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ABSTRACT
The manual annotation of medical images in order to im-
prove computer-aided diagnosis requires a profound level
of expertise and is highly time-consuming. Active learn-
ing strategies have been widely used in cases where man-
ual annotation is burdensome, as these strategies intend
to optimize computers models while reducing the amount
of necessary training data. In this research, four active
learning strategies have been tested against a passive ap-
proach by using a convolutional neural network that has
been trained on the National Institutes of Health Chest X-
Ray dataset, containing 112,120 multi-label X-rays of the
thorax. Additionally, we studied whether the performance
of the learning strategies was affected by the amount of
(available) training data and examined the impact of the
strategies on the individual diseases. We found that ac-
tive learning had a positive effect on both the area under
the ROC curve and the ranking metrics when compared
to passive learning, and that the optimal strategy was de-
pendent on the size of the training data. The standard de-
viations from the average AUC of the individual diseases
were higher when using active learning compared to pas-
sive learning. In conclusion, this study demonstrated that
active learning is beneficial for training computer-aided di-
agnosis models on the prediction of multiple disease of the
thorax.
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1. INTRODUCTION
Radiography is one of the most frequently used technique
for the diagnosis of diseases in modern medicine [1]. The
radiologist is responsible for reviewing and interpreting ra-
diographic images and eventually suggests the most likely
diagnosis. Since the interpretation of a radiographic image
depends on the knowledge and experience of the radiolo-
gist, diagnoses are prone to interobserver variability.

In the search for ways to minimize this variability and to
save time, intelligent computer models which are able to
make a diagnosis on radiographic images have been de-
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veloped. In this field of computer-aided diagnosis (CAD),
artificially intelligent models are trained on a large num-
ber of radiographic images and can learn to distinguish
between normal and abnormal medical findings or even
be trained to predict diseases. However, the adoption of
CAD models in clinical institutions requires a very high
accuracy. As with any complex classification problem, the
model has to be trained on a large amount of data to
achieve the desirable performance. Unfortunately, due to
the lack of publicly available medical training data that
has high-quality annotations, it is still very difficult to ob-
tain a satisfactory accuracy for these models [12].

A common approach to obtain more training data is by
having a human annotator manually label the data. A
well-known example for this procedure is the spam filter
of a mailbox, which is continuously retrained whenever
a user flags a mail as spam. While the spam filter gets
constantly updated with new training data, we are not
sure whether an extra mail will actually improve its per-
formance - perhaps the algorithm could already classify
this mail very well. We call this form of tuition passive
learning : the computer model is being taught something
without knowing why and if the information will improve
the algorithm [15]. The reason that a passive learning ap-
proach works well for spam filters is because new training
data is effortlessly generated by the enormous group of
mail users. This also means that it is not that important
if some mails are less informative: overall the algorithm
has been trained on so much data that it will have seen
more than enough informative instances.

In contrast to spam filters, the manual annotation of radio-
graphic images requires a profound level of expertise and
is highly time-consuming, which poses a serious financial
burden on the optimization of CAD models. Moreover, if
we would ask a radiologist to annotate a random set of
images and it turns out that the model was already able
to predict these scans very well, the model will not benefit
significantly and a substantial amount of resources would
be wasted. Hence, using a passive learning approach can
be very inefficient in situations like this, where limited
resources are available. The discipline of active learning
(AL) tries to overcome this impediment by looking for
ways by which a human annotator would label only those
images that are the most informative to the model. The
fundamental notion in active learning is that the learning
system can actively query on which instances it wants to
be trained, in the attempt to achieve a high accuracy with
as few labeled instances as possible [13]. Figure 1 illus-
trates the concept of active learning, where the computer
model queries X-rays from the pool of unlabeled instances
UL, after which the radiologist annotates these images re-
sulting in a labeled set L.
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Figure 1. Schematic overview of pool-based active
learning in CAD. UL is the pool of unlabeled in-
stances and L is the set of newly labeled instances.

This research studies the effects of active learning strate-
gies on computer-aided diagnosis for the prediction of mul-
tiple diseases on chest X-rays.

2. TECHNICAL BACKGROUND
2.1 Dataset
This research uses the National Institutes of Health Chest
X-Ray dataset, which is one of the largest publicly accessi-
ble radiology datasets published at the time of writing [17].
The dataset contains 112,120 X-ray images of the thorax
with disease labels from 30,805 unique patients. The im-
ages in this dataset have been labelled according to 15
categories, of which 14 are medical diseases and 1 class
is labeled as ‘no findings’. Each X-ray can be diagnosed
with 0, 1 or multiple diseases (i.e. multi-label). Figure
2 illustrates X-rays for 8 out of the 14 common thorax
diseases that have been annotated in the dataset. More-
over, Figure 5 in the Appendix shows the distribution of
the diseases in the dataset and depicts the co-occurrence
of these diseases. Lastly, a small number of X-rays have
been annotated with bounding boxes, which represent the
coordinates of the location at which a disease has been
identified.

Figure 2. Eight common thoracic diseases ob-
served in chest X-rays [17].

2.2 Convolutional Neural Network
This study focuses on the effects that active learning strate-
gies can have on computer-aided diagnosis. Therefore, the
creation of a high performing CAD model is not an ob-
jective per se, but should be seen as a positive side-effect.
For this reason, the decision was made to use existing work

optimized for the dataset instead of attempting to create
a model from scratch. The particular model used in this
research is a convolutional neural network (CNN) pub-
lished on Kaggle [10], mainly due to its favorable balance
between performance and simplicity. The neural network
consists out of 4 hidden layers, uses dropout and pooling,
has sigmoid as activation function and has been built using
the Keras API [3].

2.3 Active Learning Framework
Several frameworks have been developed that stimulate
and facilitate the use of active learning for machine learn-
ing applications. This research makes use of a framework
called modAL [4], which has been built for Python and is
integrated with scikit-learn [11]. While the framework al-
ready contains various built-in active learning strategies,
its modular design supports extensibility, allowing users
to add custom strategies.

3. RESEARCH QUESTIONS
During the course of this research the following questions
have been answered:

PRQ. What are the effects of active learning on computer-
aided diagnosis for the prediction of multiple diseases in
chest radiography?

• SRQ1. How does the performance of an active learn-
ing approach compare to passive learning?

• SRQ2. How are the learning strategies affected by
the size of the (available) training data?

• SRQ3. How does the effectiveness of the learning
strategies vary amongst the individual diseases?

4. RELATED WORK
One of the most prominent works on active learning is the
extensive literature survey done by Settles [13]. This paper
gives a good introduction to active learning and presents
an overview of various well-known query learning frame-
works for optimizing machine learning models. Unfortu-
nately, the majority of these strategies do not generalize to
multi-label classification problems or are computationally
inefficient for the use on larger datasets. As a consequence,
these frameworks were not applicable to this research and
different strategies have been used, which will be discussed
extensively in Section 5.1.

Already various studies have experimented with the use
of active learning in the medical domain. A research con-
ducted by Liu [9] examined the effects of active learning
applied to gene expression data for cancer classification.
The results showed that when using the same amount of
training data, active learning could improve the area under
the receiver operating characteristics (ROC) curve to 0.81,
compared to a value of under 0.50 using passive learning.
Moreover, the research concluded that about 82% of the
training data could be saved when using active learning.
Another study by Hutchison et al. [8] researched the im-
pact of active learning on screening diabetic retinopathy.
Similarly, they reported that the amount of training data
could be reduced by 80% when using active learning over a
passive approach, while retaining an area under the curve
of 0.856.

Several other directions have been researched that try to
cope with the lack of medically annotated data. One suc-
cessful example is the extraction of annotations by text
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Table 1. Data subset composition for every iteration

Data
Partition

Iteration
1 2 3 4 5 6

Total set 5,000 10,000 20,000 50,000 80,000 112,120
Test set 1,000 2,000 4,000 10,000 16,000 22,424
Validation set 400 800 1,600 4,000 6,400 8,970
Initial train set 180 360 720 1,800 2,880 4,036
X-Pool 3,420 6,840 13,680 34,200 54,720 76,690
Final trained set 1,206 2,412 4,824 12,060 19,296 27,043

mining of radiology reports. Zech et al. [19] have evalu-
ated several natural language processing techniques that
can generate disease labels by extracting information from
radiology reports. They reported that the best-performing
model had an average sensitivity and specificity across all
findings of 90.25% and 91.72%, respectively. Despite these
eminent results, it should be noted that this approach di-
minishes the quality of annotation due to computer inter-
vention.

4.1 Contribution
Whereas earlier studies have examined the impact of ac-
tive learning on the prediction of a single disease, so far
no research had been done on the multi-label classification
variant. Hence, this research contributes to the field by
studying the effects of active learning on computer-aided
diagnosis for the prediction of multiple diseases. Addi-
tionally, not earlier has the effect of active learning been
studied on the NIH Chest X-ray dataset, or any other ra-
diographic dataset with comparable size.

5. METHODS
For efficient and objective results, the concept of active
learning has been applied in a slightly different manner.
Whereas the conventional active learning approach requests
a human annotator to label instances, our dataset already
contains the labels for all of the X-rays. Therefore, we
pretend that for a portion of the images we do not have
the label and we will call this set the X-pool. Correspond-
ingly, querying any number of instances from the X-pool
will reveal their labels as if a human annotator was con-
sulted.

5.1 Learning Strategy Selection
The strategies that are used in this research proceed from
a multi-label strategy framework proposed by Esuli & Se-
bastiani [6]. Whilst this framework defines a total of 12 ac-
tive learning strategies, not every strategy could be tested
due to the long training time of the neural network. Ac-
cordingly, a selection of 4 strategies has been made, mainly
based on the performance presented by [6]. Each of those
strategies, as well as random sampling, will be described in
detail in the following sections. Before continuing it should
be stated that although the neural network conventionally
predicts a value on the interval [0, 1], for two of the strate-
gies (i.e. minimal confidence and average confidence) it
was necessary to transform this interval to [−1, 1]. On
this interval -1 denotes that the neural network is certain
that a disease is not present (i.e. disease negative) and 1
is used to indicate certainty for disease present (i.e. dis-
ease positive). Finally, we will refer to x?S as the most
informative image given a strategy S.

5.1.1 Minimal Confidence
The strategy of minimal confidence (MC) regards the most
informative image as being the image on which it is most
unsure about how to label. For every X-ray on which the

model makes a prediction, it identifies the disease which
has the lowest absolute probability. Afterwards, this value
is compared amongst the entire set of X-rays, and the X-
ray with the lowest confidence is selected. Note that we
use the absolute value, since it is not important whether
the model predicts -0.8 (80% sure of disease negative) or
0.8 (80% sure of disease positive): in both cases the neural
network is 80% confident. The mathematical notation for
MC is:

x?MC = argmin
x

| ψ(P (y∗|x) | (1)

, where y∗ = argmin
y | ψ(P (y|x)) | stands for the least

confident disease on image x and ψ(z) = 2z − 1 is the
transformation to the [-1, 1] confidence interval.

5.1.2 Average Confidence
Similar to the strategy of minimal confidence, the informa-
tiveness measure of average confidence (AC) is based on
the uncertainty with which the model predicts diseases.
The drawback of MC however, is that this strategy is
only concerned with the disease it is most unsure about,
thus discarding all information about the other diseases.
AC addresses this shortcoming by first taking the aver-
age probability of all the disease labels from an image and
then compares this value across the entire set of X-rays,
regarding the image with lowest value as the most infor-
mative instance. This approach has been mathematically
formulated in equation 2:

x?AC = argmin
x

1

N

N∑
i=1

|ψ(P (yi|x))| (2)

, whereN symbolizes the total amount of diseases,
∑N

i=1 yi
ranges over the complete set of disease labels Y such that
yi ⊆ Y and ψ(z) = 2z − 1 is again the transformation to
the [-1, 1] confidence interval.

5.1.3 Maximum Score
According to strategy of maximum score (MS), the most
informative instance is the image for which the model has
the highest confidence that (at least) one disease is posi-
tive. This strategy relies on the assumption that in super-
vised learning tasks, it is generally the positive instances
rather than the negative ones which are the most useful
[6]. The score of a label is equal to its probability on the
closed interval [0,1], with 1 having the highest score and
0 the lowest score. For every X-ray, MS identifies the la-
bel with the highest score and then compares these scores
for all the X-rays, again selecting the image with the best
score. Equation 3 expresses the most informative instance
according to MS:

x?MS = argmax
x

P (y∗|x) (3)
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, where y∗ = argmax
y P (y∗|x) denotes the label with the

highest score for image x.

5.1.4 Average Score
Just as with AC, the strategy of average score (AS) ac-
counts for every disease label instead of only considering
the best label for the metric. With AS, the average score
is computed for every X-ray and subsequently the image
with the highest overall score is selected. Equation 4 shows
the most informative instance according to AS, where the
symbols used have the same meaning as with AC.

x?AS = argmax
x

1

N

N∑
i=1

P (yi|x) (4)

5.1.5 Random Sampling (RS)
With random sampling, images are drawn from the X-pool
using a pseudo-random number generator. This ‘strategy’
is the default for training of artificially intelligent models.

5.2 Data Transformation
Due to the high quality of the dataset, only small changes
had to be made to prepare the data. Firstly, the dis-
ease labels of the patients in the dataset were presented
in a comma separated format. To use these labels as the
target output of our neural network, this format had to
be modified into a one-hot encoded vector. The length
of this vector equalled to the number of unique diseases,
where for every label the number ‘1’ indicates disease pos-
itive and ‘0’ indicates disease negative. Subsequently, the
distribution of diseases had been plot showing that ’Her-
nia’ is highly underrepresented in the population. Only
about 0.2% of the images had been marked with ‘Hernia’,
which is significantly lower than the second lowest diag-
nosed disease with a positive rate of 1.3%. Consequently,
the decision was taken to remove ‘Hernia’ from the target
vector so that the overall results would not be biased. Ul-
timately, the X-rays were converted into numerical data
with a shape of 128x128 pixels using the image data gen-
erator from Tensorflow [2].

5.3 Data Partitioning
The next step in the process is to divide the dataset into
smaller subsets, each serving a different purpose. The ini-
tial dataset has been split according to the Pareto prin-
ciple into a 80% train- and 20% test division. Hereafter,
10% of the training data has been set apart as validation
set. Finally, 5% of the remaining training set was used
to initially fit the neural network, while the other 95%
constitutes the X-pool from which data will be actively
queried depending on the learning strategy. Note that we
want to test the performance of our learning strategies on
different data set sizes, meaning that N images have been
randomly sampled from the complete dataset to form an
initial dataset, where N is dependent on the iteration. The
exact composition of data samples for each iteration can
be found in Table 1, with the full dataset used in iteration
6. The final trained set is the total number of images that
the model had been trained on at the end of an iteration.

5.4 Learning Process
Functioning as base model, a neural network was created
which has subsequently been fitted on the initial training
set belonging to a certain iteration. Afterwards, a copy
of the model was made for every learning strategy to en-
sure that each strategy had the exact same starting point.
From this moment onwards, for every strategy the neural

network was repetitively fitted onto new batches of im-
ages. Each strategy was allowed to query from the X-pool
for a total of 20 times. The amount of images requested
per query was equal to 1.5% the size of the original X-
pool, so that at the end of the learning process 30% of the
images were drawn from the X-pool. After a query had
been made the images that were used were removed from
the X-pool, so that the model could not be fit more than
once on the same image. In order to reduce variability,
the aforementioned process has been repeated a total of
5 times for each strategy per iteration. The pseudocode
of the active learning process is illustrated in Algorithm
1, where the parameters m, s and x represent the model,
strategy and X-pool, respectively.

Algorithm 1 Actively teaching the neural network

1: procedure ActiveLearning(m, s, x)
2: queries← 20
3: n images← int(length(x) × 0.3÷ queries)
4: i← 1
5: while i ≤ queries do
6: images← s.query(n images)
7: m.train(images)
8: x.remove(images)
9: i← i+ 1

10: end while
11: end procedure

5.5 Evaluation Metrics
In order to evaluate the performance of the neural network
given some strategy, several evaluation metrics have been
considered. Firstly, a very popular metric that plays a cen-
tral role in the evaluation of diagnostic tests in the medical
world is the receiver operating characteristic (ROC) curve
[7]. The ROC curve depicts the relationship between the
sensitivity and false positive rate at alternating thresh-
olds. The area under the curve (AUC) of the ROC indi-
cates how good the model is in predicting diseases that are
positive while giving as few falls alarms as possible. Addi-
tionally, various other multi-label evaluation metrics were
used such as Label Ranking Average Precision, Ranking
Loss [5] and Coverage Error [16]. These metrics are based
on a notion of ranking, where each disease label has been
ranked according to its predicted probability. In essence,
these metrics measure how good the model is in distin-
guishing the stochastic order amongst the diseases.

6. RESULTS
Figure 3 illustrates the average AUC per strategy for each
iteration, including standard deviations.

Figure 3. A bar chart showing the AUC of the
ROC per learning strategy averaged over all dis-
eases. Error bars represent standard deviations.
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Figure 4. A line graph displaying the relative percentage difference in AUC per disease label compared
to the reference (random sampling). The data in this graph originates from iteration 5.

This figure shows that the average AUC ranged from 0.503
in the first iteration to 0.578 in the last iteration using the
strategies MS and MC, respectively. Although the dif-
ferences in AUCs across the various techniques were rela-
tively small, an active learning strategy outperformed the
random sampling technique in each iteration. More specif-
ically, AC achieved the highest average AUC during the
first two iterations, AS for iterations 3 and 4 and MC dur-
ing the last two iterations. MS was the only strategy to
perform worse than random sampling for the majority of
iterations (4 out of 6). The standard deviations were con-
siderably lower for random sampling compared to other
strategies during most of the iterations (4 out of 6). Fig-
ure 3 shows that maximal AUC has been reached in the
fifth iteration using MC (AUC=0.578). Even by adding
7,747 (40,1%) images to the training dataset from the fifth
to the sixth iteration, the AUC of the MC in the fifth it-
eration is still superior when compared to the AUC of the
RS in the sixth iteration (AUC=0.575). Although not for-
mally tested, our data suggest that during these iterations
40,1% of data could be saved when using an active learning
approach instead of random sampling.

Table 2 displays the performance of each strategy on the
ranking metrics averaged over all iterations. The highest
values are indicated in bold whereas the lowest values have
been underlined. MC scored the best on LRAP, whereas
AS scored highest on both LRL and CE. AS and MS score
relatively well on all ranking metrics, with only small de-
viations amongst the two strategies. It is shown that for
all the ranking metrics random sampling performs signif-
icantly worse than an active learning approach, indepen-
dent of the strategy chosen. Moreover, from these results
we can conclude that the differences between the active
learning strategies are relatively small when compared to
the differences between the active learning strategies and
RS.

Table 2. The scores for LRAP, LRL and CE for all
strategies averaged over the iterations.

MC AC MS AS RS
LRAP 0.736 0.728 0.734 0.732 0.711
LRL 0.181 0.178 0.176 0.174 0.221
CE 2.472 2.421 2.376 2.365 2.825

To zoom in on the individual diseases, we showed the AUC
of the active learning approaches for the individual dis-
eases during the fifth iteration in Figure 4. To compare
the active learning strategies with the random sampling
method, we set RS as the reference, and thus show the
relative AUCs of the four active learning strategies. Over-
all, the active learning strategies demonstrate consensus
on which diseases it can predict better or worse than ran-
dom sampling. That is, for the disease labels ‘Atelecta-
sis’, ‘Consolidation’ and ‘Edema’ all four strategies sig-
nificantly outperformed random sampling, whereas in the
case of ‘Emphysema’, ‘Fibrosis’ and ‘Mass’ the strategies
performed worse or equal to RS. The same trend, although
to a lesser extent, also appears in other iterations. The
highest relative difference in AUC was observed for the
prediction of ‘Edema’, for which MC scored 13.8% higher
than random sampling. Random sampling was between
4.9% and 6.8% better at the prediction of ‘Fibrosis’ than
the active learning strategies.

Table 3. The standard deviations of the average
AUC between individual diseases

MC AC MS AS RS
1 0.030 0.041 0.042 0.049 0.042
2 0.060 0.050 0.036 0.053 0.044
3 0.046 0.042 0.048 0.042 0.035
4 0.061 0.061 0.071 0.064 0.057
5 0.072 0.058 0.060 0.057 0.050
6 0.073 0.062 0.062 0.057 0.054

Overall 0.057 0.052 0.053 0.054 0.047

From Figure 4 we observed that the performance of the
learning strategies was dependent on the disease. To get
a better insight into the variation between the AUCs of
the individual diseases, we computed the standard devia-
tion from the average AUC for each strategy per iteration
(Table 3). The highest and lowest values per iteration
are indicated in bold and underlined, respectively. From
iteration three onwards, RS shows the lowest standard de-
viations from the average AUC across the individual dis-
eases. In addition, the overall standard deviation is lowest
using RS (SD=0,047). On the other hand, MC and MS
combined showed the highest standard deviation for the
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majority of the iterations (i.e. 5 out of 6).

7. DISCUSSION
We found that the optimal learning strategy was depen-
dent on the size of the (available) training data. Differ-
ences in the average AUC of the ROC were relatively small
across the different learning strategies. However, in every
iteration at least two active strategies were superior to
random sampling in terms of AUC. In addition, our study
demonstrated that active learning strategies performed
better on the multi-label ranking metrics when compared
to RS. Interestingly, for some specific diseases active learn-
ing strategies outperformed RS in terms of AUC, whereas
for other diseases RS scored better on this metric. The
standard deviations from the average AUC for the indi-
vidual diseases were considerably lower when compared to
the active learning strategies, indicating lower differences
between the predictions of the individual diseases.

The AUCs of the different learning strategies were depen-
dent on the data size on which the neural network had been
trained. AC and AS combined had the highest AUC up to
the fourth iteration (i.e. 5,000 - 50.000 X-rays), whereas
MC had the highest AUC during the last two iterations
(i.e. 80.000 - 112,120 X-rays). These observations may be,
at least to some extent, explained by the goals of the dif-
ferent learning strategies. To elaborate on this, both AC
and AS consider the average informativeness of all dis-
eases. When the neural network has not been exposed to
a lot of training data yet, the model is uncertain about its
predictions on any of the diseases. At this point, AC and
AS teach the model highly varying information about a lot
of different diseases in order to broaden the knowledge of
the model. Once the neural network has been trained on a
larger amount of data, the model is more confident about
its predictions of the diseases. Hence, it could be more ef-
fective for the model to only learn about those particular
diseases it is least confident about in order to deepen the
knowledge of the model, which is the goal of MC since it
only considers the highest uncertainty on a single disease.

The active learning strategies scored remarkably higher
than random sampling on all of the evaluated ranking
metrics. This means that the neural network had a much
better idea on the stochastic order of the diseases when
trained with active learning strategies compared to using
a passive approach. Interestingly, we observed that the
differences between active learning and RS were more ob-
vious in the ranking metrics than in the AUC of the ROC
curve. An explanation for this is that although the model
was not highly confident on its predictions yet as shown by
the sub-optimal AUC, it was able to predict relatively well
which diseases were more likely than others in comparison
to RS as shown by the ranking metrics.

The effect of active learning on the area under the ROC
curve seemed to be dependent on the individual diseases.
We observed that for many diseases, the active learning
strategies either all performed considerably better or con-
siderably worse than RS on the AUC. This observation
is supported by the standard deviations from the AUC of
individual diseases, which were substantially higher for ac-
tive learning strategies than for RS throughout a majority
of the iterations. That is, for the active learning strate-
gies there was a relatively high divergence in the perfor-
mance amongst the individual diseases when compared to
RS. Two possible explanations for this divergence are that
the performance on the individual diseases is related with
(1) the prevalence of the diseases in the sample popula-
tion and (2) the number of X-rays selected by the learning

strategies that contain these diseases. In order to assess
to which extent these explanations are associated with the
differences in standard deviations, further research needs
to be done.

While active learning has demonstrated to positively affect
computer-aided diagnosis both in terms of AUC and rank-
ing metrics, the differences observed with random sam-
pling were lower than was expected from the literature
[8], [9]. This discrepancy can be attributed to the limi-
tations of this research, which may have suppressed the
effectiveness of the active learning strategies. The three
most important limitations have been described in Sec-
tion 7.1.

7.1 Limitations

1. Due to long computational times of up to eight hours
per round only 20 queries could be made for every
strategy. This means that the X-rays were queried
in large batches, with the size of the batches increas-
ing in every iteration. However, the effectiveness of
active learning is highest when as few images as pos-
sible are queried at the same time. Even when only
two X-rays would be queried at once, it could still
turn out that these images are very similar and that
the model only learns effectively from one of the im-
ages. This problem has been recognized by Settles
[14], who also emphasizes that serial querying (one
at a time) is even a difficult challenge in practice. It
would be highly impractical if not infeasible to ask
a radiologist to annotate one X-ray, then retrain the
model with this labeled image and go back to the
radiologist to annotate the next X-ray. Nonethe-
less, more queries could be made (i.e. reduce the
batch size) to better highlight the advantages of ac-
tive learning.

2. A second limitation of this research was that, due to
time constrains, not all variability in the test results
could be taken out. Despite the fact that each strat-
egy has been measured for a total of five rounds per
iteration and that the standard deviations between
the rounds were not extremely high [8], even more
rounds are needed to further reduce this variability.

3. The NIH Chest X-ray dataset that has been used
contains impurities regarding the reliability of the
target labels. The disease labels of the X-rays have
not been directly annotated by a radiologist, but are
extracted from the radiology reports using natural
language processing. More precisely, the labeling ac-
curacy is estimated to be >90%, which almost cer-
tainly means that part of the data has been incor-
rectly labelled, introducing some bias in the results.

8. CONCLUSION
This research examined the effects of active learning on
computer-aided diagnosis for multi-disease prediction on
chest X-rays. We found that active learning strategies
were superior to a passive approach (i.e. random sam-
pling) in terms of average AUC of the diseases as well
as on the evaluated ranking metrics during each of the
experiments conducted. Additionally, we concluded that
the optimal learning strategy depended on the amount
of data on which the neural network had been trained.
The divergence in AUC between the predictions of indi-
vidual diseases was much higher by using an active learn-
ing strategy compared to a passive approach, indicating

6



a more pronounced difference between the individual dis-
eases. In conclusion, the use of active learning indicated
to have promising prospects for multi-disease prediction
in computer-aided diagnosis of diseases based on chest X-
rays. Our results underscore the need of additional studies
to assess the optimal effect of active learning strategies in
computer-aided diagnosis in clinical practice.

9. FUTURE WORK
There are various aspects to this study which showed that
further research on active learning for the prediction of
multiple diseases is required. Firstly, the active learn-
ing strategies that have been used in this research do not
cover all the potential multi-label strategies. Several other
strategies have been proposed in the literature and further
inquiry would be needed to explore the effects of those
strategies on computer-aided diagnosis. Secondly, to fur-
ther study the effects of active learning on CAD it might
be interesting to look into how a distinct computer model
can influence these effects. For the scope of this research,
only one fixed neural network has been used. However, it
could very well be the case that using another algorithm
or a different set of hyperparameters would have lead to
different results. Yang [18] supports this theory by indi-
cating that correctly tuning the hyperparameters can have
a high impact on the performance of the active learners.
Thirdly, in order to better understand the performance of
active learning in CAD it would be valuable to study the
co-occurrence of diseases in the population. For instance,
when two diseases D1 and D2 frequently occur together in
a population, then a learning strategy which actively tries
to identify D1 implicitly also trains the model regularly
on D2. Hence, studying these correlations would bring us
a deeper understanding of why active learning strategies
work well for some diseases and less well for others. Ul-
timately, whereas this study has researched the effects of
active learning on a CAD model that tries to predict a
set of 13 diseases, it would be interesting to see how these
strategies perform on a model which predicts a smaller
set of diseases. Theoretically seen, the expected benefits
of active learning are higher when the probability with
which an informative instance can be selected using ran-
dom sampling is lower. Hence, when the model is trained
on a smaller set of diseases the chance is lower that we
can find a disease by random selection, so the benefits of
active learning might be larger in these situations.
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APPENDIX

Figure 5. A circular diagram showing the proportions of images with labels from each of the 14 pathology
classes and the co-occurrence statistics of the labels [17].
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