

Contents

I Context and Background 6

1 Introduction 7
1.1 Problem . 7
1.2 Introduction to honeypots . 8

1.2.1 What is a honeypot? . 8
1.2.2 Functionalities . 8
1.2.3 Types . 9

1.3 Contribution of the thesis . 10

2 Company Case Study 11
2.1 Cybertrap . 11
2.2 IOT Decoy . 13
2.3 Initial goals . 14
2.4 Role and Responsibilities . 15

II My Contribution 16

3 Solution Description 17
3.1 Project Structure . 17

3.1.1 Profiler . 18
3.1.2 The Profile . 19
3.1.3 The Server . 20

3.2 Scenarios for storing service data . 22
3.2.1 Request-response scenario . 22
3.2.2 Specific sequence of requests and responses . 23

3.3 Analyzed services . 24
3.3.1 Multi-Service data . 24
3.3.2 IPP . 26
3.3.3 HTTP . 28
3.3.4 Telnet . 33
3.3.5 RTMP . 37

3.4 Summary of the services . 41

4 Evaluation 44
4.1 Experiments . 44

4.1.1 Simulating normal usage of the service . 44
4.1.2 Profiling the real device(ground truth) and the generated decoy 45
4.1.3 Compare the results of different tools on the real device and several variations

of the decoy. 45
4.1.4 Tests for specific problematic attacks for a given service 46

4.2 Devices . 46
4.2.1 Local Devices . 46
4.2.2 Other devices . 47

2

4.3 Expectations . 47
4.4 Results . 48

4.4.1 IPP . 48
4.4.2 HTTP . 52
4.4.3 Telnet . 56
4.4.4 RTMP . 59

4.5 Result analysis . 61
4.6 Competitors . 62

4.6.1 Fingerprinting . 62
4.6.2 Honeypot generation . 63

5 Conclusion and future work 65
5.1 Contribution . 65
5.2 Future work . 66

3

Extended abstract

In the next year(2020) it is estimated that there will be more than 20 billions IOT devices[1]. Some of the areas
they can be found are: home automation, industrial sector, automated vehicles and much more. The diversity
of functionalities they posses facilitate many tedious daily tasks, or improve significantly our productivity. The
easy access and control over these ”things” change the way we communicate with other people and the world
around us. However, this expansion of connectivity hides many new risks that have not been observed before.
Due to the severe competition between IOT manufactures, many of them decide that they will have success
when they reduce the price of their products. To do so, they reduce the quality of the hardware components
they use and skip important software development practises just to reach the market as soon as possible. Hence,
their products become insecure and potential victims to cyber criminals.

From decades cybersecurity experts are trying to protect the digital world from every new threat that the
hackers create. That constant battle between ”good” and ”evil” has significantly changed the security features
involved in the technologies used today. To successfully react to new challenges, the security experts need to
understand what are the intentions of an attackers and how they try to penetrate given product. One approach
that can answer these questions without risking the security of a real product is using honeypots. A honeypot
is a virtual clone of a given device or a service that aims to trick the attacker to believe that have hacked the
targeted device. Then the honeypot is able to determine what actions are being performed from the hacker
and possible to collect any files that the attacker has uploaded. But in order to successfully fool the hacker,
the honeypot should work as close as possible as the original device. Such similarity requires knowledge of the
technology the device is using and the services it provides. In this document we will refer to this knowledge as
the profile of the device. However, there are thousands of types of IOT devices and this makes it impossible to
have a profile for every one of them.

In this document I will present the results of a research I have conducted over how IOT devices can be
profiled. I will use my findings to create a first prototype of an IOT Profiler project. I will use the obtained
profile to configure another project called the server. The server then will be able to generate a virtual copy
of the device. Furthermore, I will use different approaches and penetration testing tools to compare the results
from the original IOT device and the created honeypot. Finally, I will explain how such profile should be
extended in the future to optimize its performance and results.

Acknowledgements

I would like to thank Simon Dimitriadis, the Project manager of the IOT Decoy project, who was
my mentor and assisted me during my internship by following my progress and guiding me with the
Cybertrap vision of the project characteristics.

I would also like to express my gratitude to all Cybertrap personnel who were involved in the
project to any extend. In particular those are: the CTO of Cybertrap - Avi Kravitz, the head of
the Research and Development department - Stefan Schwandter and the lead developer of the Decoy
implementation - Patrick Pacher.

I would also like to thank Fabio Massacci, professor at the di Ingegneria e Scienza dell’Informazione
(DISI)” of the University of Trento and member of the DISI Security Research Group, who supervised
me during my internship and the preparation of my master thesis.

Part I

Context and Background

6

Chapter 1

Introduction

1.1 Problem

The uprising number of devices connected to Internet create new possibilities, but also create new
threats. Nowadays every gadget could be made ”smart”, by giving the user the possibility to control it
and adjust it to the needs and desires they have. The modern term for these things that are connected
to Internet is IOT(Internet of Things). This global description includes devices from every major
field. These devices aim to increase our comfort or productivity. With a quick glance over a home
equipped with IOT devices we can see a situation which just only two decades ago could only be part
of a science fiction movie. Inside such home we can see variety of smart devices like: sensors, relays,
cameras, lamps, fridges and much more. Even the couch we were used to relax after a long day at
work could be now connected to internet and controlled to adjust our needs.

Like any other system that has not be designed properly, these devices give the possibilities to
be used in situations outside of the scope their manufacturer desired. The immerse number of IOT
devices and the poor or non security decisions taken into account make this domain one of the top
goals for black hat hackers. The attackers easily obtain access to such vulnerable devices. Then, the
devices can be used for different tasks which will gain some benefit for the attacker.

Some of the most recent notorious and global attacks involve usage of IOT devices. One example is
from 2016 where more than 600k IOT devices were infected and become the base of one of the biggest
botnets ever registered[2]. The name of that botnet is Mirai and it was used for massive distributed
denial of service attacks(DDOS) all around the world. The source code of Mirai was later on published
as open source. It lead to significant increase on the number of people which try to use it. The com-
plexity of the attack also drastically increased, which made it possible for new type of devices to be
controlled. The victims of the attacks ranged from game servers, telecoms, and anti-DDoS providers,
to political websites and even other Mirai servers.

Second example of an IOT based attack is focused on another hot topic in the digital world recently
- blockchains and crypto currencies. Alongside with PCs and mobile devices, IOT are a major player
in crypto mining[3]. Crypto mining is a process where a user participates in cryptocurrency calcula-
tion operations where they are rewarded with small amount based on the level of their participation.
Usually crypto mining requires very powerful hardware capable of calculating heavy tasks for a short
time. Hence, IOT devices are not a logical source for such operations based on their limited resources.
However, the huge number of such devices and the easy access some of them provide for the attacker,
make them intriguing goal for such attacks. Being part of a cryptomining network increases the power
consumption of the IOT device and leads to direct financial lost for their owners.

Mirai and crypto mining are just two examples of the increasing number of attack vectors which
involve IOT products. To reduce or even eliminate potential attacks against the IOT domain, new
security approaches should be involved. Unfortunately, the biggest factors that make IOT devices so

7

vulnerable would hardly be improved soon. These factors are the lack of security precautions that
have been taken from the creator of the device and the poor understanding of the user how they
should protect themselves. There are also many users who want to protect their systems from possible
breaches, but they do not know if the devices they have are vulnerable and how to protect them. To
increase our knowledge we aim at obtaining direct information from the attacker how they approach
given device, what they do to attack it and how they use an infected IOT device.

1.2 Introduction to honeypots

1.2.1 What is a honeypot?

Exploitation of newly discovered vulnerabilities is often unexpected and comes as a surprise for the
system administrators of a given system. Freely available databases with possible exploits and mul-
tiple tools for massive global scanning for vulnerabilities enable adversaries to compromise computer
systems easily when the system is prone to vulnerabilities or shortly after new vulnerabilities become
known.

One way to get early warnings of potential attacks over a given system is to install and monitor
another computer program component on the same network that we expect to be broken into. Every
attempt to contact these components via the network is suspect. We call such a system a honeypot. If
a honeypot is compromised, we study the vulnerability that was used to compromise it. A honeypot
may run any operating system and any number of services. The configured services determine the
vectors an adversary may choose to compromise the system.

There are different types and varieties of honeypots based on their physical characteristics and level
of simulation. A physical honeypot is a real machine with its own IP address. A virtual honeypot is a
simulated machine with modeled behavior, part of which is the ability to respond to network traffic.
Multiple virtual honeypots can be simulated on a single system.

Virtual honeypots are attractive for system administrators, because they require fewer computer
systems, which reduces maintenance costs. Using virtual honeypots, it is possible to populate a net-
work with hosts running numerous operating systems.

The concept of a honeypot begins in the early 90s of the 20th century and is widely used from
many security companies to detect and deflect an unauthorized use of a given system[4]. An example
of a recent usage of a honeypot technology is from 2017 when the Dutch police used a honeypot to
detect and eventually shut down an online darknet market called Hansa.

An abstract and simplified model of how a honeypot is integrated in a production system and
what is the main purpose of it is shown on Fig.1.1

1.2.2 Functionalities

The main functionalities that one honeypot can implement are:

Data Control: Contain the attack activity and ensure that the compromised honeypots do not fur-
ther harm other systems. Out bound control without hackers detecting control activities.

Data Capture: Capture all activity within the honeypot and the information that enters and leaves
the Honehoneypotynet, without hackers knowing they are being watched.

Data Collection: Captured data is to be securely forwarded to a centralized data collection point
for analysis and archiving.

Attacker Luring: Generating interest of attacker to attack the honeypot

8

Figure 1.1: Honeypot Integration

Static web server deployment, making it vulnerable

Dynamic IRC, Chat servers, Hackers forums

1.2.3 Types

Based on the complexity and the design of their structure, honeypots can be divided into four cate-
gories:

pure honeypots Pure honeypots are fully functional production systems. The activities of the at-
tacker are monitored and transmitted over the network. They do not require additional software
to be installed. Hence, the level of control over them is limited and not suitable in many sce-
narios.

high-interaction honeypots High-interaction honeypots imitate the activities of a production sys-
tems. Usually they mimic variety of services and, therefore, an attacker may waste a lot of their
time. It is possible to host multiple honeypots on one physical machine. Therefore, when a
honeypot is breached, it can be quickly restored. In general, high-interaction honeypots provide
more security by being difficult to detect, but they are expensive to maintain.

low-interaction honeypots Low-interaction honeypots simulate only the services frequently re-
quested by attackers. They have a short response time, and less code is required. That limited
complexity reduces level of security.

medium-interaction honeypots As Georg Wicherski describes in his paper about Medium-Interaction
Honeypots[5], they try to combine the benefits of low and high-interaction approaches while re-
moving their shortcomings. The key feature of Medium-interaction honeypots is application
layer virtualization. These kind of honeypots do not aim at fully simulating a fully operational
system environment, nor do they implement all details of an application protocol. All, that these
kind of honeypots do is to provide sufficient responses that known exploits await on certain ports
that will trick an attacker in interacting with the honeypot.

Deciding what type of honeypot would be created is critical for the proper implementation of it.
This decision is based on the level of security one wants to support. But there is one more component
that can determine the type of honeypot one should implement. This is the knowledge they have about
the system that should be mimicked. Normally we consider that the creator of the honeypot have full
access and information of the system that is being simulated. However, there are situations where this
data is not available. Such scenario is when we want to generate the honeypot dynamically, without
interacting with the targeted system in advance. Hence, in order to determine how that system works,

9

the first step is to generate a fingerprinting profile of that device.

Looking at the IOT domain again and assuming we have full access to a given device, it would
be easier to create a honeypot for it, compared to some more complicated structures. However, the
diversity of functionalities, services and hardware make it impractical to create a honeypot for every
device that we want to observe. That is why the approach I decided to focus on in this document is
the dynamic generation of an IOT cloned device.

1.3 Contribution of the thesis

In this thesis, I research, propose and implement first prototype of a Medium interaction honeypot
system for IOT devices. The created solution is independent from any device specific hardware. It
works with application level simulation which helps in adopting the solution for any IOT device. In the
first prototype of the project, the main focus is to determine the correct approach that would give fast
and easily extendable solution for different types of integrated services. The project extracts a device
fingerprint and creates a virtualisation system that emulates the information from that fingerprint.
Several types of services were researched, analyzed and integrated in the project, the results of which
helped me to determine the required steps for a more general solution. The created honeypot is tested
and evaluated with multiple techniques that prove the potential of such solution and the advantages
of the project over other systems that try to clone an IOT device.

10

Chapter 2

Company Case Study

2.1 Cybertrap

My research and implementation were performed during my internship in Cybertrap. CyberTrap is a
cybersecurity company located in Vienna, Austria. The motto of the company is to ”always be ahead
of the attacker to learn and improve.” Cybertrap achieves that by analyzing their client’s product, puts
specific objects (called lures) on selected interesting places for an attacker and redirects the attacker
to a decoy when they reach one of the lures. After that, Cybertrap follows every move of the hacker
inside that decoy, by obtaining system and program logs. Cybertrap immediately informs the client
when there is a breach on their system. Then they are able to determine any security flows in the
system and analyze the most common attack vectors that have been used.

Many different honeypots have been created and used. What Cybertrap offers is not just a hon-
eypot, but so called Deception platform. A Deception platform contains honeypots as essential com-
ponents but go beyond that: they provide the automatic roll out and decommissioning of decoys and
services that run on them. They allow for the automatic rollout of lures to the endpoints, which lead
attackers to the decoys. Furthermore, they gather, analyze and visualize the collected data, enabling
the forensic investigation of breaches and the support of counter actions.

Cybertrap has complex infrastructure, required to provide many valuable features to the cus-
tomers. Some of the most important components are variety of possible lures to be installed, software
to monitor and response arising attack actions, live dashboard for easy control of the system and much
more. All of them are based on the idea that the Decoy will be able to fool the attacker and collect
the information of their actions. A simple representation of the Cybertrap platform is shown on Fig.2.1

On Fig.2.1 we see that in the Production Network are situated specific lures for every component.
When the attacker communicates with any of these components, the lure would be activated and any
further interaction would be redirected to the monitored decoys. The main assumption of the decoys is

Figure 2.1: Cybertrap platform structure

11

that they generate similar behaviour which will keep the interest of the attacker and they will believe
that they are interacting with the original product. For that purpose all of the monitored decoys need
to be adjusted to the original product characteristics. The decoy provide the environment where all of
the actions of the attacker are observed, monitored and analyzed in a safe isolated system that would
keep all of the malicious attacks away from the company product. The decoys are connected to the
dashboard server where they report any action that has been recorded. This data is analyzed and
represented in a user-friendly way inside the dashboard website. The user is then able to observe the
performed attacks on their system in a systematic way and to respond properly. From the dashboard,
the user is able to set, create and modify all the lures and decoys that are integrated in their system in
a way to get new and improved insights on the attacks. With all collected information, the user would
now know what security problems are available on their system and how they should be mitigated.
The desired result is an improved and more secure product that will be in constant state for further
change when new attack vectors are registered.

The top features provided from Cybertrap are:

Endpoint deception CyberTrap implements the concept of endpoint deception. Lures that are
placed on the endpoints within the production infrastructure direct the attacker to the decoys,
where their actions are automatically monitored.

Web application deception CyberTrap can also be used to protect productive web applications.
Lures are placed within the web applications that direct attackers to a deceptive web application
hosted on a decoy to gather vital threat intelligence.

Tailor-made deception The deception environment appears to be a part of the production envi-
ronment. Decoys are configured to look like production machines using deceptive services and
data. A varied set of lures is deployed throughout the production network. Since the deception
environment is tailor-made for each production environment, it is not finger printable.

Automated deception deployment The web interface allows for the rapid and dynamic creation
of new deception campaigns. Services can be configured, filled with data and rolled out to the
decoys. Lures can be generated and automatically rolled out to endpoints.

High quality threat intelligence The proprietary monitoring component is invisible to attackers
and collects detailed information about every process, thread, file, network

High-confidence alerting Suspicious activity on the decoy triggers an alarm in the web interface,
via syslog and email notifications. In addition, the TrackDown service provides alerts when
deceptive documents are opened.

Data analysis The Dashboard user interface provides a visual overview of the deception environment
enabling a quick overview as well as a detailed forensic analysis down to single system events.

Attacker infrastructure attribution The attribution algorithm of CyberTrap shows the connec-
tion between historical IP addresses and their corresponding domain names. An attribution of
a command and control server (which is usually used by remote-administration-tool malware)
reveals the infrastructure used by the attacker and can also predict from where the next attack
could potentially originate.

Integration with security infrastructure CyberTrap integrates with MISP as a proxy for your
security ecosystem and feeds SIEMs over syslog.

API All CyberTrap functionality can be accessed via a REST API. This enables the user to integrate
the full CyberTrap functionality into existing security solutions.

In order to collect the proper data, the decoy should keep track of low level system calls and pro-
cesses. To do so, the decoy should be able to communicate with and control the processes running on
the Operating system level. Hence, the implementation of any Decoy software will be specific for any

12

supported Operating system. This component would be the core of any decoy that will be created. It
will be able to save and report the actions that are happening inside that platform. In a second step,
this core solution that runs the same Operating System as the original product will be adjusted to
the clients software characteristics. This will be done by installing specific programs and modifying
important settings.

At the moment CyberTrap offers only Windows-based Decoys. Since the majority of web based
applications are using windows servers, it gives Cybertrap the chance to reach and collaborate with
the biggest group of potential clients. The goals of Cybertrap are not only to exploit this market
share, but to create solutions for new clients that are not using windows as the OS of their products.
For that reason, a new Linux-based Decoy is currently being developed. The first prototype of it has
been already created and soon it will be distributed to test users and potential clients.

2.2 IOT Decoy

Another expanding area in the modern technologies in the last decade are IOT devices. Cybertrap
wants to enter in this field. The goal of the company is to be able to create decoys for different type
of IOT devices. In that domain there is no single Operating Systems(if any) adopted from every
product. Hence supporting many types of devices would require significant investment in money and
time for every one of the devices that should be supported. Therefore, the approach used for the
already existing Windows and Linux decoy can not adopted.

The new corresponding approach should take into consideration the differences in the IOT world.
For that reason Cybertrap considered that they should change from Operation System level tracking,
to application level manipulation. The idea behind that is divided into 2 steps:

• The first is to scan an IOT device and create a fingerprinting profile of it. That profile should
include every information that can be obtained and which can be used from an attacker to
identify which is the scanned device.

• On the second step, that profile will be used from another software component to generate a
honeypot.

The idea of using a profile could not be easily adapted in a way that the full functionality of the
device would be included in that profile. Therefore, Cybertrap is interested in creating a Medium
interaction honeypot. As I have already explained in the previous section, a Medium interaction hon-
eypot works on the application layer and supports only the most important services a given product is
running. As a first step, Cybertrap was mostly interested in devices that can be used in the industrial
area. Some of the products they were focused on were printers and cameras and the corresponding
services they use for printing a document or sending a video stream.

The described approach have many open questions that needed research. Some of them are:

• How such profile should be created?

• What format it should be?

• What information it should contain?

• Which are the services that should be supported and what information about them should be
profiled?

• How the profile can be used to generate a medium interaction honeypot without knowing how
that service actually works?

• What approaches or tools can be used to validate that the generated decoy is working correctly?

13

Answering to these questions is not trivial task and requires dedicated research that can elaborate
if the goal for an IOT decoy is a feasible task and if the idea of generating a profile of that device is
the proper way to do it. The research should answer what are the advantages and disadvantages of
such approach and should compare them with other projects and solutions that have been focusing
on creating honeypot for an IOT device.

2.3 Initial goals

The main focus in the performed research is to identify a scenario how a given unknown IOT device
could be profiled. This profile should contain sufficient information so it can be the base of generating
a honeypot clone(also referred as a decoy) of that device. The profile should also consists of all the
data that can be used to identify that device(a fingerprint).

To cover to maximum extend how an IOT device works, I need to identify an approach and target
the most valuable information of it. The full behaviour of any IOT device is considered as a combina-
tion of all services it is running. The variety of services that could be supported from a device in the
IOT domain is huge and consists of thousands of possibilities. Many of them are custom protocols
of the manufacturing company whose software is kept in secret. Due to these circumstances, creating
a profiling tool that supports every possible service is extremely difficult task which at that point is
considered as not necessary.

During the initial phases of the research and the vision Cybertrap had of the desired future prod-
uct, I decided that I should focus on some specific services which are of their primary interest. For
every one of them I have to identify which information should be part of the fingerprint and identify
a scenario how I can use this fingerprinting information to create a clone copy of that service. After
looking in several services I have to develop an approach that will be easy to integrate into other
services so they can also be included in the profile. Hence, this approach should be as clear and as
general as possible.

Covering only specific services is possible approach that will be sufficient for the initial device
profile. Properly selecting these services which are of the main interest for an attacker will keep them
busy when that honeypot is generated. As stated before, any custom company service will be very
hard to be fingerprinted and supported in our profile. However, this service will also be unknown
to the attacker itself. Most of the hackers have difficulties targeting something that they are totally
unfamiliar with. I assume that when an attacker starts working on such devices they would try to
penetrate the system through the services they are most familiar with and which are prone to security
issues.

The performed research and future implementation should be synchronized with the desires, in-
frastructure and current products of the host company that would like to adopt the approach and
continue its implementation. Many characteristics of the used technologies and the vision of the
research should be systematically discussed with a company representative, so a maximum level of
awareness and usability are achieved from the results of the performed research.

The process of how new service is analyzed to identify what information should be profiled would
be based on the characteristics of that service in general, the complexity of it and the extend that the
company want to support it. A valuable insights of how the service works and which are the primary
points of interests for an attacker could be obtained by using any penetration testing tool that targets
this service. Those tools would then be one of the main components that would be used to determine
if the profile and the generated decoy are working correctly and the level of similarity to the original
device based on the results of the tool findings.

After researching several services and how they can be simulated, the focus of the research would

14

be concentrated to evaluate if the selected approach is sufficient enough for the goals of the company.
I should suggest to what extend that profile could be generalized and how easy it will be to include
new services that will be scanned, fingerprinted and simulated.

2.4 Role and Responsibilities

At the beginning of my internship at Cybertrap I was introduced with the current products of the
company and with the idea of the IOT decoy project. My role was set to perform an individual
research on the questions they needed answers so they can successfully evolve that project. My main
focus was on creating a tool that can be used for scanning a given device and generating the finger-
printing profile of it. I also had to evaluate my findings by implementing the second part of the project
that uses the profile to simulate a virtual device which is running the scanned services. During my
internship I have been guided and advised by the project manager of the project - Simon Dimitriadis
and with the lead developer for the Decoys implementation - Patrick Pacher. I was also performing
regular meetings where I was presenting my progress and findings.

In the following sections I will present the results of the performed research, the findings for
every of the analyzed services and what approach was selected to perform that service. Since one of
the requirements of Cybertrap was that the server that generates the decoy should have minimum
knowledge about the profiled service, all of the approaches that are used have general method of work.
This makes them easy for adaption to other services which work on the same principal. Based on the
main principal a given service works, I have designed several methods. This way for the majority of
services I am able to use one of the approaches to simulate that service in the decoy. The services
that have been analyzed are selected to differentiate in the way they work and primary purpose. Such
diversity helped me to reach higher coverage of approaches and easy adoption in the next steps of the
project.

15

Part II

My Contribution

16

Chapter 3

Solution Description

In this section I will present the structure of the project I have created to answer the research questions
that have been assigned. I will present details of every of the components that are developed and I
will explain why they have been designed and implemented in the selected way. Then I will present
the results of the analysis of the researched services and based on the findings there I will explain step
by step how the approach to integrate them in the profile have been performed.

3.1 Project Structure

There are three main components that are in the essence of the project. (1)A profiler is scanning
the device to generate a (2)profile, which is transmitted to a (3)server that reads the profile and runs
as a Honeypot(Decoy). This collaboration is presented on Fig. 3.1. Every one of these modules is
explained in details in the following subsections. After the decoy is generated, the user is able to
communicate with the decoy in the same way as the original device.

Figure 3.1: Project Structure Diagram

17

3.1.1 Profiler

The first software component is the profiling tool. It is the main focus on my research. The goal of
the tool is to extract every valuable information about the targeted device that could determine the
behaviour of that device and which would be used from the other main component (the server) to
create a honeypot. That honeypot should be as similar as possible as the original device.

While working on the profiler there are several sub-questions that have to be addressed. The first
one is to determine which information about an IOT device is necessary to generate such fingerprint.
Any output, banner, header, parameter, the order of these elements, the format of an important re-
quest, the response itself and so on, could be interesting for us and may be used from the profiler to
exfiltrate the fingerprint of the device.

The profiler contains several methods working together that provide the important information for
a given scanned service that would be saved in the profile. These methods are:

Information stored inside the profiler Every service that is part of the profiler has been previ-
ously researched. Based on the findings from that research I became familiar how that service
works, which information is specific for a given device and how it could be obtained as it’s fin-
gerprint. Therefore, the profiler knows which requests it should perform so it can receive that
information and how it should be extracted. Later on, based on the complexity of the service and
the coverage that is supported from the server, I collect either the specific device information,
or everything necessary to mimic the service without further knowledge.

Information obtained during the behaviour of the device. During the profiling phase, I give
the opportunity to the user to interact with their device in anyway they consider important and
which they what to be inserted in the profile. The user is able to request information that is
typical for their system. Such information could be: interesting folders, addresses and files that
are usually not part of the standard use for that service. For some cases they might enter specific
credentials required for accessing the content they would like to be part of the profile.

During this phase, the profiler is collecting every request that has been performed and the
responses that the IOT device responds with. Working as a reverse proxy, the profiler is able
to store all that valuable information without the need to take care of complication caused by
possibly involved encryption.

Information obtained dynamically from a given penetration testing tool(vulnerability scanner)
The third possible way used to collect information from an IOT device is to use third party soft-
ware(tool). The expanding attack vectors for a given service makes it very difficult to include
these requests in the profile. I assume that in most of the cases the user would not be even
familiar if their device is vulnerable to specific attacks. By using external tools I expand the
coverage of potential malicious requests that could be performed and which now will be saved
in the profile. There are two ways any external tool can be incorporated inside the profiler.

1. The first one is by starting the tool from the profiler itself. This implies that there are
a limited number of tools that are specifically selected. Their results have been analyzed
and they have been chosen as the best way to represent attacks for the scanned service.
Executing these tools can be done automatically from the profiler which guarantees that it
is familiar when the the tools execution is completed and can even analyze the final output.
Every tool however is another dependency for the project and it needs to be installed on
the host machine or bundled inside the profiler project.

2. The second way to scan the device with any third party tool is to start it during the
listening phase. Similar to the situation where the user interacts with the device, they
would be able to trigger every tool they would like to be part of the analysis. This option
creates the opportunity that the profile is not just a result of some previously configured
requests and selected tools, but it also could be extended for any new source of information.

18

The disadvantage of this method is that the tool should be manually started from the user,
which breaks the automation execution I have focused on and it also assumes that the user
is aware how this should be executed. Hence, this method could be used as an additional
feature provided to advanced users who want to extend or customize their profile.

3.1.2 The Profile

The profile is the end result of the scanning(fingerprinting) phase performed from the profiling tool.
It contains all valuable information that is necessary to generate the decoy. The profile could even
include additional data that the server is not using at a given moment, but could be used in future.

Format

Currently, the profile is a file with JSON format that is easily transferred between the two main
components in the Project(from the profiler to the server). During my research, several formats were
considered as potential way to store the fingerprinting data. The most promising of them have been
analyzed and based on the initial priorities of the research JSON was selected. The list of considered
formats that have been considered contains:

• XML

• protobuf

• JSON

The reason why JSON is selected is because it has human readable format which will be useful
for debugging purposes. Another advantage of using JSON and in particular as a combination with
Python projects, is that the conversion from a class object to a JSON file and the other way around is
automatically handled by the system. This way the need to create and update a schema of the profile
format is removed(such schema is required in the protobuf format). Hence, I can focus on other more
relevant tasks of the research about profiling and decoy creation. However, there are other aspects
which may be of big importance for the future of the project, which may require using another format
of the profile. Such aspects could be the size of the profile(a protobuf file will have significantly smaller
size) and the security of the information inside(in protobuf, the data is not human readable and the
schema is required before it can be parsed)

Profile data

The information that the profile contains depends on the services that are found during the scanning
of the device. Based on the results from the profiling, the complexity of a given service and the
importance of that service, I can structure the results in the following groups:

Service independent information. Some fingerprinting information is not part of the analyzed
services. They can represent hardware component data or information that is part of a lower
level protocol of the Internet protocol suite[6], and hence that is used from every application level
service that I am focusing on. Examples of service independent data are the fields contained in
the TCP and IP level protocols. The information of these fields can be used from an attacker
to identify the OS of the targeted device. Hence, this data is valuable for the fingerprint and
should be stored in the profile. It can be used from the server to adjust the communication
parameters used in every application level service that is being simulated.

Not supported service. Services that have not been yet analyzed are not part of the profiling phase.
No data is included in the profile about the way they work. Only a minimum support coverage
is presented. It contains only scanning for the presence of that service. As I have already state
before, nmap[7] is used to discover the ports that are open on the IOT device during the scanning
phase. All open ports are stored in the profile and simulated after that from the server. This
would be useful in situations when the attacker is performing service discovery on all ports and

19

the existence of open socket on a given port can be used to determine the device type. However,
further scanning on that port would easily reveal that it is not a properly functioning service.

In a future step of the project I plan to include additional abstract level of scanning of every
service that is not being further supported. This could help us identify if that service can be
simulated with some of the automated approaches. However, with zero knowledge of the way
that service works, it is a very complicated task that requires further research.

Automated services. For some services the typical behaviour could be easily extracted during the
scanning phase. They are of our primary interest and the majority of the approaches explained
later in this document are tackling these type of services. For them, there are limited number
of requests which determine the base functionality of how that service works. For the goals of
a medium interaction honeypot, some of the supported services are simplified by covering only
specific service versions or the most used requests that an attacker would be interested in. There
are several methods I use to store the service data in such way that it can be repeated after that
from the server without much knowledge on the analyzed service. These methods are explained
in the next subsection.

Fingerprinted services. Some services are more complex than the others and it is almost impos-
sible that they can be fully simulated without the server to have extended knowledge of how
that service works. For these services, the normal communication with the device dependants
on many factors. For example exchanged settings in previous request would drastically modify
any further communication. Other services do not have straightforward pattern of request and
responses that can be simulated easily.

For such services, the generated profile contains specifically selected data that can identify the
version of the service and some specific characteristics of it. This information can consist of
request headers, banners, versions, dependencies and so on. They have been selected by careful
analysis of the service specifications and behaviour. This data is then used from the server, to
adjust a fully functional service running on the decoy. Such fully service coverage can only be
achieved when a specific software that creates a server of the given service and is installed on
the decoy. The data of the profile would just be used to make the proper adjustment on the
software so it looks as similar as possible to the original device.

3.1.3 The Server

In the process of my current research, the server is a software component that is capable of reading
the extracted profile and it creates the matching honeypot. The most important function of the server
at this phase of the performed research project is to validate the results obtained during the scanning
phase and help us identify the proper way a decoy should be created. The server can give valuable
insights of what is actually useful to create a new virtual copy of any device from scratch. The server
gives clear view of how the communication with the profiler should be updated in order to solve every
limitation or an obstacle that is found in the process of decoy creation. However, the server is not
designed to be fully functional honeypot that is ready to be used product. The implementation of such
requires proper virtual machine that it will be working on, logging the events that occur, informing
a back-end server for these events and much more. All these features are part of a future step in the
whole IOT Decoy project. They would be implemented when there are significant insights of which
information is important and how it could be used.

The result of running the server together with the previously generated profile, is the creation of
a virtual device. It is running on the IP address that the server has been assigned with. Anyone
with access in the same network can interact with that virtual device and verify to what extend the
obtained responses are identical(or similar as possible) as the responses from the real device. This
behaviour makes it very convenient to scan the real device and the decoy with the same commands

20

or using the same third party tools and compare the responses. This comparison will give us clear
observation to what extend the decoy is successfully mimicking the IOT device. If the results are
not convincing enough, the user can create more advanced version of the profile by including more
requests inside of it. It can be done by using more tools during the profiling phase which will increase
the requests coverage from the decoy. Having more request would increase the possibility to respond
properly to other attack vectors and would make the similarity between the decoy and the device
bigger. This is possible due to the integrated approach of dynamically increasing the number of cov-
ered requests and the extendibility of the profile format that can save all desired data in a compact way.

In order to create the decoy from the profile, there are several steps that the server is performing:

1. The server reads the profile and creates a profile object from it.

2. For all the ports that are available in the Profile, the server opens a server socket, where it is
listening for incoming connections.

3. When a new connection appears, the server is transferring further analysis of the request to
a Manager class that is selected based on the port number which have been reached. Hence,
for every supported service the server contains a Manager class that will analyze that specific
service data is needed.

4. The manager that receives the request analyzes the data from the incoming request and then
selects which data it should return back(if any).

5. If there is at least one data packet that should be returned, the Manager could perform different
procedures to update the content of that response, based on parameters that are stored in the
profile for that service(or for that concrete response).

6. The updated data packets are send back to the socket where the request was received.

7. For some of the services it is important to keep track for every new request that have been
received. For them, the Manager that handles this request, is updating the status of that
service.

These steps are illustrated in Fig. 3.2

Figure 3.2: Steps for Decoy implementation

Having separate Manager class for every analyzed service is done with the purpose to individually
handle any service specifications that can be observed during the research. However, the idea of having

21

a general approach that is service independent on the server suggests having only one general Manager
that takes care of the profile analysis. Only services which are simulated with individually installed
server software should be separated. That goal is hardly possible at this initial phase of the research
due to the different way the analyzed services work. After significant insights are received from how
a service should be simulated, then a more general approach can be incorporated. For that purpose
all scenarios to save service data explained in the next section, are not strictly service dependant but
are designed with generalization perspective.

3.2 Scenarios for storing service data

3.2.1 Request-response scenario

This approach is used where there is no significant correlation between the currently performed and
the following requests. For them I assume that the response is not dependant on some previous or
future communication. This approach is used to simulate the behaviour of IPP and HTTP services.
On Fig.3.3 We can see how this approach uses different ways to obtain valuable requests and how they
are stored in the profile together with the received response.

Figure 3.3: Request-Response based approach

In order to guarantee maximum correctness of the responses I have integrated several components
that build the request-response approach. The first two components are, as the name suggests, the
performed request and the received response.

The next component is used in order for the server to properly identify the correct request from
all that are stored in the profile. I store every valuable information about the performed request. This
includes the uri address, the GET and POST data, the size of the transmitted message and etc. Some
of these fields are more valuable than others. For them, the value that is received can determine if
a given request is the same or not. Others have less importance and their values are not considered
from the server during profile analysis. For example a request can include parameters like username
and timestamp when it was performed. While the username is valuable data, the timestamp can be
ignored in the majority of the situations. To automate this process, for every request stored in the
profile, I note the importance of the parameters which it contains. Based on them, the server is capable
to properly say when the incoming request is presented in the profile. Note that this approach is only
possible when that service has been previously analyzed and the important parameters are identified.

22

Another module is providing the ability to inform the server about the necessary differences be-
tween the raw data stored in the profile and an actual valid response that should be returned. Some
examples that illustrate the necessity of such component are fields like:

date. The date when the request has been performed needs to be updated with the date that the
incoming request is registered to the decoy.

ip address. In some situations the IP address of the IOT device is send inside the raw data. This
address should be updated with the IP address of the Decoy.

request ids Some services, like IPP, has changing field for every received request that is assigned to
it. The field should be updated with the new value coming in the request send to the decoy.

To guarantee this process, I save in the profile every difference that should be updated for a given
request. By using multiple fields like contained data, regular expressions, exact location and more, I
inform the server which part of the raw data should be modified. After the server finds the location of
that data, it replaces it with the correct data also provided in the profile if possible(some differences
like the date of the new request can not be known in advance and the server should be familiar how
to proceed with them).

3.2.2 Specific sequence of requests and responses

The second approach combines the results of several following requests that are generating specific
output. These order of the request is important and can determine which response should be returned
from the server.

For most of the services which can not be supported with the request-response approach, it is
because there are more than one response for every performed request. It is also possible that there
are no responses at all. For these type of services usually there is initial phase(like handshake or
negotiation communication) that first need to be performed from the two parties, before they reach
the moment where they are exchanging the actual data that is the goal of that service emulation.
Therefore, the order that these requests are coming is of significant importance when the server tries
to profile that behaviour.

In the next section I will describe which services have been analyzed and integrated inside the
project. During their research I have observed how this type of services work and realized that the
order of received responses could vary. The main reason of this behaviour is caused of some concur-
rency between the operations inside the protocol. Unfortunately it affects the correct results when
given response is matched to a request and saved in the profile. Hence, in order to avoid this kind of
differences, I use an approach where I perform the captured requests with some delay. This eliminates
the possibility to match a received response to the wrong request that is being sent.

Based on the service specifications and the level of simulation we plan to involve, the profiler
obtains which requests determine the proper service communication. This process could either be
done when these requests are stored in the profiler, or they can be obtained dynamically by analyzing
the communication with the original device. The result of the profiling using this method is a list of
requests that are following the behaviour of the device that should be cloned, the responses that are
transferred for each of them and a way to determine if the responses are valid. The validation of every
request would help the server to follow the created correct sequence of requests and return the proper
responses if the validation is successful, or corresponding error messages when the validation fails.

Using one of the two approaches to capture the responses for a given service, I store the service
specific information inside the profile. The biggest advantage of covering given service with the
automated functionality is that the server which is reading the profile does not need to know how the
service works. This level of abstraction is achieved by strictly following simple instructions integrated

23

in the profile and using them to handle any incoming request by responding with the correct and
updated responses.

3.3 Analyzed services

3.3.1 Multi-Service data

In the current project I use a service based approach where I want to profile an IOT device behaviour by
analyzing how the presented services work. The type of services which are interesting for simulation are
those which the hacker can interact with easily. If we look at the Internet Protocol suite model, those
are the application level services. They create the last layer of the model and work with the biggest
abstraction from the device physical components. However, there are numerous other protocols and
frameworks they depend on for their proper functioning. Some of these non application level services
also contain information that could identify a specific device and hence they should be part of the
device profile.

TCP

Most of the services that are supported in the project are based on the Transmission Control Proto-
col(TCP). TCP is a reliably protocol for delivering streams of bytes which represent every file that
is being transmitted between two parties[8]. TCP divides every file that should be send into chunks,
and adds a TCP header creating a TCP segment. The TCP header has predefined structure including
different fields that are required for the proper functioning of the protocol. The structure of a TCP
header is presented in Fig.3.4

Figure 3.4: TCP header data

The construction of every TCP header is managed by the operating system through a programming
interface that represents the local end-point for communication - the Internet socket. Hence, different
operating systems have some differences on the way they instrument the TCP communication. Such
changes in most cases are different default values for some of the fields that are part of the TCP
header.

IP

The Internet Protocol (IP) is the main communications protocol in the Internet protocol suite for
relaying datagrams across network boundaries. Its routing function enables internetworking, and es-
sentially establishes the Internet[9]. IP generates the Internet layer that both TCP and UDP protocols
depend on. Similarly to TCP, IP creates an IP header for every packet that is being transmitted. The
structure of the IP fragment is shown in Fig.3.5

Both protocols(TCP and IP) are often referred together as TCP/IP which is the essence of the
Internet protocol suite. Lippmann researched the device identification from the TCP/IP packet

24

Figure 3.5: IP header data

headers[10]. On Figure.3.6 are shown his results where he identifies which fields in the headers of
both protocols are used to identify the operating system of a device.

Figure 3.6: TCP/IP features used to identify an Operation System

Inside the profiler, I extract the values of these fields from the received packets during scanning of
an application level service which is based on the TCP/IP modules. I save this information inside the
final profile. Since both protocols are managed by the operating system I am not able to directly set
these field values inside the Server/Decoy source code. However, this information is important part of
the fingerprint of any device and will be used in a future phase of the project. Modifying the values of
the TCP/IP fragments can be achieved by using raw sockets[11] inside the server, which are currently
supported in the majority of the modern programming languages. However, using raw sockets requires
many other tasks that should be implemented pragmatically instead of handled automatically by the
system. Another alternative is to directly set these values for the Internet Socket of that operating
system. This is possible only when we have access to the kernel source code of the operating system,
which is not part of the project scope at the moment.

25

3.3.2 IPP

What is IPP

The first service that has been researched and implemented is IPP. Cybertrap wished to support
printer devices fingerprinting and the popularity of IPP over other printing protocols, gave me the
confirmation that IPP is a good candidate for our project.

IPP(Internet Printing Protocol) is a secure application level protocol used for network printing[12].
It defines high-level requests that a client can use to ask the printer for a set of capabilities and settings.
The client is also able to send direct commands to the printer and initiate tasks to print a document.
IPP is supported by all modern network printers and supersedes all legacy network protocols including
port 9100 printing.

IPP defines an abstract model for printing, including operations with common semantic. IPP uses
HTTP as its transport protocol. Each IPP request consists of HTTP POST message with a binary
IPP data and possibly a file send for printing. The corresponding IPP response is also structured
as a POST response. The IPP protocol supports different levels of security. The connections can
be unencrypted, TLS encrypted based on HTTP OPTIONS fields, or encrypted immediately with
HTTPS.

To communicate with a printer using IPP, the client should use that printer address, also referred
as Universal Resource Identifiers (”URIs”). There are two schemes that IPP supports: ”ipp” or ”ipps”,
where the second one is using encryption. This URI is used by the client to send the desired operation
following the protocol scheme encoding.

Integration in the Project

Integrating IPP in the project requires two steps. The first one is to properly adjust the profiler to
make correct IPP requests, and the second step is to implement how the server should read the IPP
data from the profile and responds with the right messages.

By analyzing the IPP protocol and the fact that it is running on top of the HTTP, I decided that
the most appropriate way to simulate it is by using the request-response approach explained before.
The two main reasons for this choice are the fact that every performed request results in exactly one
response, and that every request is independent from the others(no sequence needed). Hence, it will
give us the possibility to simulate IPP without the need to support fully functional IPP Server running
on the decoy.

The IPP protocol have in total 16 Job operations[12] that can be used to support any task send by
the user. It is also possible that the manufacturer of the device can introduce other custom operations
that will be supported from that printer. On Table 3.1, are shown the most common IPP operations.

The limited number of possible operations that can be performed in interaction with the printer
remove the uncertainty of which requests should be investigated during scanning. Covering these
requests would ensure sufficient level of interaction that would satisfy a medium interaction honey-
pot. From the 16 operations that are described in the protocol specifications, I selected the 10 most
used by analyzing the communication of the printers with different client applications and tools. I
have prepared the IPP Manager inside the profiler to perform these requests as a valid IPP client, by
inserting all required fields and attributes. The list of supported operations could be easily extended
in the future if that is considered necessary.

For easier and less prone to mistakes approach, I use Python library implementation for IPP
requests[39], which I have updated to work with Python3 and according to the requirements of the

26

Table 3.1: List of most common IPP operations and their attributes

Operation Required Attributes(syntax) Optional Attributes (syntax)

Cancel-Job job-id (integer),
requesting-user-name (name)

Create-Job requesting-user-name (name) Job Attributes
job-name (name)

Get-Job-Attributes job-id (integer), requested-attributes(1setOf keywords)
requesting-user-name (name)

Get-Jobs requesting-user-name (name) my-jobs (boolean),
requested-attributes(1setOf keywords),
which-jobs (keyword)

Get-Printer-Attributes document-format (mimeMediaType),
requested-attributes(1setOf keywords)

Print-Job requesting-user-name (name), Job Attributes
job-name (name)

Send-Document job-id (integer), document-format (mimeMediaType),
requesting-user-name (name) document-name (name)

project. The library eases the process to adjust the packets in the required IPP encoding format.

By having all important requests available, the profiler connects to the scanned device uri and per-
forms them. The responses received from the printer contain all valuable information that identifies
that device and that I need to simulate.

When all responses are received, the data is stored in the profile following the format of the
request-response approach. Before being saved, the data is analyzed and all parameters that need to
be updated from the server are specified with a list of differences. Then, the ready profile is transmit-
ted to the server which is now able to read it’s content and simulate IPP inside the decoy.

Server The purpose of the server is to validate if the selected approach is working properly, with
minimum analysis of the requests and responses that are specific for the given service. The IPP
Manager follows this idea and automates the profile parsing and returning of the correct response.
However, the server needs to properly match the incoming request with one that is saved in the profile.
It performs two tasks to correctly achieve it:

identify important parameters from the request Important aspect about the IPP protocol is
that it uses custom encoding for the transmitted messages. Each IPP message starts with a
version number (2.0 is the most common), an operation id (IPP request) or status code(IPP
response), a request number, and a list of attributes.

On Table3.2 is presented the format of an IPP message for every available attribute. We see
that the length of the message is not fixed in size, but is dependant on the value of the data
that is being transmitted.

The server needs to parse the important data of the incoming request. It reads any parameter,
attribute and their values following the explained IPP format encoding. All this data is required
when the server searches if the new request is presented in the profile.

When the request search is completed it could sometimes result that the incoming request could
not be matched to any of the saved requests in the profile. Hence, I need to have a fall-back

27

Table 3.2: Single Value Attribute Encoding in the IPP messages

Field Length

value-tag 1 byte

name-length(value is u) 2 bytes

name u bytes

value-length(value is v) 2 bytes

value v bytes

response, which will be returned in such situations. The most logical and easy to implement
approach is to capture an error message and save it together with the remaining 10 operations.
However, IPP supports several different error messages based on the type of error that occurs.
Supporting different errors will increase significantly the complexity and the analyses that the
server should perform. Hence, one error type is selected (client-error-bad-request) which has
general looking description and could be a result of different errors. In order to receive that
error response in the correct format and fingerprint as the scanned printer, I am performing one
more additional request that always results with client-error-bad-request output.

find the appropriate response By comparing the extracted request parameters with the data for
every stored request in the profile, the server identifies the response that should be returned.

Another specification of a printer running the IPP protocol is that there might be multiple
printer uris for one device. These uris are the addresses at which the communication is happen-
ing. The available uris could differ in variety of fields, hence providing different functionalities.
For example a printer can have two printer addresses, one of which uses encrypted communi-
cation, while the other is unencrypted. Due to the way the selected approach works, having
encryption is not problematic for our profiler and the results does change the output inside the
profile. I had to integrate some new functionality in the server to make possible having an
encrypted communication. One of them is using wrapped sockets with SSL layer, that give us
the possibility to support encrypted communication and still be able to read the clear data of
the requests and responses.

After the connection is established and the IPP parameters are parsed from the new request, the
server is using the operation id of that request and the obtained parameters to identify which is
the correct response it has to return. If all of the necessary parameters are valid and they match
with a given request from the profile, the server returns it in the sockets after the differences
have been updated. If no request from the profile correctly matches the request parameters, the
error response is returned.

This approach has several assumptions and limitations. For example, it supports only one default
error response, while the protocol supports many other variations. However, it is designed in
such way to deliver maximum coverage of the most used IPP features without many of the
complications that would arise if the aim is to support every scenario. The behaviour of the
decoy and the correctness of the profile would later on be evaluated and it will answer the
question to what extent that approach functions properly.

3.3.3 HTTP

What is IPP

According to the official rfc of HTTP/1.1(RFC 2616 [13]), The Hypertext Transfer Protocol (HTTP)
is an application-level protocol for distributed, collaborative, hypermedia information systems. It’s
most common usage is for data communication for the World Wide Web (WWW) with hypertext
documents. However, HTTP can also be used for other tasks such as name servers and distributed

28

object management system. A feature of HTTP is the typing and negotiation of data representation,
which allows systems to be built independently from the data being transferred.

HTTP is used from variety of protocols which inherits all of the HTTP streaming and security
feature. An example of such protocols is the already discussed IPP.

In that document I refer to HTTP as a service. It is actually HTTP server which usually runs on
TCP port 80. The HTTP server waits for a client’s request message. Upon receiving the request, the
server sends back a status line, such as ”HTTP/1.1 200 OK”, and a message of its own. The body of
this message is typically the requested resource, an error message or other information. Often these
resources present information which can be observed from user who access them from a web browser.
The combination of accessible resources that run on the HTTP server are referred as a Website.

Many IOT devices also have implemented a HTTP server. That website can give information to
the user about the current status of the device, or present them with a way to easily control the device.
The only required component is a web browser which will be used as the client communicating with
the HTTP server. Since Web browsers are implemented for the majority of operation system running
on different hardware, that website can be accessed without further requirements.

Analysing HTTP content

Except the transmitted resource, an HTTP response contains several headers used for a proper com-
munication with the client. Next is showed an example HTTP response containing several headers.

HTTP/1 .1 200 OK
Date : Mon, 6 May 2019 2 2 : 38 : 34 GMT
Content−Type : t ex t /html ; cha r s e t=UTF−8
Content−Length : 138
Last−Modif ied : Wed, 07 Jan 2019 23 : 1 1 : 5 5 GMT
Server : Apache / 1 . 3 . 3 . 7 (Unix) (Red−Hat/Linux)
ETag : ”3 f80 f −1b6−3e1cb03b”
Accept−Ranges : bytes
Connection : c l o s e

<html>
<head>

<t i t l e >An Example Page</ t i t l e >
</head>
<body>

<p>Hel lo World , t h i s i s a very s imple HTML document.</p>
</body>

</html>

If we take a look at the headers we can easily identify information about the device running the
HTTP server and the system it is using. In the presented example there is a server header field that
contains the type and version of the HTTP server that has been used.

Almost all HTTP servers differ in the way they implement the HTTP protocol. When the HTTP
request is legitimate, the response returned by all HTTP servers is more or less valid with the spec-
ifications described in the RFCs for HTTP. However, when the client performs malformed HTTP
requests, these servers differ in their responses. Differences in the way HTTP protocol is handled by
various HTTP servers constructs HTTP fingerprinting technique.

Saumil Shah in his paper ”An Introduction to HTTP fingerprinting”[14] looks at different methods
used for HTTP fingerprinting.

29

Table 3.3: Results of HTTP fingerprinting techniques

Server Field Ordering DELETE Method Improper HTTP Improper protocol
version

Apache/1.3.23 Date,Server 405 400 200

Microsoft-IIS/5.0 Server,Date 403 200 400

Netscape-Enterprise/4.1 Server,Date 401 505 no header

HTTP header field ordering. Usually the order of the HTTP headers is not important for the
proper handling of an incoming request. However, such inconsistency caused by the different
HTTP servers, can be used to identify what server is being accessed even without observing the
server header.

HTTP DELETE (forbidden operation) response HTTP/1.1 declares 8 possible request method
types. They are: GET, HEAD, POST, OPTIONS, PUT, DELETE, TRACE and CONNECT.
However, not all of them are allowed from every server. Most of the HTTP servers allow the
usage of only several method types. An attempt to make a request with method that is not al-
lowed can result in different responses from every type of HTTP server. For example, a DELETE
request method can receive response as Method Not Allowed(405), Forbidden(403) or Unautho-
rized(401). By observing the response to such attempt, an attacker is able to recognize the type
of HTTP server by knowing how it is responding to that specific request method.

Improper HTTP version response Usually the first 8 bytes of an HTTP request contain the
version of HTTP that will be used. Constructing HTTP request with non existing version of the
HTTP protocol could also lead to variety of different responses from the different HTTP servers.
In his example, Saumil Shah is starting the request with HTTP/3.0. As a response he receives
messages with codes: Bad Request(400), HTTP Version Not Supported(505) or even OK(200).
Knowing how a given type of server responds to such request would reveal itself, even when the
server header is not presented.

Improper protocol response Another possibility to craft a non standard request in order to an-
alyze the output is just by sending a non proper request. For example this could be achieved
by replacing the HTTP version, the type of the request or the uri destination at the beginning
of the HTTP request. Some of the tested servers are capable to handle such request, while
others respond with Bad Request(400) or even they could not return HTTP response header,
but instead just returns an HTML formatted error message stating that this request is a not
correct.

A summary of the results and the tested HTTP servers could be seen at Table. 3.3. The version
of the tested servers are very old, but the principal that every server could return different responses
to a non typical requests is still valid approach for determining the HTTP server type.

All fingerprinting methods described in the previous section are important aspect I want to cover in
our profile. However, the observed requests are just a small part of all possibilities of strange requests
that a HTTP server could receive. That is why just storing the responses to these specific requests
would not be an optimal solution for our fingerprinting tool. A way better approach would be to
analyze different tools to determine what requests they are performing, so I would be able to take into
account all possible attack vectors that are being addressed.

Another information that describes how our HTTP service works and would identify the device
that runs it is the actual content of standard HTTP request. This data is probably the most important
one, because it follows what is the normal way to interact with an HTTP server. Such data contains
of all HTML files which are needed and all other resources and files they use. The reason I am inter-
ested in them is because they would probably contain information about the manufacturer, vendor,
the device itself or the current state it is in. Furthermore, without supporting the most important
requests that could be performed, the attacker would easily determine that our generated honeypot

30

does not work properly and would eventually conclude that it is not the actual device.

One important characteristics of how HTTP works is that the server always responds to a received
request. The number of send requests and the number of received responses should always be the same
and the correlation between the requests and responses is 1 to 1. The inconsistency of some other
protocols, where there could be multiple requests without received response, or multiple responses
to a given request, is not observed in typical HTTP communication. Hence, if I know all headers,
parameters, and data that is contained in a given request, the response should always be the same.
Here I should mention that when the server is using a backend with a database, the responses could
change, but the performed commands are still not altered.

I will use this HTTP characteristics to create our profile. Capturing all important requests and
the responses that the server returns would successfully mimic the behaviour of any HTTP server and
should be indistinguishable from the original source.

I have already introduced the request-response scenario. Similarly to IPP, it is the approach I used
to fingerprint a HTTP server. I will capture the responses to all significant requests and store them
in the profile. The work of the server now includes just finding when an incoming request matches
to a request that has been stored, and return the corresponding response. This simple interaction
eliminated the need for the server to know how HTTP works, by implementing such HTTP server.

During the process of analyzing the request-response tuple I faced two important questions that
I need to answer so I can make the whole communication between the profiler and the server more
general and corresponding to reality:

Determining when a given request is matched as existing in the profile. A HTTP requests
could contain different parameters and headers. Some of them are with significant importance
for the HTTP server to manage and return a proper response. Others do not have such value.
For example it could be the timestamp of the date when the request was performed. This field
should be ignored by our Decoy server when it validates the collected requests, because it will
never receive a request with the same timestamp. However, the collected response data would
probably still be valid. Determining which parameters are crucial to match a HTTP request
could not be done without previous analysis of the results. Unlike IPP where we have limited
number of request to cover, potential scanning of an HTTP server could result in thousands of
request and they will be different for every device. This lack of standardization makes impossible
to analyze the important parameters in advance. Hence, this decision is delegated to the server,
which will make customizing the results easier. In the profiler, I just have to ensure that all
the parameters are presented so the server could determine which information is critical for the
validity of a request, and which could be ignored.

Updating the response data before returning it. Some of the parameters that are being send
in a given request are required to establish a proper connection between the two parties. For
example the client can put in the request it’s IP address. When the raw response is directly
copied inside the profile,these parameters remain untouched. After that the server would use
this raw data as a response when the same request is received. However, the server IP address
would not be the same as the one that is stored. Hence, the data inside the response would
not be valid and the attacker would easily spot such inconsistencies. It is even possible that the
connection would not be established at all, or the it will be dropped when the wrong parameter
is being processed.

To properly react to these problematic fields, I have implemented the differences module. For
every request I am storing the information that need to be updated accordingly.

31

Integration in the Project

The request-response approach that I am using strongly depends on the fact that I can identify which
requests are important for the scanned HTTP server. I should also cover significant amount of requests,
which are usually used from many vulnerability scanners or just some malicious request send from
an attacker. That is why identifying the requests to cover has become of a major importance for the
completeness of the profile for HTTP and for the proper functioning of the generated decoy that will
use that profile.

All three methods to identify valuable request are used when HTTP is scanned. They have been
integrated in the following way:

Information Stored inside the Profiler Figuring out which files are mostly used for HTTP is
more difficult than protocols like IPP, where the protocol itself declares the possible commands
that the server should support. There are techniques that are used to copy the content of a Web-
site. One such technique is Web scraping[15]. It usually implements a bot or web crawler that
searches for specific data which is gathered and copied from the web. That approach generates
a file content which then can be copied inside a HTTP server which will act as the original server.

The method that is being used is similar to Web scraping, however it collects not the files
themselves, but just the requests which are needed for the proper loading of the only page that
all servers supports - the index page. The profiler triggers automatic loading of the index page
inside a browser(from the profiler it is achieved using the selenium web-driver). Meanwhile,
it sniffs the generated traffic. Then it distinguishes all necessary requests called when that
index page is loaded. Next, all captured requests are performed again directly from the profiler
and the responses are matched and stored. This additional step avoids possible problems with
handshakes or encryption that can be used from HTTPS.

Information obtained by following the behaviour of the device. The profiler initiates a phase
where a Reverse Proxy is created between the IOT device and the used machine running the
profiler. At that moment any interaction with the HTTP server is observed. The user can load
any specific page they think should be included in the profile that contains important informa-
tion for the fingerprint of the device, or is with significant value for the normal usage of the
device.

Information obtained dynamically from a given penetration testing tool(vulnerability scanner)
Many users would not like to communicate with the device during profiling, or they will not be
familiar which requests are interesting for an attacker. That is why executing one or more tools
which are interacting with the HTTP server is also integrated inside the profiler.

The use of a reverse proxy give us the possibility to not be bound to just specific tools that
are integrated inside the project. Every tool that makes requests to the HTTP port could be
used to identify potentially interesting requests. Such tools could either be started from the user
when the profiling is activated, or they can be triggered from the project. For demonstrative
purposes and for easier adaptation from unfamiliar users, the current version of the profiler uses
two well known tools for HTTP service scanning(nmap script and Nikto). The results from the
performance of the profiler and the usability of the generated profile will be presented in the
evaluation chapter.

Comparison to HTTPS

Hypertext Transfer Protocol Secure (HTTPS) is an extension of HTTP. It uses Transport Layer Secu-
rity (TLS), or formerly its predecessor - Secure Sockets Layer (SSL), for encrypting the communication
channel between the client and the server. Encrypted communication allows only the participating
parties to be able to read the content of the transmitted messages. It eliminates the ability of an
attacker to sniff the traffic, because the captured data will not be readable without the encryption

32

keys.

Using encrypted connection significantly improves the security of any HTTP Web browser. Nowa-
days it is considered a must for any major website, especially if its usage requires user authentication
or any other user information.

The necessity of using HTTPS over HTTP in the IOT domain is smaller compared to any other
global internet communication. The reason for that is because many IOT devices require the device
to be included inside a home wifi network. This adds some level of protection against unauthorized
access with the device, because the attacker should first gain access to the protected network. Hence,
the usage of HTTP in the IOT domain is significantly bigger compared to a website communication
over internet. The required certificates and their installation and usage is a slight overhead of the
usage of an HTTP server, that is the reason many IOT manufacturers or vendors decide not to use
encrypted communication when the usage is restricted inside the local network. However, the integra-
tion of HTTPS is strongly advised even in there is not communication over Internet.

Integrating new service inside our profiler requires having access on the content of all requests and
response that this service uses. That is why using approaches like traffic sniffing is not possible for
HTTPS or any other service that uses encrypted data. However, the described approach for HTTP
does not require traffic sniffing. The essence of the reverse proxy that is implemented give us direct
access to the clear messages that have been transmitted. Hence, the only step that have to be included
for supporting HTTPS inside the proxy listening phase is to wrap the socket with a SSL module. Such
task have already been performed with ipps schema and should be easily adopted here.

3.3.4 Telnet

What is Telnet

The first version on Telnet is proposed in the distant year of 1969. According to the RFC Specifica-
tion of the protocol(RFC 854 [16]) the purpose of the Telnet protocol is to provide a fairly general,
bi-directional, eight-bit byte oriented communications facility. Its primary goal is to allow a standard
method of interfacing terminal devices and terminal-oriented processes to each other.

Typically, Telnet is used to establish a connection to Transmission Control Protocol (TCP) port
number 23, where a Telnet server application (Telnetd) is listening. However, the first versions of Tel-
net occurred before the creation of TCP/IP. It was originally running over Network Control Program
(NCP) protocols.

After its creation Telnet was adopted as the primary protocol for remote administration purposes[17].
During that time most users of networked computers were in the computer departments of academic
institutions, or at large private and government research facilities. In this environment, security was
not nearly as much of a concern. After the exploding popularity of Internet in the 1990s, these security
issues become problematic for the future of Telnet.

Today the use of Telnet is not recommended. Security experts, such as SANS Institute[18], describe
the following security issues as the main reasons why Telnet should not be used:

• Telnet, by default, does not encrypt any data sent over the connection (including passwords), and
so it is often feasible to eavesdrop the communication and use the password later for malicious
purposes. Anybody who has access to a router, switch, hub or gateway located on the network
between the two hosts where Telnet is being used can intercept the packets passing by and obtain
login, password and whatever else is typed with a packet analyzer.

• Most implementations of Telnet have no authentication that would ensure communication is
carried out between the two desired hosts and not intercepted in the middle.

33

• Several vulnerabilities have been discovered over the years in commonly used Telnet daemons.

Due to the these drawbacks, the use of Telnet protocol dropped rapidly, in favor of the Secure
Shell (SSH) protocol. Created in 1995, SSH has practically replaced Telnet. SSH provides much of
the functionality of Telnet, with the addition of strong encryption to prevent sensitive data such as
passwords from being intercepted, and public key authentication, to ensure that the remote computer
is actually who it claims to be. Alongside SSH, there now exist several extensions to the Telnet pro-
tocol which provide Transport Layer Security (TLS) security that address the above concerns.

Despite the explained vulnerabilities, the recommendations from security experts, and the exis-
tence of newer and better protocols(like SSH), Telnet is still in use today. Many of the devices that
still support Telnet are exactly IOT devices. A quick search in the search engine for IOT devices -
Shodan[8] reveals that there are more than 160 thousands of active devices running Telnet that are
found from the website.

A relatively recent example of exploiting devices using the Telnet protocol is the Mirai Botnet[2].
In the late 2016 worm based botnet called Mirai(Japanese from ”The future”’) infected more than
600k infected IOT devices by primary using brute-force login attempts to establish a Telnet connec-
tion. It initially used 10 username and password pairs selected randomly from a pre-configured list of
62 credentials. Other services that use credential verification were also incorporated to increase the
coverage of potential victims. After the first successful login, Mirai infects the device and adds it to a
growing number of bots. Those networks were later used for Distributed Denial of Service(DDOS)[19]
attacks on more than 600 thousand hosts all over the world.

The example of Mirai and other similar cases, show us that Telnet is still popular protocol in the
IOT domain and is suitable to be integrated in our Profiling tool. The insights of it, will be very
helpful in future integration of other protocols that have integrated a login phase.

Telnet phases and analysis

In order to figure out how I can incorporate Telnet inside the profile and to what extend, I had to
research how the protocol works in details. After capturing the traffic of a Telnet communication
with Wireshark[20], analyzing it and verifying my observations with the help of the standard protocol
description[16]. I differentiated three phases of the communication. On Fig. 3.7 are presented these
stages. I need to analyze every one of them to what extend it should be simulated from the decoy so
it supports a medium interaction.

The negotiation phase. This is the first phase where several packets are transmitted between the
server and the client. The main purpose of that phase is to elaborate the upcoming way of com-
munication. Both parties are transferring data about themselves and negotiating about different
predefined options. Some examples include: terminal size, terminal speed and etc.

This is very important phase, because both the terminal and the server are exchanging informa-
tion what they need and how the rest of the communication will follow. Based on the selected
and verified options, the data that has been transmitted is changing in order to be adapted to
the needs of both parties.

Some of the information that has been exchanged can be device specific and can be used in the
profile creation. However, this phase is just initial step to reach the actual usage of the service.
The big variety of options, sub-options and the combination of them expands the number of
request and responses that need to be covered. Evaluating the possible benefits of covering all
possibilities does not outweigh the resources and time that have to involved in it. Hence, this
phase will not be included in the profile at this initial phase of the project.

34

Figure 3.7: Telnet phases

However, in order to reach the second phase, the client or the server will be expecting for the
options exchange. Therefore, the profiler and the server should take part of that exchange. Our
way to pass to the next phase is by covering minimum interaction by responding to every request
of option packet by declining the usage of that option. This approach is also used from different
tools that analyze Telnet.

Every new option is located on 3 bytes. The first one is always ”\xff” which identifies the
beginning of an option data. The second byte defines the option type that is transferred and
the last one consists of a code that informs the other party if the current option will be used.
To automatically respond to negotiation message containing option data, that byte order will
be used. The first byte will be used to identify the end of the first phase, while the third one
will be used to automatically respond to a received negotiation request.

The authentication phase. After the negotiation is done, the server requests from the client to
authenticate by providing username and password. Most of the penetration testing tools(like
Ncrack[21]) operate on this phase. They use predefined lists of usernames and passwords and try
to find a pair of correct credentials. This method is called a dictionary attack and is mostly used
to identify not secure authentication credentials. Unfortunately this attack is often successful
targeting an IOT device. The reason is that the users are not aware they need to change the
default passwords embedded from the manufacturer which leaves their device on high risk of
unauthorized access.

The described situation is actually the most common attack over running services that require
initial authentication. Hence, our generated decoy should be able to respond properly to all
these attack requests by keeping all device specific information intact.

The control phase. The second phase ends when the client provides correct username and password
and receives welcome messages from the Telnet server. This means that the phase of user ver-
ification is successful. The client is then prompted with a terminal connection. They can send

35

every command and perform every operation on the server having the same permissions as the
logged in user. Often this user has admin privileges and the attacker receives unlimited control
on the device.

Simulating terminal connection is highly complex task and is not integrated in the current state
of the project. Covering such communication goes beyond a medium interaction honeypot, but
will make it high interaction. Hence, profiling the third phase of Telnet is postponed for future
version of the product. The easiest and best performing way to support terminal communication
is to install a full Telnet server software on the virtual decoy. It will use the data stored inside the
profile to adjust all possible settings and messages so it will keep all device specific information
during that communication. Having fully running Telnet server would make that decoy service
way more believable and less prone to mistakes. Hence, this is a recommended future direction for
Telnet integration and any other service that can be installed and adjusted easily with existing
software. Such software is currently available for Telnet and it is supported on all popular
Operating systems. An example for Unix based OS is the Telnet daemon(telnetd). However,
the steps and requirements for such integration are not further researched in this document due
to the company specification that the server should be service independent and the fact that
further research is needed to suggest what virtual machine will be used to host the actual decoy.

Integration in the Project.

The main focus of our project will be to profile and to simulate the second Telnet phase - the au-
thentication. In both software components(profiler and server) reaching the authentication phase is
a primary goal. To do that the negotiation phase is handled automatically with minimal analysis.
It starts when the decoy transmits a don’t echo message. This message is required since some tools
expect the server to initiate the communication. After that, to every received option request the decoy
responds with declining that option.

After all option messages are transmitted, the second phase begins. The main idea in it and the
main part of Telnet that is included in the profile is to simulate the User/Password authentication.
The profiling tool requests a set of correct username and password from the user and sends them to
the server. A correct Telnet communication would result in either receiving a terminal control, or with
error messages. The profiler captures the responses received with it sends the correct and some wrong
credentials that Telnet server responds with. These messages contain valuable information about the
running service and the device it is running on. The messages also are the only data from the device
that is visible to an attacker. That is why these messages are forming the fingerprint profile of the
scanned device. The only concern that the server needs to handle is to determine when it should
return the correct or wrong messages.

The principal that Telnet messages are transmitted is different from the request-response strategy
I have used in profiling IPP and HTTP. It is possible to receive multiple requests, before the server
responds with one, or more messages. The response that the server should return does not depend
only on given parameters in the incoming requests, but also depends on certain set of previous re-
quests. This behaviour creates a sequence of requests that the server should use. It should respond
with a given correct messages when the sequence of incoming request are validated and with other
error messages when the sequence is different. The main example here are the username and password
requests. In order to receive the messages for success login, the user should send the correct username
following the correct password.

There is another characteristics of the way Telnet messages are transmitted that complicates pro-
filing it. Based on the options that are negotiated in the first phase, the credentials can be transmitted
in different number of packets. For example the username can be send together, or in separate packets
letter by letter. Such inconsistencies of the way Telnet works is another reason why request-response

36

strategy used before is not applicable here.

To handle this way of communication and to avoid the necessity to fully implement Telnet server
running on the decoy, I use an approach that handles sequences of request and responses. As part of
the profile I am saving the result of every sequence I need from the incoming requests. The profile
contains other fields that provide information to the server when the sequence should start, when it
should end, what information should be compared, what are the correct and wrong data that should
be returned and other fields ensuring the correctness of the process

The result of running a decoy that supports Telnet is proper a telnet communication including
option negotiation and authentication phases. The client receives correct banners and messages orig-
inating from the scanned Telnet server. The correctness and agility of the process are tested with
different client softwares and are presented in the evaluation chapter.

Comparison to SSH

Telnet is being around for a long time. Although it is still popular among IOT device, any new system
that wants to implement a remote shell access functionality is primary using the Telnet successor - Se-
cure Shell (SSH)[39]. The encryption used by SSH is intended to provide confidentiality and integrity
of data over an unsecured network, such as the Internet.

SSH is more complex protocol than Telnet and is used for different purposes. SSH is typically used
to log into a remote machine and execute commands, which is the same purpose as Telnet. However
SSH also supports tunneling, forwarding TCP ports and X11 connections. It can be used for file
transferring using the associated SSH file transfer (SFTP) or secure copy (SCP) protocols. Similarly
to Telnet, SSH uses the client-server model.

Another big difference between the two protocols is that SSH(especially version SSH-2) has well-
separated layers which should be covered in the binary packets that are exchanged. Due to the involved
encryption an SSH server needs to take care of key management, data validation and integrity. Such
tasks are important obstacles when service like SSH should be integrated in a profile using the current
approach. However, one possible direction for SSH coverage would be to simplify possible usage of the
service by selecting just a specific use case(primarily a shell connection to a remote host). Similarly to
IPPs and HTTPs a socket wrapper could be used to delegate the encryption task outside of the profile
scope and focusing only on the plane communication packets that are exchanged. This would easy
the process to identify SSH phases and then select which parts of the whole communication would be
covered.

3.3.5 RTMP

What is RTMP

RTMP(Real-Time Messaging Protocol) is a messaging protocol for streaming audio and video files
and data between a Flash player and a server. There are different variations of the protocol.(RTMPT
- tunnelled to avoid firewalls, RTMPE - encrypted stream, RTMPTE - tunnelled and encrypted). The
”plain” protocol works on top of TCP and uses port number 1935 by default. To deliver streams
smoothly and transmit as much information as possible, it splits streams into fragments, and their
size is negotiated dynamically between the client and server.

RTMP is one the most used protocols for streaming audio and video data. It is primary being
used in situations where a secure transport connection is required. Unlike other streaming protocols
like RTSP which use UDP, RTMP is running over TCP and it ensures more robust communication of
packet losses. Since the current project focuses on TCP services and since most IP cameras have web
page(running http server) that can run the camera stream inside a Flash client, I decided that RTMP
is a good candidate for analyzing and integrating a streaming service.

37

Protocol phases

Similarly to TELNET there are 3 stages in a typical RTMP communication[22].

1. Handshake. The exchange of 3 packets from each side.: C1,C2,C3(Client messages) and
S1,S2,S3(Server messages). The format of these messages is always the same, containing proto-
col version, date and time information of the request and random data which will be repeated
by the other participant.

From the point of view of device fingerprinting this phase looks straightforward and not valu-
able. The content of the messages inside is not of a big interest regarding the profiling of the
device(except the protocol version that is being used). There is no data that describes a specific
device behaviour which should be profiled. The main goal for the profiler and the server would
be to successfully reach the next phase.

2. Connect command. The client and the server are negotiating some important parameters by
exchanging Action Message Format(AMF) encoded messages[23]. This phases usually consists
of 2 packets. The Client sends a connect message including parameters about itself and stream
parameters needed for the connection. For example: the url address of the streaming server,
version of the flash player and more. The server responds with result message describing the
connection status and similar parameters regarding server capabilities and stream connection
settings. These parameters describe the current status and capabilities of the RTMP server and
so, they should be included in the device profile.

3. Start the stream. The client sends a ”createStream” invocation and receives a result message.

The next packet is a ping message, or a message defining the buffer size that will be used to
transmit audio and video packets. Some of the cameras using RTMP also implement security
features by inserting additional payload data to this message. For example it could be a channel
number and a transfer of an authentication token. This behaviour is strictly device specific and
should be part of the device profile.

If the previous packets contain data that successfully validates the client(correct channel or
token), the server sends several controlling packets and metadata information. After that the
server starts sending audio and video data packets with the streaming content.

Important exchanged parameter

Some of the most interesting data fields exchanged in the explained three phases can be differentiated
in 3 types of categories[25]:

Network Parameters: These options define how to connect to the media server.

socket data host address and port number

Connection Parameters These options define the content of the RTMP Connect request packet.
If correct values are not provided, the media server will reject the connection attempt.

app=name Name of application to connect to on the RTMP server.

tcUrl=url URL of the target stream. Defaults url has the following format: rtmp://host[:port]/app.

pageUrl=url URL of the web page in which the media was embedded.

swfUrl=url URL of the SWF player for the media.

38

flashVer=version Version of the Flash plugin used to run the SWF player.

Security Parameters These are optional fields that can be required to handle additional authenti-
cation requests from the server.

token=key Key for SecureToken response, used if the server requires SecureToken authentica-
tion.

jtv=JSON JSON token used by legacy Justin.tv servers.

Analysis and integration in the project

The primary goal of profiling an RTMP server would be to successfully trigger the process of receiving
stream data and the other packets of the described communication that contain fingerprinting infor-
mation.

Due to the inconsistency of the sequence of request and responses in a standard client-server com-
munication, it is very hard to determine what response should be returned to a given request. For
example, there can be several following requests from the client without receiving any response. Then
the server could respond to each of them and they will arrive also one after another without any request
between them. Such race conditions can be explained with either a specific device implementation
characteristics or due to network differences. Hence, the request-response approach is not applicable
for that service.

After analyzing the way the protocol works and the parameters which should be used to generate
the device fingerprint, I have differentiated 3 possible approaches to integrate that service inside the
profiler. They posses different complexity and differ in the level of involvement the project should
invest for that service, based on which parts of the communication should be covered.

• The first approach is limited on supporting only the first 2 phases of RTMP. Strict protocol
implementation on the server for that first 2 phases is possible. Then, the server could use
the obtained parameters values from the profile to return valid responses. This is a possible
scenario, due to the small amount of packets that need to be covered and also because that
exchanged communication is straightforward where every packet has defined format from the
protocol specifications[22].

• Another solution is to use external client or server software that supports RTMP streaming.
One popular project that could be used as a client is a VLC player. Another option would be
to integrate a RTMP library inside the profiler. With the help of such software I will be able
to mimic the first and second phases without the need to manually implement these protocol
specifications. However, any security parameters that could be integrated inside the client
packets will not be presented using this approach. For example it will be missing security
token, which will be observed from the original RTMP server. Hence, the client will not receive
any streaming data and the third phase could not be handled and included in the profile.

• The third approach is the most complicated and with the highest protocol coverage. It requires
capturing the raw requests and responses between the original camera client and the RTMP
server. To successfully capture the performed request from the original client I will integrate
the listening phase in the profiler. This scenario has already been presented and it includes
sniffing the traffic between the device and the host computer. It creates the possibility that the
user can integrate any functionality they wish as part of the profile. The main advantage of
using this approach is that all important parameters in the packets will be captured, since the
original client software is being used. When the decoy is generated, the responses it returns will
contain these parameters, which will increase the similarity with the original responses and will
successfully mimic the behavior of the real RTMP server. For some of the previously researched

39

service(like TELNET) I assumed that the user knows security fields like username and password,
because they are required to obtain every data where the user should authenticate. However,
the possibility to use tokens and the lack of knowledge how they are calculated removes the
variant to ask the user for valid authentication data. Therefore, in order to reach the third
phase(streaming) during profiling, I should sniff the traffic when the user is using the device and
integrate that communication inside the profile.

Although it requires user interaction with the original client software, the approach that I have
integrated is the third one. The approach requires that the decoy should be able to determine when
a given request is matching the current request of the sequence based on its content. If the request is
valid it should be returned from the server. The implemented steps are:

1. The profiler sniffs the traffic between the client and the server. I collects all requests that have
been performed from the server.

The implemented procedure in the RTMP Manager of the profiler is made abstract from the
client that needs to be scanned. It is a general approach that scans RTMP without having any
knowledge of the specific client implementation. The Manager listens to the traffic and saves
all RTMP packets that have been transmitted between the client and the server. At this step
no further actions are performed. The only goal is to obtain the packets which contain the
parameters needed to start the actual stream.

Sniffing the traffic requires that the correct commands to start the stream are performed. For
HTTP this additional commands were restricted to load the index page. This process is iden-
tical for every HTTP server and it helped us automate it. However, it is not possible to do
the same with a RTMP stream, because of the existence of security parameters in the RTMP
packets. The user is not familiar how the used token is generated and the correlation with the
authentication credentials is unknown. Therefore, our general approach assumes that the proper
RTMP traffic will be triggered directly from the client by using the provided software from the
camera manufacturer.

Cybertrap has close relations with their clients. Many times the distributed product is adapted
to the specific needs of that client. Hence, it will be possible to understand how the used RTMP
client software work. In case there is a web page for that purpose, I can automate the process of
triggering the RTMP traffic by using a testing software like a selenium webdriver[26]. It give us
the possibility to perform every action the user needs to do in order to start the camera stream.
Hence, that process could be used for every device that uses the same client software. For
example all devices of a given manufacturer that use the same software would be automatically
controlled when the necessary steps are saved once. It will make the process easier eliminating
the need of the user to interact with the camera directly.

2. In the second step, the profiler will perform every of the stored request with some timeout
between them. Doing so, I avoid any race conditions and ensure that the sequence of requests
and responses is valid. When these requests are performed for a second time it is easy to
determine when the server is returning the same responses. In the situations when the server
is not responding or returns given error I can determine which information from the requests
should be modified. Then, I adapt the information in the profile accordingly to the changes that
should be performed for every request.

3. All received responses will be matched to the last performed request from the sequence and they
will be saved inside the profile. When the responses are received after the final request from the
sequence, they will actually be the streaming data of audio and video packets.

4. For every captured and performed request I determine if it is an important request of the protocol
that should be saved in the profile. Requests which results without any received responses, may

40

be with less significance for the sequence and are marked as optional. The other requests are
marked as important and for them some specific data is assigned that would help the server
identify when a new request is valid and from the same type. The format of the profile that
represents RTMP looks like this:

RTMP: [
{

requestData : ”Some data f o r the g iven reques t ” ,
v a l i d a t i o n :{
l istSameType : [
{ . . . }] ,

l i s t I s V a l i d : [
{ . . . For example : token = 123456}]} ,

r e sponse s : [
{data : ” data o f the re sponse ” , de lay : 1234} ,

. . .]
} ,
. . .
]

5. The information inside the profile will be used from the server to mimic the behaviour of the
RTMP server. The analysis when a given incoming request is found in the profile and if it is
valid or not, is handled from the server. When a new request is received, it is analyzed and
compared with correct request from the stored sequence that should be following. Using the
fields from the profile, the decoy concludes if the request is of the same type and if it is valid.
When both requirements are satisfied, the decoy returns the stored responses for the current
request in the sequence. Then, the current request is updated accordingly.

Since this request verification is done on the server, it gives us the possibility to dynamically
update the result of that analysis and the responses that should be returned. An overlook of
the performed server verification is shown on Fig.3.8

The described approach for RTMP is very similar to the one used in HTTP. However, there are
two important changes that make it possible to use this scenario with RTMP. First, the sequence of
the stored requests is critical for the normal service functioning, and it should be followed from the
decoy. Second, there could be multiple responses to a given request. This is critical foundation for
every streaming protocol, because once the configurations are completed and the necessary commands
are set, there are no more requests from the client, while the server is sending multiple video or audio
packets. These two changes are determining which approach will be used to profile a service. Hence,
a general solution that incorporates all specification could be used for all services.

3.4 Summary of the services

Besides the non service specific information that is stored in the profile, I have analyzed and integrated
four application level services. These are: IPP, HTTP, Telnet and RTMP. They have been selected
based on the three main components:

• primary interesting IOT devices for Cybertrap

• popularity and usage of the given service

• diversity in the analyzed services so more knowledge and approaches are covered

For every one of the selected services, I have analyzed the way they work, what information
is important to identify the host running the service and how this information can be extracted and

41

Figure 3.8: RTMP Server verification procedure

saved in a profile, so that profile can be used from the server to generate a decoy of the scanned device.

Based on every analyzed service characteristics, I have adapted an approach which best suits the
service characteristics and is used to be profiled. The level of involvement in every service differs based
on which information is interesting for our medium interaction honeypot and how complicated it will
be to cover specific feature inside the profile. All of the used approaches are designed to be not service
dependant, but so they can be adapted from any other service that works in similar manner. This
multi-service adaptation is also valid for the analyzed services and some of them are using the same
approach. For example both IPP and HTTP use a request-response based solution.

Another important aspect of the integration of a given service is how to obtain the required
information that will be stored with some of the approaches explained above. The way that data can
be received can be divided in four groups:

automatic Automatically replying to a given request with the goal to reach another level of the
communication. This method usually ignores some parameters and could lead to potential re-
strictions with the profiled behaviour. It is used in phases of the service which are not interesting
for profiling.

static This is highly service specific data that consists of several specifically crafted packets that are
stored in the Manager class for that given service. This packets are usually a set of messages
that the server is expecting and they create big part of the service coverage we focus to profile.

semi-dynamic This approach is using service specific way to start a communication and later on it
receives additional data for that service. The new data is used to obtain more valuable insights
of which requests should be used to properly profile that service.

dynamic By using using external tools I identify potential important behaviour that are scanned and

42

Table 3.4: Summary of used approaches for every analyzed service

Methods\Service IPP HTTP Telnet RTMP

Approach to save request-response request-response sequence-end request-sequence
the data in the For every request For every request Covering the For every

profile the corresponding the corresponding authentication important request
response without response without phase by saving the list of received

considering considering the sequence of responses is
request request responses and the saved.

dependencies dependencies end result when The order is
the sequence important.
should end The request type

is analyzed.

Approach to static semi-dynamic automatic semi-dynamic
obtain important Saving all Obtaining all Automatically Passively finding

request important IPP request needed to replying to the original
type of request load the start negotiation performed request

inside the Profiler page packets so the
next phase can be Triggering the

dynamic reached original request
Saving all requests is either done
performed from a static from the user, or
tool that does not Performing the automated for the
return given error standard Telnet given device

communication
by saving them in

the Profiler

included in the profile. This approach help us to cover different attack vectors which are specific
for the scanned service and which would be investigated from an attacker.

On Table.3.4 is shown a summary of the four covered services and which approaches are used to
obtain their proper fingerprinting.

43

Chapter 4

Evaluation

The analyzed services have been integrated inside the profile. I have used several approaches to adapt
and capture the specifications of ever service and at the same time trying to make these approaches
as general as possible. Since I am targeting a medium interaction honeypot, the services are not
cloned fully covering all their functionalities. Based on the research findings I focused on covering
the most significant information and simulating the most valuable and used part of the protocol. For
some phases of a proper service work, the complexity to cover given task would increase the global
complexity multiple times. Such task for example is covering terminal control in Telnet.

Based on the approach I used and the level of integration that have been implemented the usability
of the generated decoy will vary. To reach maximum amount of usability and to verify the correctness
of the results I used several methods. In this chapter I will present all the methods I have used. I
will look why they are valuable and how their results should be considered. After that for all of the
integrated services I will explain which of these approaches are applicable. Then I will run these tests
on several devices I have full control with. Some of these approaches are also applicable with limited
access to the device. After the tests are performed and the results are presented, I will analyze them.
I will also compare the results and the approaches with several partial or full competitors.

4.1 Experiments

I will look at four methods that have been used to test the correctness and completeness of the
created profile and decoy. These methods thy to address different usage scenarios so I can obtain full
impression from the decoy. They tackle scenarios from the normal usage of the device, automated
tools used from hackers and some specific attacks for a given service.

4.1.1 Simulating normal usage of the service

The first method I will use to evaluate if the generated profile is sufficient and if the generated decoy
is working properly is most intuitive. It contains simulating a normal usage scenario for that device
and the corresponding services. This approach is based on our informed understanding of the original
device. Since I am aware of what is the device that have been profiled, I know how it works and
what it requires to run it properly. Then I manually interact with the created decoy and compare the
behaviour of the original device to the one from the decoy.

Since this method is based on the targeted device it is difficult to be explained in a general scenario.
The actions that are taken can use different tools or client software in order to properly interact with
the given service. This approach is focused on the perspective of the user. I assume that in order for
a given honeypot to successfully fool an attacker(even for some time) I need to be able to successfully
fool a normal user. The approach will help us identify what are the features and commands that the
decoy is capable of handling. It will also give us clear view for limitations or errors in the process.
Hence, it will be easier to spot if there are other features that are not properly handled, but I want

44

them to be inserted. Thanks to the dynamic approaches that are integrated in the profiling step, I
can trigger new scan that will generate better profiler that covers these desired features.

4.1.2 Profiling the real device(ground truth) and the generated decoy

The main idea behind the profiling phase is to capture the identifying data for the scanned device
and store it in useful format(the profile). Furthermore, the main idea of the server is to use the data
stored in the profile to repeat that identifying data when necessary. Looking to evaluate the work of
the decoy I will use the profiler again, scanning the decoy itself. If the decoy is implemented properly
it should respond to the profiling request from the profiler the same way as the original device. Hence,
I should be able to generate a new profile(market with F) which should be very similar to the one
generated from the original device(market with O). This process could be seen as making a copy of
the copy. On Fig. 4.1 we see that process which leads to comparing the two generated profiles.

Figure 4.1: Evaluation method to compare the created profiles from the original device and the decoy

4.1.3 Compare the results of different tools on the real device and several varia-
tions of the decoy.

Except interacting with the device the attackers are using variety of tools to help them breach that
device. These tools can be used to identify which is the tested device or can be directly searching for
vulnerability by sending maliciously crafted request. Therefore, the next evaluation technique I have
performed is using such tools to analyze the original device and the generated decoy. The outputs of
that tools should be similar in way that they represent the same vulnerabilities if presented, the same
information that could be gathered and the same behaviour for some specific actions.

Since most of the tools for scanning are focused on a specific service, or a small set of services, I
will look at the analyzed services individually. For all of them I will present which tools I have used
for the evaluation(if any) and will compare the results from the original and virtual devices.

For some of the analyzed services I have integrated the approach to run a reverse proxy and re-
transmit every request to the original device. This approach give us the possibility to run any tool

45

and use the results inside the profile. This approach corresponds to the evaluation technique described
here. Therefore, there could be the situation where the same tool is used for both the profiling and
the evaluation of the results. Such case implies that the results of the tool during the evaluation
should be definitely part of the profile and the tool outputs should be very similar as the results
to the original device. Hence, for the services that use the reverse proxy for profiling I will present
comparison between these three type of sources: the original device, the decoy when the same tools is
used in the profiling and the decoy when that tool is not used.

4.1.4 Tests for specific problematic attacks for a given service

Although there are numerous tools for scanning and testing the results of them are not always focusing
and explaining every attack scenario that could be interesting for that specific service. There are a
couple of reasons for that. First, the tools I have used are not focusing on that specific attacks and
so the results they output do not contain information about them. Second, many of these tools use
techniques with thousands of performed request and their output is designed to show result only when
a vulnerability is discovered. However it is still possible that there is not vulnerability presented, but
the decoy is responding differently than the original. Due to these situations I have integrated another
approach for some services where I will perform some crafted requests to observe the results and to
identify if a given attack scenario has the same results in both the original and virtual devices.

4.2 Devices

During the performed research I have used several devices that I have been provided from Cybertrap.
I will address these devices as the local devices. For them I have full access and the knowledge of any
credentials, security parameters or any device specific information. For most of the analyzed service,
this information is crucial to obtain a proper profile. Without it, it would not be possible to reach the
point of the device work where the most significant functionality is reached. In the majority of the
attacks this information is the primary goal of the hacker and it is what they want to reach. Hence,
without having full access on the device, I would not be able to support these attacks from the decoy,
or at least not to the amount that would be possible other way.

These local devices are necessary to fully test the desired functionalities. However, the short
number of local devices that I have been provided with is not sufficient to generalize the desired
approach and to fully test the behaviour of the decoy knowing that there is no such device specific
information that have been used to design the profiling approach. Therefore, I will use other devices
which I have limited access to in order to observe the behaviour of the profile and the decoy in these
restricted situation.

4.2.1 Local Devices

The local available devices used for the research and the evaluation tasks are based on the main
interests of Cybertrap for first prototype goals. These devices were mostly printers and cameras. The
list of local devices consisted of:

• Printer. HP Color LaserJet MFP M477fdw

• Printer. TASKalfa 2552ci. Host Name : KM647584

• IP Camera. Reolink. 5mp PoE Cam RLC-41005mp

On Table.4.1 We can see which of the analyzed services were available from the local devices.

As we can see the see in Table4.1, there are no available local devices that run a Telnet service.
In order to implement that service I have been running a Telnet server on a virtual machine with
specifications:

46

Table 4.1: Service coverage in local devices

Service \Device Printer HP Printer TASKalfa IP Camera Reolink

IPP

HTTP

Telnet

RTMP

OS: Kali Linux
xinetd version: 2.3.15.3 libwrap loadavg

4.2.2 Other devices

Tto avoid the limitations of having a short number of tested devices I have used the profiler to scan
multiple other devices available over the Internet. I have used the shodan website[27] to find such
devices that run the desired services. It is a search engine for IOT devices that makes it easy to find
any running services based on the open ports of the collected hosts.

4.3 Expectations

Before looking at the actual results I would state what are the expectations that I have for the per-
formance of the profiler and the decoy for every of the executed experiments. The results would be
compared with these initial expectations to determine whether the project successfully mimics the
scanned device or not. These comparison would be useful to determine what are the advantages and
disadvantages of the project and respectively which components should be improved for the next fu-
ture versions of the profiler project.

The starting expectations for the four main types of experiments can summarized as:

Simulating normal usage of the service The generated decoy should be able to mimic the most
important features of the real device. This means that the decoy should reply in as similar as
possible way to any interaction with it, that is considered as a standard and crucial communi-
cation. That communication could be performed from different tools and applications that are
specifically targeting the normal usage of the tested service. A successful decoy responses would
be anything that handles proper interaction with that software and which makes that software
”believe” in the correctness of the responses.

Profiling the real device(ground truth) and the generated decoy This experiment tests both
the correctness of the decoy responses and the consistency of the profiler scanning. Since the
decoy responses are based on replaying the data stored in the profile, the profiler should be able
to create almost the same profile when the decoy is being scanned. The only differences should
be based on the differences that are updated from the server before the response is returned. The
comparison between the two profiles could include the number of stored requests and responses,
the data inside and a check if the differences are properly updated. If there is a significant
difference between the two profiles, this means that there is problem when the decoy is replaying
the data, or the profiler is not performing the same scanning requests.

Compare the results of different tools on the real device and on the decoy The penetration
testing tools are the most common automatic way that an attacker is scanning a given unknown

47

device. These tools output results should be as close as possible to the output results obtained
when the tool is executed on the decoy. Any significant differences suggest that the decoy is not
able to replicate the responses of the actual device. The reason could be that these responses
are not presented in the profile at all, or they are not properly matched or updated.

Since the profiler could include dynamically obtaining of important requests, some of these pen-
etration testing tools can actually be used during profiling. The following results when the decoy
is scanned, should be identical as the one when the original device is scanned(assuming the the
tool has deterministic behaviour). When the tool is not used for profiling, I expect that the
results would be limited, but they should still be valid and covering at least the base device
behaviour.

Another important characteristics that should be compared is the time needed for these tools to
complete their scanning. The results will show if there is significant delay of the decoy responses
which will be a result of slower analysis on the profile. It is also possible that the decoy is
replaying faster than the original device which would also help an attacker to identify that the
scanning device is actually not a proper IOT device. Hence the expected time for execution
should be as close as possible to the average time needed to scan the IOT device.

Tests for specific problematic attacks for a given service The deeper analysis of the integrated
services let us find out how their results could be used to identify the scanned device. Since
most of the tools are working as a black box it is difficult to find out if these requests have
been performed and to properly analyze the results. Hence, running these services manually
on the decoy would reveal if these attack vectors are covered from our profiler. These tests are
primarily focused not on the the decoy correctness, but on the extended work of the scanning
phase. The results would help us evaluate the fullness of the generated profile and if additional
requests should be included in the profiling.

4.4 Results

In this subsection I will present all of the analyzed services individually. I will explain which of the
evaluation experiments are suitable for that service and which can not be used. Then I will look at
the results from the performed tests and I will discuss their correctness by comparing them with the
initial expectations.

4.4.1 IPP

Not all proposed type of experiments can be executed for IPP. I will focus the evaluation on the first
two scenarios:

• Simulating normal usage of the service

• Compare the Profiles of the real device and the generated decoy

The other 2 types of experiments are not presented, because at the moment of writing this document
there are no available tools for testing IPP protocol that I am aware of. Furthermore, no other attack
vectors are known that can not be instrumented as part of the simulating of the device. Therefore,
I believe proving that the normal behaviour of the service compared to the behaviour of the original
device will be sufficient test for the correctness of the IPP service decoy.

Simulating normal usage of the service

ipptool The first way I will evaluate the created printer profile for IPP and the generated decoy is
by triggering a print command from a tool called ipptool[28]. It is used to perform internet
printing protocol requests. The tool uses a text file that defines one or more requests, including

48

Figure 4.2: ipptool failed operation output Figure 4.3: ipptool successful operation output

the expected response status, attributes, and values.

I created such test file containing a print-job request which executed on the original device suc-
cessfully prints the provided document.

The content of the file looks like this:

{
OPERATION Print−Job
GROUP operat ion−a t t r i b u t e s−tag
ATTR char s e t a t t r i b u t e s−cha r s e t utf−8
ATTR language a t t r i b u t e s−natura l−language en
ATTR u r i p r in t e r−u r i $u r i
FILE $f i l ename

}

I also used a test pdf file(called test.pdf) which will be transmitted for printing. The terminal
command to run the tool is:
ipptool -tv -f test.pdf ipp://10.9.2.25/ipp printfile.ipp
where:

• -tv declares the desired output format,

• -f test.pdf is the file we want to print

• ipp://10.9.2.25/ipp is the decoy printer-uri.(10.9.2.25 is the local ip address of the host
machine running the decoy.)

• printfile.ipp is the file containing the print-job request shown above.

On Fig. 4.3 we can see the output result of ipptool executed on our decoy.
I have used ipptool during my research and implementation to help me identify what is needed
to successfully simulate IPP. It gave me valuable insights of how to support a given request and
what other modifications are needed. For example, before changing the request ID stored in
the response inside the profile, with the correct one coming from the new request, ipptool was
informing for a failed execution due to mismatch in the request ID. On Fig.4.2 We can see the
result of running ipptool on our decoy, before updating the request ID in the returned response.

The result of running ipptool over all remaining ipp addresses is similar and returns successful
PASS output status. Here I have to mention that based on the created profile data, some of the
created decoys returned other messages besides 0 (successful-ok). Such message for example is
1287 (server-error-busy). This operation result is based on the current situation of the printer
when the profile is created. However, the goal of the profiler is to capture such specific outputs of
the time of the scanning. Hence, receiving messages of type 1287 (server-error-busy) is considered
as correct result and it is also marked from ipptool with PASS status.

Printers and Scanners The second method I used to test the correct responsiveness of the ipp decoy
is by using the integrated software to work with printers in a MacOS running machine(macOS

49

Figure 4.4: Standard dialog to Add new printer in Mac OS

Figure 4.5: Wireshark IPP traffic output when adding new printer

Mojave Version 10.14). The software is available in System Preferences - PrintersScanners. It
gives all functionalities to a user to integrate and control a printer device.

Two steps are needed to test the Decoy:

1. Adding the decoy as a new printer.

2. Sending a file for print.

Adding the decoy as a new printer. In the provided window shown in Fig.4.4 I have inserted the
ip address of the decoy and selected IPP as the protocol to use.

Pressing the button Add, sends several IPP messages to our decoy. The captured traffic is shown
on Fig.4.5:

As we can see on Fig. 4.5 all requests send to the decoy return response with status successful-ok.
Overall, the process of adding the decoy as new printer is successful and it is now available in
the list of printers. Shown in Fig.4.6

For the second step I opened the print queue of the decoy and I sent a file for printing. That
step resolved in the following requests that have been sent to the Decoy:

• Get-Printer-Attributes

• Validate-Job

• Create-Job

• Get-Job-Attributes

50

Figure 4.6: List of available Printers included in the system, including our Decoy.

• Send-Document

The last request is Send-Document, where the actual file for printing is being transmitted. Based
on the created profile, the decoy returns successful-ok message, or other status like server-error-
busy or client-error-bad-request.

The results illustrate that our decoy successfully mimics the original printer by being able to
properly interact with the ipptool and the Printers and Scanners software of the Mac OS, which
I have used. I am aware that when a specifically crafted requests are performed with parameters
that would lead to a given error inside the original device, would be considered as a valid request
at the current version of the server. However, the approach used to match and update requests
could be easily adapted to such scenario and these requests would be covered properly. For the
current goals of the project it is important and successfully verified that the decoy is able to
perform as the original printer for the most common use cases.

Compare the Profiles of the real device and the generated decoy As I have already
explained the IPP protocol consists of a limited number of request types that are possible during a
communication between a client and a server. I have selected 11 requests to be part of the profiler
which I use to obtain the printer responses. Hence, for a successful scanning, the profile should consists
of all these 11 requests and the corresponding data about them.

By running another scanning on the generated decoy I can answer to several questions about the
correctness of the approach I am using:

• Verify that the responses are correctly matched to a given request.

• Verify that the Server correctly identifies the incoming request and matches it to the correct
request in the profile.

• Verify that the procedure to update differences in the stored responses works properly.

• Verify that the procedure to compact the http and ipp data in one response works correctly.

• Identify new missing differences that need to be inserted, or any other incorrectness of the results.

On Table.4.2 are presented the results of the scanning on both the real device and the decoy. For
all of the available printer addresses I run the profiling 10 times and compared the results.

From the results on Table.4.2 I can conclude that the created profiles of the generated decoy are
successfully matching the original device responses and have been properly modified for the differences
that are specified in the profile itself. I have been able to identify other potential differences that could
be supported in the profile requests, which will improve the validity of the information returned inside
the responses.

51

Table 4.2: Comparison of IPP profiles for original and decoy devices

Test \Device Printer 1 Printer 1 Printer 1 Printer 1 Printer 2 Printer 2
ipp original ipp decoy ipps ipps decoy ipps ipps decoy

original original

number of 11 11 11 11 11 11
request

responses with 4 4 4 4 5 5
status code

successful-ok

matching - 11/11 - 11/11 - 11/11
responses

correctly - 11 - 11 - 11
updated

requestIDs

4.4.2 HTTP

HTTP is the most popular service around IOT devices. The big variety of devices and usage scenarios
give us the possibility to evaluate our approach using all described experiments:

Simulating the behaviour of the service The most common way of using HTTP is by having
a web browser as a client that connect to a HTTP server. During the profiling phase I have spend spe-
cific attention on this usage scenario by capturing and repeating all of the request that are performed
when the device IP address is loaded. After the profile was created and the decoy was executed I
have used the server address to load it in a browser and compare the output to the original content
of the website from the scanned device. The results showed that the website was successfully loaded
by being identical to the original content. I am aware that any other further interaction with that
website, which will result in performing new requests which are not part of the profile, would lead
to missing file or a content. The decision how extensive a site need to be cloned and which requests
should be covered can be postponed to a future step, because of the dynamic approach used for cap-
turing requests from the device interaction or a given tool. The results of them are presented next
and would show us how effective that approach is.

Compare the results of penetration testing tools on the real device and the decoy
There are many different tools which are used to scan the http service. I have performed several

scans after the decoy is created. I have compared the results with the obtained when scanning the
original device. The comparison has been done on both scenarios: when that tools has been used
during the profiling phase and when it has not been used.

The first test I have performed is using a nmap script called http-enum[7]. It is used to enumerates
directories used by popular web applications and servers. The script uses advanced pattern matching
as well as having the ability to identify specific versions of Web applications. The typical output
of that script shows all found pages that result with return status 200 OK or 401 Authentication
Required. The terminal command to start this script is:
nmap localhost -sV –script=http-enum -p 80
where:

• localhost is the address of the target. When we are running the decoy on our local machine, we
can use localhost.(localhost = 10.9.2.25)

• -sV is nmap flag that probes open ports to determine service/version info

• –script=http-enum is the script name I want to execute

• -p 80 specifies the http port number that I want to restrict the scan on.

52

Table 4.3: Outputs of running http-enum and Nikto over every profile

Tested device \ Number of Time to load Number of results Time to load Nikto
Performed results found by http-enum found by Nikto

Test http-enum

Original 26 20.43 seconds 53 53 seconds

Profile 1 1 11.28 seconds 8 22 seconds

Profile 2 26 11.91 seconds 15 32 seconds

Profile 3 9 15.54 seconds 53 38 seconds

Profile 4 26 16.03 seconds 53 39 seconds

The second tool I have used for testing is Nikto[7]. It is an Open Source web server scanner which
performs comprehensive tests against web servers for multiple items, including over 3500 potentially
dangerous files/CGIs, versions on over 900 servers, and version specific problems on over 250 servers.
The terminal command I used to execute the scan is:
nikto -p 80 -host localhost
where:

• -host localhost is the address of the target. As explained with the nmap script, I am am targeting
the decoy on the local machine,so I can use localhost.

• -p 80 is specifying the http port number that we want to restrict the scan on.

Due to the possibility to use these tools in the profiling phase, I will present the results of nmap
http-enum script and Nikto on 5 different profiles for every device. These profiles are a way for
differentiation whether some of the tools are used during the profiling or not. Hence, the five different
profiles are:

Original: The original device

Profile 1: Profile of the original device without using any tool in the scanning.

Profile 2: Profile of the original device using nmap http-enum script in the scanning.

Profile 3: Profile of the original device using Nikto in the scanning.

Profile 4: Profile of the original device using both http-enum and Nikto in the scanning.

On Table:4.4 are presented the output results of running nmap http-enum for every of the profiles
generated for one of the tested devices(10.9.1.1 camera) including the time needed to be finished. The
reason that this device is used is due to some specific interesting behaviour which will show us if they
are transmitted to the decoy behaviour. First, for every .cgi request the device requires authentication
even if there is no such file and second, for every request that contains the word ”stat” it returns a
statistics page. Hence, this unusual behaviour could help us observe the results of the different tools
over our decoys.

As we can see from the results of running http-enum script, the decoy using profile 1, is returning
the server version, but the other device specific information is missing. The decoys using profile 2
and profile 4, where http-enum was used during profiling, successfully return the exact output as the
original device. The decoy using profile 3 performs better than profile 1(both are not using http-enum
during profiling) is able to return some of the outputs regarding the requests which contain ”stat”.

53

Table 4.4: Scanning data for HTTP service profiles

Scan type \Device Device 1(10.9.1.1) Device 2(10.9.127.2) Device 3(10.9.127.3)

Profile 1 82 15 27

Profile 2 128 29 40

Profile 3 348 327 318

Profile 395 341 15 334

The time to perform the test is slightly increasing with every decoy. The reason for this is probably
due to the sizes of the profiles and the number of requests in each of them. The responses from the
original device are a bit slower than all responses from decoys, since it is located on different machine
and the additional delay comes from network operations.

We can observe similar results from running Nikto. The decoy using profile 1 results with correct
output for all tests regarding the index page and the http headers that are transmitted. The decoy
of profile 2 has additional results that are found since some of the requests are performed also from
http-enum during profiling. The decoys with profile 3 and profile 4 return the same results as the
original device. The reason for this complete match is that the Nitko script was also used during
profiling and the same requests were stored in the profile. Similarly to the results of http-enum, Nikto
takes slightly more time with every following decoy caused from the bigger profile that is handled.
Nikto needs more time to finish its scan on the original device. This delay is caused from the fact
that unlike the decoys, the original device is not located on the same host machine. Hence there is a
transmission time which multiplied by the number of performed requests increases the time of the full
scan.

All other devices running HTTP have similar results to the one presented for the camera running
on 10.9.1.1. The following conclusions are confirmed about the work of our decoys when tested with
penetration testing tools:

• Profile 1 successfully loads the index page in a browser.

• Profile 1 is not capable to simulate deeper analysis from any tool.

• When a given tool is used during profiling, then the decoy is producing identical results as the
original device.

• Increasing the number of requests inside the profile improves the results even when different
tools are used for testing.

• Increasing the number of requests inside the profile increases the time for response and so for
the tool to complete its scan.

Compare the Profiles of the real device and the generated decoy Unlike IPP where there
are limited number of requests which could simulate big part of the service usage, HTTP does not
have such standard requests. Hence, covering as many valid requests as possible would increase the
similarity with the original website. On Table.4.4 we can see the results of comparing the profiles
across several observed devices that run HTTP for every of the five profiles. These comparison cov-
ers the number of requests inside every of these profiles and the time needed to complete the tools scans

Testing additional attack vectors which are not covered from the used tools

54

Table 4.5: Comparison of returned HTTP headers order

Device 1 Device 1 Device 2 Device 2 Device 3 Device 3
Original Decoy Original Decoy Original Decoy

Result HTTP/1.1 200 OK HTTP/1.1 200 OK HTTP/1.1 200 OK HTTP/1.1 200 OK HTTP/1.1 400 HTTP/1.1 200

Server Server Server Server Bad Request OK

Date Date X-Frame-Options X-Frame-Options Content-Length Content-Length

Content-Type Last-Modified X-Content-Type- X-Content-Type- Content-Type Accept-Encoding

Content-Length Connections Options Options Upgrade Date

Last-Modified E-Tag Cache-Control Cache-Control Accept-Encoding Cache-Control

Connection Accept-Ranges Content-Type Content-Type Expires

E-Tag Expires Expires Set-Cookies

Accept-Ranges

Table 4.6: Comparison responses to forbidden operation

Device 1 Device 1 Device 2 Device 2 Device 3 Device 3
Original Decoy Original Decoy Original Decoy

Result HTTP/1.1 405 HTTP/1.1 200 OK HTTP/1.1 400 HTTP/1.1 200 OK HTTP/1.1 400 HTTP/1.1 200 OK

Not Allowed Bad Request Bad Request

Since all of the stored request have been obtained dynamically(by either sniffing which requests are
used to login the index page, or by capturing the request performed from a given tool) I do not know
what requests are stored and how sufficient these requests will simulate the service on a given attack
vector. I have performed manually several requests that I described as a way to identify a HTTP
server and which can be used for fingerprinting the http server based on the responses. I compared
the results with the one returned from the real device.

HTTP header field ordering. Performed request is HEAD / HTTP/1.0\r\n\r\n
From the results on Table.4.5 we can see that the order of the HTTP headers is not changing.
Due to the simplicity of the sent request and the fact it is partly different from the one performed
during profiling, in Device 1 we observe two more HTTP headers returned. However, the order
of the headers is not changing. For Device 3 the request was not recognized as valid request from
the original device, while the limited validation from the decoy results with a matching request
and returns a 200 OK response.

HTTP DELETE (forbidden operation) response: DELETE / HTTP/1.0\r\n\r\n
The results in Table.4.6. confirm the idea that the different HTTP servers could return different
responses to a DELETE request. Here we see that Device 1 returns error 405 Not Allowed,
while Device 2 and Device 3 return 400 Bad Request. The results from the previous request are
confirmed following that the decoys are not able to identify that these requests should not be
proceeded, since they are not part of the profile.

Improper HTTP version response GET / HTTP/4.0\r\n\r\n
On Table.4.7 we see that Device 1 and Device 2 respond with 400 Bad request, while Device 2
responds with 505 HTTP Version not supported. Here we see again that the decoys are not able

Table 4.7: Comparison of response to improper HTTP version

Device 1 Device 1 Device 2 Device 2 Device 3 Device 3
Original Decoy Original Decoy Original Decoy

Result HTTP/1.1 400 HTTP/1.1 200 OK HTTP/1.1 505 HTTP/1.1 200 OK HTTP/1.1 400 HTTP/1.1 200 OK

Bad Request HTTP Version not Bad Request

supported

55

Table 4.8: Comparison of responses to improper protocol responses

Device 1 Device 1 Device 2 Device 2 Device 3 Device 3
Original Decoy Original Decoy Original Decoy

Result HTTP/1.1 404 HTTP/1.1 200 OK HTTP/1.1 400 HTTP/1.1 200 OK HTTP/1.1 505 HTTP/1.1 200 OK

Not Found Bad Request HTTP Version not

supported

to determine that HTTP version is wrong and reply with status 200 OK, due to the matched
request at the same address uri.

Improper protocol response GET / JUNK/1.0\r\n\r\n
On Table.4.8 the three original devices respond with different error messages when improper
protocol name is send in the request data. Similarly to the other crafted requests, the decoys
reply with status 200 OK as a matched request is found.

The results of this testing method clearly showed one of the limitations of the selected request-
response approach. The search in the profile for correct response was strictly based on the path that
has been requested and on the parameters that are transmitted. There was not deep analysis of the
other information transmitted in the request. After this limitation was discovered I have inserted
additional check for proper protocol name, HTTP method and protocol version. However, in order to
return the correct responses as the original, every one of the problematic requests should be included
in the profiling phase, by saving all of them manually in the profiler HTTP Manager source code.
This solution might fix the observed differences, but any other requests which are not covered would
still be problematic, because of the way the request-response method works and the desired minimum
knowledge from the server how that given service works.

Even with the described limitation, the observed and tested performance of the created decoys
for HTTP looks very promising and I believe that it covers the requirements of medium interaction
honeypot. The possibility to dynamically increase the coverage of available requests, makes it possible
that the generated approach can be easily adjustable to the desires of any potential customer.

4.4.3 Telnet

Telnet is very popular service target for hackers from many years. Their primary goal is to obtain
the credentials needed for further control of the server host machine. Our goal is to evaluate how the
decoy is performing using these three types of experiments:

Simulating the behaviour of the service
Most Telnet communications are performed over a terminal or with specific client program(for example
PuTTy). I will trigger a new telnet connection with the decoy from a terminal client. I will look at the
responses returned from the decoy and if they are correctly provided. For the Telnet machine where I
have access to the credentials, I will observe the transmitted data when these credentials are provided.
For the other servers, I do not have a correct pair of credentials, so I will observe the behaviour just
for proper responses to incorrect login verification.

The client I will use to connect to a Telnet server is called ”telnet” and the terminal command
looks like this:
telnet -K address
where:

• -K is a flag that indicates not automatic login attempt

• address is the address of the Telnet server. In our tests it could be 10.9.2.20(real Telnet server),
or 127.0.0.1(localhost when the decoy is executed on the local machine)

56

Figure 4.7: Telnet communication with the original
Telnet server

Figure 4.8: Telnet communication with the Telnet
server from the Decoy

A normal Telnet communication from the authentication phase usually consists of three types of
exchanged messages: Server banners, incorrect credentials and error response, and correct credentials
and control prompt. This communication for the tested Telnet server and the generated decoy are
shown on Fig.4.7 and Fig.4.8:

As we can see from the two Telnet connections with the scanned Telnet server and the Decoy, the
results are relatively identical. There is only difference between the two communication snapshots.
It is the fact that the password characters are not displayed on the terminal when the test is on
the original Telnet server. This difference is observed, because the decoy does not fully support the
negotiation phase, where that server preferences are set. Hence this option is not negotiated and the
terminal client is showing the characters when it is communicating with the decoy.

Compare the Profiles of the real device and the generated decoy
After the profile is created and the decoy is running, I have profiled it again by scanning the decoy.

I have compared the results of the profiles.

The generated two profiles are almost identical. All of the valuable information is kept and not
changed in any way. This includes all of data, all correct and error banners, all fields identifying when
a sequence should end and fields identifying if the result of the sequence is correct. Hence, the second
generated profile(used by scanning the decoy) is as valid as the one from the original device and it
can also be used from the server to create a decoy.

Compare the results of penetration testing tools on the real device and the decoy
In order to verify the correctness of the decoy and the responses it returns, I wanted to test it in

a real scenario similar to how an attacker would try to connect to it. For that purpose I have used
a tool called Ncrack. It is used to perform dictionary based attacks on different services, including
Telnet. The main interests of an attacker usually is to obtain the credentials and gain control over
the device. To ensure that the credentials would be found from Ncrack, I inserted them inside small
dictionary files used from Ncrack during scanning.

The command to start the scan is:
ncrack -U user.txt -P pass.txt localhost:23
where:

-U user.txt : It is a text file that contains possible username that will be tested. The correct
username is inserted inside to verify successful scan.

-P pass.txt : The same as the username file, this is a file that contains possible passwords that will
be tested. The correct password is included inside.

address:23 : This is the address of the Telnet server and the port it is running on.

57

Figure 4.9: Running Ncrack on the original server Figure 4.10: Running Ncrack on the Decoy

Table 4.9: Average results of running the Ncrack on the original device and the decoy.

Original Telnet Decoy Telnet Server
Server (10.9.2.20) (localhost)

Times credentials found 20 20

Average time of execution 23.72 seconds 30.02 seconds

On Fig.4.9 and Fig.4.10 are presented the results of running Ncrack on the real device and on the
decoy.

As we see from the results, the two outputs are almost identical. Both of them successfully found
the correct credentials. The time needed for Ncrack to finish scanning is respectively 30.05 seconds and
30.03 seconds. It also shows that the appearance of the decoy would successfully mimic the original
Telnet server.

To have better and more general observation of the tool results I have executed the tool 20 times
on both, real device and decoy. The average results are shown on table.4.9

The results show that the credentials were found all 20 times. There is increase of 26% of the time
needed for execution. At this stage of the project this is considered as good performance.

Another test that I have executed is using other Telnet servers found with the Shodan search plat-
form. Since I do not have access to their credentials and permissions to log in, the tests are performed
observing the remaining responses over a Telnet authentication process. I have picked 10 random
Telnet servers which were checked to be active by contacting them through the terminal client. The
scan resulted in:

• 10 scanned Telnet servers

• 9 negotiation phases passed. One of the servers was combining the negotiation and authentication
phases in the same packet. This resulted in incorrect responses send from the negotiation phase
and not able to reach the next phase.

• 9 successfully generated profiles. All of the servers which passed the negotiation phase was able
to generate a profile.

• 8 correct telnet sessions. One of the sessions was not properly created since the server was
blocking any requests when a wrong credentials were transmitted.

These results showed that the majority of servers are properly scanned and the decoy is capable
to simulate a normal authentication session. However, there are some servers which differ in some
parameters during their communication. In such cases their scanning is not properly matched and the
created decoy is not fully correct. These variations should be considered for the next version of the
project, which will increase the robustness and adaptation level of the profiler and the server.

58

Figure 4.11: Loading decoy address in VLC player

Figure 4.12: RTMP packets from VLC player to the original device

4.4.4 RTMP

As we have already seen, a RTMP communication between a client and a server consists of several
specific types of packets that need to be exchanged between the two parties before the actual stream
begins. The tests I have performed to evaluate RTMP contains of the same type of methods used on
the other services. They are now adjusted to the specifications and the goals an attacker could have
by targeting RTMP. The performed methods are:

Simulating the behaviour of the service.
The proper communication of RTMP usually contains some security parameter(usually token)

which is generated from the manufacturer based on their own criteria like device id, username and
etc. To be able to obtain the tokent, the client should have also access to the credentials and the
client software that is distributed from the manufacturer. I have already discussed how this process
could be automated so triggering of stream commands could be started directly from the profiling tool.

Our tests for proper work of the decoy and the level of service simulation consists of profiling the
Reolink camera located the address 10.9.1.1. During scanning the profiler specifies the stream time
that will be captured inside the profile. Then it saves all stream responses inside the profile which are
received during that time.

The server reads the profile and runs the decoy on the host address(localhost). To generalize the
process how an attacker could interact with a given RTMP server I could not use the client software
that is specified for that device. Therefore, I have used a well known application software that is able
to play many different audio and video protocols, including RTMP. That software is the VLC player
[29].

The process starts by loading the RTMP address of the decoy inside the VLC player list. On
Fig.4.11 this step is shown.

The lack of a token parameter results is stopped communication from both the real camera server
and our decoy. The performed requests and responses for both stream attempts are shown on Fig.4.12
and Fig.4.13.

In both Figures we see how the RTMP communication is evolving in a similar way and reaching
the point where in the last packet the client should send the token field. Since it is missing, both
communications are terminated. This results show that the generated decoy is successfully mimicking
the camera RTMP server.

59

Figure 4.13: RTMP packets from VLC player to the Decoy

Figure 4.14: VLC player loading the responses from the decoy

In order to observe the decoy behaviour after this step, I have turned off the check for correct
token validation inside the decoy. This way, the it should continue the stored sequence of responses
from the profile even when the token is missing. These responses are the actual stream data stored in
the profile during the specified time from the profiler. On Fig.4.14 we see a screenshot of the result
shown on VLC player after the stream have been returned from the decoy.

As seen on Fig.4.14 VLC player loads the responses received from the decoy. The result is an
image successfully displayed and originally captured from the real camera. VLC also indicates the
duration of the received stream data. It is visible as the number of seconds from the stream start.
This time is relatively equal to the time set in the profiler for capturing stream data, where any differ-
ence is caused because of the time needed to receive the first stream after the last request has been sent.

Using the shodan platform I have identified multiple other RTMP servers. However all of them
are using some type of security parameters and does not allow free live stream access. Hence, the
communication between a client and that server is terminated when that packets is received without
having the correct token. Having this in mind, I have scanned 10 such RTMP servers found in shodan.
The result of the scanning is a profile that contains the valid communication returned from the profile,
without any actual stream data. This minimum coverage of the service is still useful for the purposes
of a medium interaction honeypot. It will correctly fool an attacker that the RTMP server is actually

60

Table 4.10: Comparison of the profiles generated from profiling RTMP service on the camera and the
decoy

Compared Parameters \Scanned Reolink Camera(10.9.1.1) Decoy(localhost)
device

Number of open ports 7 7

Number of stored 4 4
request-responses sequences

Number of responses after 2 2
request 1

Number of responses after 2 2
request 2

Number of responses after 1 1
request 3

Number of responses after 837 820
request 4

presented and any interaction with it would still be useful to determine how an attacker is trying to
obtain access of that stream.

Compare the Profiles of the real device and the generated decoy

To verify that the decoy answers in the same way as the original RTMP camera server I have used
the technique copy of the copy. I executed the profiler again using the running decoy as a target.
I have used the copied requests from sniffing the camera traffic to begin the RTMP communication
with the decoy. On Table.4.10 is shown the comparison between the profiles generated by scanning
the camera and the decoy.

The results from the comparison indicate that the profile generated by scanning the decoy has
similar parameters and is responding in a similar manner when it is being profiled. The only difference
is the number of responses received as a result to the last request of the rtmp communication sequence.
This is actually the streaming data that is captured for the time specified in the profiler(10 sec). The
difference of 17 packets is relatively small and is observed because the decoy is delaying every response.
The duration of the delay is equal to the amount of time passed from the first received request when
the scanning is executed. Hence, there could be some minor increase of the delay when running the
decoy analysis. The timeout of 10 seconds for capturing the stream data is completed before these
17 packets are handled. However, I believe that the decoy is properly mimicking the scanned RTMP
server and the profile comparison proves that.

4.5 Result analysis

The global observation of the performed evaluation tests prove that the decoy successfully represents
a medium interaction honeypot of the scanned IOT device. Most of the expectations for the cor-
rectness of the project results are validated. All services properly react when the normal usage of
the device was tested. The results of Telnet clearly showed that when I am covering a specific phase
of the service work, it could result in differences based on the client that interacts with the decoy.
All decoys were successfully scanned from the profiler and the two profiles have showed very close
results, which proves the consistency of the scanning phase and the decoy responses. The results of
running other tools for testing showed almost identical results. For HTTP the results vary based on
which profile is scanned. When the tool is used during profiling, the output is complete. When it is
not used, the decoy is still performing as a proper device, but the specific device vulnerabilities are
not observed. Having another tool during scanning, slightly increases the response correctness of the

61

second tool. This implies that further analysis of the profile responses from the server could lead to
better global performance of that service. A slight increase of the required time to complete a tool
scan was registered. However this increased time corresponds to a normal execution deviation and
should not be a factor when an attacker is performing that scan. Targeting specific attacks which are
not covered in the profile resulted in differences from the original response. In such cases, these at-
tacks can be specifically targeted during scanning, so it is assured that they are presented in the profile.

In conclusion, the evaluation results verified our expectations and proved that the decoy creates a
proper virtualization of the IOT device. They helped us identify some problems and gave us ideas for
further improvement of the project.

4.6 Competitors

4.6.1 Fingerprinting

The idea to create a fingerprint of an IOT device by scanning it is not new. It has been used for
different purposes, but primarily to identify the type of the device that is scanned or the type of
service that it is running. An attacker is then able to search for specific vulnerabilities related to
this device or service and can proceed with exploiting it. Hence, the process of creating the finger-
print can be compared to the profile that is generated in the proposed project. Any tool that creates
such fingerprint is potential competitor of the explained profiler and the correctness of the results in it.

nmap One tool with diverse functionalities is nmap. Nmap is highly popular for network scan-
ning. It is also used in our profiler to find which ports are open in the IOT device and to execute
some nmap scripts in the dynamic proxy phase. Besides that, nmap can be used to discover service
types and versions. Having an accurate version number helps dramatically in determining which ex-
ploits a server is vulnerable to. Two other fields that version detection can discover are operating
system and device type. The Nmap version scanning subsystem obtains all of this data by connecting
to open ports and interrogating them for further information using probes that the specific services
understand. This allows Nmap to give a detailed assessment of what is really running, rather than
just what port numbers are open. Based on the obtained results nmap generates a fingerprint of the
found characteristics. It recognizes more than one thousand service signatures, covering more than
180 unique service protocols. If nmap gets data back from a service that it does not recognize, a ser-
vice fingerprint is printed along with a submission URL. This creates the possibility that the service
database could be extended from community.

While nmap is very popular choice for service detection, operating system and device type identi-
fication, the fingerprint it generates differs in the way it is created and used from our profile. While
nmap tries to identify and match specific outputs to results in a database, our profiler aims at much
more. It uses the findings to store all data that identify what is the scanned device and how it works.
This process should also be done in way and format that the results can be easily reproduced from
the server. Hence, even that nmap generates a device fingerprint, the potential usage of it is different
and very limited to what is performed from the profiler.

In the scientific area there have been different attempts to research the area of IOT fingerprinting
with many different goals of potential usage. In some like [30] and [31] the goal is to create a devel-
opment platform for the scanned device. Others like [32] aims at new cryptographic methods using
such fingerprint. The approaches to create a fingerprint are similar across every cited solution. Many
of them are also integrated in the profiler when a scanning is performed. However, the desired ending
result does not allow us to use any similar method to save the obtained fingerprint. The reproducibility
I focus on is only easily obtainable when the majority of the communication is obtained and registered
in the generated profile.

62

4.6.2 Honeypot generation

The other main aspect of our research and the presented implementation is the generation of a honey-
pot(decoy). The concept of honeypots is not new and there are many solutions that are creating such
deceptive systems for different technologies. As explained, the IOT domain differs of the approach
that should be used, because of the huge diversity of devices.

Vdoo One approach that tries to overcome these problems and create a honeypot for an IOT
device is by reading the firmware file of that device. One such solutions is Vdoo. It is a proactive
threat detection honeypot that analyses the IOT device firmware binary to precisely mimic it. It’s
goal is to detect different attack methods which can be simulated. The generated honeypot then acts
like real deployed devices as part of a real global network. Vdoo also provides web platform which is
used for alerting on any tampering attempt to allow data utilization for immediate response and for
deep forensic research.

Since Vdoo analyses the device firmware, it does not need to scan the device behaviour and create
a profile of it. Another advantage is also that the performed analysis has a global view of the device
behaviour and is not based on some specific services. These differences to the proposed solution in this
document may be critical for a given user, however the Vdoo solution also create several limitations
that should be considered.

Comparing Vdoo to the described approach is this document we can see that the desired end
result is the same. Both solutions are capable to generate honeypot that mimics a real IOT device
based on some characteristics it possesses. However, the used approach is totally different. Hence, the
assumptions and requirements that Vdoo has in order to work properly are restricting the type and
number of users that are capable to use their approach. Some of the assumptions Vdoo has are:

• The user has access to the device firmware

• The device firmware is of a type that Vdoo is able to analyze

• The firmware contains all valid information how the device works. Any possible situations where
the behaviour is based on some server or cloud instructions are ignored.

The presented requirements could not be satisfied by many potential users for one of the following
reasons:

• The device firmware is not available

• The device firmware could not be analyzed

• The generated honeypot is limited and could not be extended

• Any user specific behaviour could not be integrated in the honeypot

In conclusion, I can determine that both solutions have similar goal which they try to achieve with
very different approaches. These differences present many advantages and disadvantages when the
requirement of them are compared. For many users Vdoo could be an easier approach since no live
scanning is needed, but the requirement of available firmware file that contains all valuable informa-
tion is not always true. Hence, the proposed solution in this document will differ significantly of the
obtained result and targeted customer groups. The dynamics of the profiling it creates would also
lead to more detailed and adaptive honeypot.

Honeyd Another solution that comes together to our goals and purposes is Honeyd[33]. Similarly
to the described document in this project, Honeyd uses service based honeypot generation. Honeyd
mimics the network stack behavior of operating systems to deceive fingerprinting tools like Nmap and

63

Xprobe. The main difference is that Honeyd aims at low interaction honeypot. Honeyd does not
simulate an application level services like I do, but it works on lower level with protocols like TCP,
UDP and ICMP. Hence, the generated honeypot has limited abilities when it is approached by an
attacker. It is able to fool scanning tools like Nmap, but further interaction with any of the available
service will result in easy conclusion from the attacker that the contacted IP is not a proper functional
device.

Another major difference between the proposed approach and Honeyd is the way that the honeypot
is generated. The proposed solution from Honeyd includes configuring a template that mimics given
device using set of commands that manage the traffic. This approach uses manual generation of this
commands, while our project focuses on automatic and dynamic approach that is obtained with the
profile creation.

The combination of automatically generated profile and medium interaction honeypot generation
that can be easily extended and deployed to any IOT device is not covered from any of the researched
solutions and competitors. The proposed project aims at obtaining the advantages of that combination
which should result in successful application that will increase the security of any scanned IOT device
by analyzing all potential attacks over it.

64

Chapter 5

Conclusion and future work

During my internship in Cybertrap I was introduced to the concepts of deception technologies. I got
familiar with the product they provide and with the desired future implementation of a decoy for an
IOT device. The diverse functionalities and device types make it impossible and impractical to create
a fully functional honeypot platform for every device that should be mimicked. Therefore a research
and first prototype implementation was required over the best approach to reach the desired outcome.

5.1 Contribution

In this document I presented my work to identify the best approach to profile and simulate an IOT
device. The result solution is able to automatically and dynamically scan any IOT device by focusing
on specific analyzed services. The created project consists of three main components. These are a
profiler that scans the IOT device, a profile file that is the output of that scanning and a server that
reads that file and works as a decoy.

The main focus of my work was the creation of the profiler. I have analyzed what information is
needed to copy and reproduce the device behaviour in medium interaction way. The approach I have
used is service based. It means that the behaviour of a device is considered as a combination of the
services it is using and reproducing their behaviour will lead to reproducing the full outlook of that
device. I have analyzed four application level services that are of primary interest for Cybertrap and
differ in functionalities so more different approaches could be integrated with them. The analyzed
services are: IPP, HTTP, Telnet and RTMP. The most appropriate approach that allows easy repro-
duction and dynamic extending is to store in the profile all important requests that I want to cover and
the responses the device returns. Based on the way that exact service works, the selected approach is
slightly modified. The two main modifications are based on whether the device responds with a single
response to a given request(IPP and HTTP) or with multiple responses(Telnet and RTMP). Another
important aspect is if the requests are independent of the stored order, or they are part of a sequence
that should be followed for the correct reproduction.

The second biggest aspect of the proposed solution is the discovering of the important requests
that should be integrated inside the profile. Several methods are proposed and analyzed. For some
of the integrated services there are limited number of requests which identify the complete coverage
of the service. Hence, including these services in the profiler is a sufficient way for its integration.
Other services do not have such limited important requests and so they need to be identified. Some of
the integrated ways inside the profiler for discovering these requests are: automatic loading or passive
listening to the communication with device. This creates the possibility to give the user the option to
dynamically adapt the comprehensiveness of the profile by interacting with the device, or by starting
any penetration testing tool that analyses the device.

The next important component of the project is the profile itself. As part of the research different
formats were considered and analyzed. The most appropriate format for the first project prototype is

65

JSON. It gives the possibility for faster software adaptation and modification from the server. Except
all of the requests and responses, the profile contains information how they should be validated and
updated accordingly to any change that should be fixed in the final response. Other non application
level information is also integrated inside, which gives the possibility to adjust any low level packet
fields of the simulated communication.

The last component that reads the profile and starts working as a decoy is the server. All of the
integrated approaches are considered in such way that the server should have minimum analysis of
the profile and what service it is currently simulating. This generalization is achieved with standard
non service specific way to find the proper responses and update them accordingly.

In order to properly implement, test and evaluate many techniques were used. The goal of them
is to test the decoy for correct behaviour in a standard device usage from their normal user, and with
extreme situations of an attack with penetration testing tools. Some of the techniques are general and
used for all services. Such example is the generation of second profile from scanning the decoy and
comparing it with the original. Other techniques are adapted for the specification of the tested service
and evaluate its correct usage. The results show that the generated decoy is successfully mimicking
the scanned IOT device. Some limitations of the approach were discovered and they can be properly
considered in future versions of the project. The solution is also compared with other projects that
have similar approaches or results and it showed that none of them combines all desired characteristics
having automatic and dynamic way to approach every tested device.

5.2 Future work

The performed research and the created project showed promising results that the approach to profile
and then reproduce an IOT device behaviour is possible with the integrated methods. However, this
is only the first step that was needed to proceed with future more direct solutions. Based on the
findings of the research and the evaluation results of the project, I have identified several next steps
that should be executed:

Generalization of the profile service format All of the used approaches like response-request,
response-sequence and end-of-sequence approaches should be combined in a single general method.
This will further reduce the level of analysis involvement from the server when reading the pro-
file. That generalization could be obtained with additional fields and parameters included in the
profile that will inform the server how exactly it should analyze the profile information and how
to reproduce it, without knowing which method is used from the contacted service.

Enriching of the covered services The four integrated services are just initial stage that should
lead to covering many more application level services. This will increase the potential usage of
the profiler to many other types of devices. Some promising options are services like: HTTPs,
SSH, FTP, RTSP and etc. Another potential service which is widely used from IOT devices is
MQTT used for publish-subscribe-based messaging communication.

Non tcp service coverage All of the considered services so far are using TCP as a transport pro-
tocol. It creates more secure and reliable connection that is often the target of an attacker.
However, in next of version of the profiler it should be able to simulate other services which
use the other main protocol of the transport layer - UDP. Voice and video traffic is generally
transmitted using UDP(unlike RTMP). Other services which are mainly accessed from routers
are Domain Name System (DNS), the Simple Network Management Protocol (SNMP) and the
Dynamic Host Configuration Protocol (DHCP). Another protocol that is primarily designed and
used in the IOT domain is Constrained Application Protocol (CoAP).

Automatic non analyzed service coverage Based on my research and evaluation findings it is
not possible to cover an application level service with abstraction from the way it works. There
is always some specific data, request, or the order of them that is essential to be profiled.

66

Hence, analyzing and integrating the top services in the profiler is necessary for the medium
interaction purposes that is my target. However, a more limited, but fully service independent
approach is still needed to cover any non integrated service. Such service could also be any
custom manufacturer communication running on that device. An example approach could be to
passively or actively listen to a service traffic and automatically try to select the most suitable
approach. It is a less precise and more prone to mistakes approaches, but a potential success
would increase drastically the value of the profiler and would easy the process of deep integration
of that service in a future step.

Standalone decoy platform In the current project, the role of the decoy is transferred to the server,
which after analyzing the profile data is able to act as such. However, the decoy should be an
individual virtual component that is not connected to any host machine. It will properly isolate
the decoy from any host machine characteristics and communication. This virtualization is also
needed for further integration into the Cybertrap platform that will take care of all logged events
data reported from the decoy and will present it to the user in live and user-friendly manner.
Choosing such platform requires additional research that will reveal which platform would be
easily virtualized and the results from the logged events created from the decoy would not be
coupled with the data generated from the platform itself.

67

Acronyms

API Application programming interface.

DDOS Distributed Denial of service.

HTML Hypertext Markup Language.

HTTP Hypertext Transfer Protocol.

HTTPS Hypertext Transfer Protocol Secure.

IOT Internet of things.

IP Internet Protocol.

IPP Internet Printing Protocol.

JSON JavaScript Object Notation.

MISP Malware Information Sharing Platform.

OS Operating System.

PC Personal Computer.

REST Representational state transfer.

RTMP Real-Time Messaging Protocol.

RTSP Real Time Streaming Protocol.

SSH Secure Shell.

TCP Transmission Control Protocol.

UDP User Datagram Protocol.

WWW Worl Wide Web.

XML Extensible Markup Language.

68

Bibliography

[1] N. Eddy, 21 Billion IoT Devices To Invade By 2020, 2015
https://www.informationweek.com/mobile/mobile-devices/gartner-21-billion-iot-devices-to-invade-
by-2020/d/d-id/1323081

[2] M. Antonakakis, T. April, Understanding the Mirai Botnet, August 2017
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-antonakakis.pdf

[3] R. Conoth, Malicious cryptocurrency miners, Jan 2019
https://arxiv.org/pdf/1901.10794.pdf

[4] Wikipedia, Honeypot (computing), May 2019
https://arxiv.org/pdf/1901.10794.pdf

[5] Medium Interaction Honeypots,
https://pdfs.semanticscholar.org/9d46/8fa983b844c76a07b1e3ea63d6f7a9cae294.pdf

[6] Wikipedia, Internet protocol suite, May 2019
https://en.wikipedia.org/wiki/Internet protocol suite

[7] Nmap scripts, http-enum
https://nmap.org/nsedoc/scripts/http-enum.html

[8] Wikipedia, Transmission Control Protocol, June 2019
https://en.wikipedia.org/wiki/Transmission Control Protocol

[9] Wikipedia, Internet Protocol, June 2019
https://en.wikipedia.org/wiki/Internet Protocol

[10] P.Lippman, Passive Operating System Identification From TCP/IP Packet Headers, 2003
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.114.194rep=rep1type=pdfpage=44

[11] Wikipedia, Network socket, June 2019
https://en.wikipedia.org/wiki/Network socketRaw socket

[12] Internet Printing Protocol/1.1: Model and Semantics, January 2017
https://tools.ietf.org/html/rfc8011section-5.4.15

[13] Hypertext Transfer Protocol – HTTP/1.1, June 1999
https://tools.ietf.org/html/rfc2616

[14] S. Shah, An Introduction to HTTP fingerprinting, May 2004
https://www.net-square.com/httprin

[] Wikipedia↪Webscraping↪May
https.//en.wikipedia.org/wiki/Web scraping

[] TELNETPROTOCOLSPECIFICATION↪May
https.//www.rfc↩editor.org/rfc/pdfrfc/rfc.txt.pdf

69

[] Wikipedia↪Telnet↪April
https.//en.wikipedia.org/wiki/Telnet

[] Wikipedia↪SANSInstitute↪June
https.//en.wikipedia.org/wiki/SANS Institute

[] Wikipedia↪Denial↩of↩serviceattack↪June
https.//en.wikipedia.org/wiki/Denial of Service attack

[] Wireshark
https.//www.wireshark.org/

[] Ncrack
https.//nmap.org/ncrack/

[] H.Parmer↪Adobe’s Real Time Messaging Protocol, 2012
http://wwwimages.adobe.com/www.adobe.com/content/dam/acom/en/devnet/rtmp/pdf/rtmp specification 1.0.pdf

[23] Action Message Format, 2006
https://wwwimages2.adobe.com/content/dam/acom/en/devnet/pdf/amf0-file-format-
specification.pdf

[24] Wikipedia, Secure Shell, June 2019
https://en.wikipedia.org/wiki/Secure Shell

[25] LibRTMP, 2011
https://rtmpdump.mplayerhq.hu/librtmp.3.html

[26] SeleniumHQ Browser Automation, 2018
https://www.seleniumhq.org/

[27] Shodan search engine
https://www.shodan.io/

[28] ipptool
https://www.cups.org/doc/man-ipptool.html

[29] VLC media player, 2019
https://www.videolan.org/vlc/

[30] F. Pramodianto, IoT Link: An Internet of Things Prototyping Toolkit, 2015
https://ieeexplore.ieee.org/document/7306927

[31] Son N. Han, DPWSim: A simulation toolkit for IoT applications using devices profile for web
services, March 2014
https://ieeexplore.ieee.org/document/6803226

[32] Q. Hu, Device Fingerprinting in Wireless Networks: Challenges and Opportunities, Sep 2015
https://ieeexplore.ieee.org/document/7239531

[33] N. Provos, A Virtual Honeypot Framework, 2004
https://www.usenix.org/legacy/event/sec04/tech/full papers/provos/provos html/

[34] M. Sweet, P. Zehler, How to Use the Internet Printing Protocol
https://www.pwg.org/ipp/ippguide.html

[35] J.Alet, pkipplib library, 2006
http://www.pykota.com/software/pkipplib/

[36] Owasp, Nikto
https://www.owasp.org/index.php/Nikto

70

[37] Vdoo, 2019
https://www.vdoo.com/honeypot-threat-detection

[38] H. Gupta, iFogSim: A toolkit for modeling and simulation of resourcemanagement techniques in
the Internet of Things, Edgeand Fog computing environments, Oct 2016
https://onlinelibrary.wiley.com/doi/epdf/10.1002/spe.2509

[39] pkipplib, A python library for IPP requests. http://www.pykota.com/software/pkipplib/

71

