
BSc Thesis Applied Mathematics

Estimating graph properties

with HyperLogLog-type

algorithms

J.J. Huizinga

Supervisor: prof.dr. N.V. Litvak

June, 2019

Department of Applied Mathematics
Faculty of Electrical Engineering,
Mathematics and Computer Science

Estimating graph properties with

HyperLogLog-type algorithms

J.J. Huizinga
⇤

June, 2019

Abstract

When one is dealing with algorithms in very large networks, the main memory often

becomes too small. Therefore, other techniques are necessary to analyse these graphs.

Boldi and Vigna showed that vertex ball cardinality can be estimated well using

HyperBall [4], which is based on HyperLogLog [11] probabilistic counters. In this paper

HyperEdgeball, similar to HyperBall, is created to estimate edgeball cardinality. Both

algorithms are used in HyperSurplus to estimate the number of surplus edges locally,

which gives good first practical results. Theory is deduced to count triangles and

4-cycles in a similar fashion, this yielded not yet in a properly performing algorithm.

Keywords: count, estimation, HyperBall, HyperEdgeball, HyperLogLog, HyperSur-

plus, graph theory, large networks, probabilistic counting, surplus edge, triangle, 4-

cycle

1 Introduction

Knowledge of graph properties is used in all kinds of practical applications. For instance,
Bechetti et al. [2] use the local triangle count to detect web spam. Algorithms that
determine the number of triangles in a set exactly exist. However, when dealing with very
large networks, the main memory of a computer becomes too small to run these kinds of
algorithms. When one still wants a triangle count, one has to settle for an estimate. But
then, when dealing with billions of vertices, one still has to severely limit the amount of
memory used per vertex, that is in the order of several bytes per vertex. Also, in practice
it is often impossible to read data at will. Therefore we rather assume that the graph can
only be accessed in a semi-streaming fashion: adjacency lists of each vertex are scanned
one after another.

Similar requirements occurred while counting distinct values in very large data sets,
probabilistic techniques have been used to estimate the cardinality of such sets. An ex-
tremely efficient algorithm that performs this task of estimation is the HyperLogLog algo-
rithm [11], a probabilistic counter with goods results in practice. This algorithm is later
extended by Boldi, Rosa and Vigna [3] to the HyperANF algorithm, which approximates
the neighbourhood function. Subsequently Boldi and Vigna extended this to HyperBall

[4], a framework for computations that depend on at most or exactly distance t from a
vertex.

In this paper we will first cover the theory basics on HyperLogLog counters and the
HyperBall algorithm. Thereafter we will introduce an algorithm similar to HyperBall :

⇤E-mail: j.j.huizinga-1@student.utwente.nl

1

HyperEdgeball. HyperEdgeball estimates the cardinality of edgeballs, which are introduced
in this paper. Edgeballs turn out to be of great help when estimating graph properties
locally.

We introduce these algorithms to lay a foundation in probabilistic counting algorithms
for graph usage. After this we study the estimation of several graph properties using Hyper-

LogLog-type algorithms: surplus edges locally, triangles and 4-cycles. Exact estimation of
these properties might be useful in several very large network applications. First practical
results also have been performed and are discussed.

1.1 Definitions and notation

Let V be a set of n vertices and E be a set of m edges, which together form the graph
G = (V,E). Each vertex is associated with a fixed unique identifier, a number between 1
and n. We use vw to indicate that there is an edge from vertex v to vertex w. In undirected
graphs vw 2 E implicates wv 2 E.

The distance, d(x, y), between vertices x and y is the length of the shortest path between
those vertices. If no path exists, then d(x, y) = 1. A vertex y is reachable from vertex x

if there exists a path from x to y, i.e. d(x, y) <1.
The ball of radius r around a vertex x is the set Br(x) = {y|d(x, y) r}, we will also

refer to this as the r-ball of x. The r-neighbourhood of a vertex x is the set Nr(x) =
Br(x) � Br�1(x), r being a positive integer. It is the set of vertices at exactly distance r

from vertex x. Notice that N1(x) contains the neighbourhood of x, therefore the notation
N (x) is also used to indicate this set.

The following definition is not commonly used, but turns out to be of great importance
from section 3 onward. We define Er(x), the r-edgeball of x, to be the set of edges that
appear in at least one path of length r starting at x 2 V . Logically, all vertices in Br(x)
are reachable via a path created with edges from Er(x).

2

2 Theory and relevant concepts

2.1 HyperLogLog counters

HyperLogLog [11] is a probabilistic counting technique to estimate the number of distinct

elements, also know as cardinality, of very large dataset Q ✓ D, where D is a domain.
Normally the cardinality of a set can be determined exactly, but when dealing with large
data, the dataset is often too large to fit in the main memory [1, 11]. Therefore it is
in practice impossible to determine the cardinality exactly, and we have to settle for an
estimation of the cardinality. For the same reason, the data often appears as a stream: a
read-once sequence with arbitrary order.

A HyperLogLog counter relies on a hash function, h : D ! {0, 1}1, that processes
an element of the dataset Q ✓ D to a hashed value, a binary string of infinite length.
Important is that the hash function is designed in such a way that the hashed values
closely resemble a uniform model of randomness, i.e. bits are independent of each other
and the probability of 0 or 1 is 1

2 . Knowing this we can use the principle of bit pattern

observables, the observation of certain bit patterns at the beginning of the hashed value.
Specifically, the HyperLogLog counter looks at the number of leading zeroes, while going
through the data it saves the maximum number of the position of the first 1. Let the
position of the leftmost 1 in a binary string x be given by ⇢(x). Let us now look at a
binary string x that starts with the pattern 0k1, so ⇢(x) = k + 1. The probability that
x starts with this pattern is (12)

k · 1
2 = (12)

k+1 = (12)
⇢(x). This is an indication that the

cardinality of the set is approximately 2⇢(x).
It might happen that the HyperLogLog counter comes across a hashed value that has

way too many leading zeros in comparison to the cardinality of the set, in this case the
cardinality is severely overestimated. To prevent this Flajolet and Martin [12] introduced
the idea of stochastic averaging, dividing the stream to get multiple estimators, in an earlier
version of the HyperLogLog algorithm. This idea is also used in another predecessor by
Durand and Flajolet [9]. The stream is divided into p = 2b substreams. For each substream
a register in the counter is instated. Then the first b bits determine in which register the

Algorithm 1 The HyperLogLog counter [11], this is the algorithm as described in [4],
approximates the number of distinct values in a data stream.
Require: h : D ! {0, 1}1, a hash function from the domain of items
1: M [�], the counter, an array of p = 2b registers (indexed from 0) and set to �1
2: function add(M : counter, x: item)
3: i hb(x)
4: M [i] max{M [i], ⇢(hb(x))}
5: end function
6: function size(M : counter)
7: Z

�Pp�1
j=0 2

�M [j]
��1

8: E ↵pp
2
Z

9: return E
10: end function
11: for each item x seen in the stream do
12: add(M,x)
13: end for
14: print size(M)

3

hashed value is placed, the other part of the hashed value is used to, as before, determine
the position of the leftmost 1. For future notation we use hb(x) to indicate the first b bits
of the hashed value of an element x, and h

b(x) to indicate the other part of the hashed
value. By increasing the number of registers better estimations are obtained, but also more
memory is needed. Both should be considered when determining the number of registers
used.

In predecessors of the algorithm the geometric mean was used. It was noticed that
the distribution of the values in the register was skewed to the right. For that reason
the HyperLogLog algorithm uses the harmonic mean, it has a tendency to prevent this
and to reduce the variance. The idea of using the harmonic mean instead originated from
Chassaing and Gérin[6].

To summarize the HyperLogLog counter, Algorithm 1: the input is a data set Q, the
output is an estimation of the cardinality of Q, i.e. |Q̂|. The elements of this set arrive
as a stream, a read-once sequence and in arbitrary order. A predetermined number of p
registers is created, where p = 2b. The registers are indexed from 0 to p � 1, the value of
register i is M [i]. The register to place the value in is determined using the fist b bits of
the hashed value of an element x. The position of the leftmost 1 of the remaining of the
hashed value is determined and saved in the register if it is larger then the number in the
register. When all elements passed, the algorithm computes the indicator

Z :=
� p�1X

j=0

2�M [j]
��1

.

After that, Algorithm 1 computes a normalized version of the harmonic mean of 2M [j]

E := ↵pp
2
Z, where ↵p :=

⇣
m

Z 1

0

⇣
log2

⇣2 + u

1 + u

⌘⌘m
du

⌘�1
,

which is the estimator |Q̂| of the cardinality of the data set Q.
A powerful feature of the HyperLogLog counter is that the cardinality of the union

of several sets is easily determined. To clarify this, we first look at one substream. The
HyperLogLog counter fed with the whole union would have a certain value in the register
linked to this substream, this is the highest position of the leftmost 1 that was encountered.
One or multiple elements in the substream have the leftmost 1 at this position. These
elements would also appear in the same substream of at least one of the sets that make
up the union, each counted with an individual HyperLogLog counter. Maximizing over the
registers linked to this substream would therefore result in the same register value for this
register. So to take the union of multiple sets, each of them counted with an individual
HyperLogLog counter with the same number of registers, we combine the registers by
register number and maximize over each register. Intersections cannot be computed in
such a nice way, they have to be computed using the inclusion-exclusion principle [7].

In this paper we touched the main ideas of the HyperLogLog counter. A more extensive
explanation on some of these parts can be found in the original paper by Flajolet et al. [11].
The original paper also proved certain properties of the error bounds of the HyperLogLog

counter. Furthermore, they introduced small and large range corrections, which improve
the algorithm. Other improvements have been made, e.g. Heule et al. presented a series of
improvements when using the HyperLogLog counter in practice [13]. These improvements
are not further discussed, because they fall outside the scope of this paper.

4

2.2 HyperBall

Let G = (V,E) be a graph, not necessarily undirected or even simple. The HyperBall

algorithm [4] is a general algorithm that can be used when one wants an approximation of
|Br(x)|, the cardinality of a ball around vertex x with radius r. We let B̂r(x) denote this
estimation. Boldi and Vigna based it on their earlier HyperANF (approximated neigh-
bourhood function) algorithm [3]. It makes uses of the following two properties of balls:

B0(v) = {v}

Br+1(v) =
[

v!w

Br(w) [{v} .

Each vertex is associated with one HyperLogLog counter. To determine the number of
registers for these counters, again a consideration should be made between memory usage
and accuracy. Using the properties above, each counter gets updated with each pass of
the HyperBall algorithm, Algorithm 2. After the rth iteration of the algorithm B̂r(x) is
known for each vertex x 2 V . From these estimations, an estimation for the cardinality of
the r-neighbourhood of x is easily deduced: Nr(x) = B̂r(x)� B̂r�1(x).

Important is to note that again HyperLogLog counters are used here to severely limit
the main memory necessary to run the algorithm.

Algorithm 2 The HyperBall algorithm as described in [4], used to estimate ball cardinality
for each vertex. Functions from Algorithm 1 are also used.
1: c[�], an array of n HyperLogLog counters

2: function union(M : counter, N : counter)
3: for each i < p do
4: M [i] max{M [i], N [i]}
5: end for
6: end function

7: for each v 2 V do
8: add(c[v], v)
9: end for

10: t 0
11: repeat
12: for each v 2 V do
13: a c[v]
14: for each w 2 N (v) do
15: a union(c[w], a)
16: end for
17: write hv, ai to disk, which estimates Bt+1(v)
18: end for
19: update the array c[�] with the new hv, ai pairs
20: t t+ 1
21: until no counter changes its value

5

2.3 HyperEdgeball

The estimation of the cardinality of edgeballs turns out to be useful in algorithms which
estimate the number of surplus edges and the number of triangles and 4-cycles, this is
further discussed in later sections. Using the same idea, we can modify the HyperBall

algorithm to an algorithm that estimates the number of edges in the k-edgeball. The
proposed algorithm is Algorithm 3: HyperEdgeball. We make use of the fact that any path
of length r + 1, starting in v 2 V , can be created by moving to a neighbour of v and then
attaching a path of length r:

E1(v) = {vw 2 E|w 2 N (v)}

Er+1(v) =
[

v!w

Er(w) [{vw 2 E|w 2 N (v)} .

HyperEdgeball gives an approximation of |Er(v)|, we denote this approximation by Êr(v).
Just as HyperBall, it can be used in directed graphs. It has a great many other similarities
to the HyperBall algorithm. However, since we start with E1(v) for every v 2 V , Êr(v) is
known after iteration r � 1.

Algorithm 3 The HyperEdgeball algorithm, used to estimate edgeball cardinality for each
vertex. Functions from Algorithm 1 and Algorithm 2 are also used.
1: c[�], an array of n HyperLogLog counters

2: for each v 2 V do
3: for each e 2 {vw 2 E|w 2 N (v)} do
4: add(c[v], e)
5: end for
6: write hv, c[v]i to disk, which estimates E1(v)
7: end for

8: t 0
9: repeat

10: for each v 2 V do
11: a c[v]
12: for each w 2 N (v) do
13: a union(c[w], a)
14: end for
15: write hv, ai to disk, which estimates Et+2(v)
16: end for
17: update the array c[�] with the new hv, ai pairs
18: t t+ 1
19: until no counter changes its value

6

3 Surplus edges within balls

We will limit ourselves to simple graphs from now on. We can now use B̂r(v) and Êr(v)
to estimate other graph properties. Let H =

�
Br(v), Er(v)

�
be a subgraph of G for some

positive integer r. In this section we will show that the number of surplus edges within H

can be approximated well using HyperBall and HyperEdgeball.
Surplus edges are the edges that are not used in a spanning tree of a graph, it is some

measurement of the deviation of the graph having a tree-like structure. When analyzing
random graphs, the number of surplus edges in H is of interest. For instance, Dhara et al.

[8] show that there is a connection between the number of surplus edges and component
sizes. It is also used to see up to which k-neighbourhood the graph is locally tree-like.

3.1 Counting surplus edges

With the following theorem we first deduce a relationship between the number of surplus
edges within a ball and ball and edgeball cardinality.

Theorem 3.1. Let G be a simple graph. For some v 2 V we have Br(v) ✓ V , Er(v) ✓ E

and H =
�
Br(v), Er(v)

�
✓ G. We denote the number of surplus edges in H by Sr(v). We

have that

Sr(v) = |Er(v)|� |Br(v)|+ 1 .

Proof. It is well known that for every tree, the number of edges is the number of nodes
minus one [5]. Therefore the number of edges needed in any spanning tree of H is |Br(v)|�1.
By definition, the number of surplus edges is the number of edges that is not in a spanning
tree:

Sr(v) = |Er(v)|� (|Br(v)|� 1)

= |Er(v)|� |Br(v)|+ 1 .

3.2 Estimating the number of surplus edges

From the theorem above and sections 2.2 and 2.3 it follows that Ŝr(v), an estimation of
Sr(v), is

Ŝr(v) = Êr(v)� B̂r(v) + 1 .

The HyperSurplus algorithm, Algorithm 4, easily follows. This algorithm is of interest when
one wants to estimate the number of surplus edges locally. When one wants to estimate the
number of surplus edges in the whole graph an easier solution will suffice: HyperBall and
HyperEdgeball can be omitted, the total number of vertices and edges can be estimated
directly by HyperLogLog. When no list of vertices or edges is available, a HyperBall -like or
HyperEdgeball -like algorithm for only one vertex might be used to accomplish this.

7

Algorithm 4 The HyperSurplus algorithm, used to estimate Sr(v) for each vertex v 2 V ,
r = 1, ..., k. It makes use of HyperBall, Algorithm 2, and HyperEdgeball, Algorithm 3
1: run k iterations of HyperBall

2: run k � 1 iterations of HyperEdgeball

3: t 1
4: repeat
5: for each v 2 V do
6: a Êt(v)� B̂t(v) + 1
7: write hv, ai to disk, which estimates St(v)
8: end for
9: t t+ 1

10: until t is equal to k

3.3 HyperSurplus in practice

We compared the HyperSurplus algorithm, with 512 registers for each counter, to an exact
surplus edge counting algorithm. The graphs used are Erdös-Rényi random graphs [10].
Three different configurations of n and p have been used: n = 1000, p = 0.01; n = 500, p =
0.02 ; n = 100, p = 0.1. The graphs considered are fairly small, this is because the exact
surplus edge counting algorithm, which is needed for the comparison, is computationally
demanding.

For each configuration, Figure 1 shows how the number of surplus edges evolves within
each k-neighbourhood, k = 1, ..., 5, according to the HyperSurplus algorithm and the exact
surplus edge counting algorithm. It can be seen that HyperSurplus is overestimating the
exact answer, but each estimation seems to be good.

To further investigate the error, we analysed 100 Erdös-Rényi random graphs for each
configuration. For each of these graphs the relative error was averaged over the set of
vertices for each k-neighbourhood, k = 2, 3, 4, 5. The relative error of the 1-neighbourhood
is not included, it could not be determined since the exact answer is always zero for
simple graphs. The results can be found in the histograms in Figure 2. For all these
neighbourhoods the estimation is in the same order of magnitude as the exact number,
just as expected. What stands out is that the HyperSurplus algorithm is overestimating
most of the time, this might be due to the limited number of vertices used in each graph.
All in all these first practical results look very promising for the estimation of surplus edges
locally.

8

1 2 3 4 5
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

n = 1000, p = 0.01, exact

n = 1000, p = 0.01, estimation

n = 500, p = 0.02, exact

n = 500, p = 0.02, estimation

n = 100, p = 0.1, exact

n = 100, p = 0.1, estimation

Figure 1: The number of surplus edges, averaged over the set of vertices, within
each k-neighbourhood, k = 1, ..., 5, according to the HyperSurplus estimation algo-
rithm and the exact surplus edge counting algorithm. Executed for three Erdös-
Rényi random graphs: n = 1000, p = 0.01; n = 500, p = 0.02 ; n = 100, p = 0.1.

Figure 2: The relative error of Hypersurplus, with 512 registers for each Hy-

perLogLog counter, to an exact surplus edge counting algorithm for each k-
neighbourhood, k = 2, 3, 4, 5. Executed for three cases of each 100 Erdös-Rényi
random graphs: n = 1000, p = 0.01; n = 500, p = 0.02 ; n = 100, p = 0.1.

9

4 Triangles and 4-cycles

Without surplus edges a graph is a tree and therefore has no cycles [5]. This also means
that a graph without surplus edges has no triangles. So if a graph has a triangle, it should
also have a surplus edge. So there is some link between the number of surplus edges and
the number of triangles. However, a surplus edge might close more than one triangle. For
instance, the complete graph K4 has four triangles, but only three surplus edges. It might
also be that a surplus edge does not close a triangle, but another cycle.

The counting of triangles has many real life applications. For instance, Becchetti et al.

[2] use the local triangle count to detect web spam.
In this section, we study the estimation of the number of triangles and 4-cycles in a

graph. We start with introducing theory on counting these numbers exactly using Br(v)
and Er(v), since those can be estimated well by HyperBall and HyperEdgeball.

4.1 Counting triangles

Lemma 4.1. Let G be a simple graph. For every v 2 V , the number of edges with one end

in N (v) and the other end in N2(v) is

X

y2N2(v)

|N (v) \N (y)| .

Proof. Let y be a vertex from the 2-neighbourhood of v. N (v) is the set of vertices adjacent
to v, N (y) is the set of vertices adjacent to y. The set N (v) \N (y) is the set of vertices
that are adjacent to v as well as y. Therefore, there are |N (v) \ N (y)| vertices that are
adjacent to v as well as y. Since G is simple and since the vertices in N (v)\N (y) are also
in N (y), each of the vertices in N (v) \N (y) is joined to y by exactly one edge. It follows
that |N (v) \N (y)| edges have y being one end and have the other end in N (v). Figure 3
might help to visualize the above part of the proof.

To get the total number of edges with one end in N (v) and the other end in N2(v), we
sum for all y 2 N2(v).

v y

N (v) N (y)

Figure 3: Vertices v and y 2 N2(v). The red vertices are in the set N (v)\N (y).
The red edges have y at one end and have the other end in N (v).

10

Theorem 4.1. Let G be a simple graph. The number of distinct triangles including v 2 V ,

Mv, is

Mv=
1

2

⇣ X

x2N (v)

|N (x)|� |N(v)|�
X

y2N2(v)

|N (v) \N (y)|
⌘
.

Proof. Figure 4 might help to visualize the proof. Since G is simple, each neighbour of v
is joined to v by exactly one edge. It follows that the total number of edges joining v to
its neighbours is |N (v)|. By lemma 4.1 the number of edges with one end in N (v) and the
other end in N2(v) is

P
y2N2(v)

|N (v) \N (y)|.
Let x be a neighbour of v, it is incident with |N (x)| edges. The other ends of edges

incident with x are incident with v, another neighbour of v or a 2-neighbour of v. We
determine for each neighbour of v the number of edges it is incident with and sum these.
If we thereafter subtract the number of edges that are incident with v or have one end in
N2(v), we are left with the number of edges joining neighbours of v. Each of these edges
form, together with the edges going from the ends of this edge to v, a triangle including v.
Since each of these edges is counted twice, once from each end, the number is divided by
two to get the number of distinct triangles including v.

v

x1

x2

x3

x4

x5

N (v) N2(v)

Figure 4: All edges depicted have at least one end in N (v). The black edges are
edges that are joining v to its neighbours, there are |N (v)| of them. The red edges
are the edges with one end in N (v) and the other end in N2(v), by Lemma 4.1 there
are

P
y2N2(v)

|N (v) \N (y)| of them. The green edges join two neighbours of v. A
green edges forms together with two black edges a triangle including v. Notice that
in

P
x2N (v) |N (x)|, each green edge is counted twice.

11

Corollary 4.1. Let G be a simple graph. The total number of distinct triangles, M, is

M= 1

6

X

v2V

X

x2N (v)

|N (x)|�
X

v2V
|N(v)|�

X

v2V

X

y2N2(v)

|N (v) \N (y)| .

Proof. If we sum up the equation of Theorem 4.1 for all vertices, each triangle is counted
once from each vertex included in the triangle. Therefore the total number of triangles will
be counted three times, the result directly follows:

M =
1

3

X

v2V
Mv

=
1

6

X

v2V

� X

x2N (v)

|N (x)|� |N(v)|�
X

y2N2(v)

|N (v) \N (y)|
⌘

=
1

6

X

v2V

X

x2N (v)

|N (x)|�
X

v2V
|N(v)|�

X

v2V

X

y2N2(v)

|N (v) \N (y)| .

As stated in section 2, the |N (x)| and |N (v)| terms can be estimated nicely by HyperBall.
However, HyperLogLog, and therefore HyperBall, cannot give a good approximation of the
|N (v) \ N (y)| term. We can therefore not give a good approximation of the distinct
number of triangles using Corollary 4.1. We continue our search into the estimation of
graph properties by looking at both triangles and 4-cycles.

4.2 Counting triangles and 4-cycles

We define the following numbers for each v 2 V :

E/(v) :=|N (v)|

EM(v) :=
1

2

⇣ X

x2N (v)

|N (x)|� |N(v)|�
X

y2N2(v)

|N (v) \N (y)|
⌘

E⌃(v) :=
X

y2N2(v)

|N (v) \N (y)| .

As seen in the proof of Theorem 4.1: the number E/(v) is the number of edges joining v

to its neighbours; the number EM(v) is the number of edges with both ends in N (v). As
seen in Lemma 4.1: the number E⌃(v) is the number of edges with one end in N (v) and
the other end in N2(v). A graphic representation of these edges can be seen in Figure 4.
Introducing E/(v), EM(v) and E⌃(v) results in more clarity in the upcoming theorems.

Theorem 4.2. Let G be a simple graph. The number of distinct triangles including v 2 V ,

Mv, is

Mv= EM(v) .

Proof. The result follows directly from the definition of EM and Theorem 4.1.

12

Theorem 4.3. Let G be a simple graph. The following inequalities hold for ⌃v, the number

of distinct 4-cycles including v:

E⌃(v)� |N2(v)| ⌃v
E2
⌃(v)� E⌃(v)

2
.

Proof. Figure 4 might aid the reader in visualizing parts of the proof.

Let (v, x, y, z, v), v, x, y, z 2 V , be an arbitrary 4-cycle. We first notice that for every
4-cycle including v, one of the other vertices of the 4-cycle, y in this case, should by def-
inition be in N2(v). Furthermore the 4-cycle consists of two different paths between this
vertex and v, (v, x, y) and (v, z, y) in this case. From this we can conclude that all 4-cycles
that include v can be constructed by taking a vertex from N2(v) and taking two different
paths of length two between this vertex and v.

We first look at the trivial case of |N2(v)| = 0. Since there are no vertices in N2(v),
⌃v = 0 by the previous argument. We also have that E⌃(v) = 0, and therefore that
E⌃(v)� |N2(v)| =

E2
⌃(v)�E⌃(v)

2 = 0. Clearly the bounds hold for this case.

We now look at the nontrivial case |N2(v)| � 1. At the beginning of this proof we have
shown that, to count the number of 4-cycles including v, the number of different paths of
length two between N2(v) and v is important. We therefore first have a look at how many
of these paths there are. Let us look at some edge yq, with y 2 N2(v), q 2 N (v). Since G

is simple, there is only one edge qv. These edges together form the path (y, q, v) of length
two between N2(v) and v. Thus for each edge with one end in N2(v) and the other end in
N (v), there is exactly one unique path between N2(v) and v. We have already seen that
there are E⌃(v) of these edges, it follows that the number of paths of length two between
N2(v) and v is therefore also exactly E⌃(v).

We first prove the lower bound of ⌃v. Each vertex in N2(v) is connected to v by at
least one path of length two. The remaining E⌃(v)� |N2(v)| paths of length two between
v and N2(v) are therefore part of at least one 4-cycle, which gives us the lower bound:
E⌃(v)� |N2(v)| ⌃v.

We now have a look at the upper bound. Suppose that |N2(v)| = 1, then N2(v) = {y}.
Vertex y is connected to v by E⌃(v) paths of length two. It follows that there are

�E⌃(v)
2

�
=

E⌃(v)(E⌃(v)�1)
2 =

E2
⌃(v)�E⌃(v)

2 unique pairs of paths of length two, each of them forms a 4-
cycle. We show that this is indeed an upper bound by looking at |N2(v)| = k > 1. We
have that N2(v) = {y1, ..., yk}, with |N (v) \N (yi)| = ai � 1. We have by definition that

E⌃(v) =
X

yi2N2(v)

|N (v) \N (yi)| = a1 + ...+ ak .

13

Now,

⌃v =

✓
a1

2

◆
+ ...+

✓
ak

2

◆

=
a
2
1 � a1

2
+ ...+

a
2
k � ak

2

 a
2
1 � a1

2
+ ...+

a
2
k � ak

2
+

a1(a2 + ...+ ak)

2
+ ...+

ak(a1 + ...+ ak�1)

2

=
a
2
1 � a1

2
+

a1(a2 + ...+ ak)

2
+ ...+

a
2
k � ak

2
+

ak(a1 + ...+ ak�1)

2

=
a1(a1 + ...+ ak � 1)

2
+ ...+

ak(a1 + ...+ ak � 1)

2

=
(a1 + ...+ ak)(a1 + ...+ ak � 1)

2

=
E⌃(v)(E⌃(v)� 1)

2

=
E⌃(v)2 � E⌃(v)

2
.

It might be clear to the reader that tighter bounds of Theorem 4.3 can be found when the
properties of the graph are constrained more. In the following corollary a special case will
be shown to illustrate this.

Corollary 4.2. Let G be a simple graph with at most two distinct paths of length two

between each pair of vertices, i.e. |N (a) \ N (b)| 2 for all a, b 2 V . The number of

distinct 4-cycles including v 2 V is:

⌃v = E⌃(v)� |N2(v)| .

Proof. For each y 2 N2(v) there is by definition at least one path of length two. Clearly no
4-cycle which includes v and y exists if there is exactly one path of length two connecting v

and y. By hypothesis, there are at most two paths of length two between v and y. If there
are exactly two paths of length two, those two paths create together exactly one 4-cycle
including v. It follows from these two cases, that the number 4-cycles including v and y is
|N (v) \N (y)| � 1. Since for each 4-cycle including v at least one of the other vertices in
the 4-cycle is contained in the set N2(v), it follows that

⌃v =
X

y2N2(v)

�
|N (v) \N (y)|� 1

�

=
X

y2N2(v)

|N (v) \N (y)|� |N2(v)|

= E⌃(v)� |N2(v)| ,

which is exactly the lower bound of Theorem 4.3.

14

Theorem 4.4. Let G be a simple graph with at most two distinct paths of length two

between each pair of vertices, i.e. |N (a) \N (b)| 2 for all a, b 2 V . We have that

Mv +⌃v = |E2(v)|� |B2(v)|+ 1 .

Proof. The edge set E2(v) can be partitioned into three subsets: the edges joining v to its
neighbours, the edges with both ends in N (v) and the edges with one end in N (v) and one
end in N2(v). Figure ?? might give some more insight into the previous statement. The
cardinality of these subsets are E/(v), EM(v) and E⌃(v), as seen at the beginning of section
4.2. Since those tree subsets are disjoint, we have

|E2(v)| = E/(v) + EM(v) + E⌃(v)
|E2(v)|� E/(v) = EM(v) + E⌃(v)

|E2(v)|� |N (v)| = EM(v) + E⌃(v) . (1)

Since G is a simple graph and each pair of vertices is connected by at most two distinct
paths of length two, we have by Theorem 4.2 and Corollary 4.2 that

Mv +⌃v = EM(v) + E⌃(v)� |N2(v)| .

By equation 1, this is the same as

Mv +⌃v = |E2(v)|� |N (v)|� |N2(v)| . (2)

By the definition of Nr(v), as seen in section 2.2, and the fact that Nr(v) and Br�1(v) are
disjoint sets we have

|Nr(v)|+ |Br�1(v)| = |Br(v)|
|Nr(v)| = |Br(v)|� |Br�1(v)|

By substituting this into equation 2, we conclude the proof

Mv +⌃v = |E2(v)|�
�
|B1(v)|� |B0(v)|

�
�
�
|B2(v)|� |B1(v)|

�

= |E2(v)|�
�
|B1(v)|� 1

�
�
�
|B2(v)|� |B1(v)|

�

= |E2(v)|� |B2(v)|+ 1 .

We see that the terms which include an intersection cancel nicely. As stated in section 2,
these terms were hard to estimate by HyperLogLog and therefore by HyperBall. Also, in
the same section, we have seen that the terms |B2(v)| and |E2(v)| can be estimated nicely
by the HyperBall and the HyperEdgeball algorithms.

15

Corollary 4.3. Let G be a simple graph with at most two distinct paths of length two

between each pair of vertices, i.e. |N (a) \ N (b)| 2 for all a, b 2 V . As before M is

the total number of distinct triangles in G, furthermore ⌃ is the total number of distinct

4-cycles in G. We have that

3 M + 4 ⌃ =
X

|E2(v)|�
X

|B2(v)|+ n .

Proof. If we sum up the equation of Theorem 4.4 for all vertices, each triangle is counted
once from each vertex included in the triangle. Therefore the total number of triangles
will be counted three times. Each 4-cycle is counted once from each vertex included in
the 4-cycle. Therefore the total number of 4-cycles will be counted four times. The result
directly follows:

3 M + 4 ⌃ =
X

v2V

�
|E2(v)|� |B2(v)|+ 1

�

=
X

v2V
|E2(v)|�

X

v2V
|B2(v)|+

X

v2V
1

=
X

v2V
|E2(v)|�

X

v2V
|B2(v)|+ n .

4.3 Triangle and 4-cycle estimation in practice

As we have seen in a special case, according to Corollary 4.3, we can use HyperBall and
HyperEdgeball to estimate three times the distinct number of triangles plus four times the
distinct number of 4-cycles. Even if we have some graph that is alike a graph that meets
the requirements of Corollary 4.3, it might still give a good estimation. However, we still
cannot extend it to a more general case, mainly due to Theorem 4.3.

It is nevertheless interesting to see how an algorithm based on Corollary 4.3 performs
in practice. This algorithm calculates

P
v2V Ê2(v)�

P
v2V B̂2(v)+n, with 512 registers for

each HyperLogLog counter, to estimate 3 M + 4 ⌃. Algorithm 5 and Algorithm 6, included
in appendix A, are used to count M and ⌃ exactly. After that, both are compared. For the
first test it is executed on 100 Erdös-Rényi random graphs with n = 1000 and p = 0.01.
Results of the first test can be found in Figure 5. When looking at only this case, it
looks like it is performing similarly to HyperSurplus: most of the time estimating a bit
above the real value. However, a comparison with the second and third test in the same
figure show that this is coincidental. The second and third test are performed with the
following configuration: 100 Erdös-Rényi random graphs for n = 1000, p = 0.025 and
n = 1000, p = 0.05. Here the algorithm is constantly underestimating the real values.
This is as expected since the probability on 4-cycles is higher and since an algorithm based
on Corollary 4.3 estimates the lower bound of the number of 4-cycles as seen in Theorem
4.3 and Corollary 4.2. We can conclude that, just as expected, an algorithm based on
Corollary 4.3 does not perform well.

For future studies, it might be interesting to look for indicators that easily tell if an
algorithm based on Corollary 4.3 can give a good estimation.

16

Figure 5: The relative error of an algorithm based on Corollary 4.3, with 512
registers for each HyperLogLog counter, to and exact counting algorithm for 3 M
+ 4 ⌃. Three cases were calculated: p = 0.01; p = 0.025; p = 0.05. For each of the
cases a 100 Erdös-Rényi random graphs with n = 1000 were used.

17

5 Conclusion and recommendations

The goal was to study and create HyperLogLog-type algorithms to estimate graph prop-
erties. To aid this we first introduced edgeballs. We then introduced the HyperEdgeball

algorithm, an algorithm very similar to HyperBall, which can estimate the cardinality of
edgeballs well. In future studies, one can look at the theoretical error bounds of Hyper-

Edgeball, which already has been done for HyperLogLog [11] and HyperBall [4].
The introduction of edgeballs was necessary to, in combination with balls, count sur-

plus edges locally. Theory to do this was introduced in section 3. The first practical
results of the HyperSurplus algorithm that followed turned out well. We recommend that
theoretical error bounds on this algorithm should be examined. Furthermore, statistical
research on this algorithm should be performed, especially with larger graphs than used
in this study. Furthermore it might be interesting to compare results of the algorithm to
cases where theoretical results are known. In this way a comparison algorithm, which is
computationally heavy, can be omitted.

Using balls and edgeballs for triangle counting turned out to be hard since E2(v) cannot
distinguish between an edge that goes from a neighbour to another neighbour and an edge
that goes from a neighbour to the 2-neighbourhood. In Corollary 4.1 we tried to circumvent
this, but a term using set intersections appeared, which is hard for HyperLogLog-type
algorithms to deal with. This term neatly disappeared in the special case of Theorem 4.4.
It might be interesting to look at indicators that can tell if a graph is closely like this
special case, and thus that some estimator of three times the number of triangles plus four
times the number of 4-cycles can be calculated.

In a general case however, the edges counted with |E2(v)| � |B2(v)| + 1 close either
one triangle or one or more 4-cycles instead of one triangle or one 4-cycle, as in the
special case. This turns out to be a major difficulty when one wants to extrapolate an
estimator of the number of triangles and 4-cycles from balls and edgeballs. As we can
see in this research, this represents a fundamental obstacle when applying HyperBall -type
algorithms for estimating graph patterns. Possibly, this can be resolved in further research,
for example, by allowing to use some more memory in nodes or edges.

18

References

[1] Mohammad Al Hasan and Vachik S. Dave. Triangle counting in large networks: a
review. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(2),
2018.

[2] Luca Becchetti, Paolo Boldi, Carlos Castillo, and Aristides Gionis. Efficient semi-
streaming algorithms for local triangle counting in massive graphs. page 16, 2008.

[3] Paolo Boldi, Marco Rosa, and Sebastiano Vigna. HyperANF: Approximating the
Neighbourhood Function of Very Large Graphs on a Budget. page 625, 2011.

[4] Paolo Boldi and Sebastiano Vigna. In-core computation of geometric centralities
with HyperBall: A hundred billion nodes and beyond. In Proceedings - IEEE 13th

International Conference on Data Mining Workshops, ICDMW 2013, 2013.

[5] John Adrian Bondy, Uppaluri Siva Ramachandra Murty, et al. Graph theory with

applications. Citeseer, 1976.

[6] Philippe Chassaing and Lucas Gerin. Efficient estimation of the cardinality of large
data sets. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceed-

ings, 2006.

[7] Matt Curcio. Sketch of the Day : HyperLogLog - Cornerstone of a Big Data Infras-
tructure, 2012.

[8] Souvik Dhara, Remco van der Hofstad, Johan S.H. Van Leeuwaarden, and Sanchayan
Sen. Critical window for the configuration model: Finite third moment degrees. Elec-

tronic Journal of Probability, 22:1–34, 2017.

[9] Marianne Durand and Philippe Flajolet. Loglog Counting of Large Cardinalities.
pages 605–617, 2010.

[10] Paul Erdös and Alfréd Rényi. On random graphs, i. Publicationes Mathematicae

(Debrecen), 6:290–297, 1959.

[11] Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Meunier. HyperLogLog:
the analysis of a near-optimal cardinality estimation algorithm. Conference on Anal-

ysis of Algorithms AH, pages 127–146, 2007.

[12] Philippe Flajolet and G. Nigel Martin. Probabilistic counting algorithms for data base
applications. Journal of Computer and System Sciences, 31(2):182–209, 1985.

[13] Stefan Heule, Marc Nunkesser, and Alexander Hall. HyperLogLog in practice: algo-
rithmic engineering of a state of the art cardinality estimation algorithm. Proceedings

of the 16th International Conference on Extending Database Technology - EDBT ’13,
page 683, 2013.

19

A Exact counting algorithms

A useful insight into the counting algorithms below is the following. Let A be the adjacency
matrix of a simple graph G. The number A

2
ij is exactly the number of different paths of

length two from vertex i to vertex j. The number A
3
ij is exactly the number of different

paths of length three from vertex i to vertex j.

Algorithm 5 The algorithm used in section 4.3 to count M in a simple graph G.
Require: A, the adjacency matrix G

1: M 1
6

Pn
i=1A

3
ii

2: return M

The number
Pn

i=1A
3
ii counts each triangle six times: two times, once in each direction,

from each vertex included in the triangle. Therefore this number is divided by six to get
the number of triangles.

Algorithm 6 The algorithm used in section 4.3 to count ⌃ in a simple graph G.
Require: A, the adjacency matrix of a graph G

1: ⌃ 0

2: for i = 1 : n do
3: for j = 1 : n do
4: ⌃ ⌃+

A2
ij(A

2
ij�1)

2
5: end for
6: end for

7: ⌃ 1
4⌃

8: return ⌃

Between each pair of vertices, i, j 2 V , there are A2
ij(A

2
ij�1)

2 different pairs of paths of length
two. Each of these pairs forms exactly one 4-cycle. We have that each 4-cycle is counted
from each vertex included, therefore the answer is divided by four to get the number of
4-cycles.

20

	Introduction
	Definitions and notation

	Theory and relevant concepts
	HyperLogLog counters
	HyperBall
	HyperEdgeball

	Surplus edges within balls
	Counting surplus edges
	Estimating the number of surplus edges
	HyperSurplus in practice

	Triangles and 4-cycles
	Counting triangles
	Counting triangles and 4-cycles
	Triangle and 4-cycle estimation in practice

	Conclusion and recommendations
	Exact counting algorithms

