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Abstract

Nowadays the number of resources inside a field-programmable gate array (FPGA) are
rapidly increasing. This opens up new research fields, because most designs wont use
all the resources a FPGA has to offer. These extra resources can be used for several appli-
cations, e.g. increasing security or improving throughput.

This research looks into the possibility to use the extra resources to increase throughput
of FPGA designs. Throughput in a FPGA design goes hand in hand with the frequency
at which the FPGA is running, being able to run the FPGA at a higher frequency results
in a higher throughput. The limiting factor of the maximum frequency is the combinational
logic and routing delays. By adding registers in between the logic these delays are reduced,
which in turn increases the maximum frequency and thus increases the throughput. This
method is called pipelining.

In this thesis an automatic approach to add pipeline stages is developed, instead of
manually adapting the design. The Java tool RapidWright is used which allows for editing
the netlist and is a perfect tool to do CAD for FPGAs. The algorithm is tested on several
designs and it is shown that it does indeed improves the maximum frequency of FPGA
designs up to 35% depending on the amount of latency that is desirable. For future research
it should be looked into how RapidWright can place or route a design to further increase the
throughput.
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Chapter 1

Introduction

The field of field-programmable gate arrays (FPGAs) is continuously growing. New technolo-
gies allow for more resources to be placed on the chip and new physical structures enable
even higher frequencies than before. Not only the chip designers have a lot of challenges to
overcome, but also the vendors of the FPGA tools. These tools need to be optimal in finding
the solution in a ever increasing solution space and use several strategies to optimize for
power, size or speed. There is a lot of research going on to find new techniques for opti-
mization, however the implementation can only be done by the vendors of the FPGA tools.
Xilinx is the first big FPGA manufacturer to break the closed source nature of FPGA tools.
An open source Java framework called RapidWright enables developers to implement the
algorithms themselves.

Especially increasing the throughput is becoming more and more important, because a
lot of data is nowadays generated and should be processed as fast as possible. Previous
research has been done and it is shown that a technique called pipelining can significantly
improve the throughput [1]. In this thesis several methods will be studied that will further
increase the throughput of FPGA designs with the use of RapidWright. The methods can
be categorized in two main categories, namely changing the design or changing how the
design is placed and routed. Both these methods will be studied in the thesis.
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Chapter 2

Background

This chapter will explain the architecture and design flow details of an FPGA. This includes
the transformation of a hardware description language (HDL) into a bitstream that can be
used to program the FPGA. Moreover, the use of an external program which can modify the
design flow will be explained in detail.

2.1 FPGA Architecture

A field programmable gate array (FPGA) is a device which in terms of functionality lies
between a processor (CPU) and an application-specific integrated circuit (ASIC). An ASIC
is designed specifically for a single application and is most of the times really efficient in
doing that operation. At the other end a CPU can execute any general purpose software,
and thus do anything. An FPGA is in the middle of theses two ends. An FPGA consists of
thousands or even millions of small hardware elements that can be configured to do a logic
function. Also the interconnection between these hardware elements can be programmed.
In that way basically any hardware can be programmed on an FPGA. Currently, there are
two major vendors of FPGA devices, namely Xilinx and Altera (Now part of Intel).The focus
in this thesis will be on Xilinx FPGAs. In particular the Zynq-7000 SoC XC7Z020-CLG484-
1 [2], however the architecture that will be explained in the next sections is valid for most of
the modern FPGA chips from Xilinx.

2.1.1 Configurable Logic Blocks

The main building block of a Xilinx FPGA is a so called configurable logic block (CLB). A
CLB consists of 2 slices, namely a SLICEL or a SLICEM. The slices are connected to a
switch matrix for routing and the slices have carry wires to nearby CLBs [3]. This structure
can be seen in Figure 2.1.

Every slice consists of four lookup tables (LUTs) which can be configured as a 6-input
LUT with one output or a 5-input LUT with two outputs. In addition to these LUTs, a slice
consists of eight flip-flops which can be used to store a bit and can be configured to have
a synchronous or asynchronous reset. In between the LUTs and the flip-flops multiplexers

3



4 CHAPTER 2. BACKGROUND

Figure 2.1: Overview of a CLB in a Xilinx FPGA, showing the connections to other CLBs
and the switch matrix [3].

Figure 2.2: A single section inside a slice consisting of, from left to right, a LUT, carry logic,
a flip-flop, multiplexers and another flip-flop [3].

are used to select which LUT is connected to which flip-flop. An overview of a single section
inside a slice can be seen in Figure 2.2.

As stated before there are two different types of slices, namely SLICEL and SLICEM.
The slice explained above and shown in Figure 2.2 is of type SLICEL. This is the simplest
slice and is also the one that is mostly used. Approximately two thirds of the slices are
SLICEL and the rest is SLICEM. The difference between these two type of slices is that the
SLICEM has more options when configuring the LUTs inside the slice. The LUTs can also
be configured as distributed RAM (DRAM) or as a 32 bit shift register. This can be seen in
Figure 2.3a. When configured as distributed RAM one SLICEM can store a maximum 256
bits and can then by accessed by a single port. This will use all the four LUT inside the
SLICEM, but different configurations are possible in which case less LUTs will be used. For
example a dual port 64 bit RAM will use 2 LUTs. When configured as a shift register the
LUTs inside the SLICEM act as a 32 bit shift register and can be cascaded with the other
LUTs inside the SLICEM to form a 128 bit shift register. See Figure 2.3b. The eight other
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(a) Distributed RAM (b) 32 bit shift register

Figure 2.3: Configurations for LUT inside a SLICEM slice [3].

flip-flops inside the slice can still be used for other purposes.

2.1.2 Block RAM

Figure 2.4: True Dual-Port Data
Flows for a RAMB36 [4].

As stated before the LUTs inside the FPGA can be
used as DRAM. However, implementing all the mem-
ory with the CLBs is way to expensive, since only a
maximum of 256 bits can be stored per slice. Thus
Xilinx added block RAM (BRAM) tiles to the FPGA
which can be used as general purpose memory. A
single BRAM tile can store up to a maximum of 36
Kbits of data [4]. They can be configured as one 36
Kb RAM or two independent 18 Kb RAMs and can
have two independent read/write ports with indepen-
dent clocks. Moreover, two 32 Kb blocks can be cas-
caded to form a block of 64 Kbits. The usual signals
that are available for memory are also available for
the BRAM as can be seen in Figure 2.4.

2.1.3 Digital Signal Processing

One other common operation in a digital system is
to do math operations like multiplication and addi-
tion. These operation are expensive to build using
only CLBs, which is why there are digital signal pro-
cessing (DSP) slices. A DSP48E1 slice consists of
a 25x18 twos-complement multiplier, 48 bit accumu-
lator, an arithmetic logic unit and additional logic to
control the unit [5]. An overview of the DSP slice can be seen in Figure 2.5.
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Figure 2.5: Overview of the DSP48E1 slice [5].

2.2 Vivado Design Flow

Designs for FPGAs are defined using a hardware description language (HDL). The most
popular and most used languages are VHDL and Verilog. However, to transform this HDL
to an actual bitstream that can be used to program an FPGA, the design has to go through
several steps. With the Xilinx FPGAs a program called Vivado is used to do these steps.
It starts with defining a project with the HDL files, including simulation files. Step one in
the design flow is synthesis. During synthesis the HDL files are transformed into building
blocks of the FPGA, like LUT and flip-flops and the connections between those blocks. This
is stored into an file called a netlist. After synthesis, simulations can be done to check if
the netlist produces the same behaviour as before. The next step in the design flow is the
implementation step. This step consists of 2 sub steps, placing and routing the design.
In between these steps optimizations can take place, such as removing unused elements.
When placing the design, Vivado tries to map all the logical blocks inside the netlist to
physical block on the FPGA. It tries to place all the elements as close together as possible,
to increase the maximum frequency. After the successful placement of the logic cells, Vivado
tries to map all the nets inside the netlist to actual wires inside the FPGA. The switch matrixes
are configured such that the physical connections between two blocks can be made. If any
of the steps fail, the designer has to change their design accordingly. If not, Vivado will
continue with the last step which is to create a bitstream that can be used to program an
FPGA. This bitstream contains all the configuration data for the LUTs, flip-flops, memory,
routing etc and is specific to an FPGA device [6]. A summary of this design flow is shown in
Figure 2.6.

2.2.1 Constraints

Design constraints define the requirements that must be met by the compilation flow in
order for the design to be functional on the board [8]. The constraints can be categorized
in 2 categories, timing constraints and physical constraints. The timing constraints tell the
synthesizer, placer and router that a certain input clock will have a certain frequency or for
example the setup time of an input. With this information Vivado tries to use the correct
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Figure 2.6: Overview of the Vivado design flow for Xilinx FPGAs [7].

primitives, placement and routing to meet the timing. However, if these constraints can’t be
met, Vivado will warn the designer, because the design will probably not work on physical
hardware. Physical constraints are used to physically constrain the location of logic. It is
up to the designer which elements he/she want to constrain. A common physical constraint
is to constrain the location of IO ports, when the designer wants to connect an internal
signal to the outside world. Vivado uses the Xilinx Design Constraints (XDC) format. This
format is based on the constraints format of Synopsys, which uses the constraints for ASIC
design. [8].

2.3 RapidWright

RapidWright is an open-source Java framework that enables netlist and implementation ma-
nipulation of modern Xilinx FPGA and SoC designs [9]. It is the successor of RapidSmith2
and enables to directly manipulate the checkpoint files of Vivado, where as RapidSmith2
used the Tcl interface. In the following sections the different parts of RapidWright’s frame-
work will be explained.

2.3.1 Checkpoint Interface

RapidWright imports the netlist, constraints, and implementation data through a so called
checkpoint in Vivado. Checkpoints are snapshots of the design at different stages in the
Vivado’s design flow. These checkpoints can be imported into RapidWright. However, some
parts of the checkpoint can be encrypted by Vivado and in that case an extra netlist file
(edif format) has to be imported such that RapidWright can use the data. The interface can
be seen in Figure 2.7. RapidWright is also able to write these checkpoint files, such that a
design can be changed in RapidWright and exported to Vivado for further analysis. It is also
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Figure 2.7: Interface between RapidWright and Vivado using checkpoints [9].

possible to do the routing and placement manually with RapidWright.

2.3.2 Xilinx Architecture

RapidWrights API is based on the hierarchical structure of Xilinx FPGAs. There are 6 major
levels, from a basic element to a complete device. This structure can be seen in Figure
2.8. A basic element of logic (BEL) is the smallest unit in Xilinx hierarchy. There are logic
BELs and routing BELs. Logic BELs can support one or more primitive cells, which are for
example a FDRE (flip-flop with a synchronous reset), LUT4 or a RAM32M. A routing BEL is
not directly mapped to a instance in a netlist, but is obviously used to connect several logic
BELs together. The next layer is a site. This basically corresponds to a slice as explained in
Section 2.1.1. It is a group of BELs, site pins (which connect to other sites) and site wires
(connections inside the site). One layer higher comes a tile. A tile is a collection of sites.
There can be one or multiple sites inside a tile. The difference is that there are no user
visible pins. Inside a tile there are uniquely named wires that can connect to site pins or
other neighbouring tiles through a programmable interconnect point (PIP). When multiple
wires are connected together and span different tiles, this is called a node. The next layer is
a fabric sub region (FSR) or clock region. This is a 2D array of tiles and inside this FSR the
same clock source is used. Inside the bigger FPGA chips of Xilinx, multiple dies are packed
together to form one FPGA. One such a die is called a super logic region (SLR). The highest
layer is represented as a device [9].

2.3.3 RapidWright Structure

The Device class is the main class that stores all the relevant data for the layers below. All
classes inherit their names from the hierarchical structure described in the previous section.
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Figure 2.8: Hierarchical structure of Xilinx FPGAs [9]

There are two major classes in the Device class, the EDIFNetlist and Design class. The ED-
IFNetlist class represents the logical netlist which is part of every checkpoint is imported into
RapidWright. The EDIFCell and EDIFCellInst classes represent a component in the logical
netlist. That can be for example a LUT, flip-flop or an in-output buffer. The EDIFCell class is
also used to represent a component instance in HDL, however the API is not mature enough
to change a hierarchical netlist and it recommends to flatten the design before importing it
into RapidWright. Each EDIFCell has one or more EDIFPorts connected. The EDIFPort
and EDIFPortInst classes are used to describe these ports. EDIFPorts are also used to
represent ports on a component instances in a HDL. A overview of these classes can be
seen in Figure 2.9. The Design class stores the physical netlist and the constraints. The
physical netlist contains all the information regarding placement and routing. When a placed
and routed design is imported into RapidWright using the classes in the Design class, it is
possible to change the location of certain elements, or just look where the design is placed.

2.4 FPGA delays

One limiting factor to the maximum achievable frequency in a FPGA design is the delay
that results from combinational logic and routing. When a signal arrives at an input of a
logic circuit it takes some time until the output is starting to change. This is called the
contamination delay. After some time this signal stabilises and that is called the propagation
delay. It also takes time for a signal to travel from one flip-flop to the next one, because
a signal travels at a fixed speed through a conductor. This is called the routing delay. Of
course there are also delays resulting from physical properties of the structure of the FPGA,
but these can’t be changed. A summary of the delays can be seen in Figure 2.10. The
figure also includes other delays which are also relevant, but can’t be solved by changing
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Figure 2.9: An example design showing a overview of how different classes in the ED-
IFNetlist class map to ports and cells [9].

Figure 2.10: The figure shows a timing diagram of a simple design using 2 flip-flops with
combinational logic in between. The top three lines show the first flip-flop and
the bottom three the last flip-flop. With arrows the delays are shown [10].
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Figure 2.11: On the left the initial design is shown and on the right a pipeline stage is added
[1].

the design.
The maximum frequency a design can have is the maximum delay between two consec-

utive flip-flops. Let’s say we have a design that has a delay of 4 ns between two flip-flops,
but between two different flip-flops a delay of 1 ns. In that case the maximum frequency of
the whole design will be the maximum delay, thus fmax = 1

4 ns = 250 MHz. The path that
consists of this maximum delay is also called the critical path. Now to solve this problem
additional flip-flops can be added in between these flip-flops and combinational logic. This
is called pipelining. As can be seen in figure 2.11, we first start with a design that has a
maximum frequency of 250 MHz, but by adding the register in the critical path, the maxi-
mum frequency is doubled. An important thing to note here is that the parallel paths also
need an extra flip-flop to keep the functional behaviour the same. A drawback of pipelining
is the added latency to the design. As can be seen in Figure 2.11 it now takes two clock
cycles before the input reaches the output instead of one, thus the ’startup’ of the design
takes longer when adding pipeline stages. However, when a bit reaches the added flip-flop
in the middle, a new input can be send in. Thus the throughput is doubled which is a big
advantage in streaming applications.
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Chapter 3

Method

There are several methods to increase the maximum achievable frequency of a design.
There are 2 main things that can be done, adjusting the design itself or changing the place-
ment and routing of the design. This chapter will explain these 2 different methods.

3.1 Automatic Pipelining

As explained in the previous chapter, pipelining is a suitable method to increase the through-
put of FPGA designs. However, this becomes quite cumbersome when the designer has to
add all these pipeline stages manually, figure out the parallel paths and rerun the synthe-
sis/implementation after every iteration. Thus the possibly to do the pipelining automatically
was looked into. Ilya Ganusov et al. (2016) [1] describe the process of analysing the netlist
to find the flip-flops that can be added as pipeline stages in the design. A summary of how
this works will be given in the next section. The authors of this paper are part of Xilinx and
added the feature to Vivado. However, the feature only reports which registers can be added
to the design and does not automatically adds these registers. In the next chapter it will be
explained how this is done automatically.

3.1.1 Netlist Analysis

In an FPGA design not all the paths are like the one in Figure 2.11. The figure shows feed-
forward paths only. The output of a flip-flop can also be connected to an input of a LUT that
is in the same path. This creates a sequential loop. However, when adding pipeline stages
inside such a sequential loop the functional behaviour cannot be guaranteed and thus no
pipeline stages can be added to these loops. As can be seen in the Figure 3.1, the behaviour
is changed when an extra flip-flop is added in the sequential loop.

The paper describes a method that makes sure that no pipeline stages are added to
sequential loops. This starts with modeling the design as a graph. The critical path is known
and a flip-flop has to be inserted somewhere in that path. To ensure that flip-flops are also
inserted in all the parallel paths of the critical path, every path from I to O must only contain
exactly one flip-flop [1]. Figure 3.2 shows an example where this criteria is demonstrated.

13
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Figure 3.1: On the left the initial design with feedback loop and on the right a pipeline stage
is added, showing that it chances the behaviour of the design [1].

In the top figure the red line shows two paths that are invalid, because they contain more or
less than one flip-flop. However, in the bottom figure the criteria is met. For the complete
algorithm the Xilinx paper can be accessed [1].

3.1.2 Iterative Approach

The pipeline report generator that is added to Vivado by [1] is an estimation of the frequency
improvement that can be gained. To see if the pipeline stages actually increase the maxi-
mum frequency, the registers have to be inserted in the design. The generated report could
for example insert 20 pipeline stages at once. The disadvantage of this approach is that
the algorithm has no information about the timing during the insertion of the pipeline stages.
This is where the iterative approach comes into play. The iterative approach only inserts
one pipeline stage, does the placement and timing and then runs the algorithm again such
that it can use the newly available timing information. The algorithm is shown in Figure 3.3.
According to the Xilinx paper [1] this is the optimal approach and this will be implemented
using RapidWright. Now if there are no loops detected, in theory we could add pipeline
stages until the maximum frequency of the FPGA is reached.

3.2 Placement

Instead of actually changing the design, it is also possible to change or restrict the placement
and/or routing with RapidWright. A method called floorplanning is used for this. Floorplan-
ning can be best described as the introduction of placement constraints on the logic [11]. It
tells the placer that certain logic should be placed in a certain area. For example this can
be used to group logic, which are defined as a component in HDL together. Without these
constraints the placer can place all the logic where it wants. An example is shown in Figure
3.4. One can imagine that on the figure shown on the left, the routes and delays are much
longer than in the figure on the right. However, if there is some datapath between the two
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Figure 3.2: An invalid pipeline stage on top and a valid pipeline stage below. The red arrows
show the invalid paths [1].

Figure 3.3: Iterative approach to pipelining [1]
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Figure 3.4: The effect of floorplanning. The left figure shows no restrictions on the place-
ment, on the right logic is restricted to a certain area. [11]

different components, the corresponding registers should be placed as close to the bound-
ary as possible. For small designs and relatively small FPGAs the placer is good enough to
figure everything out, but for bigger designs this becomes harder. For example when a big
design cannot meet the timing, a designer can floorplan the design to try to help the placer
meet the timing. Thus, for big designs floorplanning is also a suitable method to increase
the maximum frequency.



Chapter 4

Implementation

Two methods are described in the previous section for improving the throughput of FPGA
designs. After some investigation on the feasibility of both methods the pipeline method
is chosen and implemented using RapidWright, because at the moment of writing, for such
optimizations the placement methods available in RapidWright are not sophisticated enough
yet.

The implementation consists of two main parts, which are an implementation in Java
using RapidWright and an implementation in Vivado using Tcl commands. The following
sections describe these two parts.

4.1 RapidWright

The Java part which actually parses the pipeline report and adds the registers is based
on the implementation given in [12]. The implementation used RapidSmith2 which is the
predecessor of RapidWright. The code has been ported to RapidWright and some changes
have been made. Fortunately the API of RapidWright is similar to that of RapidSmith2. The
structure of the code has been changed quite a lot to make the Java program execute faster
by using a HashMap instead of the linear algorithm that was used before. Other changes
have been made to make the code more readable.

4.1.1 Automatic pipelining

Using the report pipeline analysis Tcl command, Vivado generates the report which con-
tains all the relevant information to add the pipeline stages [13]. The report can be written
to a file and this file is used by the Java program to parse the data. In addition a checkpoint
from Vivado is exported which contains the netlist files as discussed in Section 2.3. These
two files are passed to the Java program through command-line arguments and imported
into relevant Java classes inside the program. RapidWright uses an simple API to import
the checkpoint file, namely Design.readCheckpoint and the pipeline report is parsed using
the classes: IntraClockSummary, PipelineSummary and CriticalLoops, which corresponds
to the three sections in the pipeline report. Every flip-flop that has to be added, has a Start-

17
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Point and an EndPoint, corresponding to the path in which the flip-flop has to be inserted.
Once all the data is parsed the Java program executes the following steps:

1. Searches the netlist for the VCC, GND and CLK nets which are used to connect to the
flip-flop.

2. Checks whether the design contains any loops:

(a) If there are no loops, keep on adding registers

(b) If there are loops, check whether the maximum frequency is reached and quit the
program if the maximum frequency is reached.

3. Insert the registers from the pipeline report into a HashMap, where the key is the
StartPoint, and the value is a list of EndPoints and then sort the list on the highest
amount of delay.

4. Loop through the HashMap and do the following for every entry:

(a) Take the output port of the StartPoint and loop through the EndPoints list.

(b) Add a flip-flop before every EndPoint and connect the input to the StartPoint.

5. Export the design into a Vivado checkpoint.

4.1.2 Recycling

The pipeline report that Vivado exports can contain pipeline stages that have the same
StartPoint but a different EndPoint. In [12] it was discovered that this can be optimized by
reusing the registers. This is called recycling. As can be seen in Figure 4.1 instead of adding
all the registers (Figure 4.1b), less registers can be added and the nets can be reused
(Figure 4.1c). Because of this, step 4b listed in the previous section has to be changed.
Instead of adding the flip-flops for every EndPoint in the list, we only add the flip-flops for
the first entry in the list of EndPoints. Because the list is sorted, the first entry will always be
the EndPoint that needs the most delays. All the other EndPoints with less delay but with
the same StartPoint can reuse the flip-flops and connect the EndPoint to correct flip-flop
according to the delay needed.

4.2 Tcl Commands

The iterative approach described in Section 3.1.2 is implemented using Tcl commands in
Vivado. Vivado can run a batch script from the command-line and arguments can be given
to the script. In this way the script expects three arguments, a Vivado checkpoint, number
of loops the script should run and the maximum latency added per loop. The script can
be seen in Listing 4.1. It is important that the checkpoint contains a synthesised design.
The script then places the design, runs the report pipeline analysis command and after that
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Figure 4.1: Example where recycling shaved off two flip-flops [12]
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runs a Java command using the exec Tcl command. This Java command runs the pipeline
program that is explained in the previous Section 4.1. It then checks what the return code
from the Java command is, because the Java program returns a status code of 1 when a
sequential loop is detected and the maximum frequency is reached. If this is true, the script
breaks out of the loop. However, if the status code is 0 then the pipelining was successful
and the script continues to run. It then unplaces the design and replaces it, such that the
newly add pipeline registers get placed, then the loop starts over. After it did the amount
of loops specified by the user, the script routes the design and exports a Vivado checkpoint
which can be used to for example program the design to hardware, or simulate the design
in Vivado.

i f { $argc ! = 3 } {

puts ” Usage: vivado −mode batch −source a u t o . t c l − tc largs <checkpoint> <num of loops>

<max latency added per loop>”

} else {

open checkpoint [ l index $argv 0 ]

p lace des ign

for {set i 0} { $ i < [ l index $argv 1]} { incr i } {

r e p o r t p i p e l i n e a n a l y s i s − f i l e p i p e l i n e . t x t − i n c l u d e p a t h s t o p i p e l i n e

−max added latency [ l index $argv 2 ] − repor t loops

wr i t e checkpo in t checkpo in t .dcp −force

w r i t e e d i f checkpo in t .ed f −force

set s ta tus [ catch {exec − i gnores tder r java − jar / home / t imon / p i p e l i n e r . j a r

checkpo in t .dcp p i p e l i n e . t x t >> p i p e l i n e l o g . t x t } r e s u l t ]

i f {$s ta tus == 0} {

} e l s e i f { [ str ing equal $ : :e r ro rCode NONE]} {

} else {

switch −exact −− [ l index $: :e r ro rCode 0] {

CHILDSTATUS {

foreach {− pid code} $: :e r ro rCode break

i f {$code == 1} {

break

}

}

}

}

open checkpoint checkpo in t p ipe .dcp

p lace des ign −unplace

p lace des ign

}

rou te des ign
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r e p o r t t i m i n g − f i l e t i m i n g r e s u l t . t x t

w r i t e checkpo in t checkpoint done.dcp −force

f i l e de le te {∗ } [ glob ∗ . l o g ]

f i l e de le te {∗ } [ glob ∗ . j o u ]

f i l e de le te {checkpo in t .dcp}

f i l e de le te { checkpo in t .ed f }

f i l e de le te { checkpo in t p ipe .dcp}

}

Listing 4.1: Tcl script that automatically pipelines a design
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Chapter 5

Results

For the results, several designs will be tested and the results will be discussed. This will
include designs that have sequential loops, but also designs that are already pipelined which
can be further pipelined.

5.1 Advanced Encryption Standard (AES)

AES is an encryption standard used by a lot of applications to secure data. Since the
research group CAES does a lot of research on AES cores, e.g. how to protect against
attacks, it was chosen to test how the pipeline algorithm can increase the throughput of an
AES core. There are several implementation of AES, but the unrolled version has no se-
quential loops and thus is optimal for pipelining. To compare results with [12], it was chosen
to use the exact same VHDL implementation, namely the open-source implementation pro-
vided by FreeCores [14]. The design can be synthesised in two ways, using block RAM or
using LUTs as RAM. Both options are shown in the results. In addition the design is fully
flattened and synthesised in out of context mode. This means that the in and output ports
are not included in the netlist.

Figure 5.1 shows the result of the pipeline implementation for the AES core with LUTs
only (DRAM). Before the pipelining the design uses 21% of the LUTs and 7% of the reg-
isters on the Zynq FPGA [2]. The design by itself has 30 clock cycles of latency and the
x-axis shows the extra latency that is a result of the added pipeline stages. On the left y-axis
the increase in maximum frequency is shown. As can be seen in the figure the maximum
frequency increases significantly up till 28%, depending on the amount of latency that is
desirable. The frequency increases exponentially and thus the most performance can be
gained when adding the first pipeline stages. The number of registers added increases lin-
early and is in the order of 10000 registers.

The other version of the AES core uses BRAM to implement the memory. With this
implementation less LUTs are being used. The results are shown in Figure 5.2. With this
implementation the exponential increase in frequency is less steep than Figure 5.1. How-
ever, it ends up with almost the same frequency increase of 25%. The linear increase in
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Figure 5.1: Showing the maximum frequency and the number of registers added when run-
ning the pipeline algorithm for the AES core with LUTs only.

registers is similar to Figure 5.1. Post implementation simulations show that the behavior of
the design is not changed and it outputs the correct result for a known input. However, be-
cause of the added latency the simulation needs to wait more clock cycles to get the correct
output.

5.1.1 AES core with feedback loop

The CAES group of the University of Twente provided another implementation of AES which
is different than the previous implementation and does have sequential loops. This limits the
pipelining which results in only one pipeline stage that can be added. The design starts with
a maximum frequency of 206.61 MHz and after the added pipeline stage has a maximum
frequency of 223.51MHz. This is an increase of 8%.

5.2 8 Bit Multiplier

The algorithm is also tested on a 8 bit multiplier. This multiplier is a pipelined multiplier and
it should be able to take advantage of that. The code is hosted on Github [15]. The results
are shown in Figure 5.3. As can be seen in the figure, the design starts with a maximum
frequency of 250 MHz and stabilizes around a frequency of 410 MHz. This is a increase
of 51%. The graph makes it easy to see the trade off between the added latency and the
frequency improvement. In this case it does not make sense to add more pipeline stages
after 5 stages has been added, because after that the frequency does not increase anymore.
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Figure 5.2: Showing the maximum frequency and the number of registers added when run-
ning the pipeline algorithm for the AES core including BRAMs.

Figure 5.3: Showing the maximum frequency and the number of registers added when run-
ning the pipeline algorithm for the 8 bit multiplier.
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5.3 Discussion

5.3.1 AES Core

The results show that pipelining does indeed increase the maximum frequency of a design
and thus increase the throughput. For the AES implementation which includes loops, it is
only possible to add one pipeline stage and thus the improvement is not that big. That
is the disadvantage of the pipelining. There is not yet a method to ensure that adding
pipeline stages to sequential loops, keeps the functional behaviour the same. Comparing the
pipelined version of AES to the version with sequential loops, significant gain was achieved
in maximum frequency. For the unrolled AES implementation, the difference in maximum
frequency between the BRAMs and LUTs (DRAM) design is not significant. This is because
the AES core is a big design, which results in a lot of resources being spread out over the
FPGA and thus the routing delay caps the maximum frequency. Comparing results with [12],
these results show an improvement of 7%. This shows that the iterative approach can make
use of the extra timing information available.

5.3.2 8 Bit Multiplier

Another trade off for the 8 bit multiplier is whether it can be replaced by a DSP slice. There
can be designs where there is no space anymore to use a DSP slice, or where there are
enough LUTs to use. The maximum frequency a DSP slice can have is 257.47MHZ [16].
Now the 8 bit multiplier can reach a maximum frequency up till 410MHz. This could be used
instead of a hardware multiplier when only 8 bits are used and if the latency is acceptable.

5.3.3 Latency versus Throughput

A important discussion is about the latency versus the throughput of an FPGA design. In
certain applications latency is critical, e.g. in real time applications, or gaming applications.
But in other applications latency is not critical, for example when processing a lot of data, or
when streaming music/video. In those applications it is optimal to have higher throughput, in
which case there can be more data processed. The pipeline method described in this thesis
adds latency to a design, but increases throughput. Thus there is a trade off for the designer
between latency and throughput. At the end the application determines which of the two is
more important. If throughput is more important, the pipeline method is a suitable method
to increase the throughput and adding a bit of latency.
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Conclusion and recommendations

6.1 Conclusion

From the results it can be concluded that adding pipeline stages to some designs signifi-
cantly improve throughput, with some overhead of the added latency and the extra registers.
But since the FPGAs of nowadays have more resources available, the overhead of the added
registers is less significant. One downside is that designs with sequential loops cannot take
advantage of the pipeline method, since the functional behaviour cannot be guaranteed.

The increase in throughput depends on the size of the design, but also on the type of
resources being used. This has been shown with the AES core. The maximum frequency
increase is achievable for small designs where the flip-flops and LUTs can be placed close
together, which in turn also increases the throughput. For big designs the improvement is
less.

Furthermore, the results show that RapidWright is a perfect tool to change the design
with Java code. In these results only the netlist editing functionality of RapidWright has been
used, but examples in RapidWright show that for placing and routing RapidWright can be
used too. This has not been tested in this thesis.

6.2 Recommendations

In addition to the work done in this thesis, the placement method described was not imple-
mented. A recommendation would be to try to add the placement method to RapidWright
and see if this would also increase the throughput of FPGA designs. RapidWright is able to
do the placement and routing, but this has not been tested. Moreover, more designs should
be evaluated to harden the results.

Post implementation simulations show that the output does not change, but that is not
a assurance that the design also behaves the same on physical hardware. Measurement
should be done to confirm that the design did not change with the extra added pipeline
stages.
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