
Clustering with Outliers in a Biased Animal Movement
Database

Mei Li Go
University of Twente

P.O. Box 217, 7500AE Enschede
The Netherlands

m.l.go@student.utwente.nl

ABSTRACT
By putting accelerometers on horses, data was collected
that can be classified into different behavioural patterns.
Examples are ”walking”, ”resting”, ”running-rider”, and
”running-natural”. In order to study the behaviour of
horses and investigate the structure of the data, the data
has to be grouped according to these different behaviours.
This research focused on grouping the horse data by means
of clustering. Clustering is an unsupervised procedure to
group data based on similarity. Unsupervised means that
the clustering algorithm does not have classified (or la-
beled) data to train with. Finding the correct cluster-
ing algorithm is a challenge because the database is large,
and the data is high-dimensional (21 dimensions). Fur-
thermore, the data itself is biased. Most of the samples
represent the horse trotting with a rider, and there are lit-
tle samples available of other behaviour such as the horse
shaking. Due to the small amount of samples for this be-
haviour, the algorithm could identify these samples as out-
liers (deviations from normal patterns) and remove them.
In this research two algorithms were identified for cluster-
ing large and high-dimensional data: DBSCAN and OP-
TICS. The performance of the algorithms was evaluated
using the V-measure. The algorithms were also assessed
for biases towards clustering larger or smaller clusters as
outliers, or clustering samples wrongly (False Negatives).
After performing the tests, it was found that with the
chosen parameter values, DBSCAN performed better. Al-
though OPTICS had a far smaller percentage of False Neg-
atives (21 percent per class on average compared to the 61
percent of DBSCAN), this could be explained by the high
percentages of outliers that OPTICS had. DBSCAN was,
in other words, better at identifying outliers. Furthermore,
it had a higher V-measure (1 is the most desirable) with
0.512, whereas OPTICS had a V-measure value of 0.304.
Further improvement of the performances can be achieved
through extended parameter optimization.

Keywords
Clustering, large database, biased, outlier, animal activity
recognition.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
31th Twente Student Conference on IT Jul. 5th, 2019, Enschede, The
Netherlands.
Copyright 2019, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

1. INTRODUCTION
In wildlife monitoring, it is hard to assigning sensory data
to the corresponding activity. However, reliable animal
activity recognition often require large amounts of catego-
rized data to train with. For this research a horse database
was used, of which the data was collected by attaching an
accelerometer to the necks of 16 horses [9]. Similar to
wildlife monitoring, each sample has to be assigned to the
corresponding activity (or behaviour) before the data can
be analysed. Examples of identified activities are ”run-
ning”, ”running-rider”, ”walking”, and ”shaking”. Manu-
ally assigning samples to classes is time consuming as a
person would have to classify each sample individually.
Clustering could offer a solution. Clustering is a process
of grouping data items based on a measure of similarity [8].
Once the data has been grouped, a person can (manually)
give names to the different groups, looking at only a few
samples of each group. For the database this means that
clustering provides a faster way of categorizing data, as
well as enabling automatic data annotation. Clustering is
also a good solution because it is an unsupervised process.
Unsupervised means that it does not need to train with
classified - or grouped - data [4], and therefore requires
less resources. As this data set is imbalanced, clustering
further helps the analysis by showing the balance of the
data.

This paper focuses on strict partitioning clustering with
outliers. Strict partitioning, also called hard clustering,
means that a sample can only belong to one group [8].
This method is chosen as each horse activity should only
be associated with one type of behaviour, for example ei-
ther ”running” or ”walking”. The data can also contain
outliers. Outliers or anomalies are ”significant deviations
from behaviours that are normal patterns” [3]. These out-
liers should be removed from the data set, as they do not
correctly represent the behaviour of the horse. The chal-
lenge of clustering this particular database is that small
clusters which are not outliers, can be viewed as such.
For example, out of 200 samples, only two can be the
horse shaking and the remainder is the horse walking. It
is important that the clustering algorithm does not iden-
tify these two samples of the horse shaking as outlier and
therefore removes them. However, in the data set given
no outliers were present. The classified data can nonethe-
less include outliers as it is clustered by humans. Thus
the research focused on what the algorithms identified as
outliers and if they favoured specific classes as outliers.
Furthermore, the database used has 21 dimensions and al-
most 10,000 samples [9]. Therefore, the algorithms have
to perform well on large and high-dimensional databases.
To prevent further confusion the ground truth clusters,
in other words the correct clusters, will henceforth be re-
ferred to as classes, and the results from the algorithms

1

shall be called clusters.

The research tried to try answer the following question:

Which clustering algorithm can best identify
clusters in a biased data set while also identifying

outliers in a data set with small groups of
non-outliers?

In order to answer this question the following sub-questions
were used for each algorithm:

1. How many samples are clustered correctly?
2. For each class, what is the percentage of samples that

is wrongfully clustered in another class (the percent-
age of False Negatives)?

3. Per class, what is the percentage of samples that is
wrongly identified as outlier compared to:
(a) The total amount of identified outliers?
(b) To the class itself?

This paper is structured as follows: Section 2 describes
the literature research performed and the tools that were
used. Section 3 explains which algorithms were chosen and
why, after which the chosen evaluation methods will be
described. The results are explained in Section 5. Possible
improvements of the research are proposed in Section 6,
followed by a conclusion.

2. METHODOLOGY
Different algorithms were compared by means of a lit-
erature review. The online Library of the University of
Twente and Google Scholar were used to discover these
algorithms. The algorithms that survey and review pa-
pers recommended were inspected further to find two well
performing algorithms, that also had an online library in
Python available. Two libraries were found to include code
for both algorithms, which was desirable as using the same
library for both algorithms would limit the likelihood of
unreliable results due to different types of implementa-
tion. From the two libraries, the Scikit-learn library [15]
was chosen as it was substantially faster and thus more
efficient than the other library [13]. Furthermore, this li-
brary is well known and has been used over 60.000 times,
reducing the possibility of mistakes in the code. After
performing another literature research to find the fitting
evaluation measurements for the clustering algorithms, it
was discovered that both of these measurements were also
available in the chosen library wherefore the library was
used for this as well.

The algorithms were tested on a database containing 21
dimensions and 14 classes. Figure 1 is a visualization of
the data using two of the 21 dimensions. In this, the 14
classes are indicated with different colours. Table 1 gives
a visualization of all classes and the number of samples for
each class. Furthermore, the database had almost 10,000
samples.

Each algorithm was tested multiple times on the database,
with varying parameters in order to discover a result that
would correspond to the ground truth the most and (there-
fore) had the highest scores on the evaluation measure-
ments. For each combination of parameters, the following
data was visualized in a table: the V-measure, the percent-
age of False Negatives, the percentage of outliers per class,
the percentage of outliers compared to the total amount
of outliers, and the distribution of the result clusters over
the classes. In order to test the algorithms, the examples
in the online library were copied and adjusted to cluster
the horse data. Furthermore, additional code was writ-
ten in order to make the data suitable for the coding of

Figure 1. Visualization of the horse database based
on two of the dimensions

the algorithm (the library required the data as an array).
As only the V-measure was available in the online library,
code was written to generate the tables and calculate the
False Negatives and outlier percentages as well.

class Number of samples
walking-rider 35425
trotting-rider 25688

grazing 18062
standing 5297

running-rider 3934
walking-natural 3609

head-shake 619
scratch-biting 285

running-natural 102
trotting-natural 94

rolling 67
eating 48

fighting 31
shaking 21

Table 1. Number of samples per class

3. ALGORITHMS
3.1 Background
To properly understand the choice of algorithm that will
be made in this research, an understanding of clustering
algorithms themselves is necessary before discussing spe-
cific algorithms. There are different types of algorithms
based on the way they cluster. First there are hierar-
chical algorithms. Once a point is clustered according
to such an algorithm, it is not re-evaluated and results
in a tree-like structure. This can be done bottom-up or
top-down. Bottom-up means that each sample starts as
its own cluster and clusters are then merged, top-down
means that all samples belong to the same cluster in the
beginning and are then split into multiple clusters [10],
[12]. Density-based cluster approaches group data based
on high-density, in other words when many samples (how
many depends on the parameters) are close together (’close’
is also defined by a parameter). In a grid-based approach
the algorithm distributes the samples into a fixed number

2

of cells, which has a form of a grid. Finally, subspace al-
gorithms try to find all clusters in all available subspaces
[8], [4], [14]. The algorithms that were considered for this
research are explained below.

3.2 BIRCH
BIRCH, or Balanced Iterative Reducing and Clustering us-
ing Hierarchies, is an algorithm designed for large databases
using the hierarchical approach. This means that once a
point is clustered, it is not re-evaluated and results in a
tree-like structure. Its’ I/O (Input/Output) costs are lin-
ear and its’ memory usage is efficient as the first step of
the algorithm is to generate a summary of the data set.
This summary reflects the natural closeness of the data.
It reduces memory requirements and becomes scalable by
using the Clustering Feature (CF) Tree. A CF tree is a
height-balanced tree with two parameters, the branching
factor B and the threshold T. A non-leaf node, in other
words a node that has no ”children”, contains maximum
B entries. A leaf node must satisfy the threshold require-
ment T. It’s diameter or radius has to be less than T. If
the tree is smaller, than the T is larger [19], [20].
The CF is defined as:

CF = (n,LS, SS)

where n is the number of samples in a cluster, LS the
linear sum of the n samples, and SS the square sum of the
N samples. The time complexity of BIRCH is:

O(n)

where n again is the number of samples.

However, BIRCH does not scale well with high dimensions,
and therefore cannot be used for this research. One of
the successors of BIRCH, called CURE (Clustering Using
REpresentatives) is less sensitive to outliers and more ef-
ficient than BIRCH [6]. However, although this algorithm
performs well on both large as well as high dimensional
databases, it does not do hard clustering. In other words,
a sample can belong to multiple clusters. Therefore, it is
not suited for this research.

3.3 CLIQUE
This grid- and density-based algorithm works bottom-up
and with monotonicity [14], [1]. It looks at the density of
a group of samples S in k-dimensional space. S can only
be a cluster if it is also dense in every (k-1)-dimensional
space. The algorithm starts by identifying subspaces that
contain clusters by looking at the density of the samples,
and then identifies the clusters. It also produces a mini-
mal DNF (Disjunctive Normal Form) expression describ-
ing each cluster.

The algorithm is scalable, although the memory usage has
to be managed carefully as a buffer of the database records
is stored by the algorithm. This memory can be overrun by
the candidates that the algorithm produces. The runtime
of the algorithm is:

O(ck + nk)

where c is the number of given dimensions (parameter
value), k the number of clusters, and n the number of
samples.

However, similar to CURE this algorithm does not do hard
clustering, and was therefore not taken into further con-
sideration.

3.4 DBSCAN
There are several requirements for a clustering algorithm
according to [5]: minimal knowledge of the data domain

to determine the algorithm’s input values, discovery of
clusters with an arbitrary shape, and efficiency on large
databases. Based on these requirements, the density-based
approach DBSCAN (Density-Based Spatial Clustering of
Applications with Noise) is build. The algorithm has two
parameters:

• Eps: the minimum distance between two samples.
If the distance between samples is lower than this
value, the two samples are neighbours;

• MinPts: the minimum number of samples that needs
to be within the distance Eps of a single sample in
order for that group of samples to become a cluster.

The border samples do not fulfil the MinPts requirement,
but are in the neighbourhood of a core samples. Thus they
will be in a cluster. This also means that DBSCAN de-
tects outliers, because those are not in the neighbourhood
of a core samples [18]. Furthermore, DBSCAN is prone to
errors when clusters are not well separated due to the algo-
rithm clustering based on density. Another disadvantage
is the high run time, namely:

O(n ∗ log(n))

where n is the number of samples.

3.5 OPTICS
The OPTICS (Ordering Points To Identify the Clustering
Structure) algorithm can be viewed as an extension of DB-
SCAN [2]. It uses the same parameters and principle of
the algorithm, only here the Eps parameter is optional and
mainly used as a way to reduce computational complexity
(if no value is specified, Eps = infinity). OPTICS makes an
ordering of the database, which is then used to cluster, and
also produces the core distance and reachability-distance
for each sample.

The algorithm starts with the samples that have the small-
est distances to each other, and hierarchically works up
from there. It uses the MinPts parameter to both define
the neighbourhoods, as well as to calculate the distances
for each sample. Furthermore, OPTICS has the same run
time as DBSCAN.

3.6 K-means
The k-means clustering algorithm is computationally at-
tractive and simple to implement, and therefore also a
popular clustering algorithm. It starts by assigning ran-
dom coordinates as centroid points. The amount of cen-
troid points is given by a parameter defining the number
of clusters. The data space is also divided by the same
parameter. The algorithm then looks at where the centre
(middle) of each cluster is, and moves the centroid point
to this position. These two steps are repeated until the
found centroid points cannot be improved further. During
this process, the clusters are also adjusted. Because the
centroid points change their location in the data space,
samples may be closer to another centroid point than be-
fore the change. Thus these samples will then belong to
the cluster of the other centroid point.

This approach is very sensitive to outliers, because it does
not identify them. As the centroid point is determined by
the location of the middle (or average) of the samples, the
outliers influence where the centroid point is [8].

The time complexity of the algorithm is:

O(nkd)

where n is the number of samples, k the number of clus-
ters, and d the time it takes to compute the distance be-
tween two points [14].

3

3.7 Chosen algorithms
Based on the recommendations of the survey papers [14],
[8], and [10], and the availability of libraries for the al-
gorithms, DBSCAN and OPTICS were chosen. K-means
was not used as it is very sensitive to outliers as it does not
detect nor remove them. CLIQUE was designed for finding
accurate clusters in large and high dimensional databases
[1], but does not do hard clustering and does therefore
not conform with the requirements of the research. The
same is the case for CURE. DBSCAN has a high, but still
feasible run time. It can also handle large databases as
well as high dimensionalities, and detects outliers, which
is important for the given data set. OPTICS is DBSCAN’s
extension, also detects outliers, and makes an ordering of
the data set from which the data could possibly be clus-
tered better than with DBSCAN. Therefore this algorithm
was also chosen. Other algorithms that were considered
as they were recommended by most survey papers were
PROCLUS, MAFIA, and ENCLUS. However, due to time
limitations they were not further considered.

4. EVALUATION METHODS
There are three types of performance metrics possible to
evaluate algorithms with:

a. Internal measures: these evaluate the structure with-
out the use of external knowledge [11]. No knowledge
of the ground truth (the reality, real groups to which
the samples belong) is necessary.

b. External measures: uses external knowledge such
as the ground truth to validate the clustering algo-
rithm.

c. Relative measures: comparing the result of a clus-
tering algorithm with results of other clustering al-
gorithms.

Using internal measures is difficult as an understanding
of the structure of the data is needed in order to evalu-
ate the cluster compactness and separation. The criterion
measure also has to be derived from the data itself [14].
Due these difficulties, the use of internal measures did not
fit within the time scope of this research. Because there
is already classified data available, the algorithms in this
research will be evaluated using external measures. Rel-
ative measures were also used as the algorithms will be
compared with each other.

The following external measures were used:

a. F-measure: this is a popular measure which is cal-
culated by precision (P) and recall (R), and of which
the ideal result is 1. The formula is as follows [17],
[14]:

F =
2PR

P +R
In order to calculate the precision and recall True
Positives (TP), True Negatives (TN), False Positives
(FP), and False Negatives (FN) are used. Precision
evaluates which percentage of the cluster is correct,
and recall validates which percentage of samples that
should be in a certain class actually is in it. They
are calculated as follows:

Precision =
TP

TP + FP
Recall =

TP

TP + FN

The disadvantage of the F-measure is that it does
not take outliers into account, and for the calculation
needs every class to have clusters assigned to it.

b. V-measure: this evaluates the algorithm using ho-
mogeneity and completeness [16]. Homogeneity means

that a cluster only contains sample members of a sin-
gle class. A data set satisfies completeness when all
samples of a class are in a single class. Increasing
one often decreases the other, as a guaranteed max-
imum homogeneity is reached when each sample is
assigned to their own cluster, whereas completeness
is maximized when all samples are assigned to a sin-
gle class. The perfect V-measure value is 1. The
V-measure is calculated as follows:

Vβ =
(1 + β) ∗ h ∗ c

(β ∗ h) + c

where h is homogeneity and c is completeness. The
calculations of h and c can be found in [16]. If β
is smaller then one, homogeneity is weighted more
strongly, if it is greater then one then completeness is
weighted more strongly. For this research, the value
of β was one.

The V-measure is used next to the F-measure because
of several reasons. The first reason is that, before the
F-measure is executed, a post-processing step in which
each cluster is assigned to a class has to be done. This
means that the measure also calculates the goodness of
the cluster-class matching, and therefore an identical post-
processing algorithm has to be used for each test. Sec-
ondly, the F-measure has a ”problem of matching”. In
calculating the similarity between a clustering result and
the ground truth, the F-measure only considers the con-
tributions from those clusters that are matched to a tar-
get class. This is a problem, as two significantly different
clustering outcomes can result in identical scores [7]. The
F-measure does also not take into account outliers. Fur-
thermore, the V-measure evaluates the structure of the
clusters, whereas the F-measure evaluates the correctness
of the sample assignment (in other words, which samples
are in the correct cluster).

To compare the algorithms with each other, the following
the relative measurements were used:

a. For each class, what is the percentage of samples that
is wrongfully clustered in another class (the percent-
age of False Negatives (FN%))?

FN% =
FN

total samples of class

b. Per class, what is the percentage of samples that is
wrongly identified as outlier compared to:

(a) The total amount of identified outliers (Outlier
Percentage of Class from Total amount of Out-
lier (OPCTO))?

OPCTO =
identified outliers of class

total amount of identified outliers

(b) To the class itself?

Outlier% =
identified outliers of class

total samples of class

4.1 Parameter selection
To select the values of MinPts that would be used for test-
ing, the number of samples of each class were measured
(Table 1). Since the results should also include the small-
est cluster, the four lowest values were chosen (21, 31, 48,
and 67). In addition, two values below 21 - 10 and 15 -
were chosen to asses if this would benefit the algorithm in
identifying the smaller clusters.

4

In order to determine values for the Eps parameter, the
distances between the centres (the average of all the sam-
ples of a class) of the classes were calculated. This was
done using the L2 matrix, of which the results are shown
in Appendix A. The L2 matrix, also called the Euclidean
matrix, calculates the straight-line distance between two
points (in this case the centres). The calculated distances
were then processed into a histogram (Figure 2).

Most distances were within the range of 4,690. The algo-
rithm should be able to identify all clusters, and therefore
the distances chosen were near and including the smallest
distance calculated. Based on the histogram and the dis-
tribution of the distances, the following values for Eps were
chosen: 15, 25, 50, 200, 1190, and 1400. Again, a value
smaller than the minimum distance was chosen to mea-
sure if this would be beneficial in identifying the smaller
clusters.

Because both algorithms require the same parameters, both
were tested with the same parameter values.

4.2 Identifying cluster classes
Before being able to evaluate the results of the algorithms,
for each resulting cluster the class - or ground trurth clus-
ter - it belonged to had to be identified. In order to do so,
the absolute number of samples per class was evaluated for
each resulting cluster. For instance, ”walking-naturally”
has 70 samples and ”running-rider” has 10 samples in the
cluster. The class with the highest number of samples was
chosen as the class of the resulting cluster, in the example
this would be ”walking-naturally”.

5. EVALUATION RESULTS
5.1 V-measure
For DBSCAN, the highest score achieved was 0.512 (Ap-
pendix C.1). This was done with an Eps value of 25 and
an MinPts value of 15. In general, DBSCAN achieved
higher scores with combinations of low Eps values (be-
low 200). OPTICS’ highest value was 0.304 (Appendix
C.2). Interestingly, its’ highest values were with parame-
ters with which DBSCAN reached its’ lowest V-measure
values, namely with a high Eps value and low MinPts
value. In other words, for DBSCAN the V-measure in-
creased the lower the Eps value and the higher the MinPts
value, whereas with OPTICS the V-measure then decreased.

Appendices C.3 and C.4 offer further insight into the cal-
culation of the V-measure. Next to the V-measure, homo-
geneity and completeness are also displayed in the graph.
As for both graphs completeness consistently has a higher
value than homogeneity, it is clear that both algorithms
had a tendency towards clustering according to complete-
ness. This means that the algorithms were more prone
to cluster all samples into a single cluster, which Table
2 confirms. The table shows how many clusters were as-
signed to each class, excluding the classes that did not get
any clusters assigned to them (as the number of clusters
assigned is zero for these classes). Table 2 confirms the
tendency towards completeness as, from the 14 classes,
only two classes for DBSCAN and five classes for OP-
TICS had clusters assigned to them. DBSCAN also had
a higher tendency to cluster according to completeness.
This higher value for completeness is one of the reasons
why the V-measure of DBSCAN has a higher value. The
higher V-measure can also be explained by the fact that
DBSCAN generated substantially less clusters than OP-
TICS (Table 2), making the results correspond more to
the ground truth. Another explanation of the V-measure

values can be given when looked at the percentage of sam-
ples that are correctly clustered (Appendix D). This was
done by adding up the percentages of outliers and False
Negatives, and subtracting this number from 100 (as the
total of each class is 100 percent). All classes that have
clusters assigned to them were above 85 percent correctly
clustered for DBSCAN, whereas for OPTICS the maxi-
mum was 62 percent. Finally, the V-measure can be ex-
plained when looked at the number of outliers, which will
be discussed later (in Section 5.4). To conclude, with a
V-measure value of 0.208 higher than OPTICS, DBSCAN
clustered more correctly according to the V-measure.

Class DBSCAN OPTICS
Trotting-rider 87 1022
Walking-rider 1 287
Running-rider 0 139

Grazing 0 57
Standing 0 25

Table 2. Number of clusters assigned to each class

For further discussion of the results, only the results of
generated by the parameter values with the highest V-
measure shall be discussed as these were the best results.
For OPTICS, these are two parameter combinations (Eps
= 1190 and Eps 1400 both combined with MinPts = 15).
However, the results measured where identical and there-
fore only the results with parameters Eps = 1400 and
MinPts = 15 will be discussed.

5.2 F-measure
In order to use the F-measure, there always has to be a
value higher than zero for True Positives, False Positives,
and False Negatives (otherwise either the precision or re-
call formula will have a division by zero). However, in
every result of both algorithms, there were classes with
no True Positives and no False Negatives (all samples had
been identified as outliers or classes had no clusters as-
signed to them as is clear from Table 2). Therefore, the
resulting F-measures were not reliable and thus not used
to evaluate the algorithms with.

5.3 Percentage of False Negatives
In this area, OPTICS outperformed DBSCAN by a large
margin. The average percentage of False Negatives equaled
21.25 percent for OPTICS, whereas for DBSCAN it was
63.71 percent (Appendix D). When looking at the per-
centages of False Negatives per class, OPTICS had low
percentages for all classes where DBSCAN had a percent-
age above 99. All classes that had this high percentage for
DBSCAN, are dense. They had a standard deviation far
lower than the average, as well as their minimum and max-
imum distance between two samples being significantly be-
low the average (Appendix B). DBSCAN, in other words,
was not able to correctly identify dense classes. All classes
that did have clusters assigned to them had low percent-
ages of False Negatives (for both algorithms). The limited
number of classes that had clusters assigned to them also
explains the high(er) percentages of those classes that had
no clusters assigned to them. A reason that larger classes
such as ”walking-natural” (with 3,609 samples) had a high
percentage of outliers for DBSCAN, can be that most of
those samples have been assigned to the ”walking-rider”
class. The distance between these two classes is also far be-
low the average (Appendix A). In conclusion, OPTICS has
less False Negatives than DBSCAN, which is supported by
the distribution of clusters over the classes (Table 2).

5

Figure 2. Distance between classes calculated with the L2 matrix

5.4 Outlier percentages
5.4.1 Percentages per class

Where a class had a high or low percentage of False Neg-
atives, it had the opposite value for the percentage of out-
liers (Appendix F), making the two percentages together
100 percent. The only exceptions where the classes that
did have clustered assigned to them. As the rest of the
classes did not have any clusters assigned to them, their
samples were either False Negatives or outliers. This re-
sulted in outlier percentages higher than 30 for every class
with the OPTICS algorithm. DBSCAN had better per-
centages, at highest reaching 82 percent. Since DBSCAN
had high percentages of False Negatives, generally the out-
lier percentages were low (below 15 percent).

When comparing the outlier percentages with the percent-
age of False Negatives, it can be further explained why DB-
SCAN had a high percentage of False Negatives for dense
classes. The algorithm did cluster the samples, but in the
wrong class as only two classes have clusters assigned to
them. OPTICS, on the other hand, did not recognise the
dense classes at all, and identified all their samples as out-
liers. Furthermore, where DBSCAN had low percentages
of both False Negatives and outliers for the classes that
do have clusters assigned to them, this is not the case for
OPTICS. In OPTICS the class ”walking-rider”, for exam-
ple, has 287 clusters assigned to it, but still an outlier
percentage of 86 percent.

Given this information and with an average of 23 percent
outliers per class, DBSCAN is better at identifying outliers
then OPTICS, which had an average of 69 percent.

5.4.2 OPCTO
For both algorithms, the larger classes made up most out-
liers (Appendix G). This is due to the fact that these
classes have more samples. So even though the percent-
age of identified outliers may be lower than with another,
smaller, class, the number of samples can still be higher.
For example for OPTICS, ”running-rider” has an outlier
percentage of 30 and ”eating”a percentage of 95. From the
total amount of outliers, ”running-rider”takes 1.76 percent

and ”eating” 0.07. This is due to the fact that ”running
rider” has significantly more samples than ”eating”. How-
ever, based on these results, it can be concluded that both
algorithms still cluster many samples of classes that do
have clusters assigned to them as outlier.

In this area, both algorithms performed equally, and both
had the highest percentages of outliers with the classes
that had the biggest number of samples.

6. DISCUSSION
The fact that every class had outliers as well as a high
amount of clusters identified with both algorithms, can
be due to the data being gathered from 16 horses. These
horses may have different walking, running, and trotting
patterns to mention a few examples. Therefore, it is pos-
sible that each horse requires their own classes as their
patterns for the same behaviour may differ significantly.
This would mean that instead of 14 there would be 224
(14 times 16) classes. Another cause that could have had
influenced the number of outliers can be that the catego-
rization - which is done by persons - missed classes that the
algorithms did identify. Since the ground truth has been
determined by a person, human error could also have in-
creased the number False Negatives as well as the number
of outliers. Finally, the shape of the classes can be a cause
for the algorithms to be inaccurate. For example, if a small
class has a large distance to other classes, the algorithm
could identify its’ samples more easily as outliers. The
distances within the cluster itself could also be a cause for
identification as outlier or assignment to or with a differ-
ent class. Moreover, samples of a class could have been in
the same area as another class. An example of this would
be with ”walking-rider” and ”walking-naturally”.

A reason for the high number of False Negatives, can be
the manner in which the clusters were assigned to the
classes. The classes were assigned based on which class
had the highest amount of samples in the cluster. This
could have resulted in a cluster containing all samples of a
class, and still be classified differently due to another class

6

having a higher number of samples in the cluster. This ap-
proach was still chosen, however, as the algorithm should
be hard-clustering, in other words a sample can only be-
long to one cluster. Furthermore, the algorithms cluster
based on similarity. Therefore, it is likely that the centre
of the resulting cluster is in or near the class with the high-
est absolute number of samples. A possibility for future
research, however, would be not to use hard clustering. In
such a case, a sample can belong to multiple clusters or
can have different percentages of similarity for each class,
adding up to 100 percent total per sample. Which of these
two approaches is chosen depends on the algorithm.

A possible way to improve the performance of the algo-
rithms of this research, would be reducing the number of
dimensionalities. With high dimensional databases there
is a ”curse of dimensionality”, which means that as the
dimensionality increases, the distances between samples
become more similar. This makes it harder to cluster the
database with distance measures [14]. Therefore, dimen-
sionality reduction could improve the clustering of the al-
gorithm as distances are less similar. However, valuable
information could be lost when decreasing the number of
dimensions, making the clustering inaccurate. Therefore,
the dimensions that will be removed (or used) have to be
selected carefully.

It was also clear from the V-measure, that OPTICS started
to perform better with a higher value for the Eps param-
eter. Therefore, it can be explored how well OPTICS
performs with higher Eps values. DBSCAN, performed
best with the combination of Eps = 25 and MinPts =
15, and thus experiments with more similar values can be
performed to improve the performance. In addition, other
algorithms could be tested. This research only analyzed
the performance of two algorithms due to time constraints.

7. CONCLUSION
This aim of this research was to determine a clustering
algorithm that can correctly identify clusters while simul-
taneously determining outliers. The data set was chal-
lenging since it was biased and contained small groups of
non-outliers. DBSCAN has produced the best results as it
had a smaller number of outliers and a higher V-measure
value. However, both algorithms did not manage to iden-
tify the correct number of classes nor all the classes them-
selves (the ground truth). OPTICS shows more potential
with higher Eps values then used in this research, whereas
with DBSCAN there should be experiments with different
small parameter values. Both of the algorithms produced
high numbers of outliers or had large numbers of False
Negatives. Mainly small classes and similar classes (such
as ”walking-naturally” and ”walking-rider”) were sensitive
to being clustered incorrectly. Neither of the algorithms
showed a biased towards a class in identifying outliers.

The results of this research show that clustering with out-
liers in a practical data set remains challenging. DBSCAN
performed better in this research, however OPTICS shows
potential with higher Eps values. Better results for both
algorithms can be explored by choosing different values
for the parameters as suggested above, and different algo-
rithms can also be tested as this research only analysed
two clustering algorithms.

8. REFERENCES
[1] R. Agrawal, J. Gehrke, D. Gunopulos, and

P. Raghavan. Automatic Subspace Clustering of
High Dimensional Data for Data Mining
Applications. In Proceedings of the 1998 ACM

SIGMOD International Conference on Management
of Data, SIGMOD ’98, pages 94–105, New York,
NY, USA, 1998. ACM. event-place: Seattle,
Washington, USA.

[2] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and
J. Sander. OPTICS: Ordering Points to Identify the
Clustering Structure. In Proceedings of the 1999
ACM SIGMOD International Conference on
Management of Data, SIGMOD ’99, pages 49–60,
New York, NY, USA, 1999. ACM. event-place:
Philadelphia, Pennsylvania, USA.

[3] E. Bigdeli, M. Mohammadi, B. Raahemi, and
S. Matwin. A fast and noise resilient cluster-based
anomaly detection. Pattern Analysis and
Applications, 20(1):183–199, Feb. 2017.

[4] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern
classification. John Wiley & Sons, Inc., Canada, 2
edition, 2001.

[5] M. Ester, H.-P. Kriegel, X. Xu, and J. Sander. A
Density-Based Algorithm for Discovering Clusters in
Large Spatial Databases with Noise. Vol. 96:6, 1996.

[6] S. Guha, R. Rastogi, and K. Shim. Cure: an efficient
clustering algorithm for large databases. Information
Systems, 26(1):35–58, Mar. 2001.

[7] G. Hripcsak and A. S. Rothschild. Agreement, the
F-Measure, and Reliability in Information Retrieval.
Journal of the American Medical Informatics
Association, 12(3):296–298, May 2005.

[8] A. K. Jain, M. N. Murty, and P. J. Flynn. Data
Clustering: A Review. ACM Comput. Surv.,
31(3):264–323, Sept. 1999.

[9] J. W. Kamminga. Dataset: IMU Movement Data of
Horses. June 2019.

[10] H.-P. Kriegel, P. KrÃűger, and A. Zimek. Clustering
High-dimensional Data: A Survey on Subspace
Clustering, Pattern-based Clustering, and
Correlation Clustering. ACM Trans. Knowl. Discov.
Data, 3(1):1:1–1:58, Mar. 2009.

[11] Y. Liu, Z. Li, H. Xiong, X. Gao, and J. Wu.
Understanding of Internal Clustering Validation
Measures. In 2010 IEEE International Conference
on Data Mining, pages 911–916, Dec. 2010.

[12] M. Mittal, L. M. Goyal, D. J. Hemanth, and J. K.
Sethi. Clustering approaches for high-dimensional
databases: A review. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery,
9(3):e1300, 2019.

[13] A. Novikov. PyClustering: Data Mining Library.
Journal of Open Source Software, 4(36):1230, Apr.
2019.

[14] D. Pandove, S. Goel, and R. Rani. Systematic
Review of Clustering High-Dimensional and Large
Datasets. ACM Trans. Knowl. Discov. Data,
12(2):16:1–16:68, Jan. 2018.

[15] F. Pedregosa, G. Varoquaux, A. Gramfort,
V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay.
Scikit-learn: Machine Learning in Python. Journal
of Machine Learning Research, 12:2825–2830, 2011.

[16] A. Rosenberg and J. Hirschberg. V-Measure: A
Conditional Entropy-Based External Cluster
Evaluation Measure. In Proceedings of the 2007
Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural
Language Learning, pages 410–420, Prague, June

7

2007.

[17] Y. Sasaki. The truth of the F-measure. page 5, Oct.
2007.

[18] E. Schubert, J. Sander, M. Ester, H.-P. Kriegel, and
Xiaowei Xu. DBSCAN Revisited, Revisited: Why
and How You Should (Still) Use DBSCAN. ACM
Transactions on Database Systems, 42(3):1–21, July
2017.

[19] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH:
An Efficient Data Clustering Method for Very Large
Databases. In Proceedings of the 1996 ACM
SIGMOD International Conference on Management
of Data, SIGMOD ’96, pages 103–114, New York,
NY, USA, 1996. ACM. event-place: Montreal,
Quebec, Canada.

[20] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH:
A New Data Clustering Algorithm and Its
Applications. Data Mining and Knowledge
Discovery, 1(2):141–182, June 1997.

8

APPENDIX

A. L2 Matrix

B. Density of clusters

 minimum maximum mean std var

standing 74.70 271.82 77.10 38.31 1,467.32

trotting-rider 6,354.51 24,418.56 1,496.29 3,470.75 12046087.25

walking-natural 330.22 1,525.94 145.85 1,916.93 3,674,601.80

walking-rider 457.00 2,179.98 171.05 524.20 274,788.94

running-rider 16,347.19 62,875.82 4,328.59 8,791.57 77,291,783.04

grazing 97.39 371.75 75.52 73.68 5,428.14

head-shake 26,493.58 131,312.54 4,021.84 19,711.47 38,8542,123.27

scratch-biting 231.41 1,451.26 135.00 819.43 671,468.11

running-natural 26,970.18 96,710.51 5,279.30 12,732.22 162,109,454.73

trotting-natural 6,554.40 34,461.11 1,863.31 5,373.33 28,872,635.43

eating 53.86 277.99 77.85 131.17 17,206.36

rolling 2,749.46 17,158.07 611.09 2,968.86 8,814,108.22

shaking 34,837.91 551,088.55 11,240.24 83,025.91 6,893,302,162.38

fighting 3,499.30 42,379.71 1,168.39 7,407.31 54,868,184.14

Average 8,932.22 69,034.54 2,192.24 10,498.94 545,035,107.08

C. V-measure

1. DBSCAN

Eps

MinPts

 10 15 21 31 48 67

15 0.505 0.487 0.466 0.469 0.457 0.437

25 0.179 0.512 0.503 0.484 0.48 0.477

50 0.138 0.142 0.16 0.174 0.502 0.482

200 0.064 0.077 0.106 0.105 0.126 0.134

1190 0.008 0.01 0.015 0.022 0.035 0.047

1400 0.007 0.01 0.01 0.019 0.028 0.043

2. OPTICS

Eps

MinPts

 10 15 21 31 48 67

15 0.239 0.194 0.142 0.026 0.01 0.008

25 0.254 0.221 0.185 0.144 0.027 0.006

50 0.265 0.24 0.213 0.173 0.106 0.156

200 0.294 0.266 0.243 0.198 0.128 0.048

1190 0.304 0.283 0.269 0.218 0.141 0.056

1400 0.304 0.284 0.269 0.221 0.141 0.059

3. DBSCAN V-measure graph

4. OPTICS V-measure graph

D. Percentage clustered correctly

Class DBSCAN OPTICS

standing 0 7.47

trotting-rider 87.36 61.9

walking-rider 98.08 12.73

running-rider 0 43.69

grazing 0 4.33

E. False Negatives

1. DBSCAN

Eps

MinPts

 10 15 21 31 48 67

15 61.21 57.58 53.19 44.63 43.32 42.5

25 71.19 63.71 61.59 57.59 45.78 44.46

50 75.55 74.25 71.99 69.4 60.87 57.17

200 83.99 81.49 78.77 76.77 75.04 73.11

1190 89.57 89.26 88.44 87.3 85.27 82.96

1400 89.6 89.3 88.93 87.82 86.52 84.23

2. OPTICS

Eps

MinPts

 10 15 21 31 48 67

15 11.02 8.94 5.62 1.43 0.6 0.4

25 12.19 10.09 9.4 8.77 1.01 0.4

50 13.86 13.03 11.94 10.16 6.09 8.58

200 18.59 16.48 15.72 12.44 7.61 3.5

1190 21.25 19.73 20.16 15.16 9.47 3.55

1400 21.25 20.02 20.39 15.7 9.27 4.53

3. False Negatives for best V-measures

Class DBSCAN OPTICS

standing 99.64 0.4

trotting-rider 2.87 2.06

walking-natural 99.75 7.82

walking-rider 1.59 0.99

running-rider 17.82 26.26

grazing 99.82 0.32

head-shake 46.79 39.76

scratch-biting 99.65 2.45

running-natural 20.58 62.72

trotting-natural 77.64 60.42

eating 100 4.16

rolling 91.05 17.88

shaking 47.61 23.8

fighting 87.11 48.45

F. Outlier percentages per cluster

Class DBSCAN OPTICS

standing 0.36 92.13

trotting-rider 9.77 36.04

walking-natural 0.25 92.57

walking-rider 0.33 86.28

running-rider 82.28 30.05

grazing 0.18 95.35

head-shake 53.15 59.94

scratch-biting 0.35 97.54

running-natural 79.41 37.25

trotting-natural 22.34 39.36

eating 0 95.83

rolling 8.96 82.09

shaking 52.38 76.19

fighting 12.9 51.61

Average 23.05 69.45

G. OPCTO

Class DBSCAN OPTICS

standing 0.3 7.25

trotting-rider 39.35 13.75

walking-natural 0.14 4.96

walking-rider 1.82 45.41

running-rider 50.77 1.76

grazing 0.52 25.59

head-shake 5.16 0.55

scratch-biting 0.02 0.41

running-natural 1.27 0.06

trotting-natural 0.33 0.05

eating 0 0.07

rolling 0.09 0.08

shaking 0.17 0.02

fighting 0.06 0.02

