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Abstract

Convolutional neural networks (CNN) are known for their superior performance
over other classical methods in numerous applications. A downside of conventional
CNNs is that they are trained on a specific image size and are only meant to be
used for this image size. Training a network on high resolution images is expensive.
Downscaling high resolution images such that they can be used for low resolution
networks results in loss on information. Multi-scale CNNs are capable of performing on
different image sizes. In this paper a multi-scale method is presented based on partial
differential equations. Using partial differential equations, a continuous representation
can be created for neural networks of specific structures. The results presented in this
paper are focused on denoising applications. However, the method presented in this
paper could have applications in for example the removal of artefacts from CT scans
and the removal of timestamps from images.

Keywords: residual neural networks, partial differential equations, multi-scale, convo-
lutional neural networks, denoising, discretization

1 Introduction

The field of deep learning has been progressing rapidly over the past couple of years. The
recent interest in deep learning is caused by the revolutionary increase in both parallel
computation power and memory for computers in the past years [6]. Furthermore, it has
been shown that deep learning gives outstanding results, which further increases the use
of deep learning.

Deep learning makes use of neural networks consisting of many layers. A neural network
is a system that transforms data. The data that is feeded into the system is transformed by
each layer until the network gives an output. The system is trained such that the output
of this network should predict a certain attribute or result. The transformation in each
layer can be seen as a simple function applied to the input data of the layer. Unlike for
example linear regression, neural networks also use nonlinear functions to transform the
data. In each layer a nonlinearity is used as part of the transformation This nonlinearity is
generally called the activation function. Each layer applies a transformation to the result of
the past layers. This way the nonlinearities are ‘stacked’ onto each other such that rather
complex functions can be constructed. This is part of the power of neural networks: each
layer performs a rather simple transformation, but by putting all these layers together a
strong and complex system is created. Neural networks have shown to be very efficient
for a lot of applications. A special kind of neural network, called a convolutional neural
network (CNN), can for example be used for image denoising, image recognition and speech
recognition.
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Residual neural networks (ResNets) are a special kind of CNNs, which have shown
to be very effective. The big advantage of using ResNets is that it is relatively easy to
improve the performance of the network. Namely, improving the network can simply be
done by adding extra layers, while this does not hold for CNNs in general [9]. It has been
shown that ResNets can be modelled using partial differential equations (PDEs). This can
for example be used to analyze the stability of networks and create stable ResNets [19].
Furthermore, it has been suggested that the modelling of some ResNets as PDEs can be
used to create multi-scale neural networks [8]. By the term multi-scale neural networks it
is meant that these networks that can be used to perform on different discrete image sizes.
Multi-scale could also mean that it is possible to use the network with different numbers
of layers.

The problem that is the focus of this research is how to create multi-scale networks.
The focus is specifically on creating a multi-scale network for the denoising of images.
Multi-scale networks can be very useful, training a network can be very expensive. Being
able to use the trained network on images of different resolutions saves from having to
train the network for multiple resolutions. Furthermore, being able to train a network
using low resolution images and being able to use the network on higher resolution images
reduces the training costs. It is possible to rescale an image before passing it into a (not
multi-scale) network. However, when an image has to be rescaled information is lost.

For neural networks of a specific form, each layer in the network can be viewed as a step
in time, and each pixel of an image going through these layers can be seen as a discrete
step in space. These steps can be viewed as discretizations of a continuous process, which
can be represented by a partial differential equation. Describing the network in its discrete
mathematical form allows the modeling of a continuous representation. The discrete form
depends on the grid size and time step. Using the continuous representation it is possible to
convert the network to a finer or rougher discrete model. The multi-scale method presented
in this paper is based on this idea, suggested by Haber et al. [8].

Rescaling can be done both in spatial and temporal dimensions. Rescaling in spatial
dimensions allows a network to work on different image resolutions. The focus of the
method described in this paper is on rescaling in spatial dimensions. However, to keep the
rescaled network stable it is necessary to rescale in temporal dimensions as well.

First some related theory is discussed to lay the foundations of this paper. Convolu-
tional neural networks, residual neural networks and their relation to this application are
discussed. Furthermore, the link between these differential equations and residual neural
networks is described. Then the method itself is discussed. Furthermore, it is explained
how to make sure the network stays stable before and after the rescaling. For the imple-
mentation, different ResNet structures are considered and described. Finally, the results
are presented and discussed.

2 Related Theory

2.1 Convolutional Neural Networks

In the field of neural networks convolutional neural networks are generally used when
working with images. Other applications of CNNs can be found for example in language
classification [13] and speech recognition [1]. CNNs make use of so called convolutional
layers, possibly in combination with the so-called fully connected layers which are used in
regular neural networks. Unlike regular neural networks, convolutional layers make use of
so-called "tied" weights [14]. These weights are applied to the input using a convolutional
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operation with a kernel filled with parameters. Suppose the kernel K(θ) is an P × Q
matrix depending on parameters θ. In a convolutional layer, given N ×M input matrix
Xk, a convolutional transformation is applied such that the element at position (i, j) of
the output matrix Xk+1 is given by: [6]

Xk+1(i, j) = (K(θ) ∗Xk)(i, j) =
∑
m

∑
n

Xk(i−m, j − n)K(θ)(m,n).

As a result of the sharing of parameters, convolutional neural networks make use of
the relation of a pixel in the image to the other pixels in the image. The kernel can
be rather small, meaning that the number of parameters is significantly smaller than for
regular neural networks. For a regular neural network the number of parameters is directly
proportional to the input size, for a CNN this is not the case since the kernel does not
depend on the size of the input. So the structure of the layer is independent of the input
size, which allows for different input sizes to be used [6].

This is why convolutional layers are very useful for the creation of multi-scale networks.
However, the problem with simply applying the same kernel to images of different resolu-
tions is that the kernel has been trained for a specific resolution. If this kernel is applied
to an image with a higher or lower resolution, the kernel will treat the image at a local
scale as being of the original resolution. Because of this the kernel might have trouble
performing on the new image. The purpose of multi-scale convolutional neural networks
is to find a solution for this. The goal is to find a method that adjusts the weights of the
kernel such that the network can be applied to different resolutions.

2.2 Residual Neural Networks

Another special type of neural networks are the residual neural networks (ResNets), a
ResNet can be a CNN but does not need to be. However, for this paper only convolutional
ResNets are considered. The idea of ResNets was first proposed in the article by He et
al. [9]. In a regular CNN only the transformation of the data resulting from the previous
layer is passed on to the next, residual networks also have so-called "shortcut connections".
These connect the input data for one layer to another point in the network. In the network
first proposed by He et al. this is done by passing the data through two layers and then
adding the input data to the transformed data, as pictured in Figure 1. The part of the
network pictured in this figure is called a residual block. It is also possible to create residual
blocks of any other number of layers. Generally, residual neural networks exist of a series
of residual blocks, possibly combined with other layers.

Figure 1: Block in a residual network [9].

This residual block can also be described in the form of a mathematical equation, let
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F be transformation that is applied to the data, then:

Yk+1 = Yk + F (Yk).

The idea behind residual neural networks is that where ResNets generally do not im-
prove when more layers are added, this is the case for residual neural networks. In Figure 1
the so-called ReLU function is used as activation function. This will be futher discussed in
Section 3.1. However, residual neural networks also work for different activation functions.
The method proposed in this paper relies on the use of convolutional ResNets, as will be
discussed in Section 3.

2.3 Discretization of Partial Differential Equations

For partial differential equations (PDEs) finite difference methods are widely used. Mainly
because of its easy application, to first and higher degree partial differential equations, and
the simplicity of the idea it is popular in use. The idea is a result of Taylor series [7].
There are multiple ways to discretize a partial differential equation using finite difference
methods. The most simple choices are the forward, central and backwards finite difference
methods. Suppose a uniform discretization is to be found for a two dimensional function
y(x1, x2). This discretization is to be done on a grid such that the difference between a point
in the x1-direction x1j and the next point x1j+1 is h. For the x2-direction the difference
between each grid point x2j and x2j+1 is k. This gives the grid points {(x1n, x2m)|n ∈
{0, 1, 2, ..., N} and m ∈ {0, 1, 2, ...,M}}. Suppose at grid point (x1n, x2m) the function
is approximated by: Yn,m ≈ y(x1n, x2m). A partial derivative of the first order can be
approximated using a forward finite difference method by [18]:

y′(x) ≈ Yn+1,m − Yn,m
h

.

The forward finite difference of the first order is the same as the forward Euler discretization
[3]. Higher order finite difference discretizations are used for this method as well, these
can be found in appendix B.

2.4 Link between ResNets and PDE

The work by Haber et al. [8] on multi-scale networks shows that partial differential equa-
tions can be used to model certain residual networks as discretizations of optimal control
problems. The authors show how a ResNet can be viewed as a forward Euler discretiza-
tion of a PDE. However, for multi-scale solutions this article turns to methods from linear
algebra instead of PDEs.

The work by Ruthotto et al. [19] proposes the link between ResNets and PDEs as
well. In the paper it is first discussed how this can be done with respect to time, the same
way as the previous article, by regarding the ResNet as a forward Euler discretization.
The authors then go on to show how the weights of the kernels can be parameterized
such that the convolution of the kernel and the data, passing through the kernel, can
be seen as a discretization of another PDE. It is mentioned that the partial differential
representation of the kernel could be used to create a multi-scale neural network, however
no further information on how to do this and whether it would work is given in the paper.
Furthermore, the parametrization of the kernel is only proposed for the one dimensional
case. For networks that deal with images, the two dimensional case is relevant. In the
paper a PDE that could be used as representation is proposed. The paper a good starting
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point for this research. However, how to get to this representation or how to preserve
stability is not explored. This is be done in this paper.

This paper builds on the two previously mentioned articles. It will be shown how the
partial differential representation of the kernel in two dimensions relates to the network.
Furthermore, this partial differential approach to multi-scale networks is implemented and
tested, which is not done in either article.

3 Methods

The purpose of this research is to find a way to create a multi-scale residual neural network
using partial differential equations. In a neural network, each layer receives input from
the previous layer, or if it is the first layer input from a dataset is given. This data
is then transformed, generally by applying both linear and nonlinear transformations.
The transformations rely on parameters that need to be "trained" by the network. After
applying these transformations the layer passes the data on to the next layer. Special about
residual neural networks is that not only the transformation is passed on from the previous
layer to the next. The original data that was passed to a specific layer is also passed on
to a successive layer, this data is called the residue. There can be several layers between
this specific layer and the successive layer. The sequence of these layers (including the
specific layer, excluding the successive layer) is called a residual block, see Section 2.2. Only
residual networks with blocks that contain one convolutional layer will be considered in this
work. The mathematical structure of these blocks allows for necessary manipulations to be
applied as will be discussed shortly. These blocks will have the structure depicted in Figure
2. An activation function will be applied to the data transformed by the convolutional layer
before the residue is added to the transformed data. The method shown in this section
depends on the kernel size. The method could also be extended to different kernel sizes.
However, in this paper only convolutional layers with kernels of 3 by 3 weights will be
considered.

Figure 2: The residual blocks that will be considered.

A residual block of the form in Figure 2 can be represented in the following mathemat-
ical form:

Yk+1 = Yk + F (Yk) = Yk + σ(K(θ) ∗ Yk). (1)

Here it is assumed that this neural network consists out of R residual blocks, such that
k ∈ {0, 1, ..., N}. Furthermore, there is a set of size s of training data Y = [y1, y2, ..., ys],
where yi ∈ RN0×M0∀i ∈ {1, 2, ..., n}. For residual block number k, Yk is the input and
Yk+1 is the output data. This block can be considered as the state at time k. Here
Yk ∈ RNk×Mk , where Y0, YN ∈ RN0×M0 . This means the input and output of the network
are required to have the same size, but this is not required for the layers in between.
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Furthermore, F (θ) is the combination of linear and nonlinear transformations applied to
Yk, where θ are the weights of the convolutional layer in the residual block. Within the
weight layer a convolution is applied to the input with kernel K(θ) ∈ R3×3, here θ ∈ R9

are the parameters that the filter depends on. Finally, σ is the activation function used.
As described in article [8], certain ResNets can be described using discretizations of

partial differential equations. This can be deduced from the mathematical representation
of a residual block. If the terms of equation (1) are rearranged and both sides are divided
by some time step ∆t > 0, the following is found:

Yk+1 − Yk
∆t

=
1

∆t
σ(K(θ) ∗ Yk). (2)

The left side can be seen as the forward Euler discretization of the derivative of some
function y with respect to t, see Section 2.3.

For reasons that will come apparent later it is necessary to be able to move the 1
∆t

from outside the activation function to inside the activation function σ. This implies the
function chosen as activation function should allow this.

3.1 Activation Functions

Different activation functions σ can be considered. Ideally the activation function will have
some resemblance to a linear funtion with respect to multiplication, such that either:

1

∆t
σ(x) = σ

(
1

∆t
x

)
or

1

∆t
σ(x) ≈ σ

(
1

∆t
x

)
. (3)

Here it is important to note that the time step statisfies ∆t ≥ 0. So the equality or
approximation only needs to hold for ∆t ≥ 0. A function that satisfies the case in which
both sides are equal is called a positively homogeneous function of the first degree [5]. So
the activation function should either be a positively homogeneous function of degree one or
it should approximate one. Three activation functions that satisfy either of the conditions
will be discussed: the hyperbolic tangent, the ReLU and the Leaky ReLU.

3.1.1 The Hyperbolic Tangent

The hyperbolic tangent is an activation function used in practice [12], it is given by:

σ(x) = tanh(x) =
sinh(x)

cosh(x)
.

The property of the hyperbolic tangent that could be useful for the special activation
function required is that the hyperbolic tangent approximates a linear function around
zero. This makes it a possible candidate, see equation (3). The downside of using this
activation would be that, if it were to be used, the nonlinearity would be approximated
by a linearity when using equation (3). However, if the activation function is treated as
a linear function a very important aspect of the neural network is ignored. The idea of
the activation function is to introduce a nonlinearity to the process. Furthermore, for
small numbers the hyperbolic tangent indeed acts closely to a linear function. However,
as the numbers increase the hyperbolic tangent soon starts to converge from the linear
approximation. So the hyperbolic tangent would be a possible candidate, but it might be
valuable to find another activation function that would not require to be linearized.
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3.1.2 The ReLU Function

The ReLU function is an activation function of the following form:

σ(x) = max(0, x),

[20]. The ReLU function is a homogeneous function of degree 1. When x is less than 0
the function acts as the linear function f(x) = 0, when x is bigger than 0 it acts like the
linear function function f(x) = x. This implies that the following holds for some constant
c ≥ 0, as it should for a homogeneous function of degree 1:

cσ(x) = max(0, cx).

This means this function could be considered as activation function for the neural network.
It is a nonlinear function that seems to serve the purposes and does not need to be linearized
in order to use equation (3). However, when looking at the ResNet where the blocks are
of the form:

Yk+1 = Yk + σ(K(θ) ∗ Yk),

it becomes apparent that for each layer a positive quantity (or zero) is added to the
previous layer. This means that the network can only steer in positive direction. Once a
layer transforms the data to a too high quantity, there is no way to restore the damage. A
ResNet of, for example, the form:

Yk+1 = σ(Yk +K(θ) ∗ Yk),

does not have this problem. This is because the convolution, that can have a negative
result is directly added to the old data. However, this gives the problem that the Yk term
cannot simply be brought to the other side. This gives difficulties to model this form as a
differential equation, see equation (2).

3.1.3 The Leaky ReLU Function

The Leaky ReLU is an activation function based on the ReLU function previously discussed.
It is of the form:

σ(x) =

{
x for x ≥ 0,

αx for x < 0.

Here, α is a parameter that determines the ‘size of the leak’. It determines the weight of the
output given negative input. The Leaky ReLU function was first introduced in the article
by Maas et al. [16]. It was introduced as solution for the problem that the ReLU unit
becomes inactive if the output of one weight layer is constantly negative. This is a problem
for gradient based optimization functions: when the gradient is zero the parameters are
not updated. This way the ReLU unit remains negative and parts of the network could
become inactive. The Leaky ReLU function solves this by still giving some output if the
input is negative. In the article by Maas et al. [16] the Leaky ReLU was introduced with
α = 0.01. However, other values of α can be used as well [20].

As discussed in Section 3.1.2, for the specific residual block structure used it is necessary
that the activation function can have negative values as output. For the Leaky ReLU this
is indeed the case.

The Leaky ReLU function is a positively homogeneous function of degree 1, since the
following holds for all c ≥ 0:

cσ(x) = σ(cx) =

{
cx for x ≥ 0,

cαx for x < 0.
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3.2 Rescaling

From now on the activation function σ(x) will assumed to be a LeakyReLU function with
parameter α. Furthermore, it will be assumed that each block k (k ∈ {1, 2, ..., N}) in a
network of N layers is of the form:

Yk+1 = Yk + σ(K(θ) ∗ Yk).

Since the activation function is homogeneous it is possible to rewrite the previous formula
and incorporate the time step ∆t:

Yk+1 − Yk
∆t

= σ

(
1

∆t
K(θ) ∗ Yk

)
. (4)

In this form it is clear that the left side of the equation is in the form of a forward Euler
discretization, see Section 2.3. So suppose the Yk matrix is considered as a discretization
of some continuous function y(x1, x2, t) at time tk. Let tk be defined such that tk =
tk−1 + ∆t with k ∈ {1, ...,K}. Furthermore, time t0 = 0 and time tK = T . For the spatial
coordinates, let x1n = x1n−1 + h where n ∈ {0, ..., Nk}, such that x10 = 0 and x1Nk

= X1.
Let x2n = x2n−1 + k where m ∈ {0, ...,Mk}, such that x20 = 0 and x2Mk

= X2. Then,
each element at position (m,n) within the Yk matrix represents the continuous function
y(x1, x2, t) at position (x1n, x2m). The element within matrix Yj at time tj at position
(x1n, x2m) will be denoted as Y j

n,m. As defined earlier this section K(θ) ∈ R3×3, where
θ ∈ R9. Now suppose:

K(θ) =

θ1 θ2 θ3

θ4 θ5 θ6

θ7 θ8 θ9

 .
Since Yk is a M × N matrix the convolution in equation (4) results in a M × N matrix.
Generally the size of the resulting matrix depends on edge handling, however it will be as-
sumed a method is chosen that keeps the matrix sizes equal. Because of the edge handling,
at the edges the resulting pixels will not be the result of the convolution with K(θ), but
will depend on the method used. For more on edge handling see [10]. The method of edge
handling influences only what happens at the outer most pixels because of the kernel size.
It will be assumed that the influence of the chosen method is negligible.

Assume cn,m is an element in the matrix resulting from the convolution, in equation
(4), at position (n,m). Then the following holds for this element:

cn,m =
1

∆t
(θ1Yn−1,m+1 + θ2Yn,m+1 + θ3Yn+1,m+1 + θ4Yn−1,m

+θ5Yn,m + θ6Yn+1,m + θ7Yn−1,m−1 + θ8Yn,m−1 + θ9Yn+1,m−1) .
(5)

Now a transformation for the parameters θ will be proposed which will allow for a
link between the discrete equation given and a continuous representation, which is yet to
be found, to exist. This transformation is based on the idea proposed in the article by
Ruthotto and Haber [19]. For this transformation nine unknown variables βi (i = 1, 2, ..., 9)
are introduced. To be able to convert from and to these new parameters at least nine
equations are necessary. The transformation matrix needs to be nonsingular such that it
is possible to convert from θ to β and back again, using the matrix itself and its inverse.
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The following transformation is proposed:

∆t



0 0 0 0 0 0 0 1
h2k

1
h2k2

0 0 1
k 0 1

k2
−1
hk

−1
hk2

−2
h2k

−2
h2k2

0 0 0 0 0 1
hk

1
hk2

1
h2k

1
h2k2

0 0 0 1
h2

0 0 0 −1
h2k

−2
h2k2

1 −1
h

−1
k

−2
h2

−2
k2

1
hk

2
hk2

2
h2k

4
h2k2

0 1
h 0 1

h2
0 −1

hk
−2
hk2

−1
h2k

−2
h2k2

0 0 0 0 0 0 0 0 1
h2k2

0 0 0 0 1
k2

0 −1
hk2

0 −2
h2k2

0 0 0 0 0 0 1
hk2

0 1
h2k2





β1

β2

β3

β4

β5

β6

β7

β8

β9


=



θ1

θ2

θ3

θ4

θ5

θ6

θ7

θ8

θ9


. (6)

The transformation is based on finite difference discretizations which can be found in ap-
pendix B. This transformation matrix has determinant −1

h9k9
, making it indeed nonsingular,

since the grid sizes h and k are never 0. Suppose the transformation matrix is denoted as
M(h, k), where h and k are the grid sizes, the vector of βi is denoted as β and the vector
of θi is denoted as θ. Then the transformation can be written as:

∆tM(h, k)β = θ. (7)

It can be shown that applying this transformation to equation (5) results in a sum of finite
difference discretizations. From these discretizations a continuous form can be deduced,
see appendix C. This form is given by:

k(θ, y) =β1y + β2
∂y

∂x1
+ β3

∂y

∂x2
+ β4

∂y2

∂x2
1

+ β5
∂y2

∂x2
2

+β6
∂y2

∂x1∂x2
+ β7

∂y3

∂x1∂x2
2

+ +β8
∂y3

∂x2
1∂x2

+ β9
∂y4

∂x2
1∂x

2
2

.

(8)

Thus, what has been discovered is that given the discrete form:

Yk+1 = Yk + σ(K(θ) ∗ Yk),

with gridsize h in x-direction, gridsize k in y-direction and time steps of size ∆t, a trans-
formation can be applied to the weights of the kernel. Namely the reverse of the previously
defined transformation in equation (7). This uses the inverse of matrix M(h, k), this in-
verse matrix can be found in appendix A. Using this, the reverse transformation is given
by:

β =
1

∆t
M(h, k)−1θ. (9)

Now it is possible to convert the parameters for the continuous form to the discrete pa-
rameters again, however it is not necessarily required that this discrete form has the same
gridsizes and time step. This allows for a new discretization which can be used to create a
multiscale network. Suppose previously the network worked for images of size N ×M such
that h = 1

N and k = 1
M . Now it is desired to use the network on images of size Ñ × M̃ ,

such that the new gridsizes are given by h̃ = 1
Ñ

and k̃ = 1
M̃
. Then the new weights for the

discrete form θ̃ can be found by applying the transformation given by equation (7), such
that:

θ̃ = ∆tM(h̃, k̃)β.
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Another possibility that arises from the previous steps is to rescale the time step. Previ-
ously the time step was 1

∆t , now suppose a time step of 1
∆t̃

is desired. As will be shown in
Section 3.3 it is sometimes necessary to change the time step to preserve stability of the
network. The continuous parameters β can be found as before. The new weights θ̃ can be
obtained by:

θ̃ = ∆t̃M(h̃, k̃)β (10)

Here it is important to note that when changing the time step the number of layers of
the network also needs to be adjusted. Suppose the time step is divided by two, then
the number of layers needs to be doubled. Combining equations (9) and (10) gives the
following equation for the new weights:

θ̃ =
∆t̃

∆t
M(h̃, k̃)M−1(h, k)θ.

3.3 Stability

To have any certainty of the behaviour of the conversion of the network using the previously
discussed method stability needs to be ensured. The method that will be used to ensure
this is based on the method used in the book by Morton and Mayers [18]. Suppose the
truncation error is given by T jn,m. The error of the discretization is given by the difference
between the discretization and the actual values:

ejn,m := Y j
n,m − y(x1n, x2m, tj).

Furthermore, suppose the maximum value at time tj over all positions x1n and x2m of the
absolute error is denoted by Ej , so:

Ej = max
{
|ejn,m| : n ∈ {0, 1, ..., N},m ∈ {0, 1, ...,M}

}
.

Then it can be shown that if the following conditions are satisfied:

Conditions 1

1. θi ≥ 0 and θni ≥ 0, i 6= 5,

2.
∑9

i=1,i 6=5 θi =
∑9

i=1,i 6=5 θ
n
i = 0,

3. ∆t < −1
θ5
.

The following upper bound holds for the error at time tj+1:

Ej+1 ≤ Ej + ∆t|T jn,m|.

From this bound it is clear that the increase in error for each step in time can only increase
by the truncation error by a factor of the time step. This means that the increase in error
is bounded, given that the truncation error is bounded. Furthermore, this means that
when following the conditions the error can be reduced by choosing smaller time steps.
It can be assumed that the error at time t0 = 0 is E0 = 0. This can be assumed since
the continuous representation of the discrete network that is being dealt with is simply a
representation, an abstract concept. So it is assumed that the continuous representation
is such that its initial condition is exactly satisfied by the discrete network. If this is the
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case then indeed E0 = 0. Now it can be shown using a proof by induction, as stated by
[18], that the following holds for the error at time tn = n:

En ≤ n|T jn,m|∆t.

Since |T jn,m| is bounded, see appendix E, En → 0 as t→ 0. This means the discretization
is stable and furthermore it means that the discretization is consistent. For a detailed
derivation for the bound, see appendix D.

3.4 Regularization

In the neural network the parameters are trained using data. However, to be able to
train the neural network there has to be an objective to train for. This objective is the
minimzation of the loss function V (θ) depending on the parameters of the network. During
training, the parameters are optimized by minimizing the loss function. An example, and
the loss function that will be used for this paper, is the mean squared error. Suppose the
output of the network is the N ×M matrix YN and the ground truth is the N ×M matrix
ŶN . Let yi,j be the element at position (n,m) of YN and let ŷn,m be the element at position
(n,m) of ŶN . Then the mean squared error loss function is given by:

V (θ) =
1

NM

N∑
n=1

M∑
m=1

(yn,m − ŷn,m)2.

Now to ensure Conditions 1 a regularization term is introduced which will be added to the
loss function, such that the new loss function L(θ) is a sum of the old loss function V (θ)
and a weighted regularization function R(θ):

L(θ) := V (θ) + αR(θ),

where the parameter α determines the weight of the regularization. The regularization
term is introduced such that, given desired conditions, penalties are incurred when these
conditions are not satisfied. This way when minimizing the loss function including the
regularization term it is valuable to minimize the regularization term as well, which is
done by satisfying the conditions. The parameter α is introduced which determines the
weight of the regularization term. The higher this parameter, the more valuable it is
to minimize the regularization term. However, a rather high weight can result in more
difficulty optimizing the weights for the objective of minimizing the loss function without
regularization term. Before defining the regularization function R(θ), two functions will
be defined that will be used to induce the penalties for not satisfying the conditions. The
first function φ(x, n) is given by:

φ(x, n) :=

{
0, for x ≥ n,
(x− n)2, for x < n.

(11)

Introducing this function (11) should result in penalties being given if the specified term
does not satisfy an inequality condition. The other function that is to be defined is the
function γ(x, n), given by:

γ(x, n) :=

{
0, for x = n,

(x− n)2, for x 6= n.
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The penalty function γ induces penalties if the given term does not satisfy an equality
condition, where the given term should equal n. Using these functions a regularization
function can be introduced that induces penalties if the given conditions are not satisfies.
This function will be defined as:

R(θ) :=

9∑
i=1,i 6=5

φ(θi, 0) +

9∑
i=1,i 6=5

φ(θ̃i, 0) + γ

(
n∑
i=1

θi, 0

)
.

4 Implementation

For the implementation the Python extension Keras is used on top of the TensorFlow
extension. The training is done on the MNIST dataset [15], containing 60000 training and
10000 testing images of 28 by 28 pixels. The images are of handwritten letters. The pixels
of the original images are on a 0 to 255 scale, the images that are used are on a 0 to 1
scale. The implementation will be a denoising ResNet. Before the network is trained noise
is added to the images from the MNIST image set. The original images will be used as
the ground truth. So the network will learn to transform the noisy images such that the
transformed image approximates the ground truth, non-noisy, images.

The implementation satisfies the residual block structure given by equation (1). So for
each block the input is stored, then transformed using a 3 × 3 convolution, before being
put through a LeakyReLU activation. This transformed input is then added to the original
input and passed to the next residual block.

The Adam optimization algorithm is used for the training of the network with a learning
rate of 0.001. The loss function used is described in Section 3.4. The weights are initialized
using a normal distribution with mean 0 and standard deviation 0.05. The LeakyReLU
parameter is set to 0.3. The regularization parameter is set to 1 · 103. Training will be
done in batches of 16 over 10 epochs.

4.1 Image preparation

The network is trained using the 28 by 28 pixel images from the MNIST dataset. Noise is
added to these images such that they can be used to train with. The original images, taken
directly from the dataset, will be used as the ground truth images. The noise is added to
the images following a Gaussian distribution with mean 0 and standard deviation 0.25. As
an example the ground truth for a particular entry from the data set is given by Figure
3a, adding noise to this image results in Figure 3b, for instance.
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(a) Ground truth 28 x 28. (b) Noisy image 28 x 28.

(c) Ground truth 56 x 56. (d) Noisy image 56 x 56.

Figure 3: Sample from the dataset.

The images used for testing the multi-scale method are the images from the MNIST
dataset, but rescaled. The rescaling is done using a bilinear interpolation method. The
rescaled image serves as ground truth. In Figure 3c the rescaled image of a specific instance
can be found. Noise is added to this image to obtain the multi-scale test image. This noise
is on a 28 by 28 grid, it is then rescaled using a nearest neighbour interpolation method
to match the rescaled image. Using the nearest neighbour interpolation method the grid
of the noise virtually stays the same, but it allows for the noise to be added to the image.
The 56 by 56 image after adding the noise can be found in Figure 3d.

The reason the noise is added on a 28 by 28 grid instead of the finer grid of the image
has to do with the frequencies of the noise. From a continuous perspective, noise contains
all frequencies. So in the continuous domain when noise is added this happens at an
infinite number of frequencies. However, when discretizing the frequencies that remain
present under this transformation decreases such that only the frequencies that lie within
the gridsize are still present. When a network has been trained on a rough grid the network
has been trained to only reconstruct the image for the frequencies detected by this grid
size. If the network is rescaled, it is still only capable of detecting the frequencies of the
rough scale.

4.2 Time rescaling

To preserve the stability of the network after rescaling it is necessary to rescale in the time
direction. When this happens the number of layers needs to be changed. To do this the
number of layers required is first determined. The size of the new time step is chosen such
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that the stability is ensured for all kernels. For each kernel it is checked which time step
is necessary and the smallest is chosen, see Conditions 1. It is then determined how many
layers are necessary to ensure this time step. This number is rounded up to an integer,
since it is only possible to repeat the layers a discrete number of times. The new time
step is finally chosen such that it matches the increase in layers. New blocks are added in
between the existing (rescaled) blocks, such that they are evenly spread. If the time step
is halved, a new block is added in between each existing block. The weights for these new
blocks are linearly interpolated with respect to time.

4.3 Network structures

Networks of different structures are considered and tested.

(a)

(b)

(c) (d)

(e)

Figure 4: (a) Network with width one, (b) network with parallel branches, (c)
network with binary branches, (d) network with connected layers, (e) network with
pooling layers.

4.3.1 Network with layer width one

A network with layer width one is considered, see Figure 4a. This network consists of a
series of blocks. When talking about blocks, blocks of the shape as discussed in Section
3 and depicted in Figure 2 are meant. This means each block contains one convolutional
layer with one kernel. If it is assumed that the weights of each kernel are the same for every
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block the stability proof holds, see Section 3.3. It is assumed that stability is preserved
when the weights are not necessarily the same for each layer. Rescaling with respect to
time is done as described in Section 4.2.

The advantage of this network is that it closely relates to the theory. Except for the
nonconstant weights, the network is of the same shape as was theoretically analyzed. The
downside is that it is a relatively simple network. A more complicated network could give
better results, since it is capable of more complicated transformations. CNNs that consist
of layers of more channels generally yield better results.

A version of this network with eight layers will be the main focus of the results.

4.3.2 Network with parallel branches

Another network to consider is one with parallel branches. It closely relates to the network
with layer width one. It repeats this network on a number of parallel branches. A network
of this form is depicted in Figure 4b. The start node is responsible for dividing the image
by the number of branches. At the end node the results from each branch are added up.
The division of the image at the start node is essential because the conditions on the kernel,
see Section 3.3, restrict the kernel such that on average the image stays the same. If the
image is not first divided while later the results of each branch are added, the values of the
resulting image will always be too high. Rescaling can be done the same as for the network
with layer width one, one can simply consider each branch as a network with layer width
one and rescale this.

The advantage of a network of this is that it offers a wider network, while still main-
taining simplicity. It offers the option for the network to transform the image differently
along each path. While each path itself can still be considered as a simple network with a
width of one. A network of this form is implemented with five branches, each containing
six blocks.

4.3.3 Network with binary branches

A network that branches out like a binary tree can be considered. Each node, except for
the last two layers, in this network passes output to two connected nodes, see Figure 4c.
Each path from the starting node to a node in the one to final layer can separately be
considered as a network of width one. The nodes are residual blocks of which the results
are divided by two, for the same reason as discussed for the network with parallel branches,
since in the last layer all the nodes of the previous layer are added again. Dividing does
not interfere with the relation to PDEs, since this operation can be seen as part of the
kernel.

Figure 5: Adding additional layers for binary structure.

For rescaling with respect to time more layers need to be added, this is done by inserting
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new residual blocks between the existing layers, as described in Section 4.2. This does make
the network take on a slightly different form, see Figure 5. Just like the previous network
with the parallel branches this network keeps the simplicity while still having the possibility
to develop itself differently over the different paths of the network. A network of this form
is implemented with five layers.

4.3.4 Network with connected nodes

Generally convolutional neural networks are of more complex structures than the previously
discussed networks. Using a CNN that is generally used one would increase the number
of channels in between some layers. These channels can be seen as extra nodes within the
layer, see figure 4d, so extra depth is added. Throughout a network like this the number
of channels is first increased and at the end decreased such that the process finishes with
one channel. By increasing the number of channels the network is able to use a variety of
filters on the image.

A problem with a network like this for the multi-scale network is the issue of stability.
The method used to prove the stability of the method is not easily extended to a network
like this. Furthermore, when changing the time step, thus increasing the number of layers,
it is still uncertain how the new layers should behave. This is why it is decided not to use
a network like this.

4.4 Network with pooling layers

Finally, a network with pooling layers is considered. A pooling layer decreases the image
size. The output of the pooling layer is an image in which each pixel is a summary of a
region in the previous layer [6]. This means an operation is applied to a region of p1 × p2

pixels and in the output this region is represented by a single pixel q. An example of
a pooling method, which will be used for this network, is average pooling. Suppose the
image can be divided into R regions each consisting of P pixels, such that some region r
is given by the pixels {pr1, pr2, ..., prP }. Then, after applying average pooling to this region
r, the output returns a scalar s, such that:

s =
1

P

P∑
i=0

pri .

Generally, the regions r are either 2× 2 or 3× 3 pixels. So for example, if a pooling of size
2 × 2 is used, the output of the pooling layer is half the size of the input. Here the 2 × 2
regions are transformed into a scalar, so an 1 × 1 region. Here the scalar has the average
value of the 2×2 region. For an example, see Figure 6 [17]. Later in the network the image
can be upsampled, to restore the image to the original image size. This can for example
be done using a nearest neighbour interpolation, which simply repeats the existing pixels.

Figure 6: Example of a pooling layer.
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One clear advantage of pooling is that it reduces the computation costs of training the
network, since the image resolution is reduced. Another important advantage is that it
allows for higher order features to be detected [4]. Finally, pooling also helps to make the
network invariant to small translations within the input [6].

By first downsampling using the pooling layer and later upsampling information is lost.
To account for this it is possible to create a branch within the network in which the image
resolution does not change. Combining this branch with branches that contain pooling
layers solves this problem.

An example of the structure of a network with pooling layers can be found in Figure
4e. In this network 2 × 2 average pooling layers are used. The structure of this network
consists out of three branches. The first branch is a branch of the form of the network of
width 1. The second branch uses one pooling layer, later followed by one upsampling layer.
The third branch uses two pooling layers, later followed by two upsampling layers. The
image is again divided by the number of branches, as it was for the parallel and binary
networks. At the final node the results of the branches are added.

For the rescaling with respect to time, the pooling and upsampling layers are ignored
and the network is rescaled the same way as the network with parallel tracks. It is assumed
that the pooling and upsampling have no effect on the rescaling or the relation between
the kernels.

5 Results

First the results of the network with a width of one will be presented. After this the results
of the other implemented networks will be presented as well. For the exact implementation
of the networks a request can be made at the author.

5.1 Network with layer width one

The network with a width of one, described in Section 4.3.1, is implemented. Training this
network with 8 different layers for 10 epochs, resulted in a training loss of 0.0252 and a
validation loss of 0.0249. The trained kernels can be found in appendix F. Rescaling the
network for this resolution requires the time step to be halved. The rescaled network is
tested on 1000 test samples.

Table 1: Mean squared error old, new and benchmark network.

MSE noisy images (56× 56 pixels) 0.0627 ± 0.0002
MSE old network (28× 28 pixels) 0.0248 ± 0.0002
MSE fine network (56× 56 pixels) 0.0076 ± 0.0002
MSE old network (56× 56 pixels) 0.0287 ± 0.0001
MSE new network (56× 56 pixels) 0.0217 ± 0.0002

The results of the testing of the multi-scale network can be found in Table 1 within
a 95% confidence interval. Each mean squared error represents the mean of the mean
squared error of each of the 1000 test images that were processed. Old network means
the network without the adjusted weights, new network is the network with the rescaled
weights. The fine network is a network trained on the rescaled images of 56 × 56 pixels.
This network is trained without regularization. It is of the same structure as the other
network and also trained for 10 epochs.
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(a) (b)

(c) (d)

Figure 7: (a) Ground truth image, (b) noisy image, (c) image denoised by the
original network, (d) image denoised by the new rescaled network.

For one of the images from the test set the ground truth, noisy and denoised images
can be found in Figure 7. A slice of the pixels at row eight gives the graphs that can be
found in Figure 8. These are graphs of the pixel intensities for the eight row of the images
of 56 by 56 pixels.

Figure 8: Slice at row 8 of 56 by 56 pixels.
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5.2 Other structures

Table 2: Mean squared error parallel branches network.

MSE old parallel network (28× 28 pixels) 0.0247 ± 0.0002
MSE old parallel network (56× 56 pixels) 0.0292 ± 0.0002
MSE new parallel network (56× 56 pixels) 0.0223 ± 0.0002

Training is done on the parallel and binary branches networks as well. See Section 4.3.2
for a description of the parallel network and Section 4.3.3 for a description of the binary
network. The parallel branches network result in a training loss of 0.0296 and a validation
loss of 0.0261. It turns out that no time rescaling is necessary for this configuration of the
network. The results of the multi-scale method on the 1000 test images can be found in
Table 2 with 95% confidence.

Table 3: Mean squared error binary branches network.

MSE old binary network (28× 28 pixels) 0.0249 ± 0.0002
MSE old binary network (56× 56 pixels) 0.0305 ± 0.0002
MSE new binary network (56× 56 pixels) 0.0216 ± 0.0002

The training of the binary branches network results in a training loss of 0.0306 and
a validation loss of 0.0251. The time step needs to be halved to rescaled it to a stable
network for the 56× 56 images. The results of the multi-scale method using this network
can be found in Table 3 with 95% confidence as well.

Table 4: Mean squared error network with pooling layers.

MSE old binary network (28× 28 pixels) 0.0236 ± 0.0003
MSE old binary network (56× 56 pixels) 0.0220 ± 0.0002
MSE new binary network (56× 56 pixels) 0.0220 ± 0.0002

Finally, training is done for the network with the pooling layers. See Section 4.4 for
more on this network. This resulted in a training loss of 0.0311 and a validation loss of
0.0243. To rescale this network for the 56 × 56 pixel images it is necessary to halve the
time step. The results of the network with the pooling layers can be found in Table 4, with
95% confidence.

6 Discussion

6.1 Results

First the results of the network of width one are discussed. The performance of the other
structures will be discussed in Section 6.1.1. The new multi-scale network performed
significantly better during the testing than the original network on the high resolution
images. From this it can be concluded that the multi-scale method indeed improves the
multi-scale results.

However, it does not come close to the results of the network that was trained on
the high resolution images. It has to be noted that this network was trained without
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regularization. So this network did not need to satisfy the stability conditions. This
means this network was less restricted, possibly making it easier to get better results.

When visually comparing the results of the old and the new network, see Figures 7c
and 7d, the background of the image resulting from the new network seems to be smoother
than the background of the image resulting from the old network. Furthermore, the colour
of the two seems to be smoother as well. This smoothing in both the number and the
background seems to have a some effect on the border between the two as well. The whole
image looks more blurry than the image that went through the original network. So it
seems like the new network has smoothed the whole overall image more than the original
network.

This can be seen in Figure 8 as well. The plot of the slice of the noisy image has
some fluctuations. The original denoised network smooths this a bit and the new denoised
network smooths it even more.

Figure 9: Kernel in the second convolutional layer.

All kernels within this network are quite close to each other, see appendix F. This
probably is the result of the conditions placed upon the kernel. The kernel of the second
convolutional layer can be found in Figure 9. It can be seen that the corner weights lie
close to each other, as do the outer middle weights. Here the corner weights are lower than
the middle ones. Comparable patterns can be found for the other kernels. A kernel of
this form resembles a smoothing filter. This makes sense since smoothing the image would
result in noise reduction. This smoothing is also reflected by the results, as previously
discussed.

The need for stability turns out to put many restrictions on the weights. These re-
strictions on the weights might rule out kernels that would give better results. It might be
possible to prove the stability in another, less restrictive way. This could be something to
explore in further research.

In Figure 8 it can be seen that the network (both rescaled and original) seems to be
better at handling negative noise than positive noise. The negative noise seems to be
smoothed more than the positive noise. This could have something to do with the chosen
value for α in the LeakyReLU activation, see Section 3.1.3. This is because the value of
α determines how much negativity is added to the transformed image. So a higher value
allows for lower values in the resulting image. This possibly results in a better ability to
cancel positive noise. The value chosen for α was 0.3, but for example 0.5 might have been

20



a better choice.

6.1.1 Network structures

After ruling out the connected structure three structures remained to consider, see Section
4.3. The main focus of the results section was the structure with network width one. This
structure is the closest related to the theory. The results of the original networks for the
networks with parallel and binary branches on the 28 × 28 pixel images are comparable
to those of the basic structure. The results of the rescaled networks on the 56 × 56 pixel
images are not significantly better than those for the basic structure. The parallel and
binary branch structures therefore do not improve the results. The kernels trained for the
other structures resembled those found in the network with width one, like Figure 9. The
way the same kernel structure repeated itself in these networks seems to further indicate
that the conditions imposed on the kernels cause the kernels to be trained to the same
form.

The results of the network with the pooling layers, see Section 4.4, were a bit different.
The network performs better on the 28 × 28 pixel images than all the other networks.
Especially interesting is that the original network performs better on the 56 × 56 pixel
images than the resolution it was trained for. Rescaling the network specifically for the
56×56 images yields about the same result as using the original network for 56×56 images.
However, the rescaled network with layer width one performs better on the 56×56 images.
The network with the pooling layers gives better results for the resolution it was trained
for, however the rescaling method does not seem to have much use for the network of this
form.

It could be possible that the original network and the rescaled network perform similarly
on the 56 × 56 pixel images because of the different scales that are in present in both
networks. In the original network the use of the pooling layers yield a network that is
trained to handle images of 28× 28, 14× 14 and 7× 7 pixels. After rescaling the network
should be able to handle images of 56× 56, 28× 28 and 14× 14. Two of these resolutions
are the same, so the original network was already partially capable of dealing with images
of these resolutions. The kernels that operate on them are different, but the network does
know how to use these resolutions. This could make the original pooling network more
robust for different resolutions.

The network again trains kernels similar to the previous networks. This shows that
the stability conditions might be too restrictive for the kernels of this network as well. It
seems like the pooling process allows the network to perform better, since the difference
cannot be found in the kernels trained. It might be possible to improve the results more
by creating pooling networks of different structures. This could be something to look into
for further research.

6.2 Theory

In Section 3.3 conditions are opposed on the parameters of the network, see Conditions
1. One of these conditions specifies that the sum of the weights should always be zero.
The continuous parameter β1 from the continuous form of the kernel of the network, see
equation (8), happens to be the sum of the weights:

β1 =
9∑
i=1

θi = 0.
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This means this parameter is always zero. So from this it can be concluded that the first
term of the continuous representation always drops. This is the β1y term. It makes sense
for this term to drop. For example, suppose y is a continuous representation of the discrete
network. Since the left side of the equation is a derivative the right side should equal 0.
However, if the first term is equal to the function itself and β1 is not zero this will not hold.
All other terms will be zero since they are partial derivatives of the constant function.

The condition that imposes that the sum of the weights should be zero makes sense
for the deblurring application. When the sum of the weights is zero, one can say that on
average the image does not change. For the denoising application, Gaussian noise with
mean zero is added to the image which needs to be removed. The Gaussian noise does
not change the mean of the image on average. So applying this network that averages out
the noise while keeping the mean of the image the same seems like a good strategy for
denoising.

The kernel structure used throughout this paper is restricted to kernels of size 3 × 3.
The theory could also be extended to different kernel sizes. The way to do this is to
increase or decrease the number of finite difference discretizations. The theory could be
adapted in a way to for example cater for 2 × 2 or 4 × 4 kernels. This could be done by
choosing the finite difference discretization that represent the kernel such that they span
over all weights. The number of finite differences should be equal to the number of weights
to ensure a unique transformation of the weights.

As discussed in Section 3.2 the edge handling is ignored throughout this research.
However, when dealing with small images, for example as was done with the images of 28
by 28 pixels, the edges might have quite some influence on the outcome. It could be useful
to further analyze the behaviour of the processes on the edges.

The multi-scale method might be too restrictive for the network structure and the
kernels. The connected network structure discussed in Section 4.3 was ruled out since it
did not fit the theory. Network structures are generally considered to be more effective. It
might be necessary to adapt the theory to fit network structures like these as well.

6.2.1 Pooling layers

For the network with the pooling layers described in Section 4e the pooling layers and
upscaling layers were ignored when rescaling. Better rescaling results might be obtained
when taking these layers in account. It might be a possibility to consider the average
pooling layer as a convolutional layer. The convolutional operation is essentially a linear
combination of the pixels within a region. This is the same for the average pooling layer.
However, there is a difference: a convolutional layer applies a convolution for every pixel.
The pooling layer applies its operation only once within each region of pooling. The
distance between the pixels at which a convolution is applied is called the stride. For the
convolutions used in this paper the stride is 1. For the 2× 2 pooling layer the stride is 2.
Maybe the theoretical link between convolutional layers and pooling layers is easier made
if the convolutional layers all have a stride of 2. In further research the relation between
convolutional layers and average pooling layers could be further investigated.

Another problem with relating the theory developed in this paper to the pooling layers
is that the resolution changes after these layers. So the convolutions performed after a
pooling layer are on a different scale than those before. In the theoretical model it was
possible to consider the network as a continuous process, where each layer is part of a step
in the discretization of a PDE. It is the question how this is still possible when changing
the image scale, since this means the grid on which the discretization is performed changes.
This could be something else to investigate in further research.
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6.3 Application

A problem that was discovered for the multi-scale denoising is that when starting with a
rough grid image, rescaling the image and then separately adding noise to both images the
developed multi-scale network kept performing worse than the results of simply putting
the image through the original network. This has to do with the network being trained to
recognise the noise on the rough image with specific frequencies, see Section 4.1. Applying
the network to various gridsizes, but only being able to add noise at one resolution level (to
the multi-scale images) severely restricts the applications of this method within denoising.
Generally, the noise that needs to be removed from an image is at the same scale as the
image. However, this method could have other applications that are more suitable.

The main problem with the noise, as discussed in Section 4.1, is that the underlying
continuous image is not the same. Any application in which these are the same should be
suitable to apply the multi-scale network.

For example in the removal of objects at a fixed ratio from images the method could
be useful. One could think of time stamps in photographs. The time stamps are added
with the same size, but some cameras are capable of taking images at different resolutions.
This method would be suitable to remove these time stamps.

Another application would be to remove CT scan artefacts. When making a CT scan,
multiple images are made. These images are meshed together to create the full scan.
Because there is only a finite number of images this results in streaks, the artefacts, being
left in the image. These artefacts are dependent on the angles the CT scanner made while
scanning. So this is a continuous process, different resolutions will result in artefacts at the
same places with respect to the continuous domain. So this could be a suitable application.
For more on the removal of CT artefacts using CNN, see [11].

Important to note for the use of this method for any applications are the restrictions on
the kernel. For denoising it is logical that the sum of the weights is zero, keeping the image
equal on average. However, this might not be suitable for all applications. For example
for the time stamp removal, this might not be desirable at all. Since for example when
removing a dark stamp from a light image the average should probably not remain the
same.

In this paper the 28 by 28 pixel images as training scale and 56 by 56 pixel images as
test scale were used. Of course in actual applications only being able to use the second
multiple of the training scale is not that interesting. It would be more useful if the method
could be extended to other resolutions as well. A solution for this would be based on what
has been done in this paper to ensure the positivity of the weights for the 56 by 56 pixels,
see Section 3.4. If it is known before hand which scale would be desired, for example scales
48, 56 and 79. Then it would be possible to extend the regularization function such that
the positivity constraint is enforced for 48 and 79 as well as 28 and 56.

7 Conclusion

The problem at hand was to create a multi-scale CNN using PDEs. The idea of a multi-
scale CNN is that it is able to perform on input of different sizes. In this paper only
convolutional networks with respect to images were considered. So the objective was to
create a network that performs on images with different resolutions. To do this residual
neural networks of a specific structure were considered.

This structure allows for a link between the ResNets and PDEs, since it is possible to
treat these ResNets as discretizations of a PDE. Using these discretizations it is possible
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to find a continuous representation of the ResNet, this representation depends on the
resolution of the images the network originally was able to perform on. The resolution
can be viewed as the grid of the discretization. Using this continuous representation, it is
possible to go to different discretizations of this representation. These new discretizations
can be of different grid sizes. This allows to find different residual networks, which are able
to perform on these different grid sizes. This method also allows for rescaling with respect
to time. This can be used to ensure stability.

The need for stability implies that it is not possible to simply train a network and
rescale it. Conditions need to be imposed on the weights of the network. These conditions
limit the behaviour of the network to specific forms. Furthermore, these conditions limit
the number of resolutions the multi-scale network can be applied to.

The multi-scale network performs better than the original network on a finer grid than
the network originally was trained for. Except when pooling layers are used, in this case
the original network yields comparable results to the rescaled network. The network with
the pooling layers does perform better overall.

Within the paper the multi-scale network was used for the denoising of images, because
of the importance of this application. This choice turned out to have some downsides. The
method only works if the continuous representation of the different resolutions is the same.
For noise this is generally not the case. However, the method that has been developed
could be significant for other applications. Examples of these applications the removal of
artefacts in CT scans and the removal of time stamps from images.
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Appendix

A Inverse transformation

The inverse transformation of the parametrization of the weights given by equation (6), is
given by the following expression:



1 1 1 1 1 1 1 1 1
−h 0 h −h 0 h −h 0 h
k k k 0 0 0 −k −k −k
h2 0 0 h2 0 0 h2 0 0
0 0 0 0 0 0 k2 k2 k2

−hk 0 hk 0 0 0 hk 0 −hk
0 0 0 0 0 0 −hk2 0 hk2

h2k 0 0 0 0 0 −h2k 0 0
0 0 0 0 0 0 h2k2 0 0





θ1

θ2

θ3

θ4

θ5

θ6

θ7

θ8

θ9


=



β1

β2

β3

β4

β5

β6

β7

β8

β9


.

B Finite differences

Several finite difference discretizations are used by the method presented in this paper.
Different finite difference methods needed to be chosen to make it possible to parametrize
the weights such that they can be seen as the discretization of a PDE. In the problem at
hand only the values of a pixel can be considered. It is not possible to obtain the value
halfway between two grid points. This means, for example, that the first order central
finite difference cannot be used since this is given by:

∂y

∂x
≈
y(x+ 1

2h)− y(x− 1
2h)

h
,

instead the forward difference was used. This will be discussed shortly. However, for the
second order finite difference the central method is used. This is because the forward
method uses the pixel two step distant from the middle pixel, this pixel is not available
in the convolution so it is not possible to use this. This results in a mix of forward and
central differences with respect to space. This means that the entire approximation is not
exactly centred at the middle. However, all discretizations are chosen such that the steps
made in the discretization never skip over a grid point. For example a variation on the
first order central difference could have been used:

∂y

∂x

y(x+ h)− y(x− h)

2h
.

It was specifically chosen not to use this. This ensures the approximations are all on the
same grid.

A total of nine equations are necessary for the method to work. Each discretization that
is chosen such that the points considered are on the grid and no grid points are skipped.
The first order forward finite difference in x1 direction is given by:

∂y

∂x1
≈y(x1 + h, x2)− y(x1, x2)

h

=
Yn+1,m − Yn,,m

h
.
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This discretization works the same in the x2 direction only the terms are switched. The
same goes for the other not mixed finite differences in this section. The first order central
finite difference discretization is given by:

∂y

∂x1
≈
y(x1 + 1

2h, x2)− y(x1 − 1
2h, x2)

h
.

The second order central finite difference makes use of the first order central finite difference
by applying it twice, resulting in the following discretization:

∂2y

∂x2
1

≈ ∂

x1

[
y(x1 + 1

2h, x2)− y(x1 − 1
2h, x2)

h

]

=
y(x1 + h, x2)− 2y(x1, x2) + y(x1 − h, x2)

h2

=
Yn+1,m − 2Yn,m + Yn−1,m

2h
.

The mixed second order forward applies the first order forward finite difference in both
directions, which yields:

∂2y

∂x1∂x2
≈ ∂

∂x1

[
y(x1, x2 + h)− y(x1, x2)

k

]
=
y(x1 + h, x2 + k)− y(x1 + h, x2)− y(x1, x2 + k) + y(x1, x2)

hk

=
Yn+1,m+1 − Yn+1,m − Yn,m+1 + Yn,m

hk
.

The mixed third order finite difference is used as well. The discretization that is used is
found by applying the first order forward finite difference to the second order central, such
that:

∂3y

∂x1∂x2
2

≈ ∂

∂x1

[
y(x1 + h, x2)− 2y(x1, x2) + y(x1 − h, x2)

h2

]
=
y(x1 + h, x2 + k)− 2y(x1 + h, y) + y(x1 + h, x2 − k)

hk2

+
−y(x1, x2 + k) + 2y(x1, x2)− y(x1, x2 − k)

hk2

=
Yn+1,m+1 − 2Yn+1,m + Yn+1,m−1 − Yn,m+1 + 2Yn,m − Yn,m−1

hk2
.

Finally, the mixed fourth order finite difference is used. The one that is used is the
derivative that is evaluated two times with respect to one direction and two times with
respect to the other. It is found by applying the central finite difference of the first order
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twice:

∂4y

∂x2
1∂x

2
2

≈ ∂2

∂x2
1

[
y(x1, x2 + k)− 2y(x1, x2) + y(x1, x2 − k)

k2

]
=
y(x1 + h, x2 + k)− 2y(x1 + h, x2) + y(x1 + h, x2 − k)

h2k2

+
4y(x1, x2)− 2y(x1, x2 − k)− 2y(x1, x2 + k)

h2k2

+
y(x1 − h, x2 + k)− 2y(x1 − h, x2) + y(x1 − h, x2 − h)

h2k2

=
Yn+1,m+1 − 2Yn+1,m + Yn+1,m−1 − 2Yn,m1

h2k2

+
4Yn,m − 2Yn,m+1 + Yn−1,m+1 − 2Yn−1,m + yn−1,m−1

h2k2
.

C Continuous representation

A continuous representation of the discrete kernel is to be found. When the discrete kernel
is applied to some input Y , the element at position (n,m) of the resulting matrix C is
given by:

cn,m =
1

∆t
(θ1Yn−1,m+1 + θ2Yn,m+1 + θ3Yn+1,m+1 + θ4Yn−1,m

+θ5Yn,m + θ6Yn+1,m + θ7Yn−1,m−1 + θ8Yn,m−1 + θ9Yn+1,m−1) .

Applying the parametrization of the weights given by equation (6), gives the following
representation:

cn,m =Yn−1,m+1

[
β8

h2k
+

β9

h2k2

]
+ Yn,m+1

[
β3

k
− β6

hk
+
β5

k2
− β7

hk2
+

2β8

h2k
− 2β9

h2k2

]
+ Yn+1,m+1

[
β6

hk
+

β7

hk2
+

β8

h2k
+

β9

h2k2

]
+ Yn−1,m

[
β4

h2
− β8

h2k
− 2β9

h2k2

]
+ Yn,m

[
β1 −

β2

h
− β3

k
− 2β4

h2
− 2β5

k2
+
β6

hk
+

2β7

hk2
+

2β8

h2k
+

4β9

h2k2

]
+ Yn+1,m

[
β2

k
+
β4

h2
− β6

hk
− 2β7

hk2
− β8

h2k
− 2β9

h2k2

]
+ Yn−1,m−1

[
β9

h2k2

]
+ Yn,m−1

[
β5

k2
− β7

hk2
− 2β9

h2k2

]
+ Yn+1,m−1

[
β7

hk2
+

β9

h2k2

]
.
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Rearranging the terms by ordering the elements Y j
n,m gives the following form:

cn,m =β1Yn,m + β2
Yn+1,m − Yn,m

h
+ β3

Yn,m+1 − Yn,m
k

+ β4
Yn+1,m − 2Yn,m + Yn−1,m

h2
+ β5

Yn,m+1 − 2Yn,m + Yn,m−1

k2

+ β6
Yn+1,m+1 − Yn+1,m − Yn,m+1 + Yn,m−1

hk

+ β7
Yn+1,m+1 − 2Yn+1,m + Yn+1,m−1 − Yn,m+1 + 2Yn,m − Yn,m−1

hk2

+ β8
Yn+1,m+1 − 2Yn,m+1 + Yn−1,m+1 − Yn+1,m + 2Yn,m − Yn−1,m

h2k

+ β9

[
Yn+1,m+1 − 2Yn+1,m + Yn+1,m−1 − 2Yn,m−1

h2k2

+
4Yn,m − 2Yn,m+1 + Yn−1,m+1 − 2Yn−1,m + Yn−1,m−1

h2k2

]
.

This holds for every element in the matrix C = K(θ) ∗ Y . Every term in the previous
equation relates to a finite difference discretization, see appendix B. Now by taking the
limit as h and k approach zero each element in Y j gets a continuous representation:

k(θ, y(xn, ym, tj)) =β1y(xn, ym, tj) + β2
∂y(xn, ym, tj)

∂x1
+ β3

∂y(xn, ym, tj)

∂x2

+β4
∂y2(xn, ym, tj)

∂x2
1

+ β5
∂y2(xn, ym, tj)

∂x2
2

+ β6
∂y2(xn, ym, tj)

∂x1∂x2

+β7
∂y3(xn, ym, tj)

∂x1∂x2
2

+ +β8
∂y3(xn, ym, tj)

∂x2
1∂x2

+ β9
∂y4(xn, ym, tj)

∂x2
1∂x

2
2

.

D Stability proof

A discretization of the following continuous partial differential equation will be considered:

∂y

∂t
=σ

(
β1y + β2

∂y

∂x1
+ β3

∂y

∂x2
+ β4

∂y2

∂x2
1

+ β5
∂y2

∂x2
2

+ β6
∂y2

∂x1∂x2
+ β7

∂y3

∂x1∂x2
2

+ +β8
∂y3

∂x2
1∂x2

+ β9
∂y4

∂x2
1∂x

2
2

)
,
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here σ is a LeakyReLU activation function with parameter 0 < α < 1. The discretization
that is chosen is of the following form:

Y j+1
n,m − Y j

n,m

∆t
=σ

(
β1Y

j
n,m + β2

Y j
n+1,m − Y

j
n,m

h
+ β3

Y j
n,m+1 − Y

j
n,m

h2

+ β4

Y j
n+1,m − 2Y j

n,m + Y j
n−1,m

h2
+ β5

Y j
n,m+1 − 2Y j

n,m + Y j
n,m−1

k2

+ β6

Y j
n+1,m+1 − Y

j
n,m+1 − Y

j
n+1,m + Y j

n,m

hk

+ β7

Y j
n+1,m+1 − 2Y j

n+1,m + Y j
n+1,m−1 − Y

j
n,m+1 + 2Y j

n,m − Y j
n,m−1

hk2

+ β8

Y j
n+1,m+1 − 2Y j

n,m+1 + Y j
n−1,m+1 − Y

j
n+1,m + 2Y j

n,m − Y j
n−1,m

h2k

+ β9

[
Y j
n+1,m+1 − 2Y j

n+1,m + Y j
n+1,m−1 − 2Y j

n,m1

h2k2

+
4Y j

n,m − 2Y j
n,m+1 + Y j

n−1,m+1 − 2Y j
n−1,m + Y j

n−1,m−1

h2k2

])
.

For each derivative in the continuous PDE a finite difference method is used to obtain a
discrete form. Some operators for these finite difference methods will be defined. For the
first order forward finite difference the following will be used:

∆+x1v(x1, x2, t) := v(x1 + h, x2, t)− v(x1, x2, t),

∆+x2v(x1, x2, t) := v(x1, x2 + k, t)− v(x1, x2, t),

∆+tv(x1, x2, t) := v(x1, x2, t+ ∆t)− v(x1, x2, t).

For the second order central difference with respect to either x1 or x2, the following are
defined:

δ2
x1v(x1, x2, t) :=v(x1 + h, x2, t)− 2v(x1, x2, t) + v(x1 − h, x2, t),

δ2
x2v(x1, x2, t) :=v(x1, x2 + k, t)− 2v(x1, x2, t) + v(x1, x2 − k, t).

Furthermore, for the mixed second order forward difference the following operator will be
used:

∆+x1x2v(x1, x2, t) := v(x1 +h, x2 +k, t)−v(x1, x2 +k, t)−v(x1 +h, x2, t)+v(x1, x2, t).

For the third order mixed derivatives first a second order central difference is applied,
followed by a first order forward difference, so the following will be denoted:

∆+x1δ
2
x2v(x1, x2, t) :=v(x1 + h, x2 + k, t)− 2v(x1 + h, x2, t) + v(x1 + h, x2 − k, t)

− v(x1, x2 + k, t) + 2v(x1, x2, t)− v(x1, x2 − k, t),
∆+x2δ

2
x1v(x1, x2, t) :=v(x1 + h, x2 + k, t)− 2v(x1, x2 + k, t) + v(x1 − h, x2 + k, t)

− v(x1 + h, x2, t) + 2v(x1, x2, t)− v(x1 − h, x2, t).

Finally, the fourth order mixed derivative used consists of a combination two central dif-
ferences, so this will be denoted by:

δ2
x1δ

2
x2v(x1, x2, t) :=v(x1 + h, x2 + k, t)− 2v(x1 + h, x2, t) + v(x1 + h, x2 − k, t)

− 2v(x1, x2 + k, t) + 4v(x1, x2, t)− 2v(x1, x2 − k, t)
+ v(x1 − h, x2 + k, t)− 2v(x1 − h, x2, t) + v(x1 − h, x2 − k, t).
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The error of the approximation at (x1n, x2n, tj) will be denoted by ejn,m, defined as:

ejn,m := Y j
n,m − y(x1n, x2m, tj). (12)

It is desired that this error is bounded to ensure stability.
The truncation error T (x1, x2, t) will be defined as:

T (x1, x2, t) :=
∆+ty(x1, x2, t)

∆t
− σ

(
β1y(x1, x2, t) + β2

∆+x1y(x1, x2, t)

h

+ β3
∆+x2y(x1, x2, t)

k
+ β4

δx1y(x1, x2, t)

h2

+ β5
δx2y(x1, x2, t)

k2
+ β6

∆+x1x2y(x1, x2, t)

hk

+ β7
∆+x1δ

2
x2y(x1, x2, t)

hk2
+ β8

∆+x2δ
2
x1y(x1, x2, t)

kh2

+ β9
δ2
x1δ

2
x2y(x1, x2, t)

k2h2

)
.

(13)

Normally the activation function should be around the second term until the last term.
However, this special truncation error is chosen for convenience.

It is known that Y j
n,m satisfies the discretization and y(x1n, x2m, tj) satisfies the forward

difference. Such that the error, see equation (12), can be rewritten:

ej+1
n,m =Y j+1

n,m − y(x1n, x2m, tj + ∆t)

=Y j
n,m + σ

(
β1∆tY j

n,m + β2
∆t

h
∆+x1Y

j
n,m + β3

∆t

k
∆+x2Y

j
n,m

+ β4
∆t

h2
δx1Y

j
n,m + β5

∆t

k2
δx2Y

j
n,m + β6

∆t

hk
∆+x1x2Y

j
n,m

+ β7
∆t

hk2
∆+x1δ

2
x2Y

j
n,m + β8

∆t

kh2
∆+x2δ

2
x1Y

j
n,m + β9

∆t

k2h2
δ2
x1δ

2
x2Y

j
n,m

)
− y(x1n, x2m, tj)−∆+ty(x1n, x2m, tj).

From now on, the combination of all finite differences in the previous equation will be
denoted as (since Y j

n,m = ỹ(x1n, x2m, tj) for some approximation ỹ of y):

Dx1,x2,tv(x1, x2, t) :=β1v(x1, x2, t) + β2
1

h
∆+x1v(x1, x2, t) + β3

1

k
∆+x2v(x1, x2, t).

+ β4
1

h2
δx1v(x1, x2, t) + β5

1

k2
δx2v(x1, x2, t)

+ β6
1

hk
∆+x1x2v(x1, x2, t) + β7

1

hk2
∆+x1δ

2
x2v(x1, x2, t)

+ β8
1

kh2
∆+x2δ

2
x1v(x1, x2, t) + β9

1

k2h2
δ2
x1δ

2
x2v(x1, x2, t).

(14)

Using this notation and the definition of the error (12), the following can be seen:

ej+1
n,m =Y j

n,m − y(x1n, x2m, tj) + σ
(
∆tDx1,x2,tY

j
n,m

)
−∆+ty(x1n, x2m, tj)

=ejn,m + σ
(
∆tDx1,x2,te

j
n,m + ∆tDx1,x2,ty(x1n, x2m, tj)

)
−∆+ty(x1n, x2m, tj).

(15)
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Furthermore, using the definition 14 for the definition of the truncation error, see equation
(13), the truncation error is given by:

T (x1, x2, t) =
∆+ty(x1, x2, t)

∆t
− σ(Dx1,x2,ty(x1, x2, t)). (16)

Now four cases will be considered:

• Case 1: Dx1,x2,te
j
n,m +Dx1,x2,ty(x1n, x2m, tj) ≥ 0 and Dx1,x2,ty(x1n, x2m, tj) ≥ 0

• Case 2: Dx1,x2,te
j
n,m +Dx1,x2,ty(x1n, x2m, tj) ≥ 0 and Dx1,x2,ty(x1n, x2m, tj) < 0

• Case 3: Dx1,x2,te
j
n,m +Dx1,x2,ty(x1n, x2m, tj) < 0 and Dx1,x2,ty(x1n, x2m, tj) < 0

• Case 4: Dx1,x2,te
j
n,m +Dx1,x2,ty(x1n, x2m, tj) < 0 and Dx1,x2,ty(x1n, x2m, tj) ≥ 0

Case 1 In this case the activation function of the term within the activation function is
the term itself, since a LeakyReLU is used on a positive term, so:

ej+1
n,m = ejn,m + ∆tDx1,x2,te

j
n,m + ∆tDx1,x2,ty(x1n, x2m, tj)−∆+ty(x1n, x2m, tj).

For the truncation error as previously defined the following holds:

T (x1n, x2m, tj) =
∆+ty(x1n, x2m, tj)

∆t
−Dx1,x2,ty(x1n, x2m, tj).

Thus, in this case the following holds:

ej+1
n,m = ejn,m + ∆tDx1,x2,te

j
n,m −∆tT (x1n, x2m, tj).

Taking the absolute value and using the triangle inequality results in the following:

|ej+1
n,m| ≤ |ejn,m + ∆tDx1,x2,te

j
n,m|+ ∆t|T (x1n, x2m, tj)|.

Case 2 In this case the LeakyReLU is again used on a positive term, so:

ej+1
n,m = ejn,m + ∆tDx1,x2,te

j
n,m + ∆tDx1,x2,ty(x1n, x2m, tj)−∆+ty(x1n, x2m, tj).

However, for the term within the activation function of the truncation error is negative,
see equation (16), which means that:

T (x1n, x2m, tj) =
∆+ty(x1n, x2m, tj)

∆t
− α (Dx1,x2,ty(x1n, x2m, tj)) .

Substituting this into the equation for the error (15) gives:

ej+1
n,m = ejn,m + ∆tDx1,x2,te

j
n,m + (1− α)∆tDx1,x2,ty(x1n, x2m, tj)−∆tT (x1n, x2m, tj).

Taking the absolute value of both sides and applying the triangle inequality gives:

|ej+1
n,m| ≤ |ejn,m+∆tDx1,x2,te

j
n,m+(1−α)∆tDx1,x2,ty(x1n, x2m, tj)|+∆t|T (x1n, x2m, tj)|. (17)

Since it is given that Dx1,x2,te
j
n,m+Dx1,x2,ty(x1n, x2m, tj) ≥ 0 and Dx1,x2,ty(x1n, x2m, tj) <

0, it is clear that:

−Dx1,x2,te
j
n,m ≤ Dx1,x2,ty(x1n, x2m, tj) < 0. (18)

Now this case will be split in two subcases:
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• Case 2.1: ejn,m + ∆tDx1,x2,te
j
n,m + (1− α)Dx1,x2,ty(x1n, x2m, tj) ≥ 0

• Case 2.2: ejn,m + ∆tDx1,x2,te
j
n,m + (1− α)Dx1,x2,ty(x1n, x2m, tj) < 0

Case 2.1 In this case the first term of the right hand side of equation (17) is the absolute
value of a positive number. From equation (18) it is known that Dx1,x2,ty(x1n, x2m, tj) < 0,
combining this yields:

|ej+1
n,m| ≤ |ejn,m + ∆tDx1,x2,te

j
n,m|+ ∆t|T (x1n, x2m, tj)|

Case 2.2 Now, the first term of the right hand side of equation (17) is the absolute value of a
negative number. By equation (18) it is known that−Dx1,x2,te

j
n,m ≤ Dx1,x2,ty(x1n, x2m, tj).

Combining these equations gives:

|ej+1
n,m| ≤ |ejn,m + ∆tDx1,x2,te

j
n,m − (1− α)∆tDx1,x2,te

j
n,m|+ ∆t|T (x1n, x2m, tj)|

= |ejn,m + α∆tDx1,x2,te
j
n,m|+ ∆t|T (x1n, x2m, tj)|

Case 3 In this case the LeakyReLU in the error equation 15 is applied to a negative term,
which implies:

ej+1
n,m = ejn,m + α∆t(Dx1,x2,te

j
n,m +Dx1,x2,ty(x1n, x2m, tj))−∆+ty(x1n, x2m, tj). (19)

The term within the activation function in the truncation error (16) is negative as well,
such that:

T (x1n, x2m, tj) =
∆+ty(x1n, x2m, tj)

∆t
− α (Dx1,x2,ty(x1n, x2m, tj)) . (20)

Combining equations (19) and (20) yields:

ej+1
n,m = ejn,m + α∆tDx1,x2,te

j
n,m −∆tT (x1n, x2m, tj).

By taking the absolute value of this expression an upper bound for the error is found in
this case as well:

|ej+1
n,m| ≤ |ejn,m + α∆tDx1,x2,te

j
n,m|+ ∆t|T (x1n, x2m, tj)|.

Case 4 For this case, just like case 3, the activation function in the equation for the error
is applied to a negative term, so again:

ej+1
n,m = ejn,m + α∆t(Dx1,x2,te

j
n,m +Dx1,x2,ty(x1n, x2m, tj))−∆+ty(x1n, x2m, tj).

However, this time the activation function in the truncation error is applied to a positive
term, such that:

T (x1n, x2m, tj) =
∆+ty(x1n, x2m, tj)

∆t
−Dx1,x2,ty(x1n, x2m, tj).

Substituting this equation into that of the error (15), gives:

ej+1
n,m = ejn,m +α∆tDx1,x2,te

j
n,m + (α− 1)∆tDx1,x2,ty(x1n, x2m, tj))−∆tT (x1n, x2m, tj).

Taking the absolute value of both sides and using the triangle inequality, the following is
obtained:

|ej+1
n,m| = |ejn,m + α∆tDx1,x2,te

j
n,m + (α− 1)∆tDx1,x2,ty(x1n, x2m, tj))|+ ∆t|T (x1n, x2m, tj)|.

(21)

33



Now, since Dx1,x2,te
j
n,m + Dx1,x2,ty(x1n, x2m, tj) < 0 and Dx1,x2,ty(x1n, x2m, tj) ≥ 0 are

given, it can be seen that:

0 ≤ Dx1,x2,ty(x1n, x2m, tj) < −Dx1,x2,te
j
n,m. (22)

This case will again, like case 2, be split into two subcases:

• Case 4.1: ejn,m + α∆tDx1,x2,te
j
n,m + (α− 1)∆tDx1,x2,ty(x1n, x2m, tj)) ≥ 0

• Case 4.2: ejn,m + α∆tDx1,x2,te
j
n,m + (α− 1)∆tDx1,x2,ty(x1n, x2m, tj)) < 0

Case 4.1: From equation (22) it is known that Dx1,x2,ty(x1n, x2m, tj) < −Dx1,x2,te
j
n,m.

Furthermore it was given that the first term on the right hand side of equation (21) is
positive, combining this yields:

|ej+1
n,m| = |ejn,m + α∆tDx1,x2,te

j
n,m − (α− 1)∆tDx1,x2,te

j
n,m|+ ∆t|T (x1n, x2m, tj)|

= |ejn,m + ∆tDx1,x2,te
j
n,m|+ ∆t|T (x1n, x2m, tj)|.

Case 4.2: From equation (22) it is given that 0 ≤ Dx1,x2,ty(x1n, x2m, tj). Combining this
with the given that the first term of the right hand side of equation (21) is negative, the
following can be obtained:

|ej+1
n,m| = |ejn,m + α∆tDx1,x2,te

j
n,m|+ ∆t|T (x1n, x2m, tj)|.

For every case one of the two following bounds hold for the error at time tj+1 at position
(x1n, x2m):

1. Bound 1: |ej+1
n,m| ≤ |ejn,m + ∆tDx1,x2,te

j
n,m|+ ∆t|T (x1n, x2m, tj)|

2. Bound 2: |ej+1
n,m| ≤ |ejn,m + α∆tDx1,x2,te

j
n,m|+ ∆t|T (x1n, x2m, tj)|

Where bound 1 holds for case 1, case 2.1 and case 4.1 and bound 2 holds for case 2.2, case
3 and case 4.2. Substituting the definition of Dx1,x2,t and rewriting the result the following
is found for bound 1:

|ej+1
n,m| =|ejn,m + β1e

j
n,m + β2

∆t

h
∆+x1e

j
n,m + β3

∆t

k
∆+x2e

j
n,m.

+ β4
∆t

h2
δx1e

j
n,m + β5

∆t

k2
δx2e

j
n,m + β6

∆t

hk
∆+x1x2e

j
n,m

+ β7
∆t

hk2
∆+x1δ

2
x2e

j
n,m + β8

∆t

kh2
∆+x2δ

2
x1e

j
n,m

+ β9
∆t

k2h2
δ2
x1δ

2
x2e

j
n,m|+ ∆t|T (x1n, x2m, tj)|.
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Rearranging these terms yields:

|ej+1
n,m| =

∣∣∣∣[1 + ∆t

(
β1 −

β2

h
− β3

k
− 2β4

h2
− 2β5

k2
+

2β7

hk2
+

2β8

h2k
+

4β9

h2k2

)]
ejn,m

+ ∆t

[
−β6

4hk
+

β8

h2k
+

β9

h2k2

]
ejn−1,m+1

+ ∆t

[
β3

k
+
β5

k2
− β7

hk2
+

2β8

h2k
− 2β9

h2k2

]
ejn,m+1

+ ∆t

[
β6

4hk
+

β7

hk2
+

β8

h2k
+

β9

h2k2

]
ejn+1,m+1

+ ∆t

[
β4

h2
− β8

h2k
− 2β9

h2k2

]
ejn−1,m

+ ∆t

[
β2

k
+
β4

h2
− 2β7

hk2
− β8

h2k
− 2β9

h2k2

]
ejn+1,m

+ ∆t

[
β6

4hk
+

β9

h2k2

]
ejn−1,m−1

+ ∆t

[
β5

k2
− β7

hk2
− 2β9

h2k2

]
ejn,m−1

+ ∆t

[
−β6

4hk
+

β7

hk2
+

β9

h2k2

]
ejn+1,m−1

∣∣∣∣+ ∆t|T (x1n, x2m, tj)|.

(23)

The terms in front of the error terms at time tj are exactly the parametrizations of the
weights θ defined in equation (6) in Section 3.2. This means that equation (23) can be
rewritten as:

|ej+1
n,m| =

∣∣∣(1 + ∆tθ5)ejn,m + ∆tθ1e
j
n−1,m+1 + ∆tθ2e

j
n,m+1 + ∆tθ3e

j
n+1,m+1

+ ∆tθ4e
j
n−1,m + ∆tθ6e

j
n+1,m + ∆tθ7e

j
n−1,m−1

+∆tθ8e
j
n,m−1 + ∆tθ9e

j
n+1,m−1

∣∣∣+ ∆t|T (x1n, ym, tj)|.

Using the triangle inequality, this gives the following:

|ej+1
n,m| ≤|(1 + ∆tθ5)ejn,m|+ |∆tθ1e

j
n−1,m+1|+ |∆tθ2e

j
n,m+1|+ |∆tθ3e

j
n+1,m+1|

+|∆tθ4e
j
n−1,m|+ |∆tθ6e

j
n+1,m|+ |∆tθ7e

j
n−1,m−1|

+|∆tθ8e
j
n,m−1|+ |∆tθ9e

j
n+1,m−1|+ ∆t|T (x1n, x2m, tj)|.

(24)

Now an important assumption will be made, nonnegativity will be assumed for all weights
except θ5 and nonnegativity of 1+∆θ5 is assumed. These will be two conditions that need
to be imposed for stability:

• θi ≥ 0 for i 6= 5

• 1 + ∆tθ5 ≥ 0

If these conditions are met, equation (24) can be rewritten such that:

|ej+1
n,m| ≤(1 + ∆tθ5)|ejn,m|+ ∆tθ1|ejn−1,m+1|+ ∆tθ2|ejn,m+1|+ ∆tθ3|ejn+1,m+1|

+∆tθ4|ejn−1,m|+ ∆tθ6|ejn+1,m|+ ∆tθ7|ejn−1,m−1|

+∆tθ8|ejn,m−1|+ ∆tθ9|ejn+1,m−1|+ ∆t∆t|T (x1n, x2m, tj)|.

(25)
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Now suppose the maximum absolute error at time tj is defined as Ej :

Ej := max
{
|ejn,m| : n ∈ (1, 2, ..., N),m ∈ (1, 2, ...,M)

}
.

Combining the definition of Ej with equation (25) yields the following:

|ej+1
n,m| ≤(1 + ∆tθ5)Ej + ∆tθ1E

j + ∆tθ2E
j + ∆tθ3E

j + ∆tθ4E
j

+ ∆tθ6E
j + ∆tθ7E

j + ∆tθ8E
j + ∆tθ9E

j + ∆t|T (x1n, x2m, tj)|.

Rewriting this expression gives the following form:

|ej+1
n,m| ≤

(
1 + ∆t

9∑
i=1

θi

)
Ej + ∆t|T (x1n, x2m, tj)|. (26)

Doing the same for bound two, which was given by:

|ej+1
n,m| ≤ |ejn,m + α∆tDx1,x2,te

j
n,m|+ ∆t|T (x1n, x2m, tj)|,

and assuming θi ≥ 0 for i 6= 5 and 1 + α∆tθ5 ≥ 0 gives the bound:

|ej+1
n,m| ≤

(
1 + α∆t

9∑
i=1

θi

)
Ej + ∆t|T (x1n, x2m, tj)|.

Summarizing, the following has been found so far, given θi ≥ 0 for i 6= 5:

• Bound 1: |ej+1
n,m| ≤

(
1 + ∆t

∑9
i=1 θi

)
Ej + ∆t|T (x1n, x2m, tj)|, given 1 + ∆tθ5 ≥ 0

• Bound 2: |ej+1
n,m| ≤

(
1 + α∆t

∑9
i=1 θi

)
Ej + ∆t|T (x1n, x2m, tj)|, given 1 +α∆tθ5 ≥ 0

Another condition will be imposed on the weights, the sum of the weights should add up
to zero:

•
∑9

i=1 θi = 0.

This changes the previous bounds to:

• Bound 1: |ej+1
n,m| ≤ Ej + ∆t|T (x1n, x2m, tj)|, given 1 + ∆tθ5 ≥ 0

• Bound 2: |ej+1
n,m| ≤ Ej + ∆t|T (x1n, x2m, tj)|, given 1 + α∆tθ5 ≥ 0

Thus these bounds reduce to the same bound. However the conditions under which these
hold are still different. Rewriting both conditions, gives the following forms:

∆t ≤ 1

−θ5
and ∆t ≤ 1

−αθ5
. (27)

This uses the given that θ5 ≤ 0, since all other weights are required to be positive and the
sum of the weights should be 0. Now since 0 < α < 1 and θ5 ≤ 0, the first condition from
equation (27) is the strongest. The other condition is satisfied as well as the first is. Thus,
obtained so far is the bound:

|ej+1
n,m| ≤ Ej + ∆t|T (x1n, x2m, tj)|. (28)

Given conditions:
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• θi ≥ 0 for i 6= 5

•
∑9

i=1 θi = 0

• ∆t ≤ 1
−θ5

Since equation (28) holds for all n ∈ {1, 2, ..., N} and m ∈ {1, 2, ...,M} it also holds for
the position at which |ejn,m| reaches it maximum at time tj+1, such that:

Ej+1 ≤ Ej + ∆t|T (x1n, x2m, tj)|.

Using an induction argument it can be shown that, given E0 = 0, this implies:

Ej+1 ≤ n∆t|T (x1n, x2m, tj)|.

Now, since the truncation error is bounded, see appendix E:

Ej+1 −→ 0 as∆t −→ 0.

Given the following conditions hold:

• θi ≥ 0 for i 6= 5

•
∑9

i=1 θi = 0

• |∆t ≤ 1
−θ5

Meaning stability is ensured given these conditions.

E Truncation error

A bound for the truncation error can be found. Each term in the truncation error can be
expanded using Taylor series expansions.

E.1 Taylor series expansions

The Taylor series expansions around (x1, x2) for each of the finite differences used in the
discretization are to be obtained. For the first order finite difference the following can be
found:

∆+x1y(x1, x2, t) =y(x1 + h, x2, t)− y(x1, x2, t)

= y(x1, x2, t) + hyx1 +
1

2
h2yx1x1 +

1

6
h3yx1x1x1 + ...− y(x1, x2, t)

= hyx1 +
1

2
h2yx1x1 +

1

6
h3yx1x1x1 + ...

∆+x2y(x1, x2, t) =kyx2 +
1

2
k2yx2x2 +

1

6
k3yx2x2x2 + ...

∆+ty(x1, x2, t) =∆tyt(x1, x2, t) +
1

2
∆t2ytt +

1

6
∆t3yttt + ...

Now Lagrange remainder terms can be introduced, which denote the truncation error
for the specific Taylor approximation, for more on the Lagrange remainder see [2]. Let
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ξ∆x1 ∈ (x1 − h, x1 + h), γ∆x2 ∈ (x2 − k, x2 + k) and st ∈ (t, t+ ∆t). These can be chosen
such that:

∆+x1y(x1, x2, t) =hyx1(x1, x2, t) +
1

2
∆tytt(ξ∆x1 , x2, t)

∆+x2y(x1, x2, t) =kyx2(x1, x2, t) +
1

2
k2yx2x2(x1, γ∆x2 , t)

∆+ty(x1, x2, t) =∆tyt(x1, x2, t) +
1

2
∆t2ytt(x1, x2, st)

For the second order central differences the following can be found, introducing remainders
ξδx1 ∈ (x1 − h, x1 + h) and γδx2 ∈ (x2 − k, x2 + k):

δ2
x1y(x1, x2, t) = y(x1 + h, x2, t)− 2y(x1, x2, t) + y(x1 − h, x2, t)

= y(x1, x2, t) + hyx1 +
1

2
h2yx1x1 +

1

6
h3yx1x1x1 +

1

24
h4yx1x1x1x1 + ...

− 2y(x1, x2, t) + y(x1, x2, t)− hyx1 +
1

2
h2yx1x1

− 1

6
h3yx1x1x1 +

1

24
h4yx1x1x1x1 + ...

= h2yx1x1(x1, x2, t) +
1

12
h4yx1x1x1x1(ξδx1 , x2, t),

δ2
x2y(x1, x2, t) = k2yx2x2(x1, x2, t) +

1

12
k4yx2x2x2x2(x1, γδx2 , t).

For the second order mixed forward difference the following can be found, letting ξ(1)
∆+x1x2

∈

(x1, x1 + h), ξ(2)
∆+x1x2

∈ (x1, x1 + h), γ(1)
∆+x1x2

∈ (x2, x2 + h) and γ(2)
∆+x1x2

∈ (x2, x2 + h):

∆+x1x2y(x1, x2, t) = y(x1 + h, x2 + k, t)

− y(x1, x2 + k, t)− y(x1 + h, x2, t) + y(x1, x2, t)

= hkyx1x2(x1, x2, t) +
1

2
h2kyx1x1x2(ξ

(1)
∆+x1x2

, γ
(1)
∆+x1x2

, t)

+
1

2
hk2yx1x2x2(ξ

(2)
∆+x1x2

, γ
(2)
∆+x1x2

, t).

For the third order mixed central difference followed by forward difference the following
holds, if ξ∆+x1δ

2
x2
∈ (x1, x1 + h) and γ∆+x1δ

2
x2
∈ (x2 − k, x2 + k):

∆+x1δ
2
x2y(x1, x2, t) = y(x1 + h, x2 + k, t)− 2y(x1 + h, x2, t) + y(x1 + h, x2 − k, t)

− y(x1, x2 + k, t) + 2y(x1, x2, t)− y(x1, x2 − k, t)

= hk2yx1x2x2(x1, x2, t) +
1

2
h2k2yx1x1x2x2(ξ∆+x1δ

2
x2
, γ∆+x1δ

2
x2
, t),

and let ξ∆+x2δ
2
x1
∈ (x1 − h, x1 + h) and γ∆+x2δ

2
x1
∈ (x2, x2 + k), such that:

∆+x2δ
2
x1y(x1, x2, t) = hk2yx1x2x2(x1, x2, t) +

1

2
h2k2yx1x1x2x2(ξ∆+x2δ

2
x1
, γ∆+x2δ

2
x1
, t).

Given some:

• ξ(1)
δ2x1δ

2
x2

∈ (x1 − h, x1 + h)

• ξ(2)
δ2x1δ

2
x2

∈ (x1 − h, x1 + h)
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• γ(1)
δ2x1δ

2
x2

∈ (x2 − k, x2 + k)

• γ(2)
δ2x1δ

2
x2

∈ (x2 − k, x2 + k)

the following holds for the fourth order mixed central difference:

δ2
x1δ

2
x2y(x1, x2, t) : = y(x1 + h, x2 + k, t)− 2y(x1 + h, x2, t) + y(x1 + h, x2 − k, t)

− 2y(x1, x2 + k, t) + 4y(x1, x2, t)− 2y(x1, x2 − k, t)
+ y(x1 − h, x2 + k, t)− 2y(x1 − h, x2, t) + y(x1 − h, x2 − k, t)

= hkyx1x1x2x2(x1, x2, t) +
1

12
h4k2yx1x1x1x1x2x2(ξ

(1)
δ2x1δ

2
x2

, γ
(1)
δ2x1δ

2
x2

, t)

+ h2k4 1

12
yx1x1x2x2x2x2(ξ

(2)
δ2x1δ

2
x2

, γ
(2)
δ2x1δ

2
x2

, t).

E.2 Bound for truncation error

The truncation error is previously defined in Section 3.3 as:

T (x1, x2, t) =
∆+ty(x1, x2, t)

∆t
− σ(Dx1,x2,ty(x1, x2, t)).

Substituting the found Taylor expansions into the equation for the truncation error, the
following is obtained:

T (x1, x2, t) = yt(x1, x2, t) +
1

2
∆tytt(x1, x2, st)− σ(β1y(x1, x2, t).

+ β2(yx1(x1, x2, t) +
1

2
hyx1x1(γ∆x1 , x2, t))

+ β3(yx2(x1, x2, t) +
1

2
kyx2x2(x1, γ∆x2 , t))

+ β4(yx1x1(x1, x2, t) +
1

12
h2yx1x1x1x1(γδx1 , x2, t))

+ β5(yx2x2(x1, x2, t) +
1

12
k2yx2x2x2x2(x1, γδx2 , t))

+ β6(yx1x2(x1, x2, t) +
1

2
hyx1x1x2(ξ

(1)
∆+x1x2

, γ
(1)
∆+x1x2

, t)

+
1

2
kyx1x2x2(ξ

(2)
∆+x1x2

, γ
(2)
∆+x1x2

, t))

+ β7(yx1x2x2(x1, x2, t) + h
1

2
yx1x1x2x2(ξ∆+x1δ

2
x2
, γ∆+x1δ

2
x2
, t))

+ β8(yx1x1x2(x1, x2, t) + k
1

2
yx1x1x2x2(ξ∆+x1δ

2
x2
, γ∆+x2δ

2
x1
, t)

+ β9(yx1x1x2x2(x1, x2, t) +
1

12
h2yx1x1x1x1x2x2(ξ

(1)
δ2x1δ

2
x2

, γ
(1)
δ2x1δ

2
x2

, t)

+
1

12
k2yx1x1x2x2x2x2(ξ

(2)
δ2x1δ

2
x2

, γ
(2)
δ2x1δ

2
x2

, t))).
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Rearranging this equation gives:

T (x1, x2, t) = yt(x1, x2, t) +
1

2
∆tytt(x1, x2, st)− σ(β1y(x1, x2, t)

+ β2yx1(x1, x2, t) + β3yx2(x1, x2, t) + β4yx1x1(x1, x2, t)

+ β5yx2x2(x1, x2, t) + β6yx1x2(x1, x2, t) + β7yx1x2x2(x1, x2, t).

+ β8yx1x1x2(x1, x2, t) + β9yx1x1x2x2(x1, x2, t))

+ (β2
1

2
hyx1x1(γ∆x1 , x2, t) + β3

1

2
kyx2x2(x1, γ∆x2 , t)

+ β4
1

12
h2yx1x1x1x1(γδx1 , x2, t)

+ β5
1

12
k2yx2x2x2x2(x1, γδx2 , t)

+ β6(
1

2
hyx1x1x2(ξ

(1)
∆+x1x2

, γ
(1)
∆+x1x2

, t) +
1

2
kyx1x2x2(ξ

(2)
∆+x1x2

, γ
(2)
∆+x1x2

, t))

+ β7k
1

2
yx1x1x2x2(ξ∆+x2δ

2
x1
, γ∆+x2δ

2
x1
, t)

+ β8k
1

2
yx1x1x2x2(ξ∆+x1δ

2
x2
, γ∆+x2δ

2
x1
, t)

+ β9
1

12
(h2yx1x1x1x1x2x2(ξ

(1)
δ2x1δ

2
x2

, γ
(1)
δ2x1δ

2
x2

, t)

+ k2yx1x1x2x2x2x2(ξ
(2)
δ2x1δ

2
x2

, γ
(2)
δ2x1δ

2
x2

, t))).

(29)

For notational reasons the following are defined:

Ts(y) : = β1y + β2yx1 + β3yx2 + β4yx1x1 + β5yx2x2

+ β6yx1x2 + β7yx1x2x2 + β8yx1x1x2 + β9yx1x1x2x2 ,

Tl(y) : = β2
1

2
hyx1x1(γ∆x1 , x2, t) + β3

1

2
kyx2x2(x1, γ∆x2 , t)

+ β4
1

12
h2yx1x1x1x1(γδx1 , x2, t) + β5

1

12
k2yx2x2x2x2(x1, γδx2 , t)

+ β6
1

2
(hyx1x1x2(ξ

(1)
∆+x1x2

, γ
(1)
∆+x1x2

, t)) + kyx1x2x2(ξ
(2)
∆+x1x2

, γ
(2)
∆+x1x2

, t)))

+ β7
1

2
hyx1x1x2x2(ξ∆+x2δ

2
x1
, γ∆+x2δ

2
x1
, t)

+ β8
1

2
kyx1x1x2x2(ξ∆+x1δ

2
x2
, γ∆+x2δ

2
x1
, t)

+ β9
1

12
(h2yx1x1x1x1x2x2(ξ

(1)
δ2x1δ

2
x2

, γ
(1)
δ2x1δ

2
x2

, t)

+ k2yx1x1x2x2x2x2(ξ
(2)
δ2x1δ

2
x2

, γ
(2)
δ2x1δ

2
x2

, t)).

(30)

Using this notation equation (29) can be rewritten as the following:

T (x1, x2, t) = yt(x1, x2, t) +
1

2
∆tytt(x1, x2, st)− σ (Ts(y) + Tl(y)) .

Now four cases will be considered:

• Case 1: Ts(y) + Tl(y) ≥ 0 and Ts(y) ≥ 0

• Case 2: Ts(y) + Tl(y) ≥ 0 and Ts(y) < 0
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• Case 3: Ts(y) + Tl(y) < 0 and Ts(y) ≥ 0

• Case 4: Ts(y) + Tl(y) < 0 and Ts(y) < 0

Case 1: In this case the truncation error equals:

T (x1, x2, t) = yt(x1, x2, t) +
1

2
∆tytt(x1, x2, st)− (Ts(y) + Tl(y)) . (31)

Now, since Ts(y) ≥ 0:

Ts(y) = σ(Ts(s)).

Substituting this back into equation (31) yields:

T (x1, x2, t) = yt(x1, x2, t)− σ (Ts(y)) +
1

2
∆tytt(x1, x2, st)− Tl(y). (32)

Here the first part satisfies the partial differential equation at hand, such that the truncation
error is given by:

T (x1, x2, t) =
1

2
∆tytt(x1, x2, st)− Tl(y). (33)

Taking the absolute value of both sides yields:

|T (x1, x2, t)| = |
1

2
∆tytt(x1, x2, st)− Tl(y)|.

≤ |1
2

∆tytt(x1, x2, st)|+ |Tl(y)|.

Case 2: In this case the truncation error is the same as equation (31). Taking the absolute
value of this expression yields:

|T (x1, x2, t)| = |yt(x1, x2, t) +
1

2
∆tytt(x1, x2, st)− (Ts(y) + Tl(y)) |. (34)

Now two subcases will be considered:

• Case 2.1: yt(x1, x2, t) + 1
2∆tytt(x1, x2, st)− (Ts(y) + Tl(y)) ≥ 0

• Case 2.2: yt(x1, x2, t) + 1
2∆tytt(x1, x2, st)− (Ts(y) + Tl(y)) < 0

Case 2.1: Since Ts(y) < 0 and Ts(y) + Tl(y)+ ≥ 0:

|Ts(y)| ≤ |Tl(y)|. (35)

Using that yt(x1, x2, t)−σ(Ts(y)) = yt(x1, x2, t)−α(Ts(y)) = 0, since it satisfies the partial
differential equation and combining this with equation (34), the following is obtained:

|T (x1, x2, t)| = |(α− 1)Ts(y) +
1

2
∆tytt(x1, x2, st)− Tl(y)|

≤ (1− α)|Ts(y)|+ |Tl(y)|+ |1
2

∆tytt(x1, x2, st)|.

Combining this with equation (35), yields the following upper bound:

|T (x1, x2, t)| ≤ (1− α)|Tl(y)|+ |Tl(y)|+ |1
2

∆tytt(x1, x2, st)|

≤ 2|Tl(y)|+ |1
2

∆tytt(x1, x2, st)|.
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Case 2.2: It is given that Ts(y) < 0 and 0 < α < 1, such that:

−Ts(y) > −αTs(y).

Since it is now given that equation (34) is negative, the following upper bound is obtained:

|T (x1, x2, t)| = |yt(x1, x2, t)− αTs(y) +
1

2
∆tytt(x1, x2, st)− Tl(y)|.

Like the previous case 2.1, yt(x1, x2, t)−α(Ts(y)) = 0 since it satisfies the PDE, such that:

|T (x1, x2, t)| = |
1

2
∆tytt(x1, x2, st)|+ |Tl(y)|.

Case 3: From the given conditions for this case, the following truncation error follows:

|T (x1, x2, t)| = |yt(x1, x2, t)− αTs(y) +
1

2
∆tytt(x1, x2, st)− αTl(y)|. (36)

Now two subcases will be considered again:

• Case 3.1: yt(x1, x2, t) + 1
2∆tytt(x1, x2, st)− (Ts(y) + Tl(y)) ≥ 0

• Case 3.2: yt(x1, x2, t) + 1
2∆tytt(x1, x2, st)− (Ts(y) + Tl(y)) < 0

Case 3.1: Since it is given that |Ts + Tl| < 0 and Ts ≥ 0, the following holds:

|Ts(y)| < |Tl(y)|. (37)

It is known that yt(x1, x2, t)−Ts(y) = yt(x1, x2, t)−σ(Ts(y)) = 0 since Ts(y) > 0 and this
satisfies the PDE, combining this with the inequality (37) and expression for the truncation
error, see equation (36), gives:

|T (x1, x2, t)| = |(1− α)Ts(y) +
1

2
∆tytt(x1, x2, st)− αTl(y)|

≤ (1− α)|Ts(y)|+ α|Tl(y)|+ |1
2

∆tytt(x1, x2, st)|

≤ |Tl(y)|+ |1
2

∆tytt(x1, x2, st)|.

Case 3.2: Since Ts(y) < 0 and 0 < α < 0, the following holds:

−Ts(y) < −αTs(y).

Since it is given that, in this case, the term within the absolute operator in equation (37)
is negative, the following holds:

|T (x1, x2, t)| ≤ |yt(x1, x2, t)− Ts(y) +
1

2
∆tytt(x1, x2, st)− αTl(y)|.

The first part within the absolute signs of the right hand of the equation again satisfies
the PDE, such that:

|T (x1, x2, t)| ≤ |
1

2
∆tytt(x1, x2, st)− αTl(y)|

≤ |1
2

∆tytt(x1, x2, st)|+ α|Tl(y)|.
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Case 4: In this case the truncation error is given by:

|T (x1, x2, t)| = |yt(x1, x2, t)− αTs(y) +
1

2
∆tytt(x1, x2, st)− αTl(y)|. (38)

Since Ts(y) < 0, yt(x1, x2, t) − αTs(y) = yt − σTs(y) = 0, since it satisfies the PDE.
Combining this with equation (38) yields:

|T (x1, x2, t)| = |
1

2
∆tytt(x1, x2, st)− αTl(y)|

≤ |1
2

∆tytt(x1, x2, st)|+ α|Tl(y)|.

For each of the cases an upper bound has been found for the absolute error. Cases 3.2.
and 4 led to the strictest upper bound, each of the other cases satisfies this bound as well.
So from now on this bound will be discussed since everything that follows from this holds
for all cases. This bound is:

|T (x1, x2, t)| ≤ |
1

2
∆tytt(x1, x2, st)|+ α|Tl(y)|.

Substituting the definition of Tl(y) as given by equation (30) and applying the triangle
inequality, yields:

|T (x1, x2, t)| ≤
1

2
∆t|ytt(x1, x2, st)|+ α|β2|

1

2
h|yx1x1(γ∆x1 , x2, t)|

+ |β3|
α

2
k|yx2x2(x1, γ∆x2 , t)|

+ |β4|
α

12
h2|yx1x1x1x1(γδx1 , x2, t)|+ |β5|

α

12
k2|yx2x2x2x2(x1, γδx2 , t)|

+ |β6|
α

2
(h|yx1x1x2(ξ

(1)
∆+x1x2

, γ
(1)
∆+x1x2

, t)|)

+ k|yx1x2x2(ξ
(2)
∆+x1x2

, γ
(2)
∆+x1x2

, t)|))

+ |β7|
α

2
h|yx1x1x2x2(ξ∆+x2δ

2
x1
, γ∆+x2δ

2
x1
, t)|

+ |β8|
α

2
k|yx1x1x2x2(ξ∆+x1δ

2
x2
, γ∆+x2δ

2
x1
, t)|

+ |β9|
α

12
(h2|yx1x1x1x1x2x2(ξ

(1)
δ2x1δ

2
x2

, γ
(1)
δ2x1δ

2
x2

, t)|

+ k2|yx1x1x2x2x2x2(ξ
(2)
δ2x1δ

2
x2

, γ
(2)
δ2x1δ

2
x2

, t)|.

Assuming each of the absolute values in the previous equation is bounded by some term,
gives the truncation error a bound of the following form:

|T (x1, x2, t)| ≤
1

2
∆tMtt +

α

2
|β2|hMx1x1 +

α

2
|β3|kMx2x2 +

α

12
|β4|h2Mx1x1x1x1

+
α

12
|β5|k2Mx2x2x2x2 +

α

2
|β6|[hMx1x1x2 + kMx1x2x2 ]

+
α

2
|β7|hMx1x1x2x2 +

α

2
|β8|kMx1x1x2x2

+
α

12
|β9|[h2Mx1x1x1x1x2x2 + k2Mx1x1x2x2x2x2 ].

Thus, the truncation error is bounded.
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F Kernels

The kernels trained for the eight layer network containing one kernel per layer can be found
in Figure 10. Trained on images of 28 by 28 pixels.

Figure 10: Kernels of the convolutional layers in ascending order (left to right, top
to bottom).
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