

Training set Textual 5267 33 Product ID 915 0.17 0.03
Training set Numerical 1409 9 Width 428 0.30 0.11

Test set Textual 146 5 Brand 48 0.33 0.2
Test set Numerical 75 3 Width 25 0.33 0.33

Table 4.30: Metadata results for the prediction experiment with bearingsonline
in the test set and all other data sources in the training set.

Nearest Neighbour RbfSCV

Textual Score 0.55 0.69
Textual Standard
Deviation

0.020 0.057

Numerical Score 0.79 0.55
Numerical Score
Deviation

0.020 0.051

Table 4.31: Results for the prediction experiment with Bearingsonline in the
test set and all other data sources in the training set.

Sample
Number

Attribute
Count

Most Common
Attribute

Most Common
Attribute Count

ZeroR Pure Random

Training set Textual 4989 27 Product ID 846 0.17 0.04
Training set Numerical 1266 6 Width 398 0.31 0.17

Test set Textual 146 5 Brand 48 0.33 0.2
Test set Numerical 75 3 Outside Diame-

ter
25 0.33 0.33

Table 4.32: Metadata results for the prediction experiment with Bearingsonline
in the test set and all other data sources in the training set. The data sources
have been filtered such that only columns with a minimum of 750 data records
are used.

65

Nearest Neighbour RbfSCV

Textual Score 0.35 0.62
Textual Standard
Deviation

0.012 0.037

Numerical Score 0.76 0.91
Numerical Score
Deviation

0.070 0.046

Table 4.33: Results for the prediction experiment with Bearingsonline in the
test set and all other data sources in the training set. The data sources have
been filtered such that only columns with a minimum of 750 data records are
used.

Sample
Number

Attribute
Count

Most Common
Attribute

Most Common
Attribute Count

ZeroR Pure Random

Training set Textual 5028 29 Product ID 881 0.18 0.03
Training set Numerical 1340 9 Width 405 0.30 0.11

Test set Textual 385 9 Title 58 0.15 0.11
Test set Numerical 144 3 Width 48 0.33 0.33

Table 4.34: Metadata results for the prediction experiment with Bearingsdirect
in the test set and all other data sources in the training set.

Nearest Neighbour RbfSCV

Textual Score 0.26 0.26
Textual Standard
Deviation

0.0 0.0

Numerical Score 0.33 0.33
Numerical Score
Deviation

0.016 0.007

Table 4.35: Results for the prediction experiment with Bearingsdirect in the
test set and all other data sources in the training set.

Sample
Number

Attribute
Count

Most Common
Attribute

Most Common
Attribute Count

ZeroR Pure Random

Training set Textual 4882 29 Product ID 857 0.18 0.03
Training set Numerical 1265 9 Width 380 0.30 0.11

Test set Textual 531 10 Title 83 0.16 0.1
Test set Numerical 219 3 Outside Diame-

ter
73 0.33 0.33

Table 4.36: Metadata results for the prediction experiment with Bearingsonline
and Bearingsdirect in the test set and all other data sources in the training set.

66

Nearest Neighbour RbfSCV

Textual Score 0.34 0.22
Textual Standard
Deviation

0.002 0.011

Numerical Score 0.55 0.40
Numerical Score
Deviation

0.011 0.012

Table 4.37: Metadata results for the prediction experiment with Bearingsonline
and Bearingsdirect in the test set and all other data sources in the training set.

Sample
Number

Attribute
Count

Most Common
Attribute

Most Common
Attribute Count

ZeroR Pure Random

Training set Textual 4619 23 Product ID 788 0.17 0.04
Training set Numerical 1122 6 Width 350 0.31 0.17

Test set Textual 516 9 Title 83 0.16 0.11
Test set Numerical 219 3 Width 73 0.33 0.33

Table 4.38: Metadata results for the prediction experiment with Bearingsonline
and Bearingsdirect in the test set and all other data sources in the training set.
The data sources have been filtered such that only columns with a minimum of
750 data records are used.

Nearest Neighbour RbfSCV

Textual Score .0.19 0.21
Textual Standard
Deviation

0.004 0.001

Numerical Score 0.49 0.53
Numerical Score
Deviation

0.027 0.031

Table 4.39: Results for the prediction experiment with Bearingsonline and Bear-
ingsdirect in the test set and all other data sources in the training set. The data
sources have been filtered such that only columns with a minimum of 750 data
records are used.

67

Sample
Number

Attribute
Count

Most Common
Attribute

Most Common
Attribute Count

ZeroR Pure Random

Training set Textual 5279 30 Product ID 921 0.17 0.03
Training set Numerical 1400 8 Width 435 0.31 0.125

Test set Textual 134 10 Seal Type 18 0.13 0.1
Test set Numerical 84 5 Inside Diameter 18 0.21 0.2

Table 4.40: Metadata results for the prediction experiment with BTShop in the
test set and all other data sources in the training set.

Nearest Neighbour RbfSCV

Textual Score 0.35 0.35
Textual Standard
Deviation

0.0 0.0

Numerical Score 0.79 0.57
Numerical Score
Deviation

0.039 0.020

Table 4.41: Results for the prediction experiment with BTShop in the test set
and all other data sources in the training set.

Sample
Number

Attribute
Count

Most Common
Attribute

Most Common
Attribute Count

ZeroR Pure Random

Training set Textual 4145 31 Product ID 699 0.18 0.03
Training set Numerical 1189 8 Width 380 0.32 0.13

Test set Textual 1686 15 Product ID 240 0.19 0.07
Test set Numerical 295 4 Weight 77 0.26 0.25

Table 4.42: Metadata results for the prediction experiment with Eriks and ABF
in the test set and all other data sources in the training set.

Nearest Neighbour RbfSCV

Textual Score 0.17 0.23
Textual Standard
Deviation

0.011 0.009

Numerical Score 0.43 0.38
Numerical Score
Deviation

0.030 0.013

Table 4.43: Results for the prediction experiment with Eriks and ABF in the
test set and all other data sources in the training set.

68

Sample
Number

Attribute
Count

Most Common
Attribute

Most Common
Attribute Count

ZeroR Pure Random

Training set Textual 3861 26 Product ID 506 0.13 0.04
Training set Numerical 798 6 Cage Type 242 0.30 0.17

Test set Textual 1274 5 Brand 364 0.29 0.2
Test set Numerical 543 3 Width 181 0.33 0.33

Table 4.44: Metadata results for the prediction experiment with Xbearings in
the test set and all other data sources in the training set. The data sources have
been filtered such that only columns with a minimum of 750 data records are
used.

Nearest Neighbour RbfSCV

Textual Score 0.34 0.41
Textual Standard
Deviation

0.025 0.016

Numerical Score 0.90 0.97
Numerical Score
Deviation

0.022 0.019

Table 4.45: Results for the prediction experiment with Xbearings in the test
set and all other data sources in the training set. The data sources have been
filtered such that only columns with a minimum of 750 data records are used.

Sample
Number

Attribute
Count

Most Common
Attribute

Most Common
Attribute Count

ZeroR Pure Random

Training set Textual 3241 27 Product ID 722 0.22 0.04
Training set Numerical 1188 6 Outside Diame-

ter
357 0.30 0.17

Test set Textual 2143 20 Product ID 208 0.10 0.05
Test set Numerical 296 4 Product Series 99 0.33 0.25

Table 4.46: Metadata results for the prediction experiment with Motionindus-
tries in the test set and all other data sources in the training set.

69

Nearest Neighbour RbfSCV

Textual Score 0.17 0.14
Textual Standard
Deviation

0.008 0.021

Numerical Score 0.25 0.25
Numerical Score
Deviation

0.027 0.018

Table 4.47: Results for the prediction experiment with Motionindustries in the
test set and all other data sources in the training set.

Sample
Number

Attribute
Count

Most Common
Attribute

Most Common
Attribute Count

ZeroR Pure Random

Training set Textual 1582 22 Product ID 300 0.19 0.05
Training set Numerical 501 6 Width 128 0.26 0.17

Test set Textual 1659 11 Product ID 422 0.25 0.09
Test set Numerical 687 3 Inside Diameter 229 0.33 0.33

Table 4.48: Metadata results for the prediction experiment with Xbearings and
Bearingsdirect in the test set and all other data sources excluding Motionindus-
tries in the training set.

Nearest Neighbour RbfSCV

Textual Score 0.29 0.27
Textual Standard
Deviation

0.006 0.022

Numerical Score 0.81 0.48
Numerical Score
Deviation

0.010 0.018

Table 4.49: Results for the prediction experiment with Xbearings and Bearings-
direct in the test set and all other data sources excluding Motionindustries in
the training set.

70

Sample
Number

Attribute
Count

Most Common
Attribute

Most Common
Attribute Count

ZeroR Pure Random

Training set Textual 681 6 Product ID 300 0.44 0.17
Training set Numerical 293 3 Width 98 0.33 0.33

Test set Textual 1327 6 Product ID 422 0.32 0.17
Test set Numerical 687 3 Outside Diame-

ter
229 0.33 0.33

Table 4.50: Metadata results for the prediction experiment with Xbearings and
Bearingsdirect in the test set and all other data sources excluding Motionin-
dustries in the training set. Data filtered such that only columns associated to
attributes that are present in both test set and training set are used.

Nearest Neighbour RbfSCV

Textual Score 0.63 0.63
Textual Standard
Deviation

0.001 0.001

Numerical Score 0.81 0.84
Numerical Score
Deviation

0.000 0.000

Table 4.51: Results for the prediction experiment with Xbearings and Bearings-
direct in the test set and all other data sources excluding Motionindustries in
the training set. Data filtered such that only columns associated to attributes
that are present in both test set and training set are used.

Experiment Discussion: It is difficult for us to draw any final conclusions
due to the wide variance of results between the different training/test splits.
We have some splits where we get good results and some where we barely score
better than a ZeroR method. Overall it seems that there is still potential for
our methodology given some of our results. In our current implementation our
machine learner is not capable of recognising new attributes meaning that at-
tributes which are not present in the training set but are in the test set are
guaranteed to be evaluated incorrectly. Going by the differences between our
last 2 experiments where we tested ensuring that only those attributes present
in both were used indicates to us that at least one good improvement would be
adding the ability to recognise new previously unknown attributes. Assessing
the two machine learning algorithms, we feel that the Nearest neighbour algo-
rithm performs best when considering numerical cases while textual data seems
better handled by the RbfSVC algorithm. There are however still exceptions to
this and these score differences could be caused by our case where on average
we have a smaller number of attributes for numerical data than textual and
it is this difference in number of attributes that causes the performance differ-
ence and not anything inherent in the data types. An interesting aspect about
our final experiment is that our test set is actually significantly larger than our

71

training set but it seems that despite this size difference both algorithms score
well in this case.

4.4 MacroScale Experiment

Hypothesis: Our overall end goal is to match columns to columns by way of
their attributes. We have gotten difficult to asses results from our prediction
experiment but by moving our prediction experiment to a macro scale we may
get some good results.

Experiment Setup: We split our full Deep Grooved Ball Bearing dataset
into a training set and a test set. We will do this on a per data source level.
We process each data set separately using our preprocessing steps. We create
samples of 100 data value size and use the resampling with limiters method
while attempting to generate 1000 samples for each column. We will generate all
features. We transform the generated features to Unit Standard Deviation. In
the case of the test set we use the transformation function based on the training
set. We use the processed training set data to train two machine learners using
gridsearch. One machine learner uses the Nearest neighbour algorithm with
hyperparameters for each uneven amount of neighbours from 1 to 31 and using
.euclidean or minkowski distance metrics. The other uses RbfSVC with a C
of 10-3 through 103, increasing in steps of 1 exponent as its hyperparameter.
Using the predict function from each of the classifiers we predict the test set.

Variations in the Experiment: Xbearings and Bearingsdirect in the test
set with all other data sources except Motionindustries in the training set. Data
filtered such that only columns associated to attributes that are present in both
test set and training set are used. Data is also filtered to only include columns
which have a minimum size of 750 data values.

Measurements: For assessing the results of this experiment we will perform
the experiment 5 times. We record the results on a column by column basis. For
each column is 51% or more of its samples are predicted correctly we consider
the column as a whole to have been predicted correctly but if this threshold
is not reached than the whole column is considered to have failed. We also
compute an overall score which is the mean success rate of the columns with a
success being represented by a 1 and a failure by a 0. To gain an insight into
the data we are working with we also collect a number of metadata values. The
meta data collected are:

• The number of Samples

• Attribute Count

• Most Common Attribute

• Most Common Attribute Count in samples

• ZeroR Score

72

• Pure Random Score

Experiment Results:

Sample
Number

Attribute
Count

Most Common
Attribute

Most Common
Attribute Count

ZeroR Pure Random

Training set Textual 610 6 Product ID 282 0.46 0.17
Training set Numerical 293 3 Width 98 0.33 0.33

Test set Textual 1327 6 Product ID 422 0.32 0.17
Test set Numerical 687 3 Inside Diameter 229 0.33 0.33

Table 4.52: Metadata results for the macro scale prediction experiment.

Nearest Neighbour RbfSCV

Textual Score 0.55 0.53
Textual Standard
Deviation

0.0 0.036

Numerical Score 0.67 0.67
Numerical Score
Deviation

0.010 0.018

Table 4.53: Results for the macro scale prediction experiment.

Textual Numerical

xbearings Brand 1.0 xbearings Inner Diameter (d) 0.98
xbearings Product 1.0 xbearings Outer Diameter (D) 1.0
xbearings Product model 0.0 xbearings Thickness (B) 0.91
xbearings New Bearing model 1.0 bearingsdirect ID 0.88
xbearings Types 0.0 bearingsdirect OD 0.0
xbearings Brands 1.0 bearingsdirect W 0.15
bearingsdirect Title 0.17
bearingsdirect Product 1.0
bearingsdirect LUBRICATION 0.02
bearingsdirect Description 1.0
bearingsdirect BRAND 0.0

Table 4.54: By column results for the macro scale prediction experiment for the
nearestNeighbour algorithm.

73

Textual Numerical

xbearings Brand 1.0 xbearings Inner Diameter (d) 0.96
xbearings Product 1.0 xbearings Outer Diameter (D) 1.0
xbearings Product model 0.0 xbearings Thickness (B) 0.93
xbearings New Bearing model 1.0 bearingsdirect ID 0.88
xbearings Types 0.0 bearingsdirect OD 0.0
xbearings Brands 1.0 bearingsdirect W 0.10
bearingsdirect Title 0.03
bearingsdirect Product 1.0
bearingsdirect LUBRICATION 0.0
bearingsdirect Description 1.0
bearingsdirect BRAND 0.0

Table 4.55: By column results for the macro scale prediction experiment for the
RbfSVC algorithm.

Experiment Discussion: Overall both algorithms score fairly acceptable
and similarly. When looking on a column by column basis this remains true but
it is very interesting to see that unlike our expectations a lot of columns have a
success rate of either 100% or 0%.

Examining the raw data shows that for at least some of the properties they
do indeed seem to differ from the general appearance. The Brand property from
BearingsDirect for example seems to differ significantly from the general prop-
erty. In general brand is denoted with a single short word but in the case of
Bearings Direct it is often multiple words and significantly longer. Lubrication
is another property our macro prediction experiment scores poor on. Examin-
ing this property in more detail shows that only one other source (ABF) also
has lubrication as a property but how they are used in different. In the ABF
data source a general lubrication type is described, while in bearingsdirect the
lubrication varies between a specifically branded lubricant or oil of various types.

4.5 Summary

On the basis of the experiments executed in this chapter we have refined our
method and done some evaluation about the performance of our method in a
variety of circumstances.

• On the basis of a large number of experiments we are able to conclude
that a resampling algorithm with a clear minimum size requirement and a
maximum number of samples that can be generated from a single column
combined with a sample size of 100 and intending to generate a maximum
of 1000 samples from each column gives us good results. (4.1)

– The minimums and maximums are important to use to prevent a
resampling algorithm from generating too many samples from too

74

small a column which results in overtraining from too many dupli-
cates. (4.1.5-4.1.6)

• From our experiments into which machine learning algorithms perform
best we were able to conclude that both NearestNeighbour and a Rbf-
based SVC are both excellent classification algorithms to use for our
method. Both these algorithms score well in their selection experiments
(98%+ for textual and 91%+ for numerical) and continue to score well in
the prediction experiments. (4.2)

• Under the circumstances that we split our feature sets between test and
training with no discernment about data source or column origins, the
algorithm get excellent accuracy scores (90%+). This indicates that our
theory of matching on the basis of data characteristics and commonality
is usable.

• When the feature sets are split between test and training on a data source
level and use the predict function, the algorithm has a larger variance in
performance. (4.3-4.4)

– If only feature sets associated with properties that are present in
both the test and training set are used and all other feature sets are
discarded, the algorithm scores very well. (4.3 tables 4.48-4.51 and
4.4)

∗ Under analysis of a macro test where each feature set is grouped
by column it seems that our method is very polarized in its ac-
curacy with columns being either in the region of 100% accurate
or 0% accurate. (4.4)

– We have analysed cases such as BearingsOnline in the test set with
the columns filtered to a minimum size of 750 data values where we
have a matching accuracy of 62% on textual data and 91% accuracy
on numerical data for the best performing algorithm. (table 4.32 and
4.33)

– But we also found cases such as MotionIndustries being the data
source which scores 17% and 25% on the textual and numerical ac-
curacy respectively using its best performing algorithm. (table 4.42
and 4.33)

– Within our data set numerically typed properties are in general easier
to match than textual data. This seems logical given the following
circumstances

∗ Within our data set the number of numerical properties is sig-
nificantly lower than the number of textual properties and thus
would be easier to match given that there is less choice.

∗ There is less freedom in how to represent numerical data since
in the end it comes down to a number.

75

– We see a number of other causes for the variance in performance and
our varying results are explainable by them as in how much each data
selection set suffers from these.

∗ Our current machine learner implementation is not able to han-
dle (and automatically separate or exclude) unknown properties
in the test set, therefore always classifying those incorrectly.

∗ Due to the freedom within natural language and how data can be
represented differently within various data sources it can occur
that columns which represent the same property are not compa-
rable to each other without additional work which is not always
feasible.

76

Chapter 5

Conclusion

In this thesis we present a method for the automatic matching of properties
across different data sources on the basis of data characteristics and commonal-
ity. The results from this method can then be used to generate database match-
ing schemas to allow for the merging of data sources. Our method works by
separating each property within each data source out into their own columns.
These separated columns are then further divided into smaller samples from
which features that represent data characteristics of those columns are calcu-
lated. By using a machine learner with these features a classifier is built capable
of matching the properties of the same meaning together.

Our main research question was also formulated to reflect this:
”How can we link properties which represent the same real world property or
concept together, using the characteristics and commonalities of their data.”

For our method we used a number of machine learner usable features to repre-
sent data characteristics. By using these features we are able to match columns
to attributes by use of a classification based machine learner. The features we
calculate are based on aggregated data from a single column and are different
depending on data type.

Six features are used for numerical data:

• The value of the most common entry within the sample

• The number of unique entries represented as a percentage to avoid the
sample size from influencing this.

• The minimum numerical value within the sample

• The maximum numerical value within the sample

• The mean of all numerical values within the sample

77

• Standard Deviation of all numerical values (from mean) within the sample

Nine features are used for textual data:

• The number of unique entries represented as a percentage to avoid the
sample size from influencing this.

• The minimum number of characters in a value within the sample

• The maximum number of characters in a value within the sample

• The mean number of characters within the sample

• Standard Deviation within the sample in terms of number of characters

• The minimum number of words in a value within the sample

• The maximum number of words in a value within the sample

• The mean number of words within the sample

• Standard Deviation within the sample in terms of number of words

It is important to have a sufficient number of samples available for the machine
learner based classification to work with. To increase the number of samples
that can be generated from a data source we use resampling techniques. It
is however important to prevent overtraining from happening so we use a re-
sampling technique with limiters on how many samples can be generated. The
experiments show best performance with a setting in which samples are gener-
ated at size of 100 values, where samples can only be generated from a minimum
column size of 200, and in total no more samples can be generated than 3 times
the number of data values within the column.

Our experiments show that of standard classification algorithms K-NearestNeighbour
and a Support Vector Machine with a Rbf-based kernel show good matching re-
sults.

In the end our final prediction experiments result in somewhat mixed outcomes.
We have several cases where the algorithm has excellent accuracy scores given
the number of involved properties, but also some cases with lower scores. We
have found two factors which seem to be significant contributors in our varying
scores.

• The current system is not yet able to recognize new properties in the test
set and automatically assign a new class to them. These new properties
can of course never be predicted correctly resulting in a lower overall
accuracy score in cases where they are present.

– In the case where we filter our experiment data to not contain such
new properties, asserting that only properties that are present in both
training and test set are used, we have great accuracy. Suggesting
that the method as such is a good tool for database schema matching.

78

– Another case where the algorithm scores well is when using Bear-
ingsOnline as the test set and all other data sources as the training
set. The test set in this case also does not contain many properties
unknown within the training set.

• Our assumption of properties having similar characteristics holds in the
majority of columns in our data set. However we still have some columns
within the dataset where this is unfortunately not the case. This is more
common for textual data than for numerical values. Due to the freedom
within natural language and how data can be represented differently across
different data sources, such difficulties will always remain. It seems to be
the case that in general some standards are used across a domain resulting
in this issue only occurring for a low number of cases.

– An example of this would be the brand column of BearingsDirect
which in our macro scale test had poor matching results since it
represents brands differently than the general case by including ad-
ditional elements into the brand names such as Ltd., Co., and country
of manufacturing.

Overall we can say that our developed method is suitable for matching tasks
where most of the properties to be matched are already present in the training
data and with more work done such as described in the future work section
could be made suitable for an expanded range of matching tasks.

79

Chapter 6

Future Work

During the development of our preprocessing steps and the execution of our
experiments we have found a number of areas where future work could be done.

• The most likely single method to yield significant further improvement is
the ability for the machine learner to recognise and deal with unknown
properties. As we found in our prediction experiments there is a large
variance in how several different test sets perform. A primary cause of
this is that some test sets contain unknown properties compared to the
training set. As our machine learner does not possess the capacity to
deal with unknown properties these will never be predicted correctly. Our
machine learner can only classify properties to those it has learned from
the training set and does not possess the capability to detect unknown
properties and classify them to a seperate class or classes in the case of
several distinct unknown properties. Our experiments in which we only
had known attributes in both the test and training set (thereby eliminat-
ing the deteriorating effect of unknown attributes) showed a significant
improvement over the same test and training set where all attributes were
included.

• During this thesis a large amount of our focus has been on matching on a
sample by sample level as this is the level on which the actual matching
takes place. Our system provides a way to abstract this to a column by
column scale. Further research and development into matching on a higher
scale would be beneficial from a practical perspective. As it currently
stands we have a number of features which we use to classify, however the
selection of features could benefit from additional experimentation and
research.

• Our current preprocessing system has been designed for this specific data
set. If it is desired to implement this method for general use the prepro-
cessing system should be changed to accommodate more generic use or an

80

analogous system which is also capable of generating the required input
for the machine learning phase.

• The number of data types could be expanded.

• Our machine learner classification has been mostly used with the aim of
experimentation and validation of our method. When aiming to turn the
overall system for general use, expanding the machine learner feedback
can be valuable. Types of feedback include providing a top 3 classes for
every match and confidence numbers.

Finally our experiments seem to indicate that at within our data set and
perhaps generalizable to product data that data values within a column are
similar to each other. Our research is about the data similarity across multiple
data sources but research into exploiting this similarity within a single data
source could be an interesting avenue of research. An example of this is a
method to detect data aberrations.

81

Chapter 7

Acknowledgements

We thank Maurice van Keulen, Dolf Trieschnigg, and Doina Bucur for the guid-
ance and supervision provided for this project. We would also like to thank
Lilian Spijker and Suze Engbers for their support.

82

Bibliography

[1] Jens Bleiholder and Felix Naumann. Data fusion. ACM Computing Surveys,
41(1):1:1–1:41, January 2009.

[2] Xiaoyi Wang. Matching records in multiple databases using a hybridization
of several technologies. 2008.

[3] John M. Smith, Philip A. Bernstein, Umeshwar Dayal, Nathan Goodman,
Terry Landers, Ken W. T. Lin, and Eugene Wong. Multibase: Integrating
heterogeneous distributed database systems. In Proceedings of the May 4-7,
1981, National Computer Conference, pages 487–499. ACM, 1981.

[4] Indrajit Bhattacharya and Lise Getoor. Collective entity resolution in
relational data. ACM Transactions on Knowledge Discovery from Data
(TKDD), 1(1):5, 2007.

[5] AnHai Doan, Pedro Domingos, Pedro Domingos, and Alon Y. Halevy. Rec-
onciling schemas of disparate data sources: A machine-learning approach.
SIGMOD Record, 30(2):509–520, May 2001.

[6] Erhard Rahm and Philip A. Bernstein. A survey of approaches to automatic
schema matching. The VLDB Journal, 10(4):334–350, Dec 2001.

[7] Philip A. Bernstein, Jayant Madhavan, and Erhard Rahm. Generic schema
matching, ten years later. Proceedings of the VLDB Endowment, 4(11):695–
701, 2011.

[8] Tanvi Sahay. Schema matching using machine learning. https://

tanvisahay.github.io/Schema_Matching.pdf, 2017.

[9] Amihai Motro, Jacob Berlin, and Philipp Anokhin. Multiplex, fusionplex
and autoplex: Three generations of information integration. SIGMOD
Record, 33(4):51–57, December 2004.

[10] Jennifer Rowley. The wisdom hierarchy: representations of the dikw hier-
archy. Journal of Information Science, 33(2):163–180, 2007.

[11] Alan M. Turing. Computing machinery and intelligence-am turing. Mind,
59(236):433, 1950.

83

[12] Arthur L. Samuel. Some studies in machine learning using the game of
checkers. IBM Journal of research and development, 3(3):210–229, 1959.

[13] Ethem Alpaydin. Introduction to machine learning. MIT press, 2009.

[14] Yves Kodratoff. Introduction to machine learning. Elsevier, 2014.

[15] Sotiris B. Kotsiantis. Supervised machine learning: A review of classifica-
tion techniques. Emerging artificial intelligence applications in computer
engineering, 160:3–24, 2007.

[16] Colin Conrad, Naureen Ali, Vlado Keelj, and Qigang Gao. Elm: An
extended logic matching method on record linkage analysis of disparate
databases for profiling data mining. In 2016 IEEE 18th Conference on
Business Informatics (CBI), volume 01, pages 1–6, Aug 2016.

[17] Tim Churches, Peter Christen, Kim Lim, and Justin X. Zhu. Preparation
of name and address data for record linkage using hidden markov models.
BMC Medical Informatics and Decision Making, 2(1):9, Dec 2002.

[18] William W. Cohen and Haym Hirsh. Joins that generalize: Text classifi-
cation using whirl. In Knowledge Discovery and Data Mining, volume 98,
pages 169–173, 1998.

[19] Bureau International des Poids et Mesures. Text of the resolutions adopted
by the 22nd general conference on weights and measures. page 11, 2003.

84

