
1

Skin Lesion Surface Area and Erythema Intensity Calculation for
PASI Determination using Stereo Vision

L.M. Jonker
Bachelor Thesis Committee:

dr. B. Sirmaçek, dr.ir. M. Abayazid, prof.dr.ir W. Steenbergen.
Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS), Robotics and Mechatronics (RaM), University of Twente,

7500 AE Enschede, The Netherlands.

July 3, 2019

Abstract—There are several tools to determine the severity of
psoriasis and to track the effect of treatment, one of which is
Psoriasis Area and Severity Index (PASI). PASI score calculation
needs an accurate lesion area to total skin area ratio. To accu-
rately determine these areas, 3D reconstruction from stereo vision
has been used. Disparity maps and consecutively point clouds of
the object of interest were made from stereo pictures. The object
for testing this method has been the arm. Transforming the colour
space from red, green and blue (RGB) to YCbCr (Y:luminance;
Cb: chrominance-blue; Cr: chrominance-red) and inspecting the
point clouds of each separate component, provides detection of
red and lighter lesions. A point cloud of these lesions can then be
made. Using Delaunay triangulation on the point clouds results
in a mesh of which the area can be calculated. Tests have been
conducted on light and dark skin shades, with red and pink
lesions. It has also been tested for multiple lesions placed a few
centimetres apart. The test results showed that the formulated
method works on both light and dark shade skin for red lesions,
and detection of multiple lesions can be done as well. The method
does not perform as well on lighter, pink lesions. The calculated
lesion areas differed to the actual areas with an average factor
of +37.45%.

I. INTRODUCTION

Surface reconstruction is widely used for applications such
as environment mapping, 3D modelling, and medical imaging.
In medical applications, surface reconstruction is used to
inspect and calculate the surface area of the skin, providing
knowledge when treating certain diseases. For psoriasis -
which is mainly recognisable by red patches on the skin -
knowing the skin area is an important aspect for determining
the Psoriasis Area and Severity Index (PASI) score, which
indicates the severity of the lesions and serves as an indication
on how well the treatment works [1]. Determining this area is
still a tough task, and doing so by hand takes a lot of time.
An existing method which computes this score, uses a mono
camera [2]. It enables doctors to quickly obtain the surface area
and also determines the severity of the other criteria needed to
calculate the PASI score. Other existing methods for surface
reconstruction use mono cameras as well, or methods such as
photogrammetry, laser scanning, or millimeter wave scanning.
With these methods, the surface area of the skin can be
calculated to diagnose, monitor, or to keep track of treatments
[3]. The existing surface reconstruction methods which do
not use pictures, do not compute a full coloured mesh. This
makes detecting different coloured areas - such as psoriasis
lesions - challenging. Furthermore, using mono cameras does
not provide area calculation in three dimensions, possibly

making the results less accurate than they could be. Existing
methods also tend to be quite expensive, e.g. the reconstruction
system at Robotics and Mechatronics (RaM) which costs
over e 70,000. Large camera setups could also make patients
uncomfortable, which should be prevented if possible. This
paper presents an affordable and handheld solution to surface
calculation using stereo vision. As application, the method has
been developed to detect lesions on different skin colours and
calculate their area, making it useful for determining PASI
scores. The lesion detection also determines the intensity of
the redness.

II. MATERIALS

The following materials have been used for implementation
and testing of this method:

• Stereo Camera: Non Distortion Dual Lens USB3.0 Cam-
era Module Synchronization HD 960P OTG UVC Plug
Play Driverless 3D VR Stereo Webcam (e 75). Out-
puts stereo images with a resolution of 960x2560, i.e.
960x1280 for each separate left and right image.

• Software: MATLAB R2019a, including the Image Pro-
cessing Toolbox.

• Lesion samples: red and pink stickers have been made,
with areas of 12 cm2 and 6 cm2. The accuracy of the
surface calculation will be determined by comparing this
area to the calculated area.

III. METHODS

The PASI score is calculated by looking at four criteria per
body part (head, arms, trunk and legs) [1], [2]:

• Area: the percentage of skin covered by the lesions,
categorised as (0): 0%, (1): 1− 9%, (2): 10− 29%, (3):
30−49%, (4): 50−69%, (5): 70−89%, (6): 90−100%.

• Erythema: the redness of the lesions.
• Induration: the thickness of the lesions.
• Desquamation: the scaling of the lesions.

The bottom three criteria are categorised by five intensity
scores: (0): Absent, (1): Mild, (2): Moderate, (3): Severe, (4):
Very severe. This research will only present a solution to the
first two criteria, the area and erythema of the lesion. These
criteria can be determined by looking at the 3D model made
from the stereo images. To make this 3D model, the process
as seen in Figure 1 has been followed.

2

Fig. 1: Functional block diagram of the general process.

A. Make stereo pictures

Before being able to process stereo pictures, the camera has
to be calibrated. This has been done with the Stereo Camera
Calibrator app from MATLAB. After this, stereo pictures were
made of an arm on which a lesion can be seen. For the tests,
the lesion samples as described in Section II were examined.

B. Compute disparity map

From the taken stereo pictures, disparity maps were made
by using MATLAB’s Semi-Global Matching (SGM) function.
SGM works especially well for fine structured objects and their
borders and still works well under radiometric changes [4], [5].
It also provides less occlusions than Block Matching (BM),
MATLAB’s other disparity function. Disparity maps show
the difference in distance between the left and right images;
objects closer to the camera will have larger disparity than
objects far away. Before being able to compute the disparity
map, the disparity range should be determined. This has been
done by drawing a line on the anaglyph image of each stereo
pair, after which the range was automatically calculated. Doing
so provides an accurate disparity range, such that it is correct
for every stereo pair.

C. Obtain point cloud

Obtaining a correct, denoised point cloud takes a few steps.
The disparity map should be correct, and not contain too many
occlusions or noise, as the same noise present in the disparity
map will be present in the point cloud as well. Removing the
noise has been done by first down sampling the point cloud,
then by looking at the distance between neighbouring points.
If this distance is deemed too large, a point is considered noise.
Another method is looking at the clusters, which are groups
of points gathered in a certain area. Assuming the cluster of
the arm is the largest one, smaller clusters are left out, leaving
a denoised point cloud.

D. Mesh point cloud

For meshing the obtained volume point cloud, Delaunay
triangulation has been used. The convex hull of the point
cloud, or rather the mesh, in the x-y plane, consists of triangles
formed by Delaunay edges [6]. Then the z coordinates of
each point can be added, making the mesh three dimensional.
However, using this method results in excess area, which
should be left out when calculating the area of the arm and
the lesion.

E. Calculate surface area

Since the mesh only consists of triangles, calculating the
surface areas has been done by summing the area of the
separate triangles. However, the triangulation method used
here also makes triangles between outer points which are
on opposite sides, since it is a convex hull. To solve this
issue, the excess areas were detected by looking at their area
and maximum edge length. These areas were not part of the
summation.

F. Detect lesion

Using the YCbCr (Y: luminance; Cb: chrominance-blue; Cr:
chrominance-red [7]) colour space deemed more reliable than
the red, green and blue (RGB) colour space for detecting the
lesions. By looking at an image in only the Cr component, the
red areas - which have the highest Cr value - are highlighted.
For lighter lesions the other two colours (Y and Cb) have
been inspected as well. Since the area of the lesion should be
determined from a 3D mesh, the lesion has been detected from
the point cloud in the colour of one of the YCbCr components.
A point cloud of only the lesion is left, which can be meshed
and examined for area.

G. Determine erythema severity (redness)

The erythema severity of the lesion has been determined
by comparing the redness of the stereo picture to the redness
of the pictures as seen in Figure 2. To determine the redness,
the Y, Cb, or Cr values are looked at, corresponding to which
colour was used to detect the lesion. The colour values of
the lesions were compared to those of the reference images.
The severity is then the number of the picture the lesion
corresponds to the most.

(a) Intensity 1. (b) Intensity 2. (c) Intensity 3. (d) Intensity 4.

Fig. 2: Erythema intensity reference pictures [1].

H. Testing

To test the method, tests have been conducted on different
skin colours, using the red and pink stickers as mentioned
in Section II. Additionally, the method has been tested for
two separated lesions. The calculated areas were compared to
the actual measured areas of the stickers by calculating the
difference with Equation 1. For each test, four images were
taken from a distance of approximately 1 meter.

|areareal − areacalculated|
areareal

· 100%. (1)

The PASI score has been determined for every test, using
Equation 2. Assuming the sticker lesion is the only lesion
on the whole body, the components regarding the head, trunk
and legs are equal to zero and can be left out of the original
equation [1].

3

(a) Stereo image.
(b) Disparity map. (c) Point cloud.

(d) Filtered point cloud.

(e) Mesh of the arm.

(f) Point clouds of arm and detected lesion in Cr.
(g) Detected, filtered lesion point

cloud.

Fig. 3: Results of test with red lesion on light skin tone, stereo pair 2.

PASI = (armserythema · 0.2) · armsarea, (2)

where armserythema and armsarea are the intensity scores
mentioned at the beginning of this section. To calculate the
lesion to arm area ratio, the calculated arm area has been
multiplied by four, to represent both arms from both front
and back.

IV. RESULTS

The meshes presented in this section have red triangles
in them. These triangles were areas not taken into account
when calculating the total surface area. They have been
automatically detected. The axes in the 3D models are defined
as follows: x: the length, y: the width, z: the height/depth of
the arm/lesion. Note that the axes are in decimeters.

For the first test with one red lesion on light skin, the end
results as well as the intermediate results of stereo pair 2 can
be seen in Figure 3. For the other tests, per skin tone and
lesion colour, only the stereo image and surface mesh of the
lesions of the test with the best result (the highlighted tests
in Table I) are shown. The calculated areas and the difference
to the actual area of all tests can be seen in Table I. The
calculated areas of the arm, detected erythema intensities and
the calculated PASI scores can also be found here, as well
as the used colour components which yielded the best lesion
detection. The visual results of the other tests, i.e. surface
meshes and point clouds are presented in Appendix A.

The disparity map in Figure 3b has a lot of noise in the
background area, and so does the point cloud in Figure 3c.
The detected lesion in Figure 3f seems to have holes in it.
This can be seen again in the mesh in Figure 3g. The mesh in
this figure also seems to have a lot of texture, different from
the used stickers.

The results presented in Table I show that the method has
some difference for every test. The smallest average difference
is +4.18%, while the largest average difference is +141.86%.

The average of all average differences is +37.45%. Notable is
that the test with smallest difference of -0.47% (Figure 3), has
many wrongly detected excess areas. Furthermore, the mesh of
which the shape and detected excess areas closely resemble
that of the picture taken, i.e. the mesh in Figure 7b, seems
to have the biggest difference among the best scoring tests
(+31.87%).

(a) Stereo image.

(b) Mesh.

Fig. 4: Results of test with multiple red lesions on light skin
tone, stereo pair 2.

(a) Stereo image.

(b) Mesh.

Fig. 5: Results of test with red lesion on dark skin tone,
stereo pair 3.

In Figure 4, the results of the second test of the multiple red
lesions on the light skin can be seen. It can be seen that the
lesions have been detected, but the mesh is not as rectangular

4

TABLE I: Results of the calculated areas, detected erythema intensity and calculated PASI score.

Lesion
colour

Skin
tone

Stereo
pair

Used colour
for detection

Calculated
area

(cm2)

Actual
area

(cm2)

Difference
(%)

Average
difference

(%)

Area arm
point cloud

(cm2)

Detected
erythema
intensity

PASI score

1 Cr 12.65 + 5.43 411.40 4 0
2 Cr 11.94 - 0.47 483.80 4 0
3 Cr 18.50 + 54.13 411.74 4 0.8
4 Cr 19.27

12

+ 60.59

+ 29.70

479.12 4 0.8
1 Cr 18.22 + 1.23 352.12 4 0.8
2 Cr 18.19 + 1.05 430.52 4 0.8
3 Cr 18.39 + 2.19 393.34 4 0.8

Light

4 Cr 29.14

18

+ 61.89

+ 16.59

338.40 4 0.8
1 Cr 12.79 + 6.58 488.91 4 0
2 Cr 12.91 + 7.65 381.59 4 0
3 Cr 11.48 - 4.29 364.57 4 0

Red

Dark

4 Cr 12.81

12

+ 6.78

+ 4.18

449.22 4 0
1 Cb 11.03 - 8.06 453.25 2 0
2 Cb 3.67 - 69.36 389.48 2 0
3 Cb 13.85 + 15.47 370.25 2 0Light

4 Cb 17.00

12

+ 41.72

- 5.06

280.84 2 0.4
1 Y 43.30 + 217.03 507.43 4 0.8
2 Y 45.28 + 277.30 585.17 4 0.8
3 Y 16.95 + 41.25 468.46 4 0

Pink

Dark

4 Y 15.82

12

+ 31.87

+ 141.86

410.87 4 0

as the stickers actually are. In Figure 5, the results of the third
test of the red lesion on dark skin tone can be seen. The shape
of this mesh resembles that of the used sticker. However, there
are a few holes, which have been detected as excess area.

(a) Stereo image.

(b) Mesh.

Fig. 6: Results of test with pink lesion on light skin tone,
stereo pair 1.

(a) Stereo image.

(b) Mesh.

Fig. 7: Results of test with pink lesion on dark skin tone,
stereo pair 4.

In Figure 6, the results of the first test of the pink lesion
on light skin tone can be seen. The shape does not completely
resemble that of the sticker, and areas in the middle of the
mesh were detected as excess areas. In Figure 7, the results
of the fourth test of the pink lesion on dark skin tone can be

seen. There were no excess areas detected in the middle of
the mesh, only at the outside. The shape resembles that of the
sticker.

The MATLAB scripts used to obtain the results can be found
in Appendix B.

V. DISCUSSION

As observed in the previous section, the calculated areas
differ from the actual area. In general, it seems that the
calculated area of the meshes is too large. This is because
the obtained point clouds are too textured, resulting in a mesh
with many peaks. Since the used stickers do not have any
texture, it can be said that the point cloud and thus the mesh
are inaccurate. This texture could perhaps be caused by quality
of the disparity maps. These maps are not ideal and still
have some pixels of different values in the area of interest.
This would cause some points to be at a different depth than
the others, explaining the peaks as seen in the mesh figures.
Generally, disparity maps look worse for non-textured areas,
which could also explain the noise in the background area.
This noise is also present since the disparity range is not well
defined for that area.

Detecting the lesion correctly does not always work. This
could be caused by, for example, a wrongly taken picture,
meaning part of the lesion is not visible in the pictures.
Another possibility is that the sticker reflects light, which in
the picture is seen as a lighter colour, making it more difficult
to detect. This also causes holes in the point clouds. These
holes could also be caused by occlusions in the disparity maps,
which after filtering the point cloud results in even bigger
occlusions, thus bigger holes in the lesion. Skin could also
reflect light, making it particularly hard for light lesions to be
detected, as the reflecting skin could be potentially seen as a
lesion (e.g. Appendix A-E).

The detection of excess area does not work completely as
intended. In many meshes the holes in the middle are coloured

5

red when they should not be. Detecting these triangles should
be further looked into. Another option is to look into other
triangulation methods, which do not compute the convex hull,
but just the correct area.

There cannot be said much about the accuracy of the
calculated arm areas, but the results are likely to be inaccurate
due to the point clouds being too textured. In every picture,
the arm is not in the exact same position, which could explain
why the values differ for every test. Using these areas to
calculate the PASI scores by multiplying them by four defeats
the whole purpose of why stereo vision is used, since doing
so makes the end result imprecise. The calculated PASI scores
have not been validated by comparing the results to existing
methods. Furthermore, the predetermined areas are too small
to calculate a PASI score, as for 12 cm2 this would be equal
to 0 anyway. It would be interesting to evaluate the method by
looking at larger lesions. For the overall picture these scores
have been added to the results table and could be used as
reference for future work, to see how much the accuracy of
the score improves for a more complete model.

As for the erythema intensity detection, comparing the
reference images to the taken images, the results for the red
lesions seem to be fair. For the pink lesion on light skin
this detection also seems to work fine. However, for the pink
lesion on the dark skin the detected erythema intensity is
obviously incorrect. This is because for detecting this lesion
the Y colours are examined for the point cloud as well as the
reference images for the erythema. An image in Y colours is
similar to a gray scale image, where the lightest colours are
the brightest. Looking at the reference pictures in Figure 2, the
skin of the person in Figure 2d has the lightest colour of all
four images, and thus has the highest Y value. Comparing this
to the lesion as bright as the one used for these tests, it is clear
why the wrong intensity value was detected. Furthermore, it
is not clear if this method will work for the other intensities,
as this has not been tested.

From the tests, it seems that the method works the best
for the red lesion on dark skin. However, only four pictures
for each test have been processed, which is not enough to
conclude on which colours the method works best.

VI. RECOMMENDATIONS

To improve the presented method, it should be investigated
why the point clouds are textured more than they should be.
Different disparity methods could be tested, and perhaps even
different cameras. Cameras with a higher resolution could
help with obtaining better and more detailed point clouds.
Additionally, the method should be tested for more lesion
colours, as in this paper only two colours have been tested. It
would be even better if the method could be tested on actual
lesions, not just stickers. Testing the method on the other
body parts should be done as well. The erythema intensity
detection could be improved by using deep learning, which
would be more reliable than the current method presented in
this paper. Furthermore, to make this method into an actual
PASI determination method, the induration and desquamation
intensity should be detected as well. For calculating the

induration the point clouds have to be improved, as the depth
of the lesion cannot be accurately determined if the point
cloud has random peaks. For determining the scaling intensity,
deep learning could be used here as well. Considering the area
calculation, the method is not complete yet. Ideally, complete
360 degree point clouds of the human body parts are used. This
could be realised by using multi-view stereo reconstruction. In
addition, the point clouds should be examined for accuracy by
comparing them to point clouds obtained from state-of-the-art
camera setups.

VII. CONCLUSION

By using a stereo camera, a 3D model of a human arm can
be made and its area can be calculated. Different coloured
lesions present on the skin can be detected and examined
for area. Using only a stereo camera and a computer makes
the method portable and easy to use. Economically, this
method would be significantly more affordable than existing
reconstruction systems. However, many improvements should
be done before the method can actually be used to accurately
calculate PASI scores.

REFERENCES

[1] Hamilton Dr Amanda Oakley, Dermatologist. Pasi score, 2009.
https://www.dermnetnz.org/topics/pasi-score/, Last accessed on 2019-06-
01.

[2] Fuchs T. Enk A. et al Fink, C. Design of an algorithm for automated,
computer-guided pasi measurements by digital image analysis. Journal
of Medical Systems, 42:248, 2018.

[3] Jonathan Wells Philip Treleaven. 3d body scanning and healthcare
applications. Computer, pages 28–34, 2007.

[4] Heiko Hirschmüller. Stereo processing by semi-global matching and
mutual information. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2007.

[5] Heiko Hirschmüller. Semi-global matching - motivation, developments
and applications. Photogrammetric Week, 2011.

[6] Herbert Edelsbrunner. Triangulations and meshes in computational
geometry. Acta Numerica, pages 1–81, 2000.

[7] Makarand Tapaswi. Why the rgb to ycbcr, 2009.
https://makarandtapaswi.wordpress.com/2009/07/20/why-the-rgb-to-
ycbcr/, Last accessed on 2019-06-28.

6

APPENDIX A
ADDITIONAL RESULTS

In this appendix, the point clouds of all tests will be shown, together with their corresponding stereo pair.

A. Red lesion on light skin shade

(a) Stereo image 1. (b) Stereo image 2.

(c) Stereo image 3. (d) Stereo image 4.

Fig. 8: Stereo images.

Fig. 9: Point clouds of arm and lesion.

7

(a) Mesh 1.
(b) Mesh 2.

(c) Mesh 3. (d) Mesh 4.

Fig. 10: Meshes of the detected lesions.

8

B. Multiple red lesions on light skin shade

(a) Stereo image 1. (b) Stereo image 2.

(c) Stereo image 3. (d) Stereo image 4.

Fig. 11: Stereo images.

Fig. 12: Point clouds of arm and lesion.

9

(a) Mesh 1. (b) Mesh 2.

(c) Mesh 3. (d) Mesh 4.

Fig. 13: Meshes of the detected lesions.

10

C. Red lesion on dark skin shade

(a) Stereo image 1. (b) Stereo image 2.

(c) Stereo image 3. (d) Stereo image 4.

Fig. 14: Stereo images.

Fig. 15: Point clouds of arm and lesion.

11

(a) Mesh 1. (b) Mesh 2.

(c) Mesh 3. (d) Mesh 4.

Fig. 16: Meshes of detected lesions.

12

D. Pink lesion on light skin shade

(a) Stereo image 1. (b) Stereo image 2.

(c) Stereo image 3. (d) Stereo image 4.

Fig. 17: Stereo images.

Fig. 18: Point clouds of arm and lesion.

13

(a) Mesh 1. (b) Mesh 2.

(c) Mesh 3. (d) Mesh 4.

Fig. 19: Meshes of the detected lesions.

14

E. Pink lesion on dark skin shade

(a) Stereo image 1. (b) Stereo image 2.

(c) Stereo image 3. (d) Stereo image 4.

Fig. 20: Stereo images.

Fig. 21: Point clouds of the arm and lesion.

15

(a) Mesh 1. (b) Mesh 2.

(c) Mesh 3. (d) Mesh 4.

Fig. 22: Meshes of the detected point clouds.

16

APPENDIX B
MATLAB SCRIPTS

In this appendix, the MATLAB scripts are presented. A description is added at the top of each function, clarifying what it
does.

A. sr functions.m

1 %%
2 % This code detects lesions on body parts, using stereo images.
3 % The pictures may be taken beforehand
4

5 % need to have the following functions in the path:
6 % read_camera: take pictures and save them,
7 % disparityRange: determine the disparity range of the stereo pair,
8 % largestCluster: select the largest cluster of a point cloud,
9 % processPtCloud: compute the denoised point cloud from stereo images,

10 % surfArea3: compute the area of the mesh,
11 % goodArea: compute the correct area of the mesh,
12 % erythemaScore: determine the severity of the erythema (redness),
13 % intensity: calculate intensity of the area,
14 % pasi: determine pasi score,
15

16 % IMPORTANT NOTE: MAKE SURE THE STEREO CAMERA IS CALIBRATED AND THAT THE
17 % STEREOPARAMETERS are saved as 'stereoParams.mat' in the path
18

19 clear all;
20 close all;
21 imtool close all;
22 set(gcf,'color','w');
23 fontSize = 15;
24 tic % starts counting processing time
25

26 q.newpic = questdlg('Would you like to take new pictures?',...
27 'Yes','No');
28

29 % Handle response
30 switch q.newpic
31 case 'Yes' % take new pictures !! MAKE SURE OLD PICTURES ARE SAVED!!
32 q.newp = 1;
33 case 'No' % use old pictures; there should be pictures in the path
34 q.newp = 0;
35 end
36

37 if q.newp == 1
38 [LEFT,RIGHT,n] = read_camera;
39 elseif q.newp == 0
40 n = 1;
41 % n is the number of stereo pairs to be processed, it's automatically
42 % determined if new pictures are taken
43 end
44

45 %import the stereoparameters into the workspace
46 load('stereoParams.mat'); % make sure the .mat file is in the right folder
47

48 % read images from the workspace
49 for i = 1 : n
50 stereoIm.LEFT.rgb{i} = imread(sprintf('TESTL_%s.png', num2str(i)));
51 stereoIm.RIGHT.rgb{i} = imread(sprintf('TESTR_%s.png', num2str(i)));
52 figure; imshow([stereoIm.LEFT.rgb{i},stereoIm.RIGHT.rgb{i}]);
53 end
54

55 %% Determine disparity ranges
56 disp("disparity");
57 % disparity will be a cell containing all determined disparity ranges
58 disparity = disparityRange(n,stereoIm.LEFT.rgb,stereoIm.RIGHT.rgb,...
59 stereoParams);
60 %% point cloud processing
61 disp("pointcloud");
62 % point.all will be a cell containing all denoised point clouds
63 point.all = processPtCloud(n,stereoIm.LEFT.rgb,stereoIm.RIGHT.rgb,...
64 stereoParams,disparity);
65 %% delete invalid point clouds
66 % makes figure full-screen

17

67 figure('units','normalized','outerposition',[0 0 1 1]);
68 for l = 1 : n
69 subplot(ceil(n/2),ceil(n/2),l)
70 pcshow(point.all{l});
71 t = sprintf('Point cloud %d', l);
72 title(t);
73 end
74

75 % if there's a faulty point cloud, this is the time to remove it
76 prompt = sprintf(['Delete which point clouds? (type one number,' ...
77 'space separated numbers, or leave the space empty)']);
78 q.delnum = inputdlg(prompt);
79 delete = str2num(q.delnum{1});
80 selected = zeros(1,n); % if n = 5, (0,0,0,0,0)
81

82 for m = 1:n
83 selected(m) = m; % (1,2,3,4,5)
84 end
85

86 % say we want to remove 2,3, selected = (1,4,5)
87 selected(delete) = [];
88

89 for m = 1:size(selected,2)
90 % pointSelect is only the 1st 4th and 5th point clouds
91 pointSelect{m} = point.all{selected(m)};
92 end
93

94 for l = 1 : m
95 subplot(ceil(m),ceil(m/2),l)
96 pcshow(pointSelect{l});
97 t = sprintf('Point cloud %d.', selected(l));
98 title(t);
99 end

100

101 %% process point clouds
102 for h = 1:size(pointSelect,2)
103 % smooth point cloud arm
104 pointArm = pointSelect{h};
105 pointArmSmooth{h} = medfilt3(pointArm.Location,[5,1,7]);
106 figure; pcshow(pointArmSmooth{h});
107 tl = sprintf('Smoothed point cloud %d', h);
108 title(tl);
109

110 % Depending on the lesion colour, the point cloud colour will be chosen
111 % to be further processed. Choose between Y Cb and Cr, look for which
112 % colour the lesion is the brightest and contrasts the arm the most
113 figure;
114 % point cloud in Y
115 colory = uint8(240*mat2gray(rgb2ycbcr(im2double(pointArm.Color))));
116 pointArmYcbcr3{h} = pointCloud(pointArm.Location,'Color',...
117 [colory(:,1),colory(:,1),colory(:,1)]);
118 subplot(2,2,1); pcshow(pointArmYcbcr3{h}); axis equal
119 title('1');
120

121 % point cloud in Cb
122 colory = uint8(240*mat2gray(rgb2ycbcr(im2double(pointArm.Color))));
123 pointArmYcbcr2{h} = pointCloud(pointArm.Location,'Color', ...
124 [colory(:,2),colory(:,2),colory(:,2)]);
125 subplot(2,2,2); pcshow(pointArmYcbcr2{h}); axis equal
126 title('2');
127

128 % point cloud in Cr
129 colory = uint8(240*mat2gray(rgb2ycbcr(im2double(pointArm.Color))));
130 pointArmYcbcr1{h} = pointCloud(pointArm.Location,'Color', ...
131 [colory(:,3),colory(:,3),colory(:,3)]);
132 subplot(2,2,[3,4]); pcshow(pointArmYcbcr1{h}); axis equal
133 title('3');
134

135 prompt = ['In which pointcloud is the lesion the brightest',...
136 'and has the most contrast to the skin (1, 2 or 3)?'];
137 q.l = inputdlg(prompt);
138 q.light = str2num(q.l{1});
139

140 if q.light == 1 %Y; works best for light lesions
141 % look at YCBCR and construct lesion pointcloud
142 pointArmYcbcr{h} = pointArmYcbcr3{h};
143 range = 2;

18

144 LES = pointArmYcbcr{h}.Color ≥ max(max(colory(:,3))) - range;
145 elseif q.light == 2 %CB
146 % look at YCBCR and construct lesion pointcloud
147 pointArmYcbcr{h} = pointArmYcbcr2{h};
148 range = 25;
149 LES = pointArmYcbcr{h}.Color ≥ max(max(colory(:,2))) - range;
150 elseif q.light == 3 %CR; works best for red lesions
151 % look at YCBCR and construct lesion pointcloud
152 pointArmYcbcr{h} = pointArmYcbcr1{h};
153 range = 60; % 30 for dark skin, 60 for lighter
154 LES = pointArmYcbcr{h}.Color ≥ max(max(colory(:,3))) - range;
155 end
156

157 [ROWS,COLS] = find(LES == 1); % obtain the rows with the right colour
158 pointLesionRgb = select(pointArmYcbcr{h},ROWS); % make the point cloud
159 figure; pcshow(pointLesionRgb); axis equal
160 title('Pointcloud of lesion before filtering');
161

162 % denoise pointcloud
163 % outlier threshold. A point is considered an outlier if the
164 % average distance to numNeighbors > threshold
165 pointLesionDenoised{h} = pcdenoise(pointLesionRgb, 'NumNeighbors', ...
166 100, 'Threshold', 0.01); % removes outliers from the pointcloud
167 figure;pcshow(pointLesionDenoised{h}); axis equal;
168 title('Denoised pointcloud lesion')
169

170 % if there are clusters of which the lesion is the largest, this can be
171 % filtered out
172 q.cluster = questdlg('Use cluster detection?',...
173 'Yes','No');
174 % Handle response
175 switch q.cluster
176 case 'Yes' % will detect largest cluster
177 q.cl = 1;
178 case 'No' % nothing changes
179 q.cl = 0;
180 end
181

182 if q.cl == 1
183 pointLesionCluster = largestCluster(0.02,pointLesionDenoised{h});
184 figure;pcshow(pointLesionCluster);
185 title('Cluster detected lesion');
186 else
187 pointLesionCluster = pointLesionDenoised{h};
188 end
189

190 % smooth lesion surface by using median filter
191 pointLesionSmooth{h} = medfilt3(pointLesionCluster.Location,[3,1,3]);
192 figure;pcshow(pointLesionSmooth{h},'r');
193 title('lesionsmooth');
194

195 % delaunay triangulation of whole pointcloud
196 disp("triangulation arm");
197 pointcloudTempA = pointArmSmooth{h};
198 % obtain x y and z coordinates of the vertices
199 triangulation.armX = double(pointcloudTempA(:,1));
200 triangulation.armY = double(pointcloudTempA(:,2));
201 triangulation.armZ = double(pointcloudTempA(:,3));
202

203 % delaunay outputs a matrix of m x 3 where m is the number of triangles
204 triangulation.arm = delaunay(triangulation.armX,triangulation.armY);
205 figure; triplot(triangulation.arm,triangulation.armX,...
206 triangulation.armY);
207

208 % surface mesh
209 figure; trisurf(triangulation.arm,triangulation.armX,...
210 triangulation.armY,triangulation.armZ, colory(:,3)); axis equal;
211 xlabel('x');
212 ylabel('y');
213 zlabel('z');
214 caption = sprintf('Surface meshed point cloud');
215 title(caption, 'FontSize', fontSize);
216

217 % triangulation of lesion
218 disp("triangulation lesion");
219 pointcloudTempL = pointLesionSmooth{h};
220 % obtain x y and z coordinates of the vertices

19

221 triangulation.lesionX = double(pointcloudTempL(:,1));
222 triangulation.lesionY = double(pointcloudTempL(:,2));
223 triangulation.lesionZ = double(pointcloudTempL(:,3));
224

225 % delaunay outputs a matrix of m x 3 where m is the number of triangles
226 triangulation.lesion = delaunay(triangulation.lesionX,...
227 triangulation.lesionY);
228 figure; triplot(triangulation.lesion,triangulation.lesionX,...
229 triangulation.lesionY);
230

231 % surface mesh
232 figure; trisurf(triangulation.lesion,triangulation.lesionX,...
233 triangulation.lesionY,triangulation.lesionZ, ...
234 pointLesionCluster.Color(:,3)); axis equal;
235 set(gcf, 'Renderer', 'zbuffer');
236 xlabel('x');
237 ylabel('y');
238 zlabel('z');
239 caption = sprintf('Surface meshed point cloud');
240 title(caption, 'FontSize', fontSize);
241

242

243 % calculate surface area
244 disp("area arm");
245 % obtain the area, the colored triangles and their vertice coordinates
246 [surface.arm] = surfArea3(triangulation.arm, triangulation.armX,...
247 triangulation.armY, triangulation.armZ);
248 area.arm{h} = sum(surface.arm); % total area, including wrong triangles
249 axis equal
250

251 %%% NOTE: AREA IS IN SQUARE DECIMETERS %%%
252

253 % remove the excess triangles
254 disp("correctArea arm");
255

256 figure;trisurf(triangulation.arm,triangulation.armX,...
257 triangulation.armY,triangulation.armZ,...
258 pointArmYcbcr{h}.Color(:,3)); hold on;
259 % goodArea selects which triangles do not belong
260 surface.armCorrect = goodArea(triangulation.arm,triangulation.armX,...
261 triangulation.armY,triangulation.armZ,surface.arm,...
262 pointArmYcbcr{h},17,2);
263

264 % total area excluding the large excess triangles
265 area.armCorrectDM{h} = sum(surface.armCorrect);
266 area.armCorrectCM{h} = area.armCorrectDM{h} * 100; % in cmˆ2
267

268 % area lesion
269 disp("area lesion");
270 % obtain the area, the colored triangles and their vertice coordinates
271 [surface.lesion] = surfArea3(triangulation.lesion, ...
272 triangulation.lesionX, triangulation.lesionY, ...
273 triangulation.lesionZ);
274 area.lesion{h} = sum(surface.lesion); % total area of triangulation
275 axis equal
276

277 disp("correctArea lesion");
278 figure;trisurf(triangulation.lesion,triangulation.lesionX,...
279 triangulation.lesionY,triangulation.lesionZ,...
280 pointLesionCluster.Color(:,3)); hold on;
281 title(sprintf('Meshed lesion %d',h));
282 surface.lesionCorrect = goodArea(triangulation.lesion,...
283 triangulation.lesionX,triangulation.lesionY,...
284 triangulation.lesionZ,surface.lesion,...
285 pointLesionCluster,3,5); axis equal;
286 % for multiple lesions, change 3,5 to 4,3
287

288 % compute total area excluding the large excess triangles
289 area.lesionCorrectDM{h} = sum(surface.lesionCorrect);
290 area.lesionCorrectCM{h} = area.lesionCorrectDM{h} * 100; % in cm
291 end
292

293 %% process areas
294 % plot the point clouds of the arm and the lesion in one figure
295 figure('units','normalized','outerposition',[0 0 1 1]);
296 for i = 1:h
297 if h == 1 % for one stereo pair, plot the clouds next to eachother

20

298 subplot(1,2,1)
299 pcshow(pointArmYcbcr{i});
300 title('Point cloud of arm in Cr.')
301 subplot(1,2,2);
302 pcshow(pointLesionSmooth{i},'w');
303 title('Point cloud of detected lesion.')
304 else
305 subplot(ceil(h/2),ceil(h),i)
306 pcshow(pointArmYcbcr{i});
307 subplot(ceil(h/2),ceil(h), h + i)
308 pcshow(pointLesionSmooth{i},'w');
309 end
310 end
311

312 % calcuate the average of the arm and lesion areas
313 sumA = 0;
314 sumL = 0;
315 for p = 1:h
316 sumA = sumA + area.armCorrectDM{h};
317 sumL = sumL + area.lesionCorrectDM{h};
318 end
319 area.armAverage = sumA/h;
320 area.lesionAverage = sumL/h;
321 % assume that the area of the arm as calculated here is about half of the
322 % total. So for two arms, area_good*4
323

324

325 % how much area the wound is compared to the arm (in percent)
326 %F = (area.lesionAverage/area.armTotal)*100;
327

328 for i = 1:n
329 % return intensity score (0-4)
330 area.armTotal = area.armCorrectCM{i}*4;
331 F = (area.lesionCorrectCM{i}/area.armTotal) * 100;
332 arm.intensity.area{i} = intensity(F);
333

334 % determine erythema severity
335 arm.intensity.erythema{i} = erythemaScore(pointLesionDenoised{i},q.light);
336 %pointLesionDenoised is the YCBCR colored cloud of the lesion
337

338 % calculate pasi score
339 PASI.head = [0,0,0,0]; % (area, erythema, induration, desquamation)
340 PASI.arms = [arm.intensity.area{i},arm.intensity.erythema{i},0,0];
341 PASI.trunk = [0,0,0,0];
342 PASI.legs = [0,0,0,0];
343 score{i} = pasi(PASI.head,PASI.arms,PASI.trunk,PASI.legs);
344

345 % show pasi score
346 PASIscore = sprintf('PASI score %d: %d', i, score{i});
347 box.pasi = msgbox({PASIscore}, 'PASI score');
348 disp(sprintf('Lesion area = %d', area.lesionAverage))
349 end
350

351 % calculate difference between areas
352 prompt = 'What is the actual area (in square cm)?';
353 q.area = inputdlg(prompt);
354 for i = 1:n
355 difference{i} = str2num(q.area{1})-area.lesionCorrectCM{i};
356 diffp = round(((abs(difference{i}))/str2num(q.area{1})) * 100,2);
357 if difference{i} < 0 % the calculated area is bigger
358 text.diff = sprintf(['The calculated area %d is %f percent',...
359 'larger than the actual area'], i, diffp);
360 else % calculated area is smaller
361 text.diff = sprintf(['The calculated area %d is %f percent',...
362 'smaller than the actual area'], i, diffp);
363 end
364 text.qarea = sprintf('The actual area is %f square cm',...
365 str2num(q.area{1}));
366 text.carea = sprintf('The calculated area is %f square cm',...
367 area.lesionCorrectCM{i});
368 box.area = msgbox({text.qarea, text.carea, text.diff});
369 end
370 totalTime = toc

21

B. read camera.m

1 function [LEFT,RIGHT,n] = read_camera
2 % read_camera determines the area of a meshed point cloud
3 % area = goodArea(triangulation,X,Y,Z,A,pointcloud,length,factor))
4 % - area is the area of the meshed point cloud
5 % - triangulation is the triangulated point cloud
6 % - X, Y, Z are the coordinates of the vertices of the triangles
7 % - A is the area of all triangles summed up
8 % - pointcloud is the pointcloud of which the triangulation is made
9 % - length is an integer; the maximum line length is Xlim/length

10 % - factor is an integer, indicating how much larger a triangle may be
11 % wrt the mean area
12 % !!! BEFORE RUNNING THIS CODE MAKE SURE EXISTING IMAGES WON'T BE
13 % OVERWRITTEN!!!!
14 clear all
15 close all
16

17 camList = webcamlist; % shows the list of available cameras
18 cam = webcam(2); % make sure to select the stereo camera!
19 preview(cam); % gives a real-time view of the camera
20 fontSize = 10;
21

22 n = 0;
23 figure;
24 while 1
25 %ask user to take picture
26 user = input('Take picture? yes = y, no = n ', 's');
27 if user == 'n'
28 if n == 0
29 f = errordlg('No pictures were taken.');
30 %if the user wants to stop taking pictures
31 end
32 break
33 else
34 %user wants to take a picture
35 n = n + 1;
36 picture = snapshot(cam); % takes a picture
37 temp = picture;
38 imshow(temp); % view the pictures before saving them
39 % save pictures
40 LEFT{n} = picture(:,1:(size(picture,2))/2,:);
41 RIGHT{n} = picture(:,((size(picture,2))/2)+1 : size(picture,2),:);
42 end
43 X = ['You have taken ', num2str(n) ,' picture(s).'];
44 disp(X);
45 end
46

47 %show and save the pictures as .png
48

49 figure;
50 for k = 1:n
51 if n ≤ 2 % i.e. for only 1 or two pictures
52 subplot(n, 1, k);
53 else
54 subplot(ceil(n/2),ceil(n/2),k);
55 end
56 %write the pictures to .png files
57 imshow([LEFT{k}, RIGHT{k}]);
58 imwrite(LEFT{k},sprintf('TESTL_%d.png',k));
59 imwrite(RIGHT{k}, sprintf('TESTR_%d.png',k));
60 caption = sprintf('Stereo pair #%d of #%d', k, n);
61 title(caption, 'FontSize', fontSize);
62 hold on
63 end
64

65 end

22

C. disparityRange.m

1 function disparity = disparityRange(n,LEFT,RIGHT,stereoParams)
2 % disparityRange determines the disparity range for stereo pairs, if the
3 % user wants to make a disparity map of a subject in the foreground.
4 % disparity = disparityRange(n,LeftIm,RightIm,stereoParameters)
5 % - disparity a cell containing the disparity ranges for each stereo pair
6 % - n is the amount of stereo pairs used as input
7 % - LEFT is a cell containing all left images
8 % - RIGHT is a cell containing all right images
9 % - stereoParameters is the parameters obtained from the stereo

10 % calibration app
11

12 for pair = 1: n
13 % rectify the images
14 [IL{pair},IR{pair}] = rectifyStereoImages(LEFT{pair},RIGHT{pair},...
15 stereoParams);
16 I = stereoAnaglyph(IL{pair},IR{pair});
17 figure;imshow(I);
18 msgbox(sprintf(['Please draw a line from a lesion point in the'...
19 'left image to the same point in the right image. Then,'...
20 'double click the line.']));
21 % draw a line on the image
22 h = imline;
23 position = wait(h); % then double click on the line
24

25 % obtain 2x2 matrix containing x and y coordinates of the endpoints
26 pos = getPosition(h);
27 XL = pos(1,1);
28 YL = pos(1,2);
29 XR = pos(2,1);
30 YR = pos(2,2);
31

32 % calculate the lenght of this line
33 length = ceil(sqrt((XR-XL)ˆ2+(YR-YL)ˆ2));
34 DISPARITY{pair} = [length - 20, length + 68];
35 end
36 disparity = DISPARITY;

23

D. largestCluster.m

1 function ptCloud = largestCluster(minDistance, pointcloud)
2 % largestCluster filters the input pointcloud and returns the largest
3 % cluster
4 % ptCloud = largestCluster(minDistance, pointcloud)
5 % - ptCloud = output point cloud
6 % - minDistance is the minimum Euclidean distance between points from
7 % two different clusters, specified as a positive scalar
8 % - pointcloud is the input point cloud
9

10 % Segment the point cloud; detect the clusters
11 [labels,numClusters] = pcsegdist(pointcloud,minDistance);
12 figure;
13 pcshow(pointcloud.Location,labels)
14 colormap(hsv(numClusters))
15 title('Point Cloud Clusters')
16

17 % remove unwanted clusters, keep the largest
18 % pointcloud.Location contains as much points as there are labels
19 % connect the indices of the points from labels containing number M, to
20 % the indices of input pointcloud
21 M = mode(labels); % finds the most occuring number in labels;
22 % The Mth cluster is the biggest cluster
23 F = find(labels == M); % returns an array of indices containing M
24 ptCloud = select(pointcloud,F); % select only those points
25 end

24

E. processPtCloud.m

1 function pointcloud = processPtCloud(n,LEFT,RIGHT,stereoParams,dispRange)
2 % processPtCloud returns the point cloud of a subject in the foreground.
3 % pointcloud = processPtCloud(n,LEFT,RIGHT,stereoParams,dispRange)
4 % - pointcloud is the denoised pointcloud
5 % - n is the amount of stereo pairs used as input
6 % - LEFT is a cell containing all left images
7 % - RIGHT is a cell containing all right images
8 % - stereoParameters is the parameters obtained from the stereo
9 % calibration app

10 % - dispRange is the disparity range (e.g. [0,64]), should be a cell
11

12 fontSize = 15;
13

14 for m = 1 : n
15 % rectify the images
16 [IL{m},IR{m}] = rectifyStereoImages(LEFT{m},RIGHT{m},stereoParams);
17 figure;
18 subplot(1,2,1);
19 IL{m} = histeq(IL{m}); % preprocess images
20 ILB{m} = rgb2gray(IL{m});
21 imshow(ILB{m});
22

23 subplot(1,2,2);
24 IR{m} = histeq(IR{m}); % preprocess images
25 IRB{m} = rgb2gray(IR{m});
26 imshow(IRB{m});
27

28 A = stereoAnaglyph(IL{m},IR{m}); % makes a red-cyan overlapping image
29 figure; imshow(A);
30 caption = sprintf('Anaglyph picture %d', m);
31 title(caption, 'Fontsize', fontSize);
32

33 disparityRange = dispRange{m};
34 uniqueness = 11; % low value --> less reliable disparity map
35

36 disparityMap1{m} = disparitySGM(ILB{m},IRB{m},...
37 'DisparityRange',disparityRange,'UniquenessThreshold',...
38 uniqueness);
39

40 % remove noise in the disparity map
41 disparityMap{m} = medfilt2(disparityMap1{m});
42 figure; imshow(disparityMap{m},disparityRange);
43 caption = sprintf('Disparity Map of picture %d', m);
44 title(caption, 'Fontsize', fontSize);
45 colormap(gca,jet);
46 colorbar;
47

48 %obtain the 3D points from the disparity maps
49 points3D = reconstructScene(disparityMap{m},stereoParams);
50 pointCl{m} = removeInvalidPoints(pointCloud(points3D ./ 100,...
51 'Color',IL{m})); % remove NaN and Inf points
52 figure; pcshow(pointCl{m});
53 caption = sprintf('Point cloud #%d of #%d', m, n);
54 title(caption, 'FontSize', fontSize);
55

56 % preprocess the point cloud
57 % downsampling
58 ptClDown{m} = pcdownsample(pointCl{m}, 'gridAverage', 0.01);
59 figure; pcshow(ptClDown{m});
60 caption = sprintf(['Downsampled point cloud #%d of #%d,'...
61 'gridsize 0.01'], m, n);
62 title(caption, 'FontSize', fontSize);
63

64 % preprocess the point cloud
65 % denoising
66 % filter by looking at the distance between point clouds
67 numNeighbors = 100; % number of nearest neighbor points
68 % outlier threshold. A point is considered an outlier if
69 % the avg distance to numNeighbors > threshold
70 threshold = 0.01;
71 ptCldn{m} = pcdenoise(ptClDown{m}, 'NumNeighbors', numNeighbors,...
72 'Threshold', threshold); % removes outliers from the pointcloud
73 figure;

25

74 pcshow(ptCldn{m});
75

76 % denoising
77 % Segment the point cloud; detect the clusters
78 minDistance = 0.015; % should be bigger than 'gridAverage'
79 point{m} = largestCluster(minDistance,ptCldn{m}) ;
80

81 figure; pcshow(point{m});
82 caption = sprintf('Downsampled denoised point cloud #%d of #%d', m, n);
83 title(caption, 'FontSize', fontSize);
84

85

86 end
87

88 % write point cloud to .mat
89 pointcloud = point;
90 end

26

F. surfArea3.m

1 function [area] = surfArea3(triangulation, X, Y, Z)
2 % surfArea3 returns the area of a triangulation; all triangles summed
3 % area = surfArea3(triangulation, X, Y, Z)
4 % area = the area of the input triangulation
5 % - triangulation is the triangulated surface,
6 % i.e. triangulation = delaunay(X,Y)
7 % - X,Y,Z are the x y and z coordinates of the vertices
8

9 tri = triangulation;
10 sizetri = size(tri,1);
11

12 % total area
13 A = [];
14

15 for i = 1:sizetri
16 tri_num = i; % triangle #
17 % each row of tri contains the #th point from the point cloud of which
18 % a triangle is made
19 % get their coordinates
20 tx = X(tri(tri_num,:)); % tx is the x coordinates of the three points
21 ty = Y(tri(tri_num,:));
22 tz = Z(tri(tri_num,:));
23

24 point1 = [tx(1,:),ty(1,:),tz(1,:)]; %xyz coordinates of point 1
25 point2 = [tx(2,:),ty(2,:),tz(2,:)];
26 point3 = [tx(3,:),ty(3,:),tz(3,:)];
27

28 % surface area
29 %fill3(x,y,z,'r')
30 x = tx(:)'; % transpose tx, ty, tz. x = 1x3 matrix
31 y = ty(:)';
32 z = tz(:)';
33 ons = [1 1 1];
34 A(i) = 0.5*sqrt(det([x;y;ons])ˆ2 + det([y;z;ons])ˆ2 + ...
35 det([z;x;ons])ˆ2);
36 end
37 area = A;
38

39 end

27

G. goodArea.m

1 function area = goodArea(triangulation,X,Y,Z,A,pointcloud,length,factor)
2 % goodArea determines the area of a meshed point cloud
3 % area = goodArea(triangulation,X,Y,Z,A,pointcloud,length,factor))
4 % - area is the area of the meshed point cloud
5 % - triangulation is the triangulated point cloud
6 % - X, Y, Z are the coordinates of the vertices of the triangles
7 % - A is the area of all triangles summed up
8 % - pointcloud is the pointcloud of which the triangulation is made
9 % - length is an integer; the maximum line length is Xlim/length

10 % - factor is an integer, indicating how much larger a triangle may be
11 % wrt the mean area
12

13

14 tri = triangulation;
15 sizetri = size(tri,1);
16 meanA = mean(A);
17 A_good = [];
18 W = []; % the Wth triangle is wrong
19 xlim = abs(pointcloud.XLimits(2)-pointcloud.XLimits(1))/length;
20

21 for i = 1: sizetri
22 tri_num = i; % triangle #
23 % look at the length of the triangle edges
24 % if one edge is longer than half of the lesion, it is a wrong triangle
25

26 % tx is the x coordinates of the three points (3x1 matrix)
27 tx = X(tri(tri_num,:));
28 ty = Y(tri(tri_num,:));
29 tz = Z(tri(tri_num,:));
30

31 point1 = [tx(1,:),ty(1,:),tz(1,:)]; %xyz coordinates of point 1
32 point2 = [tx(2,:),ty(2,:),tz(2,:)];
33 point3 = [tx(3,:),ty(3,:),tz(3,:)];
34

35 % calculate length of triangle edges
36 % d = ((x2 - x1)2 + (y2 - y1)2 + (z2 - z1)2)ˆ1/2
37 length12 = (sqrt((point2(1)-point1(1))ˆ2+(point2(2)-point1(2))...
38 +(point2(3)-point1(3))ˆ2));
39 length23 = (sqrt((point3(1)-point2(1))ˆ2+(point3(2)-point2(2))...
40 +(point3(3)-point2(3))ˆ2));
41 length13 = (sqrt((point3(1)-point1(1))ˆ2+(point3(2)-point1(2))...
42 +(point3(3)-point1(3))ˆ2));
43

44 if A(i) > meanA*factor % means the triangle does not belong
45 if length12 > xlim || length23 > xlim || length12 > xlim
46 W(end+1) = i;
47 end
48 else
49 A_good(end + 1) = A(i);
50 end
51

52 end
53 area = A_good;
54

55 % plot wrong triangles
56 % get their coordinates
57 tx = X(tri(W,:));
58 ty = Y(tri(W,:));
59 tz = Z(tri(W,:));
60 % plot specific triangles
61 txc = [tx, tx(:,1)]; %close them for plotting
62 tyc = [ty, ty(:,1)];
63 tzc = [tz, tz(:,1)];
64 fill3(txc.', tyc.', tzc.', 'r');
65 hold off
66 end

28

H. erythemaScore.m

1 function intensity = erythemaScore(pointcloud,colour)
2 % erythemaScore determines the erythema intensity of the lesion point cloud
3 % intensity = erythemaScore(pointcloud,colour)
4 % - intensity is an integer between 1 and 4
5 % - pointcloud is the input point cloud of the lesion, in Y Cb or Cr
6 % - colour is one of the YCbCr components, same as the lesion point cloud
7

8 % look at whether the values of the point cloud colors are in one of the
9 % four intensities

10

11 figure;
12 for i = 1 : 4
13 % read reference images
14 EryRGB{i} = imread(sprintf('erythema_%s.PNG', num2str(i)));
15 % transform them into ycbcr colour space
16 YCBCR = rgb2ycbcr(EryRGB{i});
17 COLOUR{i} = YCBCR(:,:,colour); % either y cb or cr
18 % look at the maximum values
19 MAX = max(max(COLOUR{i}));
20 C = double(COLOUR{i} > MAX-60);
21 CMAX{i} = uint8(C .* double(COLOUR{i}));
22 subplot(2,2,i); imshow(CMAX{i});
23 CM = CMAX{i};
24 range{i} = [min(CM(CM > 0)),max(CM(CM > 0))];
25 end
26

27 erythema1 = [];
28 erythema2 = [];
29 erythema3 = [];
30 erythema4 = [];
31

32 range1 = range{1};
33 range2 = range{2};
34 range3 = range{3};
35 range4 = range{4};
36

37 for k = 1:size(pointcloud.Color,1) % for every point in the pointcloud
38 RED = pointcloud.Color(k,3);
39

40 % if the colour of the point falls into the range
41 if RED ≥ range1(1) && RED ≤ range1(2)
42 erythema1(end+1) = 1;
43 end
44 if RED ≥ range2(1) && RED ≤ range2(2)
45 erythema2(end+1) = 1;
46 end
47 if RED ≥ range3(1) && RED ≤ range3(2)
48 erythema3(end+1) = 1;
49 end
50 if RED ≥ range4(1) && RED ≤ range4(2)
51 erythema4(end+1) = 1;
52 end
53

54 end
55 % determine which index has the highest value
56 summ = [sum(erythema1),sum(erythema2),sum(erythema3),sum(erythema4)];
57 [M,I] = max(summ);
58 intensity = I;
59 end

29

I. intensity.m

1 function IArea = intensity(F)
2 % intensity determines the intensity score of the area in percentages
3 % IArea = intensity(F)
4 % IArea = intensity score of the area (1-4)
5 % F = input percentage of lesion area to body area
6 if F < 90
7 if F < 70
8 if F < 50
9 if F < 30

10 if F < 10
11 if F < 1
12 IArea = 0;
13 else
14 IArea = 1;
15 end
16 else
17 IArea = 2;
18 end
19 else
20 IArea = 3;
21 end
22 else
23 IArea = 4;
24 end
25 else
26 IArea = 5;
27 end
28 else
29 IArea = 6;
30

31 end
32 end

30

J. pasi.m

1 function score = pasi(head,arms,trunk,legs)
2 % pasi calculates the PASI score from input intensity scores
3 % score = pasi(head,arms,trunk,legs)
4 % - score is the calculated PASI score
5 % - head is an array containing the intensity scores of the four criteria
6 % head = [area,erythema,induration,desquamation]
7 % - arms is the same as head, but then for the arms
8 % - trunk is the same as head, but then for the trunk
9 % - legs is the same as head, but then for the legs

10

11 % B1 = A1 * 0.1;
12 % B2 = A2 * 0.2;
13 % B3 = A3 * 0.3;
14 % B4 = A4 * 0.4;
15 %
16 % C1 = B1 * Area;
17 % C2 = B2 * Area;
18 % C3 = B3 * Area;
19 % C4 = B4 * Area;
20 %
21 % score = C1 + C2 + C3 + C4;
22

23 %head = [area,erythema,induration,desquamation]
24

25 A1 = sum(head(:,2:4)); % sum all intensities except area
26 A2 = sum(arms(:,2:4));
27 A3 = sum(trunk(:,2:4));
28 A4 = sum(legs(:,2:4));
29

30 B1 = A1 * 0.1;
31 B2 = A2 * 0.2;
32 B3 = A3 * 0.3;
33 B4 = A4 * 0.4;
34

35 C1 = B1 * head(1);
36 C2 = B2 * arms(1);
37 C3 = B3 * trunk(1);
38 C4 = B4 * legs(1);
39

40 score = C1 + C2 + C3 + C4;
41 end

