UNIVERSITY OF TWENTE.

Computer Science

Code instrumentation with

Mod-BEAM

Roman Rinke Armando Wiedijk

MSc. Thesis
July 18, 2019

Supervisors:
dr. A. Fehnker
prof.dr.ir. M. Aksit

External Supervisor:
prof.dr. C. Bockisch

Faculty of Mathematics

and Computer Science
Philipps University of Marburg
35037 Marburg

Germany

Formal Methods and Tools

Faculty of Electrical Engineering,
Mathematics and Computer Science
University of Twente

P.O. Box 217

7500 AE Enschede

The Netherlands

Abstract

There are various methods and techniques for a developer to keep their code read-
able and reusable. Design patterns have become important in modern development
in order to realise this. There exists code, however, that you would not want in pro-
duction. An example of this would be code that is generated by instrumentation
tools. Tools might want to generate code to help create performance benchmarks,
or to analyse the code-coverage of your test-cases. "Code instrumentation” is a term
commonly used to describe the task of adding such generated code. What we focus
on in this thesis is code-instrumentation for Java projects.

When a Java file is compiled, the compiler outputs a .class file with the low-level
instructions that the Java Virtual Machine can execute. Java code instrumentation
can be performed on the actual source-code (before compiling) or on the bytecode
itself (after compiling). Multiple frameworks that allow for Java bytecode instrumen-
tation. Some of these frameworks are a bit dated, but they all share the common
interest to allow for easy, fast and maintainable bytecode manipulation.

From the hypothesis that existing tools that make use of bytecode instrumenta-
tion have potential overlap, the tool "Mod-BEAM” is introduced. Mod-BEAM is a new
framework that makes use of model-driven engineering to convert any Java class
into a clean, modifiable model representation of the original bytecode. Mod-BEAM
stands for "Modular Bytecode Engineering and Analysis with Models”.

When working with model-driven engineering, there exists the concept of a model
and a meta-model. In the case of Mod-BEAM, the meta-model is a representation
of all possible Java code (from classes to instructions). The model would be an
actual class with fields, methods, instructions, etc. What Mod-BEAM does for us
is to transform the original Java .class file (containing the bytecode for the com-
piler) to the corresponding model that inherits the Java metamodel as defined by
Mod-BEAM. This newly generated model can then be transformed using a reusable
template through the use of a model-transformation language. This resulting model
can then, through Mod-BEAM, be converted back into an executable Java .class file.
Summarised, this means that we go from .class to .jbc (bytecode model), then from
Jjbc to a .jbc with additional instructions. Finally, we go from the modified .jbc back
to a .class file, which now has all the modified data in it.

v ABSTRACT

As part of the problem analysis, we identified tools that perform bytecode in-
strumentation. We proceed to identify which tools have a potential overlap in their
“primitive concepts”. Primitive concepts would be concepts such as finding key-
points, instrumenting touch-points or inserting probe-points. Along with the identifi-
cation of these concepts, we look at how they are implemented and which concepts
overlap. From this, three tools came into focus. Those three tools are Cobertura,
JaCoCo and Aspectd. The first two perform Code-coverage Analysis, while AspectJ
is a tool used for Aspect-oriented Programming. By re-implementing the concepts
found in these tools through a model-transformation language in combination with
Mod-BEAM, we aim to identify the advantages and disadvantages of this new ap-
proach through model-driven engineering.

The instrumentation functionality of Cobertura is the first to be re-implemented.
The original code is analysed to determine how it works and what the statistics such
as the complexity are. The code in our model transformation is proven to have
most of the functionality for class instrumentation, producing near-identical results
to Cobertura while being far less complex. As the code is concentrated in a single
file, it comes at the cost of class quality, however.

The second tool, JaCoCo, was due to the straightforward nature of the origi-
nal implementation even easier to re-implement. Similar to Cobertura, results were
analysed and the results were more compact and less complex, facilitating higher
usability.

The third and last tool, Aspectd, was after some more in-depth research found
to have concepts that differed more than expected from the concepts of the Code-
coverage Analysis tools. We have provided an analysis of the workings and a dis-
cussion on how a model-driven implementation of the weaving process could be
created.

The unique contributions of this thesis are: A reimplementation of the core instru-
mentation functionality of Cobertura and JaCoCo, a comparison between our im-
plementation as model-transformation and the original implementations using Mod-
BEAM, a look at the reusability between our implementations and a discussion on a
hypothetical reimplementation of the weaving functionality of AspectJ.

Preface

This document is the Master Thesis "Code Instrumentation with Mod-BEAM”. This
document is effectively a thesis continuation of a smaller research, "A Study on Code
Instrumentation Approaches”, performed in the months prior to the creation of this
thesis. This thesis has been written to fulfill the graduation criteria of the Computer
Science - Software Technology programme at the University of Twente.

I would like to thank Christoph for the help he presented when using Mod-BEAM
and the speedy fixes to any issues | encountered. | would also like to thank Ansgar
for the clear feedback on the Thesis, and Mehmet for keeping me focused throughout
the writing process. Lastly, | would like to thank my family for standing with me and
for reminding me not to worry too much. Working with bytecode and the various
tools that modify it has greatly deepened my knowledge of what happens under the
hood of Java.

VI

PREFACE

Contents

[Abstract iii
[Prefacel v
[List of acronyms| xi
1__Introductioni 1
(1.1 Background| 1
1.2 R rch I 2
(1.3 Reportorganization| 3

T Problem Analysis| 5
l_Main Research| 43
2 Research Goal & Methodology| 45
21 Motivation| 45
[2.1.1 Requirements|. 46

2.1.2 ResearchQuestions| 46

[2.2 Research Methodology| 48

3 Technical Background| 51
(3.1 In which aspects can Mod-BEAM be analysed Iin order to compare it |

| to other approaches?, 51
[3.1.1 Usability]. 51

[3.1.2 Reusability 54

[3.1.3 Codequality] 55

[3.2 Model-transformation languages: declarative or imperative? 57
8321 Declarativel 57

[3.2.2 Imperative|. 58

B23 Hybrid 58

VI CONTENTS

[3.2.4 Choosingalanguage| 58

[3.3 Potential reusability|. oo 59

4 First case study: Cobertural 61
41 Cobertural 61
4.1.1 Analysis|. 61

4.1.2 Instrumentationl.o 66

4.1.3 Instructions In .. 67

4.2 Cobertura as model fransformationl 70
421 Passesl 70

422 Traversaland confrol-flow| 70

423 Variableindexl 72

424 [IDOrdering|. 72

425 Codequalityl 73

[4.3 Assessing functional equality] oL 74
[4.4 Migration to Epsilon Transformation Language (ETL)| 78
[4.5 Reimplementationanalysis| 80
[4.6 Implementation comparison|o 84
4.7 nclusionl e e e 87

5 Second case study: JaCoCo| 89
5.1 JaCoCal 89
0.1.1 Analysis|. 89

0.1.2 Instrumentationl. L. 91

6.2 JaCoCo as model Transformation|. 94
0.2.1 IDOrdering|. 94

0.2.2 Instructionrulesl 94

[0.3 Assessing functionalequalty] 96
[6.4 Reimplementationanalysis| 98
[5.5 Implementation comparison| L L oL, 99
[5.6 Reimplementation comparison: Cobertura and JaCoCo as model trans- |

| formationsl. 102
(6.6.1 Reusability], 102

b5.6.2 Performancel 103

5.7 Conclusion| 104

6 Hypothetical case study: AspectJ| 105
6.1 Analysisof Aspectd| L 105
[6.2 Discussion: reusabllity| 106

[6.3 Discussion: weaving implementation| 107

CONTENTS

IX
6.4 Potentialissuesl. 108
6.5 Conclusion e 108

nclusion 109

/.1 nclusions| 109
[/.2 Future work & Recommendations|. 112
[References! 115
|A Instruction comparison code| 117

CONTENTS

List of acronyms

AOP Aspect Oriented Programming
CCA Code-coverage analysis

CYC Cyclomatic complexity

ETL Epsilon Transformation Language
LCOM4 Lack of Cohesion Method version 4
LoC Lines of Code

MDE Model-Driven Engineering

NCLoC Non-Commenting Lines of Code

QVTo Query/View/Transformation Operational

Xi

Xll LIST OF ACRONYMS

Chapter 1

Introduction

This chapter contains the necessary background information, the research goal of
this thesis and how the thesis is organized.

1.1 Background

There are various methods and techniques for a developer to keep their code read-
able and reusable. Design patterns have become important in modern development
in order to realise this. There exists code, however, that you would not want in pro-
duction. An example of this would be code that is generated by instrumentation
tools. Tools might want to generate code to help create performance benchmarks or
to analyse the code-coverage of your test-cases. "Code instrumentation” is a term
commonly used to describe the task of adding such generated code. What we focus
on in this thesis is code-instrumentation for Java projects.

When a Java file is compiled, the compiler outputs a .class file with the low-level
instructions that the Java Virtual Machine can execute. Java code instrumentation
can be performed on the actual source-code (before compiling) or on the bytecode
itself (after compiling). Multiple frameworks that allow for Java bytecode instrumen-
tation. Some of these frameworks are a bit dated, but they all share the common
interest to allow for easy, fast and maintainable bytecode manipulation.

In Part[l|of our research we identify which tools perform bytecode instrumentation
and which instrumentation libraries are used for these tools. We also identify which
concepts are implemented by these tools and how they are implemented. We do this
in order to prepare for a larger research, namely Part [l which aims to validate the
usability and reusability of a new bytecode instrumentation tool that works through
model-driven engineering.

When working with model-driven engineering, there exists the concept of a model
and a meta-model. In the case of Mod-BEAM, the meta-model is a representation

1

2 CHAPTER 1. INTRODUCTION

of all possible Java code (from classes to instructions). The model would be an
actual class with fields, methods, instructions, etc. What Mod-BEAM does for us
is to transform the original Java .class file (containing the bytecode for the com-
piler) to the corresponding model that inherits the Java metamodel as defined by
Mod-BEAM. This newly generated model can then be transformed using a reusable
template through the use of a model-transformation language. This resulting model
can then, through Mod-BEAM, be converted back into an executable Java .class file.
Summarised, this means that we go from .class to .jbc (bytecode model), then from
Jjbc to a .jbc with additional instructions. Finally, we go from the modified .jbc back
to a .class file, which now has all the modified data in it.

Model-Driven Engineering (MDE) has the advantage that through a single meta-
model, any model that is represented by that metamodel can be transformed or
reused. This means that in our case, any Java class can be transformed into a
modified class through the use of a model-transformation. For a developer, this
would mean that model-transformation techniques such as mappings can be used,
where, for example, a code instruction of a specific type could always generate a
set of inserted followup instructions in a consistent pattern. Mod-BEAM can be seen
as complete back-end functionality, while a model-transformation has the concrete
implementation. Developers would not have to deal with issues that involve the
back-end, and should, in theory, be able to focus purely on creating the desired
result.

We hypothesize that through the use of Mod-BEAM, we can improve the reusabil-
ity or potentially simplify the original implementation of code-instrumentation for a
tool. This is because a model-transformation grants more freedom in what we can
do while working with a metamodel that is easier to understand than plain bytecode.

1.2 Research Goal

The objective of this assignment is to perform in-depth research on some of the
approaches identified in Part[] This includes an overview of the complexity of the
investigated concepts, an overview of the redundancy in the various concepts and
how they overlap, and a possible solution to exploit reuse to reduce redundancy
using Mod-BEAM.

The research will center around the creation of a library of model transforma-
tions that makes use of Mod-BEAM that reimplements some of the shared concepts
between investigated tools. This tool should serve as a reusable base and will be
compared with the original implementations using a set of criteria, such as the re-
usability of the implemented concepts in the tool, how usable the actual tool is in
terms of compile-time or run-time instrumentation and how hard it is to maintain and

1.3. REPORT ORGANIZATION 3

modify the tool.

The unique contributions of this thesis are: A re-implementation of the core in-
strumentation functionality of Cobertura and JaCoCo, a comparison between our
reimplementation as model-transformation and the original implementations, a look
at the reusability between our implementations and a discussion on a hypothetical
implementation of the weaving functionality of Aspectd.

1.3 Report organization

The contents of the report are organized as follows. Part[l contains the research that
was performed as part of Research Topics. This report serves as a base from which
we derive what we can possibly create in Part [l Chapter[2] describes which require-
ments and research questions are answered in this report. Chapter [3| contains a
set of criteria on how to measure our implementation, as well as a small study on
the advantages and disadvantages of various model-transformation languages. It
also provides an analysis of valid entry points for the implementation-phase of the
research. Chapter [4] contains information about the implementation, measurement,
test-data and reimplementation of the first tool, namely Cobertura. Chapter [5| pro-
ceeds by describing the data from the second implementation and reimplementation
of JaCoCo, along with details on the newly added reusability between the aforemen-
tioned tools. Chapter [g] then explains a hypothetical implementation of AspectJ.
Finally, Chapter [7] provides a conclusion, discussion and recommendation for future
work.

CHAPTER 1. INTRODUCTION

Part |

Problem Analysis

Research Topics
A Study on Code Instrumentation
Approaches

Research Topics | Final
Roman Wiedijk

Unwversity of Twente

July 18, 2019

Abstract

With an ever-increasing amount of development tools available for a Java developer, it
has become unclear just where and how code-instrumentation is being used. In this research
we identify the various approaches for which code-instrumentation is being performed and we
analyse how code-instrumentation has been implemented in various tools and frameworks. We
proceed by comparing various important, primitive concepts that these tools and frameworks
share, and we investigate the viability of an alternative framework that makes use of MDE in
order to implement code-instrumentation.

Contents
1 Introduction

2 Motivation

2.1 Problem & Goal
2.2 Quality considerations

3 Research Questions

3.1 Short-term e e e e e
3.1.1 Goal e
3.1.2 Product L e
3.1.3 Questions

3.2 Long-term
321 Goal e e
3.22 Product

4 Research Method

4.1 Methodology

4.2 Comparison criteria Lo

4.3 Proof of Concept

5 Results

5.1 Frameworks & Libraries
511 ASM . . o o e
51.2 BCEL e
5.1.3 Javassist e e e e e
514 ByteBuddy

5.2 Identified code-instrumentation approaches for the JVM

5.3 Profiling e
5.3.1 VisualVM oL
5.3.2 Montric e e e

5.4 Logging & Tracing e
5.4.1 BTrace e e
54.2 SLEF4J e

5.5 Code-coverage analysis
5.5.1 Clover e
5.5.2 Cobertura e e
5.5.3 JaCoCo e e

5.6 Aspect-oriented programmingo
5.6.1 Aspect]
5.6.2 Compose®
5.6.3 JASCo e e e

5.7 Other usages e
5.7.1 Hibernate ORM

5.8 Identified overlap

5.9 Suitability of MDE for code-instrumentation
6 Conclusion
7 Future Research

A Proof of Concept

(SN N

ENEEN BN e e i e ep R]

1 Introduction

This is the document for the course Research Topics of the University of Twente. This docu-
ment contains a research on code instrumentation. The goal of this research is to identify code-
instrumentation approaches, to identify actual implementations and to investigate overlap between
these implementations. More information about the motivation of this project can be found in
section 2. The report starts by explaining the motivation for this research in section 2, continued
by a listing of the necessary requirements (what data will need to be gathered) and the research
questions (which concrete questions can give results that fulfil all these requirements) in section
3. Section 4 then explains the methodology in which this research was performed. Section 5 give
an overview of the results that were created from this research. Section 6 draws a conclusion from
the aforementioned results, and section 7 explains how this research can be continued.

2 Motivation

Java is a popular programming language. Through the usage of JavaC, the Java compiler, Java
code can be transformed into native bytecode. This bytecode can then be interpreted and run
on the Java Virtual Machine (JVM). While programs grow more complex, people want to make
their lives easier by adding more automated functionality to their programs without modifying
the original source-code. Such actions might include profiling or the extension of code without
modifying the original classes.

Any form of applying metrics or additional information to code will require some form of
code instrumentation. Code instrumentation could be used in order to gather analytical data,
such as performance metrics (profiling). Profiling is something that is used in a lot of projects
nowadays and is something that can be considered mandatory for some projects. Profiling is often
implemented by adding instructions to the start and end of methods. As such, there are various
forms of profiling and also various implementations on the market. There also exist different ways
in which code instrumentation can be performed, such as source instrumentation where the source
code is directly instrumented, or byte-code instrumentation for which the generated .class files are
instrumented with additional code. Furthermore, code instrumentation can be performed either in
a static manner or in a dynamic manner. For static code instrumentation, the code or class files
are updated directly and stored on disk, while for dynamic code instrumentation the changes are
applied when the files are loaded by the JVM.

While code instrumentation is quite simply the supplementing of the native bytecode with
additional instrumentations, code transformation is to allow the (source-)code to be transformed
into something else entirely. An example of this would be the transformation of source-code into
Abstract Syntax Trees (AST). An AST might be easier to work with or to maintain, but might
also be more easy to interpret for tools that focus on analysis or code-coverage. An example would
be how Spoon! allows for its own form of transforming and analysing Java bytecode through the
usage of “processors”, an object type that is a combination of query and analysis code. Code
transformation is an example of an imperative way of transforming the original code, e.g. plain
Java into another format. Imperative means that the used code knows about the details of the
implementation, as opposed to a declarative mark-up.

A more complex action that can be performed on the source code would be something akin to
code extension. Code extension could be performed using, for example, Aspect Oriented Program-
ming (AOP). AOP allows for the usage of "aspects" which stand separate from actual class objects.
These aspects could allow for supplementing code with which you could implement programming
concerns that would normally fit into multiple classes or packages, such as security concerns or
logging functionality. These aspects can be "weaved" together into the bytecode of the application.
Weaving would be another example of code-transformation.

Model-Driven Engineering (MDE) is a fairly recent software development methodology trend.
Through the usage of a source metamodel (e.g. Java bytecode), a target metamodel (e.g. Java)
and a transformation syntax (e.g. Xtext). The distinction between an imperative and declara-
tive transformation becomes important at this point, as there exist transformation languages that
support either of those or a mixture of both. Both approaches have their own advantages, with a
declarative approach being more "strict" and often easier to analyze, while an imperative approach
gives more control on the sequence of the performed transformation. Models that fulfil the spec-
ifications of the source metamodel can be transformed into a model that fulfils the specifications
of the target metamodel. By making use of templates, re-usability of the transformation code can
be facilitated.

Thttp://spoon.gforge.inria.fr/

2.1 Problem & Goal

The "problem" for this research is that we have a new framework to with, called Mod-BEAM.
Mod-BEAM allows for code-instrumentation through the usage of MDE. A suspected issue with
existing code-instrumentation implementations is the lack of reusability, and the high amount of
implementations that are extremely similar to that in other tools. We want to see if this new tool
is viable to be used in order to increase reusability in existing approaches, but there exists no clear
overview of the current state of reusability for the tools that are already available. The goal of this
research is to identify and compare the various implementations of code instrumentation and code
transformation that make use of the Java Virtual Machine in order to create the aforementioned
overview.

In order to do this, we initially have to determine for which purposes code-instrumentation is
frequently used. Afterwards, we will need to define which tools make use of code instrumentation
and which libraries are used (if any). For the actual implementations, we can determine how it
works and which primitive concepts are defined. For each of these tools, we can determine which
parts of these primitive concepts are being used. If no external library is used, then that means
that the tool has its own implementation and thus its own set of primitive concepts.

Using this new-found information, we will be able to easily compare both the techniques used
in these implementations (e.g. what pattern, which technologies) and which primitive concepts
have been implemented. For each tool, we will be able to compare which specific concepts were
required in order to get the tool to work. Using a proof-of-concept, we will then be able to
identify if Mod-BEAM, the new model-driven approach, can be used to substitute for one of the
existing implementations / libraries as a valid alternative. As this is only a precursor to a larger
research, the focus will lie more on the identification and comparison, while the investigation on
the suitability of Mod-BEAM will be kept as a simple Proof of Concept.

2.2 Quality considerations

As research is performed on the various tools that implement code-instrumentation, various quality
aspects of the examined code can be taken into consideration. These quality aspects can serve to
identify which approach and which tools are easier to read, and therefore also most likely easier
to maintain. Quality aspects that are taken into consideration are: Lines of Code, Separation
of Concerns / Modularity and the general readability of the code. Besides this, it is possible to
identify whether the tool is able to perform the code-instrumentation at compile-time or during
runtime (e.g. through code hotswapping).

3 Research Questions

This section separates the concerns of the research into a set of requirements in order to create a
clear understanding of what needs to be done. These requirements should be an indicator for the
research questions. The requirements are split into short-term requirements for this research (R1-
R7), and long-term requirements for a more detailed research (R8-R13). These requirements are
then converted into actual research questions. Research questions exist as questions that should
cover all the requirements for the appropriate section. Long-term research questions are considered
to be future work, and are therefore not covered.

3.1 Short-term

The requirements that can be determined for the short-term (this research) can be separated into
a goal requirement (the end goal of this product) and product requirements (the specifics in order
to reach this goal). As such, each product requirement is part of the goal requirement.

3.1.1 Goal

R1 The research should create an overview of existing code instrumentation approaches and how
they conceptually work, describing overlap in the concepts of these approaches and comparing
them to Mod-BEAM. As result, the research should give a clear understanding of the current
state of code-instrumentation approaches.

3.1.2 Product

R2 The document should provide an overview of existing code instrumentation approaches

R3 The document should provide an overview of tools used for each code instrumentation ap-
proach

R4 The document should provide an overview of libraries used for each code instrumentation
tool

R5 The document should provide an overview of the primitive concepts that are implemented
by these tools & libraries

R6 The document should provide an overview of how these primitive concepts are implemented
by these tools & libraries

R7 The document should identify conceptual overlap in these varying implementations

R8 The document should provide insight of how MDE can be used in terms of code-instrumentation

3.1.3 Questions
The short-term research question to be answered is:

e Which approaches currently exist for code-instrumentation and how do they compare? (R1).
The following sub-questions can be answered in order to answer the main research question:

e Which code-instrumentation approaches and implementations exist for the JVM? (R2, R3,
R4)

e What technologies and primitive concepts are used in the aforementioned implementations?
(R5, R6)

e Is there overlap between these implemented concepts? (R7)

In which manner is model-driven engineering a suitable approach for code-instrumentation?
(R8)

This research question will provide leeway to the long-term research question: In which way is the
implementation of instrumentations as model transformation superior/inferior to the implementa-
tion as code transformation?

3.2
3.2.1
R9

3.2.2
R10

R11

R12

R13

R14

Long-term
Goal

The research should create an overview of existing code instrumentation approaches and
how they work in detail, describing overlap in the implementation of these approaches and
researching the viability of Mod-BEAM. As result, this study should give a clear under-
standing on existing approaches and implementations, with insight on the advantages and
disadvantages of each approach.

Product

The document should provide an overview on the complexity of existing code instrumentation
approaches

The document should provide an overview on the redundancy within each code instrumen-
tation approach

The document should provide an overview on the redundancy compared to other code in-
strumentation approaches

The document should provide possible solutions on resolving redundancy in code instrumen-
tation approaches

The document should identify if Mod-BEAM can be used to decrease redundancy in code
instrumentation approaches

4 Research Method

In order to answer the questions mentioned in section 3, we defined the research method described
in section 4.1. This section will explain how the research is performed and how the various identified
techniques are compared with one another.

4.1 Methodology

The main question is "Which approaches currently exist for code-instrumentation and how do they
compare?", and the various sub-questions are used in order to lead to an appropriate answer for
this question.

The first sub-question: "Which code-instrumentation approaches and implementations exist
for the JVM?" is used to determine the existing approaches that will need to be investigated.
This will be done by reviewing common approaches and usages of code-instrumentation. The first
question aims at identifying all code-instrumentation approaches in order to create a categorized
overview of existing approaches, so that actual tools and libraries can be investigated in the second
sub-question.

The second sub-question: "What technologies and primitive concepts are used in the afore-
mentioned implementations?" aims at identifying usages (tools) and concrete implementations
(libraries) in order to identify how the aforementioned approaches were implemented. This part
of the research can be performed by looking up instrumentation libraries and checking which tools
make use of these libraries, or by looking up tools that make use of some form of instrumentation
and then confirming how this instrumentation was implemented. The actual implementation will
be researched through the usage of available papers in combination with the original source-code
of the tool or library.

The third sub-question: "Is there overlap between these implemented concepts?" aims at de-
termining conceptual overlap between the various implementations and techniques. Important
to note is that the question is about the conceptual implementation (e.g. technologies used and
primitive concepts). This can be researched by mainly looking at the previously answered research
questions. More information about the actual comparison can be found in section 4.2.

The fourth and final sub-question: "In which manner is model-driven engineering a suitable
approach for code-instrumentation?" pertains to the suitability of model-driven engineering for
code-instrumentation approaches. This will be researched by creating a proof-of-concept that will
mimic a code-instrumentation approach or implementation using Mod-BEAM.

As a result of answering the various sub-questions, a conclusion can be formed. This conclusion
will then be the answer to the main question of this research.

4.2 Comparison criteria

In order to compare the various implementations of code instrumentation approaches as required
for the sub-question "Is there overlap between the