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Measuring relative bone pose inside a bi-lateral
ankle exoskeleton using A-mode ultrasound.

N. van Herpen, G.V. Durandau, N. Verdonschot, M. Sartori

Abstract—In this study, we present a non-invasive method
for directly quantifying tibiofibular pose in-vivo in a bi-lateral
ankle exoskeleton during plantar & dorsiflexion. 26 A-Mode US
transducers were used, held in place by a rigid, 3D-printed
brace without using additional tracking methods to live track
the transducer positions. The brace contains holders with a user
friendly mechanism to find proper US-reflective bone surfaces.
A window-based method was used for peak detection, Iterative
Closest Point algorithm was used for bone segmentation registra-
tion. Passive optical markers were used for evaluation of the bone
pose estimation accuracy. During plantar & dorsiflexion swings
registration errors were 6.22±1.17mm and estimation errors were
35.40±8.33mm. This study did not perform cadaveric accuracy
studies. Thanks to being non-invasive, non-radiative and highly
compatible with wearable robotics, A-mode ultrasound skeletal
motion capturing has the potential to obtain high-accuracy
skeletal kinematics in robot-assisted rehabilitation & computer-
aided surgery.

Index Terms—A-mode ultrasound, point set registration, skele-
tal motion capture, exoskeleton, real-time

I. INTRODUCTION

IN an increasing rate, wearable robotics are being devel-
oped for rehabilitation of motoric disorders [1]. Wearable

robotics, or exoskeletons, provide an assistive force or torque
to the impaired part of the body to fulfill motoric tasks such
as normal gait or climbing a staircase. During these tasks the
bone moves with respect to the exoskeleton. This aspect is
largely overlooked in exoskeleton design, leading to inaccurate
control strategies and discomfort to the user [2].

Mechatronic design often aims to develop lightweight de-
vices employing as few actuators as possible. Therefore, com-
plex joint kinematics are simplified by reducing the number
of degrees of freedom (DoF) [3]. In case of the ankle joint, a
single rotation DoF is assumed, while in reality a combination
of rotation and translation along non-trivial planes make up the
joint kinematics due to the complex shape of the talus and tibia
[4].

Assessing performance of simplified devices on complex
joint kinematics is often solely based on external factors [5]
(e.g. metabolic cost reduction [6], joint kinematics [7] and
spatiotemporal parameters [8]. However, internal aspects that
assess the human-machine interface, such as the relative mo-
tion between a joint and an exoskeleton, are usually overlooked
[2].

Besides performance assessment motives, relative skeletal
motion measurements can also be used for improving assist-
as-needed control strategies. One approach to generating such
control strategy is by using EMG-driven neuromusculoskeletal

(NMS) modelling [9], [10]. This approach captures the user’s
motion intention through EMG data and uses a subject-specific
NMS model to simulate the supplemental assistance needed
to fulfil a locomotion task in real-time [11]. The kinematic
data necessary to drive NMS models is usually obtained from
marker-based measurements, using inertial measurement units
(IMUs). One of the drawbacks of using IMUs, is that it
requires inverse kinematics to convert marker data to model
kinematics. Inverse kinematics is a computationally heavy
algorithm, limiting the suitability for real-time applications
[11]. Moreover, IMUs are likely to move with respect to the
bone as well, leading to errors otherwise known as soft-tissue
artifacts (STAs) [12]. These limitations call for a direct method
of quantifying relative skeletal motion.

In other words, a method is required that measures skeletal
motion in-vivo, in a direct manner while doing dynamic
locomotion tasks. Moreover, the method must be compatible
with the available exoskeleton workspace. Under these require-
ments, many methods disqualify. High-accuracy intracortical
bone-pins are invasive [13], thus not suitable for in-vivo ap-
plications. Fluoroscopy provides high fidelity, but is radiative
to the subject, as well as not being easily interfaceable with
a wearable exoskeleton due to the size of the system [14]
Computed Tomography (CT) & Magnetic Resonance Imaging
(MRI) are accurate, but high-cost methods that only work
with non-metallic exoskeletons [15]. Moreover, CT & MRI
typically have a low framerate and do not offer freedom of
movement for measuring during dynamic tasks [16].

A(mplitude)-mode ultrasound (US) offers a feasible method
for recording relative skeletal motion that meets these require-
ments. Mahfouz et al. [17] & Amin et al. [18] proposed a
method that places an array of compact A-mode US transduc-
ers (USTs) on the skin to measure the depth of bone surface
underneath at various locations. By tracking the position of
each transducer, the obtained depths are converted to coordi-
nates in 3D space, resulting in a point cloud of bony points. A
detailed bone model is then fitted to the acquired cloud of US
reflection points. Ultimately, an anatomical coordinate system
is assigned to the registered bone model to measure position
& orientation with respect to the exoskeleton.

This method has been adopted by Niu et al. to develop
a system capable of measuring tibiofemoral kinematics [19].
The system was validated with cadaver experiments, reporting
rotational errors of 1.51 ± 1.13◦; translational errors of 3.14 ±
1.72mm for quantification of tibiofemoral kinematics. Amstutz
et al [20] reported an root-mean-square error of 0.49 ± 0.20
mm for a computer-aided surgery system for otorhinology
and skull base surgery. Chong et al. [21] explored the use
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Fig. 1: a) A-mode USTs transmit & measure sound waves. Signal peaks indicate transition to a denser medium, bone tissue. The time at
which a peak occurs is translated to a depth using equation 1. b) Multiple transducers measure bone tissue depth at various locations. These
depths are converted to points in a global 3D reference frame. c) Using registration algorithms, a detailed pre-operative bone segmentation
is aligned with the obtained point-cloud. d) An anatomically relevant reference frame is assigned to the registered bone model which is
compared to the exoskeleton reference frame.

Fig. 2: Left: Achilles exoskeleton equipped with the 3D-printed brace.
Each slot has a mechanism that is highlighted on the right. Holders
allow axial translation and roll & pitch rotations.

of A-mode US to detect the position of the residual femur
within a stump. Accuracy errors were reported between 2.9
and 14.4mm for in-vivo measurements.

Other advantages of A-mode US are the high degree of
configurability, mobility and fast processing of A-mode sig-
nals compared to B-mode images [22]. Moreover, A-mode
transducers are low-cost and can be easily replaced by any
technician.

A bi-lateral ankle exoskeleton (Achilles exoskeleton, Uni-
versity of Twente) [23] is used. The anterior side of the
exoskeleton offers plenty of room to attach a brace holding
the transducer array in place. Figure 2 shows the exoskeleton
with the brace. Within this workspace, the pose of the tibia &
fibula, relative to the exoskeleton, will be estimated.

In this study, we present a non-invasive method for directly
quantifying tibiofibular pose under dynamic conditions using
26 A-Mode US transducers that are being held in place by a
3D-printed brace. The brace can be worn in combination with
the Achilles exoskeleton. The aim of this study is to determine
whether A-mode US can be interfaced with wearable robotics.
Also, in an attempt to minimize equipment usage, bone pose
estimation is done using only data from the anterior-distal part
of the lower leg. It is investigated whether this method can
operate with requiring an optical motion capturing system for
tracking transducer positions. Optical data will however be
recorded for evaluation of the bone pose estimation accuracy.
Experiments were done in-vivo on one healthy subject with
static trials in 4 dorsiflexion angles, and a dynamic trial
consisting of 5 plantar & dorsiflexion swings.

II. METHOD

A. Working Principle

An overview of A-mode US-based tibiofibular motion track-
ing is shown in figure 1. The ankle exoskeleton is equipped
with a brace that snaps to the exoskeleton and can hold up to
26 transducers, covering the distal half of the anterior tibia and
fibula. At every transducer, the depth of bone tissue underneath
the skin is found by applying a peak detection algorithm to the
US signal. These depths are converted to points in 3D space
by using the local-to-global transformation matrices of every
transducer. Next, a segmented bone model is fitted, or better,
registered to the US point cloud using registration algorithms.
Then, a coordinate system is assigned to the registered bone
model. Ultimately, an anatomically relevant point will be
derived from the registered bone model to track its trajectory
within the exoskeleton coordinate system.
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Fig. 3: A high-quality US signal is shown with the x-axis already
converted to distance using equation 1. The raw & low-pass filtered
signals, filtered window sample envelope and identified depth of
reflective bone surface are shown.

B. Brace Design

The brace was designed using Solidworks (D’Assault
Systèmes, Vélizy-Villacoublay, France). The gimbal-based
holder design offers 3 DoFs for manipulating the transduc-
ers, ensuring good contact between transducer and skin. Its
user friendly design allows bone surface perpendicular to the
transducer to be found more easily. See figure 2. To create
a geometry that fits the exoskeleton, readily available CAD
files from the exoskeleton were used. A surface scan of the
leg was made with a Sense 3D scanner (3D Systems, Rock
Hill, USA) to create a fitting inner surface of the brace. A
manually segmented bone model from MRI data was aligned
to the leg surface model and was used to aim the holders
at the bone surface in nominal position. The brace prototype
was made with Selective Laser Sintering 3D-printing tech-
nique (tolerance: ± 0.1mm; FORMIGA P110, EOS, Munich,
Germany) from Nylone (PA2200, EOS, Munich, Germany).
The individual transducer positions were assumed to be kept
constant with respect to the exoskeleton. Therefore, the brace
was assumed rigid. This way, considerable material & space
is saved compared to equipping every transducer with three
optical markers to track each transducer’s positioning in 3D.
Rigidity was simulated under a load case of a force of 50 N
along the top edge of the brace, pointing forward. The results
showed a simulated total deformation of 0.2mm. See appendix
D.

C. Point Cloud Generation

US data was acquired using the system developed by Niu
& Sluiter [12]. The system consists of 30 A-mode transducers
(Imasonic SAS, Voray / l’Ognon, France), the Diagnostic
Sonar FI Toolbox (Diagnostic Sonar Ltd., Livingston, Scot-
land) and its acquisition software, which was written in
LabView 2014 (National Instruments, Austin, United States).
US data is saved in TDMS format and converted to CSV

Fig. 4: Three groups of four optical markers each are shown. Groups
are placed on the exoskeleton (orange), brace (blue) and on the lateral
& medial tibia condyles, tibia tuberosity & approximately 10cm down
on the tibia diaphysus (green).

using the python pyTDMS library for offline post-processing.
Transducers transmitted waves with a frequency of 7.5 MHz.
Sampling frequency of the transducer is 50 MHz to record the
amplitude of incoming reflected waves over time. The frame
rate (the rate at which full waveforms are transmitted and
recorded) of the system lies between 20 and 90 Hz, depending
on the number of transducers used and its configuration. This
is related to signal multiplexing, which is further explained in
appendix A.

The raw US signals were filtered with a High-Pass filter (2nd

order, 3.5 MHz cut-off frequency) to remove the transducer-
inherent low-frequency behaviour. Linear Time-Gain Compen-
sation (TGC) was applied to enhance signal content from deep-
tissue reflective surfaces, such as the more proximal areas of
the fibula. During measurements, a live preview of the signal
was used to define the window where US reflective points
could be expected. Within this window, the signal was filtered
using a Low-Pass filter (2nd order, 1 MHz cut-off frequency).
US reflective points were identified at the onset of the peak,
which is found by taking the maximum of the 2nd derivative of
the sample on a positive slope. The 2nd derivative is associated
with peak quality since it approximates the sharpness of the
peak. Sharp peaks are the result of perpendicular reflection off
the bone surface. Figure 3 shows how a US depth is obtained
from raw data. A threshold was set on the 2nd derivative of
the peaks, disqualifying insufficiently sharp peaks from further
point cloud generation. To convert the found peaks from time
to spatial domain, equation 1 is used, with v ≈ 1590 m/s as
the sound velocity in human tissue:

xbone =
vt

2
(1)

Keep in mind that the sound waves are transmitted &
reflected, travelling the distance twice, hence division by 2.

Converting the calculated depths to points in the 3D refer-
ence frame of the exoskeleton (i.e. the global reference frame)
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is done by multiplying the depths with transformation matrices
T, as given by equation 2.

xglobal = T xlocal
x
y
z
1

 =


 R

 Tx
Ty
Tz

0 0 0 1



xbone
0
0
1

 (2)

where the 4-by-4 matrix T is an affine, rigid transformation
matrix containing a 3x3 rotation matrix R and 3x1 translation
vector. Appendix B explains more in-depth how T was ac-
quired.

D. Pre-registration

After successfully calculating a point cloud of US reflection
points, a detailed bone model is registered to the point cloud.
The resulting transformation matrix is then applied on the full
bone segmentation to find the final bone pose estimation.

An initial, coarse estimation of the bone pose is found by
doing pre-registration, which is only done for the first frame.
Pre-registration is a point-to-point registration algorithm using
Horn’s method [24], see equation 3

f (Rpr,Ppr) =
1

n

n∑
i=1

wi||xi − (Rprui +Ppr) ||2 (3)

The source point cloud xi (4 pre-registration points from the
bone segmentation) is registered to the target point cloud ui
(US points from holders 1, 5, 23 & 26). Weights wi are used
to account for US points with low localization confidence. The
weights are given by the peak sharpness of the US point. The
outcome is a transformation matrix that contains translation
vector Ppr and rotation matrix Rpr, placing the bone model
from original positioning to the pre-registered positioning. The
selection of xi points is further explained in appendix C.

Although this step can take several minutes, it can be done
as a calibration step before doing real-time measurements.
Therefore, pre-registration is not included in computational
speed evaluation.

The accuracy of any registration process is defined by the
root-mean-squared error between source & target point cloud.
The error is calculated by

RMSE =

√√√√ 1

n

n∑
i=1

||ui − xi||2 (4)

E. Iterative Closest Point

This study uses the ICP algorithm written by Martin Kjer
& Jakob Wilm for finer registration [25]. Before transforming,
ICP finds the closest points on the target point cloud to the
source points using the kdTree algorithm. Then, the closest
points are transformed onto the target points and the RMSE
is evaluated again. This process is iterated until a termination
condition is reached.

Weighted point-to-plane ICP is used. For point-to-plane
registration, surface normal vectors at the vertices (not the face
centroids) of the target point cloud are required. Therefore, the

anterior distal side of the segmented bone model is first used
as the target point cloud. Peak sharpness is used as weighting
coefficients and a maximum of 20 iterations is set on the
algorithm as the used ICP function did not have an error or
convergence termination criterion. At first, the iteration with
the lowest RMSE is chosen. However, if this iteration leads
to the velocity of the bone segmentation between two frames
being higher than 100mm/s, the iteration is rejected and the
next lowest RMSE iteration is chosen. In case of 20 rejected
iterations, registration from the previous frame is used.

After ICP, the rotation matrix is inverted, and the translation
vector is multiplied by -1. These are combined in a transfor-
mation matrix and applied to the full bone segmentation. This
way, the bone segmentation transforms to the US point cloud.
Frames with rotation matrices that are not properly invertible
are skipped and reuse bone pose estimation from the previous
frame.

The accuracy of the registration algorithm is quantified with
the RMSE between US point cloud (ui, n=26 when all US
points have sufficient sharpness) and its nearest points on the
anterior distal bone surface point cloud (xi).

F. Motion Tracking

Relative motion of the registered bone segmentation is ob-
tained by tracking an anatomically relevant point on the bone
segmentation. This point is found by assigning an anatomical
reference frame to the tibia & fibula by the Cappozzo reference
frame definition [26] [27]. The origin of the anatomical ref-
erence frame is then tracked within the exoskeleton reference
frame.

G. Performance Assessment

The performance of this method is assessed by the quality of
the bone pose estimation, the magnitude of error sources along
the process & computational speed. The required data for
assessment is obtained by performing ultrasonic measurements
and running the US data through the post-processing steps
described in this sections II-C, II-D & II-E. For the ultrasonic
measurements, the system described in section II-C is used.
The identified error sources include:

1) Navigation errors due to mismatch between CAD &
actual geometry and deformation of the exoskeleton &
brace. Calculation & results on navigation errors can be
found in appendix D.

2) Registration error as quantification of the misalignment
between bone segmentation & US point cloud. The
registration error of pre-registration was not taken into
account.

3) Estimation error as quantification of the misalignment
between registered bone segmentation & optical data
from anatomical sites on the knee.

Errors due to improper ultrasonic point localization (UPLE)
could not be obtained directly. However, a lower UPLE can
be expected for signals of high quality with sharp peaks, i.e.
perpendicular orientation of the transducer towards the bone
surface. In this context, the quality of each point is calculated
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Fig. 5: (x,y,z) motion of the anatomical reference frame origin, with
respect to the exoskeleton reference frame. Data is obtained from the
dynamic trial.

(maximum 2nd derivative of the filtered US sample) [12] and
used as a measure for the UPLE. For each trial, the mean
peak sharpness among qualifying US points for every frame
is used.

To evaluate the final bone pose estimation, the pose of the
registered bone model is compared to passive optical marker
data using the Qualisys 6+ camera system (Qualisys AB,
Göteborg, Sweden). Figure 4 shows the marker placement. The
estimation error is defined as the RMSE of the distance be-
tween marker positions on the skin xi (tibial tuberosity, medial
& lateral condyle, and anterior diaphysis) and respective points
from the registered bone segmentation ui. Due to obstruction
by the brace & exoskeleton, the malleoli could not be tracked
with the optical setup. However, estimation errors are expected
to be largest at the proximal end of the bone regardless, due
to the point cloud being generated from the distal end only.
Any misalignment on the distal end of the bone will linearly
propagate towards the proximal end. Optical data was not
recorded in parallel with US data, thus synchronization of
the two datasets was not possible. However, when evaluating
the optical data, it was found that the optical markers moved
with a standard deviation of 0.99mm. Since comparing pose
estimation to optical recordings is just a practical evaluation
and not a precise validation, the time-average marker positions
are used. For complete method validation, a cadaver study
would have to be done, which is outside the scope of this
study. Besides estimation evaluation, optical data is also used
for validating rigidity assumptions about the exoskeleton &
brace, which is further explained in appendix D.

Also, a registration simulation is run using the nominal
target point cloud. The nominal point cloud consists of bone
points that the holders in the CAD geometry are originally
aimed at. All nominal points lie precisely on the bone segmen-
tation, so a minimal registration error is expected. Registration
remains an optimisation algorithm, so only an approximation
of the perfect registration can be achieved. This simulation

0 50 100 150 200 250 300

Frame n

101

102

R
M

S
E

 (
m

m
)

10-4

10-3

10-2

10-1

(a
m

p
lit

u
d

e
/s

a
m

p
le

2
)

Error sources dynamic trial

Registration error

Estimation error

Peak sharpness

Fig. 6: Error categories during dynamic trial. The peak sharpness
(dotted line) is plotted on the right y-axis.

is done to investigate the effect of point cloud quality on
registration algorithm performance.

Measurements will be done on one healthy subject, con-
sisting of 4 static trials at approximately 0, 5, 10 & 15
degrees dorsiflexion & 1 dynamic trial during which the
subject performs 5 swings of the ankle joint, ranging from 20
degrees plantar flexion & to 15 degrees dorsiflexion. A small
rig was constructed to fix the subject leg in the respective
angles. See appendix E.

III. RESULTS

The relative motion of the anatomical reference frame
origin to the exoskeleton reference frame during 5 plantar &
dorsiflexion swings is shown in figure 5. It is hard to recognise
the swinging motion in the line trends. A closer look is taken
at the error contributions.

The error sources of the dynamic trial, excluding navi-
gational errors, are shown in figure 6. The peak sharpness
line shows the clearest oscillating behavior, with increasingly
noisy content for the registration error & estimation error.
Peak sharpness is inversely proportional to the registration &
estimation errors. Five oscillations can be identified.

Navigation errors were found to be small and acceptable
at the distal end of the brace, but at the proximal end, the
displacement of the brace with respect to the exoskeleton was
4.86 ± 2.05mm. The brace itself and the exoskeleton showed a
maximum deformation of 1.16mm & 0.6±0.1mm respectively.

The quality of the points cloud was quantified by the mean
peak sharpness among transducers during one frame. Figure
7 shows the peak sharpness during each trial. The boxplots
contain 53, 59, 53 & 73 frames respectively.

Figure 8 shows the registration errors per trial. Besides the
static 10 degrees trial, trials show similar registration errors.

Figure 9 shows the estimation error per trial. Static 15
degrees heavily outperforms the other trials. This is in line
with our experience during measurements. The brace provided
the best contact between skin and transducer under 15 degrees
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Fig. 8: Boxplot of the registration error per frame. Registration error
is defined by equation 4, with xi being US points and ui being the
closest bone model points.

dorsiflexion. Even at that position, the achieved estimation
error is roughly 22mm, which is too big to speak of an accurate
bone pose estimation.

Registration of the bone segmentation onto the nominal
point cloud resulted in a registration error of 3.0mm. The
resulting bone pose estimation is shown in figure 10.

In terms of computation time, ICP registration at the first
frame takes on average 0.27s, while the following frames only
take 0.05s. Without taking the first 4 frames into account,
ICP takes 0.05±0.002s per frame. There was no significant
difference in processing time among the five trials. In 75% of
the frames, the iteration with the lowest registration error was
also in compliance with the velocity contraint.

IV. DISCUSSION

The purpose of this study was to develop a method to
measure the relative position of the tibia & fibula with

Static 0° Static 5° Static 10° Static 15°

22

24

26

28

30

32

34

36

38

Estimation error per trial

Fig. 9: Boxplot of the estimation error per frame. Estimation error
is defined by equation 4, with xi being the anatomical points on the
registered bone model and ui being the anatomical optical markers.

Fig. 10: The bone segmentation (shaded grey) is registered onto a
nominal point cloud (red). The blue dots show that the estimation
does not match with the optical markers. Registration error is 3.0mm.
Estimation error is 40mm.

respect to an exoskeleton, in-vivo, during a dynamic task,
without using optical marker tracking to live track transducer
positioning. Although the final evaluation of the bone pose
estimation does not validate the results, it can be stated that
this method is able to make an estimation off a given point
cloud. Using non-optimized software, a rate of estimation of
approximately 10Hz was reached. Compared to bone pins or
fluoroscopy, A-mode US is a feasible technology for obtaining
relative skeletal kinematics in living subjects for applications
in wearable robotics, NMS modelling & minimally invasive
(computer-aided) surgery.

The dynamic trial clearly shows an inversely proportional
relation of the mean peak sharpness to the registration &
estimation error. With values of 25mm at best, the estimation
error fails however to meet acceptable accuracies. Moreover,
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the complete animation of all frames shows discontinuous
motion. For simple plantar- & dorsiflexion it is observed that
peak sharpness, registration error & estimation error show
oscillating behaviour, although in decreasing degree due to
presence of artefacts. The artefacts are likely the result of
picking the lowest error ICP registration that obeys the velocity
constraint.

To evaluate registration algorithm performance, results were
compared with a simulation that used a nominal target point
cloud, obtained directly from the bone segmentation (no
manually defined window involved). A registration error of
3.0mm was achieved in the simulation, thereby outperforming
US-based point clouds. From this, it can be concluded that
the registration algorithm is sensitive to point cloud quality.
Surprisingly, the estimation error was larger: 40mm. For
the calculation of estimation errors, some limitations can
be pointed out. First, the optical marker data could not be
synchronized, both in time and space, because data was
recorded in two different sessions and points had to be hand-
picked from the bone model. Moreover, disagreement between
CAD geometry & experiment geometry was too large near the
proximal end of the brace. A displacement of approximately
5mm was found at the top edge of the brace with respect to
CAD geometry. Taking these error sources into account, it is
expected that the estimation error still exceeds practical values.

The static trials fail to show clear correlation between
peak sharpness within the window and registration error. Even
though the peak sharpness is much higher for all frames during
15 degrees dorsiflexion, only half of those frames show a
lower registration error than the other trials. It is believed
that the window-based peak detection algorithm caused peaks
to qualify within the window that are actually not bone
points. With identical windows among trials, this leads to low
variability between point clouds and thus the same registration
regardless of point cloud quality.

This study has several limitations. Firstly, the final bone
pose estimation is only roughly evaluated without actually
validating the results. A cadaver experiment with intracortical
bone pins would be needed to confidently quantify the ac-
curacy of this method [12]. Interpreting these results remains
dubious as a ground-truth is missing. Secondly, significant skill
with ultrasonic equipment is required to find reflecting bone
surface with confidence. It takes multiple hours to position
the transducers and update window settings. Thirdly, only a
point cloud of the anterior distal side of the tibia & fibula was
calculated which caused a small misalignment at the distal end
to grow in proximal direction. This means that taller bones lead
to larger estimation errors. On top of that, this study did not
estimate tibia & fibula pose independently, but used a model
with a rigid connection between the two. Finally, transducer
positions were assumed to be constant and in agreement with
CAD data but it was found that this is only partially true.
Taking this into account, it must be concluded that more work
needs to be done for this method of recording skeletal motion
to be used in NMS modelling, gait analysis and computer-
aided surgery.

To improve upon this work it is recommended to use
an automatic peak detection algorithm. Example algorithms

include:
• Kurtosis-based peak detection [28].
• Cross-correlation [29].

This way, there is less bias towards the probable peak depth
that is found in static window-based peak detection. Over-
all quality is not compromised by user-defined windows &
thresholds. The drawback of using a fully automatic peak
detection algorithm is that the algorithm will always select
a peak in the first few millimetres, as US signal suffers from
noisy artifacts at the first few millimetres of data, containing
huge peaks compared to US reflection points. Forcing TGC
over that part of the signal will also remove bone reflection
content. A better method to overcome early signal instability
is to equip transducers with a gel bed between skin and
transducer. It is recommended to use a medium that is stickier
than standard US aqua gel, because aqua gel will easily flow
away. Also, this brace used 26 transducers which took a long
time to prepare. Minimizing the number of necessary US
transducers will benefit practical viability of this method. A
rigid connection to the exoskeleton at the top of the brace
would reduce navigational errors significantly.

Sure enough, this study also has its strengths. This study
has shown that ultrasound skeletal motion capturing can be
interfaced with wearable robotics without adding much weight,
exceeding the volume of the exoskeleton, or making the whole
configuration overly complex. The registration algorithm is
fast and, with optimized software, real-time applications are
well within reach. The brace prototype could use some im-
provements but it showed that the gimbal holder design allows
plenty of configurability to establish and maintain proper skin
contact with the transducers. The prototype was tailor-made
for one leg, but a generalized version would function equally
well, making real-time ultrasound motion tracking more acces-
sible. Measuring constrained, relative skeletal motion among
a wide base of users would allow to study the different motion
patterns & assess the performance of a simplified exoskeleton
on complex motion pattern in terms of the human-device
interface. An analogy could be drawn here with fitting a shoe.
A fitting shoe not only provides a comfortable shape, it also
provides suiting freedom and support of motion.

A-mode US-based skeletal motion tracking is a truly non-
invasive, lightweight technique, on top of being highly con-
figurable to suit any given workspace. With a wide variety of
exoskeleton designs available, this technique can grow inde-
pendently of advancements in wearables design. Ultrasound is
especially compatible with soft robotics, a category of wear-
ables that allows more freedom of movement through flexible
structures. A-mode ultrasound can also be used to measure
muscle expansion upon contraction, allowing to explore the
feasibility of an alternative to sEMG for muscle-based Human-
Machine Interface [30].

V. CONCLUSION

In this study, we present a non-invasive method for directly
quantifying tibiofibular pose in-vivo in a bi-lateral ankle ex-
oskeleton during plantar- & dorsiflexion. 26 A-Mode US trans-
ducers were used, held in place by a rigid, 3D-printed brace
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without using additional tracking methods to live track the
transducer positions. The gimbal-based holder design offers a
user-friendly mechanism to adjust & fix transducer position.
Even though bone pose estimation could not be validated
with ground-truth data, it was found that A-mode US-based
motion tracking is highly interfaceable with wearable robotics.
After the necessary improvements, this technology has the
potential to record skeletal motion data in-vivo, in real-time
for many applications including gait analysis, rehabilitation,
NMS modelling, soft robotics & computer-aided surgery. The
window-based peak detection algorithm could be replaced by
a fully automatic method that is not biased to one point cloud
shape and does not rely on the skill of the US operator. It
was shown that ICP is a fast and robust registration algorithm
that is mainly limited by US point cloud quality. A cadaver
study is necessary to validate the accuracy which will allow
to effectively assess maturity of this skeletal motion tracking
method.
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APPENDIX A
MULTIPLEXING

To prevent interference between transmitted sound waves,
adjacent transducers never transmit & receive simultaneously.
The array of transducers is divided in 4 groups, as shown
in figure 11. Each color corresponds to one of the groups.
Every group gets a fixed amount of time (135 µs, approx-
imately equivalent to 100 mm) to transmit & receive sound
waves. By grouping together transducers that do not interfere
significantly, less time is needed to traverse the whole array,
compared to sequencing every transducer individually. This
leads to a higher frame rate and a compressed data file in the
end (reduction factor of 7.5 in data size).

APPENDIX B
CONVERTING US DEPTHS TO COORDINATES

To obtain transformation matrix T for depth-to-coordinate
conversion of US reflective points, 2 subsequent transforma-
tions matrices are required:

• Transformation from the adjusted transducer position
during recording to the nominal transducer position T2.
Caps, offset pieces & angles of each holder during trials
was written down. The angular DOFs permitted by the
holders can be interpreted as the pitch & roll Eulerian
angles, where θ is the pitch angle and φ is the roll angle.
The order of multiplication of two rotation matrices is
unique since additions of angles in 3D space are non-
interchangeable. The rotation part of T2 is obtained by

Fig. 11: Each color shows to which group of simultaneously active
transducers the holders belong.

multiplying the Eulerian rotation matrices in this order:

R2 = RpitchRroll

=

 cos(θ) 0 sin(θ)
0 1 0

−sin(θ) 0 cos(θ)

1 0 0
0 cos(φ) −sin(φ)
0 sin(φ) cos(φ)


(5)

• Transformation from nominal transducer positions to the
global coordinate system T1. T1 was extracted from the
brace CAD geometry.

T is found by multiplying T1 & T2 in this order:

T = T2T1 (6)

T is multiplied with the depth vector, resulting in a 3D
point cloud of US reflective points in the reference frame of
the exoskeleton.

APPENDIX C
PRE-REGISTRATION

Before pre-registration it is unknown which source points
xi register the best to the target points ui. Optimal source
points are found by doing a brute force search to the lowest
error point combination among the points inside the pre-
registration areas. First, the pre-registration area point cloud is
down sampled to a grid size of 15mm. Then, every possible
combination of 4 points (1 point from each pre-registration
area) is tested with Horn’s algorithm. The point combination
that result in the lowest error is saved. Then on the native
pre-registration point cloud, around these 4 points, all points
within a 10mm radius are identified and tested, again in every
possible combination. The lowest error point combination is
used for pre-registration. Figure 12 shows an example of the
optimal source points combination for one of the trials.

APPENDIX D
RIGIDITY ANALYSIS

When calculating the point cloud from US data, a trans-
formation matrix is used that is based on CAD geometry.
Thereby, it is assumed that the exoskeleton & brace are rigid
bodies and do not move with respect to the global coordinate
system. This assumption was tested by performing a quick

Fig. 12: Example result of the brute-force search to the best perform-
ing point set for pre-registration in one of the trials. Points on the
diaphysis are not on the edge of the pre-registration areas, meaning
that the pre-registration area has been chosen sufficiently large.
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Fig. 13: Results of a quick structural simulation. Total deformation is
simulated to be sub-millimeter, being the highest near the proximal
end.

strength analysis in Ansys Workbench, predicting a maximum
deformation of 0.17mm at the proximal end. See figure 13.

Optical measurements were done to verify the simulation
by equipping the configuration with 3 groups of 4 reflective
markers on the exoskeleton, brace & knee. See figure 4.
Between the 4 markers placed on the brace, 6 lines can be
identified. The strain of each line is calculated with

ε =
L1 − L0

L0
(7)

With L0 being the length in unloaded condition, and L1 being
the length during recording. Here, rigidity can be assumed
when strain is less than 2%. The maximum strain during
dynamic measurements was 1%, thereby passing the rigidity
criterion. 1% strain is equivalent to an elongation of 1.16mm
of the line in question. Even though the result is one order of
magnitude higher than the simulation, it is still an acceptable
navigation error for bone pose estimation.

The displacement of the brace with respect to the exoskele-
ton is also calculated. The length between markers 1 & 5
showed a maximum deformation of 1.3mm, meaning that the
brace was attached firmly to the leg. However, between marker
5 and its equivalent point from CAD data, a displacement of
4.42mm was found. Between markers 2 & 6, the maximum
deformation was 0.45mm. Therefore it can be concluded that
navigation errors propagate from the distal end to the proximal
end, reaching navigational errors that exceed typical STA
error values. Something to attach the brace to the exoskeleton
at the proximal end would greatly benefit the reduction of
navigational errors.

APPENDIX E
EXPERIMENT RIG

Fig. 14: A small improvised rig to hold the subject leg & exoskeleton
in fixed dorsiflexion angles for the static trials.


