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Abstract

The article describes methods for improving pulse reconstruction for photomul-

tiplier tubes and assesses the e�ciency of the air shower detectors used in the HiS-

PARC experiment. The article deals with reconstruction of pulses with the help of

comparator data and provides a method for �ltering out the e�ects of using di�erent

equipment. New methods have been developed to improve pulse reconstruction and

equipment �ltering. Those methods allow for assessment of the detection e�ciency

of scintillator-based air shower detectors. The newly developed methods are used to

improve the angle reconstruction by applying machine learning techniques.
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1 Introduction and background

1.1 Cosmic rays

This thesis focuses on the detection of air showers. Air showers are collections of particles
arriving at the surface of the earth. Those particles originate from cosmic rays, highly
energetic particles, mostly baryons, mesons or ions, �ying through the cosmos. Baryons
are particles built up from 3 quarks, the most well-known ones are the proton and the
neutron. At high energies heavier baryons can be found. Mesons are particles built up
from a quark or an anti-quark. The energy of cosmic rays varies over a very large range,
up to 1020 eV.
The generation of particles with such high energies has been a subject of interest for a
large number of experiments for many years. The exact mechanism of production and
acceleration of high energy cosmic rays is largely unknown [21]. Two main theories are
currently used. The theory of Fermi acceleration attributes the acceleration of cosmic
rays to moving magnetic clouds [19]. The theory of shock acceleration [22] attributes the
acceleration of cosmic rays to successive movement through a shock wavefront. This theory
builds further on the work done by Fermi and is therefore also called second order Fermi
acceleration.
Both theories have neither been rejected, nor been con�rmed with high con�dence level.
One of the main goals of the general investigation of cosmic rays and air showers is to
resolve this issue.
A second main goal of cosmic ray research is to �nd the location of origin of cosmic rays.
For low energy cosmic rays the answer has been found, they mostly originate from the sun.
However, for higher energy cosmic rays, E > 1018 eV, the question is still open. Those
rays cannot originate from within our own galaxy, there is no source capable of producing
particles with such high energy. The exact location of the extragalactic sources is hard
to determine. The main reason for this is that cosmic rays are de�ected by magnetic and
gravitational �elds of unknown strength. The in�uence of magnetic and gravitational �eld
decreases with energy, for the de�ection of high energy cosmic rays very strong �elds are
needed. Still though, this means that the original source direction will generally not equal
the arrival direction of the cosmic ray. Apart from knowledge about the arrival direction
also knowledge about the existence of magnetic and gravitational �elds is needed. However,
information about arrival directions is essential to develop methods for reconstructing
source directions.

1.1.1 From cosmic rays to air showers

The cosmic rays just described �y through the cosmos, far from the surface of the earth.
Particle detection occurs mostly at the surface of the earth, so attention must be paid to
cosmic rays entering the atmosphere of the earth. A cosmic ray which arrives at the earth
and travels through the atmosphere, collides with the molecules in the atmosphere. In
such a collision the cosmic ray is broken up into quarks and anti-quarks, which assemble
themselves in new mesons or baryons, on a very short timescale. This process is depicted
in �gure 1.
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Figure 1: A proton breaks up into a shower of hadrons (baryons or mesons) due
after a strong interaction with a particle not shown here. Figure adapted from [43].

A large number and a great variety of products can be generated in such collisions. The
unstable products decay after a short time period, typically ranging from 10−23 to 10−10

s [43]. Most decay products are unstable and decay again. Those unstable particles are
therefore hardly ever detected. An exception are muons, which have a relatively long life-
time and can therefore reach the surface of the earth if their velocity with respect to the
earth is high enough. Other particles originating from the collisions are stable, such as
protons, neutrons, electrons or photons. In that case they are very likely to undergo a
new collision process. In this way a large number of particles is created, until only stable
particles are left. The largest contributions are from electrons and muons. The collection
of particles resembles a rain shower and is therefore called an Extensive Air Shower, which
is abbreviated to EAS.
An EAS can be measured by particle detectors, and many experiments focus on the re-
construction of the original cosmic ray properties from the air showers arriving at the
earth.

1.2 The HiSPARC experiment

The HiSPARC experiment is an originally Dutch experiment to detect EAS. HiSPARC
is a large scale project with EAS detection stations on the roofs of universities, scienti�c
institutions and highschools. Most stations are located in the Netherlands, others in the
United Kingdom, Denmark and Namibia. The data is collected at Nikhef, a physics insti-
tute in Amsterdam. The HiSPARC experiment functions both as a research project and
as an educational project. In this thesis, focus will be on the research project, but some
of the results may be used for the educational project.

1.3 Detection of EAS by HiSPARC

A HiSPARC station consists of four detectors. A schematic �gure of the setup of the
detectors used by the HiSPARC experiment, is shown in �gure 2. Figure 2 is not to scale,
the dimensions of the several parts have been indicated. The setup consists of a scintillator,
a lightguide and a photomultiplier, abbreviated to PMT. The detectors have been packaged
with aluminium foil for protection. There is an air gap between the scintillator and the
aluminium foil. This enlarges the probability of total internal re�ection at the boundary
of the scintillator and thus provides low losses.
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Scintillators are materials that contain a �uorescent solute. A particle from an air shower
loses energy by exciting electrons of the �uorescent solute. The excited electrons of the
�uorescent solute decay back to their ground state after a few ns, emitting a photon with
a wavelength characteristic of the molecule. The solvent used in the HiSPARC experiment
is the plastic polyvinyl toluene. The �uorescent solute used is anthracene, which emits
photons with a wavelength approximately equal to 425 nm [21]. The mean decay time of
the �uorescent molecule is 5 ns [5], which is small compared to the time scales involved in
the experiment.
The generated photons are guided by the lightguide to the PMT. The lightguide is made
of PMMA and shaped as a trapezoid, a commonly used lightguide form for similar appli-
cations [20].

100 cm

50 cm

71 cm

3.5 cm

5 cm

Scintillator Lightguide To ADCPMT

Figure 2: A schematic �gure of the HiSPARC detectors as seen from above. The
�gure is not to scale. The vertical dimension is not displayed here. The thickness
of the scintillator is 2 cm and the thickness of the lightguide is 2.5 cm, the PMT
is a cylindrical device with the axis of revolution in the horizontal plane. Particles
are coming in from the half-plane bounded below by the plane of the page, the
generated signal is directed towards an Analogue to Digital Converter.

A schematic �gure of the PMT is shown in �gure 3. The PMT is controlled by a base, which
regulates the voltage supply of the PMT, and consists of a cathode, anode and dynodes,
which are kept at equal voltage di�erences of the order 50-100 V. For the schematic PMT
this means that the potential di�erences between the cathode and the �rst dynode, between
two successive dynodes and between the last dynodes are all equal to one sixth of the
potential applied via the base. For the PMTs used in the experiment the number of
dynodes used is ten, so ∆V = 1

11Vapplied. Photons come in from the right and hit the
cathode, where they possibly ionize a atoms. The probability that a single photon ionizes
an atom in the cathode is called the quantum e�ciency. For the HiSPARC experiment the
quantum e�ciency is about 25%. The free electron produced in the ionization is called the
photo-electron. The photo-electron is accelerated by the voltage di�erence towards �rst
dynode. When the electron hits the dynode the energy of the electron is used to ionize
the atoms in the dynode material. This generates free electrons in the �rst dynode. The
number of free electrons generated by one electron is estimated to be three or four, but
�uctuates. The free electrons are then accelerated by the applied potential towards the
second dynode. This process is repeated until the electrons arrive at the anode. This
results in a large ampli�cation of the current. The charge is collected at the anode on
the right side of the �gure. The resulting current �ows through a resistor over which the
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voltage is measured.

1 3 5

2 4

cathode anodedynodes

γ e−e−

Figure 3: A schematic overview of a PMT device. The electronics shown are
placed in a vacuum glass tube. The glass tube is a cylinder with diameter 3.5 cm
and length 5 cm, the dimensions of the electronics structure shown is similar. On
the left side the photons are coming in from the lightguide and hit the cathode. In
the cathode free electrons are generated. The free electrons are accelerated by a
potential of order 50-100 V towards the �rst dynode, where their kinetic energy is
used to ionize atoms in the dynode and thus create new free electrons. This process
is repeated until the anode is reached. Here the charge is collected and the signal
can be measured using an Analogue to Digital Converter.

1.3.1 Reconstruction of arrival direction

As described above, the signal generated in a detector depends only on the number of
photons reaching the cathode and their inter arrival times, determined mainly by the energy
deposited in the scintillators. The pulses can not be directly related to the direction of the
incoming particle. This means that the arrival direction cannot be inferred from the signal
of a single scintillator. However, direction reconstruction is possible if several detectors
are used. From the di�erence in arrival times the incoming directions of the air shower
particles that hit the detector can be calculated. The incoming cosmic ray has a very
high energy. The transversal velocities introduced by collisions are therefore very small
compared to the initial velocity. Thus, the arrival direction of the air shower particles that
hit the detector approximately equals the arrival direction of the initial cosmic ray. For
small arrays with few detectors the uncertainty in the angle reconstruction can be very
high [21], but for a large array with many detectors accuracies of less than 1◦ have been
reported [4].

1.4 MIP-particles and MIP-peak

Two important concepts will be used which have similar names, but which should not be
confused with each other, MIP-particles and the MIP-peak. The term MIP-particles will
be explained �rst.
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1.4.1 Bethe-Bloch formula

The energy loss per unit distance for particles traversing a material at energies prevailing in
the EAS showers detected by the HiSPARC detectors is given by the Bethe-Bloch formula.
This formula has been modi�ed over a large range of years, the last important modi�cations
being attributed to Fermi [18]. The currently used formula is [32]:

−dE
dx

= 2πNar
2
amec

2ρ
Z

A

z2

β2
(ln(

2meγ
2v2Wmax

I2
− 2β2 − δ − 2

C

Z
)). (1)

The quantities involved in eq. (1) are listed in table 1.

Table 1: Quantities used in the Bethe-Bloch Formula.

Quantity Description

re Classical electron radius
ρ Density of absorbing material

−dE
dx Average energy loss per unit distance

me Electron mass
z Charge of incident particle in units of e
NA Avogadro's number
β = v

c Velocity of incident particle
I Mean excitation potential

γ = β√
1−β2

Z Atomic number of absorbing material
δ Density correction
A Atomic weight of absorbing material
C Shell correction
Wmax Maximum energy transfer in a single collision

The Bethe-Bloch formula is depicted in �gure 4. The energy loss is attributed to three
main processes. The �rst term represents the energy loss by collisions with atoms. The
energy loss due to collisions decreases as the velocity of the particle increases and settles
at an approximately constant value. The second term represents the radiation loss, the
Brehmstrahlung due to acceleration in the Coulomb �eld of the nucleus. Radiation losses
become larger as the velocity of the particle increases, this provides the increase in energy
loss per unit distance for large energies. Apart from these losses the particles in an air
shower will lose energy if they travel through a medium with a speed larger than the speed
of light in that medium. This e�ect was �rst observed by the Russian scientist Cherenkov
[8], and is therefore called Cherenkov radiation. This form of radiation is included in the
Bethe-Bloch formula, via the density correction. The e�ects of the density correction δ and
shell correction C are very small in the range of interest of the HiSPARC experiment and
will therefore be neglected in the rest of this paper. In the HiSPARC detectors Cherenkov
radiation is also produced in the lightguide. The in�uence of Cherenkov radiation pro-
duced in the lightguide is larger than the in�uence of Cherenkov radiation produced in the
scintillator. However, also this contribution is much smaller than the contribution from
collision losses and will be neglected in the analysis. The total energy loss per unit distance
attains a minimum. Particles which travel with an energy corresponding to this minimum
energy loss per unit distance are generally called minimum ionizing particles, abbreviated
to MIPs.
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Figure 4: The mean energy loss per unit distance for muons in copper as a
function of the momentum of the incoming muon. Note that the �gure is generated
for muons in copper, not for electrons in plastic scintillator material. This e�ects
the horizontal scale, but not the characteristics of the curve [3].

1.4.2 Detection

The Bethe-Bloch formula represents the mean of the energy lost per unit distance by the
particles travelling through the scintillator. However, not all energy lost by the particles
is used to generate a signal in the detector. Whereas the light send out by the �uorescent
molecules has a speci�c frequency the energy loss due to radiation is send out in a broader
range of frequencies, in which the �uorescence frequency is not contained. Not all frequen-
cies are equally e�ective in generating a signal. A photon can only generate a signal in the
PMT if its energy equals the energy of an electronic transition in the cathode material. The
cathodes of both PMTs used are chosen to have a small frequency acceptance centred at
the �uorescence frequency [11],[15]. The contribution of collisions is thus highly ampli�ed,
whereas the contribution of radiative losses to the signal measured is almost negligible.
The detected energy as a function of the incoming particles thus follows the collision loss
curve, and �attens. The high-energy particles all have approximately the same mean en-
ergy loss per unit distance. All particles with an energy higher than MIP-particles are
therefore also called MIP-particles.

1.4.3 Detection distribution

The discussion above concerns the mean energy losses. As collisions of particles constitute
a random process, the actual energy loss by a particle will not always be the energy loss
predicted by Bethe-Bloch formula, but rather given by a distribution with its mean given
by the Bethe-Bloch formula. This distribution is, under a set of assumptions, a notable one
being the in�nite maximum energy loss, worked out by the Russian physicist Landau, and
is therefore called the Landau distribution. The Landau-distribution is a highly skewed
distribution, as shown in �gure 5. The Landau distribution does not have a �nite mean. To
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�nd a relation between the Landau distribution and the Bethe-Bloch formula distributions
under other sets of assumptions have been calculated, such as the Vavilov distribution [45].
The mode of the Landau distribution, the most probable energy loss, is generally used as
a representation. The most probable energy loss for the Landau distribution of particles
with an energy loss corresponding to the MIP-plateau is called the MIP-peak. This is the
most probable energy loss for a particle in the detector.

−10 −5 0 5 10 15 20 25 30

x

0.0

0.2

0.4

0.6

0.8

1.0

p
L

(x
)

Figure 5: The Landau distribution, displaced as to have the peak at 0. This
describes the deviation of the energy loss per unit distance from its most probable
value. For particles passing through a material the peak can be found at the energy
loss predicted by the Bethe-Bloch formula, the probability of an energy loss smaller
than zero is zero.

1.5 Pulse clipping and comparators

The output of the detection system described in section 1.3 is the current �owing out of
the PMT. This current signal is converted to an analogue voltage signal. The analogue
voltage measured must be converted into a digital one in order to store it. This task is
executed by two ADC converters. Those are both driven by a single clock with a frequency
of 200 MHz. At the rising edge of the clock one of the ADCs stores the voltage as a 12 bit
number, at the falling edge the other ADC does precisely the same. In this way a sampling
rate of 400 MHz is achieved, with 12 bit accuracy. The sequence of stored voltages is called
the trace.
The range of conversion is determined by the dynamic range of the ADC. Signals with
peak heights larger than the dynamic range are not perfectly converted, but rather clipped
at the maximum voltage within the dynamic range. This inevitably introduces some loss
of knowledge about the signal. This e�ect can be reduced by increasing the dynamic
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range. However, as the number of bits used must remain the same, the accuracy of the
measurements decreases with increasing dynamic range. A di�erent solution is to use ADC
converters that use more bits for their storage. This is a very costly operation, however,
and therefore not suitable for the HiSPARC experiment. Therefore, a compromise must
be used. At Nikhef the supply voltages of the ADC converters have been set to 2.3 V.
This choice has been made because the combination of base and PMT used at the time
generated pulses higher than 2.3 V only in very few occasions.
However, not all information about analogue pulses with peak height larger than 2.3 V is
lost. In addition to the introduced ADCs also comparators are used in the detection of EAS.
Comparators are devices that indicate whether a signal is below or above a predetermined
threshold. They can be considered as single bit ADCs. The PMTs of Nikhef have been
coupled to two comparators per PMT, the default thresholds are 2.5 V and 3 V. One of
the goals of this research will be to reconstruct the original pulse from the clipped pulse
and the comparator data. This is essential for the use large pulses and thus for the study
of high energy air showers, which contain the most interesting physics.

1.6 Data storage

The stations of the HiSPARC experiment store an event if the signals in at least two of
the four detectors of a station cross the high threshold at 70 mV, or if in at least three of
the four detectors of station the signal crosses the low threshold at 30 mV. This is called
the triggering of a station. For each stored event an extended timestamp is determined.
The extended timestamp is the GPS time in nanoseconds at 1.5 µs before the �rst signal
passes the triggering threshold. If a station has been triggered, the station saves the trace,
the baseline voltage, pulse height, a rough estimate of the pulse integral and the internal
settings of the station, such as GPS location and threshold voltage. The loading of an event
can be done based on the timestamp of the station. Both data from a speci�c timestamp,
if one event is needed, or from a range of timestamps, if a large sample of data is needed,
can be loaded. The comparator data is stored separately and thus allocated timestamps
independently. The timestamps can be matched by using a for loop on a table of events
and a table of comparator data. For matching the timestamps of di�erent stations, code
is available, in the Python package HiSPARC Sapphire [21].

1.7 The Nikhef cluster

The focus of this research will be on the Nikhef cluster of the HiSPARC experiment. The
Nikhef cluster consists of four stations, labelled 501, 510, 512 and 513. The stations are
placed on the roof of Nikhef. A schematic layout is shown in �gure 6.
The four detectors of each station are labelled by the numbers 1, 2, 3 and 4, detectors with
the same detector number are located in what will be called a subcluster. The detectors
in one subcluster have been located close together. The presence of four stations at small
inter distances allows for assessment of the quality of the stations and for better shower
reconstruction.

11



501

510

512

513

1

2

3

4

N

Figure 6: Schematic top view of the setup of the four stations on the roof of Nikhef.
The color scheme indicates the di�erent stations used. Each station consists of four
detectors, the detectors of the di�erent stations are located close together in four
subclusters.

1.7.1 Di�erences between stations

The stations used at Nikhef make use of di�erent equipment sets. Stations 501 and 513
are equipped with PMTs and base from ET Enterprises [15],[16], whereas stations 510
and 512 are equipped with a base produced by the electronics department of Nikhef [46],
combined with PMTs fabricated by Hamamatsu [11]. The motivation for introducing a
new base at the HiSPARC experiment was twofold, to decrease the decay time of the
capacitors, hence the dead time of the detectors, and to decrease the costs of a single
HiSPARC station. Moreover, it was found in a controlled experiment that the response
of the equipment produced by Nikhef was linear, whereas the response of the commercial
equipment resembled a logarithmic function.f The use of di�erent equipment has in�uence
on the measured signals, the detector of stations using the commercial base show di�erent
pulses compared to those of stations using the Nikhef base. Even the di�erent detectors of a
single station show slightly di�erent results, due to variances in the equipment parameters
of PMTs that are inherent to their production. This is a major problem in assessing the
quality of the HiSPARC detectors. A solution to this problem will be proposed.

1.8 Research goals of this thesis

The aim of this study is the development and application of methods to improve air shower
reconstruction. First, a method for reconstruction of pulses with the help of comparators
will be introduced. Secondly, the di�erences between the 16 di�erent detectors will be
assessed and a method for conversion of signals to the outputs of one standard PMT will
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be proposed. These are two relatively unaddressed problems. At similar research projects
more costly ADCs are used on which a supply voltage can be used that covers the range
of interest, and similar electronics are used for each station. The di�erences in outputs
between the stations is in most researches neglected. However, this research shows that
also for the matched electronics in the di�erent detectors of a single station the results are
di�erent, indicating that the subject is also relevant for other research projects.
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2 Fitting procedures

The pulses generated by the PMTs are �t by a model. A short description of the background
of the �tting procedure will now be given. The criterion for the quality of a �t will be the
least squares criterion:

N∑
i=1

(f(ti, p)− di)2. (2)

In this equation {di} is the collection of data points, ti is the collection of times at which
the data points are collected, f is the model function used and p is the vector of parameters.
For minimization of this sum of squares the Levenberg-Marquardt method is used. This
is a compromise between the Gradient-Descent method and the Gauss-Newton method.
Short descriptions, based on [39], [6] and [23] are given below.

2.1 Gradient-Descent method

The Gradient-Descent method is a �rst order method to �nd the minimum of an objective
function f(x). Starting at a point xi it computes the gradient ∇f(xi). If ∇f(xi) = 0
the starting point is an extremum and the algorithm stops. So suppose ∇f(xi) 6= 0. The
direction to which the gradient points is the direction along which f has the largest rate
of change, therefore the method is also called the steepest descent method. The update
equation is:

xi+1 = xi − α∇f(xi). (3)

In this equation α is called the learning rate or step size, which is positive for �nding
minima and negative for �nding maxima. In this research minimization is implemented,
so assume the learning rate are positive. The learning rate is adapted throughout the
algorithm. If for a given learning rate f(xi+1) > f(xi) the learning rate parameter is
decreased until f(xi+1) ≤ f(xi). That this is possible can be seen as follows: using the
Taylor expansion

f(xi − δ)− f(xi) = −δT · ∇f(xi) +O(||δ||2) (4)

it follows that

f(xi − α∇f(xi))− f(xi) = −α||∇f(xi)||2 +O(α2). (5)

This indicates there exists ε > 0 such that for α < ε

f(xi − α∇f(xi))− f(xi) < 0. (6)

This shows that the algorithm can ful�l the descent property, that is, the value of f(xi)
decreases at each step. The Gradient-Descent method can be implemented in a way such
that for analytic functions that are bounded below convergence is guaranteed [2]. In our
research the function to be minimized is a sum of squares, hence positive and thus bounded
below. Moreover, as the objective function is a sum of squares of functions that are analytic
for positive τ , the objective function is analytic for positive τ . The restriction to positive
τ does not impose further restrictions, the peak of a pulse cannot be located before its
start. Therefore, the Gradient-Descent method will always converge for the problem under
consideration. A disadvantage of the Gradient-Descent method is the very slow convergence
rate near minima. Therefore, in many applications other algorithms are used. One of the
methods that perform better with respect to this criterion is the Gauss-Newton method.
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2.2 Gauss-Newton method

One of the most commonly used optimization algorithms instead of the Gradient-Descent
method is the Gauss-Newton method. Similarly to the Gradient-Descent method, the
Gauss-Newton method works on function f(x) = 1

2 ||r(x)||2, where r(x) is a vector-valued
function. In the case of this research r(x) is the vector containing the residuals given �t
parameter vector x. The factor 1

2 does not in�uence the results and simpli�es the notation
later on. The Gauss-Newton method approximates f by its second order Taylor polynomial
around the starting point of the ith step xi, which equals the end point of the i−1 th step:

f(xi + p) ≈ f(xi) + pT · ∇f(xi) +
1

2
pTHf(x)p, (7)

where Hf is the Hessian matrix of f , that is, the matrix containing all second order
derivatives of the function f . Now substituting f(x) = 1

2 ||r(x)||2 it follows that

∇f(x) =
1

2
∇(r(x) · r(x)) = JT (x)r(x), (8)

where J(x) is the Jacobian of r(x). The Hessian of f can be expressed in terms of the
derivatives of r as follows:

Hf(x) = ∇r(x)∇r(x)T +
m∑
i=1

ri(x)Hri(x) = JT (x)J(x) +Q(x). (9)

Substituting these expressions in eq. (7) it follows that

f(xi + p) ≈ f(xi) + pT · JT (x)r(x) +
1

2
pT · (JT (x))J(x) +Q(x)) · p. (10)

This is a second order polynomial in p, its minimum is attained at the point where

0 = ∇p(f(xi) + pT · JT (x)r(x) +
1

2
pT · (JT (x)J(x) +Q(x)) · p)

= JT (x)r(x) + pT · (JT (x)J(x) +Q(x)).
(11)

If JT (x)J(x) +Q(x) is invertible the existence of a solution to this equation is guaranteed.
The result is

pmin = −(JT (x)J(x) +Q(x))−1JT (x)r(x). (12)

An underlying assumption of the Gauss-Newton method is that the residuals are very
small, that is,

|Q(x)| = |
m∑
i=1

ri(x)Hri(x)| << |JT (x)J(x)|.

Under this assumption equation 12 simpli�es to

pmin = −(JT (x)J(x))−1JT (x)r(x) (13)

The update equation therefore becomes:

xi+1 = xi + pi,min = xi + (JT (xi)J(xi))
−1JT (xi)r(xi). (14)
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The advantage of neglecting the Q term is that, as in the Gradient-Descent method, only
�rst order derivatives need to be calculated. However, this also indicates a disadvantage
of the method, the residuals at the minimum must be small. Next to this, the Jacobian
involved must be nonsingular for convergence of the method. Moreover, the Gauss-Newton
method does not make use of a learning parameter that can be adapted. Therefore, the
second order Taylor polynomial must be a good approximation to the actual function for
the algorithm to work, there is no control that can decrease the step size if the error at
xi+1 is larger than that at xi. Thus, even though the convergence near local minima is
faster than for the Gradient-Descent method, the Gauss-Newton method is not always
preferable.

2.3 Levenberg-Marquardt

The Levenberg-Marquardt method is a compromise between the Gradient-Descent method
and the Gauss-Newton method. In the Gauss-Newton method a major drawback was
the absence of a learning parameter, whereas the Gradient-Descent method su�ers from
slow convergence near minima. The Levenberg-Marquardt method introduces one learning
parameter in the Gauss-Newton method to improve convergence in general while mostly
preserving the faster convergence near minima. To see how this learning parameter is
introduced eq. (13) is rewritten in a slightly di�erent way:

JT (x)J(x)pmin = −JT (x)r(x). (15)

In this form the similarity with the Gradient-Descent method is more clear, using eq. (3)
and (8) its updating formula is given by:

pmin = −α∇f = −αJT (x)r(x). (16)

or, introducing λ = 1
α :

λpmin = −JT (x)r(x). (17)

The Levenberg Marquardt algorithm combines these two into one equation for its update
equation:

(JT (x)J(x) + λI)pmin = −JT (x)r(x). (18)

For small λ the second term becomes negligible and the Levenberg Marquardt algorithm
gives essentially the same result as the Gauss-Newton method. With increasing λ the
step direction is rotated more and more towards the direction of steepest descent, and
the step size becomes smaller. For very large λ the Levenberg Marquardt method gives
nearly the same result as the Gradient-Descent method. Throughout the algorithm the
parameter λ is adapted. If possible without violating the descent property λ is decreased,
if necessary λ is increased. In this way the algorithm can deal with functions that are not
well approximated by their second order Taylor polynomial whereas close to minima the
Levenberg-Marquardt method will nearly follow the Gauss-Newton method and thus have
faster convergence than the Gradient-Descent method. The convergence properties of the
Levenberg-Marquardt method are more restrictive than for the gradient descent method.
They have been extensively studied, a well known result comes from [35].
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2.4 Local minima

A problem with minimization algorithms such as the one described above is that they can
only prove convergence to local minima, not to global minima. If the method starts very
near a local minimum, and the global minimum is far away, the global minimum will not
be attained. To enhance the �tting procedure it is therefore preferable to put bounds on
the �t to restrict the search space. For the pulses in the experiment this is well doable,
because rough estimates the peak height, peak location and start of the peak can be made
without �tting procedure.

2.5 Pulse �tting

A log-normal pulse model based on the model used in the Daya Bay experiment [30] was
used. This phenomenological log-normal pulse model is widely used to describe the output
of PMT-devices for single photon incidences in several experiments [7], [40], [25]. The
log-normal pulse model was initially introduced for the PMT-response to single photons,
whereas the pulses generated by the PMTs of the HiSPARC experiment are generally
caused by multiple photons. Still though, because the inter-arrival times of the photons
are very short, the generated pulse will resemble a scaled single photon pulse. Because of
this, the single photon pulse model can be used to describe the pulses generated in the
HiSPARC experiment. One of the major goals of the HiSPARC experiment is to extract
information about the number of photons incident and their inter-arrival times from the
obtained pulses using the log-normal model. This is helpful in determining the energy of
the incoming particle and its impact location.
The general formula of the log-normal model for the shape of a single pulse is:

u(t) = U0e
− (ln( tτ ))2

2σ2

= U0e
− (ln(t)−ln(τ))2

2σ2 .

(19)

In this formula U0 is the pulse height of the signal, τ is the time at which the signal reaches
its pulse height and σ is a parameter which determines the width of the peak. In this model
t = 0 corresponds to the 'start of the pulse'. In the output of the photomultiplier tubes
the start of the pulse is not as well de�ned as for the log-normal model, where the signal
is identically zero before the �rst photon reaches the PMT. The noises for the detectors of
the HiSPARC experiment have been observed to be smaller than 20 mV [44]. Therefore,
in the analysis a noise bound of 20 mV was set, the start of the pulse is located 12.5
ns, that is �ve data points, before the signal exceeds the noise bound. The so obtained
data was �tted with the help of the Python SciPy built in curve_�t [10], which uses the
Levenberg-Marquardt method described above. The pulses are well described by the �ts,
as can be seen in �gure 7. To assess the quality of the �t the root mean square di�erence
between the �t and the actual data relative to the pulse height of the signal was calculated
for a set of pulses for each detector. The results for the four detectors of a single station
have been averaged. An average was taken over around 110000 pulses. The results for the
four di�erent station is shown in table 2.

17



Table 2: The root mean square error relative to pulseheight averaged over 110000
pulses for the four HiSPARC stations on the roof of Nikhef. The errors have been
averaged over the four di�erent detectors of a station.

Station rms-error
pulseheight

(%) Standard deviation

501 4.5 2.1

510 3.3 1.9

512 4.8 1.2

513 4.0 1.8

For all stations the relative root mean square error is less than 5%. The di�erence in errors
between the stations is attributed to imperfections, but all values are within one standard
deviation of each other. No relation can be found between the use of di�erent bases and
the quality of the log-normal �t. Whereas the signals from 510 are indeed better approx-
imated than those of 501 and 513, the approximation of pulses from station 512 is worse.
This station also di�ers from the other stations regarding the standard deviation, whereas
the standard deviations of the others have approximately equal magnitude, the standard
deviation of the 512 pulse is smaller, indicating that there is a structural di�erence. To
test on the existence of outliers the root mean square error distribution was examined. The
results are shown in �gure 8. The root mean square error distributions are slightly skewed,
but the number of pulses with a root mean square error of more than 10% is negligible. In
conclusion, the statistics show that the log-normal �t is a good approximation to the data.
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Figure 7: Pulses �tted by the log-normal model from [30] for four di�erent pulse-
heights. The data pulses are all from station 510 detector 1. The data are well
approximated by the model for all pulseheights.

18



0.0 0.1 0.2 0.3
Error [(∆V )RMS/V]

0

10

20
D

en
si

ty
501

0.0 0.1 0.2 0.3
Error [(∆V )RMS/V]

0

20

D
en

si
ty

510

0.0 0.1 0.2 0.3
Error [(∆V )RMS/V]

0

10

20

D
en

si
ty

512

0.0 0.1 0.2 0.3
Error [(∆V )RMS/V]

0

10

20

D
en

si
ty

513

Figure 8: Histograms of the root mean square errors as fraction of the pulse height
between the log-normal �t and the actual data for the four di�erent stations on the
roof of the Nikhef. Data of all four detectors of a single station are used in each
histogram. Only a very small fraction of the pulses has a root mean square error of
larger than 10% of the peak height.

Still though, improvements can be made. On some occasions two pulses generated in a
detector have some overlap. For such cases the signal has two main peaks instead of one.
An example of such a pulse is shown in �gure 9. To improve the �tting of such pulses the
optimization algorithm was rewritten as to include sums of two log-normal functions. In
order not to use this unnecessarily on pulses that have only one peak the option was only
activated if the �t with one log-normal function produces as rms error of more than 10%.
Because the start of the pulse is not equal for both pulses, the log-normal function had to
be modi�ed to allow for such a shift. Substituting t− t0 for t in the log-normal equation,
eq.(19), gives:

U(t) = U0e
− (ln(t−t0)−ln(τ))2

2σ2 , (20)

where t0 now denotes the start of the pulse. This modi�cation was also allowed for single
pulses to increase accuracy of the �t. This new procedure improves the �ts found, the new
errors are given in table 3. Also the di�erence in standard deviation between station 512
and the rest could be accounted for in this way.
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Figure 9: An event in which two pulses come shortly after each other and two
main peaks occur. This event is generated by two particles hitting the detector
with a time di�erence of approximately 50 ns. Apart from the data the �ts based
on one log-normal pulse and a combination of two lognormal pulses are shown. The
�t using two lognormal pulses approximates the data well.

Table 3: The root mean square error relative to pulse height averaged over 110000
pulses for the four HiSPARC stations on the roof of Nikhef for the second model.
The errors have been averaged over the four detectors of a station. All root mean
square errors are smaller than 3.5%.

Station rms-error
pulseheight

(%) Standard deviation

501 3.0 1.3

510 2.6 1.5

512 3.4 1.5

513 2.9 1.3
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Figure 10: Histograms of the root mean square errors between the improved
log-normal �t and the actual data.

A di�erent approach which was set up to work without a standard �tting algorithm, but
rather on �nding best estimates of the parameters based on �rst and second moments, was
�rst considered. This method is described in appendix D. However, the method described
in appendix D su�ers more from the relatively noisy output at the far-tail. Therefore, the
choice was made not to use this method.

2.6 Pulseform error

As an extra assessment the errors in the �t as a function of time were averaged, both for
the error and the absolute error. The results are shown in �gures 11 and 12. The mean
error behaves relatively chaotic, the mean absolute error �rst increases with time and then
decreases, in correspondence with the peak behaviour. The reason for the non-zero mean
error is that there is some capacitance present in the electronics circuit. Due to this the
PMT pulse is convoluted with an exponentially decaying function, which decays faster than
the log-normal function. The error is relatively small and chaotic, moreover, implementing
the exponential decay makes the program less computationally e�cient. Therefore, this
feature was not implemented.
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Figure 11: The mean error relative to pulse height as a function of time for the
four di�erent stations. Errors have been averaged over the four di�erent detectors
of the stations. The mean error is non zero near the peak, but behaves chaotically.
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Figure 12: The mean absolute error relative to pulse height as a function fo time
for the four di�erent stations. Errors have been averaged over the four di�erent
detectors of the stations. The mean absolute error is largest at the peak.
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3 Comparison of reconstructed pulses with comparator data

3.1 Motivation

As explained in the introduction, the signals generated by the PMT crossing the 2.3 V
threshold are clipped in the ADC conversion at this value. In order not to lose all infor-
mation above the 2.3 V threshold, also comparators are used at 2.5 V and 3 V. In this
section the reconstruction of the original signals from the clipped traces will be investi-
gated. Thereafter, an analysis will be performed to investigate whether using comparator
data improves the reconstruction of the original signals.

3.2 Matching events

Before the comparator data can be used to improve the pulse reconstruction on the event
data, both types of data �rst need to be paired, that is, the comparator data should only be
used to reconstruct pulses that are generated in the same event. Moreover, the comparator
data should only be used to improve predictions for the PMT that generates the analogue
signals the comparator digitalises.

3.2.1 Matching timestamps

The �rst matching criterion is based on the timestamps. A station is triggered by an
event if the signal in two di�erent detectors of a station crosses the high threshold or if the
signal in three di�erent detectors of a station crosses the low threshold within a coincidence
window of 1.5 µs, this same coincidence window was used to detect matches between the
comparator data and the event data. The method was �rst tested on data from the four
Nikhef based stations dated April 19th 00:00:00 to April 23th 00:00:00. The results are
shown in table 4. The stations that use the Nikhef base, 510 and 512, have a lot more
comparator counts than the stations that use the commercial base, 501 and 513. That the
comparator counts for the stations with small commercial bases is because the dynamic
range has been chosen to cover most traces of those stations. That the comparators for the
station that use other bases is di�erent, has to do with the characteristics of the electronics,
which will be discussed in more detail in coming sections. For the comparator data matches
could not always be made.

Table 4: The number of times the comparators are triggered and the number
and percentage of those triggered events matched with an event for the traces in
the period between 19-4-2019 00:00:00 and 23-4-2019 00:00:00. Distinction is made
between the four di�erent stations on the roof of Nikhef.

Station Comparator counts Matched counts Percentage matched

501 3 0 0

510 2447 609 24.9

512 37997 1955 5.1

513 44 38 86.4

To investigate the mishits, for each comparator timestamp a time distance has been calcu-
lated. The time distance has been de�ned as the minimum time di�erence with an event in
which the signal in the PMT to which the comparator belongs, passes the lower threshold.
There is not a systematic o�set in the timestamps that accounts for the mishits. However,
if two comparators are triggered within one coincidence window, the time distance is only
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a few nanoseconds di�erent, for time distances of order ns. This can be caused by two
e�ects:

• The �rst explanation is that for events for which the signal in at least one detector is
clipped, the particle density is very high. This means that there is a large probability
that the traces in all detectors of the station are clipped. According to this expla-
nation there is no correlation between unmatched comparator data and the nearest
clipped trace.

• The second explanation is that the allocation of timestamps for the comparator data
is not precise enough, but �uctuates. To explain the mishits �uctuations of at least
µs are needed. In this case there is a correlation between the comparator data and
the nearest clipped trace.

To test which of the two explanations is appropriate, the time di�erence between the
comparator events and the nearest clipped trace events has been computed and a histogram
has been made with the time di�erence between two clipped trace events. The second
explanation can only be distinguished from the �rst explanation if the �uctuations are
smaller than the mean time di�erence between two events in which a trace is clipped.
The time di�erence between two traces is of order 10−2 s, the time di�erence between
two clipped traces must be larger. Fluctuations of this order are considered very unlikely.
Thus, the two di�erent explanations can be distinguished. The time di�erence between two
clipped traces events is approximately 570 s, whereas �gure 13 shows that time distance
mean is of the same order. This indicates that the �rst explanation is more likely than the
second one, there is no correlation between unmatched comparator data and the nearest
clipped trace. This leaves a few possible causes of mishits. Firstly, there is a possibility
of false comparator detections, in which the comparator accidentally generates a signal.
Secondly, the comparator data is always saved if one of the signals passes the comparator
thresholds. If the core of the shower is located at this detector, the other detectors of
the station may not be hit at all. In this case the traces are not saved, as the triggering
criteria are not met. However, the number of unmatched comparator events for station
512 greatly exceeds the number of unmatched comparator events for the other stations.
The second cause can thus only explain the number of unmatched comparator events if the
pulse heights of the signals generated in station 512 are systematically higher than in the
other stations. In section 4.2 it will be shown that the pulse height distributions of 510 and
512 are comparable, ruling out the second cause. Thus, if there is no correlation between
unmatched comparator events and the traces, this must be caused by a false detection of
the comparator. This leaves concerns about the correlation between comparator data and
event data if a match is found. However, the coincidence window is very small compared to
the range of time distances, so only a negligible fraction of the mishits have a time distance
smaller than the coincidence window. Thus, for nearly all cases there is a correlation
between the comparator data and event data if they have been matched. A second concern
is how to avoid errors due to the presence of unmatched comparator data. In the algorithm
developed in this research, the traces will be taken as the basis, comparator events will
only be searched for if the signal is clipped, and only those comparator events that can be
matched with event data are called. In this way the mishits will not cause problems for
processing the signal.
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Figure 13: The time di�erence between comparator event timestamps and the
nearest timestamp of the event in which the signal in the detector belonging to
the comparator crosses the 2.3 V threshold for stations 510 and 512. All detectors
of both stations have been used. The results for detectors 501 and 513 are not
shown because the comparator data set is too small for these two stations. The
matched events are contained in the bar representing the smallest time di�erences.
For station 510 the percentage of matched events is much higher than for station
512.

3.2.2 Matching comparator data and event traces

If the timestamps of the comparator data and the event trace are within the mentioned
coincidence interval, it must be veri�ed whether the data belong to the same PMT. The
comparator data of the di�erent stations is stored by di�erent devices, the comparator data
of the four detectors within one station is stored by two devices, with four channels each.
These channels are in the comparator data storage labelled by powers of two. Comparator
channels 1 and 2 of device 1 belong to PMT detector 1 of the event data, comparator
channels 4 and 8 of this device belong to PMT detector 2 of the event data. Similarly,
comparator channels 1 and 2 of device 2 belong to PMT detector 3 and comparator channels
4 and 8 of this device to PMT detector 4. For both devices comparator channels 1 and 4
are triggered for events in which the signal passes through the low comparator threshold,
comparator channels 2 and 8 if the signal passes through the high comparator threshold.

3.3 Motivation for using comparator data

To investigate whether the comparator data provides information of the full pulse not
present in the clipped pulse for timestamps for which the comparator data could be matched
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with event data, the comparator data was plotted in the same �gure as the event data with
its �t. The procedure to address the time calibration is explained in appendix B. Figures
14 and 15 indicate that the pulse sometimes predicts the signal pulse width at 2.5 V and
3 V in good correspondence with the comparator data but in other cases the comparator
data indicate smaller or larger widths than predicted by the pulse on the clipped trace.
This illustrates that the matching between the comparator data works well, and that using
the comparator data does introduce new information. In section 3.3.1 this will be made
quantitative. 0 100 200
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Figure 14: Pulses for which the log-normal �t on clipped trace corresponds well
with the comparator data that are matched to the clipped trace. A selection is
made to �nd events for which both comparator thresholds are crossed.
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Figure 15: Pulses for which the pulse predicted based on the clipped trace is
smaller or broader than indicated by the comparator data matched to the clipped
trace. A selection is made to �nd events for which both comparator thresholds are
crossed.

3.3.1 Quanti�cation

For the pulses for which a match could be found between comparator and event data the
comparator time data was compared with the width of the optimal �t parameter curve
of the log-normal distribution at the comparator voltage. As described in section C this
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width is given by

∆t = 2τ sinh(σ

√
ln(

Vpeak
VComparator

)).

Table 5 shows the results of the comparisons for the three stations for which matches were
found. The second column is the average of the errors calculated for each match, and
is meant to indicate whether there is a bias, the third column is the root mean square
error. The root mean square error is of the order of 5 ns. To improve the results using the
comparator data the decision was made to take them into account as data points of the
array.

Table 5: The average error and the root mean square error between the pulse
width predicted by the log-normal �t on the clipped trace and the comparator data
matched to the clipped trace. For station 501 no matches were found, therefore no
data is displayed for station 501. For the other three stations the average and root
mean square average have been taken over all four detectors of a station.

Station Average error pulse width Root mean square error pulsewidth

510 1.83 6.88

512 5.12 6.88

513 -1.38 4.35

3.4 Comparator based approximation

The �tted pulses and the comparator data have been shown to be in relatively good, but
not perfect agreement. This raises the question whether the comparators can be used to
improve the approximation of the pulse. To examine this, the comparator thresholds of
station 510 were decreased below the clipping threshold of the PMT, to 2 and 2.1 V respec-
tively, for a time period extending from the afternoon of the 27th of April to the morning
of the 29th of April. For the events registered by the PMT the full trace was duplicated.
For the replica a clip-value of 1.2 V was introduced. In this way three parameter �ts can be
done. One on the pulse clipped at 1.2 V without the use of the comparator data, resulting
in parameter set (τ, σ, up) = (τ1, σ1, up,1), one on the pulse clipped at 1.2 V with the use
of the comparator data, resulting in a parameter set (τ, σ, up) = (τ2, σ2, up,2) and one on
the original pulse, which might be clipped at 2.375 V, or might be the full pulse if the
peak height is less than 2.375 V, resulting in a parameter set (τ, σ, up) = (τrev, σrev, up,rev).
One of the results is shown in �gure 16. The approximation using the comparator data
represents the actual data better than the approximation which does not use these data.
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Figure 16: A data pulse from 28th of April, displayed fully and manually clipped,
together with �ts that include or do not include the comparator data matched to
the event. The comparator data correspond to voltages of 2 and 2.1 V, they have
been temporarily changed from the default for this purpose. The �t that is based
on both the clipped trace the comparator data approximates the unclipped signal
better than the �t that is only based on the clipped trace.

3.4.1 Analysis of �ts

To assess the quality of the estimate with and without the comparator data the relative
error

Ei =

(
(
τi − τrev
τrev

)2 + (
σi − σrev
σrev

)2 + (
up,i − up,rev

up,rev
)2

) 1
2

i = 1, 2

has been computed for all pulses. This quantity was averaged over all pulses. The choice for
relative errors was made because |up| >> τ, σ in general. For the uncertainty in the data
the covariances outputted by the python script curve_�t. This calculation was performed
on a sample of 75 events, the result is listed in table 6.
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Table 6: The log-normal model has been used for �tting using the full trace, the
clipped trace without comparator data and the clipped trace with comparator data.
For both �ts using the clipped trace the relative di�erence in parameters with the
full trace �t has been calculated for 75 events. The relative errors of the three
di�erent parameters have been added, the average was taken over the 75 events.

With or without Comparator Error Uncertainty

Without 0.21 0.0037
With 0.15 0.0018

The comparator data indeed improve the approximation of the pulse, the di�erence in error
between the approximation with and without error is much larger than the lengths of the
con�dence intervals involved. The results also show that the approximation is not perfect.
The estimation of the error for the method using the comparator data is an overestimation
of the error of this same method when using the settings throughout the rest of this thesis.
For those settings the clip-value is higher, so less information is lost, and the di�erence
between the comparator voltages is larger in that case, so the correlation between the high
comparator and the low comparator results should be smaller.
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4 Di�erences between detectors

To assess the di�erences between the stations and between the four detectors of a single
station the pulses that were recorded in April 2019 were ordered by pulse integral and
averaged pulses were computed over pulse integral bins of width 3650 mV · ns. The results
for pulse integrals in the bin around 40000 mV · ns are shown in �gure 17. The results
from the di�erent stations are di�erent, even within one station the di�erent detectors
give di�erent averaged pulses, though the equipment within one station is similar. The
�gure indicates that calibrations are necessary for comparing the di�erent stations of the
HiSPARC experiment.
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Figure 17: The averaged pulse shape using pulses with a pulse integral in an
interval of width 3650 mV · ns with as mean 38325 mV · ns. Before averaging,
pulses used have been shifted as to have the start at the peak at t = 0. The
results of the four detectors of a single HiSPARC station have been displayed in
one sub�gure. Results for the four stations on the roof of Nikhef are shown.

4.1 Signals from di�erent impact locations

Figure 17 shows averaged pulses. The measured pulses, however, do not always resemble
the averaged pulses. The signal measured by the scintillators does not only depend on
the energy of the incoming particle, but also on the location of impact and the angle
under which the particle hits the scintillator. Simulations show that the e�ciency with
which photons reach the scintillator plates is not uniform over the scintillator plate [21].
Apart from the detection e�ciency also the pulse form of the signal depends on the impact
location. For some locations there is one main path along which the photons can reach the
PMT. This means that the spread in arrival times will be relatively small and the signal
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Figure 18: The histograms of the best �t log-normal model parameters σ and
τ are shown for all four stations. Results of detector 1 are used for each station,
results from di�erent detectors of the one station are similar. The two upper �gures
correspond to a pulse integral of 15000 mV·ns, the two lower �gures to a pulse
integral of 70000 mV·ns. The histograms become more symmetric about their mode,
supporting the averaging hypothesis.

will thus have a relatively small width. For other locations there are, due to re�ections,
several paths with distinct lengths that are about equally likely and the spread in arrival
times will thus be relatively large, which leads to broader pulses. This means that the pulse
integral, which itself is fully determined by the number of photons reaching the PMT, does
not uniquely determine the signal, the distribution of τ and σ will, also for a given pulse
integral, have a non-zero variance. An hypothesis is that variance of σ and τ decreases with
increasing pulse integral. Namely, for larger pulse integrals more particles are involved.
The e�ect of the impact location will be di�erent for the di�erent photons, and the e�ects
will average out.
To assess the parameter distributions given the pulse integral the signals measured in March
2019 ordered using the same ordering criteria as for the signals measured in April 2019. For
this part the signals of March 2019 were preferred over those measured in April 2019. This
because the comparator data for station 510 of 27 to 29 April 2019 correspond to adapted
voltage thresholds, as was needed in section 3.4. The pulses were �t according to section 2.
The optimal parameter values for τ and σ were histogrammed for the di�erent categories.
A few results are shown in �gure 18. The spread in τ and σ is non zero, con�rming the
hypothesis that the pulse integral does not uniquely determine the signal.

31



4.2 Parameters as a function of pulse integral

From the parameter distributions computed for all pulse integrals the mean and variance
can be extracted. This was done for all pulse integrals for the 16 di�erent detectors. The
mean and inverse variance of the three parameters σ, τ and upeak are shown for detector
1 of stations 501 and 510 in �gure 19 and for detector 1 of stations 512 and 513 in �gure
20. In this �gure the red dots represent stations 501 and 513, which use the commercial
base. The blue dots represent stations 510 and 512, which use the Nikhef base. The
four detectors of a single station all showed similar behaviour, the actual values of the
parameter means and variances being slightly di�erent. The results in �gures 19 and 20
are thus representative for the whole setup.
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Figure 19: The evolution of the log-normal �t parameters σ, τ and upeak and
their inverse variances as a function of the pulse integral. The results of station
501 are given in red, those of station 510 in blue. The left vertical axes belong to
station 510, the right ones to station 501. Parameter values of 0 indicate that no
pulse was found for the corresponding bin. Note that inverse variances are shown.
This choice has been made because the evolution of the parameters is more clearly
in this representation.

The behaviour of the detectors of stations that use the Nikhef base is signi�cantly di�erent
from those which use the commercial base. For the detectors of stations using the Nikhef
base the parameters σ and τ do not show a systematic increase or decrease, they are nearly
constant, and the pulse height increases approximately linearly with the pulse integral
over a large range, with small deviations from this behaviour around 3.5 V. This is most
probably a result of the limited time-resolution of the comparator. This causes the time
di�erence to be overestimated for small time di�erences, a time di�erence of 1 ns might be
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rounded to 5 ns. For the detectors of stations with the commercial base however, both τ
and σ are highly dependent on the pulse integral, for small pulse integrals there is a large
increase in τ with increasing pulse integral, whereas for larger pulse integrals σ increases
with increasing pulse integral. The shape of the pulses thus depends on the pulse integral,
for higher pulse integrals the pulse is broader. This is also re�ected in the pulse height
as a function of the pulse integral. The pulse integral pulse height relation is not linear,
but rather �attens. This is in correspondence with the fact that the comparators of those
stations are triggered less frequent.
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Figure 20: The evolution of the log-normal �t parameters σ, τ and upeak and
their inverse variances as a function of the pulse integral. The results of station
513 are given in red, those of station 512 in blue. The left vertical axes belong to
station 512, the right ones to station 513. Parameter values of 0 indicate that no
pulse was found for the corresponding bin. Note that inverse variances are shown.
This choice has been made because the evolution of the parameters is more clearly
in this representation.

Whereas the average values of the parameters do not seem to su�er from the smaller
statistics at large pulse integrals, the variances do. Still though, their qualitative behaviour
can be extracted from �gures 19 and 20. The inverse variance increases for σ for all four
stations, in correspondence with the theory in the last section. Besides this, the variance is
much smaller for stations 510 and 512, which use the Nikhef based PMTs. The behaviour
of the variance of τ is radically di�erent however. Whereas the variance of τ decreases for
stations 510, 512 and 513, in line with the prediction, the variance of τ increases for station
501. This is also the only station for which the mean of τ shows a considerable increase for
large pulses. Both e�ects are attributed to outdated equipment. The PMTs of this station
have been working for 16 years by now and have been bombarded by electrons in this
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time window. The electrons colliding with the dynodes have high energies and damage the
dynodes. The damaged equipment can most probably not handle large inputs very well,
causing an increase in the rise time which, which depends on the actual distribution of
arrival times of the photons. One similarity with the variance of sigma is that the variances
are substantially lower for the stations with Nikhef base compared to the stations which
use a commercial base.

4.3 Method for converting signals

The signals of the di�erent stations can not be compared directly with each other, as
shown in sections 4.1 and 4.2. However, a conversion method can be derived, based on the
parameter distributions from section 4.2. In this method, the incoming signal is �rst �tted
using the log-normal function. This �t is used to determine how to transfer the signal.

4.3.1 Fit mapping

The scintillators and waveguides all use similar scintillators, the di�erences in signals are
completely determined by the electronic equipment. The impact location thus has a similar
in�uence for all detectors of all stations. That is, an impact location that corresponds a
relatively broad pulse on one detector will also correspond with a relatively broad pulse on
the other detector. This has been con�rmed in simulations [41]. From the histograms shown
above a cumulative distribution can be set up for both parameters. Via those cumulative
distributions the parameters of one detector can be mapped to those of a second detector.
That is, there exist mappings from the parameter space to the real space. Using these
functions and their inverses a family of functions can be found:

fτ,i : R→ R fτ,i(t|p) := P (τi < t|pulse integral = p) i ∈ {501, 510, 512, 513}
gτ,i,j : R→ R gτ,i,j(t|p) := f−1

τ,j

(
fτ,i(t|p)

)
i, j ∈ {501, 510, 512, 513}

(21)

In the second equation both mappings involved correspond to the same pulse integral p.
Eq. (21) is a family of functions that map signal �ts from one detector to the other,
preserving the impact location on the detector.

4.3.2 Mapping raw signals

The mappings from section 4.3.1 provide mappings between detectors. However, the equa-
tions result in perfect log-normal pulses, whereas also the deviation from the log-normal
pulses provide information on the arrival time distributions of the photons. Therefore, a
method should be derived to take into account these deviations. This has been accom-
plished using the assumption that the deviations from the log-normal pulse are a�ected by
the electronics in the same way as the log-normal pulses themselves. Then, the raw signals
are transformed by the transfer function

H(ω) =
Hg(τ),g(σ),p(ω)

Hτ,σ,p(ω)
, i, j ∈ {501, 510, 512, 513} (22)

where Hτ,σ,p is the Fourier transform of the original log-normal �t and Hg(τ),g(σ),p is the
Fourier transform of the mapped log-normal �t. This provides a mapping between detectors
that preserves more of the details. In the coming section detector 1 of station 512 will be
used as the reference detector to which all signals are mapped.
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4.3.3 Filtering

The method for processing the signal described above was applied to a set of detectors. In
some cases a frequency component of 200 MHz became dominant. This frequency compo-
nent corresponds to a period of 5 ns, that is, two time steps. This frequency component is
attributed to the ADC timings. As described in section 1.5, the two ADCs used for record-
ing the signal are driven by a single 200 MHz clock, one ADC is triggered at the rising
edge, the other at the falling edge. The two ADCs need to be accurately aligned, a small
error in the alignment introduces a frequency component of 200 MH [21]. Even though this
frequency component may be small, if H(200 · 2π) is large, this frequency component will
be large in the mapped signal. As this concerns an equipment feature that is the highest
frequency component in our signal it was decided to use a low pass Butterworth �lter of
order 5 with a frequency cut-o�, the frequency for which the signal strength is reduced by
three decibels, at 200 MHz. The choice for Butterworth �lters was made because of the
�at frequency response in the pass band and causality of those �lters [29]. Using this �lter
the problem described was solved.

4.4 Timestamp correction

To improve direction reconstruction the timestamp di�erences between the four di�erent
stations were examined. As a timestamp for the station the smallest timestamp of the
detectors of a station is used. In general the arrival times at di�erent detectors are not the
same for the di�erent events. This is due to two e�ects. First of all, the arrival time of the
front of an air shower at the detectors depends on its incoming direction, if the incoming
direction is slightly eastwards the detectors that are located more to the east are hit earlier
by the shower front than those in the west. The second e�ect is due to the thickness of
the shower front. A detector may be hit by a particle in the very front of the air shower,
but also by a particle that travels just behind the air shower front.
From the timestamp di�erence information about the arrival direction of the incoming
cosmic ray can thus be inferred. Systematic errors therefore need to be accounted for.
Because there is no preferred direction for air showers arriving at the earth, the mean
time di�erence between the stations should ideally be 0. However, the GPS used cannot
determine the absolute time with an accuracy smaller than tens of ns, the GPS o�set
di�ers slightly per station. The histogram of the di�erence in timestamp with station 501
is shown for stations 510, 512 and 513 in �gure 21. In all cases the mean di�erence in
extended timestamp is of order 1 ns. This is of the same order as the the duration of the
pulse, therefore, corrections for this need to be made. This will be done by �rst adding
the average timestamp deviation for stations 510, 512 and 513, which are listed in table 7.
Then, the timestamps can be corrected.

Table 7: The average timestamp di�erence with station 501 in events in which all
stations are triggered, for stations 510, 512, 513, as found from the distributions in
�gure 21. The timestamp of a station is de�ned as the smallest timestamp of the
four detectors of the statoin.

Station ∆tStation-501
510 11.8
512 -33.0
513 -34.2
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Figure 21: The di�erence in timestamp between station 501 and the other three
stations of the Nikhef cluster of the HiSPARC experiment. As a timestamp for
the station the smallest timestamp of the detectors of a station is used. Events
for which all four stations were triggered have been used. The arrival direction
of air showers is isotropic regarding the azimuth angle, so discarding equipment
e�ects the average timestamp di�erence should be zero. Results can thus be used
for calibration.

4.4.1 Explanation of standard deviation observed

The standard deviation in the extended timestamp di�erences is of order 10 ns. The
distance between di�erent detectors within one subcluster is of order 1 m. For speeds close
to the speed of light this corresponds to a time di�erence of order 1 ns. This means that
the standard deviation in extended timestamps is too large to be attributed to di�erences
in arrival time for inclined showers.
The thickness of an air shower front ranges over order 1 m to order 100 m [27]. This
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gives arrival time distributions with thickness of order 1 to 100 ns. Thus, the spread in
extended timestamps can be attributed to the thickness of the air shower front. Thus, the
thickness of the air shower has a large in�uence on the arrival time di�erences between
di�erent stations. On this scale, arrival direction reconstruction can thus only be done
using detectors of the same station, not with the detectors of di�erent stations. Arrival
direction reconstruction using the detectors of a single station is possible, as the distance
between detectors of a single station is of order 10 m instead of 1 m. Moreover, they are
governed by a single GPS, therefore, the timing di�erences are smaller.

4.5 Results

Using the mapping described in eq. (21) and eq. (22), the comparator data and the timings
of events in which all stations are triggered were analysed. An example result is shown in
�gure 22. This �gure contains two main parts.
The upper sub�gure is a display of the roof of Nikhef, where characteristics of the measured
signals are indicated with dots. Code for generating the map of Nikhef was already available
[41]. These dots contain three main ingredients:

• The size of the dot indicates the mapped pulse height. A larger pulse height is
represented by a larger dot.

• The colour of the dot indicates the trigger time of the dot. A darker red dot indicates
a later arrival time.

• The edge colour of the dot indicate to which station the detector belongs. In events
in which the signal in all detectors of all station have crossed the lower threshold
this can also be read from the station layout. However, if the signal in some of the
detectors stays below the low threshold, this will not be possible, in those cases the
edge colours provide this information. The colours correspond to the stations in the
following way:

� 501: black

� 510: dark grey

� 512: light grey

� 513: white

The lower sub�gures show the mapped traces in the di�erent subclusters. The lowest two
sub�gures show the traces in the subclusters closest to the edge of the roof displayed, the
left sub�gure corresponding to the left subcluster. The conversion method can deal with
noises and distortions, even a pulse with two peaks can be calibrated.
The event under consideration seems to have an arrival direction coming from the north
east, events in this direction occur earliest. The shower core appears to be in the north, the
north-most detectors show the largest signals, whereas in the east-west orientation there
is no di�erence visible.
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Figure 22: Display of an event in which all four stations on the roof of Nikhef have
been triggered. The upper �gure shows the detector positions, the four di�erent
subclusters are visible. The size of the dots indicates the pulse height after calibra-
tion to a standard PMT model. The colour indicates time, blue colours indicate
arrivals before the timestamp, red ones afterwards. The edge colours are meant to
indicate to which station the detector belongs. A black edge colour refers to station
501, dark grey to 510, light grey to 512 and white edge colours to station 513. The
lowest sub�gures correspond to the subclusters closest to the roof edge shown, the
left-right orientation is preserved. 38



5 Detection e�ciency

Reconstruction of arrival direction is only possible for a station if the signal in at least three
detectors of the station by an event crosses the lower threshold, the number of detectors
with signal above threshold positively in�uences the accuracy of the prediction. Therefore,
the detection e�ciency of the detectors involved should be high. An assessment will be
given of the detection e�ciency. The detection e�ciency of a detector is de�ned as the
probability that, given that there is a particle, the signal in the detector exceeds the lower
threshold of 30 mV.
Simulation predicted that the detection e�ciency of HiSPARC detectors is larger than 99%
[42]. However, this simulation only takes into account loss due to the quantum e�ciency of
the PMT, assuming perfect total internal re�ections. In experiment this might not be the
case due to imperfect wrapping of the aluminium foil around the detectors. In this section
the tools developed in the previous section will be used to test this prediction. This will be
done using the assumption that the detection e�ciencies of the stations are approximately
equal. This assumption is justi�ed as the pulse heights of the system were in the previous
sections found to be about equal for small pulses, and the scintillators used are similar.

5.1 Description of air showers as a Poisson process

In the analysis air showers are assumed to arrive according to a Poisson process. A val-
idation of this assumption will now be given. Four assumptions should be satis�ed by a
process to be a Poisson process [38]:

• N(0) = 0.

• The independent increments criterion: the distribution of the number of air shower
that arrives in any time interval is independent of the number of air showers arriving
in any interval that has no overlap with this interval, that is,

[t, s) ∩ [t̃, s̃) = ∅ =⇒ Cov(N(t)−N(s), N(t̃)−N(s̃)) = 0

• The stationary increments criterion: the distribution of the number of air showers
arriving in an interval is the same for any two intervals with the same length.

• The last assumption, P (N(h) = 1) = λh+ o(h) and P (N(h) ≥ 2) = o(h), indicates
that as the time interval is decreased to zero length the probability of air showers
should also go to zero.

The assumptionN(0) = 0 can always be satis�ed by choosing an appropriate starting point.
The other three assumptions are on themselves hard to validate. For all of them support can
be found, however, this results in heuristic arguments. Moreover, also counterarguments
can be found. The stationary increments criterion might be violated via weather conditions,
whereas the independent increments criterion might not at all be satis�ed if there is a large
probability that many air showers produced by the same event reach the earth.
Therefore, a test was performed on the data to examine whether the Poisson process
assumption was still reasonable. A property of Poisson processes that can be used as
an indicator is that for a Poisson process the inter-arrival times should be exponentially
distributed [38]. To assess this the inter-arrival times between coincidence events (thus air
showers) has been histogrammed. The result, together with the exponential �t, is shown in
�gure 23. The exponential �t agrees very well with the data, corroborating the assumption
that the arrival of air showers is a Poisson process.
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Figure 23: Histogram of time di�erences between subsequent events. Only events
in which all four stations are triggered have been used. Under this condition only air
showers are counted, no mishits. The data is shown, together with an exponential
�t. The �t and data show excellent agreement.

5.1.1 Properties of a Poisson process

For a Poisson process the distribution of arrival times of n particles given that they arrived
in a time interval [s, s + t) is uniform [38]. Thus, given that two air showers are in an
accidental coincidence, that is, that they arrive within each others coincidence window,
their time di�erence is distributed uniformly over the coincidence window. This property
is needed for computing the in�uence of accidental coincidences.

5.2 Accidental coincidences

The rate at which at least three stations are triggered within one coincidence window due
to uncorrelated particles must be examined. To �nd its probability �rst the probability
of an accidental coincidence between two air showers must be inferred. For each station
the singles rate of the di�erent detectors is approximately 2.5 · 102 Hz, the average time
interval between 2 independent air shower particles is thus approximately 4 · 10−3 s. The
coincidence window is 1.5 µs. For a Poisson process the distribution of the time di�erence
between subsequent events is exponentially distributed. Therefore, the arrival of accidental

coincidences occurs in a fraction of 1− e−
1.5·10−6

4·10−3 ≈ 3.7 ·10−4 of the total number of singles
hits. In this section focus will be on the coincidence of at least three stations be in
accidental coincidence, thus in 5 detectors a signal above threshold must be generated in
the small window indicated by the �rst detector. All air shower particles are independent,
so for all �ve detectors the probability the of an accidental coincidence is thus 3.7 · 10−4,
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independently of the other detectors. The frequency with which three stations are triggered
by an accidental coincidence within one coincidence window is thus bounded below (3.7 ·
10−4)5 · 102 = 7 · 10−18 · 102 = 7 · 10−12 Hz. This is a lower bound, as not all cases in which
in six stations a signal above threshold is generated three stations are triggered, this only
happens if the six detectors belong pairwise to three di�erent stations. Coincidence events
between at least three detectors occur with a frequency of about 0.095 Hz, indicating that
the accidental coincidences due to single particle air showers comprise only a very small
fraction of this. Thus, a coincidence between three stations indicates that an air shower
with multiple particles was incident.

5.2.1 From particle densities to probabilities

To assess the detector e�ciency the probability of having no incident particles on a detector
area a within a larger area A, under the assumption that the particle density over A is
uniformly distributed, is needed. For the analysis units are adopted for which |a| = 1.
Suppose that in these units |A| = n where n ∈ N. If the particle density on A is pin, then
the probability that no particles will be incident on area a equals the probability that all
npin particles will be incident on A\a, which equals (n−1

n )npin . Taking the limit as n→∞,
the probability that no particles are incident on a patch of 1 unit area is approximately
e−pin , that is

P (no particles incident|density > pin particles per detector area) ≈ e−pin . (23)

If the detectors have an e�ciency η then

P (particle detected|density > pin particles per detector area) ≈ η(1− e−pin) (24)

5.2.2 Four detector probabilities

From the probability that a single detector generates a signal above the detection proba-
bility given a certain particle density the probabilities that three or four detectors within
one subcluster generate a signal above threshold given this same particle density. The
ratio of these two is a measurable quantity and related to the single detector probability
a = η(1− e−pin) via:

p(a) =
P (4 particles detected)

P (at least 3 particles detected)
=

a4

a4 + 4a3(1− a)
=

a

4− 3a
(25)

In the analysis the inverse of this function is needed, which can be found to be

a(p) =
4

3 + 1
p

(26)

5.3 Method of assessment

To �nd qualitative values for the ratio introduced in the previous paragraph the following
method will be used. First the coincidence events in which at least 3 stations have been
triggered were selected. For each station the signals were converted using the conversion
method described in the previous section. Using these calibrated pulses an analysis was
performed for each subcluster to investigate whether at least three signals where generated
that passed the threshold. Only if this is the case, the subcluster is used in the analysis.
A subcluster event is counted as a four signals event if all four detectors generate a signal
if all four detectors pass the detection threshold of 30 mV.

41



To �nd the e�ciency of the detectors using the formulas described above information about
the particle density needs to be inferred from the data. A problem with this is that the
energy loss distribution of the incoming particles is very broad. This means that the energy
loss per particle is not not known. This implicates the number of particles incident on the
detector can not be directly derived from the height. However, con�dence bounds can be
extracted. This will be done in the following subsections.

5.3.1 Upper bounds

Data for the energy loss distribution of muons was available for the incidence of single
muons in a controlled experiment [41]. The results are shown in �gure 24. These results
have been �tted by using a Landau distribution convolved with a Gaussian, thereby taking
into account both the energy loss distribution and the noises in the equipment. Figure 24
shows a MIP-peak value of 150 mV. The MIP-peak value in experiment depends slightly
on time and �uctuates around this value. These �uctuations are neglected in the analysis.
The �t generally agrees well with the data, except for very small pulses. The reason for
this deviation is that the equipment in the experiment generated some noise with pulse
heights below 50 mV. In the analysis this is accounted for by using a detection threshold
of 30 mV.
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Figure 24: The energy distribution of muons as measured in a controlled exper-
iment [41]. The data has been �tted using a Landau distribution convolved with
a Gaussian. The Gaussian is used to model equipment errors. The �t is used for
further computations. The plateau for small peak heights is caused by equipment
noises.

From �gure 24 the cumulative distribution function can be computed. Numbers can be
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generated according to this distribution. For this the following theorem will be used:

Denote the cumulative distribution function by F (E), and let U be a uniformly distributed
variable. Then X = F−1(U) has cumulative distribution function F [33].

By adding the energy loss cumulative distributions of two and three particles the dis-
tributions for energy losses by two and three particles can be found. The results in �gure
25 were obtained.
According to �gure 25 the chance that the pulse height of a pulse generated by two particles
is higher than 452 mV is less than 5%. The chance that this happens in three detectors at
a coincidence is thus of order 10−4. Therefore, it may be assumed that for events in which
all three detectors show a pulse height larger than 452 the expected number of particles
per detector area in this region is larger than 2. As the lateral distribution �attens for low
particle densities a reasonable assumption is that this is true over a large region that also
contains the fourth detector of the subcluster. This means that the probability that no
particles arrive at the scintillator surface is bounded above by the expressions of eq. (23)
and eq. (25) with pin = 2. Thus,

n4

n≥3
≥ p(a2(η)) =

η(1− e−2)

4− 3η(1− e−2)
. (27)

In this equation n4 is the fraction of events in which at least 3 detectors generate a signal
larger than 452 mV and all detectors generate a signal with pulse height larger than 80
mV, whereas n≥3 is the number of events in which at least 3 detectors generate a signal
larger than 452 mV and no limitation is set on the fourth detector. Because p(a2(η)) is
an increasing function of the e�ciency of the detectors this provides an upper limit on the
e�ciency of the detectors:

η ≤ 1

1− e−2

4

3 +
n≥3

n4

. (28)

Similarly, if the pulse height in three detectors is larger than 643 mV, the particle density
can be assumed to be larger than 3, hence

n4

n≥3
≥ p(a3(η)) =

η(1− e−3)

4− 3η(1− e−3)
. (29)

From this equation a second upper bound on η can be found,

η ≤ 1

1− e−3

4

3 +
n≥3

n4

. (30)

The quantities de�ned above are upper bounds rather than estimates. In the calculation
a density of two, respectively three, is used, whereas the only information available is that
the density is at least two, respectively at least three. The calculated e�ciency will thus
be higher than the actual e�ciency. This e�ect will be stronger for the case of at least two
particles then for the case of at least three particles. The case of at least three particles
thus provides a stronger upper bound. Following this reasoning, using even higher number
of particles results in stronger upper bounds. This reasoning however, misses two e�ects.
The �rst is that with higher particle densities the assumption of a �at particle density
becomes less and less valid, which undermines the validity of the found upper bound. The
second is that for larger particle number bounds the number of events that ful�l the criteria
decrease, not enough events are available.
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Figure 25: The cumulative distribution functions for the pulse height generated
by respectively two (left) and three (right) simultaneous air shower particles. The
red lines indicate the 5%-95% interval. Figure is based on a MIP-peak of 150 mV.

5.3.2 Lower bounds

The derivation of lower bounds on the e�ciency follows the same procedure as the deriva-
tion of the upper bounds. The probability that two particles generate a pulse height smaller
than 110 mV is smaller than 5%. Thus, if in three detectors the signal is smaller than 110
mV, the chance is very small that the particle density is larger than 2 particle per detector
area. With a high con�dence level the particle density will thus be below 2. This means
that the probability of having no particle is bounded below by 1

e , so

ñ4

ñ≥3
≤ p(a2(η)) =

η(1− e−1)

4− 3η(1− e−1)
, (31)

In this equation ñ4 is the number of times the pulse height in at least three detectors of
a subcluster is smaller than 110 mV, and the signal in all four detectors pass the lower
triggering threshold, whereas ñ≥3 is the total number of times in at least three detectors
a signal with peak height smaller than 110 mV is generated. From this a lower bound can
be computed:

η ≥ 1

1− e−1

4

3 +
ñ≥3

ñ4

(32)

Similarly, if at least 3 detectors generate a signal smaller than 176 mV, the probability
that the particle density is larger than 2 particles per detector area is very small. In this
way a new lower bound can be computed:

η ≥ 1

1− e−2

4

3 +
ñ≥3

ñ4

(33)
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In this equation ñ4 is the number of times all detectors in a subcluster generate a signal
larger than the detection threshold, but smaller than 176 mV, ñ3 is the number of times
at least three detectors satisfy both these requirements and all detectors satisfy the latter
one. Whereas in the case of upper bounds the bound found using the three particles cumu-
lative distribution was the strongest bound, now the two particles cumulative distribution
gives the strongest bound. However, the bound found using the two particle cumulative
distribution su�ers much more from low statistics, as the range in which the pulse heights
of the signals in the detectors may lie is quite restricted.
To improve the strictness of the lower bound, the probabilities of having a particle density
of one or two particles given pulse heights smaller than 176 mV have been assessed. Given
that the pulse height is smaller than 176 mV the following holds for i ∈ {1, 2}:

pi = P (i particles|V ≤ 176)

=
P (i particles, V ≤ 176)

P (V ≤ 176)

=
P (V ≤ 176|i particles)P (i particles)

P (V ≤ 176)

(34)

Taking the ratio of the two quantities,

p1

p2
=

P (V ≤ 176|1 particle)P (1 particle)

P (V ≤ 176|2 particles)P (2 particles)
(35)

The particle density probability function is decreasing, that is, P (2 particles) ≤ P (1 particle).
Using this inequality,

p1

p2
≥ P (V ≤ 176 mV|1particle)
P (V ≤ 176 mV|2 particles)

(36)

Now using p1 + p2 ≈ 1 estimates for p1 and p2 are:

p1 ≥ p̂1 ≡ P (V ≤ 176 mV|1 particle)

P (V ≤ 176|1 particle) + P (V ≤ 176 mV|2 particles)

p2 ≤ p̂2 ≡ P (V ≤ 176 mV|2 particles)

P (V ≤ 176|1 particle) + P (V ≤ 176 mV|2 particles)

(37)

Thus, the probability of having an incident particle on the fourth plate is given by:

pin ≈ p1(1− e−1) + p2(1− e−2) ≥ p̂1(1− e−1) + p̂2(1− e−2) (38)

Now a stricter bound on the e�ciency follows:

η ≥ 1

pin

4

3 +
ñ≥3

ñ4

(39)

5.4 Results

The results for the tightest lower and upper bound are listed in table 8. Both using the two
particle bound and using the three particle bound no upper bound smaller than 1 could
be found, for the upper bound a value of 1 must thus be used. As an extra investigation
also the 95% boundary for the pulse height generated by �ve particles was calculated,
this turned out to be 943 mV. For a particle density of �ve particles the assumption of a
relatively �at particle density is not valid, therefore the bound equations in the previous
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section may not be used. However, if at least three of the four detectors are triggered with
a pulse height larger than 943 mV, than for all events in the dataset all four detectors
generated a signal above the triggering threshold. This implies that also for this case the
found upper bound is 1.
For the computation of lower bounds the case of two particles did not generate enough
statistics, therefore eq. (39) was used for computation of the lower bounds.

Table 8: The upper and lower bounds for the characteristic e�ciency of HiSPARC
stations as found using the two and three particles distributions.

Type Bound

Lower 0.95

Upper 1

That the detection is higher than 99 % cannot be approved nor been rejected, however, the
detection e�ciency is higher than 95%. Thus, the assumption of total internal re�ection
is relatively well satis�ed in the experiment.
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6 Small shower rate and random coincidences rate

In the previous chapters, focus has been on the detection e�ciency of the setup de�ned
as the percentage of particles traversing the detector that generates a signal with peak
height larger than 30 mV. A related question is whether the station is e�ective in detecting
the presence of an air shower which deposits particles on the roof of Nikhef. Because the
detection area of a HiSPARC station is limited many particles will not hit the detector
and will therefore not be detected. For highly energetic showers which have their core near
Nikhef the particle density and the detection e�ciency are high, the air showers will be
detected. For small showers, or showers which have a shower core far away, however, the
probability that all particles miss the detectors becomes considerable. In order to examine
this e�ect, �rst the e�ect of accidental coincidences, which becomes signi�cant for the
examination of small showers, must be investigated.

6.1 Theoretical comparison of rates

Apart from the coincidences between the di�erent stations, there is a number of events
for which only one station is triggered. Such an event will be called a one-station event.
One-station events are abundant. The trigger frequency of each station is around 0.6 Hz,
whereas the rate at which at least two stations are in coincidence is 0.2 Hz. This means
that the one-station event rate of the stations is 0.4 Hz, twice as high as the coincidence
rate. Some of the one-station events are caused by accidental coincidences between two
detectors of the same station. Not all one-station events can be caused by accidental
coincidences, however. Using the results of section 5.2, the frequency with which two
detectors are in accidental coincidence should be 3.8 · 10−4 · 250 Hz = 0.094 Hz, which is a
factor 4.3 smaller than the one-station event rate. The accidental coincidence rate is thus
not high enough to explain the one-station event rate. The hypothesis that the other part
of the one-station events is caused by small air showers. This can best be explained using
�gure 6. A possible situation is that for all detectors in subcluster 1 the trace passes the
threshold, but that in subcluster 2 only the detector from station 501 is hit by a particle,
whereas in subclusters 3 and 4 no station is hit. In this case only station 501 may be
triggered. To test the hypothesis, the time di�erences between the di�erent detectors of
a station in a one-station event have been studied. In section 5.1 a validation has been
given for the assumption that the arrival of air showers and single particles is a Poisson
process. Thus, if all one-station events are caused by accidental coincidences, than the
time di�erences should be uniformly distributed over the coincidence window. For small
showers, however, the arrival of the particles is highly correlated and the time di�erence
distribution will therefore have a peak at very small time di�erences.

6.2 Assessment from data

Using the �le with coincidence events the timestamps for which at least two stations
are triggered are known. By downloading only the data in the intervals between those
coincidence events, only one-station events are selected. For all one-station events the
time di�erence between the di�erent trigger-timestamps of detectors of the station was
calculated. In the available data a timestamp is given to all detectors in the event, also
if the signal does not pass the threshold in the detector. A �lter was set up that ensures
only those detectors in which the signal passes the lower threshold are taken into account.
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6.3 Results

The histograms of the time di�erences within one-station events are shown for all stations
in �gure 26. To show the presence of accidental coincidences the vertical axis is limited
to a density of 0.002, for small ∆t the density largely exceeds this value. Figure 26 shows
that the one-station events cannot be attributed only to accidental coincidences, as there
is a large peak for small ∆t. However, the accidental coincidences component is visible,
for t > 200 the density is approximately constant.

0 500 1000 1500

∆t [ns]

0.000

0.001

0.002

d
en

si
ty

501

0 500 1000 1500

∆t [ns]

0.000

0.001

0.002

d
en

si
ty

510

0 500 1000 1500

∆t [ns]

0.000

0.001

0.002

d
en

si
ty

512

0 500 1000 1500

∆t [ns]

0.000

0.001

0.002

d
en

si
ty

513

Figure 26: The distribution of timestamp di�erences between the di�erent detec-
tors of a single station for events in which only one station has been triggered, that
is, in only one of the stations at least two detectors show a pulse height larger than
70 mV, or in at least three detectors the pulse height is higher than 30 mV. Only
those detectors in which the signal produced is larger than 30 mV have been used
in the analysis. The vertical axis of the histogram has been limited to a maximum
density of 0.002 to emphasize the uniformity of the distribution for t > 200 ns.
There is a small peak visible between 1000 and 1100 ns. This peak is due to pulses
for which the timestamp could not be well assigned by the HiSPARC Sapphire
software. This occurs if the signal is heavily distorted.

A deviation from uniformity is the small peak around 1100 ns. This peak is caused by
mis�ts. If the station software cannot determine the start of the peak a feasible timestamp
cannot be calculated. In this case the the relative timestamp is set to be -999 ns. As
the detector whose timestamp is used for calculation of the event timestamp is assigned a
timestamp somewhere between 50 and 100, this introduces a peak between 1050 and 1100
ns. The constant density is about 0.0015, indicating that a fraction of 0.0015 · 1500 =
0.225 of the one-station events can be attributed to accidental coincidences, a fraction of
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0.775 should be attributed to small showers. According to this calculation the number of
accidental coincidences should be a factor 4.4 smaller than the number one-station events,
in excellent agreement with the prediction stated in the previous paragraph.
The results indicate that the number of small showers detected by one station is of the
same order as the number of showers for which multiple stations are triggered. Because
the detectors hit by particles could as well belong to di�erent stations, this indicates that
there is a large number of small showers that might be missed because their extent is too
small to excite several detectors of one station. Thus, although the detection e�ciency is
very large, a large percentage of the air showers will be missed. This can only be solved by
enlarging the detector surface. Unfortunately, this is �nancially not convenient for many
experiments, including the HiSPARC experiment.
To validate that only small showers are involved in the one-station events a histogram of
the pulse integral was made. The result is shown in �gure 27. The peak of the distribution
involved is below the MIP-peak of 150 mV, indicating that mostly small shower with low
energetic particles are involved.

50 100 150 200 250 300

pulseheights [mV]

0.000

0.001

0.002

0.003

0.004

0.005

0.006

d
en

si
ty

Figure 27: The pulse height distribution for one-station events, events for which
only one station has been triggered. The pulse height distribution shows a peak
around 120 mV, which is below 150 mV, indicating that only low small showers or
the outer edges of large showers are participating.
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7 Arrival direction estimation using machine learning

7.1 Motivation

The HiSPARC group examines the arrival direction of air showers. IF in at least three
detectors of a station the 30 mV-counts threshold is passed, the arrival direction can be
estimated using a reconstruction algorithm based on the extended timestamps, a timescale
in ns with zero point at 01-01-1970 00:00, of the detectors [21]. This algorithm will be called
the Sapphire algorithm, Sapphire is a collection of Python scripts generated for analyses
at the HiSPARC experiment [21]. The algorithm needs at least three inputs, however. If
in only two of the detectors a signal with a pulse height higher than the low threshold is
generated, the algorithm fails. Therefore, methods are developed to reconstruct the arrival
directions using machine learning on a neural network. By using the complete traces instead
of only arrival times as an input for the machine learning the neural network might even
improve arrival direction reconstruction in the case at least three detectors are triggered.
The machine learning approach to improve direction reconstruction is started last year
[26], and is based on the machine learning approach described in [17]. The approach in
this research builds further on those e�orts. A short introduction to machine learning via
neural networks is given in appendix E.

7.2 Inputs and outputs

The input of the neural network consists of the traces, supplemented with two features of
those traces, the �rst rise time and the pulse height of the traces. To improve learning the
time window of the trace has been decreased, such that for the trace used as input the
peak is always at the start of the window. As the pulse always decreases below noise level
within 250 ns, only the part of the trace within 250 ns after the �rst rise time was used.
The desired output is the incoming direction of the air shower. Angular coordinates are
periodic. Therefore they are not well suited for machine learning. If the predicted azimuth
angle is 2π − ε with 0 < ε << 2π, the machine learning method considers the error to be
large and adjusts the network as to decrease the predicted zenith angle, thereby decreasing
the performance. To improve the performance of the neural network the unit vector is
therefore computed in Cartesian coordinates [26].

7.2.1 The applied neural network

The neural network is built in Python with the help of the package Keras [9], a user friendly
Python package that makes use of the Python package TensorFlow [1] for designing neural
networks. Inspired by the network of [17], the neural network consists of �ve main stages.
A schematic overview of the neural network is shown in �gure 28. In the �rst four stages
only the traces are used, the input features are added in the �fth stage. In the �rst stage
there are two parallel paths. On one of these paths three layers of convolution �lters are
used, on the other path a single maximum pooling layer. The results from the two paths
are concatenated. In the second stage again two parallel paths are used. Now on both
paths convolution �lters are used. For one of the paths two layers of �lters are used, for
the other a third one is added. The third stage is similar to the �rst one, however, in
the convolution path only a single convolution layer is used instead of three. The result is
then passed through an average pooling layer. In the fourth stage three parallel paths are
setup, in which respectively one, two and three convolution layers are used. The use of the
convolution �lters implicates that information about the location of the pulse within the
time frame is lost, however, this information is contained in the input features. For the
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�fth state the input features are added. The �fth stage consists of three dense layers that
reduce the data size to the desired output size. The optimizer used is Adam, an optimizer
that has shown good convergence properties in other neural networks [31]. The initial
learning rate was set to 0.001. For initial learning rates larger than this value the network
did not show convergence.

Traces

MP 2C MP

Features

3C

2C

3D

3C 3C 1C

1C

AP Output

Figure 28: A schematic overview of the neural network used. Inputs are indicated
in red, neural network layers in blue and the output in green. A branch of the neural
network with x convolution layers is indicated by xC, the maximum pooling layer
by MP and the average pooling layer by AP. The exact speci�cations of the layers
used can be found in the code.

7.2.2 Loss and metric

Machine learning models are equipped with a loss function and a metric. The loss function
is the function to be minimized, and is used for updating the gradient. For this purpose the
loss function is always chosen to be computationally e�cient di�erentiable. The minimum
square error has been used as the loss function. The metric is a function speci�ed by
the user to be indicative of the performance. For example, for classi�cation methods,
a commonly used metric is the percentage of time the neural network predicts the right
output class [34]. The metric used is the angular di�erence between the predicted incoming
direction and the actual incoming direction,

δ = cos−1(r̂i · r̂r). (40)

In this equation r̂i is the unit vector in the direction of the incoming particle and r̂r is the
unit vector of the reconstructed direction. By performing this calculation for all events a
distribution for the angular error can be found. In the evaluation of the distribution ρ(α),
is has to be considered that the area element on a sphere is sin θdθdφ, indicating that the
expectation value for the number of events n lying in the small interval (α, α + ∆α) is to
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�rst order given by

n =
1

A

∫ α+∆α

α
ρ(δ) sin(δ)dδ

≈ −ρ(α)

A
(cos(α+ ∆α)− cos(α)) =

2

A
ρ(α) sin(α+

∆α

2
) cos(

∆α

2
)

≈ 2

A
ρ(α) sin(α),

(41)

where A is a normalization constant depending on the total number of events reconstructed.
Thus, to �nd an approximation ρ̂ of the density ρ(α) the number of elements in an angular
interval around α should be divided by the sine of α.

7.2.3 Training set, validation set and test set

For the data of the stations on the roof of Nikhef no known incoming angles are available,
only reconstructed angles. For the machine learning method a desired input is needed, the
indicated data is thus not suited to the machine learning approach. One of the stations,
however, has been temporarily integrated in the KASCADE array in Karlsruhe in 2008
[21]. The KASCADE array is a cosmic ray detection centre with angular resolution smaller
than 1o [4]. This is much smaller than the angular estimates of errors in the HiSPARC
experiment found previously [26]. Therefore, the KASCADE reconstruction can be used as
comparison for the reconstruction methods at HiSPARC. The data of this station, together
with the angle resolved by the KASCADE array, have been stored. However, the data set
is limited. Therefore, a di�erent approach has been used. The machine learning model is
trained on a simulation. The method of simulation is described in 7.3. The simulation set
is split into two parts, 90% is used for training of the network, the 10% left is used as a
validation set. After training of the network, the network is evaluated on the KASCADE
dataset. This provides a method for examining whether the simulations provide a good
training ground for developing methods to analyse experimental data.

7.2.4 Adaptations made to the machine learning method

No large adaptations were made to the neural network. By increasing the number of
layers no improvements were found. Using di�erent optimizers, such as Nadam [13] and
Adagrad [14], resulted in similar performance, performance using SGD [37] was worse. This
indicates that the optimizer used successfully �nds weights with small mean square error on
the training data. No improvements could thus be made in this way. To the preprocessing
of the inputs some adaptations were made, however. For the neural network developed
previous year at the HiSPARC group, the neural network trained on the simulation set
showed an systematic error when used on the KASCADE test set. This was not caused
by the used PMT model, but rather by di�erent normalization for the simulation data
compared to the data taken at KASCADE. To have a consistent normalization the pulses
have been normalized to a pulse height of 1, if their pulse height was higher than the
low detection threshold, otherwise all trace entries have been set to zero. In this way the
systematic error has been removed.
Next to this, the conversion method described in section 4.3.1 has been integrated into the
preprocessing of the data.
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7.3 Simulation

The HiSPARC group uses the simulation software CORSIKA [28] to produce simulations
of air showers detected by HiSPARC detectors. One of the outputs of the simulation
are the photon arrival times at the PMT. Using a PMT model those arrival times can
be converted to PMT pulses. For this it is assumed that the PMT responds linearly,
that is, each photon contributes a single photo-electron pulse. The photo-electrons of
di�erent photons are added via the principle of superposition. The simulated PMT can be
considered as a new PMT on which the methods of section 4 can be applied. This will prove
instrumental in the following sections, where the signals from the detectors of the Nikhef
station will be mapped to the signal of the simulated PMT. The result is shown in �gure
29. The simulated PMT has constant τ and σ as a function of the pulse integral, whereas
the variance decreases. This is in perfect correspondence with the explanation in section
4. The result resembles the results found for the detectors that make use of Nikhef based
equipment, indicating that those better resemble a linear PMT. The distribution functions
of the parameters are calculated and used corresponding to the method of section 4.
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Figure 29: The log-normal �t parameters σ and τ as a function of the pulse
integral for the set of pulses generated by simulations. The parameters σ and τ are
approximately constant, their variances are decreasing. Note that inverse variances
are shown. This choice has been made because the evolution of the parameters is
more clearly in this representation.

7.4 Results

The angle reconstruction has been performed for the existing algorithm and the machine
learning method. For the machine learning method results were obtained both with and
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without the cdf-conversion from section 4.3.1. For all three methods and the data the θ-
and φ- distribution have been calculated. The results are shown in �gure 30. In �gure 30
densities are shown. This was necessary because the algorithm is only able to estimate the
angle of arrival in 40% of the events. Both machine learning based methods were able to
estimate the incoming angle for all event. The machine learning model predicts the same
range of angles as observed in experiment, whereas the reconstruction algorithm method
shows some outliers.
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Figure 30: Distributions of the angular coordinates θ and φ for the Sapphire
algorithm and the machine learning method. For the machine learning method
results both with and without correction via the cumulative distribution function
are shown. Whereas the Sapphire algorithm computes some outliers for the zenith
angle θ, the machine learning algorithm shows a good correspondence with the
data. The distribution of φ is uniform for the data, the di�erent reconstructions
show some peaks but no large deviations from uniformity.

Even though the sapphire reconstruction shows more outliers, a larger accuracy is achieved
for events that can be reconstructed very well. This can be seen in �gure 31, which shows
the angular error of the three reconstruction methods. The sapphire reconstruction has a
larger peak near zero. However, because of the outliers, the mean angular error is actually
larger than for the machine learning methods. As an assessment for the quality of the �t
the 68th percentile has been used, that is, the value α0 of α such that∫ α0

0
ρ(α) sin(α)dα = 0.68. (42)

The results are shown in table 9. The 68th percentile is smaller for the machine learning
methods than for the Sapphire algorithm. Thus, if all signals generate a large signal, for
which the start of the pulse can be found with high precision, the reconstruction algorithm
works very well. However, the Sapphire algorithm works not very good if the conditions
are not perfect. The neural network, on the other hand, achieves considerably better
accuracies if the conditions are not perfect and always converges, but, to achieve this, a
smaller accuracy under perfect conditions is achieved. This mostly a�ects the azimuth
angle. In section 7.4.3 this will be investigated further. A good sign is that the accuracy
of the neural network on the data is comparable with the accuracy found on the data, the
simulation thus provides a good template for training the neural network.
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Figure 31: Distribution of the angle di�erence α = cos−1(rr · ri) between the
reconstruction direction and the incidence direction. Has been computed for the
Sapphire algorithm and the machine learning algorithm both with and without
cumulative distribution function correction.

Table 9: The 68th percentile of the angular error distribution. Results for the
Sapphire algorithm and the machine learning algorithm both with and without
cumulative distribution function correction.

Method Mean error 68th Percentile

Sapphire 18.04 20.77

ML 16.40 19.47

ML+CDF 16.40 19.30
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7.4.1 Three or four detectors

The cases for which the algorithm produces better results than the machine learning net-
work have been investigated. First the number of detectors in which a signal larger than
the lower threshold was examined. For the cases in which the reconstruction algorithm
provides a better estimate then the machine learning network, about 75% of the cases this
involved a case in which in all four detectors a signal larger then threshold was generated.
As the total number of events in which in three or four detectors a signal larger than lower
threshold is generated is about equal, this indicates that the machine learning technique
su�ers less from losing information of one detector, con�rming the results of the previous
section. No correlation was found between the zenith angle of the incoming particle and
the di�erence in reconstruction quality for the algorithm and the neural network.

7.4.2 Stability of the network

Using the machine learning method the stability of the detector has been assessed. The
equipment used in the stations su�ers from ageing. The electrons colliding with the dynodes
have large energies and damage the dynodes. This causes the output response of the
detector to change with time. The station displaced to the KASCADE array was station
510. For this stations cumulative distribution functions for the parameters of the lognormal
model have been computed both for the time period June 2018 - April 2019 and for the
time period July 2008 - August 2008. The neural network has tested with both sets of
cumulative distribution functions. Using the cumulative distribution function calculated
on the more recent data, decreased performance compared to using the distribution based
on KASCADE data. The found 68th percentile was slightly more than 10% worse in this
case. The detectors used thus are not perfectly stable over time. This emphasizes the
importance of updating the cumulative distribution functions regularly.

7.4.3 Using several Neural Networks

A second approach was to develop two di�erent neural networks for the zenith angle and
the azimuth angle. The idea behind this is that if the neural networks has to focus on
less outputs, the accuracy increases. For the azimuth reconstruction a selection was made
on the training data, only data with zenith angles larger than 20 ◦ were used for training.
The reason for this is that the reconstruction of the azimuth angle becomes less reliable for
small zenith angles, as the solid angle accuracy remains approximately the same. In this
way the 68th percentile could be brought down to 15.87 and the mean error to 13.52. The
results are shown in �gure 32. The peak near 0 is for the method using two neural networks
even higher than for the Sapphire algorithm, but that the machine learning algorithm is
still not always better than the Sapphire algorithm. The increase in accuracy was mainly
caused by an improvement of the accuracy in the azimuth angle. As shown in �gure 33
the zenith angle reconstruction becomes slightly better, the improvement for the azimuth
reconstruction is much larger.
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rithm and the �rst machine learning algorithm both with and without cumulative
distribution function correction, now also for the machine learning algorithm that
uses di�erent neural networks for determining the zenith and azimuth of the in-
coming particle. For this latter algorithm the version with cumulative distribution
function correction has been shown.
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Inspired by this an analysis has been performed to investigate whether the estimation could
be improved using new networks that were only trained on events in which

• in all detectors a signal larger than the low threshold was produced

• in detectors 1,2 and 3 a signal above threshold was generated, but not in detector 1

• in detectors 1,2 and 4 a signal above threshold was generated, but not in detector 2

• in detectors 1,3 and 4 a signal above threshold was generated, but not in detector 3

• in detectors 2,3 and 4 a signal above threshold was generated, but not in detector 4

For the KASCADE data an event was �rst categorized in one or none of the �ve cate-
gories above. If the events fell in one of the categories, the neural network belonging to
this category was used for estimation of the incoming angle, otherwise the neural network
described in the previous section was used. This approach does not improve accuracy for
both the zenith and the azimuth angle. Starting from the weights found using the whole
set of traces the neural networks quickly stopped optimizing as the error did not decrease,
whereas starting from scratch worsened the behaviour due to lack of statistics.
A di�erent approach is to divide the data into two categories, those events for which the
sapphire reconstruction produces a number, and those events for which the Sapphire re-
construction fails. For the �rst category, a neural network was designed to estimate the
di�erence in azimuth predicted by the sapphire reconstruction and the true azimuth. How-
ever, the neural network could not make any improvement on the sapphire reconstruction.
This does not mean that the neural network did not learn, a neural network that produces
random results is signi�cantly worse.
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8 Conclusions

The main goals of this bachelor thesis were:

• To test whether the pulse reconstruction could be improved using comparator data

• To set up an algorithm that compensates for the di�erences in equipment used in
the four di�erent stations.

• To �nd a characteristic e�ciency for the HiSPARC stations.

• To improve the machine learning method for angle reconstruction.

Using comparator data the prediction of the pulse could indeed be improved, the mean
square error between the actual pulse and the prediction decreases by about 25% when
using the comparator data.
To compensate for the di�erences in equipment the distributions of the minimum square
error parameters of the log-normal model have been evaluated as a function of the pulse
integral. These distributions have been used to accomplish the second goal. For stability
of the algorithm a low pass Butterworth �lter was needed. However, as the high frequen-
cies involved are mainly caused by equipment, this does not introduce much extra loss of
information. With the Butterworth �lter implemented the algorithm for transferring all
pulses to one PMT model is established.
The e�ciency of the detectors in the HiSPARC experiment was found to be at least 95.2%,
an upper bound could not be provided. This means that the hypothesis in [42] has not
been rejected.
The conversion method used only slightly improved the performance of the machine learn-
ing method, as the simulated PMT was already a good approximation of the detector
displaced to the KASCADE array. However, using the conversion method also the arrival
direction for other stations may be estimated, and the results of this thesis indicate that the
accuracy will be similar to the accuracy achieved on simulations. Via adaptations to the
machine learning method the accuracy of the machine learning model has been increased,
and the systematic error has been eliminated. The machine learning model can be used
for all incoming events and now achieves an accuracy comparable to that of the existing
algorithm. This algorithm can only be used in cases in which at least three detectors of
a station are triggered, which was found to be approximately 40%. Thus, the machine
learning method has now been improved to a state in which it can successfully replace the
algorithmic method.

8.1 Recommendations for further research

The procedure used to improve pulse reconstruction via the comparator data could be
improved by assigning weights to the comparator data based on the length of the time
interval they indicate. A small interval would then be assigned a smaller weight. This
because small interval comparator data may lead to overestimating. The machine learning
method might be improved by improving the model used. Adding more of the same layers
did not improve reconstruction, however, for improvement new machine learning structures
are needed.
In further research the method described here for converting signals to a standard PMT
model can be extended to all detectors of all detectors of all stations of the HiSPARC
experiment. If this can be done, the HiSPARC experiment has a very large number of
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detectors over a very wide range that show the same behaviour for incoming particles.
The machine learning can be built to predict the impact location on the detector. Traces
for 19 di�erent impact locations have become available [42], those can be used for the
training. If the impact locations on the detector can be determined with an uncertainty
smaller than the detector size, the inputs for the sapphire algorithm can be improved, this
would mean an increase of accuracy for the algorithm.
Apart from this, using a deconvolution, the times the photons arrive can be estimated from
the trace. This can be used as an extra input to the deep learning algorithm as to improve
the direction reconstruction, direct photon arrival times are more easy to deal with than
the traces.
The machine learning method can be extended to determine, apart from the arrival direc-
tion, also the core direction, the direction at which the core is located with respect to the
station. Also other quantities, such as the energy content of the shower, can be estimated
using a neural network.
The model now used for describing the PMT pulses was originally meant for single photo-
electron pulses. Improvements can be achieved by examining the distributions that result
as a sum of single photo-electron pulses, and �nd a model that reduces the error of the �t.
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A Temperature e�ect

The gains of the PMTs used in the HiSPARC experiment are known to be temperature
dependent [42]. The major e�ect of temperature di�erences is a shift in the location
of the MIP-peak, the most probable pulse height. It is important to examine for the
four detectors of the four di�erent stations whether the scaling of the pulses due to this
temperature e�ect is linear, that is, whether the normalized pulse shape remains the same
at di�erent temperatures. To examine this e�ect, �rst the MIP-peak was determined over
time intervals of 4 hours. Three time intervals were selected with di�erent MIP-peak
values. For each time interval events with a pulse height within 2.5 mV of the MIP-peak
were sampled. For those events the part before the main peak was deleted, using the
resulting pulses the averaged pulse shape was calculated. For comparison of the di�erent
time periods this averaged pulse shape was renormalized to have a pulse height of 1.
Between 100 and 1000 pulses within the desired MIP-interval where found in each time
period for each detector. For stations 501 and 510 the result is shown below in �gure 34,
with station 510 on the right. From the �gure it can be seen that for both stations the
average normalized MIP-peak traces are of similar form regardless of the actual MIP-pulse
height. This means that the temperature e�ects are small enough that they can be ignored
for the purposes of this research.
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Figure 34: Normalized average over pulses with pulse height within 2.5 mV of the
MIP-peak. Data from three di�erent time intervals, for which the MIP-peak attains
a di�erent value. The three normalized averaged pulses are nearly indistinguishable,
indicating that temperature e�ects are negligible. Station 510 is shown in the left
�gure, station 501 on in the right �gure.
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B Time calibration of the comparator

When a match has been found between comparator data and event data the times need to
be calibrated. This is needed because the time scales of interested are of order 1 ns and the
standard deviation of time di�erences between stations at Nikhef is of this same order [21].
In this section t = 0 will correspond to the start of the pulse, as the Python programme
used is calibrated as such. The calibration was done in such a way that the start and end
time of the calibrator are consistent with the peaklocation predicted by the �tted pulse.
That is, let τ be the peak location predicted by the �tted pulse, let ∆t be the comparator
time interval. Then the start time t1 and end time t2 = t+ ∆t of the comparator will not
be t1 = τ − ∆t

2 and t2 = τ + ∆t
2 , rather t1 and t2 must satisfy:

V (t1) = V (t2)

Vpe
− ((ln(t1)−ln(τ))2

σ2 = Vpe
− ((ln(t1+∆t)−ln(τ))2

σ2

Now using that t1 < τ < t2 for a pulse necessarily it follows by the injectiveness of the
logarithmic function that

ln(t1 + ∆t)− ln(τ) = ln(τ)− ln(t1)

ln(
t1 + ∆t

τ
) = ln(

τ

t1
)

t1 + ∆t

τ
=
τ

t1
t21 + (∆t)t1 − τ2 = 0

This is a second order polynomial equation with both a positive and a negative root. As
t1 > 0 it follows that

t1 =
−∆t+

√
(∆t)2 + 4τ2

2
=

√
(τ2 + (

∆t

2
)2)− ∆t

2

This equation shows t1 and t2 are shifted a bit to the right compared to the naieve prediction
given in the beginning of this section. This re�ects the fact that the log-normal distribution
is skewed to the right.
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C The width of the log-normal distribution

A problem of interested is the width of the log-normal distribution

J(t) = pe−
(ln(t)−a)2

b2

at a pre-speci�ed height c. That is, the goal is to �nd t1 and t2 such that

J(t1) = J(t2) = c

This equation can be solved as follows:

pe−
(ln(t1,2)−a)2

b2 = c

e−
(ln(t1,2)−a)2

b2 =
c

p

(ln(t1,2)− a)2

b2
= − ln(

c

p
) = ln(

p

c
)

(ln(t1,2)− a)2 = b2 ln(
p

c
)

ln(t1,2)− a = ±b
√

ln(
p

c
)

ln(t1,2) = a± b
√

ln(
p

c
)

t1,2 = ea±b
√

ln( p
c

)

From the expressions for t1 and t2 it follows that the width of the distribution at height c
equals

∆t = |t1 − t2| = ea(eb
√

ln( p
c

) − e−b
√

ln( p
c

))

= 2ea sinh(b

√
ln(

p

c
))

Substituting a = ln(τ), b = σ, p = Vpeak and c = VComparator it follows that

∆t = 2τ sinh(σ

√
ln(

Vpeak
VComparator

))
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D Alternative pulse �tting

As described in section 2 the pulses are �rst calibrated as to have them start at t = 0.
In the research the pulses were then �t using the log-normal model introduced for the
Daya Bay experiment [30]. An alternative method will be investigated in this section. The
parameters that �t a noiseless signal best can be determined as follows:
The parameter τ equals the peak location µp of the pulse, which can be found using Python.
For a good estimate of σ a bit more work is needed. The pulse output can be regarded as
a measure, for which the expectation values of various functions can be calculated. Taking

an integral of some function f(ln(t)) multiplied with the pulse u(t) = U0e
− (ln(t)−ln(τ))2

2σ2 with
respect to t results in∫

u(t)f(ln(t))dt = U0

∫
f(ln(t))e−

(ln(t)−ln(τ))2

2σ2 dt (43)

Changing variables to x = ln(t), exdx = dt this becomes∫
f(ln(t))u(t)dt = U0

∫
f(ln(t))e−

(ln(t)−ln(τ))2

2σ2 dt

= U0

∫
f(x)e−

(x−ln(τ))2

2σ2 +xdx

= U0

∫
f(x)e−

(x−ln(τ))2−2σ2x

2σ2 dx

= U0

∫
f(x)e−

(x−ln(τ)−σ2)2

2σ2 dxe
2σ2 ln(τ)+σ4

2σ2

= A

∫
f(x)e−

(x−ln(τ)−σ2)2

2σ2 dx

(44)

where A is a constant that is independent of f(x). The integral is thus proportional to
the expectation value of f(x) with respect to the normal density with mean ln(τ) + σ2

and variance σ2, with some proportionality constant B. In the following the two functions
f1(x) = x and f2(x) = (x− ln(τ))2 will be used. Notice that as ln(τ) + σ2 is the mean of
the normal distribution, and σ2 is the variance

∫
(ln(t)− ln(τ))2u(t)dt = B(σ2 + (ln(τ) +

σ2 − ln(τ))2) = B(σ2 + σ4)∫
ln(t)u(t)dt∫

(ln(t)− ln(τ))2u(t)dt
=
B(µp + σ2)

B(σ2 + σ4)
=
µp + σ2

σ2 + σ4

The integrals on the left side can be estimated by summations over the arrays, whereas
µp is known. From this formula σ2 can thus be inferred. A problem with this approach is
that it is too sensitive to noise, and that µp is only determined with an accuracy of 2.5 ns,
whereas better accuracy is achievable.
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D.1 Clipped pulses

The photovoltaic diodes used only reconstruct the pulses up to a voltage of 2375 mV. For
larger inputs the signal is clipped at this value. One of the goals of my bachelor assignment
is to reconstruct the pulses from this clipped pulse together with comparator outputs. Now,
if the clipping plateau occurs between t0 and t1, the comparator signals at t2 and t3, the
clipping voltage ucl, the comparator voltage uco and the peak voltage that would have
been obtained if no clipping had occured up, then, assuming that the clipping property
has negligible in�uence if V < ucl:

l =
ln(t1)− ln(t0)

2

L =
ln(t3)− ln(t2)

2

ucl = upe
− L2

2σ2

uco = upe
− l2

2σ2

Therefore,

ucle
L2

2σ2 = up = ucoe
l2

2σ2

l2 − L2

2σ2
= ln(

uco
ucl

)

σ2 =
1

2

l2 − L2

ln(ucoucl )

Moreover, τ can be approximated as follows:

ln(τ) ≈ ln(t0) + lnt1
2

With these two equations both parameters needed can be estimated. An important problem
with this method is its small accuracy, both l and L are accurate only up to 5 ns, whereas
also in uco and ucl have non zero error.
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E Machine learning

The methods described to improve pulse reconstruction have been used in combination with
machine learning to improve angular reconstruction of the HiSPARC. A short description
of machine learning will now be given. This description is based on [36].

E.1 A neural network

Machine learning is the principle in which a computer is trained to perform tasks. Just as
people become better at recognizing objects when the object has been encountered with
previously, computer programmes can be designed for this task. This is done using a neural
network. A schematic �gure of a relatively simple neural network is shown in �gure 35.

Figure 35: A schematic display of a relatively shallow neural network. Figure
from [12].

The input comes in on the �rst of neurons, which processes the data before sending it to
the next layer. This is repeated a number of times, the actual number of layers used being
a design parameter. The neurons process the data they receive via a so called activation
function. The activation function used research is the ReLu-function

ReLu(x) = xH(x), (45)

where H(x) is the Heaviside function. The ReLu-function has shown performance in neural
networks higher than the performance achieved by most other activation functions [24].
The neurons are organized in layers. Layers can have multiple functions. In the network
designed for this research three well-known variants are used:

• The layer type most used in this research is the convolution layer. Convolutions are
a widespread tool in mathematics. In the context of machine learning, however, con-
volutions are de�ned slightly di�erent compared to other branches of mathematics.
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The functions with which the data is convoluted, also called the �lters, used, are
rectangular functions, possibly in multiple dimensions. The type of convolution used
will be explained in one dimension, the generalization to higher dimensions proceeds
similarly.
Suppose the incoming grid f has size m and a convolution g of size n < m is used.
Then the convolution of f and g is de�ned as (f ∗ g)(j) =

∑n−1
i=0 f(j − i)g(i) for

j ∈ n− 1, ...,m− 1. This di�ers from the common convolutions in its discretization
and �nite extent. The convolution reduces the size of the grid from m to m− n+ 1.
In most of the cases this size reduction is desirable. The main reason for this is that
input data for most machine learning experiments contains many data points. A
large number of data points gives a high computational burden, which is reduced by
the �lters.
If size reduction is nevertheless unwanted, for example, if many �lters are used, re-
duction prevented by adding zeros at the front or back of the array. This procedure
is called padding. In case of padding the convolution size n is generally taken to be
odd, as then a padding with as many zeros in the front as in the back can be used.

• Two similar tasks for a layer are that of maximum pooling and average pooling.
Maximum pooling replaces each (n x m) - block by its maximum value, average
pooling by its average value. Here n and m are both parameters of choice. Just as
for convolutions, pooling generally decreases the size of the grid, unless padding is
applied.

E.2 Forward propagation

To understand the working principle of neural networks the processing of the data, called
the forward propagation, must be considered. Each neuron receives an input from multiple
neurons in the previous layer. These inputs are used in a weighted sum, to which possibly
a bias is added. The weights and biases used are adapted through the process and are
the key of machine learning. This input is then converted to an output by the activation
function. For the exact formulation some notation and terms needs to be introduced �rst:

• The output of neuron j in the lth layer is denoted by alj .

• The bias of neuron j in the lth layer is denoted by blj .

• The weight of the connection between neuron i in the l − 1th layer and neuron j in
the lth layer is denoted by wlji

• The activation function will be denoted by f in the following.

Now, the output alj of the jth neuron in the lth layer is computed out of the outputs of the

previous layer via alj = f(bj +
∑

iw
l
jia

l−1
i ) [36]. In this way the input propagates trough

the neural network, until it arrives at the output layer. The output u of the neural network
is compared with the desired result u∗, which yields an error E = g(u, u∗). This error is a
function of the output of the neural network u.

E.3 Back propagation

In general the function g is a relatively simple function of u and u∗, such as the mean
square error, and the gradient with respect to the outputs can be analytically calculated.
From this gradient with respect to the outputs the gradient with respect to the weights and
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biases involved are computed via the method of back propagation. In back propagation
derivatives with respect to the weights and biases are calculated via a recursion method
that propagates backward through the neural network. A description adapted from [36]
will now be given. Back propagation is implemented via successive use of the chain rule.
First the gradient with respect to the output of each neuron is calculated out of the gradient
with respect to the outputs of the next layer via

∂E

∂al−1
i

=
∑
j

∂alj

∂al−1
i

∂E

∂alj
. (46)

From this gradient then the partial derivatives with respect to weights and biases can be
calculated via

∂E

∂wl−1
ki

=
∂al−1

i

∂wl−1
ki

∂E

∂al−1
i

∂E

∂bl−1
i

=
∂al−1

i

∂bl−1
i

∂E

∂al−1
i

.

(47)

The derivatives in the formula above are analytical functions depended on the layer struc-
ture and activation functions used. The method of back propagation is much faster than
methods used before it was implemented.
Back propagation can be implemented in two di�erent ways, online training and batch
training. In both ways, the gradient computed is used to update the weights in a manner
similar to the Gradient Descent Method. The exact method of optimization is called
the optimizer. In online training the Gradient-Descent algorithm is implemented after
each sample, in batch training �rst the gradient is calculated for a so called batch of input
samples, keeping the weights and biases �xed. After the batch has been evaluated the mean
gradient is calculated, this mean gradient is subsequently used in updating the weights
and biases via gradient descent. This is the only di�erence between the two methods. The
performance of both methods is di�erent for di�erent applications, and the optimal batch
size di�ers per application. The method of batch learning has been used, using batches
of size 28. It was found that the actual batch size does not have a large in�uence on the
result in this case. The machine learning model loops through a prede�ned training set.
One such iteration over the training set is called an epoch.
After each epoch, the error of the resulting neural network is evaluated on a prede�ned
test set. For this test set no Gradient Descent is performed, it is kept as an independent
test sample, comparable with the control group of a non-computer based experiment.
A danger of the machine learning method is over�tting. If a machine learning method is
used with many epochs, it will adjust to the noises of the training set, without improving,
or even degrading, its general improvement. Therefore, the number of epochs must not be
too large. A measure to investigate whether over�tting occurs is by looking at the decrease
in error on the training set and on a prede�ned validation set. If the error on the training
set decreases, whereas the error on the validation set remains approximately constant, at a
higher value than for the training set, over�tting occurs and the training must be stopped.
A way to increase the number of epochs that may be used before over�tting occurs is to use
a larger dataset. This will eventually improve the performance of the network. However,
by using a larger dataset also the training time and storage cost increase. Moreover,
sometimes only a limited dataset is available. Therefore, over�tting can best be prevented
by limiting the number of epochs used in training by putting a stop on it if the error on
the validation set.
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E.4 Objections against machine learning

Since the introduction of machine learning there have been many debates about the subject.
Some points of debates are over�tting and generalization, convergence of the weights and
the validity of the method. The validity of the method is questioned because it is not
known whether the the neural network really trains what the researches wants it to train,
or on some side e�ects that accidentally give good results. This latter objection is more
general about using machine learning, and will not be discussed further in this research,
to address the other two problems measures can be taken. In this research the problem of
over�tting and generalization has been addressed by using a test set that acts as a control
mechanism, by later evaluating it on the data it was shown that the generalization to data
worked well. With respect to the convergence of the weights the learning parameter has
been adapted and di�erent optimizers have been used. A good sign was that using di�erent
optimizers did not greatly a�ect the end result.
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