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Augmenting an EMG-driven musculoskeletal model by accounting for
intrinsic muscle properties to improve joint stiffness estimation

Maria João Cabral1, Pablo Cop1 and Massimo Sartori1

Objective: Short-range stiffness (SRS) is the main muscle
mechanism to respond to perturbations. In current literature
no models of SRS have been applied to dynamic tasks.
In this study, a novel methodology to implement SRS in
electromyography(EMG)-driven musculoskeletal modeling and
further validation in dynamic and static tasks against system
identification techniques is proposed. Methods: EMG signals,
motion capture, and kinematic and dynamic data of the ankle
joint and surrounding muscle acquired during plantar-dorsi
flexion movements were used used to drive the musculoskeletal
modelling framework in order to estimate ankle joint stiffness.
A model of SRS was added to the modeling framework. An
automatic fiber stretch detection algorithm was developed to
trigger SRS. An optimization algorithm was implemented to
account for amplitude of the movement in SRS calculation.
Results: The proposed model with the inclusion of SRS im-
proved the estimations of joint stiffness in comparison with
the model without SRS, especially during the static conditions.
The model was able to differentiate between the different tasks,
by increasing or decreasing the contribution of SRS when
the muscles suffered large or small amplitude of movement,
respectively. The model detected with an accuracy of 92%
the perturbations applied and, consequently, the trigger of
SRS. Conclusion: The suggested methodology provides a prof
of concept to implement SRS in musculoskeletal models. The
ability to trigger the computation of SRS without providing
additional information to the model and adjusting the computed
SRS according to the amplitude of the movement enables the
application of the model in any type of task.

I. INTRODUCTION

Human movement results from the response of the mus-
cles to afferent and efferent neuronal stimuli. Although the
mechanisms used during movement are very complex, most
of them occur at a subconscious level, so no mental effort
is required (Ogawa et al. 2013). This is the case of the
adaptation to different environmental conditions, different
terrains or external perturbations. The central nervous system
is largely responsible for the innervation of the muscle
fibres that will evoke a certain viscoelastic response in the
muscle, leading to a modulation of the viscoelastic response
at the joint level, i.e. joint stiffness (Winter 2009; Latash
and Zatsiorsky 1993). Stiffness is a term widely used in the
mechanical engineering field to describe the resistance that a
body offers to deformation when a force is applied (Winter
2009). The concept of joint stiffness is, therefore, very con-
troversial since a joint is not a single body, but a combination
of multiple bodies with different elastic responses (Latash
and Zatsiorsky 1993). Here, we define joint stiffness as the
combination of the elastic response of the biologic tissues
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that surround the joint. In some neuron-motor diseases, e.g.
cerebral palsy, joint stiffness is impaired resulting in unco-
ordinated movement, weak and stiff muscles and tremors.
Cerebral palsy is a movement disorder that appears early in
childhood and it occurs in about 2.1 per 1,000 live births
(Oskoui et al. 2013), being the most common movement
disorder in childhood. Understanding the muscle strategies
that modulate joint stiffness and translating this knowledge
into technological solutions will allow provision of more
personalized rehabilitation treatments (Ogawa et al. 2013),
development of biomimetic prostheses (Sartori, Lloyd, and
Farina 2016) and improvement of clinical assessments for
neural-motor diseases (deaGroote, Blum, et al. 2018; Eggle-
ston, Harry, and Dufek 2018; Galli et al. 2018).

The neural modulation of viscoelastic properties of the
joints started to be questioned in some conditions, when
in experimental measurements very large values of tension
were measured for the very early stretch of the muscle fibre
after isometric contraction (Joyce, P. Rack, and Westbury
1969). Joyce explained these findings through the sliding
filament theory of muscle contraction, more specifically
through the rate of formation and deformation of the cross-
bridges between the thick and the thin filaments within the
myofibrils. At high stimulation rates, there would be a strong
tendency to form cross-links, so during lengthening a higher
number of cross-bridges will stretch or deform originating
an increase of force exerted. At lower stimulation rates, the
cross-links would be formed more slowly, so by moving the
filaments the rate of deformation of the cross-links would
increase leading to a fall in tension (Joyce, P. Rack, and
Westbury 1969). A later study deeply investigated the be-
haviour of muscles during different velocities and amplitudes
of movement, confirming the steep rise in tension for the first
distance of stretch and the increase in steepness with higher
stimulation rates (P. M. Rack and Westbury 1974). The force
in the muscle rises in two phases with the stretch of the
fiber: an initial rapid increase over a small stretch (short-
range regime), and a slower and more modest rise over the
remainder of the stretch (complaint regime) (Getz, Cooke,
and Lehman 1998).

The term short-range stiffness (SRS) originated to repre-
sent the intrinsic property of muscle fibres, resulting from
the force produced by the muscle while stretching due to
distortion, but not breakage, of the cross-bridges between the
thin and thick filaments within the myofibrils (P. M. Rack and
Westbury 1974). This muscle property is independent on the
velocity of the movement but varies with the tension in the
fibre and with the amplitude of the movement (P. M. Rack



and Westbury 1974). The only dependency with velocity of
the movement observed was with respect to the duration
of the short-range regime, but not the magnitude of the
SRS (P. M. Rack and Westbury 1974). Aside from the fibre
stretch dependency, more recent studies have shown that
SRS is also a time-dependent feature of muscle contraction
(vanaEesbeek et al. 2010; deaVlugt et al. 2011). The concept
of initial mechanical response arose to describe the first 50
ms after a perturbation, in which no change in muscle activity
due to spinal reflexes occurs, so changes in muscle force
during this period can only be attributed to intrinsic muscle
properties (deaGroote, Allen, and Ting 2017). Although SRS
is defined as a mechanical property of the muscle, it can
clearly influence the biomechanics of the joint. Moreover, in
tasks with small range of motion in which the fibers do not
stretch beyond the elastic limit of the cross-bridges.

Joint stiffness has been widely estimated by system iden-
tification methods in conjugation with joint perturbation
techniques in order to determine a relationship between joint
angle and joint torque, in static or dynamic conditions (Rouse
et al. 2013). An advantage of this method is that joint
stiffness can be estimated without prior knowledge about
the structures spanning the joint. However, the presence of
external perturbations in the joint is always required, which
is not always convenient, especially in pathological situations
were simple movements are already very demanding for the
patient.

In order to overcome this issue, in the last decade more
effort has been put into developing musculoskeletal models
that can estimate joint stiffness in static (Hu, Murray, and
Perreault 2011; Pfeifer et al. 2012) and dynamic (Sartori,
Maculan, et al. 2015) conditions. A musculoskeletal model
uses kinematic data and measured moments and forces to
compute joint angles and moments through inverse kinematic
and dynamic approaches. Due to muscle redundancy most of
the musculoskeletal models use an optimization algorithm
to find a unique solution (Delp et al. 2007). To provide a
more physiological solution to this problem, musculoskeletal
models that also include electromyography (EMG) record-
ings to obtain an unique solution were developed (Sartori,
Maculan, et al. 2015). Recorded EMG signals and kinematic
data are used to compute muscle activations and muscle fiber
lengths and moments arms of a certain number of muscle
tendon units (MTUs). Muscle dynamics are computed based
on the equations of the Hill-type muscle model. Then, the
dynamic response of each MTU is projected into the joint
level in order to obtain joint moments. During calibration,
the model runs in a closed loop until it calibrates the subject-
specific parameters by minimizing the difference between the
reference torque and the estimated torque. After calibration,
the model works in open loop and does not require reference
torques. An advantage of this method is the calculation of
the individual contribution of each muscle to the global
joint stiffness, so co-contraction strategies can be taken into
account. The framework proposed by (Sartori, Maculan, et al.
2015) was validated in perturbed sinusoidal dynamic and
static conditions of the ankle joint against system identifi-

cation techniques (Cop et al. 2019). The model estimated
joint stiffness sufficiently well for fast dynamic tasks, but
for slow dynamic movement and static conditions the model
underestimated the global joint stiffness.

To drive any musculoskeletal model a mathematical rep-
resentation of the viscoelastic response of the muscle and
the surrounding biological tissues is required. Most of the
modeling approaches found in literature use a Hill-type
muscle model to compute the muscle-tendon properties.
The standard Hill-type muscle model used is composed of
three components: an active contractile element, a passive
parallel element and a series element. The active contractile
element models the active force generated by the sliding
filaments at the sarcomere level. The passive parallel element
represents the force of the connective tissues surrounding the
contractile element. The series element represents the tendon
(Hill 1938). In this model, the intrinsic properties of the
muscle, such as short-range stiffness and history-dependency
muscle properties are not taken into account (Martins et al.
1998; McGowan, Neptune, and Herzog 2013). As discussed
previously these properties can have a crucial role in the
modulation of joint stiffness in adaptation to external stimuli.
Therefore, we consider that our EMG-driven musculoskeletal
model underestimated the global joint stiffness for static
conditions probably due to the absence of the intrinsic muscle
properties in the modeling framework.

Several research groups have attempted to include SRS
in musculoskeletal models. A common assumption across
all approaches consists of allocating SRS in the contractile
element of the Hill-type muscle model (Loram, Maganaris,
and Martin Lakie 2007). SRS was modelled in static postures
of the arm for the calculation of instantaneous endpoint
stiffness (Hu, Murray, and Perreault 2011). In this study,
SRS was proportional to the initial isometric force in each
muscle in series with the stiffness of the tendon, the same
approach tested previously in felines (Cui et al. 2008). The
results showed that SRS is a crucial mechanism in the
estimation of end point stiffness. However, this method was
only applied within the conditions of short-range stiffness,
i.e. while the muscle fibres are not stretched beyond the
short-range regime. Another study developed a model to
compute SRS at the joint level during imposed wrist rotations
(deaVlugt et al. 2011). Here, SRS was modelled with a
dynamic nonlinear model, in which a transitioning behavior
between the short-range regime and the more compliant
regime was included based on the joint angle. However, the
model was only applied in static conditions, and, additionally,
no discrimination between individual muscle contributions
was made. So far, there was no model that accounted for the
stretch limit of the muscle fibers and, therefore, it has not
been possible to implement it for dynamic tasks.

A recent study published by De Groote et al., approached
this problem by developing a dynamic model of muscle
short-range stiffness to augment a Hill-type muscle model
(deaGroote, Allen, and Ting 2017). The model was applied
during the initial mechanical response to perturbed standing
position and the ankle, knee and hip joint torques were
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computed. The SRS force in the muscle was modelled
proportional to the isometric force prior to the perturba-
tion, as reported by (Cui et al. 2008), but a fibre stretch
dependency was added to the model in order to adapt it to
dynamic tasks. The results showed that short-range stiffness
is an important consideration in simulations of perturbed
movements (deaGroote, Allen, and Ting 2017). Even though
this study has shown great results at the torque level, no
computation of the joint stiffness has been done. Moreover,
this model was implemented with a clear starting point
to trigger SRS, which means that it cannot be applied in
continuous tasks.

In the present study, an extension of the SRS model
suggested by De Groote et al. (2017) is implemented into the
EMG-driven musculoskeletal model developed by Sartori,
Maculan, et al. 2015, in order to better estimate ankle joint
stiffness in perturbed dynamic and static tasks. To assess
the contribution of short-range stiffness to the estimation
of joint stiffness during dynamic tasks, we first modelled
SRS by augmenting the Hill-type muscle model and included
it in the EMG-driven musculoskeletal model developed by
Sartori, Maculan, et al. 2015. Secondly, we created a model
to determine when SRS should be triggered. Using the fiber
acceleration profile the model is able to automatically tran-
sition from the compliant regime to the short-range regime
of the muscle fiber. Finally, we implemented an optimization
algorithm which accounts for the amplitude of the movement
of each muscle fiber. We hypothesize that including SRS as
a muscle property in the EMG-driven musculoskeletal model
will improve the prediction of joint stiffness, especially
during static conditions. Additionally, having a method to
automatically trigger the short-range regime will widen the
applicability of these frameworks into biomimetic prostheses,
that can further be applied in rehabilitation of neuromotor
disorders.

II. METHODS

The proposed framework was applied to the data set
recorded in a previous study (Cop et al. 2019) and the
computed joint stiffness was validated against system iden-
tification techniques which were performed by yet another
study (Moya Esteban et al. 2019). For more information
on the experimental protocol (Section II - A), the EMG-
musculoskeletal model (Section II - B) (Sartori, Maculan,
et al. 2015) and the method used for system identification
the reader is referred to the studies cited above.

A. Data Set

Six healthy subjects (age: 24.2 ± 1.0 years; weight:
68.8 ± 5.6 kg; height: 1.75 ± 0.08 m) participated in this
study. The Achilles Rehabilitation Device (MOOG, Nieuw-
Vennep, The Netherlands), an admittance controlled single
axis manipulator, was used to measure the ankle joints
position and torque. Motion capture data was acquired using
a Visualeyez II tracker (PTI, Vancouver, Canada) at 100 Hz.
EMG activity was recorded at 2048 Hz by the Porti system
(TMSi, Oldenzaal, The Netherlands). The main parts of the

Fig. 1: I)Experimental setup. The Achilles Rehabilitation Device
(A) was used to perturb and track the kinematics and dynamics
of the ankle joint. Muscle activity (B) was recorded by the Porti
system. Optical LED markers (C) were used to capture the knee
and ankle angles. II) Screen in which the target (solid red line) and
the subjects trajectory (solid blue line) are displayed.

experimental setup can be seen in Fig. 1. The experimental
protocol consisted of two types of tasks, a dynamic and a
static task. The Achilles Rehabilitation Device had a support
for the foot and was able to mimic a selected viscoelastic
environment to provide a certain resistance while it was
moved. In dynamic tasks, subjects were asked to follow
sinusoidal position targets (Fig. 1-II) with an amplitude of
0.15 rad at two different frequencies, 0.3 Hz (slow) and
0.6 Hz (fast), both in unperturbed and perturbed conditions.
For these tasks, the viscoelastic environment of the Achilles
device was characterized by a virtual inertia (iv), damping
(bv), and stiffness (kv) of 1 kg·m2, 2.5 N·m·s·rad−1, and
60 N·m·s·rad−1, respectively. In static tasks, the Achilles
remained at a fixed position and subjects were asked to
follow a sinusoidal torque target with an amplitude of 5
N·m and a frequency of 0.8 Hz. The device was also able
to provide pseudo-random perturbations at the ankle joint.
These perturbations were set to apply random rotations of
0.03 rad at the ankle joint level. All tasks described before
were tested in perturbed and unperturbed conditions. For all
non perturbed conditions (No Pert) only one repetition was
performed. For the perturbed conditions (Pert), for dynamic
at 0.6Hz, dynamic at 0.3Hz and static tasks, six, eleven and
four repetitions of each tasks were performed, respectively.
The number of repetitions for each type of task was chosen
in order to have approximately the same amount of plantar-
dorsi flexion cycles. Each trial lasted 120 seconds. The order
of the tasks, i.e. static, dynamic at 0.3Hz, and dynamic at
0.6Hz, was randomized across subjects to avoid bias due to
the learning effects.

The EMG data was acquired from five lower leg muscles:
tibialis anterior, soleus, gastrocnemius medialis and lateralis,
and peroneus longus. EMG signals were filtered and normal-
ized by the value of maximum voluntary contraction (MVC)
for each subject. For more details on the signal processing
read Cop et al. 2019. Motion capture data was recorded
using 12 optical markers placed on the subjects right leg.
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Several bony landmarks were used for scaling the generic
OpenSim Gait2392 Simbody anatomical model 1. In addition
to the markers on the bony landmarks ,three markers on the
thigh and three markers on the shank were used to track
the knee and ankle angles during the whole experiment. The
measured position of the Achilles was recorded by the Porti
and Visualeyez systems to perform off-line synchronization
of the measurements of all devices used in the experiment.

B. EMG-driven musculoskeletal modeling framework

The EMG-driven musculoskeletal model is briefly ex-
plained here, for a more detailed description, the reader is
referred to Sartori, Maculan, et al. 2015. As an input to the
framework the properties of the each MTU such as activation,
length, velocity and moment arm were calculated by the
open-source toolbox Calibrated EMG-Informed Neuromus-
culoskeletal Modeling (CEINMS) 2 (Pizzolato et al. 2015)
and by the open-source software OpenSim (Delp et al. 2007).
The framework is composed of five different blocks:

• A: MTU activation block. The EMG signals recorded
from five muscle groups are converted into activations
(a(t)), which are used to drive seven MTUs. This means
that the muscles that are not recorded from the EMG
signals are obtained by mapping signals from other
muscles. This is the case for the peroneus brevis and
the tertius, whose activation patterns are obtained from
the EMG signals of the peroneus longus and the tibialis
anterior, respectively.

• B: MTU kinematics block. A generic model with seven
MTUs and a single degree of freedom (DOF), i.e. ankle
plantar-dorsi flexion, is adjusted to match the scaled
OpenSim model. To estimate instantaneous MTU length
lMTU and MTU moment arm r as function of the ankle
angle, two splines are created with the MTU length and
moment arms obtained from the OpenSim as a function
of the ankle angle.

• C: MTU dynamics block. Normalized generic force-
velocity and force-length (both passive and active)
curves are used in conjunction with a(t), lMTU and
fiber velocity, vMTU , obtained in previous blocks to
compute MTU force, FMTU . The force of the MTU
is equal to the tendon force F t. Since the tendon is
in series with the muscle fibers, its force is the same
to the muscle fibers force. The equation that is used
corresponds to a Hill- type muscle model (Sartori,
Maculan, et al. 2015).

FMTU = F t = Fmcos(α) (1)

The muscle stiffness Km is estimated as the partial
derivative of the muscle fiber force Fm with respect
to the normalized muscle fiber length l̄m. The muscle

1https://simtk-confluence.stanford.edu/display/OpenSim/Gait+2392+and
+2354+Models

2https://simtk.org/projects/ceinms

force and muscle stiffness are modelled as two multi-
dimensional cubic spline functions of the fiber length,
fiber velocity and activation.

Km =
∂Fm(a, lm, vm)

∂l̄m
(2)

The tendon stiffness Kt is obtained from the derivative
of the tendon force-strain curve (Zajac 1989) in the
instantaneous tendon strain value. Then, the stiffness of
the MTU is derived according to the Hill-type muscle
model, in which the muscle and the tendon are in series.

KMTU =
Km ·Kt

Km +Kt
(3)

• D: MTU joint dynamics block. The joint moment of
the DOF of ankle plantar-dorsi flexion is computed as
the sum of the product of each MTU force, FMTU , and
their associated moment arm, r. The stiffness of each
MTU is projected at the joint level by the following
equation:

Kj =

#MTU∑
i=1

KMTU
i · r2i +

∂ri
∂θA

· FMTU
i (4)

where KA is the ankle joint stiffness, KMTU
i the

stiffness of the ith MTU, ri the moment arm of the
ith MTU, θA the ankle angle and FMTU

i the force in
the ith MTU .

• E: Calibration block. Before the EMG-driven muscu-
loskeletal model can be run in open-loop to predict mus-
cle forces and joint torques, it needs to be calibrated. In
this step, an optimization routine adjusts certain subject-
specific model parameters in order to minimize the
error between the estimated and experimental torques
(provided by the Achilles). The adjusted parameters
are the tendon slack length, the optimal fiber lengths
of the modeled muscles and a strength coefficient for
each MTU. Additionally, three more coefficients that
describe the non-linear muscle activation dynamics are
optimized. A detailed description of the model param-
eters is provided in Pizzolato et al. 2015.

C. Dynamic Model for Short-Range Stiffness

In this study we considered that the main mechanism of
the muscles in response to perturbations results from short-
range stiffness. In order to account for SRS we extended the
Hill-type muscle model by including a component parallel
to the muscle, as it was suggested by deaGroote, Allen,
and Ting 2017 (Fig. 2). The behavior of the force produced
by short-range stiffness was modelled as a function of the
stretch of the muscle fiber. SRS was computed only during
lengthening. The force produced by the muscle due to
short-range stiffness will be referred to in the rest of this
study as ”short-range stiffness force” (SRS force). The SRS
force is proportional to the fiber stretch at each instant of
time δ. However, from a certain critical stretch, δc, SRS is
proportional to that constant critical stretch. The calculation
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of SRS force is computed by the same approach as suggested
by deaGroote, Allen, and Ting 2017.

FSRS
m (a, l̄m,∆l̄m) =


0 , if∆l̄m < 0

γF 0
mafact(l̄

m)∆l̄m , if0 < ∆l̄m < δc

γF 0
mafact(l̄

m)δc , if∆l̄m > δc
(5)

where γ = 280 is the short-range stiffness constant, F 0
m is

the maximal isometric muscle force, fact(l̄m)) is the muscle
force-length relation, l̄m is the fiber length normalized by
optimal fiber length , ∆l̄m is the normalized fiber stretch, a
is the activation of the muscle fiber, and δ = 5.7 · 10−3 is
the normalized critical stretch. The normalized fiber stretch
is computed in relation to the stretch of the fiber at the instant
of the perturbation (Eq. 6).

∆l̄m =
lm − lmp
lm0

(6)

where lmp is the fiber length at the instant of the perturba-
tion, lm is the muscle fiber length and lm0 , is the optimal fiber
length. As discussed previously, SRS does not only depend
on the fiber stretch. Only after 50ms of the perturbation time,
the first changes in activation due to spinal cord signals occur
and the active mechanism of the fibers becomes dominant
over SRS (deaGroote, Allen, and Ting 2017). Therefore, the
contribution of SRS as described in Eq. 5 was only computed
during the time window of 50 ms after a perturbation.

Although a model for the force produced by SRS was pro-
posed by deaGroote, Allen, and Ting 2017, no derivation of
stiffness from the muscle force was calculated. To compute
short-range stiffness we used an adaptation of the approach
suggested by Cui et al. 2008, in which the stiffness of the
muscle is given by the following equation:

KSRS
m = β(A)

∂FSRS
m

∂l̄m
(7)

Fig. 2: Modified Hill-type muscle model, with short-range stiffness.
The MT-actuator comprises of a tendon T, in series with a mus-
cle.The muscle consists of a contractile element, CE, parallel to a
passive element. In the short-range regime, another parallel element
is added within the muscle model to account for the contribution of
short-range stiffness. The pennation angle α is the angle between
the orientation of the muscle fibers and the tendon.

where FSRS
m is the muscle SRS force, l̄m is the normalized

fiber length and β(A) is a multiplicative factor, that will
be explained shortly. The same approach was used by Cui
et al. 2008 to calculate muscle stiffness from muscle force.
However, in this study instead of a constant value, the
derivative of the muscle force was multiplied by a parameter
β, that varied with the maximal amplitude of the muscle
fibers throughout the entire movement, A. The parameter
β was designed to have an exponential decay with the
amplitude of the muscle fibers (Eq. 8, Appendix B: Fig. 11).

β(A) = Ge−B·A (8)

where G represents the gain of the function β(A), B
is a shape factor to model how fast β decays with the
amplitude and A is the maximal amplitude of each muscle
fiber throughout the entire movement. In this study, B was
considered constant (B = 200). In contrast, G was optimized
for each subject and each trial between a value ranging from
[0 40] (Section II.D). This parameter aimes to mimic the
rate of formation and deformation of cross-bridges. Hence,
in large amplitudes of movement there is a high rate of
formation and deformation of cross-bridges, reducing the
contribution of SRS. Contrarily, during small amplitudes
of movements, the rate of formation and deformation of
cross bridges is small, so more contribution of SRS is
expected (Joyce, P. Rack, and Westbury 1969; P. M. Rack
and Westbury 1974).

Subject specific splines for SRS force (Eq. 5) and SRS
(Eq. 7) were calculated for all the possible combinations of
fiber activation, fiber lengths and fiber stretch (Appendix A
Fig. 9), in order to avoid discontinuities while computing the
force derivative. To adapt the EMG-driven musculoskeletal
modeling framework described in Section II.B to include the
computation of SRS, a few changes in the described blocks
were made. To the block C, the computation of SRS force
and SRS (Eq. 5 and Eq.7) was added. This computation was
only triggered during the period of the initial mechanical
response after each perturbation. Consequently, the force in
the muscle during the short-range regime is the summation
of the force in the muscle from the Hill-type muscle model
(Fm) plus the force from SRS (FSRS).

Since one more component was added in parallel with the
muscle in the Hill-type muscle model, the calculation of the
MTU stiffness is given by:

KMTU =
(Km +KSRS) ·Kt

Km +KSRS +Kt
(9)

In block D of the EMG-driven model the computation of
joint dynamics is made by using the muscle force and MTU
stiffness as referred to above.

The force in the muscle from the Hill-type muscle model
(Fm) is given by:

Fm = a(t)f(l̄m)f(v̄m) + fp(l̄m) (10)

In order to verify the influence of fiber velocity in the SRS
response, we run the model with and without the contribu-
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Fig. 3: Schematic diagram of the EMG-driven musculoskeletal modeling pipeline used in this study. It consists of five blocks: model
calibration, MTU activation, MTU kinematics, MTU dynamics, and joint dynamics. Firstly, the model calibration block uses EMG-
signals, three-dimensional (3D) joint angles and experimental ankle torques from several calibration trials to find the optimal set of model
parameters that enable the computation of the ankle torque that best fits the experimental torque. The MTU activation block maps the
EMG activity recorded from five muscles to activations for seven MTUs. The MTU kinematics block derives MTU lengths and moment
arms from experimental 3D ankle angles. MTU force and stiffness are computed as a function of MTU activation and MTU kinematics
in the MTU dynamics block. Lastly, the joint torque and stiffness are obtained by projecting the resulting MTU forces and stiffness on
the ankle plantar-dorsi flexion degree of freedom in the joint dynamics block. Adapted from (Sartori, Maculan, et al. 2015).

tion of the force-velocity curve (f(v̄m)) to the viscoelastic
response of the muscle (Eq. 10).

D. Dynamic Modulation of SRS

As explained earlier in this section, the parameter β that
accounted for the different range of motion of each fiber
was optimized for each subject and for each task. This
optimization was only applied to the gain parameter (G)
in the expression of β (Eq. 8). The optimization algorithm
consists of several steps.

1) Find a value of G within [Gmin Gmax]. Only
integer values where computed.

2) Compute the value of β by Eq. 8.
3) Compute short-range stiffness for each muscle by (Eq.

7).
4) Compute the global MTU stiffness, accounting for the

SRS contribution (Eq. 9).
5) Project the stiffness of each MTU into the joint level

to obtain the dynamic joint stiffness (Eq. 4).
6) Compute the value of the cost function. The cost

function used in this optimization was based on the
same approach used to calibrate the EMG-driven mus-
culoskeletal modeling framework during the calibra-
tion step (Section II B). However, in this case, the
difference between the estimated joint stiffness and
the stiffness obtained during system identification was
minimized (Eq. 11).

f(K) =
1

Nr

#rows∑
r=1

(Kj −Kref )2

V AR(Kref )
(11)

where Kj , is the estimated stiffness, Kref is the stiff-
ness obtained from system identification, VAR(Kref )
is the variance of the stiffness from system identifica-
tion and Nr is the number of samples of the signals.

7) The new value of G was accepted if the value of the
objective function was smaller than with the previous
value of G.

8) The algorithm runs until all the solution space had
been evaluated, i.e. until G had taken all integer values
between Gmin and Gmax.

When the algorithm ended, an optimal value of G was
obtained. This value minimized the difference between the
model estimated stiffness and the stiffness from system
identification. The limit values of the parameter G were
chosen in order to obtain values of short-range stiffness not
lager than 10 times higher the stiffness computed from the
standard Hill-type muscle model. As a result, the values
considered for Gmin and Gmax were 0 and 40, respectively.

E. Fibre stretch detection algorithm

Since SRS only contributes to the response of the muscle
in the presence of a perturbation, a method to trigger
the computation of SRS was required. In the profile of
the muscle acceleration for each muscle fiber a clear and
repetitive patterns were observed when a perturbation was
applied. To detect these changes in muscle fiber acceleration,
two symmetrical wavelets were designed, representing both
perturbation types, in the direction of dorsi flexion and in
the direction of plantarflexion. Then, the acceleration profile
for each muscle was scanned and the root mean squared
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error (RMSE) between the acceleration and each wavelet
was calculated, resulting in a structure with multiple values
of RMSE at each scanning point. The values of RMSE
was manipulated mathematically to have clear distinguished
peaks on the RMSE, as follows: 1) remove the offset of
the RMSE; 2) Invert the values RMSE; 3) raise to the third
power. In this way, the lowest values of RMSE between
the acceleration profile and the scanned signals became
the highest points. A threshold was applied to select the
highest peaks for each muscle. Finally, some acceptance
conditions needed to be met to consider these highest peaks
perturbations. Those conditions were:

1) The perturbations within the same muscle were at least
50ms apart.

2) The same perturbation between different muscles were
at least within the same 10ms window.

3) Each perturbation needed to be detected in at least
three different muscles.

These conditions allowed to guarantee that a single pertur-
bation was detected within the time span of the short-range
regime, so the effect of SRS was not multiplied, which would
not provide a situation physiologically possible. Please note
that this methodology could be implemented during real-time
modeling, since the only variable required was acceleration
that was obtained by the derivative of the fiber velocity,
which was provided by the model.

F. Data Analysis

The EMG-driven model together with the SRS model
was validated at the stiffness level by comparing with the
results obtained by system identification. In system iden-
tification techniques, only one stiffness trajectory for the
plantar-dorsi flexion cycle was obtained. Therefore, during
the optimization algorithm (Section II D.) and to compare the
dynamic stiffness obtained by the model with the stiffness
from system identification stiffness, the different cycles of
each trial were extracted and subsequently interpolated and
time-normalized using cubic splines. Each cycle was defined
as a complete period of the torque profile (from minimum to
minimum). SRS only induced a positive summation effect
on the muscle force and stiffness so the stiffness values
estimated with the model including SRS were not normally
distributed. Consequently, statistical analysis on this data
might result in some misinterpretation, especially in the
stiffness plots where standard deviation (STD) is shown as
the region around the mean curve due to the summation and
subtraction of the value of STD at each point. Hence, the
negative values of stiffness do not reflect the data. Results
were compared both in shape and magnitude by the coef-
ficient of determination (R2, square of the Pearson product
moment correlation coefficient) and the RMSE, respectively.

III. RESULTS

Before implementing SRS, the behaviour of the SRS
variables during the perturbations timing was evaluated. In
Fig. 4 the torque, angle and activation trajectories for one
profile cycle are depicted.

Fig. 4: Representative cycle for the measured Achilles torque
(top), ankle angle (middle) and normalized EMG (bottom). The
red and blue lines represent the profile with and without applied
perturbations, respectively. The shaded grey areas represent the
period of 50ms after the instant of each perturbation.

(a)

(b)

Fig. 5: 5a: Estimated joint stiffness for a single representative cycle.
The red line represents the estimated stiffness by including SRS in
the EMG-driven model. The blue line represents the estimated joint
stiffness without including SRS in the model. 5b: Comparison of
the ratio between SRS and dynamic stiffness from the literature
values and the model estimated values.

Although it was hard to quantify changes in the profile
of the normalized EMG signal due to its noise, no clear
changes on the EMG pattern at the time of the perturbation
were detected. Contrarily, a clear change in the torque
measured by the Achilles and a smaller but still noticeable
change in joint angle were detected (Fig. 4). These evidences
support our hypothesis that changes in joint torque during
the perturbation period must result from intrinsic muscle
properties.
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TABLE I: Comparison of Stiffness Estimations via EMG-driven modeling and system identification, with and without the
contribution of SRS. Values of RMSE and R2 for each subject and average between subjects.

Dynamic 0.6Hz Dynamic 0.3Hz Static
RMSE R2 RMSE R2 RMSE R2

No SRS SRS No SRS SRS No SRS SRS No SRS SRS No SRS SRS No SRS SRS
Sub1 7.18 7.18 0.75 0.75 12.96 12.93 0.00 0.00 9.62 7.87 0.64 0.15
Sub2 8.09 8.09 0.00 0.00 15.73 15.71 0.05 0.04 16.87 16.16 0.01 0.07
Sub3 8.63 8.44 0.55 0.55 13.50 13.87 0.33 0.31 10.28 8.75 0.01 0.04
Sub5 6.35 6.31 0.17 0.18 16.01 15.89 0.01 0.01 12.09 11.49 0.44 0.37
Sub6 8.73 8.67 0.08 0.07 10.86 10.57 0.00 0.00 16.24 15.42 0.46 0.30
Total 4.33 4.34 0.35 0.35 12.55 12.41 0.07 0.07 12.52 11.40 0.21 0.15

Fig. 6: Comparison of the stiffness estimations of the proposed
model against system identification techniques for the dynamic task
at 0.6Hz (top), dynamic task at 0.3Hz (middle) and static task
(bottom). The left column contains the values of estimated stiffness
without including SRS (blue) and the right column contains the
values of estimated stiffness by including SRS (red) in the EMG-
driven model. The green lines represent the estimated stiffness
without the contribution of the force-velocity curve to the muscle
force response. The bold line represents the average stiffness across
cycles obtained, in each respective case, by the EMG-driven model,
and the shaded area corresponds to the standard deviation. The
thick black line represents the stiffness estimation via system
identification.

A. SRS model

First an example of the behavior of the modelled joint
stiffness with the addition of SRS is provided. In Fig. 5, the
profile of joint stiffness computed by the EMG-driven model
without SRS (blue) and with the contribution of SRS (red)
is shown for only one representative cycle. At the time of
each perturbation, a spike in the joint stiffness profile was

Fig. 7: Comparison of the torque estimations of the proposed model
against Achilles measured torques for the dynamic task at 0.6Hz
(top), dynamic task at 0.3Hz (middle) and static task (bottom).
The left column contains the values of estimated stiffness without
including SRS (blue) and the right column contains the values
of estimated stiffness by including SRS (red) in the EMG-driven
model. The green lines represent the estimated stiffness without
the contribution of the force-velocity curve to the muscle force
response. The black curve represents the average torque estimation
by the Achilles device. The bold line represents the average stiffness
across cycles obtained, in each respective case, and the shaded area
corresponds to the standard deviation.

observed, which reflected the projection of the fast increase
in short-range stiffness for each muscle (Eq. 7) at the joint
level.

Estimated joint stiffness for all subjects and trials can be
found in Appendix D Fig. 14. Subject 4 was excluded from
the analysis due to abnormalities in EMG signals, as reported
by Cop et al. 2019. The model estimated joint stiffness was
averaged across all the cycles recorded for each task and
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TABLE II: Mean values of β and maximum fibre length amplitude. The values are represented as a mean ± standard
deviation. The values are averaged across all repetitions and all subjects for the same task for each muscle fiber.

Mean Values of β
Dynamic 0.6Hz Dynamic 0.3Hz Static

LatGas 0.15 ± 0.24 0.38 ± 0.32 15.77 ± 5.54
MedGas 0.22 ± 0.30 0.54 ± 0.41 18.72 ± 3.20
PerBrev 7.23 ± 8.19 14.25 ± 8.45 28.92 ± 4.57
PerLong 4.16 ± 4.74 8.22 ± 5.01 23.57 ± 6.80
PerTert 0.64 ± 0.71 1.60 ± 0.94 23.09 ± 1.10
Soleus 0.31 ± 0.40 0.75 ± 0.56 20.79 ± 2.98
TibAnt 0.10 ± 0.12 0.29 ± 0.20 15.38 ± 1.59

Maximum fiber length amplitude (cm)
Dynamic 0.6Hz Dynamic 0.3Hz Static

LatGas 2.04 ± 0.30 1.92 ± 0.26 0.41 ± 0.15
MedGas 1.72 ± 0.21 1.66 ± 0.17 0.32 ± 0.07
PerBrev 0.29 ± 0.04 0.28 ± 0.05 0.14 ± 0.06
PerLong 0.51 ± 0.05 0.51 ± 0.09 0.24 ± 0.13
PerTert 1.23 ± 0.11 1.18 ± 0.07 0.23 ± 0.02
Soleus 1.54 ± 0.21 1.51 ± 0.19 0.27 ± 0.06
TibAnt 2.02 ± 0.23 1.92 ± 0.17 0.4 ± 0.04

then compared to the one obtained via system identification
(SI). In Fig. 6, the stiffness profile of the estimated stiffness
against the stiffness from system identification (black curves)
for one representative subject is presented. In the left column
the stiffness estimated without including SRS is shown and in
the right column the estimated stiffness by including SRS in
the EMG-driven model is depicted, as suggested in this study.
Additionally, the values of joint stiffness obtained without
the contribution of the force-velocity curve to the muscle
response are also plotted (green curves). From the figure, it
is clear that the joint stiffness profile during fast dynamic
tasks (0.6 Hz) was not altered in comparison with the model
without SRS. However, for slow dynamic tasks (0.3 Hz),
and especially static tasks, the mean trajectory of the joint
stiffness estimated by the model with SRS was closer to
the values of system identification than the joint stiffness
computed without SRS. The same results were obtained by
looking at the values of RMSE and R2 in Table I. The same
results were obtained for all subjects, showing no changes in
the fast dynamic task, smaller changes in the slow dynamic
tasks and considerable changes in the static tasks. Although
the values of RMSE and R2 were better for some subjects, all
subjects showed better results by including SRS in the model.
Further, no large differences of the joint stiffness profile were
observed when the contribution of the force-velocity curve
was removed from the muscle response.

The maximum value of joint stiffness throughout different
percentages of the plantar-dorsi flexion cycle can be seen
in the histogram in Fig. 8. In the histogram the mean of
the maximum values of stiffness for each condition within a
certain percentage of the cycle are shown against the mean
maximum stiffness for the same percentage of the cycle
without the contribution of SRS. We can observe that joint
stiffness due to SRS is on average 2 to 10 times higher than
the joint stiffness without the presence of SRS. SRS is not
constant in the entire cycle, being more predominant in the
peaks of plantarflexion and dorsiflexion. At the muscle level
the values of short-range stiffness varied also between 2 to
10 times higher than the stiffness from the standard Hill-
type muscle model. The values of maximum stiffness at the
muscle level are shown in Table V on the Appendix A.

Fig. 8: Maximum values of joint stiffness for different percentages
of the plantar-dorsi flexion cycle, averaged across all subjects.
Plots for the dynamic task at 0.6Hz (top), dynamic task at 0.3Hz
(middle) and static task (bottom). The red bars represent the mean
of the maximum values of joint stiffness with the contribution of
SRS within the corresponding percentage. The blue bars represent
the mean of the maximum values of joint stiffness without the
contribution of SRS for a certain percentage of the cycle. The
black error bars represent the standard deviation of these maximum
values.

B. Torque Response

After looking into the stiffness profile, the torque response
was also analyzed for the same presented conditions. The
model estimated torque was compared to the experimental
torque obtained by the Achilles device (Fig. 7 black curve).
The influence of SRS in the torque profile is considerably
lower than in the stiffness profile. Contrarily to what was
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TABLE III: Fibre stretch detection rate. Percentage of successes (Succ), false positives (FP) and false negatives (FN) for
each subject and average over all subjects (Total).

Dynamic 0.6 Hz (%) Dynamic 0.3 Hz (%) Static (%)
Succ FP FN Succ FP FN Succ FP FN

Sub1 89 1 10 99 0 1 98 1 1
Sub2 81 4 15 94 0 6 96 4 0
Sub3 90 0 10 98 0 2 99 1 0
Sub5 84 6 10 93 0 7 88 12 0
Sub6 81 0 19 96 0 4 99 0 1
Total 85±4 2±3 13±4 96±3 0±0 4±3 96±5 3±5 0±0

TABLE IV: Fibre stretch detection rate. Percentage of perturbations detected with 0ms error (exact), within a 8ms window
(< 8ms) and within a 27ms window (< 27ms)

Dynamic 0.6 Hz (%) Dynamic 0.3 Hz (%) Static (%)
Exact <8ms <27ms Exact <8ms <27ms Exact <8ms <27ms

Sub1 31 57 1 36 62 1 36 62 0
Sub2 13 35 34 12 38 44 19 47 30
Sub3 26 60 3 30 65 3 33 66 0
Sub5 0 30 54 1 39 53 0 21 68
Sub6 9 71 1 2 93 1 0 86 13
Total 16 ± 13 50 ± 17 19 ± 24 16 ± 16 59 ± 23 20 ± 26 17 ± 17 56 ± 24 23 ± 28

obtained for the stiffness profile, the torque profiles obtained
without the contribution of the force-velocity curve to the
muscle response in some cases greatly differ from the
complete model estimations.

C. Optimization Algorithm for Short-range Stiffness Calcu-
lation

The optimization algorithm was applied to find the best
value of gain, G, for the parameter β, which was multiplied
with the derivative of the SRS force in order to obtain the
value of short-range stiffness for each muscle fiber (Eq. 8).
An optimal value of G was found for all the trials and all
the subjects, between a minimum value of 0 and a maximum
value of 40. The mean values of the parameter G over all
subjects and all repetitions were: 14 ± 13 for the dynamic
0.6 Hz task, 28 ± 15 for the dynamic 0.3 Hz and 40 ±
0 for the static task. It was clear that the values G are
lower for the dynamic task than for the static task, and
lower in the fast dynamic task (0.6 Hz) than in the slow
dynamic task (0.3 Hz). A low value of G represented a low
contribution of SRS. The maximum variation of fiber length
throughout the all cycle of plantar-dorsi flexion together with
the correspondent values of the parameter β for each muscle
fiber are represented in Table II. We realized that fibers
with lower variations in length, such as the Peroneus Brevis
and Peroneus Longus, had higher values of the parameter β
compared to fibers with large amplitude of movement. The
optimization algorithm took about 3% of the total time that
the EMG-driven modeling framework took to compute joint
stiffness.

D. Fibre stretch detection

The algorithm to trigger SRS was designed with the
goal to detect the perturbations applied by the Achilles
Rehabilitation device. The detection rates of the designed
algorithm were compared with the actual instants of the

perturbations obtained from an output file from the Achilles
device. The algorithm detected always above 80% of the
perturbations in all tested conditions. In fast dynamic condi-
tions the algorithm performed worse than in slow dynamic
conditions and in static dynamic conditions. On the latter
two tasks the algorithm always detected above 90% of the
perturbations applied. From Table III we verify that the
average number of false positives was lower than the number
of false negatives, meaning that the algorithm missed more
often the detection of a perturbation than considered it a
success when there was no perturbation. A perturbation was
considered detected (or a success) if it was found within an
interval of 27ms of the actual timing of the perturbation.
Then, three different categories were analyzed for the rate
of successes. A perturbation was detected on the exact time
of the real perturbation (Exact), a perturbation was detected
within an interval of 8ms of the real perturbation or the
perturbation was detected in an interval of 27ms of the
real perturbation. In Table IV, these rates of detection are
reported. It is important to note, that the number of detection
of each category are exclusive from the previous ones, i.e.,
the 27ms interval does not include perturbations detected
within a 8ms window or at the exact time, and in the
8ms interval no perturbations detected at the exact time are
included. Therefore, most of the perturbations were detected
within the 8ms window.

IV. DISCUSSION

This project developed an innovative methodology to
implement short-range stiffness in an EMG-driven muscu-
loskeletal modeling framework to improve the estimation of
joint stiffness during different types of movements. Firstly,
the Hill-type muscle model implemented in the modeling
framework was adapted to account for the force produced in
the muscles due to SRS. Secondly, an optimization routine
to adapt the computed muscle SRS to the characteristics of

10



the performed movement was developed. Third, and lastly,
an automatic detection algorithm was included in the frame-
work to trigger the computation of SRS during the whole
movement. For the first time a model of SRS was developed
and tested in different types of dynamic and static tasks
and showed improvements on the estimated joint stiffness.
Additionally, the proposed method does not require any
additional information to transition between the compliant
and the short-range regime of the muscle, mimicking the
physiological behaviour of the muscles.

The perturbations applied to the ankle joint induced rota-
tions of 0.03 rad. These rotations were about 2.5% of the
physiological range of motion of the joint, therefore we
assumed that the perturbations occurred within the short-
range regime (P. M. Rack and Westbury 1974). During the
50ms after the instant of the perturbation, we verified a rapid
change in joint torque followed by a delayed change in joint
angle and no significant changes in muscle activity. Based on
this evidence, we postulated that observed changes in torque
during this short period of time cannot result from active
muscle response, but they must result from intrinsic muscle
properties. These observations agreed with the short-range
conditions reported by deaGroote, Allen, and Ting 2017.

The estimated joint stiffness was compared with the values
of stiffness obtained from system identification. System
identification techniques provided a value of stiffness for
one cycle of plantar-dorsi flexion by averaging across a
large amount of cycles. Contrarily to what is estimated via
musculoskeletal modeling, with system identification tech-
niques it is not possible to obtain an instantaneous value of
joint stiffness (Lee, Rouse, and Krebs 2016, Weiss, Hunter,
and Kearney 1988). The two stiffness values result from
distinguished measurements which can not always reflect the
same quantity. Therefore, we should be conservative when
comparing both stiffness values.

The model with the inclusion of SRS estimated joint stiff-
ness more accurately than the model without SRS, especially
during static tasks (Fig. 6). In fast dynamic tasks there was
no difference in the estimation of joint stiffness between the
model with or without SRS. This result was expected since in
dynamic tasks the rate of formation and deformation of cross-
bridges is very high which results in a lower contribution
of SRS for the resulted muscle force (Joyce, P. Rack, and
Westbury 1969; Ettema and Huijing 1994). On the other
hand, for static tasks the rate of formation and deformation
of cross-bridges is lower, resulting in a higher number of
cross-bridges attached at the time of the perturbation and,
consequently, inducing a higher contribution of SRS to the
total muscle force (Joyce, P. Rack, and Westbury 1969).
However, while the mean over multiple cycles was closer
from the stiffness obtained by system identification, a large
standard deviation was obtained when including SRS in
the framework. This large standard deviation can be due
to multiple reasons. In static conditions, the initial position
of the foot could be slightly different between repetitions
which originated in differences in fiber stretch when av-
eraging across all cycles of all repetition. Consequently,

the values obtained for fiber stretch were also very noisy.
Moreover, SRS was only computed during lengthening and
perturbations were randomly applied during the whole cycle,
so depending on the movement of each muscle fiber at the
time of perturbation, the SRS response could be different.
Since the model of SRS suggested in this study involved a
large amount of variables that changed during the movement
cycle and differently with each muscle, a prediction could
be that the number of cycles used for each condition were
not greater enough to verify more consistency in the results
during the entire movement cycle. Another important factor
could be the value of the SRS constant, which was chosen
between certain limits based on previous studies performed
in different types of task. So a suggestion to improve the
estimation of SRS will be to better tune this parameter.

Since the comparison at the stiffness level could be
controversial, we analyzed the estimated torque profile and
compared it with the experimental torque obtained with the
Achilles device. The calibration of the EMG-musculoskeletal
model performed prior to this study (Cop et al. 2019)
was also performed at the torque level. During calibration,
subject-specific parameters were optimized in order to min-
imize the error between the experimental torque and the es-
timated torque. The calibration was performed by modelling
each MTU with a standard Hill-type muscle model without
including the suggested model of SRS. Hence, as SRS is the
mechanism used by the muscle to respond to a perturbation
but it was not accounted during the model calibration, an
overestimation of the model estimated torque at the time of
the perturbations was observed (Appendix D, Fig 15). These
observations support the fact that the calibration of the model
should be performed with the inclusion of the suggested
model of SRS in the muscle model. In this way, also the
parameters that define the SRS model can be optimized
together with the subject-specific parameters to obtain a
better physiological representation of the muscle response.

As discussed previously, the type of movement influenced
the displacement of each muscle fiber, which could be
different between muscle fibers. So, each muscle fiber could
have a different short-range stiffness response (P. M. Rack
and Westbury 1974; Hufschmidt and Schwaller 1987). In this
study, we verified that the Peroneus Brevis and Peroneus
Longus do not have large changes in fiber amplitude during
the plantar-dorsi flexion cycle in comparison with other
muscles in the model (Table II). Therefore, the contribution
of these two muscles to SRS was expected to be larger
than muscles that suffered larger amplitude of movement.
This characteristic was mimicked by the parameter β. This
parameter was multiplied by the derivative of the muscle SRS
force with respect to the normalized fiber length to obtain
the value of SRS for each muscle fiber. This parameter could
vary from 0 to 40, representing no contribution of SRS to
large contribution of SRS, respectively. For dynamic tasks
this parameter was around 5 for the Peroneus Brevis and
Peroneus Longus and around 0 for all the other muscles.
Differently, for static tasks values of β were around 25 for
the Peroneus Brevis and Peroneus Longus and around 18 for

11



the rest of the muscles.
For slow dynamic tasks a large standard deviation was

obtained for the contribution of SRS, specifically in the
values of G. As can be seen in Fig. 14 the profile of the
joint stiffness for this condition varied substantially between
subjects and the shape of the estimated stiffness not always
corresponds to the shape of the stiffness from system iden-
tification. Therefore, this can result from calibration issues
of the model as reported in the previous study (Cop et al.
2019), which go out of the scope of the present study.
Moreover, the contribution of SRS in slow dynamic tasks
is still unclear. On the one hand, muscle fibers do suffer
changes in length, although at a slow rate of formation and
deformation of cross-bridges, so the number of cross-bridges
formed at each instant of time should be lower than in static
condition. On the other hand, slow movements implicitly
suggest that cross-bridges are attached during a longer period
of time than in faster movements, so a perturbation could
still induce a certain amount of cross-bridge deformation
reflecting an increase in SRS response. The same relation
between amplitude of the movement and short-range stiffness
was also reported by P. M. Rack and Westbury 1974.

In respect to the influence of velocity to the SRS response,
literature had reported that the magnitude of SRS does not
vary with the velocity of the muscle fiber, although the
duration of the short-range regime varies considerably with
the fiber velocity (P. M. Rack and Westbury 1974). In our
approach no clear changes with or without the contribu-
tion of the force-velocity curve were observed. However,
the maximum contraction velocity, used to normalize the
fiber velocity, was considered constant across subjects and
across muscle fibers. Consequently, a single type of muscle
fibers are modelled. A deeper research will be required to
understand the influence of modelling fibers with different
contraction velocities, fast and slow fibers, to the response
to perturbations.

The limit value of the parameters β was chosen in order
to obtain values of short-range stiffness not lager than 10
times higher than the stiffness computed from the standard
Hill-type muscle model (Sartori, Maculan, et al. 2015). The
maximum values of SRS were between 600 to 10000 Nm/rad
depending on the muscle fiber. These results are hardly
compared with the ones in literature, since no values of
muscle specific short-range stiffness have been published. At
the joint level we obtained values of joint stiffness during the
short-range regime about 2 to 10 times higher than during
the complaint regime, i.e. a maximum joint short range
stiffness of about 100 Nm/rad. Hun et al. reported values
of elbow SRS of about 50 to 100 Nm/rad for joint torques
from -10 to 10 Nm/rad (Hu, Murray, and Perreault 2011).
A previous study reported values of ankle stiffness between
50 to 150 Nm/rad for the same values of torque (Hunter
and Kearney 1982). Although the values obtained in the
present study are in the same interval as the values reported
in previous studies, we cannot neglect the fact that the
previous studies were performed in tasks that guarantee the
muscles were always within the short-range regime. So, the

force response produced by the muscle can be considerably
different. The suggested optimization algorithm accounts for
the total amplitude change of the fiber length during the
entire cycle to compute β and further on SRS. So, in order
to implement this methodology in real-time is required to
know in advance which is the average change in length that
each muscle fiber suffers during the performed movement.
A future work could rely on adjusting this optimization in
order to adjust the SRS based on a parameter obtained during
real-time modeling.

All current SRS models in literature require a clear starting
point to trigger SRS, i.e., muscles fibers were assumed to
have no change in length and/or activation before a sudden
single perturbation or displacement was applied (deaGroote,
Allen, and Ting 2017; Hu, Murray, and Perreault 2011;
deaVlugt et al. 2011). When modeling SRS in dynamic
tasks an evident limitation related with the activation of
this response mechanism arises. In this study, a method
that analyzed the acceleration profile of all muscle fibers
and detected features to trigger the SRS mechanisms was
developed. This detection algorithm showed good results,
with detection rates always above 85% for all performed
tasks. The lower detection rates where obtained during the
fast dynamic tasks, however in these tasks a lower contri-
bution of SRS is expected. To the current knowledge of
the author, no algorithm to detect perturbation using muscle
kinematics has been developed. Besides the good detection
rates obtained, the algorithm is very conservative on the
acceptance conditions and it was only tested for the same
type of perturbations. In order to apply this method to larger
scale movements, improvement of the algorithm will be
required. A suggestion would be to analyze the effect of
different types of perturbations in the muscle kinematics and
develop more a more accurate detection algorithm. These
methods could use wavelet transform together with machine
learning in order to account for a variety of possible external
perturbations.

Besides short-range stiffness, other history-dependent
muscle mechanisms are not included in the standard Hill-type
muscle model, such as stretch-induced force enhancement
and shortening-induced force depression. Moreover, SRS
can also be influenced by history-dependent characteristics,
having its contribution diminished by multiple cycles of
the same task (Campbell and M Lakie 1998). Including
this characteristic into the musculoskeletal model can help
improve the estimation of stiffness and also modulate the
SRS contribution.

V. CONCLUSION

This study implemented SRS in a EMG-driven muscu-
loskeletal modeling framework, with the goal to improve the
estimation of joint stiffness in static conditions. Besides the
implementation of the SRS model, the presented method-
ology also included a detection algorithm which triggers
the computation of SRS without any additional information
to the framework. Also, an optimization algorithm to ac-
count for the rate of formation and deformation of cross-
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bridges due to the amplitude of movement of the fibers
was considered. Therefore, the entire methodology consists
of a solid proof of concept for implementation of SRS in
musculoskeletal models that can be applied to different types
of movements indiscriminately.

Results showed that our model improved the estimation of
joint stiffness for the static task without damaging the estima-
tion of joint stiffness for dynamic tasks. High detection rates
of the applied perturbations were also obtained. Although
this project showed promising results for the implementation
of SRS, the methodology was tested in a very confined
movement. In order to extend the implementation of the
model to a larger variety of movements, adjustments in
the framework are required, such as accounting for mul-
tiple types of perturbations. Additionally, the inclusion of
the SRS model during the calibration of the EMG-driven
musculoskeletal model is recommended in order to obtain
more physiological results.

Being able to accurately access instantaneous dynamic
joint stiffness will have enormous implications in understand-
ing human movement control, as well as the development
of tailored neuro-rehabilitation therapies and biomimetic
controlled prostheses and orthoses.
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APPENDIX A

SRS splines

To be able to derive SRS force and SRS for each muscle
fiber two three-dimension b-splines for each MTU were
created. The independent variables were normalized fiber
stretch, normalized fiber length and activation. Normalized
fiber stretch was only considered for lengthening of the
muscle, so it took values from 0 to the critical fiber stretch
(δc). Normalized fiber length was varied between 0.05 to 2
and fiber activation from 0 to 1.05. The SRS force spline
was modelled by the following expression:

FSRS
m (a, l̄m,∆l̄m) =


0 , if∆l̄m < 0

γF 0
mafact(l̄

m)∆l̄m , if0 < ∆l̄m < δc

γF 0
mafact(l̄

m)δc , if∆l̄m > δc
(12)

where γ = 280 is the short-range stiffness constant, F 0
m is

the maximal isometric muscle force, fact(l̄m)) is the muscle
force-length relation, l̄m is the fiber length normalized by
optimal fiber length , ∆l̄m is the normalized fiber stretch, a
is the activation of the muscle fiber, and δ = 5.7 · 10−3

is the normalized critical stretch. The active force-length
relationship and the maximum isometric force were obtained
from the file obtained during the subject-specific calibration
of the model. The SRS spline was obtained by taking the
partial derivative of the SRS force spline with respect to
the normalized fiber length. In Fig. 9, both splines are repre-
sented for the Tibialis Anterior muscle for one representative
subject.

APPENDIX B

Optimization routine

The optimization routine was used to adjust the values
of computed muscle SRS in order to account for the total
fiber length amplitude throughout the entire movement. The
optimized parameter was the constant G, in the function of
the parameter β (Eq. 8). To create the model few parameters
were designed:

• G Max = 40 - maximum value of G.
• G Min = 0 - minimum value of G.
• B = 200 - decay parameters of β(A).

At each iteration, a new value of G was obtained within
the solution space and the cost function was computed for
that value. So, with the new value of G, the parameter β(A)
was computed for each muscle depending on the maximum
length amplitude each muscle performed during the entire
movement. Then muscle SRS was computed and the stiffness
of each MTU was projected into the joint level to obtain
joint stiffness. The cost function was computed between this
estimated joint stiffness and the joint stiffness obtained by
system identification, by the following function:

f(K) =
1

Nr

#rows∑
r=1

(Kj −Kref )2

V AR(Kref )
(13)

Fig. 9: I: Spline of the SRS force, computed by Eq. 5, for all
possible values of fiber activation, normalized fiber length and
fiber stretch. II: Spline of SRS, obtained by computing the partial
derivative of the SRS force spline in terms of the normalized fiber
length.

At each iteration step a new cost function was computed.
If the value of the cost function of the new solution was
lower than the value of the cost function of the previous
success, the new solution was accepted as the new success,
if not the previous solution continued to be the successful
one. Only integer values were acceptable for the variable G.
When all of the solution space was scanned, i.e. when G
took any integer value between G Min and G Max, the
algorithm stopped. At the end, the value of G that gives rise
to the lowest values of the cost function is obtained. Next
you can find the pseudo-code of the algorithm:
G = G 0 % inital value of G
Fc = f(G) % initial cost function value
i = 1 % iterations counter
while i < (G Max−G Min+1) % iteration cycle
Gi = Perturb(G Max,G Min)
Fi = f(Gi) % cost function of ith iteration
% Test Acceptance of new solution
if F i− F > 0
G = Gi

end
i = i+ 1

end

Since the parameter β(A) is muscle specific, but the op-
timization cost function is computed with the joint stiffness
value, in every iteration a transition between the muscle level
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Fig. 10: Work-flow of the optimization algorithm. A value of G is chosen between the set limit values, with the new value of G a value
of β is calculated for each muscle. A new SRS stiffness is computed for each muscle and it is projected at the joint level to compute
joint stiffness. The estimated joint stiffness is compared with the stiffness from system identification and in case the error between the
curves is smaller than with the previous value of G the solution is accepted. The algorithm end, only when G has taken all the integers
values between the set limits.

Fig. 11: Plot of the function β in function of the maximum
amplitude of the muscle fibre for multiple values of G.

and the joint level is required. In Fig. 11, the function β(A) is
plotted as a function of the maximum fiber stretch throughout
the whole movement cycle, A. For low values of A the func-
tion β(A) is close to the G value, for high values of A β(A)
is close to 0. Also, β(A) is plotted for different values of G,
in which larger values of G represent large values of β and
higher contribution of SRS and vice-versa. As a summary
of methodology applied in this optimization algorithm the
scheme in Fig. 10 was designed. The optimization was then
implemented in between the blocks C and D of the EMG-
driven musculoskeletal model presented in Fig. 3. However,
the final joint stiffness was only computed when the optimal
value of G was found for each trial.

APPENDIX C

Detection Algorithm

To detect the stretch on the muscle fibers due to the
perturbation, the acceleration profile of each muscle fiber
was obtained by differentiate the fiber velocity acceleration
obtained in CEINMS. The detection consisted of the follow-
ing steps:

1) Design of the scanning signals (wavelets): define the
parameters of the wavelets that will be used to detect
the perturbation patterns in the muscle acceleration
profile.

2) Scan signal: Scan the signal with the designed
wavelets.

3) Compute RMSE: Compute the RMSE between the
acceleration profile and the wavelets at the different
scanning points.

4) Define Threshold: With the values of RMSE for all
the scanning points apply the muscle specific threshold
to find the peaks of RMSE above that threshold.

5) Verify Acceptance Conditions: Verify the acceptance
conditions for all the peaks detected above the previous
threshold.

In this study two types of perturbations were randomly
applied, a perturbation in the plantarflexion or dorsiflexion
direction. So, two symmetric wavelets were designed to
account for these two perturbation types. The algorithm
was designed with multiple parameters that can be adjusted
according to the movement characteristics:

• Period: In this case, as the wavelet is only composed by
a single period it is equal to the duration of the signal
in seconds.

• Dephase: when the signal starts to be scanned. This
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parameter allows to avoid discontinuities due to the
differentiation.

• Scaling Factor: This parameter is multiplied by the
acceleration. For movements originating in small values
of acceleration it is important to detect distinguished
peak in the values of RMSE.

• Time window: Length of the moving step of the
scanning signals.

The value of these parameters used for this study were:
period = 110 ms, dephase = 200 ms, scaling factor = 1000
and time window = 4 ms (1 frame). These parameters were
chosen based on the profile of the acceleration at the pertur-
bation timing. The RMSE was mathematically manipulated,
in order to obtain clear distinguished peaks on the RMSE.
First the mean of the RMSE profile was removed, so the
negative peaks of RMSE are the scanning points in which
the wavelet was most identical with the acceleration profile.
Secondly, we invert the RMSE, so now the peaks of larger
similarity are the highest peaks on the RMSE. Finally, the
power three of the RMSE is computed. In this way the peaks
of RMSE are clearly differentiated. Besides the parameters
that define the wavelets, a few more parameters were defined
to control the accuracy of the detection algorithm.

• Minimum Threshold (3): Defines which is the min-
imum value of RMSE accepted in order to detect a
perturbation. This allows to prevent detection of per-
turbations in fibers in which the acceleration was very
small and perturbation have little effect on the changes
in length in these muscle fibers.

• Percentage of the threshold (40%): The threshold
which defines the peaks of RMSE was defined as a
percentage of the maximum value of RMSE detected
for each muscle. In this case, the threshold becomes
muscle specific, since each muscle fiber has different
acceleration profiles.

• Minimum number of muscles (3): Defines the number
of parameters that a peak in RMSE needs to be detected
in order to assume a perturbation.

• Range of a perturbation (40 ms): Minimum space
in which only one perturbation can be detected. This
parameters avoids that the effect of SRS is multiplied for
a same instant, in the case that different muscles have
perturbations on the acceleration profiles at different
times.

The values used for each parameter are within brackets.
The number of muscles in which a perturbation needs to
be detected was chosen very conservatively. In total seven
muscles were used in the model. However, two of them
do not contribute for the plantar-dorsi flexion movement.
So, only in 5 muscles the perturbations can be detected.
Therefore we considered that the the peaks in RMSE need
to be detected in 60 % of the active muscle to be accepted
as a perturbation. One additional option implemented in
the detection algorithm was to calculate the detection rate.
A success was defined with a specific range around the
real perturbation time. The successes were then divided in

Fig. 12: Example of the acceleration profile and the two
types of wavelets scanning the signal.Acceleration profile
(red), plantarflexion wavelet (black) and dorsiflexion wavelet
(blue).

Fig. 13: Representation of the fiber length profile for the
Tibialis Anterior during 4 representative cycles. Overlaid to
the fiber length, the real perturbation (black circles) and the
detected perturbation (red crosses) are shown. In the middle
of the graph, a failed detection is shown.

three categories: exact (at the same of the real perturbation),
within the first acceptance limit (Accept. Lim. 1) and within
the second acceptance limit (Accept. Lim. 2). To compute
these detection rates, a structure with the real times of
the perturbation together with the following parameters is
required:

• Calculate Detection rate: This is a conditional value
(True of False), which does or does not trigger the
calculation of the detection rates.

• Acceptance Limit 1: Time window of the first accep-
tance limit.

• Acceptance Limit 2: Time window of the second
acceptance limit.
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TABLE V: Comparison of Stiffness Estimations via EMG-driven modeling and system identification, with and without the
contribution of SRS at the muscle level.

Dynamic 0.6 Hz (Nm/rad) Dynamic 0.3 Hz (Nm/rad) Static (Nm/rad)
No SRS SRS No SRS SRS No SRS SRS

Gas Lat 1197 169 1193 346 188 1090
Gas Med 2670 413 2644 1029 599 5691
Per Brev 2961 389 2957 1423 2690 1182
Per Long 8634 1171 7906 4979 6323 3608
Per Tert 880 155 928 386 512 2210
Soleus 9935 631 10601 3672 2255 18963

Tib Ant 4017 237 4142 691 1352 6138

Fig. 14: Results for all subjects. Comparison between estimated stiffness and stiffness obtained in system identification techniques for
the dynamic task at 0.6Hz (left), dynamic task at 0.3Hz (middle) and static task (right). The left column for each type of task contains
the values of estimated stiffness without including SRS (blue) and the right column contains the values of estimated stiffness by including
SRS (red) in the EMG-driven model. The green curves represent the values of estimated stiffness without accounting with the contribution
of the force-velocity curve. The bold line represents the average stiffness across cycles, in each respective case by the EMG-driven model,
and the shaded area corresponds to the standard deviation. The thick black line represents the average stiffness estimation via system
identification.
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Fig. 15: Representative cycles of the Achilles torque profile, the estimated torque profile and the estimated torque profile without the
force-velocity contribution. All the profiles represent the profile of torque without the inclusion of SRS.

Fig. 16: Results for all subjects. Comparison between estimated torque and measured torque by the Achilles device for the dynamic
task at 0.6Hz (left), dynamic task at 0.3Hz (middle) and static task (right). The left column for each type of task contains the values
of estimated torque without including SRS (blue) and the right column contains the values of estimated torque by including SRS (red)
in the EMG-driven model. The green curves represent the values of estimated torque without accounting with the contribution of the
force-velocity curve. The black curve represents the measured torque by the Achilles device. The bold line represents the average torque
across cycles, in each respective case by the EMG-driven model, and the shaded area corresponds to the standard deviation.
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