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Abstract

A method to filter private data from public data using generative adversarial networks
has been introduced in an article “Generative Adversarial Privacy” by Chong Huang et
al. in 2018 [1]. We attempt to reproduce their results, and build further upon their work
by introducing a new variant based on Wasserstein generative adversarial networks. For
certain classes of probability distributions, we prove theorems relating the 1-Wasserstein
distance to the amount of private data leaked, and provide counterexamples showing
that this relation is not trivial.
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1. Introduction

1.1. Motivation

In the digital age, privacy is becoming an increasingly important societal subject. Storage
has become cheap and companies want ever increasing amounts of data about citizens.
At the same time, societal awareness about the privacy impact thereof is increasing and
laws are getting stricter, for example the GDPR [2]. In order to strike a balance between
these conflicting interests, we need mathematical tools to optimize the usefulness of data
to companies while minimising the privacy impact of said data.

Not all data is created equal: people are picky about which information they’re willing
to share and which information they’re not. For example, many people talk about their
pets on Facebook, but far fewer talk about what medical issues they have. Different
levels of sensitiveness of information is also encoded in law: personal information has
stronger protection than non-personal information. Medical information frequently enjoys
particularly strong protections, such as with the HIPAA law [3].

An intuitive compromise could be “share unsensitive information, do not share sensitive
information”. However, this runs into a problem: seemingly not sensitive information may
correlate with sensitive information, and sharing such seemingly not sensitive information
may end up leaking sensitive information anyway.
As an example, consider table 1.1, which shows a fictive dataset that a hospital may

have on its patients. The hospital wants to share some of its demographic data with a
third party so it can do some helpful analysis. However, medical information such as the
disease a person has been diagnosed with is considered to be highly private and must not
be shared under any circumstance. As such, this information needs to be filtered before
it can be shared.

Simple and intuitive measures to improve privacy could be removing the patient’s name
and diagnosed disease from the dataset. However, this approach solution isn’t perfect.
First, there is identification risk: even if the patient’s name is removed from the table, a
third party may still be able to interfere it based on there being only one person matching

Name Gender Age Zip Code Disease

Alice Female 24 34290 Pneumonia
Bob Male 51 98343 Heart Disease
Carol Female 30 04943 Flu

Table 1.1.: A fictional example of patient information held by a hospital.
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the remaining data; e.g. there may be only a single person (Alice) who is female, 24 years
old and lives at zip code 34290.
The second risk, which we focus on in this thesis, is leakage of private information

due to correlation with public information. For example, some genders are more likely to
get some diseases, some diseases are more frequent in certain age ranges, and infectious
diseases may be more frequent in certain neighbourhoods. Although such correlation
does not entirely give away what the private information (the diagnosed disease) was,
it does allow an attacker to make a better guess about it. If an attacker can get their
hands on enough “public” information, he may end up being able to make a very good
guess at what the private information was.
To further prevent such correlation risk, the public information may be aggregated

or distorted. For example, the data could be aggregated to only contain the first three
digits of the zip code (342** instead of 34290) or a more general age range rather than a
exact age (20–29 instead of 24).

The last example of aggregating ages is most likely not a very effective filter however:
most diseases that correlate with age tend to correlate with age ranges, where it matters
whether somebody is in their 20s or 60s, but does not matter much whether they are 21
or 26. In this case, we lost some useful information while doing little to prevent leakage
of private information.

An effective filter should aggregate or distort the data in such a way that the utility of
the data is mostly preserved while significantly reducing the amount of private information
that is leaked. If the used filter isn’t effective, you may end up significantly reducing the
usefulness of your data while still leaking private information.
This raises the question of how to measure the effectiveness of a filter, and how to

construct an effective filter. Unfortunately, to know how effective a filter is, you need to
know the joint distribution between the public and private information. In the case of
high-dimensional data, this distribution may be difficult to discover.

1.2. Generative adversarial networks

Machine learning is known to be useful for understanding high dimensional datasets. In
particular, “Generative Adversarial Networks” [4] (GANs), were designed to be able to
learn a complex distribution and then sample from them. They have often been applied
to images, for example to learn the distribution of images of human faces, and then
proceed to generate new images of human faces.

Generating images is a popular application of GANs. This is partially because it is an
nice problem that generates sensational results, but also because GANs are relatively
good at working with images. All machine learning methods need to trained on some
data, but GANs in particular are very difficult to train [5][6], even with lots of data.

The GAN describes a framework that requires two neural networks (called the “gener-
ator” and “discriminator”); the architecture of those artificial neural networks is up to
the user. GANs whose internal neural network have a deep convolutional architecture
are called “Deep Convolutional Generative Adversarial Networks” [6] (DCGANs). Such
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GANs have in practice turned out to be much easier to train than ordinary GANs whose
internal networks do not have a convolutional architecture.
The disadvantage of DCGANs is that the dataset needs to have a structure suitable

for convolutional networks. Images are a prime example of data that is suitable for
convolutional networks, but many other kinds of data aren’t.
A more recent invention known as the “Wasserstein GAN” [5] (WGAN) attempts to

solve this by replacing the discriminator network with something else, called a “critic”
network. Wasserstein GANs are considered to be easier to train than traditional GANs
[7][8][9], and more importantly, they work with a far wider variety of neural network
architectures, not just convolutional ones. Further research has discovered variants that
improve Wasserstein GANs even further. The most notable one is the “Wasserstein GAN
with Gradient Penalty” [10] (WGAN-GP), which is frequently considered to be better
than the original Wasserstein GANs.

1.2.1. GANs for privacy

Although generative adversarial networks are meant to learn distributions, they unfor-
tunately only learn distributions in the sense of “can sample new points from it”; they
are unable to tell you much about the structure of the distribution such as “what is the
likelihood of this sample being generated?”. As such, even if a generative adversarial
network learns the joint distribution, it is not of much use for classical methods of
constructing privacy filters.

The article [1] proposes a method they call “generative adversarial privacy” wherein a
variant of a generative adversarial network is used: rather than learning the probability
distribution, their method directly tries to find an optimal privacy filter, and simulta-
neously includes a method to estimate how effective said filter is. Similar approaches
can be found in [11] and [12]. Most of this thesis builds further on the work of [1]; we
have attempted to reproduce their results, and explored a possible new variant of their
techniques.

The method proposed by [1] is a variant of a traditional GAN that replaces the generator
network with something different which they call a “privatiser”. They also rename the
discriminator network to “adversary”, but it’s function doesn’t change. The privatiser
is responsible for finding an optimal privacy filter, and the adversary is responsible for
estimating the amount of information leaked in terms of the cross entropy [1], optimising
the cross entropy is equivalent to optimising the amount of leaked mutual information.
In this thesis, we consider whether we can modify the approach taken by [1] to use

a Wasserstein GAN as basis instead of a traditional GAN, in order to benefit from the
usual advantages that a Wasserstein GAN has and significantly improve performance on
datasets that are not suitable for convolutional networks.

The biggest problem is that a Wasserstein GAN would require the discriminator-based
adversary with a critic-based adversary, and after doing so, it will measure the amount
of leaked information in a unconventional metric based on the 1-Wasserstein distance
rather than traditional units like cross entropy or mutual information.
This calls forth the question of whether we can be sure that our Wasserstein GAN
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variant is still performing properly. We investigated whether there are bounds on the
amount of leaked information in terms of the 1-Wasserstein distance, and the general
answer is no. However, we have proved that under certain additional conditions, it does
become possible to bound the leaked information by the 1-Wasserstein distance, which is
the main topic of our research.

1.3. Our contributions

In this thesis, we bring the following scientific contributions:

• We have tried to reproduce the results claimed by [1]. Although we conclude that
the principle of their approach works, the results we reproduced are somewhat less
spectacular than the results originally claimed;

• We introduce a new variant of [1]’s generative adversarial privacy networks which
we call Wasserstein generative adversarial privacy networks;

• We prove theorems that relate the 1-Wasserstein distance between two distributions
of certain classes to the amount of leaked information, giving theoretical justification
for our proposed Wasserstein generative adversarial privacy networks;

• We give some counterexamples demonstrating that in general there is no direct
relation between 1-Wasserstein distance and leaked information, justifying why our
theorems put requirements on the classes of distributions to which they apply.

1.3.1. Structure of this thesis

In Chapter 2 we will talk about the generative adversarial privacy networks as introduced
by [1] and attempt to reproduce their results. Then in Chapter 3 we will introduce Wasser-
stein GANs and use them to construct our own variant called Wasserstein genenerative
adversarial privacy networks, and state theorems relating the performance of our variant
to the amount of private information leaked in terms of mutual information, or more
genenerally, f -information. Then in Chapter 4 we will talk about the practical relevance
of our theorems and propose some avenues for future research.
In the appendices, we have put the details of our reproduction of [1]’s results, the

proofs of the main theorems, and some counterexamples motivating the theorems.
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2. Privacy networks

In this chapter, we will introduce generative adversarial networks [4] and how they can
be adapted for privacy networks [1]. Thereafter, we will write about our outcome of
attempting to reproduce [1]’s original results, where we conclude that the method works
in principle, but our reproduced results are somewhat less spectacular than original
result’s impression.

2.1. Generative adversarial networks

Generative adversarial networks were introduced by [4] as a framework to generate
samples from a complex distribution. As an example of a complex distribution, let us
imagine R16×16 as the space of all 16×16 grayscale images, and a probability distribution
H on R16×16 representing the distribution of 16× 16 grayscale images of human faces one
might encounter. The distribution H would assign a relatively high probability to images
that represent normal human faces, low probability to images that represent uncommon
faces (e.g. scarred ones), and zero probability to images that do not resemble human
faces at all.
We assume that we do not know what the distribution H exactly looks like, but we

are able to sample points from H, for example by scraping images off the internet or by
taking photos of humans. We then want to try to fit the H into some distribution that
can be sampled from with nothing but computational resources. A traditional statistical
approach would be assuming H lies in parametrisable family of distributions, and then
finding the parameters which are most likely to regenerate the samples. Traditional
families of distributions like Gaussian distributions parametrised by their covariance
matrices are clearly not complex enough to be able to realistically generate human faces.

2.1.1. Generators

In the generative neural network framework, a new parametrisable family of probability
distributions is introduced: the family of all distributions that can be realised as the
projection of Gaussian noise under a neural network.
For example, a “generator” network could be a neural network Gω : R100 → R16×16

that takes as input a vector of Gaussian noise (in this case a 100-dimensional vector),
processes it through several layers with weights and biases determined by ω, and outputs
a grayscale image in R16. If N is a random variable representing a Gaussian noise vector
in R100, then Gω(N) is a random variable on the space of grayscale images R16×16, which
introduces a probability distribution PGω(N). The family of distributions is parametrised
by ω.
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For a given value of ω, we can sample from the distribution PGω(N) by first sampling
Gaussian noise N and then computing Gω(N). Using the maximum likelihood method,
we should now look for the ω for which PGω(N) is the most likely distribution to generate
our samples from H. Unfortunately, although we have a computationally efficient way to
sample from PGω(N), we do not have a way to compute the likelihood of PGω(N) generating
certain samples.

2.1.2. Discriminators

Instead of traditional methods like maximum likelihood estimation, the generative
adversarial network framework introduces a new method: adding a second network called
the discriminator. The discriminator is a network which takes as input a sample in R16×16

and outputs a guess on whether the sample was generated by H (real) or Gω(N) (fake).
When the discriminator Dψ is well trained, it becomes possible to judge the quality of

the output of the generator by computing Dψ(Gω(N)): if the output looks real according
to the discriminator, then the generator is performing well; if the output looks fake
according to the discriminator, the generator performs badly.

Using stochastic gradient descent, the parameters ω and ψ can be tuned: the parameter
ψ is to be tuned to make the discriminator better at distinguishing real from fake
examples, and the parameter ω is to be tuned to make the generator better fool the
discriminator.

2.2. Privacy GANs

The preceding GAN scheme was intended as a method to generate new samples from
a learned distribution. The goal of privacy networks is different: privacy networks try
to create a new kind of distribution from an existing one. The architecture of privacy
networks as introduced by [1] is pretty similar however.

We first repurpose the discriminator: instead of a network that tries to say whether a
datapoint is real or fake, we use a network that tries to guess the private information
from a datapoint of public information. Next, instead of generating new datapoints out
of nothing, we make the generator modify real datapoints to make it difficult for the
discriminator to guess the private information.

2.2.1. Notation

We will now establish the a notational framework, similar to the one used by [1]. We
denote the public information that we want to share with the random variable X ∈ X
where X is some metric space, and the private information that we don’t want to share
with Y ∈ Y. We also define a random variable N ∈ N representing some random noise,
for example N could be a standard Gaussian in Rk.

We denote the privatiser with a function Gω : X ×Y ×N → X and the adversary with
a function Dψ : X → Y.
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The privatiser is a function that takes as input the public and private information
X,Y , and gives a possibly random output. The noise N allows the privatiser to produce
random output, which is important to prevent Gω from being a deterministic and possibly
reversible mapping. We use the random variable Z to denote the output of the privatiser:
Z = Gω(X,Y,N).
The discriminator, also called adversary, is supposed to take as input the output of

the generator, and output its best guess of what Y was. We denote this guess with
Ŷ = Dψ(Z) = Dψ(Gω(X,Y,N)). We further assume that there is a loss function

ℓ : Y × Y → R, such that ℓ(Y, Ŷ ) determines how good the guess Ŷ was. The goal of
the adversary is to maximize the mutual information between Ŷ and Y . The goal of the
adversary is to minimize the loss ℓ(Y, Ŷ ).
Note that we did make some arbitrary choices in the spaces we defined. For example,

we decided that the output of the privatiser has to lie in the same space as the public
information, and that the adversary has to guess a value of the private information. This
is not strictly necessary: it would be possible for the privatiser to output something in
a different space X ′ as long as we have some means to estimate the distance between
elements of X and X ′, and similarly the adversary could output something in a different
space Y ′ as long as we can define a loss function ℓ between Y and Y ′.

However, such spaces X and Y would have to be chosen manually, as the privacy GAN
method does not have a system to learn the best spaces X ′ and Y ′. As such, we do for
simplicity assume that X ′ = X and Y ′ = Y.
Although the above theoretical framework is quite general, in this thesis we tend to

look at a more restricted subset. In particular, we usually assume that Gω and Dψ are
neural networks and X and Y are Euclidean vector spaces.

2.2.2. Cross entropy

In machine learning classification tasks, a popular loss function is the cross-entropy loss.
The cross-entropy loss is applicable on classification tasks with a finite amount of classes.

Assume that there are n classes and each entry corresponds to one of those classes. The
classifier (the adversary in our case) should take as input a datapoint entry and guess to
which class it belongs. The cross entropy loss expects the output of the classifier to be a
set of n neurons, each with an activation in the interval [0, 1] and the total activation
summing up to 1. An example of an activation function which accomplishes this goal is
the softmax activation function; assuming the output neurons have a raw input of xi for
neuron i ∈ {1, . . . , n}, then the activation ai of neuron i can be computed as:

ai =
exi∑︁n
j=1 e

xi
.

With the softmax activation function, the activation of each neuron i is usually
interpreted as the probability that the input belongs to class i according to the classifier.

Assume the correct class is labelled using a one-hot vector (qi)i∈{0,...,n} such that qi = 1
if the input belongs to class i and qi = 0 otherwise, and the classifier activates the output
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neurons with activation ai ∈ [0, 1] for i = 1, . . . , n, then the cross-entropy loss can be
computed as:

ℓ(a, q) = −
n∑︂
i=1

qi ln ai.

One good property of the cross-entropy loss is that when the cross-entropy loss is used
for the adversary, the privatiser’s goal of maximizing the adversary’s loss is equivalent to
minimizing the amount of mutual information between Y and Z [1].

2.2.3. Distance versus leaked information trade-off

In a classical GAN, the loss for the generator would be minus the loss of the discriminator:
the worse the discriminator performs, the better the generator works and vice versa. If
the adversary uses the cross-entropy loss, then the task of optimally fooling the adversary
is equivalent to minimising the mutual information between Y and Z [1]. For a privatiser
network, fooling the adversary is however not the only goal: it also needs to retain useful
information in its output. After all, if there is no requirement for the privatiser to retain
useful information, it may as well output the zero vector for any input, guaranteeing that
the adversary won’t be able to deduce anything.

This raises the question: how do we make sure useful information is retained? Ideally
we’d have a function X ×X → R that tells us how much useful information was retained
or lost. The article [11] proposes to use another neural network for this purpose. However,
in this thesis we are not going to focus on how such a function can be chosen; instead we
assume that X is a metric space with metric d : X × X → R and we want a bound on
the average distance E[d(X,Z)] between the public information and its filtered version.
Given that we want to minimize two different variables, the leaked information and

the distortion, there are several different optimization problems that may be constructed:

1. Minimize the leaked information constrained by an upper bound on E[d(X,Z)];

2. Minimize E[d(X,Z)] constrained by an upper bound on the leaked information;

3. Minimize some linear combination of the leaked information and E[d(X,Z)].

In order for the adversary’s loss to be a viable estimate of the leaked information in
terms of cross entropy, it is important that the adversary is well trained, which is requires
having the privatiser constantly trying to maximise the adversary’s loss. As such, option
2 may not be a good choice in this framework.

That leaves us with option 1 and 3. Option 3 is the easiest one to implement: it
can be achieved by letting the privatiser’s loss function be a linear combination of the
adversary’s loss and d(X,Z). The disadvantage is that it requires you to decide how
important average distance is compared to leaked information in terms of cross entropy;
choosing a bad factor may lead to one of those two statistics getting neglected in favour of
the other. Furthermore, leaked cross entropy may be a bit difficult to intuitively interpret,
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Image (256)

Noise (100)

Dense (256) Dense (256) Dense (256) Dense (256)

Input Output

Figure 2.1.: A graph of the FFNP privatiser. The number in the parentheses is the
amount of neurons in that layer.

Image (16× 16× 1)

Noise (100) Linear (4× 4× 256)

Input

Output

T.Conv (8× 8× 128) T.Conv (16× 16× 1)

Figure 2.2.: A graph of the TCNNP privatiser. Processes Gaussian noise through a linear
projection and two transposed convolutional layers.

even more so if we change the adversary’s loss from “cross entropy” to “1-Wasserstein”
distance as we will do later.
Option 1 is the one that was taken by [1]. It can be accomplished by adding a noise

penalty to the privatiser whenever the distance between X and Z goes over a certain
threshold:

privatiser loss = −adversary loss + ρ ·max(0, d(X,Z)− α).

In this formula, α and ρ are respectively a constant that decides how much distance
between X and Z is acceptable, and a constant that decides how much loss is added
when d(X,Z) goes over that threshold. It may be desirable to increase the value of ρ as
training goes on.

2.3. Reproducing the original results

We have attempted to reproduce the results from the original article [1]. The article
describes two privatiser architecture used, which they call “FFNP” and “TCNNP”, an
adversary they used, a dataset used, and results they achieved.

Output

Image (16× 16× 1) Conv (16× 16× 32) Pool (8× 8× 32) Conv (8× 8× 64)

Pool (4× 4× 64)Dense (1024)Dense (1024)Dense (2)

Input

Figure 2.3.: A graph of the adversary. Processes a privatised image through convolutional,
maxpool, and fully connected layers to guess whether the subject is male or
female.
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Privatiser Distortion (target) Distortion (real) Adv. accuracy (test) Adv. accuracy (training)

FFNP 0.004 0.0037 0.83 1.00
FFNP 0.008 0.0067 0.74 0.96
FFNP 0.012 0.011 0.60 0.86
FFNP 0.016 0.014 0.55 0.72
FFNP 0.020 0.016 0.55 0.64

TCNNP 0.004 0.00095 0.85 1.00
TCNNP 0.008 0.0071 0.81 0.99
TCNNP 0.012 0.0062 0.78 0.99
TCNNP 0.016 0.013 0.77 0.98
TCNNP 0.020 0.016 0.76 0.97

Table 2.1.: A table of the results of networks trained for 5,000 epochs with varying
privatisers and allowed distortions. The allowed distortion is the mean square
distortion per pixel the network is allowed to make on the training set
before additional loss is assigned. The real distortion is the measured average
amount of distortion the network added to the testset. The adversary accuracy
indicates the probability the adversary correctly identifies the gender of a
person, measured both on the training set and the testset.

The FFNP (Figure 2.1) is a network that takes the image and some random noise
as input and processes them through four fully connected layers to give a privatized
image as output. The TCNNP (Figure 2.2) is a network that takes random noise as
input, processes it through transposed convolutional layers, and generates noise as output.
The output noise of the TCNNP is then added to the image to form a privatised image.
Both of them use the same adversary (Figure 2.3), which is a network that contains
convolutional, maxpool and fully connected layers.

We tried reimplementing their networks as faithfully as possible, and training it on the
same dataset. There were unfortunately a few unclear points in the architecture they
described, for which we tried to make sensible assumptions. More about the assumptions
we needed to make, along with our opinion about the network’s design, can be read in
Appendix A.

We have measured the adversary’s performance on both the trainingset and the testset.
The testset of 200 images is quite small, creating a significant amount of variance in
the estimate of the adversary’s accuracy. To get a better estimate, we have computed
the adversary’s accuracy by testing it on the testset for 1,000 epochs, which is sensible
because the privatiser is stochastic: it will generate different outputs even when fed the
same image multiple times. The results on the training set were computed as decaying
averages of the adversary’s performance while training.
The results have been written in Table 2.1. Things that we can immediately see is

that the TCNNP privatiser is less effective than the FFNP privatiser, all networks are
able to stay within their allowed distortion quota’s, higher distortion quota’s reduce the
adversary’s performance, and the adversary performs much better on the training set
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(a) The results claimed by the original article [1].
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Figure 2.4.: A graph of the accuracy of the adversary compared to the target allowed
distortion per pixel, using either a FFNP or a TCNNP privatiser. Our
adversary’s accuracy has been measured both on the testset and the training
set, it is unclear on which the original results were measured.

than on the testset.
Although our results agree with the original article that the adversary’s performance

can become pretty low with enough allowed distortion, the curve in our experiments
isn’t as spectacular as the one claimed by the original article. First of all, we had to
interpret “distortion per pixel” as “mean square distortion per pixel”, which is not the
most intuitive interpretation. Even after interpreting distortion that way, our adversary
still performs better on both the training set and the testset than in the original article,
which indicates that the privatiser may be less efficient than the original article indicates.

2.3.1. Distance Measure

The original article’s results use an undefined term “distortion per pixel” to measure how
different the original and filtered images are allowed to be. An intuitive interpretation
may be: represent every image as a vector of grayscale brightness values between zero
and one, then compute the average of the absolute difference in brightness values across
all pixels.

This turns out to not be the article’s authors’ interpretation: their result claim that with
a mere distortion of 0.008 per pixel, they can get the adversary’s accuracy down to about
55%. If we imagine brightness as a value between 0–255, then a uniform distortion of 2 per
pixel is barely visible to the human eye. If such a small distortion can completely throw off
an adversary, then the adversary is probably performing poorly. In our experiments using
this interpretation, the adversary would stay 83% accurate even with 0.020 distortion
per pixel.
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We then tried to reinterpret “distortion per pixel” as “mean square error”, or the
average of the squared distance in brightness per pixel. When taking this interpretation,
our results lined up closer to the original results claimed by the article.

2.3.2. Adversary performance

We have noticed that the adversary performs significantly better on the training dataset
than on the testset. This means that the adversary is overfitting, which is very likely to
happen with a small training set of 1740 entries.

Since the adversary may be significantly underperforming on the testset, we’d question
the reliability of the figures we obtained on the testset. Unlike most other neural networks
you train, in the adversary’s case it’s better to overestimate its performance than to
underestimate it, so we may unorthodoxly want to measure the adversary’s performance
on the training set instead of the testset.
However, even then there is an issue: the privatiser is most likely overperforming on

the training set as well, and will perform significantly worse on the testset; we just don’t
notice the difference between the performance on the training set and testset because
the adversary performs even worse on the testset. We have measured “adversary with
training set performance against privatiser with trainingset performance”, but it may
be possible that “adversary with trainingset performance against privatiser with testset
performance” performs even better.

This means that even the adversary’s performance statistics on the training set do not
give an upper bound on how well the adversary might perform worst-case, or how much
information we’re actually leaking. This calls into question the credibility of these figures.
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3. Wasserstein generative adversarial
privacy networks

In this chapter, we introduce our own variant of the generative adversarial privacy
networks from the last chapter. We will first explain the Wasserstein GAN [5] and then
use it to construct our own variant which we call Wasserstein generative adversarial
privacy networks. We will then talk about the difficulties of comparing the performance of
the Wasserstein generative adversarial privacy network to classical privacy metrics such
as mutual information. We then introduce theorems that under certain circumstances
do guarantee a relation between 1-Wasserstein distance and mutual-information or
f -information. Finally, we talk about how to satisfy some of the theorem’s requirements.

3.1. The 1-Wasserstein distance

The 1-Wasserstein distance is a metric between probability distributions. It is defined
using the transport-theoretic notion of an optimal transport plan. Specifically, assume
we have two random variables A and B on some shared metric space X with probability
distributions respectively PA and PB, then the 1-Wasserstein distance dW (PA,PB) is
defined as

dW (PA,PB) = inf
(X,Y )∈Π(A,B)

E [||X − Y ||] ,

where Π(A,B) is the set of all jointly distributed random variables whose marginal
distributions are equal to those of A and B. Intuitively, this can be thought of as a
transport problem where the probability mass of PA needs to be optimally transported
to the probability mass of PB, and the cost of transporting mass is the amount of mass
to be transported times the distance it must be transported over. The 1-Wasserstein
distance between two random variables is the cost of the optimal transport plan.
The 1-Wasserstein distance can alternatively be computed using the Kantorovich-

Rubinstein duality [13], which states that the 1-Wasserstein distance between two proba-
bility distributions on a compact space X is equal to

dW (PA,PB) = sup
f :X→R

f 1-Lipschitz continuous

Ex∼PA [f(x)]− Ex∼PB [f(x)].

3.2. The Wasserstein GAN

Remember how generative adversarial networks were introduced as a method to learn a
distribution Gω(N) that is similar to an unknown distribution H from which we have
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samples. The classical approach is to create a discriminator Dψ which guesses for each
sample how likely it was to have been generated by Gω(N) or H.

The Wasserstein GAN is a more recent variant of the classical GAN introduced by [5].
In a Wasserstein GAN, the goal of the discriminator is no longer to find the likelihood
that a single sample was generated by one distribution or another, but rather to estimate
the “distance” between the two distributions. In particular, the 1-Wasserstein distance,
also known as the earth mover distance, is used.

When using the Kantorovich-Rubenstein duality to compute the 1-Wasserstein distance
as the supremum over 1-Lipschitz-continuous functions f , the optimal function f can be
approximated using a neural network; this is the main idea behind the Wasserstein GAN:
we require the discriminator (now renamed “critic”) Dψ to be a Lipschitz-continuous
function, and then compute the loss as

critic loss = −E[Dψ(H)−Dψ(Gω(N))],

generator loss = E[Dψ(H)−Dψ(Gω(N))].

When the critic works optimally, the loss should be equal to a factor of the 1-Wasserstein
distance between H (real) and Gω(N) (fake), said factor depending on the Lipschitz
constant of Dψ. The critic is trained to become better at estimating the 1-Wasserstein
between the real and fake samples, and the generator is trained to minimise the 1-
Wasserstein distance between real and fake samples. The way to enforce Dψ to be
Lipschitz continuous varies between the original version of the Wasserstein GAN [5] and
the derivatives like the WGAN-GP [10], and can include techniques such as constraining
the weights of the neural networks or adding a loss penalty if the Lipschitz constraint is
violated.

Besides being feasible to compute thanks to the Kantorovich-Rubenstein duality,
the 1-Wasserstein metric is useful because it can give a meaningful distance between
any two distributions. Other conventional distance measures distance measures such as
the Kullback-Leibler divergence [14] or total variation distance will quickly assign an
complete dissimilarity between PA and PB when the support of those distributions is
disjoint. The 1-Wasserstein distance on the other hand may still assign a low distance
between distributions with disjoint supports provided those supports lie close to each
other. When used in combination with stochastic gradient descent, the 1-Wasserstein
metric dW will tell us in which direction the supports need to move to further reduce
their distance.
Importantly, when the critic works well but the generator doesn’t, the critic can still

backpropagate sensible gradients, unlike a traditional discriminator which might take
values of approximately “0” and “1” at the entire supports of Gω(N) and H. This means
that there is no problem with overtraining an critic, removing one of the big causes of
training instability in traditional GANs.
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X,Y Privatiser Z Adversary Ỹ

Figure 3.1.: A computation scheme of how an ordinary privatiser GAN as used by [1].

X,Y | Y = 0

Adversary Ỹ

X, Y | Y = 1

Z | Y = 0

Z | Y = 1

Privatiser

Figure 3.2.: The distribution of the output of the decomposed into two seperate distribu-
tions, seperated on basis of what the underlying private variable was.

3.3. The Wasserstein generative adversarial privacy networks

In a classical Wasserstein GAN, the loss of the adversary approximates the 1-Wasserstein
distance between the distribution of real samples and the distribution of fake samples. In
the context of privacy networks, there are no “real” or “fake” samples, as all samples are
distorted versions of real information.
However, when the private information is binary, for example trying to distinguish

between pictures of male human faces and female human faces, the adversary’s task still
reduces to trying to trying to differentiate between two different distributions, in this
particular case the distribution of all privatised images of male faces and the distribution
of all privatised images of female faces.

Let us use some formal notation now. Let the random variable Y represent the private
variable and be Bernouilli distributed, so either Y = 0 or Y = 1. Entries of public
information X sampled from the dataset follow a certain distribution PX . We can split
the dataset into two subsets: one subset containing all entries where Y = 0 and another
subset containing all entries where Y = 1. The joint distribution of public information is
a combination of the distributions of the subsets:

PX = P(Y = 0) · PX|Y=0 + P(Y = 1) · PX|Y=1.

Let the random variable Z be the output of the privatiser. Likewise, Z follows a
distribution PZ , which can be decomposed into the distribution of the output of the
privatiser when given an input with Y = 0 and the distribution of the output of the
privatiser when given an input with Y = 1:

PZ = P(Y = 0) · PZ|Y=0 + P(Y = 1) · PZ|Y=1.

In the original approach by [1], the adversary would now get as input a sample of Z
and be tasked with guessing Ỹ . Assuming the adversary works optimally, information
about the mutual information between X and Y could be estimated on basis of how well
the adversary was able to guess Y . In our approach, instead of asking the adversary to
estimate Y , we ask it to estimate the 1-Wasserstein distance between the two distributions
PZ|Y=0 and PZ|Y=1.
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Figure 3.3.: The graphs of the a series of probability density functions whose associated
random variables converge to the uniform distribution on [0, 1].

The general idea is that if we can train the privatiser to generate output distributions
such that PZ|Y=0 = PZ|Y=1, then Z would be independent of Y and we would achieve
perfect privacy. However, in practice it we won’t be able to achieve those constraints
using artificial neural networks, so instead we have to settle for “the distance between
PZ|Y=0 and PZ|Y=0 is very small.” We will prove that under sufficient conditions, the
leaked information about Y converges to zero if the 1-Wasserstein distance between
PZ|Y=0 and PZ|Y=1 converges to zero.

3.4. Wasserstein distance versus leaked information

This approach does call forth the question: Z | Y = 1 is very close to Z | Y = 0 in terms
of the 1-Wasserstein distance, does that give us any guarantees on how difficult it is to
estimate the private information given samples of privatised information? As we noted,
the 1-Wasserstein distance can assign small distances between distributions with disjoint
supports. This may be useful for training networks, but may on the other hand prevent
it from being an useful privacy metric.
Unfortunately, it turns out there is no direct connection between the Wasserstein

distance between two distributions and the amount of information leaked. We will
give a counterexample with a series of random variables whose 1-Wasserstein distance
becomes arbitrarily small, but nevertheless leak constant amounts of information, and
then investigate what further assumptions we need to make to get guarantees on the
leaked information in terms of 1-Wasserstein distance.

3.4.1. Counterexample

Let (Zn | Y = 1)n∈N be uniform on the interval [0, 1] for all n ∈ N and let the random
variables (Zn | Y = 0)n∈N have the density functions

fn(x) =

{︃
2 if x ∈ [0, 1] and ⌊2nx⌋ ≡ 0 mod 2,
0 otherwise.

where ⌊·⌋ denotes the floor function.
The first four functions of this series have been drawn in Figure 3.3. The random

variables Zn | Y = 0 converge in 1-Wasserstein distance to the uniform distribution
on [0, 1]. To see this, remember that the 1-Wasserstein distance between two random
variables can be visualised as the cost of the optimal transport plan that turns the
probability mass of one random variable into the other.
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Figure 3.4.: To turn Fn into the uniform distribution, the red probability mass surplus
mass must be transported to the blue probability mass deficit. The “cost” of
this transport plan is the 1-Wasserstein distance.

One example of a transport plan that turns Zn | Y = 0 into a uniform distribution
has been drawn in figure 3.4. Note that exactly half of the probability mass is already in
the right spot and doesn’t need to be moved, whereas the other half of the probability
mass needs to be transported over distance 2−n. The amount of mass that needs to be
transported stays constant, but the distance it needs to be transported over approaches
zero as n→ ∞.

As such, the cost of the transport plan approaches zero as n→ ∞ and the 1-Wasserstein
distance between Zn | Y = 0 and the uniform distribution approach zero, which happens
to be Zn | Y = 1. Hence the 1-Wasserstein distance between the random variables
Zn | Y = 0 and Zn | Y = 0 converges to zero as n→ ∞.
It is however obvious that the density functions fn do not converge pointwisely or

uniformly to 1[0,1] at all, and moreover for any given n it is easy to see that information
leaks: suppose a sample of Zn lies outside the support of Zn | Y = 0 (which happens
with probability 1

4 if Y is Bernouilli(12)-distributed) then we are guaranteed that Y = 1,
whereas if the sample of Zn lies in the support of Zn | Y = 0 then there is a 2

3 chance
that Y = 0.
We see that merely having a tiny 1-Wasserstein distance between Z | Y = 0 and

Z | Y = 1 is not sufficient to guarantee that Z leaks no information about Y .

3.4.2. Gaussian noise

In the previous example, we managed to get the 1-Wasserstein distance arbitrarily small
by rapidly alternating source and sink areas to reduce the distance over which mass had
to be moved without reducing the density of the mass.

Inspired by how [1] proposed to achieve privacy by adding Gaussian noise to the output,
we noticed that an counterexample like Figure 3.3 would be infeasible if we required a
constant amount of Gaussian noise to be added to all Zn: it would smooth the probability
density over a certain area making rapid alternations in probability density impossible.
You may wonder whether adding Gaussian noise to Z is enough to guarantee some

continuity of the leaked information in terms of the 1-Wasserstein distance. This is indeed
still an open question.
Adding Gaussian noise to a random variable does guarantee that the result is con-

tinuously distributed with a Lipschitz-continuous probability density function (proof in
Section 3.7). If the output of the privatiser’s neural network is Z ′, then we can define
Z = Z ′ + n and consider Z to be the actual output of the privatiser. Assuming that
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the output of the privatiser is continuously distributed with a Lipschitz continuous
probability density function, then we can, under a few more conditions, achieve bounds
on the amount of leaked information in terms of the 1-Wasserstein distance, as we will
prove in Section 3.6.

3.5. Intermezzo: f-information

So far, we’ve been talking about leaked information in terms of mutual information, but
there is a more general kind of information called f -information, which we will use in the
formulations of the main theorems.

Remember that mutual information between random variables P and Q is is equal to
the KL-divergence between the jointly distributed variable (P,Q) and an independently
distributed random variable (P ∗, Q∗) where the marginal distributions of P ∗ and Q∗ are
equal to those of P and Q. The KL-divergence between two random variables P and Q
can be computed as

DKL(P ||Q) =

∫︂
ln

(︃
dP

dQ

)︃
dP,

where dP/dQ refers to the Radon-Nikodym derivative of P with respect to Q. For a
convex function f : (0,∞) → R with f(1) = 0, the f -divergence is defined as

Df (P ||Q) =

∫︂
f

(︃
dP

dQ

)︃
dQ.

If both P and Q are absolutely continuous with respect to some σ-finite measure µ, then
this can alternatively be computed as

Df (P ||Q) =

∫︂
dQ

dµ
f

(︃
dP/dµ

dQ/dµ

)︃
dµ,

where the integrand is appropriately specified at the points where the densities dP/dµ
and/or dQ/dµ are zero [15].
In particular, for the function f(t) = t ln t, this is equivalent to the KL-divergence

[15]. The f -information is to f -divergence as mutual information is to KL-divergence:
the f -information between P and Q is defined as the f -divergence between the joint
distribution (P,Q) and the product of their marginal distributions. In particular, for
f(t) = t ln t, the f -information is equal to the mutual information.

3.6. Main results

We have managed to prove absolute continuity of the leaked information with respect to
the 1-Wasserstein distance. In particular, if we have a series of random variables (Zn)n∈N
which satisfy the following properties:
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• The distributions of Zn | Y = 0 and Zn | Y = 1 are continuous, and their probability
density functions are Lipschitz continuous;

• The probability measures of the distributions of Zn | Y = 0 and Zn | Y = 1 are
tight;

• The 1-Wasserstein distance between the distributions of Zn | Y = 0 and Zn | Y = 1
converges to zero as n→ ∞.

Then the leaked information, i.e. the mutual information between Zn and Y , converges
to zero as n → ∞. In fact, we’ve managed to prove a slightly stronger claim: the
f -information between Zn and Y converges to zero as n→ ∞.

Formally, we’ve stated our theorems in two steps:

Theorem 1. Let (An)n∈N and (Bn)n∈N be series of random variables on Rk with con-
tinuous probability distributions, whose probability density functions an, bn : Rk → R are
L-Lipschitz continuous. If An converges to Bn under the 1-Wasserstein metric dW , i.e.
limn→∞ dW (An, Bn) = 0, then the probability densities an converge uniformly to bn as
n→ ∞, i.e. limn→∞ ||an − bn||∞ = limn→∞ supx∈Rk ||an(x)− bn(x)|| = 0.

Theorem 2. Let (An)n∈N and (Bn)n∈N be continuously distributed random variables
with continuous probability density functions an and bn such that an converges uniformly
to bn as n→ ∞. Let V ∼ Bernoulli(12). Assume further that for at least one of the series
(An)n∈N, (Bn)n∈N, the probability distributions of said series are tight; i.e. in the case
of (An)n∈N it means for all ε > 0 there exists a compact set Kε ⊂ Rk such that for all
n ∈ N we have P(An ∈ Kε) > 1− ε.

Let f : (0,∞) → R be a convex function such that f(1) = 0 and limx→0 f(x) <∞. Let

Ifn be the f-information between the random variables VAn + (1− V )Bn and V . Then

limn→∞ Ifn = 0.

The proofs of these theorems can be found in Appendix B.
The output of a privatiser which has been trained for n steps can be seen as a random

variable Zn, and An and Bn can be seen as the random variables Zn | Y = 1 and
Zn | Y = 0 respectively. The above theorem tells us that if the distributions of An
and Bn have certain properties (continuously distributed with Lipschitz continuous
density functions) and their support doesn’t get too large (the series must be tight), then
convergence under the 1-Wasserstein distance implies that the leaked information goes
to zero.

The above theorem however does not talk about the rate of convergence. We hypothesize
that the rate of convergence is at least O(−

√
x lnx), and have mostly proven this except

we still rely on one unproven assumption (see Appendix C). We furthermore assume that
the supports of An and Bn are have finite and uniformly bounded measure, rather than
just tight support.

Proposition 3. Assume that Assumption C.1 is true. Let f : (0,∞) → R be a convex
function such that limx→0+ f(x) <∞. Let An and Bn be continuously distributed random
variables on Rk with probability density functions an and bn such that the following holds:
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• There is a constant L ∈ R such that an and bn are L-Lipschitz continuous;

• There exists a set K ⊂ Rk with λk(K) <∞ such that supp an ⊂ K and supp bn ⊂
K;

• The 1-Wasserstein distance dW (An, Bn) is sufficiently small, in particular, such
that

dW (An, Bn) ≤
1

8L2λk(K)
.

Let Z ∼ Bernouilli(12). Then there exists constants c1, c2 whose value depend only on f ,

λk(K) and L, such that the f -information Ifn between Z and ZAn + (1− Z)Bn is upper
bounded by

Ifn ≤ c1 ·
√︁
dW (An, Bn)

(︁
c2 − ln dW (An, Bn)

)︁
.

Corollary 4. In particular, if (An)n∈N and (Bn)n∈N are series of random variables such
that for all n ∈ N, An and Bn satisfy the requirements of Proposition 3 with uniform
values for L and λk(K), then

Ifn = O
(︁
−
√︁
dW (An, Bn) ln dW (An, Bn)

)︁
.

The proof of this theorem can be found in Appendix C.
These theorems are more of theoretical relevance than practical relevance. The conver-

gence rate −
√
x lnx is not very fast and the constant c1 in the above theorem is huge

in most practical situations. With the limited numerical accuracy a computer has, it
is unlikely that the term c1 ·

√︁
dW (An, Bn)

(︁
c2 − ln dW (An, Bn)

)︁
will ever reach a value

smaller than 1 no matter how long you train a network.

3.7. Lipschitz continuous probability density

All the stated theorems work with continuous distributions Z | Y = 0 and Z | Y = 1 which
have Lipschitz-continuous probability density functions. This is the biggest assumption
we have to make, and a particularly problematic one as the output of neural networks
will, in general, not be continuously distributed.

We can turn any distribution into a continuous distribution with Lipschitz continuous
probability density by adding Gaussian noise to it, and the Lipschitz constant of the
probability density will be upper-bounded by that of the noise added. See Theorem 5.

Theorem 5. Let X be a random variable on Rk and let N be a Gaussian random variable
on Rk whose probability density is L-Lipschitz continuous. Then the random variable
X +N is continuously distributed and its density function is L-Lipschitz continuous.

This theorem can be used to make the output of the privatiser continuously distributed
by adding Gaussian noise N : if Z ′ is the direct output of a privatiser’s neural network,
then we can define Z = Z ′ +N and consider Z to be the privatiser’s real output which
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is to be fed into the adversary. This guarantees that Z is continuously distributed and
the Lipschitz constant of its probability density function is bounded, no matter what
distribution Z ′ has.

Although Theorem 5 is not a big result and most likely already known, we will provide
proof for it anyway. First we introduce some lemmas:

Lemma 3.1. For any continuous distributed random variable N , the random variable
X +N is continuously distributed.

Proof. We will first show that the probability density of X +N is absolutely continuous
with respect to the k-dimensional Lebesgue measure λk. Let A ⊂ Rk such that λk(A) = 0.
Then

P(X +N ∈ A) =

∫︂∫︂
1A(x+ t) dPN (t) dPX(X)

=

∫︂
PN (A− x) dPX(x),

Where A−x = {a−x | a ∈ A}. Since the Lebesgue measure is invariant under translation,
we have λk(A+ x) = 0, and since N is continuously distributed, PN (A − x) = 0, thus
P (X +N ∈ A) = 0. Since the distribution of X +N is a probability measure absolutely
continuous with respect to λk, it is continuously distributed due to the Radon-Nikodym
theorem.

Lemma 3.2. If Y is a continuous random variable on Rk and N is an independent
continuous random variable on Rk whose probability density function f is L-Lipschitz
continuous, then the probability density function of Y +N is L-Lipschitz continuous.

Proof. Since Y and N are independent continuous random variables with probability
densities respectively g and f , the probability density h of their sum Y + N can be
computed using a convolution:

h(x) =

∫︂
g(t)f(x− t) dt.

We will now prove that h is L-Lipschitz continuous. Let x, y ∈ Rk:

||h(x)− h(y)|| =
⃓⃓⃓⃓⃓⃓⃓⃓∫︂

g(t)f(x− t) dt−
∫︂
g(t)f(y − t) dt

⃓⃓⃓⃓⃓⃓⃓⃓
=

⃓⃓⃓⃓⃓⃓⃓⃓∫︂
g(t)

(︁
f(x− t)− f(y − t)

)︁
dt

⃓⃓⃓⃓⃓⃓⃓⃓
≤
∫︂ ⃓⃓⃓⃓

g(t)
(︁
f(x− t)− f(y − t)

)︁⃓⃓⃓⃓
dt

=

∫︂
g(t) · ||f(x− t)− f(y − t)|| dt

≤
∫︂
g(t) · L · ||x− y|| dt

= L · ||x− y|| .
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Proof of Theorem 5. A Gaussian random variable N can be decomposed into independent
Gaussian random variables N1 and N2 such that N = N1+N2 and the Lipschitz constant
of N2 comes arbitrarily close to L. Then X + N = (X + N1) + N2 where X + N1 is
continously distributed according to the first lemma, and (X +N1) +N2 has a Lipschitz
constant no bigger than N2 due to the second lemma. Since the Lipschitz constant of
N2 can be made arbitrarily close to that of N , it follows that the Lipschitz constant of
(X +N1) +N2 is no bigger than something arbitrarily close to that of N , and hence the
Lipschitz constant of X +N = (X +N1) +N2 is no bigger than that of N .
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4. Discussion

We have investigated whether the 1-Wasserstein distance can be used instead of the
cross-entropy loss when measuring the amount of information leaked by privacy networks,
and have for certain classes of distributions demonstrated a theoretical guarantee that the
leaked information will go to zero if the 1-Wasserstein distance goes to zero. Additionally,
under a certain assumption, we have also managed to prove a rate of convergence for
certain classes of distributions. In this chapter, we will discuss the practical relevance of
those results and propose a couple of points for future research.

4.1. Theory versus practice

These results are mostly of theoretical importance, as they only apply when the 1-
Wasserstein distance gets really small; smaller than is likely possible to be achieved in
practice. Nevertheless, knowing that there is a theoretical guarantee that the leaked
information is absolutely continuous with respect to the 1-Wasserstein distance, there is
hope that in practice leaked information converges significantly faster to zero than in the
theoretical worst case scenario.
We are lacking practical research into how a Wasserstein privacy GAN compares to

a traditional privacy GAN. For future research, we propose the following experiment
to check whether a privatiser that gives a small 1-Wasserstein distance also leaks little
information:

1. First, train a privatiser with a Wasserstein adversary to convergence;

2. Then replace the Wasserstein adversary with a cross-entropy adversary, fix the
privatiser and train only the adversary to convergence;

3. Estimate the amount of information the privatiser leaked based on the performance
of the cross-entropy adversary.

4.2. Lipschitz continuity versus Gaussian noise

All of our theorems apply to continuous distributions which have Lipschitz-continuous
probability density functions. One way to turn any probability distribution into a
continuous one with a Lipschitz continuous probability density function is by adding
Gaussian noise. However, the class of “distributions that contain Gaussian noise” is a
strict subset of the class of “continuous distributions with Lipschitz-continuous probability
density functions”.
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This makes us wonder whether better results are possible when working with the class
of distributions that contain Gaussian noise. For example, it may be possible that when
Gaussian noise is assumed, the rate of convergence increases, or that other assumptions
such as tightness are no longer needed. This may be a subject of future research.

4.3. Extension to multiple classes of private information

Our proposed Wasserstein generative adversarial privacy networks only work when the
private information Y is binary, because we can compute the 1-Wasserstein distance only
between two distributions Z | Y = 0 and Z | Y = 1 simultaneously.
Now suppose Y was discrete and took values in {0, 1, 2, 3}. Then there are four

distributions Z | Y = 0, Z | Y = 1, Z | Y = 2, and Z | Y = 3 that we want to be
indistinguishable from each other. It might be possible to now use six adversaries, each
adversary estimating the distance between one pair of marginal distributions, and then
somehow manage to optimize them simultaneously. However, even if this is possible, it
doesn’t scale very well: given n classes, the amount of adversaries needed is 1

2n
2 − 1

2n.
We noticed that our approach is somewhat similar to the t-closeness principle. The

concept of t-closeness was introduced by [16]; their goal is to make the distribution of
the private information look similar for each entry of privatised data, whereas we are
trying to make the distribution of privatised data look similar for each class of private
data. Symbolically, they make the distribution of Y | Z = z be close to the distribution
of Y for all observable values of z. This inspires us to the idea: instead of making the
distribution of Z | Y = 0 close to the distribution of Z | Y = 1, we could try making the
distribution of Z | Y = y close to the distribution of Z for all private classes y.

In this case, we would need only four adversaries: one that minimizes the 1-Wasserstein
distance dW (Z | Y = 0, Z), another one that minimizes the distance dW (Z | Y = 1, Z),
and so on. In this case, we need only n adversaries for n classes of private data, which
scales better.

Of course this does not solve the question of whether it is possible to effectively train
multiple adversaries simultaneously, which could be an avenue for future research.

4.4. Optimality of neural networks

So far, we have been relying on the assumption that the adversary works optimally in
order to achieve good privacy and be able to estimate how much information leaks. This
induces the question whether such an assumption is justified: if the adversary does not
work optimally, it is possible to severely underestimate the amount of information that
gets leaked.
There are two issues that can prevent the adversary from working well. First, there

is the question whether any configuration of an adversary network’s weights is able
to express the theoretically optimal adversary function. The leaked information can
be computed as minD ℓ(D(Z), Y ) and any adversary we train belongs to a family Dψ

parametrised by ψ. Are we sure there exists a ψ such that Dψ = argminDℓ(D(Z), Y )?
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The universal approximation theorem [17] roughly states that a sufficiently big neural
network with at least one hidden layer is able to approximate all continuous functions on
a compact domain with arbitrary precision. Because of this, we hope that with a large
enough neural network, Dψ is able to approximate the theoretically optimal adversary
with arbitrary precision. This assumes that the optimal adversary is a continuous function,
an assumption which we haven’t verified.

The second question is: even if such a ψ exists, does training the adversary cause it to
converge to those weights? The usual training algorithms for neural networks are intended
to make it converge to a local optimum, which is not necessarily a global optimum.
Hence, it is possible that a fully trained adversary performs significantly worse than it
theoretically could.

Fortunately there is a hypothesis that for large neural networks, most local optimums
are approximately equally good. This hypothesis is unproven, but is supported by [18],
which proves this claim for a model which somewhat resembles neural networks. This
gives hope that a sufficiently big well-trained adversary will perform somewhat close to
optimally.

Nevertheless, in the end there is no guarantee that the adversary is working well; this
is a major issue with our approach for which we don’t have a solution.
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A. Reproduction

We have attempted to reproduce the results from [1]. We have written about our outcome
in Section 2.3. There were some unclear details regarding their methodology where we
had to make some sensible assumptions. This appendix exists to clarify those assumptions.
From our own practical intuition, we do not think their networks were well designed. At
the end of this appendix, we also give some criticism about the networks’ design.

A.1. The dataset

The article claims that the dataset is the GENKI dataset which contains 1,940 grayscale
images of resolution 16× 16, and their goal of the privatiser is to hide the gender of the
person on the image. The problem is that the MPLab GENKI database [19] contains
about 4,000–7,500 images (depending on which subset you take), the images are in colour,
have a resolution of approximately 180× 192 (differs per image), and the dataset contains
no labels for the gender of the subject. In short, their description of the dataset does not
seem to match the official GENKI dataset.
We have however managed to find a dataset that matches their description at an

unrelated Github repository [20]. We presume that this is the same dataset they used.

A.2. The privatiser

The article [1] proposes two different privatiser networks which they call FFNP and
TCNNP, both of them would be followed up by the same adversary network. We have
implemented both of them.

• Network 1: input → FFNP → Adversary;

• Network 2: input → TCNNP → Adversary.

There are some ambiguities in the description of the original article, so here we describe
their network along with the assumptions we made in greater detail.

A.2.1. First privatiser: FFNP

The first privatiser, drawn in Figure A.1 they propose is what they call the FFNP model
(feedforward neural network privatiser). It is a fully connected feed-forward network with
three hidden layers and batch normalisation.
The input image is a 16× 16× 1 tensor, representing a height of 16, width of 16 and

single channel (grayscale) of information per pixel. It is then reshaped into a vector of
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Image (256)

Noise (100)

Dense (256) Dense (256) Dense (256) Dense (256)

Input Output

Figure A.1.: A graph of the FFNP privatiser. The number in the parentheses is the
amount of neurons in that layer.

Image (16× 16× 1)

Noise (100) Linear (4× 4× 256)

Input

Output

T.Conv (8× 8× 128) T.Conv (16× 16× 1)

Figure A.2.: A graph of the TCNNP privatiser. Processes Gaussian noise through a linear
projection and two transposed convolutional layers.

length 256, and has 100 standard normally distributed random variables concatenated,
resulting in a vector of length 356. This vector becomes the input of the network.
This input vector is then fed into four fully connected layers, each layer contains 256

neurons, uses Leaky ReLU activation and uses batch normalisation. The original article
does not tell us what the slope of the Leaky ReLU is for inputs below zero, so we assume
the Tensorflow default of 0.2:

LReLU(x) =

{︃
x for x ≥ 0,
1
5x for x < 0.

The first three layers also employ batch normalisation as introduced in [21]. The goal
of batch normalisation is to normalise the activation of each neuron such that in a single
batch, each neuron i always has mean activation µi and standard deviation γi, where µi
and γi are trainable parameters. Note that this normalisation occurs before the activation
function is applied.

layer2 = LReLU(BatchNorm(A2 · layer1)).

The output of the fourth layer, which is a vector of length 256, is subsequently reshaped
into an image of size 16× 16× 1, which is the output of the network. This fourth layer
still uses Leaky ReLU activation, though it doesn’t use batch normalisation. Of course
Leaky ReLU is a terrible activation function for the output layer as the output should lie
in the range [0, 1] whereas the Leaky ReLU has a range of (−∞,∞), but it is what the
original article uses.

A.2.2. Second privatiser: TCNNP

The second privatiser they propose is the TCNNP (transposed convolutional neural
network privatiser). This network is focussed on generating noise patterns with a complex
distribution rather than on processing the input image.
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Output

Image (16× 16× 1) Conv (16× 16× 32) Pool (8× 8× 32) Conv (8× 8× 64)

Pool (4× 4× 64)Dense (1024)Dense (1024)Dense (2)

Input

Figure A.3.: A graph of the adversary. Processes a privatised image through convolutional,
maxpool, and fully connected layers to guess whether the subject is male or
female.

The input image is again a 16×16×1 tensor, but it is not fed into the network. Instead,
the input layer of this network is merely a noise vector of 100 normally distributed
random variables.

The noise vector is linearly projected upon a 4× 4× 256 feature tensor. We assume no
activation function is applied and no bias is added.
This feature tensor is then processed by a transposed convolution hidden layer. The

convolutions have kernel size 3 × 3 and stride 2, the output is a 8 × 8 × 128 feature
tensor. This layer uses batch normalisation and ReLU activation. We assume the batch
normalisation is applied on a per-channel basis.

This 8× 8× 128 hidden layer is then processed by another transposed convolution layer
with kernel size 3× 3, stride 2, and tanh activation. No batch normalisation is applied.
The output is a 16× 16× 1 noise tensor.

The 16 × 16 × 1 noise tensor is subsequently added to the 16 × 16 × 1 input image
resulting in a 16× 16× 1 noisy image, which is the output of the network.
Notable is that, while network generates a complex noise pattern, the noise pattern

it generates does not depend on the image. For example, the network has no way of
knowing whether the person on the photo has a moustache or not, it can only decide to
always add noise to the area where moustaches might be.

A.3. The adversary

The adversary, drawn in Figure A.3 is a convolutional neural network with the following
layers applied in the following order:

1. Input layer (16× 16× 1);

2. Convolutional layer, kernel size 3× 3, stride 1, 32 filters. Per-channel batch normal-
isation and ReLU activation. Output format 16× 16× 32;

3. Maxpool layer, kernel 2× 2, stride 2, output format 8× 8× 32;

4. Convolutional layer, kernel size 3× 3, stride 1, 64 filters. Per-channel batch normal-
isation and ReLU activation. Output format 8× 8× 64.;

5. Maxpool layer, kernel 2× 2, stride 2, output format 4× 4× 64;
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6. Fully connected layer, 1024 neurons. Batch normalisation and ReLU activation,
outputs a vector of size 1024;

7. Fully connected layer, 1024 neurons. Batch normalisation and ReLU activation,
outputs a vector of size 1024;

8. Fully connected output layer, 2 neurons.

The output layer contains two neurons representing the adversary’s belief that the subject
is male/female. We assume that the output layer uses softmax activation. The softmax
function applied on a vector x ∈ Rn can be computed as:

softmax(x)i =
exi∑︁n
k=1 e

xk
.

A.4. Loss

We assume that we apply cross-entropy loss to the adversary. The cross entropy loss of a
probability vector z ∈ Rn and one-hot label vector y ∈ {0, 1}n can be computed as:

crossentropy(z, y) = −
n∑︂
i=1

yi ln zi

A one-hot label vector is a vector which is zero in all coordinates except the coordinate
representing the correct label for the sample. For example, if the neuron z1 is the guess
that the image shows a man and z2 is the guess that the image shows a woman, the
appropriate y vector for female images would be y = ( 01 ).

The loss given to the privatiser equals minus the loss for the adversary plus a penalty
based on how dissimilar the input and the output are, i.e. how much noise is added. We
are given a maximum acceptable mean noise threshold T and assign extra noise every
time the mean noise in a single batch exceeds T . We assume that the amount of noise is
measured using the L1 norm.

distance penalty(x, z) = ρ ·max(||x− z||1 − T, 0)

In this case, x and z are n × 16 × 16 × 1 batches of images where n is the batch size.
The operator || · ||1 computes the L1 norm of a tensor, i.e. the average of the absolute
values of all its elements. The variable ρ is a given constant that tells us how heavily the
distance penalty should weigh relative to the adversary’s ability to interfere. It may be
desirable to increase the value of ρ in later iterations of training to strongly enforce that
the privatiser stays within its allowable bounds.

A.5. Training schedule

The original mentions little about the training method, so we designed our own. We
train the network for 5000 epochs. During one epoch, the entire dataset is shuffled into
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random order, split into batches and fed into the network one time. A few images in the
dataset may be skipped per epoch if we can’t fit them into our constant batch size of
64. We use the Adam optimizer for both the privatiser and the adversary. We train the
adversary for 10 iterations per iteration of the privatiser.

The formula for ρ we use is 1 + 0.005t, where t ∈ N is the number of the current batch.
I.e. ρ starts at 1 and increases by 0.005 for every batch we train the network with.

A.6. Criticisms on the network

We implemented the above networks to stay as close to the original article as possible.
We do however not think that the networks are well designed. Based on our practical
intuition, we see the following problems:

• The FFNP network is a fully connected neural network with three hidden layers.
However, the current consensus seems to be that more than using more than two
hidden layers for a fully connected network is not very helpful;

• The FFNP network needs to produce the entire image as output, not just the noise.
This means that the network needs to spend neurons to remember what the image
looks like even if it judges parts of the image to be not gender indicative. This
wastes many neurons on remembering simple pixels which could otherwise have
been used for pattern spotting. We think we could achieve way better results if the
network only had to output the noise added to the image like the TCNNP does.

• Leaky ReLU is not a sensible activation function for the output layer because the
output should lie in the range [0, 1] rather than (−∞,∞). Either an activation
function with that range (such as sigmoid) should be used, or the output should be
clipped.

• We think that not having access to the input image is a severe handicap for the
TCNNP. For example, moustaches are gender indicative so the TCNNP can learn
to add noise to the moustache area, but should it make the area lighter or darker?
Ideally the area should become lighter when there is a moustache and darker where
there isn’t; doing the opposite won’t hide anything. Since the TCNNP has no way
of knowing whether there is a moustache, it can’t know in which direction the noise
should go.

• The adversary network contains very few convolutional layers. Usually in convo-
lutional networks, early layers are supposed to detect basic features like edges,
which are then processed into more complex features in later layers. With only two
convolutional layers, the network doesn’t get much of a chance to detect complex
features.

• The fully connected layers in the adversary network are huge. The convolutional
layers only contain 1 ·3 ·3 ·32+2 ·32 = 416 and 32 ·3 ·3 ·64+2 ·64 = 18, 496 trainable
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weights respectively. On the other hand, the second fully connected hidden layers
uses 1024 · 1024 + 2 · 1024 = 1, 050, 624 weights, and the first fully connected layer
uses about half of that. The training set contains only 1, 740 · 256 = 445, 440 pixels
in total, making the adversary over three times the size of the training set, which
is ridiculous.

• As far as the article mentions, no preprocessing of the dataset is applied. Basic
preprocessing such as normalising each pixel to have mean zero and unit variance
across the dataset is said to significantly improve neural network performance.
Moreover, simple data augmentation techniques such as mirroring each image
horizontally could double the amount of data available.
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B. Proof of continuity

Let us assume there is a private random variable Y which is Bernouilli distributed, and
there is a random variable Z which we release to the public, such that Z conditioned on
Y = 1 is distributed like a random variable A, and Z conditioned on Y = 0 is distributed
as a random variable B. We can then write Z = Y A+ (1− Y )B.

We consider two kinds of measures for the amount of information Z leaks about Y . The
first measure is the f -information between Y and Z, which is defined as the f -divergence
between the joint distribution of (Y,Z) and the product of the marginal distributions of
(Y,Z). The mutual information between Y and Z is a special case of the f -information
between Y and Z where f(x) = x lnx [15].
The second measure we look at is the 1-Wasserstein distance between A and B, also

referred to as the earth mover distance. The 1-Wasserstein distance computes distances
between distributions, but we’ll make a slight abuse of notation and also use it for
distances between random variables:

dW (A,B) = inf
(X,Y )∈Π(A,B)

E [||X − Y ||] ,

where Π(A,B) is the set of all joint distributions whose marginal distributions are equal
to those of A and B. Intuitively, this can be thought of as a transport problem where
the probability mass of the distribution of A needs to be optimally transported to the
probability mass of the distribution of B, and the cost of transporting mass is the
amount of mass to be transported times the distance it must be transported over. The
1-Wasserstein distance between two random variables is the cost of the optimal transport
plan.

In this appendix, we prove that under some conditions the f -divergences are absolutely
continuous with respect to the 1-Wasserstein distance, in the sense that the f -divergence
between series of random variable approaches zero whenever the 1-Wasserstein distance
between them does.

Theorem 1. Let (An)n∈N and (Bn)n∈N be series of random variables on Rk with con-
tinuous probability distributions, whose probability density functions an, bn : Rk → R are
L-Lipschitz continuous. If An converges to Bn under the 1-Wasserstein metric dW , i.e.
limn→∞ dW (An, Bn) = 0, then the probability densities an converge uniformly to bn as
n→ ∞, i.e. limn→∞ ||an − bn||∞ = limn→∞ supx∈Rk ||an(x)− bn(x)|| = 0.

Theorem 2. Let (An)n∈N and (Bn)n∈N be continuously distributed random variables
with continuous probability density functions an and bn such that an converges uniformly
to bn as n→ ∞. Let V ∼ Bernoulli(12). Assume further that for at least one of the series
(An)n∈N, (Bn)n∈N, the probability distributions of said series are tight; i.e. in the case
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of (An)n∈N it means for all ε > 0 there exists a compact set Kε ⊂ Rk such that for all
n ∈ N we have P(An ∈ Kε) > 1− ε.

Let f : (0,∞) → R be a convex function such that f(1) = 0 and limx→0 f(x) <∞. Let

Ifn be the f-information between the random variables VAn + (1− V )Bn and V . Then

limn→∞ Ifn = 0.

Note must be taken that the first theorem does not state that an or bn are convergent
series, it merely states that the distance between ||an − bn||∞ gets small as n→ ∞.

We shall prove the first theorem after establishing some lemmas. In the following text,
An, an, Bn, bn as well as L, k shall hold the same definition and assumptions as they did
in Theorem 1.
Remember that the 1-Wasserstein distance between random variables An and Bn is

defined as

dW (An, Bn) = inf
(Xn,Yn)∈Π(An,Bn)

E [||Xn − Yn||] ,

Since the 1-Wasserstein distance is the infimum of E[||Xn − Yn||] across all possible
joint distributions between (An, Bn), we are able to find joint distributions such that
E[||Xn − Yn||]− dW (An, Bn) is arbitrarily small.
We shall now define (Xn, Yn) as jointly distributed random variables such that

E [||Xn − Yn||] < dW (An, Bn)+2−n, and the marginal distributions of Xn, Yn are identical
to those of An, Bn.

Lemma B.1. For all εc, εb > 0 there exists an N ∈ N such that for all n > N , we have
P(||Xn − Yn|| > εb) < εc.

Proof. By the assumption that limn→∞ dW (An, Bn) = 0 and the definition of (Xn, Yn),
it follows that

lim
n→∞

E [||Xn − Yn||] ≤ lim
n→∞

(︁
dW (An, Bn) + 2−n

)︁
= lim

n→∞
dW (An, Bn) + lim

n→∞
2−n

= 0 + 0 = 0.

Let εb > 0 arbitrarily. The Markov inequality gives us

0 ≤ P(||Xn − Yn|| > εb) ≤
E [||Xn − Yn||]

εb
.

The right-hand side converges to zero as n → ∞, so the squeeze theorem gives us
limn→∞ P(||Xn−Yn|| > εb) = 0 for all εb > 0. The lemma now follows from the definition
of the limit.

Lemma B.2. There exists a constant M > 0 which is an upper bound for all L-Lipschitz
continuous probability density functions f : Rk → R.
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Proof. If for some (x, y) ∈ Rk × R we have f(x) = y, then under the graph of f lies a
k + 1-dimensional cone Cx,y ⊂ Rk × R with height y and a sphere Bn(x; y/L)× {0} as
base. The integral of f must be at least the volume of this cone. The cone’s volume
approaches infinity as y → ∞. Since the integral of f equals 1, the volume of the cone
cannot exceed 1, thus y must be bounded.

Lemma B.3. There exists a constant M > 0 such that for all measurable U ⊂ Rk and
all n ∈ N we have

P(An ∈ U) ≤M · λk(U),

P(Bn ∈ U) ≤M · λk(U),

where λk is the k-dimensional Lebesgue measure.

Proof. Let M be as in Lemma B.2. Then

P(An ∈ U) =

∫︂
U
an dλk ≤

∫︂
U
sup an dλk = λk(U) · sup an ≤ λk(U) ·M.

The same holds for all Bn.

Lemma B.4. Let s > 0, ε > 0. Then there exists an N ∈ N such that for all n > N ,
the following holds: if I ⊂ Rk is a cube with edge length s, i.e. some subset of the form
[x1, x1 + s]× [x2, x2 + s]× · · · × [xk, xk + s] for arbitrary x1, . . . , xk, then:

|P(An ∈ I)− P(Bn ∈ I)| < ε. (B.1)

Proof. Let M be as in Lemma B.3. Let ε > 0 be arbitrary. Define εc =
1
2ε and choose

εb > 0 such that the following equations are satisfied:

εb <
1
2s,

M ·
(︁
(s+ 2εb)

k − sk) < 1
2ε,

M ·
(︁
sk − (s− 2εb)

k) < 1
2ε.

Note that as εb converges to zero, all of the left hand sides converge to zero, so an εb
that satisfies these inequalities must exist.

Let N be as in Lemma B.1 for these values of εc and εb. We will show that Inequality
(B.1) holds for all n > N .

Let n > N arbitrary. Let I be an arbitrary cube with side s. We make use of the notion
thatXn, Yn have the same marginal distribution as An, Bn, hence P (An ∈ I) = P (Xn ∈ I)
and P (Bn ∈ I) = P (Yn ∈ I). We will first demonstrate the following lower bound:

P(Xn ∈ I) > P(Yn ∈ I)− ε.

Note that

P(Xn ∈ I) ≥ P(Yn ∈ I ∧Xn ∈ I)

= P(Yn ∈ I ∧Xn ∈ I) + P(Yn ∈ I ∧Xn ̸∈ I)− P(Yn ∈ I ∧Xn ̸∈ I)

= P(Yn ∈ I)− P(Yn ∈ I ∧Xn ̸∈ I). (B.2)
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We will now show that P(Yn ∈ I ∧Xn ̸∈ I) < ε. Define Ib as the subset of I whose
distance from the border of I is less than εb, and define Ic = I \ Ib. Because I is a cube
with edge length s, the volume of Ic is that of a cube with edge length s− 2εb, which is
(s− 2εb)

k, and the volume of Ib is s
k − (s− 2εb)

k.
Having divided I into the disjoint sets Ib and Ic, we get

P(Yn ∈ I ∧ Yn ̸∈ I) = P(Yn ∈ Ib ∧ Yn ̸∈ I) + P(Yn ∈ Ic ∧Xn ̸∈ I). (B.3)

Lemma B.3 gives us:

P(Yn ∈ Ib ∧Xn ̸∈ I) ≤ P(Yn ∈ Ib) ≤M · λk(Ib) ≤M ·
(︁
sk − (s− 2εb)

k
)︁
< 1

2ε.

The event Yn ∈ Ic ∧Xn ̸∈ I implies that the distance between Xn and Yn must be at
least εb due to the construction of Ic. Lemma B.1 gives us:

P(Yn ∈ Ic ∧Xn ̸∈ I) ≤ P(Yn ∈ Ic ∧ ||Xn − Yn|| > εb)

≤ P(||Xn − Yn|| > εb)

< εc =
1
2ε.

Substituting this in Equations (B.2) and (B.3) gives us

P(Yn ∈ I ∧Xn ̸∈ I) < 1
2ε+

1
2ε = ε

P(Xn ∈ I) > P(Yn ∈ I)− ε.

This concludes the lower bound. We will now prove an upper bound:

P(Xn ∈ I) < P(Yn ∈ I) + ε.

We once again start out with decomposing the probability:

P(Xn ∈ I) = P(Xn ∈ I ∧ Yn ∈ I) + P(Xn ∈ I ∧ Yn ̸∈ I)

≤ P(Yn ∈ I) + P(Xn ∈ I ∧ Yn ̸∈ I).

The event Yn ̸∈ I happens if and only if Yn ∈ Ic where Ic is the complement of I.
Define Icb as the set of all points in Ic whose distance to the border of I is less than εb
(beware: Icb ̸= (Ib)

c) and define Icc as Ic \ Icb . Then

P(Xn ∈ I ∧ Yn ̸∈ I) = P(Xn ∈ I ∧ Yn ∈ Icb ) + P(Xn ∈ I ∧ Yn ∈ Icc ).

The set Icb is contained in a cube with side s+ 2εb and does not contain I, so its volume
is bounded by (s+ 2ε)k − sk. By Lemma B.3 we get

P(Xn ∈ I ∧ Yn ∈ Icb ) ≤M · λk(Icb ) < M ·
(︁
(s+ 2ε)k − sk

)︁
< 1

2ε.

The event Xn ∈ I ∧ Yn ∈ Icc implies that ||Xn − Yn|| > εc, hence by Lemma B.1 we have

P(Xn ∈ I ∧ Yn ∈ Icc ) ≤ P(||Xn − Yn|| > εc) <
1
2ε.
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We once again use substitution to get what we want:

P(Xn ∈ I ∧ Yn ̸∈ I) < 1
2ε+

1
2ε < ε,

P(Xn ∈ I) < P(Yn ∈ I) + ε.

We now have both an upper and a lower bound for P(Xn ∈ I)− P(Yn ∈ I), so we can
conclude:

||P(Xn ∈ I)− P(Yn ∈ I)|| < ε,

||P(An ∈ I)− P(Bn ∈ I)|| < ε.

We are now ready to prove Theorem 1, which states that the probability density
functions an converge uniformly to bn.

Proof of Theorem 1. Let ε > 0 arbitrarily. We must show there is an N ∈ N such that
for all n > N and all x ∈ Rk we have ||an(x)− bn(x)|| < ε.
Define s = 1

4εL
−1(

√
k)−1. Using Lemma B.4, there exists a N ∈ N such that for all

n > N and for all cubes I of side s,

||P(An ∈ I)− P(Bn ∈ I)|| < 1
2εs

k,

Equivalently,

||s−kP(An ∈ I)− s−kP(Bn ∈ I)|| < 1
2ε.

Let x ∈ Rk and n > N arbitrarily; we will show that ||an(x)− bn(x)|| < ε.
Choose a cube I ⊂ Rk of side s such that x ∈ I. Because of the mean value theorem,

there exists a point z ∈ I such that λk(I) · an(z) = P(An ∈ I). Since I is a k-dimensional
cube of side s, it has volume sk and diameter s

√
k. This gives us an(z) = s−kP(An ∈ I)

and d(x, z) ≤ s
√
k. Because an is L-Lipschitz continuous, we also have:

||an(x)− an(z)|| ≤ L · d(x, z)

≤ L · s
√
k

= L · 1
4εL

−1
(︁√
k
)︁−1 ·

√
k

= 1
4ε.

This shows that ||an(x) − s−kP(An ∈ I)|| < 1
4ε. Using the same argument as we just

used, we can show that ||bn(x)− s−kP(Bn ∈ I)|| < 1
4ε as well.

Using the triangle inequality along with the above inequalities, we get:

||an(x)− bn(x)|| ≤ ||an(x)− s−kP(An ∈ I)||
+ ||s−kP(An ∈ I)− s−kP(Bn ∈ I)||+ ||s−kP(Bn ∈ I)− bn(x)||

< 1
4ε+

1
2ε+

1
4ε = ε.
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We will now move on to proving Theorem 2. From this point on, we will no longer need
to assume the requirements of Theorem 1 but instead those of Theorem 2. In particular,
we no longer assume an and bn to be Lipschitz-continuous, merely that an uniformly
converges to bn. We additionally need to assume that the probability distributions of
(An)n∈N or (Bn)n∈N are tight.

First we will prove a certain property of tightly distributed random variables in the
following lemma. In Lemma B.6 we will use the given that (An)n∈N or (Bn)n∈N are tight
along with the given that an converges to bn to show that some generalisation of this
property holds for both of them.

Lemma B.5. Let (Xn)n∈N be a series of continuous random variables on Rk with
continuous probability density functions fn, such that the correspond series of probability
distributions is tight. Then for all ε > 0 there exists a δε > 0 such that for all n ∈ N there
exists a set Sεn ⊂ Rk such that the following holds:

P(Xn ∈ Sεn) > 1− ε,

inf
x∈Sε

n

fn(x) ≥ δε.

Proof. Let ε > 0 be arbitrary. Because the probability distributions of (Xn)n∈N are tight,
we can choose a compact set Kε/2 ⊂ Rk such that P (Xn ∈ Kε/2) > 1− ε/2 for all n ∈ N.
Define δε =

1
2ε/λ

k(Kε/2). Let n ∈ N arbitrarily. Define Sεn as

Sεn = {x ∈ Rk | fn(x) ≥ δε}.

We will now show that this choice of Sεn satisfies the lemma’s requirements. Due to
the definition of Sεn we clearly have infx∈Sε

n
fn(x) ≥ δε, so all we have to prove is that

P(Xn ∈ Sεn) > 1− ε, which we shall accomplish by proving that P(Xn ̸∈ Sεn) < ε:

P(Xn ̸∈ Sεn) = P(Xn ∈ {x ∈ Rk | fn(x) < δε})
= P(Xn ∈ {x ∈ Kε/2 | fn(x) < δε}) + P(Xn ∈ {x ∈ Rk \Kε/2 | fn(x) < δε})
≤ P(Xn ∈ {x ∈ Kε/2 | fn(x) < δε}) + P(Xn ∈ {x ∈ Rk \Kε/2})
< P(Xn ∈ {x ∈ Kε/2 | fn(x) < δε}) + 1

2ε

= 1
2ε+

∫︂
{x∈Kε/2|fn(x)<δε}

fn(x) dx

≤ 1
2ε+

∫︂
{x∈Kε/2|fn(x)<δε}

δε dx

≤ 1
2ε+

∫︂
Kε/2

δε dx

= 1
2ε+ δελ

k(Kε/2)

= ε.
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Lemma B.6. Then for all ε > 0 there exists a δε > 0, N ∈ N such that for all n > N
there exists a set Sεn ⊂ Rk such that:

P(An ∈ Sεn) > 1− ε P(Bn ∈ Sεn) > 1− ε,

inf
x∈Sε

n

an(x) ≥ δε inf
x∈Sε

n

bn(x) ≥ δε.

Proof. Let ε > 0 be arbitrary. The requirements of Theorem 2 imply that either (An)n∈N
or (Bn)n∈N have tight distributions. We assume without loss of generality that (An)n∈N
has tight distributions. According to Lemma B.5 there exists a δε > 0 such that for all
n ∈ N there exists a set Sεn ⊂ Rk such that

P(An ∈ Sεn) > 1− 1
2ε,

inf
x∈Sε

n

an(x) ≥ 2δε.

Since Bn converges uniformly to An, there exists an N ∈ N such that for all n > N we
have for all x ∈ Rk:

|bn(x)− an(x)| < 1
2εδε.

This choice of δε, N, S
ε
n particularly implies that these Sεn satisfy this lemma’s require-

ments for An. We will show that they satisfy the requirements for Bn as well.
Let n > N be arbitrary, derive Sεn and let x ∈ Sεn be arbitrary. We have

bn(x) = an(x) + (bn(x)− an(x)) ≥ an(x)− |bn(x)− an(x)| ≥ 2δ − δε = δε,

hence infx∈Sε
n
≥ δε. We will finally demonstrate that P(Bn ∈ Sεn) > 1− ε:

P(Bn ∈ Sεn) =

∫︂
Sε
n

bn dλk

=

∫︂
Sε
n

an + bn − an dλk

=

∫︂
Sε
n

an dλk +

∫︂
Sε
n

bn − an dλk

= P(An ∈ Sεn) +

∫︂
Sε
n

bn − an dλk

> 1− 1
2ε+

∫︂
Sε
n

bn − an dλk

≥ 1− 1
2ε−

⃓⃓⃓⃓
⃓
∫︂
Sε
n

bn − an dλk

⃓⃓⃓⃓
⃓

≥ 1− 1
2ε−

∫︂
Sε
n

|bn − an| dλk

≥ 1− 1
2ε−

∫︂
Sε
n

1
2εδε dλ

k

= 1− 1
2ε−

1
2εδελ

k(Sεn),
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Since 1 ≥ P(An ∈ Sεn) > δε · λk(Sεn), we can derive that λk(Sεn) ≤ 1/δε:

≥ 1− 1
2ε−

1
2εδε · (1/δε)

= 1− ε.

Lemma B.7. For all α > 1 and all ε > 0, there exists a N ∈ N such that for all n > N
there exists an area Sεn ⊂ Rk such that we have P(An ∈ Sεn) > 1− ε, P(Bn ∈ Sεn) > 1− ε,
and for all x ∈ Sεn we have α−1bn(x) < an(x) < αbn(x).

Proof. Let α > 1, ε > 0 arbitrarily. According to Lemma B.6, there exists a δε > 0, N1 ∈ N
such that for all n > N1 there exists an area Sεn ⊂ Rk such that the following holds:

P(Bn ∈ Sεn) > 1− ε,

inf
x∈Sε

n

bn(x) ≥ δε.

Since limn→∞ ||an − bn||∞ = 0, we can choose an N2 ∈ N such that for all n > N2 and
all x ∈ Rk, we have

|an(x)− bn(x)| < min
(︁
δ · (α− 1), δ · (1− α−1)

)︁
. (B.4)

Choose N = max(N1, N2). Let n > N be arbitrary and derive Sεn. This choice satisfies
P(Bn ∈ Sεn) > 1− ε. We will now show that the ratio requirements hold as well.

For all x ∈ Sεn, Inequality (B.4) gives us that

bn(x)−
(︁
bn(x)− an(x)

)︁
= an(x) = bn(x) +

(︁
an(x)− bn(x)

)︁
,

bn(x)− |an(x)− bn(x)| ≤ an(x) ≤ bn(x) + |an(x)− bn(x)|,
bn(x)− δε · (1− α−1) < an(x) < bn(x) + δε · (α− 1).

Since bn(x) ≥ δε on S
ε
n, we can expand this to

bn(x)− bn(x) · (1− α−1) ≤ bn(x)− δε · (1− α−1)

< an(x)

< bn(x) + δε · (α− 1)

≤ bn(x) + bn(x) · (α− 1).

By rewriting the first and last inequality, this gives us

bn(x) · α−1 < an(x) < bn(x) · α.

Proof of Theorem 2. Let f be a convex function on (0,∞) such that f(1) = 0 and
limx→0+ f(x) <∞. Note that this implies that f is bounded on the interval (0, 2], and
can be continuously extended to be bounded on the interval [0, 2] with the same bound.
Let gn(x) be the probability density of VAn + (1− V )Bn, h(z) be the probability mass
function of V , and pn(x, z) be the joint probability density/mass of (VAn+(1−V )Bn, V ).
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Using these definitions, the f -information between VAn + (1 − V )Bn and V can be
computed as

Ifn =

∫︂
Rk

∑︂
z∈{0,1}

gn(x)h(z)f

(︃
pn(x, z)

gn(x)h(z)

)︃
dx. (B.5)

Let ε > 0 be arbitrary. We will show that there exists a N > 0 such that for all n > N
we have 0 ≤ Ifn < ε, which will imply that limn→∞ Ifn = 0.

Because f is convex, it is continuous at 1, so there exists a δ > 0 such that

|x− 1| < δ ⇒ |f(x)| < 1
2ε. (B.6)

Choose ε∗ = 1
2ε/ supy∈(0,2] f(y) and α > 1 such that 1 − δ < α−1 < α < 1 + δ.

According to Lemma B.7, we can choose an N ∈ N such that for all n > N there exists a
set Sε

∗
n ⊂ Rk with P(Bn ∈ Sε

∗
n ) > 1− ε∗ and P(An ∈ Sε

∗
n ) > 1− ε∗ and for all x ∈ Sε

∗
n

we have α−1bn(x) < an(x) < αbn(x).

Let n > N be arbitrary and derive Sε
∗
n . We will show that 0 ≤ Ifn < ε.

Note that the inequality α−1bn(x) < an(x) < αbn(x) is equivalent to α−1an(x) <
bn(x) < αan(x), which further tells us that for all x ∈ Sε

∗
n we have

α−1an(x) <
1
2an(x) +

1
2α

−1an(x) <
1
2an(x) +

1
2bn(x) <

1
2an(x) +

1
2αan(x) < αan(x),

α−1bn(x) <
1
2α

−1bn(x) +
1
2bn(x) <

1
2an(x) +

1
2bn(x) <

1
2αbn(x) +

1
2bn(x) < αbn(x).

Hence for all x ∈ Sε
∗
n we have

1− δ < α−1 =
an(x)

αan(x)
<

an(x)
1
2an(x) +

1
2bn(x)

<
an(x)

α−1an(x)
= α < 1 + δ,

1− δ < α−1 =
bn(x)

αbn(x)
<

bn(x)
1
2an(x) +

1
2bn(x)

<
bn(x)

α−1bn(x)
= α < 1 + δ.

The f -information can be computed using the integral from Equation (B.5). We split
this integral in two parts: we compute an upper bound of the integral over the set Sε

∗
n

and another upper bound over the set Rk \ Sε∗n . We will show that on both of these sets,

the integral is upper-bounded by 1
2ε, which makes Ifn upper-bounded by ε over the entire

Rk.

If =

∫︂
Sε∗
n

∑︂
z∈{0,1}

gn(x)h(z)f

(︃
pn(x, z)

gn(x)h(z)

)︃
dx+

∫︂
Rk\Sε∗

n

∑︂
z∈{0,1}

gn(x)h(z)f

(︃
pn(x, z)

gn(x)h(z)

)︃
dx.

(B.7)

We start with the integral over Sε
∗
n . We can rewrite the fraction inside f in the following
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way:∫︂
Sε∗
n

∑︂
z∈{0,1}

gn(x)h(z)f

(︃
pn(x, z)

gn(x)h(z)

)︃
dx

=

∫︂
Sε∗
n

gn(x)h(0)f

(︃
pn(x, 0)

gn(x)h(0)

)︃
+ gn(x)h(1)f

(︃
pn(x, 1)

gn(x)h(1)

)︃
dx

=

∫︂
Sε∗
n

1
4

(︁
an(x) + bn(x)

)︁
f

(︄
an(x)

1
2an(x) +

1
2bn(x)

)︄
+ 1

4

(︁
an(x) + bn(x)

)︁
f

(︄
bn(x)

1
2an(x) +

1
2bn(x)

)︄
dx,

On Sε
∗
n , both of these fractions lie in the interval (1− δ, 1 + δ), which is a neighbourhood

of 1; we then use Equation (B.6) to conclude that f(. . . ) is less than 1
2ε:

≤
∫︂
Sε∗
n

1
4

(︁
an(x) + bn(x)

)︁
· 1
2ε+

1
4

(︁
an(x) + bn(x)

)︁
· 1
2ε dx

= 1
2ε
(︁
1
2P(An ∈ Sε

∗
n ) + 1

2P(Bn ∈ Sε
∗
n )
)︁

≤ 1
2ε.

On the set Rk \ Sε∗n we cannot bound the ratios an
an/2+bn/2

and bn
an/2+bn/2

within
(1 − δ, 1 + δ), but we can bound it within [0, 2]: the nominator and denominator are
both nonnegative, guaranteeing that it is lower bounded by zero, and the denominator is
always at least half of the nominator, guaranteeing an upper bound of 2.∫︂
Rk\Sε∗

n

∑︂
z∈{0,1}

gn(x)h(z)f

(︃
pn(x, z)

gn(x)h(z)

)︃
dx ≤

∫︂
Rk\Sε∗

n

∑︂
z∈{0,1}

gn(x)h(z) sup
y∈(0,2]

f(y) dx

=

∫︂
Rk\Sε∗

n

(︁
1
2an(x) +

1
2bn(x)

)︁
sup
y∈(0,2]

f(y) dx

=
(︁
1
2P(An ∈ Rk \ Sε∗n ) + 1

2P(Bn ∈ Rk \ Sε∗n )
)︁
sup
y∈(0,2]

f(y)

< ε∗ sup
y∈(0,2]

f(y)

= 1
2ε.

Both parts of Equation (B.7) have been upper-bounded by 1
2ε, hence the f -information

is upper-bounded by ε:

If =

∫︂
Rk

∑︂
z∈{0,1}

gn(x)h(z)f

(︃
pn(x, z)

gn(x)h(z)

)︃
dx < 1

2ε+
1
2ε = ε.

From the definition of limits now follows that limn→∞ Ifn = 0.
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C. Proof of rate of convergence

Although Theorem 2 guarantees that, under some conditions, the amount of leaked
information will converge to zero if the 1-Wasserstein distance between An and Bn
converges to zero, it does not tell us what the rate of convergence is. Does the amount of
leaked information converge quickly or slowly to zero when dW (An, Bn) does?
With the following proposition, we claim that the rate of convergence is at least

O(−
√
x lnx) for certain classes of probability distributions. We have mostly proven this

proposition, but our proof of this proposition relies on one assumption (Assumption C.1)
about optimal solutions of transport problems which we haven’t managed to prove.

Proposition 3. Assume that Assumption C.1 is true. Let f : (0,∞) → R be a convex
function such that limx→0+ f(x) <∞. Let An and Bn be continuously distributed random
variables on Rk with probability density functions an and bn such that the following holds:

• There is a constant L ∈ R such that an and bn are L-Lipschitz continuous;

• There exists a set K ⊂ Rk with λk(K) <∞ such that supp an ⊂ K and supp bn ⊂
K;

• The 1-Wasserstein distance dW (An, Bn) is sufficiently small, in particular, such
that

dW (An, Bn) ≤
1

8L2λk(K)
.

Let Z ∼ Bernouilli(12). Then there exists constants c1, c2 whose value depend only on f ,

λk(K) and L, such that the f -information Ifn between Z and ZAn + (1− Z)Bn is upper
bounded by

Ifn ≤ c1 ·
√︁
dW (An, Bn)

(︁
c2 − ln dW (An, Bn)

)︁
.

Corollary 4. In particular, if (An)n∈N and (Bn)n∈N are series of random variables such
that for all n ∈ N, An and Bn satisfy the requirements of Proposition 3 with uniform
values for L and λk(K), then

Ifn = O
(︁
−
√︁
dW (An, Bn) ln dW (An, Bn)

)︁
.

We will prove this proposition in two steps: first we will give an upper bound on the
L1 distance between an and bn in terms of the 1-Wasserstein distance dW (An, Bn), and
then we will give an upper bound on the leaked information in terms of the L1 distance.

The first lemma gives a lower bound for the cost of all joint distributions P (transport
plans) that have a certain form; this form being that all probability mass either stays
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on the same place or is moved from a surplus (source) area to a deficit (sink) area. If
we can show that for all all transport plans there exists another transport plan of the
given form with less or equal cost, then this lemma would give a lower bound on the
1-Wasserstein distance. We have not managed to show this, so we’re taking this as an
assumption instead:

Assumption C.1. Let P be a joint probability distribution on Rk × Rk such that its
marginal probability distributions are continuously distributed with Lipschitz-continuous
probability density functions a, b : Rk → Rk, i.e. for all measurable A ⊂ Rk:

P(A× Rk) =
∫︂
A
a(x) dλk(x),

P(Rk ×A) =

∫︂
A
b(x) dλk(x).

Then there exists a probability distribution P∗ with the same marginal distributions as
P, such that Ex,y∼P∗ [||x− y||] ≤ Ex,y∼P[||x− y||] and P∗ can be decomposed as

P∗ = µ+ ν

with µ({(x, y) ∈ Rk × Rk | x ̸= y}) = 0, and for all measurable sets A ⊂ Rk we have

ν(A× Rk) =
∫︂
A
max(a(x)− b(x), 0) dλk(x)

ν(Rk ×A) =

∫︂
A
max(b(x)− a(x), 0) dλk(x).

The truth of the above assumption is necessary for the following lemma to be useful.

Lemma C.1. Let P be a probability distribution on Rk×Rk such that P can be decomposed
as

P = µ+ ν

such that µ({(x, y) ∈ Rk × Rk | x ̸= y}) = 0 and there exists a 2L-Lipschitz continuous
function h : Rk → R such that for all measurable sets A ⊂ Rk we have

ν(A× Rk) =
∫︂
A
max(h(x), 0) dλk(x), (C.1)

ν(Rk ×A) =

∫︂
A
max(−h(x), 0) dλk(x),

then Ex,y∼P[||x− y||] ≥ 1
2 ||h||

2
2/(2L)

2.

Proof. We start by splitting the P measure into µ and ν:

Ex,y∼P[||x− y||] =
∫︂

||x− y|| dP(x, y)

=

∫︂
||x− y|| dµ(x, y) +

∫︂
||x− y|| dν(x, y),
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Note that x = y on the entire support of µ, so
∫︁
||x− y|| dµ(x, y) equals zero:

=

∫︂
||x− y|| dν(x, y),

The measure ν is supported on the set supp ν = {(x, y) ∈ Rk × Rk | h(x) > 0, h(y) < 0}.
We now explicitly add an indicator function of this support to the integral for clarity:

=

∫︂
||x− y|| · 1supp ν(x, y) dν(x, y),

For any x such that h(x) > 0, we know that h(y) > 0 for all y ∈ B(x;h(x)/(2L)) due to
the 2L-Lipschitz continuity of h. Since the support of ν only contains pairs (x, y) with
h(x) > 0, h(y) < 0, we have 1supp ν(x, y) = 0 for almost all all y ∈ B(x;h(x)/(2L)), and
hence 1supp ν(x, y) ̸= 0 =⇒ ||x− y|| ≥ h(x)/(2L) for almost all x, y:

≥
∫︂
h(x)

2L
· 1supp ν(x, y) dν(x, y)

=

∫︂
h(x)

2L
dν(x, y),

The value of the function being integrated over is independent of y, so we can make use
of the density of ν given by Equation (C.1):

=

∫︂
h(x)

2L
·max(h(x), 0) dλk(x).

By swapping the roles of the y and x variables and using h∗(x) = −h(x), we can similarly
derive the following inequality:

Ex,y∼P[||y − x||] ≥
∫︂
h∗(y)

2L
·max(h∗(y), 0) dλk(y)

=

∫︂
h(y)

2L
·min(h(y), 0) dλk(y).

We note that ||y − x|| = ||x − y||. We now use both inequalities together to prove the
lemma:

Ex,y∼P[||x− y||] = 1
2Ex,y∼P[||x− y||] + 1

2Ex,y∼P[||y − x||]

≥ 1

2

∫︂
h(x)

2L
·max(h(x), 0) dλk(x) +

1

2

∫︂
h(y)

2L
·min(h(y), 0) dλk(y)

=
1

2

∫︂
h(x)

2L
· h(x)
2L

dλk(x)

=
1

2
· ||h||

2
2

(2L)2
.
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Corollary 6. Let An, Bn be two random variables which are continuously distributed
with L-Lipschitz continuous probability density functions an, bn, and let dW (An, Bn) be
the 1-Wasserstein distance between An and Bn. Then

||an − bn||22 ≤ 2(2L)2dW (An, Bn).

Proof. The 1-Wasserstein distance is defined as

dW (An, Bn) = inf
P∈Π(An,Bn)

Ex,y∼P[||x− y||]

where Π(An, Bn) is the set of all distributions whose marginal distributions equal those
of An and Bn. According to Assumption C.1, for any P ∈ Π(An, Bn) there is another
distribution P∗ with Ex,y∼P∗ [||x− y||] ≤ Ex,y∼P[||x− y||] such that P∗ admits a certain
decomposition. Let Π∗(An, Bn) ⊂ Π(An, Bn) contain all distributions with said form.
Then with Assumpion C.1 we can derive

inf
P∈Π(An,Bn)

Ex,y∼P[||x− y||] = inf
P∗∈Π∗(An,Bn)

Ex,y∼P∗ [||x− y||],

hence

dW (An, Bn) = inf
P∗∈Π∗(An,Bn)

Ex,y∼P∗ [||x− y||].

According to Lemma C.1, the bound

||an − bn||22 ≤ 2(2L)2Ex,y∼P∗ [||x− y||]

holds for any measure P∗ which admits the certain decomposition, hence

||an − bn||22 ≤ 2(2L2) inf
P∗∈Π(An,Bn)

Ex,y∼P∗ [||x− y||]

= 2(2L)2dW (An, Bn).

We now want to turn this bound on the L2 norm into a bound on the L1 norm. For
this we need to assume that an and bn have a finite-measure support:

Lemma C.2. Let an and bn be two functions supported in a set K ⊂ Rk with finite
measure, i.e. λk(K) <∞. Then

||an − bn||21 ≤ λk(K) · ||an − bn||22.

Proof. Define X as a random variable on Rk which is uniformly distributed over K.
Then the probability density function of X is 1K/λ

k(K). We use this random variable
to rewrite the norm ||an − bn||21 in terms of the expected value of a random variable:

||an − bn||21 =
(︃∫︂

K
|an(x)− bn(x)| dx

)︃2

=

(︃
λk(K) ·

∫︂
K

1K
λk(K)

|an(x)− bn(x)| dx
)︃2

=
(︁
λk(K)

)︁2
E[|an(X)− bn(X)|]2,
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With Jensen’s inequality follows:

≤
(︁
λk(K)

)︁2
E[|an(X)− bn(X)|2]

=
(︁
λk(K)

)︁2 ∫︂
K

1K
λk(K)

|an(x)− bn(x)|2 dx

= λk(K) ·
∫︂
K
|an(x)− bn(x)|2 dx

= λk(K) · ||an − bn||22.

We now proceed to bound various formula’s in terms of the L1 norm.

Lemma C.3. For any two probability density functions an, bn and any α > 0:

Px∼ 1
2
an+

1
2
bn

(︄
an(x)

1
2an(x) +

1
2bn(x)

> 1 + α

)︄
≤ 1

2α
−1||an − bn||1.

Proof.

Px∼ 1
2
an+

1
2
bn

(︄
an(x)

1
2an(x) +

1
2bn(x)

> 1 + α

)︄
= Px∼ 1

2
an+

1
2
bn

(︁
an(x) >

1
2(1 + α)(an(x) + bn(x))

)︁
= Px∼ 1

2
an+

1
2
bn

(︁
−αan(x) > 1

2(1 + α)(bn(x)− an(x))
)︁

= Px∼ 1
2
an+

1
2
bn

(︃
an(x) <

1

2

1 + α

−α
(bn(x)− an(x))

)︃
= Px∼ 1

2
an+

1
2
bn

(︁
an(x) <

1
2

(︁
1 + α−1

)︁
(an(x)− bn(x))

)︁
=

∫︂
{an<1

2 (1+α
−1)(an−bn)}

1
2an +

1
2bn dλk

=

∫︂
{an<1

2 (1+α
−1)(an−bn)}

an −
(︁
1
2an −

1
2bn
)︁
dλk

≤
∫︂
{an<1

2 (1+α
−1)(an−bn)}

1
2

(︁
1 + α−1

)︁
(an − bn)−

(︁
1
2an −

1
2bn
)︁
dλk

=

∫︂
{an<1

2 (1+α
−1)(an−bn)}

1
2α

−1(an − bn)

= 1
2α

−1

∫︂
{an<1

2 (1+α
−1)(an−bn)}

|an − bn| dλk

≤ 1
2α

−1

∫︂
Rk

|an − bn| dλk

= 1
2α

−1||an − bn||1.
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Lemma C.4. Let an : Rk → R, bn : Rk → R be two probability density functions such
that 1

2 ||an − bn|| ≤ 1, and let Zn be a random variable with probability density 1
2an +

1
2bn.

Define Xn as

Xn =
an(Zn)

1
2an(Zn) +

1
2bn(Zn)

,

then E[|Xn − 1|] < ||an − bn||1(1− ln 1
2 ||an − bn||1).

Proof. We will first show some upper bound to the expected value of X conditioned on
X > 1:

E[Xn | Xn > 1] =

∫︂ ∞

0
P(Xn > x | Xn > 1) dx

= 1 +

∫︂ ∞

1
P(Xn > x | Xn > 1) dx

= 1 +

∫︂ ∞

1

P(Xn > x)

P(Xn > 1)
dx,

Since the random variable Xn lies between 0 and 2, we know P(Xn > 2) = 0 and we only
need to integrate over the domain [1, 2] instead of [1,∞). If we substitute x with 1 + α,
we need to integrate α over the domain [0, 1]:

= 1 +
1

P(Xn > 1)

∫︂ 1

0
P(Xn > 1 + α) dα.

We now invoke the inequality from Lemma C.3:

≤ 1 +
1

P(Xn > 1)

∫︂ 1

0
min

(︁
1, 12α

−1||an − bn||1
)︁
dα;

The term 1
2α

−1||an−bn||1 is less than 1 when α > 1
2 ||an−bn||1, and we use the assumption

1
2 ||an − bn||1 ≤ 1 to rewrite the integral as follows:

= 1 +
1

P(Xn > 1)

(︄∫︂ 1
2
||an−bn||1

0
1 dα+

∫︂ 1

1
2
||an−bn||1

1
2α

−1||an − bn||1 dα

)︄

= 1 +
1

P(Xn > 1)

(︄
1
2 ||an − bn||1 + 1

2 ||an − bn||1
∫︂ 1

1
2
||an−bn||1

α−1 dα

)︄

= 1 +
1
2 ||an − bn||1
P(Xn > 1)

(︄
1 +

∫︂ 1

1
2
||an−bn||1

α−1 dα

)︄

= 1 +
1
2 ||an − bn||1
P(Xn > 1)

(︃
1 +

[︂
ln |α|

]︂1
1
2
||an−bn||1

)︃
= 1 +

1
2 ||an − bn||1
P(Xn > 1)

(︁
1− ln 1

2 ||an − bn||1
)︁
.
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We will now work out the version for E[Xn | Xn < 1]. In this case, it is helpful to
define another random variable Yn as

Yn =
bn(An)

1
2an(An) +

1
2bn(An)

and rewrite Xn in terms of Yn to get an expression similar to the previous case:

E[Xn | Xn < 1] = 2− E[2−Xn | Xn < 1]

= 2− E[2−Xn | 2−Xn > 1],

Note that 2−Xn = Yn, so this expectation can be written in terms of Yn:

= 2− E[Yn | Yn > 1],

The case for Yn can be rewritten in the same way as we have rewritten Xn:

≥ 2−

(︄
1 +

1
2 ||an − bn||1
P(Yn > 1)

(︁
1− ln 1

2 ||an − bn||1
)︁)︄

= 1−
1
2 ||an − bn||1
P(Xn < 1)

(︁
1− ln 1

2 ||an − bn||1
)︁
.

We now have bounds on both E[Xn | Xn < 1] and E[Xn | Xn > 1]. We use this got get a
bound on E[|Xn − 1|]:

E[|Xn − 1|] = P(Xn > 1)E[Xn − 1 | Xn > 1] + P(Xn < 1)E[1−Xn | Xn < 1]

≤ 1
2 ||an − bn||1(1− ln 1

2 ||an − bn||1) + 1
2 ||an − bn||1(1− ln 1

2 ||an − bn||1)
= ||an − bn||1(1− ln 1

2 ||an − bn||1).

Lemma C.5. Let f be a convex functions f : (0,∞) → R such that f(1) = 0 and
limx→0+ f(x) <∞. Then there exists a constant Kf such that for all probability density
functions an : Rk → R, bn : Rk → R with 1

2 ||an − bn||1 ≤ 1 we have:∫︂ (︁
1
2an(x) +

1
2bn(x)

)︁
f

(︄
an(x)

1
2an(x) +

1
2bn(x)

)︄
dx ≤ Kf · ||an − bn||1(1− ln 1

2 ||an − bn||1).

Proof. Note that f(1) = 0 and both f(2) and limx→0+ f(x) are finite. Because f is convex,
it is upper-bounded on the interval [0, 1] by the line between the points (0, limx→0+ f(x))
and (1, 0), and upper bounded on the interval [1, 2] by the line between the points (1, 0)
and (2, f(2)). Let Kf ∈ R be the largest absolute slope of these two lines, then f(x) will
be bounded on the interval [0, 2] by Kf · |x− 1|.
Let Zn be a random variable with probability density 1

2an +
1
2bn. With this random

variable, the integral can be reinterpreted as an expected value:∫︂ (︁
1
2an(x) +

1
2bn(x)

)︁
f

(︄
an(x)

1
2an(x) +

1
2bn(x)

)︄
dx = E

[︄
f

(︄
an(Zn)

1
2an(Zn) +

1
2bn(Zn)

)︄]︄
.
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If we define the random variable Xn as

an(Zn)
1
2an(Zn) +

1
2bn(Zn)

,

then the expected value can be further rewritten as

E

[︄
f

(︄
an(Zn)

1
2an(Zn) +

1
2bn(Zn)

)︄]︄
= E [f (Xn)] .

Since Xn only takes values in the interval [0, 2] we get:

f(Xn) ≤ Kf · |Xn − 1|,
E[f(Xn)] ≤ Kf · E[|Xn − 1|].

We can use Lemma C.4 to get an upper bound on this expected value:

Kf · E[|Xn − 1|] ≤ Kf · ||an − bn||1(1− ln 1
2 ||an − bn||1),∫︂ (︁

1
2an(x) +

1
2bn(x)

)︁
f

(︄
an(x)

1
2an(x) +

1
2bn(x)

)︄
dx ≤ Kf · ||an − bn||1(1− ln 1

2 ||an − bn||1).

Proof of Proposition 3. According to Corollary 6 and Lemma C.2:

||an − bn||21 ≤ λk(K) · ||an − bn||22
≤ λk(K) · 2(2L)2dW (An, Bn),

||an − bn||1 ≤ 2L
√︂

2λk(K)dW (An, Bn).

The value 1
2 ||an − bn||1 is less than 1 when dW (An, Bn) ≤ 1/

(︁
8L2λk(K)

)︁
.

Let gn(x) be the probability density of VAn + (1− V )Bn, h(z) be the probability mass
function of Z, and pn(x, z) be the joint probability density/mass of (VAn+(1−V )Bn, V ).
Using these definitions, the f -information between VAn + (1 − V )Bn and V can be
computed as

Ifn =

∫︂ ∑︂
z∈{0,1}

gn(x)h(z)f

(︃
pn(x, z)

gn(x)h(z)

)︃
dx,

We rewrite this equation similarly to how we did in the proof of Theorem 2:

=

∫︂
gn(x)h(0)f

(︃
pn(x, 0)

fn(x)g(z)

)︃
+ gn(x)h(1)f

(︃
pn(x, 1)

fn(x)g(z)

)︃
dx

=

∫︂
1
2

(︁
1
2an(x) +

1
2bn(x)

)︁
f

(︄
an(x)

1
2an(x) +

1
2bn(x)

)︄
+ 1

2

(︁
1
2an(x) +

1
2bn(x)

)︁
f

(︄
bn(x)

1
2an(x) +

1
2bn(x)

)︄
dx

=
1

2

∫︂ (︁
1
2an(x) +

1
2bn(x)

)︁
f

(︄
an(x)

1
2an(x) +

1
2bn(x)

)︄
dx

+
1

2

∫︂ (︁
1
2an(x) +

1
2bn(x)

)︁
f

(︄
bn(x)

1
2an(x) +

1
2bn(x)

)︄
dx.
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Both of these intergrals are written in the form used in Lemma C.5, which means that
there exists a constant Kf such that:

≤ 1
2Kf · ||an − bn||1(1− ln 1

2 ||an − bn||1) + 1
2Kf · ||bn − an||1(1− ln 1

2 ||an − bn||1)
= Kf · ||an − bn||1(1− ln 1

2 ||an − bn||1),

With the known bound on ||an − bn||, this can be further upper bounded by

≤ Kf · 2L
√︂
2λk(K)dW (An, Bn) ·

(︃
1− ln

[︃
L
√︂
2λk(K)dW (An, Bn)

]︃)︃
,

If many of these terms are aggregated into constants c1 and c2, this can be written as:

= c1 ·
√︁
dW (An, Bn)

(︁
c2 − ln dw(An, Bn)

)︁
.
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D. Counterexamples

In this appendix, we will give some counterexamples that demonstrate why the require-
ments of the main theorems are needed, particularly Theorem 1 and Theorem 2. The
requirements are considered sufficient but not necessary requirements: it is possible for
functions to not satisfy the theorem’s requirements without leaking private information.
However, we cannot just drop one of the requirements of the theorems without adding
another requirement. The following counterexamples give some functions which satisfy
all but one of the requirements of the main theorems and yet leak information.
In Section 3.4.1 we already gave one counterexample showing that the 1-Wasserstein

distance gives no bound on the amount of leaked information. The example random
variables were continuously distributed, but their probability density functions were not
continuous. In the first counterexample, we’ll give an analogue with continuous probability
density functions which are not uniformly Lipschitz continuous, to demonstrate that the
uniform Lipschitz continuity requirement cannot be dropped.

D.1. A continuous alternative

A continuous analogue to the functions used in Section 3.4.1 would be the following:

an(x) = 1[0,1](x) ·
(︁
sin(2nπx− 1

2π) + 1
)︁
.

These functions have been plotted in Figure D.1. The density functions an are continu-
ous, and the random variables An they represent do converge to the uniform distribution
on [0, 1], yet leaks constant amounts of information for the same reason as in Section 3.4.1:
points in the set {x ∈ [0, 1] | an(x) < 1

10} are at least ten times less likely to be sampled
from An than from the uniform distribution, and the measure of that set is constant
for all n. Likewise there is a constant amount of area that is about twice as likely to
be sampled from An than Bn. If sampled points happen to lie in those areas, then with
Bayes’ theorem we can make a decent guess at whether it came from An or Bn.

This shows that merely requiring the probability density functions to be continuous is
not enough and we need a stronger requirement, such as requiring them to be uniformly
Lipschitz-continuous.

D.2. Satisfying Theorem 1 but not Theorem 2

Even if An, Bn satisfy all the requirements for Theorem 1, it is still possible for them to
leak private information, which is why Theorem 2 has an additional requirement: that
either (An)n∈N or (Bn)n∈N have tight distributions.
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Figure D.1.: The graphs of the probability density functions an(x) = sin(2nx− 1
4π) + 1

whose associated random variables converge to the uniform distribution on
[0, 1] under the 1-Wasserstein metric.
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Figure D.2.: Two series probability density functions which uniformly converge to each
other in the supremum-norm, but do nevertheless leak a constant amount
of information.

Take a look at the following probability density functions, which have been plotted in
Figure D.2:

an(x) = 1[0,2n−1](x) · 2−n+1 ·
(︁
sin(2nπx− 1

2π) + 1
)︁
,

bn(x) = 1[0,2n−1](x) · 2−n+1.

The derivative of an is

a′n(x) = 1[0,2n−1](x) · 2π cos(2nπx− 1
2π),

which is bounded between [−2π, 2π] for all values of n. Hence the series an is uniformly
Lipschitz continuous and satisfies the requirements of Theorem 1. The series bn is strictly
speaking not Lipschitz continuous at the border of its support, but that could be fixed
by adding a small slope at the border, which we haven’t done for simplicity. Indeed, an
and bn do converge uniformly to each other as limn→∞ ||an − bn||∞ = 0.
Nevertheless, a combination VAn + (1− V )Bn leaks a constant information about V

like in the previous examples: there is a constant amount of probability that Bn lies in an
area where An is much less likely to be, i.e. P(Bn ∈ {x ∈ 1[0,2n−1] | an(x)/bn(x) < 1

10}) is
independent of n.
This counterexample shows that we need some constraint on the support of the

distributions An and Bn.
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D.3. Theorem 2 does not apply to all f-informations

Theorem 2 makes a claim that applies to all f -informations whenever limx→0 f(x) <∞.
In this counterexample we will show that the theorem does not necessarily hold when
limx→0 f(x) = ∞, as very similar variables my leak huge amounts of f -information.
We use the f -information with f(x) = 1

x − 1 for x > 0, and the following series of
random variables:

An ∼ N (0, 1),

Bn ∼
{︃

N (0, 1) with probability 1− 4−n,
Uniform[−2n, 2n] with probability 4−n,

where N (0, 1) refers to the standard Gaussian distribution. These variables converge
uniformly to each other and are tightly distributed.
For a given sufficiently large value of n, the density function of An at the domain

[2n−1, 2n] will be of the approximate magnitude O(e−n
2/2), whereas the the density of

Bn at said domain will be of the approximate magnitude O(2−4n). Note that the density
of An goes to zero far quicker than the density of Bn.
Now let V ∼ Bernouilli(12) and consider the f -information Ifn between V and VAn +

(1 − V )Bn. Let gn be the probability density function of VAn + (1 − V )Bn, let h be
the probability mass function of V , and let pn be the joint density/mass function of(︁
VAn + (1− V )Bn, V

)︁
:

Ifn =

∫︂
R

∑︂
z∈{0,1}

gn(x)h(z)f

(︃
pn(x, z)

gn(x)h(z)

)︃
dx

=

∫︂
R

1
4

(︁
an(x) + bn(x)

)︁(︄
f

(︄
1
2an(x)

1
4an(x) +

1
4bn(x)

)︄
+ f

(︄
1
2bn(x)

1
4an(x) +

1
4bn(x)

)︄)︄
dx

=

∫︂
R

1
4

(︁
an(x) + bn(x)

)︁(︃an(x) + bn(x)

2an(x)
+
an(x) + bn(x)

2bn(x)
− 2

)︃
dx

= −1 +
1

4

∫︂
R

(︁
an(x) + bn(x)

)︁(︃an(x) + bn(x)

2an(x)
+
an(x) + bn(x)

2bn(x)

)︃
dx

≥ −1 +
1

4

∫︂
[2n−1,2n]

(︁
an(x) + bn(x)

)︁(︃an(x) + bn(x)

2an(x)
+
an(x) + bn(x)

2bn(x)

)︃
dx,

Since an ≪ bn on the interval [2n−1, 2n] for large values of n, we approximate that
an + bn ≈ bn:

≈ −1 +
1

4

∫︂
[2n−1,2n]

(︁
bn(x)

)︁(︃ bn(x)

2an(x)
+

bn(x)

2bn(x)

)︃
dx

= −1 +
1

4

∫︂
[2n−1,2n]

bn(x)
2

2an(x)
+
bn(x)

2
dx

≥ −1 +
1

8

∫︂
[2n−1,2n]

bn(x)
2

an(x)
dx.
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As bn(x) is of the magnitude O(2−4n), the term bn(x)
2 is of the magnitude O(2−8n), yet

an is of the magnitude O(e−n
2/2). Clearly an converges to zero far more quickly than

bn for large values of n, so the value of the fraction bn(x)2

an(x)
explodes for large values of n.

The measure of the domain of the integral also increases with increasing n, so it seems
that this lower bound for Ifn diverges to infinity as n→ ∞.

D.4. Leaking no information without satisfying Theorem 2

This counterexample exists to show that the requirements of Theorem 2 are not necessary
requirements to leak no information. The counterexample is fairly simple: let P be any
probability distribution on R, then define the series (An)n∈N and (Bn)n∈N as:

An ∼ P + n,

Bn ∼ P + n.

Since An and Bn are identically distributed, the random variable VAn + (1− V )Bn is
independent of V . The distribution P can be chosen to not be continuously distributed,
and the +n offsets ensure that (An)n∈N nor (Bn)n∈N is tightly distributed.
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