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Abstract

Every day, numerous new web pages are created on the World Wide Web. These
new web pages may contain information relevant to many people. However, finding
these new pages is a non-trivial task. This research focuses on finding a function based
on topological features that predicts where in the World Wide Web new pages can be
found. Using various supervised Machine Learning techniques we show that we can
predict with an accuracy and precision of over 90% where new pages can be found.
The Random Forest algorithm obtained the highest performance.

Keywords: Web Crawling, Web Change Prediction, Machine Learning

1 Introduction

Since the start of the World Wide Web, the number of web pages has been increasing
tremendously. With this growth of pages, new information gets released continuously.
However, finding these new web pages is a non-trivial task. Traditionally, the World Wide
Web is being scraped by web crawlers to extract information. However, scraping (large
portions of the) internet is expensive and thus not suitable for finding just new pages.

In recent years, researchers have conducted work in the field of focused crawlers [1, 14, 5].
These crawlers utilize an evaluation function to predict where relevant information is stored
in the web. The function allows a crawler to crawl only the pages that the function clas-
sifies as interesting. Research shows that this method can save a considerable amount of
resources.

Focused crawlers attempt to find pages relevant to a specific topic. However, in this
paper we are interested in finding new pages on the web. We attempt to find a similar
evaluation function that can predict which pages have a high probability of linking to a
new page. This function will be created using several topological features.

The remainder of this paper is structured as follows: Section 2 displays the research ques-
tions formulated for this research. In section 3 more information about the World Wide
Web, Crawlers, Machine Learning, and the data set is given. Section 4 highlights the work
that has already been done in this field and section 5 elaborates upon the notations used in
this research. Section 6 gives an overview of how the change rate of pages can be predicted.
Section 7 shows the approach of this research, and section 8 the results. Lastly, the results
are discussed in section 9 and 10, and guidance for future work is given in section 11.
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2 Research Questions

To guide our research, the following research questions have been defined. The first question
is the umbrella question, the others act as subquestions.

• RQ 1: How can we predict where new pages will be created on the World Wide
Web?

– RQ 1.1 Which Machine Learning models can be used to predict where new
pages will be created on the World Wide Web?

– RQ 1.2: Which topological features will contribute the most to finding new
web pages on the World Wide Web?

3 Background

3.1 World Wide Web

We consider the World Wide Web to be a simple graph G = (V,E). Each vertex v ∈ V
corresponds to a web page. Edges e ∈ E are directed and correspond to the hyperlinks
between the web pages. If there are multiple hyperlinks from one page to another, only one
edge is present in G. A website is considered a collection of web pages. These websites are
often identified with their domain, the first part of the URL of the website after the scheme
(excluding ’www’). For instance, the domain of the web page https://www.utwente.nl is
utwente.nl. Moreover, domains themselves can be divided in sub-domains, for instance
inter-actief.utwente.nl.

The web is evolving continuously. Consider web page 2 displayed in figure 1. Web page
2 is linked to by page 0 and 1 (these edges are called inlinks). Furthermore, web page 2
has multiple outlinks to other web pages. At a future point in time, the neighbourhood
around web page 2 may change. The following possibilities exist (see figure 2):

1. An new edge can be added pointing to an existing page (3)

2. A vertex can be deleted from the graph (4)

3. An edge and vertex can remain in the graph (5)

4. An edge can be deleted (6)

5. A new vertex can be added and linked to by web page 2 (7)

In this research, we only focus on cases 1 and 5.

Figure 1: Graph at time t Figure 2: Graph at time t′ > t
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Figure 3: Comparison link prediction and prediction of new pages

3.2 Crawler

A crawler is a program that visits (web)pages in order to extract information. A crawl
starts at the URL of the initial page p0. This page is visited and extracts all the URLs
present on that page and appends the yet unvisited pages to a queue Q. The crawler
continues visiting the pages that are present in Q. All pages visited by the crawler are
scanned and the relevant information is extracted. What information is relevant depends
on the purpose of the crawler. For instance, a crawler can extract text, images, email
addresses, files, etc.

Notice that a crawl can be started with a non-empty queue. Pages in the queue at the start
of the crawl are often called seeds. These seeds allow crawling disconnected parts of the
internet and/or finding relevant information earlier by starting with important domains.

3.3 Link Prediction

Link Prediction is a research area connected to social network analysis. The graph G =
(V,E, t) represents a social network at a particular time t in which each edge e = 〈u, v〉 ∈ E
corresponds to a social interaction. Link prediction aims to predict new links between ver-
tices in G at a future time t′ > t. Examples of link prediction is suggested friends on social
media websites and suggested products to buy in an online store.

Common features used in link prediction are based on the topology of the graph. For
example, common neighbors and shortest path(s) between two nodes are often used.

Notice that there is a significant difference between link prediction problems and the prob-
lem this research tries to solve. In the case of Link prediction, the features are based on
combination of known nodes. However, in this research, we focus in finding a link to a
unknown page that might not even exist yet (see figure 3). Hence, features can only be
calculated based on the properties of a single node.

That being said, there are striking similarities between link prediction and the prediction
of new pages. Therefore, we take some inspiration from techniques used in link prediction
and try to reuse these in this research.
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3.4 Data

The data that will be used is provided by the French company eXenSa that focuses on big
data analysis. The data contains basic meta-information of websites like URL, language,
HTTP response status, size of the content and outgoing links. Furthermore, the contents
of the web-pages are converted into semantic vectors and a content digest. The latter can
be used to check whether or not the page has been modified. Lastly, of approximately
40% of the pages the Trustrank can be accessed. An example of a data-record is given in
Appendix A.

The data set was gathered in a web crawl. One data set contains approximately 3 million
pages. The total size of one (zipped) data set is approximately 6 GB.

Figure 4: Decision Tree Figure 5: K Nearest Neighbors

3.5 Supervised Learning

Supervised learning is a machine learning task using historical labeled input and output
variables. The algorithm tries to find relations between the input and output data. The
goal is that the algorithm can predict what the output should be when new, unknown
variables are presented. There are multiple, well-known supervised learning algorithms. In
section 3.5.1 to 3.5.4 several are elaborated upon. Section 3.5.5 explains two normalisation
methods and 3.5.6 explains how the performance of these algorithms can be compared.

3.5.1 Random Forest

The random forest algorithm is an extension to the decision tree classifier. A decision tree
is a flowchart with several internal and leaf nodes. At each internal node, the algorithm
must decide (based on one attribute of the input vector) which branch to take. Each leaf
node corresponds to to a prediction class. See figure 4. Here, the circles represent the
internal nodes and the squares the leaf nodes.

In the Random Forest algorithm, multiple different decision trees are generated based
on random subsets of the training data. Each tree predicts to which class the input vector
belongs. The class that gets the majority of ’votes’ is chosen as the predicted class.

When using the Random Forest model, the number of trees should be chosen. Choosing
this number too low, may lead to overfitting. However, using too many trees is computa-
tionally heavy and may not increase the performance.
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Figure 6: Support Vector Machine Figure 7: Logistic Regression

3.5.2 K Nearest Neighbors

In the K nearest neighbors algorithm, the output of a newly presented variable is based on
the labels of the K closest data points. This algorithm for K = 3 is illustrated in figure 5.
Suppose that we should predict the color of the gray circle. Since of its 3 closest neighbors,
2 are black, the dot will be classified as black. The Euclidian distance is often used to
calculate the distance between two data points.

Obviously, an important feature of the K nearest neighbors model is the choice for K.
Choosing a K that is too low may lead to overfitting. However, if we choose K too large,
the prediction may be too general and heavily dependent on the label that occurs the most
in the dataset. It is customary to choose an K that is odd, to make sure that ties are not
possible.

3.5.3 Support Vector Machine

The support vector machine algorithm tries to find an optimal hyperplane that separates
the classes. The hyperplane is considered optimal if the margin between the plane and
the closest nodes of both classes is as large as possible. In figure 6 an illustration is given.
Here, the striped line is the hyperplane (which in the 2D space is a line). Each new input
on the right side is classified as black, on the left as white. Obviously, this figure pictures
an ideal case. In real world examples, the hyperplane may not be linear or the data points
may overlap.

3.5.4 Logistic Regression

Logistic regression is a statistical method that returns the probability that a certain input
belongs to a class. It uses the following function (called Sigmoid function) to predict to
which class an input vector belongs

f(t) =
1

1 + e−(β0 + β1x1 + ...)
(1)

Here, xi denotes the ith attribute of the input vector. The coefficient βi is called a weight.
Using the training data, the weight are adjusted such that the algorithm behaves optimally.
See figure 7.

3.5.5 Normalisation

For the Machine Learning models K Nearest Neighbors and Support Vector Machine, it
is important that the sizes of the domains of the features are similar. Both of these algo-
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rithms are based on calculating distances between nodes. Consequently, if the sizes of the
domains differ significantly, the algorithms may be biased in favor of smaller domains (the
distances are shorter in those cases). This leads to incorrect predictions.

To prevent incorrect predictions, the data needs to be normalised. There are several
means of normalising data and in this paper we will use 2: normalising by maximum
value and by rank. More precisely, consider the vector ~v = (v1, v2, ..., vn−1vn) such that
v1 ≤ v2 ≤ v3 ≤ ... ≤ vn−1 ≤ vn. Vector ~u is the normalised vector ~v by maximum value if

~u =
1

vn
· ~v (2)

Vector ~w is the normalised vector ~v by rank, if

~w = (
g(v1)

n
,
g(v2)

n
, ...,

g(vn−1)

n
,
g(vn)

n
) (3)

where

g(vi) =

{
g(vi−1) vi = vi−1

i otherwise
(4)

The main advantage of normalizing by maximum value, is that the relative distances
between the nodes remain the same. On the other hand, the main advantage of normalizing
by rank, is that the result values are spread across the entire domain, even if the original
data is skewed.

3.5.6 Evaluation Metrics

The performance of the machine learning algorithms is measured using data with known
labels. It is important that this test data is not used in the training part, since the results
will then be biased. Once the model has evaluated the test data, the predicted labels can
be compared to the actual labels in a confusion matrix (table 1). The correctly predicted
values are called true positives (TP) or true negatives (TN), whereas the incorrectly values
are named false positives (FP) and false negatives (FN). Using the confusion matrix, the
following evaluation metrics can be calculated:

Accuracy =
TN + TP

TN + TP + FN + FP
(5)

Precision =
TP

FP + TP
(6)

Recall =
TP

TP + FN
(7)

F1-score = 2 · precision · recall
precision + recall

(8)

To summarize, accuracy measures the ratio of correct predictions to the total number of
input samples. Precision is the number of samples correctly classified as positive, divided
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Table 1: Confusion Matrix

Predicted: 0 Predicted: 1
Actual: 0 True negatives (TN) False positives (FP)
Actual: 1 False negatives (FN) True positives (TP)

by all classified positives. This is an indication of how many selected items are relevant.
Recall is the ratio of correctly predicted positives to all the input samples that should have
been classified as positive. This is an indication of how many relevant items are selected.
The F1-score is a metric calculated using precision and recall. It is an indication of how
precise and robust the classifier is. Overall, the closer a metric is to 1, the better.

Lastly, models like Random Forest and Logistic Regression can give an indication which
features are most important when predicting the labels.

4 Related work

4.1 Crawlers

Research on the effectiveness of crawlers has been done since the 1990s. Cho et al. [4]
studies several importance metrics and ordering schemes in order to make sure that im-
portant pages are found earlier. They conclude that PageRank [11], a metric using the
importance of pages that link to the concerned page, is an optimal ordering metric when
searching for important pages.

In later research, it is concluded that websites use the PageRank algorithm to increase
their position on search engines. For example, they place (hidden) links or text on their
pages to get a higher rank. To combat these ’spam sites’ a new metric called TrustRank
was developed by GyÃűngyi et al. [6]. This method, based on PageRank, uses the links
to and from known reputable sites in order to calculate the probability that a site is spam
or not.

Chakrabarti et al.[1] elaborated upon focused crawling. Using this technique, a crawler
does not visit all the pages stored in the queue. Instead, it only visits the pages that seem
interesting based on the search query. Firstly, a classifier is trained based on seed URLs.
Afterwards, this classifier is used in the crawl process by evaluating the visited pages. Only
pages that are classified as relevant are further investigated. Using this method, they found
that relevant pages were found more consistently.

Although the general findings in the findings above still hold, it must be considered that
most research is conducted around the year 2000. As a consequence, some of the consid-
erations made in the research do not hold anymore (e.g. the internet is nowadays larger
than 1.5TB).

4.2 Evolving Web

Ntoulas et al. [10] conducted research on the evolution of 153 popular sites. Their findings
indicate that new pages are created at the rate of 8% a week. However, a lot of these
pages contain content that was available before. The rate of new pages is estimated at
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5%. Furthermore, they claim that the link structure of the web is changing significantly.
Every week, approximately 25% new links are created. After a year, 80% of the links are
replaced. One last interesting finding, is that the frequency of change does not seem to be
a good predictor of change in the future.

Cho et al. [3] defines the freshness and age of a local database. Moreover, they research
how often a page should be crawled in order to keep the local information up-to-date. They
argue that it is reasonable to assume that pages on the web are updated independently
and according to a Poisson process. Surprisingly, they find that pages that change more
often, should not be crawled more in order to keep the freshness of the local copy above a
certain threshold. Instead, it is better to visit all pages at the same rate, regardless how
often they are changed.

In a follow-up paper, the researchers address the freshness of an incremental crawler [2].
This type of crawler continuously updates its local database instead of updating it by pe-
riodically restarting the crawl process.

Radinsky et al. [12] investigate how to predict significant changes in content on the in-
ternet. One of their conclusions is that the accuracy of the prediction increases when the
relations to other pages are taken into account.

4.3 Link Prediction

Since the rise of social media websites, more research has been devoted on Link Prediction.
Several techniques have been developed, all with mixing results. Some of the methods are
based on the assumption that related pages lie topologically close in the network. To pre-
dict future links, neighbours and (shortest) paths between the nodes are compared [9, 13].

Other research has been done by Zhu et al. [15] on using Markov chains to model user’s
navigation on the world wide web. A transition matrix is computed based on user data.
This matrix is compressed by clustering nodes that have similar transition behavior. Using
this transition matrix, one can predict to which page a user will probably go next.

Al Hasan et al. [7] incorporate supervised learning in their link prediction tools. They
consider the problem as classifying positive classes (a new link) in the data set; a problem
that can be solved by a binary classifier. Furthermore, different features are compared and
ranked based on their ability to correctly predict links. ’Sum of neighbours’ and ’keyword
match count seem’ to perform well.

In recent years, deep learning has been used in link prediction. For instance, a Link
Prediction Framework called DeepLink has been developed by Keikha et al. [8]. DeepLink
automatically selects the best features of a network that can be used in the link prediction.
Moreover, DeepLink uses structural and content feature vectors. This framework performs
better than often used methods for link prediction like Node2Vec and DeepWalk.

5 Notations

Before we state the methodology, experiments and results, we need to clarify what notations
will be used in the rest of the paper.
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• In total, 3 datasets will be used (see section 7.1). All the datasets will be given an
index i ∈ {1, 2, 3}. The indices of the datasets are ordered based on the sequence in
which they will be crawled.

• The ith dataset will be denoted with Gi(Vi, Ei). Here, Vi and Ei are the vertices (web
pages) and directed edges (hyperlinks) of the ith dataset respectively. Each vertex is
uniquely identified by the url of the web page. For simplicity, we will assume that
Gi is a simple directed graph, meaning that there are no loops and/or double edges.

• The neighborhood of a node v in the ith dataset will be denoted with Γi(v) (Γi(v) ∈
Vi). Notice that v /∈ Γi(v).

• The set of vertices in the ith dataset that have edges pointing to v will be denoted
with Γ−i (v). More formally, Γ−i (v) = {u|u ∈ Vi, (u, v) ∈ Ei}. This is often called the
in-neighborhood. The edges to v are called inlinks.

• The set of vertices that v points to in the ith dataset are denoted with Γ+
i (v). To

be precise, Γ+
i (v) = {u|u ∈ Vi, (v, u) ∈ Ei}. This set is called the out-neighborhood.

The edges are called the outlinks. Notice that Γ−i (v) ∪ Γ+
i (v) = Γi(v).

• Since Gi is a simple directed graph, the number of inlinks is the same as the size of
the in-neighborhood. We will often refer to |Γ−i (v)| as the number of inlinks of v.
The same holds for the outlinks and out-neighborhood.

• The subset Ui(v) ⊆ Vi will contain all the vertices that are in the same domain as
vertex v. Note that v ∈ Ui(v) and that |Ui(v)| is the number of pages in the domain
of vertex v.

• Since it may be possible that not each page of a certain domain is crawled, we cannot
determine the value of |Ui(v)| precisely. Therefore, we estimate the value of |Ui(v)|
by a lower and upper bound. The lower bound |U−i (v)| is based on the number of
pages that is actually crawled. The upper bound |U+

i (v)| is based on the number
of pages crawled and pages that are not crawled, but are referenced to (i.e. links to
pages in that domain). By default, the upper bound is taken.

6 Estimation Rate of New Outlinks

To study the problem of finding new pages, we first need to formalise how the links are
created over time. In this section, we elaborate on that issue. The basis of this estimation
is closely related to the "Freshness" of a database, proposed by J. Cho et al. [3]

We assume that for each page v ∈ Vi links to new pages are created according to a Poisson
process. Such a process is regularly used to describe a sequence of events that happen at
random and independently, with a fixed rate. If a sequence of events follow this Poisson
process, the time to the next event is exponentially distributed. Specifically, if we let T be
the time that the next event occurs in a Poisson process with rate λ, then the probability
density function of T is as follows:

fT (t) =

{
λe−λt t > 0

0 t ≤ 0
(9)
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Notice that each individual page has its own change rate λ, since one page may have new
outlinks daily, whereas this only happens once a month for another page. By integrating
(9), we obtain the probability that v has new outgoing links in the time interval (0, t]:

P (T ≤ t) =

∫ t

0
λe−λtdt = 1− e−λt (10)

As explained in section 3.5.4, Logistic Regression gives also the probability that v has
new outgoing links in a certain time interval. By equating these probabilities, we can
calculate an estimation for the change rate of a page based on its features:

λ = −1 · ln[1− P (T ≤ t)]
t

(11)

However, one should be very careful when using this estimation. Firstly, since logistic
regression is a machine learning tool, it does not return the precise probability that the
next event will happen. Secondly, it only indicates whether or not a new outlink will
appear. It does not take into account how many outlinks may appear. This will skew the
results.

7 Methodology

In this section, we elaborate upon the general approach to this research. We will explain
what data we use, how it is preprocessed and what features are extracted. Lastly, we will
explain the details of the experiments that are conducted.

7.1 Approach

To answer the main research questions (RQ 1), we have to find a function f : V3 → {0, 1}
that predicts whether or not a vertex v ∈ V3 will have any new outgoing links. More
specifically, if f(v) = 0, the function predicts that v will have no new outgoing links and
when f(v) = 1 it will. We consider outlinks to both new web-pages and existing ones (see
case 1 and 5 in Section 3.1).

To create this function, we acquire three datasets of roughly the same part of the World
Wide Web crawled at different points in time. The data will be preprocessed and sanitized
if needed (see section 7.2). Afterwards, we use G1 and G2 to extract topological features
(section 7.3) and we will use G3 to label these features based on whether new outlinks
are present. The labeled features will be used to train four different machine learning
algorithms. In the last step, the performance of the algorithms is tested and displayed.

7.2 Data and Preprocessing

In total, three datasets have been acquired. The crawl were started on the 5th, 14th and
19th of June 2019 respectively. All crawls are instantiated with the same initial seeds, to
make sure that roughly the same part of the Internet was crawled.

Before the features can be extracted, the data needs preprocessing. Firstly, some web-
pages returned HTTP-error codes upon crawling. Most of them were in the 400 (client
error response) or 500 range (Server error response). These pages often contain no useful
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information, and therefore only the pages with a successful HTTP response (200 range)
were considered. Secondly, some of the features can only be calculated if the page is crawled
in all datasets. Therefore, pages that were deleted in-between G1 and G3 are removed as
well.

7.3 Features

The following static features are calculated for any node v1 ∈ V2. Most of the features are
based on the neighborhoods of the vertex itself. Below all the features are listed, together
with an reasoning why these features may be useful.

1. Number of inlinks of v1

|Γ−2 (v1)| (12)

If v1 has many inlinks, it may contain information regarded as important by the other
pages. Hence, this page might be well maintained and regularly updated. Therefore,
it might link to new pages in the future.

2. Number of outlinks of v1

|Γ+
2 (v1)| (13)

If v1 is pointing to a lot of other pages, it may point to even more pages in the future.
This might not be the case for a page that points to no other pages.

3. Number of inlinks in the same domain

|Γ−2 (v1) ∩ U2(v1)| (14)

If a lot of pages in the domain point to the same page, this page contains probably
important information in the domain. Therefore, this page might be well maintained
and regularly updated. New pages might occur close to this page.
Notice that

4. Fraction number of inlinks in the same domain

|Γ−2 (v1) ∩ U2(v1)|
|U2(v1)|

(15)

Similar reasoning as feature 3, only now divided by the number of pages in the
domain. This will take smaller websites better into account compared to larger
websites.

5. Number of outlinks in the same domain

|Γ+
2 (v1) ∩ U2(v1)| (16)

If v1 points to many pages in the same domain, it might be an indication that once
another page is created in that domain, v1 will also point to it. An example can be
a homepage of a website.

6. Fraction number of outlinks in the same domain

|Γ+
2 (v1) ∩ U2(v1)|
|U2(v1)|

(17)

Similar reasoning as feature 5, only now divided by the number of pages in the
domain. This will take smaller sites better into account compared to larger sites.
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7. Lower Bound Pages in Domain

|U−2 (v1)| (18)

If the domain of the page is large, the page might be part of a website that is changing
regularly. Hence, new outlinks may occur often.

8. Upper Bound Pages in Domain

|U+
2 (v1)| (19)

Similar reasoning as feature 7.

9. Content of the page has changed

g(v1) =

{
1 The content of v1 has changed between G1 and G2

0 The content of v1 remained the same between G1 and G2

(20)

If the content of v1 has changed, it is likely that the page is being maintained by
someone. Therefore, it may be likely that the page will be changed in the future and
thus have new outlinks.

10. Number of new outlinks

|Γ+
2 (v1) \ Γ+

1 (v1)| (21)

If a page has a high number of new outgoing links, it may be the case that the number
of outgoing links will keep increasing in the future.

11. Number of new inlinks

|Γ−2 (v1) \ Γ−1 (v1)| (22)

If a page has many new inlinks, it might indicate that the web page is in a neighbor-
hood of the World Wide Web that is changing rapidly. Hence, this feature might be
an indicator that new pages will appear close to it.

12. Fraction of new inlinks

|Γ−2 (v1) \ Γ−1 (v1)|
|Γ−2 (v1)|

(23)

Similar reasoning as feature 11, only now divided by the total number of inlinks of
v1. This might give an advantage to nodes with less inlinks.

13. Number of neighbors with changed content

∑
v∈Γ2(v1)

g(v), g(v) =

{
1 The content of v has changed between G1 and G2

0 The content of v remained the same between G1 and G2

(24)

Similar reasoning as feature 11.
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14. Fraction of neighbors with changed content

1

|Γ2(v1)|
∑

v∈Γ2(v1)

g(v), g(v) =

{
1 The content of v has changed between G1 and G2

0 The content of v remained the same between G1 and G2

(25)

Similar reasoning to feature 13, only now divided by the number of neighbors that
v1 has. This way, smaller sites are also taken into account.

15. TrustRank [6]
TrustRank is calculated using a list of trusted hosts (sites that are not spam) contain-
ing 170.000 pages. The TrustRank (TR) is calculated using the following formula:

TR(v1) =
∑

v∈Γ−
2 (v1)

0, 85 ·TR(v)+0, 15 ·h(v), h(v) =

{
1 v is a trusted host
0 v is no trusted host

(26)

A web page with a high TrustRank is assumed to have importance on the web.
Therefore, we may assume that the web page is well maintained and has a higher
probability of pointing to new web pages.

The features of v1 will be labeled based on whether v1 has new outgoing links in G3.

7.4 Experiments

The labeled features will be randomly split into training and test data. The training data
will be used to train the following four machine learning algorithms: Random Forest, K
Nearest Neighbors, Support Vector Machine, Logistic Regression. The training will be
done using 10-fold cross validation. Using the test data, the performance of the models
will be validated. Furthermore, we will check which features are most important when
predicting new pages on the Internet.

8 Results

The first, second and third dataset contain 2.944.955, 2.964.550 and 2.964.439 URLs re-
spectively. Of those URLs respectively 1.805.757, 1.774.199 and 1.729.548 return a HTTP
status code of 200. Lastly, a total of 1.693.126 URLs are present in all 3 datasets.

In total 32,4% of the pages changed its content between dataset 1 and 2. Of those pages,
69% contained new outgoing links. Since the time between dataset 2 and 3 was shorter,
only 25% of the pages was changed between those crawls, of which 70% contained new
outlinks.

Before the data can be used, it needs preprocessing as described in section 7.2. After
preprocessing, 1.693.126 pages remain. Of only 843.362 of these pages was the TrustRank
known. Lastly, of these remaining pages, only 20,3% contained new outlinks. To make
sure that the machine learning algorithms can not achieve high performance because of
this inbalance, we randomly remove some of the sites that did not contain new outgoing
links. In total 339.078 pages remain (see figure 8).
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Figure 8: Number of URLs during preprocessing

Figure 9: Performance with increas-
ing number of trees

Figure 10: Performance with in-
creasing training sets

8.1 Random Forest

Below, the results of the experiments using the Random Forest will be shown.

8.1.1 Number of trees

To figure out what the optimal number of trees is, we plot the performance of the algorithm
against the number of trees used. Here, we use all features and 85% of the data will be
used as training set (this ratio will later be explained). The results can be found in figure
9. As can be seen, the performance does not increase when more than 50 trees are used.
Hence, this number will be used in the remainder of the section.

8.1.2 Training size

To test whether the algorithm keeps learning when data is added, we plot the performance
against the size of the training set. The results are shown in figure 10. An increasing trend
is clearly visible over the entire x-axis. This indicates that we should use a training set as
large as possible (and we even could use more data). Therefore, 85% of the data will be
used as training set and 15% as test set.

8.1.3 Performance and Vector Importance

When training the algorithm with all the features, we obtain an F1-score of 0,901. The
importance of each feature is shown in figure 11. When we look at these results, it is clear
that the most important features are the number of new outlinks in dataset 2 and the
number of neighbors changed. Furthermore, almost all the other features seem to have the
same level of importance. Striking, is that the (fraction of) new inlinks do not contribute
at all.

To calculate the most optimal feature set, we systematically remove the least important
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Figure 11: Variable importance
Random Forest

Figure 12: Performance Feature
Sets Random Forest

Figure 13: Performance Neighbors Figure 14: Neighborhood KNN

feature and compare the results (see figure 12). The performance is optimal when the top
9 features are used with an F1-score of 0,911.

8.2 K Nearest Neighbors

Below, the results of the experiments using the K Nearest Neighbors (KNN) algorithm are
shown.

8.2.1 Number of Neighbors

As explained in section 3.5.2, choosing the number of neighbors that are used in the
prediction is important. Figure 13 shows how the performance of the algorithm progresses
when the number of neighbors is increased. A slightly decreasing trend is visible, meaning
that with a low number of neighbors, the results are optimal. In figure 13, the data is
normalised using the rank method. However, normalising using maximum value shows a
similar trend.

8.2.2 Normalisation

Using K = 11, we can compare the performance of both normalisation methods discussed
in section 3.5.5. Table 2 shows the performance of both methods. The normalising methods
seem to have a similar performance and both outperform not using a normalising strategy.
The optimal F1-score (0,863) is achieved using rank normalisation.

8.2.3 Neighborhood

It is interesting to visualise the working of the KNN network in the 2 dimensional space.
In order to do this, we predict using only the two (most important) features ’Total new
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Table 2: Performance Normalisation Methods KNN

Normalisation Method F1-score Precision Accuracy Recall
Maximum Value 0,847 0,830 0,842 0,864

Rank 0,863 0,859 0,861 0,867
No Normalisation 0,836 0,817 0,831 0,856

outlinks’ and ’Number of neighbors changed’ and use a K of 11. Since the sizes of the
domains of these features are roughly the same, the data is not normalised. Figure 14
visualises how the KNN algorithm would classify the points. Data points in the green area
would be classified as having new outgoing links and the contrary for points in the red
area. The dots represent training data, where again the color represents whether or not a
page contained new outgoing links.

Since only two features are used, this is only a simplified visualisation of the algorithm.
However, there is a clear pattern to see in the figure. For low values of both features, the
algorithm predicts that there are no new outgoing links.

8.3 Support Vector Machine

This section will elaborate upon the results of the support vector machine experiment.
Since the training phase of the SVM is computationally heavy, all the experiments are
conducted using just 20% of the test and training data.

8.3.1 Normalisation

In table 3 the performance of the different normalisation methods are displayed. Normal-
ising by Rank seems to be the most optimal solution. Again, no normalisation gives the
worst performance. The optimal achieved F1-score is 0,830.

Table 3: Performance Normalisation Methods SVC

Normalisation Method F1-score Precision Accuracy Recall
Maximum Value 0,793 0,764 0,784 0,826

Rank 0,830 0,871 0,836 0,793
No Normalisation 0,736 0,770 0,746 0,705

8.4 Logistic Regression

In this section, we discuss the results of the experiments using Logistic Regression.

8.4.1 Vector Importance

As explained in section 3.5.4, Logistic Regression is built upon the Sigmoid function. Com-
paring the weights in this function, gives us an idea of the importance of the features. The
results are shown in figure 15. The two most important features seem to be the number of
neighbors changed and the total number of new outlinks between dataset 1 and 2.

My removing less important features one at the time, we get an idea what the optimal fea-
ture set would be (see figure 16). Surprisingly, the performance seems almost constant for

16



Figure 15: Variable Importance Lo-
gistic Regression

Figure 16: Performance Feature
Sets Logistic Regression

Figure 17: Learning Curve Logistic
Regression

Figure 18: Change Rate Logistic
Regression

any number of features used. Only if a few or almost all features are used, the performance
changes.

8.4.2 Learning Curve

The learning curve of the Logistic Regression model is displayed in figure 17. An upward
trend is clearly visible, an indication that more data is appreciated. For small training sets,
the recall value is very high. This is since the logistic regression model classifies almost
any input vector as having new outgoing links. This results in a high recall, but a very
low accuracy and precision.

8.4.3 Change rate

Using the method explained in section 6, we can predict the change rate of the pages using
logistic regression (see figure 18). Pages with a rate lower than 0.14 are classified as not
having new outgoing links.

9 Discussion

Before we can interpret the results of this research effectively, we should consider the
decisions that are taken to siplify the problem. Firstly, in preprocessing the data, approx-
imately 90% of the URLs were discarded. Most of these URLs are discarded since the
data was not complete or because of balancing. Therefore, we should keep in mind that by
throwing away these URLs, data is lost and the training set may not represent the World
Wide Web correctly.
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Secondly, the times at which the crawles were started, were not evenly spread. Between
dataset 1 and 2 was a 9 day gap, between dataset 2 and 3 a 5 day gap. If the rate at
which pages are created is consistent, this would mean that less pages were created be-
tween dataset 2 and 3 compared to dataset 1 and 2. This could have skewed the results.

Thirdly, we are dependent on the pages that are present in the crawl. By initializing
each crawl with the same seeds, we make sure that roughly the same part of the World
Wide Web is crawled each time. However, we cannot make sure that this is actually the
case. Pages that were crawled before might be left out in later crawls and vice versa.
Changes in the web can only be detected correctly if the same part of the web is crawled
each time. Therefore, any deviations will have a negative effect on the results.

Lastly, we only consider new outgoing links. It may happen that a new outgoing link
is pointing to a page that existed already. Hence, new outgoing links is not a perfect
metric for determining where new pages are created.

Keeping this in mind, we do seem to get good results from the machine learning mod-
els. Especially the Random Forest excels with an accuracy and precision of over 90%. The
most important features, seem to be the total new outgoing links between dataset 1 and
2, and the number of neighbors changed. The former is not surprising; if a page linked
to newly created pages in the past, it will likely do so in the future as well (think about
webshops or news sites). However, it is surprising that the number of changed neighbors
has a high influence on the classifiers. Apparently, if a page is in a part of the Internet that
is changing rapidly, the page itself will change as well. Furthermore, the number of (new)
ingoing links have almost no importance. This could be an indication that often used
metrics like PageRank (which are heavily dependent on inlinks) are also a bad indicator
when predicting new outgoing links. Interestingly, the learning curves of the algorithms
are all increasing. This means that the performance of the models may be increased by
adding new data.

10 Conclusion

We have shown that topological features are a good indicator when predicting where new
pages on the World Wide Web will appear. With an accuracy and precision of over 90%,
the Random Forest model was able to predict where new outgoing links would occur on
the Internet. Other Machine Learning algorithms, like Logistic Regression, Support Vector
Machine and K Nearest Neighbors, achieved an accuracy and precision of 75% and higher.
The most important indicators when predicting outgoing links, are how often a page had
new outgoing links before and the number of its neighbors that were changed.

The solution proposed in this research shows promising results in solving the problem
of finding new pages. However, there are also indicators that the results may improve
when more data is used in the training process of the models.

11 Future work

Firstly, this research should be repeated using more (clean) data. As the learning curves
of the different algorithms showed, more data is appreciated and could improve the per-
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formance.

Secondly, it would be interesting to implement a classifying function into a focused crawler.
This focused crawler would give higher priority to pages that are likely to contain new out-
going links. It should be verified if this crawler indeed finds more new pages than a
traditional crawler.

Lastly, in this research we did not include the quality of the outgoing links. For instance,
a webshop creates dozens of new pages daily. However, these pages are very similar and
will not all contain new relevant information. It would be interesting to incorporate the
quality of the new web page, to make sure we only find interesting content.
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A Data record

Below, a record of the dataset is displayed in JSON-format. Note that several keys are
truncated for readability purposes.

{
" u r l " : " http :// u r l . org /" ,
" ur lViewInfo " :{

" lastView ":"2019−06−18 21 :43" ,
" l a s tS chedu l e ":"2019−06−18 20 :33" ,
" l a s tFe t ch ":"2019−06−18 20 :33" ,
" rank " :{

" elementValue " :0 . 016857073 ,
" t rustVa lue " :0 .02436128

} ,
"numInLinksExt " :"2" ,
"numInLinksInt " :"112"

} ,
" u r lFe t ch In f o " :{

" language " :" Engl i sh " ,
" textQua l i ty " : 1 . 3409368 ,
" contentLength " :25679 ,
" httpStatus " :200 ,
" t i t l e " : " t i t l e " ,
" f e tchDurat ion " :161 ,
" fetchDate ":"2019−06−18" ,
" i n t e rna lL i nk s " : [

{
" ta rg e tUr l " : " https : //www. url_inside_domain . com" ,
" l i n k I n f o " :{

" l inkType " :"LINK" ,
" l i nkRe l " : 1 ,
" l i nkQua l i t y " :0 . 9921029

} ,
" c r aw l e r I n f o " :{

}
} , . . .

] ,
" ex t e rna lL ink s " : [

{
" ta rg e tUr l " : " https : //www. url_outside_domain . com" ,
" l i n k I n f o " :{

" l inkType " :"A" ,
" tex t " :" Link " ,
" l i nkQua l i t y " :0 . 9308616

} ,
" c r aw l e r I n f o " :{

}
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} , . . .
] ,
" contentDiges t " :"OHQGbGtSKcaLmEWzNybstg==",
" semanticVector " : {

" va lues " : [ . . . ]
} ,
" t e x tS i z e " :106

}
}
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