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ABSTRACT
To enable the electricity grid to handle upcoming or pre-
sent changes such as increasing penetration of electric ve-
hicles and photovoltaics, a different approach of matching
supply with demand is required. This approach must min-
imise local and global overproduction and shortages, and
due to the increasingly distributed nature of both produc-
tion and consumption, it must be scalable. One such alter-
native called profile steering iteratively and hierarchically
communicates with consuming and producing devices to
obtain a desired energy profile. It delegates the scheduling
problem to these devices. Two important controllable de-
vices for profile steering are electric vehicles and batteries.
Research has been conducted into the theoretical optimisa-
tion of the algorithms to be run on these devices. Caching
might provide a significant decrease in the execution time
of these algorithms. In this research three algorithms are
presented and their performance is measured. We show
that these algorithms use half of the execution time of the
original algorithm when the number of relevant devices is
more than 9 and that the Full cache algorithm requires half
of the execution time for any number of relevant devices.

1. INTRODUCTION
There is consensus among 90% to 100% of experts that
global warming is caused by humans [1]. Countries are
setting ambitious goals to reduce carbon emissions, such
as the Paris Agreement [5] and renewable energy is pro-
viding a larger share of our energy consumption every year
[4]. Renewable energy plays a big role in our political land-
scape and personal lives, but the current electricity grid is
not yet able to accommodate this shift towards renewable
energy.

Renewable energy is largely produced using energy sources
outside of our control, such as the wind and the sun. This
lack of control means that renewable energy is not as flex-
ible as carbon based electricity generators that do not rely
on external factors. This is a problem since also the con-
sumption of electricity is primarily inflexible and uncon-
trollable using current methods. When both the produc-
tion and consumption are uncontrollable matching supply
with demand will become impossible and overproduction
and shortage can occur in the electricity grid.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
31th Twente Student Conference on IT Jul. 5th, 2019, Enschede, The
Netherlands.
Copyright 2019, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

Individuals and businesses are also increasingly using pho-
tovoltaics (PV) for personal energy generation. On mo-
ments of high production and low consumption the energy
system of this consumer can become an energy producer.
At first this does not seem to be problematic, however, the
current electricity infrastructure is not build for this irreg-
ular upstream flow[8]. Traditionally energy production is
centralised with a few large scale electricity generators dis-
tributing downstream to the consumers. Rooftop PV is in
contrast very decentralised, causing local overproduction
which cannot be easily matched with a consumer.

A potential solution to both these problems is to have
more control of the consumption side. Consuming less en-
ergy when production is low and more when production is
high has the potential to solve both problems mentioned
above. Overproduction and shortage can be resolved by
increasing or decreasing consumption at the right mo-
ments. When this consumption control allows for con-
trol of individual households or neighbourhoods, local ex-
tremes can be countered locally. One branch of this Decen-
tralised Energy Management (DEM) functions by sending
steering signals to appliances such that they can alter their
behaviour. Such a system is not entirely novel. Certain
regions have implemented or are planning to implement a
system where the energy price is dependent on the short
term demand and supply (i.e. the Netherlands [7]), moti-
vating the consumption to follow the production.

But there are other methods to steer the consumption,
such as profile steering. This method communicates with
the consuming devices and negotiates an optimal schedule.
On a regular time interval a controller requests an energy
profile from all connected devices, constructs an overall
energy profile and then attempts to improve this profile.
It does not attempt any optimisation itself, but requests
the devices to optimise the profile towards a more desired
profile by changing their schedule. The controller selects
the proposition which improves the profile the most and
requests the device to apply this change. This process re-
peats until the improvements are below a certain thresh-
old. The load is hereby distributed over the individual
devices.

This method outperforms the variable pricing mentioned
earlier. Van der Klauw et al. showed that this method
can create a flatter energy profile than when using price
steering when applied to the charging of electric vehicles
[9][10].

This paper aims to lower the execution time of the buffer
planning algorithm, the algorithm for making the charging
planning for a pure buffer type device. This would reduce
the required computation resources of the controller and
thus making it cheaper to produce and use.

First the purpose and working of the algorithm to be op-
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timised will be explained, followed by a short explanation
on how caching could improve the execution time. We will
then give a more in depth explanation of the aim of this
research. The core of this paper is the Methodology ex-
plaining the workings and motivation behind the caching
algorithms that could improve the BP algorithm. Finally
we conclude with the setup of a simulation to validate
these algorithms.

2. BACKGROUND
2.1 Buffer Planning
Below follows a short explanation of the algorithm for
making the charging planning for a pure buffer type device
which is the focus of this research. For a more in depth
explanation the reader is referred to van der Klauw et al.
[9].

Profile steering, as explained in section 1, is an approach
where a controller iteratively requests a planning of the
electricity usage from connected devices. It provides these
devices with an objective function and these devices then
run an algorithm to determine their improved planning.
These algorithms have been developed for many different
devices, but we will be looking at so called buffer type
devices [6]. Buffer type devices can store energy such as
heat or electricity. Within buffer type devices there is a
distinction between pure storage devices and devices that
require storage for a different use. A battery is a pure
storage device, whereas an electric vehicles is a non-pure
storage device. For both these sub-types an algorithm has
been developed by van der Klauw et al [9].

For the algorithm to charge a non pure storage device it is
assumed that they only draw energy from the grid and do
not discharge back to the grid. van der Klauw et al devel-
oped two algorithms for planning these devices but their
specifics are not relevant for this research. What is rele-
vant is that these algorithms produce an optimal planning
given an objective function, a charging rate constraint and
the state of charge (SoC) to be reached at the end of the
time horizon. It is noted that the planning is a vector over
the time set to be planned on, with the energy to be used
during a certain interval as elements. The objective func-
tion can be represented as a vector too, with a function
for every interval. Applying these function to to planning
results in a vector of values. The objective function is to
minimise the sum of the values in this vector.

The algorithm for a pure storage device is different because
while it can discharge back to the grid, it does not have
a SoC to reach but it does have a upper and lower limit
of its SoC. We will call this algorithm the buffer planning
algorithm, or BP for short. Note that this algorithm is
called optimal Buffer Charging (optBC) in van der Klauws
research. The upper and lower limit are a vector like the
other arguments to this algorithm. BP uses the algorithm
for non pure storage devices first to obtain a candidate
solution by leaving out the upper and lower SoC limits
and by setting the SoC to be reached to be the upper
bound value at the time horizon. If this solution does
not fall within the upper and lower bounds it finds the
interval k where these bounds are violated maximally. The
algorithm now splits the problem into two sub-problems
at interval k. The objective functions and the constraints
are split at this interval and BP is called twice recursively
with these sub-problems. The result of these two calls is
combined and thus a solution is found.

2.2 Caching

The algorithms running on these pure storage devices have
the potential to be made more efficient time-wise with a
caching method. In an iteration of the controller the ob-
jective function changes on an interval of the time horizon.
When this interval is smaller than the time horizon, a part
of the objective function is unchanged. If k is unchanged
too then some of the sub-problems will be identical to sub-
problems encountered in the previous iteration. Caching
these sub-problems and their results could thus lead to a
decrease of the execution time of this algorithm.

3. PROBLEM STATEMENT
BP is required to be efficient in computation time, for
it is made to be run on controllers of the consuming de-
vices which typically are devices with limited computing
resources. van der Klauw has conducted research on the
worst case time complexity of these algorithms [9] but no
research has been conducted to prune the recursion tree
by storing previously obtained results. This research aims
to contribute by assessing several caching approaches on
their performance in computation time.

3.1 Research Questions
How do different caching algorithms affect the computa-
tion time performance of the BP algorithm?

A What are the possible caching algorithms that can
be used to potentially improve the run time of the
BP algorithm?

B What are the worst case theoretical time complexi-
ties of these algorithms?

C What is the execution time of these algorithms when
simulating a group of households of varying sizes?

4. METHODOLOGY
The problems the BP algorithms solves can contain sub-
problems that have been solved in a previous iteration of
the problem as explained in subsection 2.2. We will call
these: sequential repetitions of sub-problems. However,
sequential repetitions of the full problem have been ob-
served too. The reason for these repetitions is unknown
to the author. Moreover, non-sequential repetitions of the
full problem or of sub-problems have been observed as well,
most likely simply due to chance.

Eliminating these three types of repetition could acceler-
ate the execution of the BP algorithm. For this purpose
three algorithms were constructed. To The first is called
”Toplevel 1-cache”, the second ”Binary tree cache” and the
last ”Full cache”. A brief overview of the functionality
and implementation of these algorithms is discusses below.
Pseudo code of these algorithms is included in Appendix
A.

The Toplevel 1-cache simply stores the arguments with
which BP was called by the device together with the result
following from those arguments. If in the next call the
arguments are identical it returns the stored result. Note
that this is only done at the call to BP by the device,
and not the subsequent recursive calls to BP. Therefore,
this algorithm eliminates sequential repetitions of the full
problem.

The Binary tree cache functions similarly, but it adds the
functionality of caching sub-problems. This is achieved by
passing a binary tree along to the recursive calls. This
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Table 1. Theoretical time complexities of caching
algorithms

Miss Hit
Toplevel 1-cache O(1) O(1)

Binary tree cache O(n) O(1)
Full cache - Best case O(n) O(1)

Full cache - Worst case O(nm) O(m)

binary tree represents the recursive calls of a previous ex-
ecution of BP. The first call to BP receives the full tree,
with as root node the arguments of the previous call and
its result. The left sub-tree corresponds to the first sub-
problem and is passed on to the first recursive call to BP.
The root of this sub-tree corresponds to the arguments
and result of the first recursive call of the previous call to
BP. Every call the arguments of the call are compared to
the arguments in the value of the current node. If these
are equal the second value of the tuple is returned. The
tree itself is a simple binary tree built using a class storing
its value and its two children as references. This algorithm
caches sequential repetitions of both the full problem and
the sub-problems.

The Full cache stores all calls that a device makes to BP.
It achieves this by constructing a hashmap from the argu-
ments to the result and adding a argument-result pair to
this hashmap at every call of BP. If a call to BP is made
with arguments that are in this hashmap the algorithm re-
turns the corresponding result. This algorithm thus caches
all repetitions, sequential or non-sequential, full problem
or sub-problem.

4.1 Complexity
The Full cache algorithm is expected to eliminate more
repetitions than the Binary tree algorithm. The Binary
tree algorithm in turn is expected to eliminate more repeti-
tions than the Toplevel 1-cache. However their theoretical
worst case complexity, displayed in Table 1, are ordered
in the opposite order.

Table 1 contains the complexity of the caching algorithm
of a call of the BP algorithm by the device. n signifies
the number of recursive calls within a call by the device
and m is the amount of unique recursive calls made prior
to this call of BP. m is therefore equal to the number
of entries in the hashmap. The complexity is split up
in ”Miss” and ”Hit”, the first being the problem and its
subsequent recursive sub-problems not being in the cache,
the latter being the top level problem being in the cache.
Full cache is split up in two different categories because
of the way hashmaps are implemented in CPython. The
best case when the hashes of the keys of the hashmap
are all unique the complexity of a lookup is O(1). In the
worst case the hashes of the keys are all identical and the
complexity is identical to a search in a list, O(m) with m
being the number of entries in the hashmap.

Toplevel 1-cache is only called at the top level of the al-
gorithm and not during the recursion steps, therefore its
complexity is of order O(1) for both the ”Miss” and the
”Hit” case. The Binary tree cache is called during every
recursion steps, but does not add any additional complex-
ity besides that. Because the tree is built using references,
passing the sub-trees onto the recursive calls has a com-
plexity of O(n). The comparing of the arguments to the
value of the tree has a complexity of O(n) as well result-
ing in a total complexity of O(n). As explained before a
lookup in hashmap has a complexity of O(1) best case and
O(m) worst case. The full cache algorithm is called during

every recursion step, and at every recursion step a lookup
is done, resulting in a complexity of O(n) or O(nm).

5. RESULTS
To measure the execution time improvements made by
the caching algorithms we apply them to a simulation of
a typical use case of the BP algorithm. This simulation
simulates the electricity usages of a group of households by
simulating the behaviour of its residents and their devices.
This simulation uses the DEMKit software developed by
Hoogsteen et al. [6] [3] to simulate this neighbourhood of
households. To generate a load profiles for these house-
holds the software ALPG developed by Hoogsteen et al.
[6] [2] is used. The households in this neighbourhood each
have a household controller. This controller sends Profile
Steering signals to the devices in the household. These
household controllers are connected to a single higher level
controller steering the households using the Profile Steer-
ing approach.

Some of the simulation software in DEMKit has been
changed. The algorithms simulating the devices that use
the BP algorithm were adapted slightly such that the BP
algorithm was able to keep a state. This state was only
kept within this device and was not shared with the other
devices. Furthermore, calls were added to the os library
to access the environment variables to allow for external
control to change the number of households that were sim-
ulated and to select the type of caching algorithm that was
used.

The timings were measured by the algorithms simulating
the buffer type devices using the standard python library
time. The current time was measured before the BP al-
gorithm was called and after the BP algorithm returned.
The difference between these measured times was summed
up for every call to BP. This measured time therefore in-
cludes the computation time the caching algorithm has
added and the computation time it has saved.

Besides the three algorithms and the original algorithm, a
fifth algorithm was included in the measurements. The im-
plementation of the original algorithm was slightly rewrit-
ten without modifying the functionality of the algorithm.
This was done to be able to implement the caching al-
gorithms. Because this rewrite might have an effect on
the performance of the algorithm, its performance was in-
cluded in the measurements to have a better control mea-
surement. This rewritten implementation of the BP algo-
rithm is called Rewritten in the measurements.

The simulation was run twice to increase the accuracy of
the results. This number is still rather low due to to time
constraints.

Measurements were made for every algorithm and for a
number of households ranging from 2 up to and includ-
ing 20. A household however can contain zero, one or two
buffer type devices. A buffer type device runs the BP algo-
rithm and thus increases the measured timing. Therefore
using the number of devices as variable is a better repre-
sentation of the size of the problem than the number of
houses. The measurements can be seen in 1. In Figure 2
this same execution time is represented as a percentage of
the rewritten algorithm.

The Full cache algorithm uses 55% or less of the execution
time of the Rewritten algorithm in all cases. The Binary
tree algorithm uses 94% in its worst measured case, but
when the number of devices is bigger than 9 it uses 52%
at worst. Toplevel 1-cache requires at least 5% percent
more execution time than the Binary tree and the Full
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Figure 1. Execution time of BP for different
caching approaches
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Figure 2. Percentage of execution time of Rewrit-
ten

cache algorithm. The execution time percentages of the
Full cache algorithm and the Binary tree algorithm when
the number of devices is larger than 9 differ 3% or less.

6. CONCLUSION
In this paper we first discussed three different caching al-
gorithms for the BP algorithm eliminating three different
types of repetition. The Toplevel 1-cache algorithm cov-
ers only sequential repetitions of the full problem, but has
a theoretical complexity of O(1). The Binary tree cache
covers sequential repetitions of both sub-problems and full
problems but has a complexity of O(n). Lastly, the Full
cache covers all repetitions but has a complexity of O(nm).

The execution time of the BP algorithm with the differ-
ent types of caching algorithms was measured. Looking
at Figure 2 this is less than %50 percent for more than
9 devices. The Toplevel 1-cache algorithm has a worse
performance in some measurements below 9 devices than
the rewritten algorithm. The Full cache performs bet-
ter than the rewritten algorithm, but only marginally for
lower amounts of devices. The binary tree cache performs
better at lower amounts of devices than at higher.

With these algorithms all using half of the execution time
of the current BP algorithm for more than 9 pure buffer
devices this approach can already significantly speed up
simulations using this algorithm. With further research,
see 7, the algorithms presented in this research could be
used to reduce resources required to run this buffer plan-
ning algorithm on smart devices connected to profile steer-
ing network.

7. FUTURE WORK
Another import factor for algorithm running on devices
with limited resources besides computation time is mem-
ory usage. Since the algorithms researched in this paper
store significant different amounts of data, the memory
usage might be too high to be practical for some of these
algorithms. In a future research this would be an interest-
ing metric to measure.

This research is also rather limited in the variation in
the test cases. Every data point is produced using only
two simulations. A higher accuracy would be obtained by
running more simulations. The difference in computation
time with different compositions of devices in the neigh-
bourhood could also produce different results. Further-
more it would be interesting to see how these algorithms
perform with more than 25 devices.
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APPENDIX
A. CODE AND PSEUDO CODE
A.1 Toplevel 1-cache
A.1.1 Initialisation
s e l f . p r ev i ous a rg key = None
s e l f . p r e v i o u s r e s = None

A.1.2 Before the non recursive call
arg key = immutable copy o f arguments
i f arg key == s e l f . p r ev i ous a rg key :

re turn l i s t ( s e l f . p r e v i o u s r e s )
e l s e :

s e l f . p r ev i ous a rg key = arg key

A.1.3 After the non recursive call
s e l f . p r e v i o u s r e s = tup l e ( r e s u l t )

A.2 Binary tree cache
A.2.1 Initialisation
s e l f . p r e v i o u s c a l l g r a p h = BinaryTree ( ( None , None ) )

A.2.2 Before every recursive call
extra arg: previous_call_graph

prev key , p r e v r e s = p r e v i o u s c a l l g r a p h . g e t v a l ( )
i f arg key == prev key :

re turn l i s t ( p r e v r e s )

A.2.3 After every recursive call with no hit
extra arg: previous_call_graph

p r e v i o u s c a l l g r a p h . s e t v a l ( ( arg key , tup l e ( r e s u l t ) )

A.3 Full cache
A.3.1 Initialisation
s e l f . memory = d i c t ( )

A.3.2 Before every recursive call
arg key = immutable copy o f arguments
i f arg key in s e l f . memory :

re turn l i s t ( s e l f . memory [ arg key ] )

A.3.3 After every recursive call with no hit
s e l f . memory [ arg key ] = tup l e ( r e s u l t )

A.4 BinaryTree
c l a s s BinaryTree :

v a l : T

l e f t = None
r i g h t = None

de f i n i t ( s e l f , va l : T) :
s e l f . v a l = va l

de f g e t v a l ( s e l f ) :
r e turn s e l f . v a l

de f s e t v a l ( s e l f , va l : T) :
s e l f . v a l = va l

de f g e t l e f t ( s e l f ) :
r e turn s e l f . l e f t

de f g e t r i g h t ( s e l f ) :
r e turn s e l f . r i g h t

de f s e t l e f t ( s e l f , t r e e ) :
s e l f . l e f t = t r e e

de f s e t r i g h t ( s e l f , t r e e ) :
s e l f . r i g h t = t r e e
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