
Eötvös Loránd University
Faculty of Informatics

leveraging zero-knowledge succinct
arguments of knowledge for efficient
verification of outsourced training of

artificial neural networks

P. Burcsi M.J. van de Zande
Dr. Ir. at ELTE Computer Science
A. Peter
Dr. Ir. at UTwente
A. Szabo
Msc. at E-Group

Budapest, 2019.



M. J. van de Zande: To the Verification of Correct Outsourced Machine
Learning, Leveraging Zero-Knowledge Succinct ARguments of Knowl-
edge for Efficient Verification of Outsourced Training of Artificial
Neural Networks, c� May 2019



ABSTRACT

Incremental innovations have led to practical implementations of both
Artificial Neural Networks and Succinct Non-interactive ARGuments,
this thesis explores the practicality of using these SNARGs to verify
outsourced training of an ANN. This training algorithm presents a
particular case of Verifiable Computation as it relies on large quanti-
ties of input data, floating point arithmetic and parallel computation.
Decomposition of the core concepts ANNs and SNARGs to their elemen-
tary building blocks allows the identification of imposed constraints
mapped to the case of outsourced training and existing practical
implementations of proof systems. The verdict separates the two com-
putations and postulates how the Linear Probabilistically Checkable
Proofs fit the inference computation and how the Interactive Oracle
Proofs, specifically STARKs, fit the training computation.
This work builds on the the works of Chabenne et al. and Ghodsi
et al. that studied the verification of the inference computation and
the work of Wu et al. that studies a similar training algorithm in the
context of DIstributed Zero-Knowledge.
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It is my experience that proofs involving matrices can be shortened by 50%
if one throws the matrices out.

— Emil Artin [4]
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1
INTRODUCT ION

As our society is capable of gathering increasing amounts of data, to
analyse this data is a natural subsequent step. The algorithms used
for this analysis require increasingly more computational and mem-
ory resources to manage and utilise these growing flows of data. A
consequence of this trend is that only a limited number of players in
the field have access to this data and likewise, only a limited number
of players have the resources, the computational power, required to
effectively run these algorithms. Inherent to this trend is that most of
the other, smaller, players are not able to profit from the progress and
innovation made in the fields of Data Science and Artifical Intelligence.

The first of the two challenges, the fair data availability of data, is a
challenge out of scope of this thesis. Primarily because we believe that
the solution does not lie within the field of cryptography, but requires
a more social approach. For example, comprehensive regulations to
determine data ownership, preserve privacy and enforce public data
availability.

Different from the first, the field of cryptography might offer so-
lutions for the second challenge. We believe that a market in com-
putational power and corresponding tasks, Data Science specific or
not, might balance the distribution in analytical wealth. Products and
services like Machine Learning as a Service (MLaaS)1 have come to rise
and speak for the interest in outsourcing machine learning tasks. But
these solutions rely completely on trust of the outsourcing party in the
computation providing party. Especially when it comes to machine
learning problems, optimisation problems that do not always con-
verge, it is close to impossible to verify correct computation without
re-executing it.

We consider the outsourcing party to be V , the verifier that requires
some form of proof the task was done correctly, and the providing
party to P , the prover that will need to convince V that it has done
the task correctly. There are basically two ways to outsource machine
learning jobs: the first option for outsourcing a machine learning task
is for V to ask P to keep training on some specific training set and
algorithm until the model converges and the performance satisfies

1 A selection of MLaas providers:
Amazon: https://aws.amazon.com/machine-learning/
Google: https://cloud.google.com/products/ai/
Microsoft: https://azure.microsoft.com/en-us/overview/ai-platform/
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2 introduction

some minimum threshold. This requires P and V to agree on the edge
cases, what happens if the model does never converge, when to stop,
a price per iteration, how does P quantify its work and proof this to V .
Following the alternative approach, V asks P to execute some specific
training algorithm for a predefined number of steps or iterations. This
solves the issue with non-converging machine learning algorithms,
but V will still require some proof that the answer is correct and that
P actually did perform the number of executions. The only way for V
to find any inconsistencies is by re-executing the algorithm, which is
often impossible considering the limited resources of such parties. The
latter describes the current situation most accurate. MLaaS providers,
similar to most other cloud solutions, offer their services, keep their
own metrics and ultimately charge by these same metrics. It is merely
the image, the name, brand and the absence or lack of publicly dis-
closed scandals, that creates the required trust. Or the absence of an
alternative.

In recent years, in particular the past five, have innovations in the
fields of Information Theory, Complexity Theory and Cryptography
led to practical implementations of a potential alternative: succinct
arguments. The notion of Verifiable Computation (VC) and succinct
arguments itself exist for a longer time and term the proof systems
that allow a prover P to proof correct execution of some task to a
verifier V , such that the running time of verification is significantly
shorter than the running time of naive execution of the algorithm.

Theoretical study of these arguments has resulted in proof systems
that have the expressiveness that allows provers to prove statements
of all problems in NEXP, succinctly. In practice, most real use case
live in the realm of distributed ledgers proving valid transactions or
solvency.

This thesis explores the real practicality of state of the art argument
systems in VC, specifically on the use case of verification of outsourced
training of an Artificial Neural Network (ANN). This computation is
not only chosen due to its modularity and importance to the field of
Deep Learning. But in particular because it incorporates a variety of
characteristics typical to many computations susceptible to outsourc-
ing, to name a few: most of the arithmetic is done over floating points
in contrast to the the finite fields in cryptography, the computation
is highly parallelisable and relies greatly on the use of specialised
hardware e. g.Graphical Processing Unit (GPU) and finally it processes
vast amounts of input data.
In short, this problem defines a typical computation one would like
to delegate to an external party but runs, if constraint by a network
description and number of iterations, in polynomial time.
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1.1 research questions

To formalise and structure the aim and goal of this research we re-
instate the research questions that define this research. The main
research question we aim to answer:

main research question :
Can Zero-Knowledge ARguments of Knowledge verify correct
training of Artifical Neural Networks fulfilling the completeness,
soundness, succinct and zero-knowledge properties?

To achieve this, the following sub-questions will be answered:

sq 1 What are the essential building blocks of the training algorithm
of an Artificial Neural Network and what are the constraints
imposed?

sq 2 What are the essential building blocks of succinct arguments
and what constraints do these impose on efficient verification of
the computation of Artificial Neural Networks?

1.2 approach

This thesis aims to explore the practicality of state of the art solutions
on a particular use case. Through definition of our interpretation
of practical as part of our problem statement in section 1.4 we aim
to exclude further subjective decisions and constraints. From this
problem statement this research starts with decomposition of both
concepts ANN and proof systems to identify their essential building
blocks and consequently the theoretical and/or practical allowances
and constraints these blocks impose on a potential solution. These
theoretical and practical possibility and impossibility-results are then
combined to construct the intersection of practical argument systems
that allow for succinct verification of outsourced training of an ANN.

1.3 outline

The next section, the problem statement, defines our definition of
practicality and the constraints imposed by this definition of the case
study. Then chapter 2 elaborates on related work. Chapter 3 answers
sub-question 1 through the introduction and decomposition of ANNs.
Starting from an intuition on how machines learn, a definition of the
fundamental algorithms that make the model and the explicit defini-
tion of the computation that requires verification with its constraints.
Chapters 4 and 5 answer sub question 2 through the introduction
and decomposition of the concept of succinct arguments. The first
starts with an intuition of proving, introduces the formal definition of
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essential properties and defines the three information theoretical proof
systems that form the core of practical implementations. The second
starts with a remark on the proposed categorisation followed by the
introduction of the conceptual frontend and backend of practical proof
systems. The former reduces generic problems in for example high
level code to circuits and constraint satisfaction problems that serve
as a generic representation of computation and as such as the input
for the backend. The backend combines the cryptographic primitives
and the information theoretical proof systems to create practical proof
systems to prove computation on presented problem. In particular we
outline some of the fundamental and state of the art backend imple-
mentations and their properties to finally collate to a preselection on
potentially suitable proof systems. Chapter 7 combines the findings
on Artificial Neural Network and proof systems, elaborates on the
conflicting constraints to ultimately answer the main research question.
We conclude with a recommendation for those in need of a practical
solution in this use case, elaborate on potential future works.

1.4 problem statement

In this thesis we consider the verification of outsourced training of
an ANN as a prime example of a computation that is not particularly
complex in terms of Complexity Theory but nonetheless requires
significant amounts of parallel computation, additionaly it processes
floating points and typically significant amounts of data. A typical
computation to outsource one could say.

We are aware of the fact that this problem is strategically chosen
primarily in the interest of its properties and therefore point out that
there exist a variety of other computational problems that naturally
match the constraints imposed by these succinct argument systems. A
prime example of such a computation is the transaction verification in
ZCash2.

This particular use case comes with a context and use in practice
and also the term ”practical” is rather subjective, given both of these
pliable characterisations of constraints a more strict definition of the
case and practicality is given by:

1. The verifier runs the verification procedure in less time than it
would run the naive computation.

2. The prover runs the computation and proof generation with
reasonable low overhead, in quasilinear time with respect to the
naive computation.

2 For more information on this: https://z.cash
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3. The prover can use the parallelisation of GPUs for the ANN com-
putation and proof generation.

The first requirement follows directly from the definition of VC and
is a straightforward requirement for an outsourced computation in
practice. The second is not as self-evident as the first as in most VC-
schemes the prover is considered to have unbounded computational
power. We limit the additional cost of proof generation to one that
is approximately a constant factor larger than the computation itself.
Additionally the prover has, inherent to the computation of these
networks, GPUs at its disposal which it should be able to use for the
ANN related computation and, to fulfil the second requirement, the
proof generation as well.





2
RELATED WORK

A multitude of prior research have suggested the use of proof systems
to verify outsourced computation. One prime example is the work
by Babai et al. 1991[6] that describes how a two-prover interactive
proof systems allows for computation to be outsourced to a cluster of
untrusted machines but also for the result to be verified efficiently: “In
this setup, a single reliable PC can monitor the operation of a herd of super-
computers working with possibly extremely powerful but unreliable software
and untested hardware” .

Termed Verifiable Computation, Delegation of Computation, Exe-
cution or Computational Integrity or Certified Computation - each
of these definition describes the same concept of a two party system;
having a powerful prover and an efficient verifier that with the help of
randomness, interactivity or proof structure come to correct result of
the computation and corresponding proof of correctness. The verifier
verifies the proof efficiently, in less time than the time required to
execute the computation herself to ultimately accept a valid proo with
overwhelming probability and accept a false proof with negligible
probability.

Parallel to the incremental innovations in proof systems, the field of
data science or more specifically artificial neural networks experienced
similar progress. The advances in this field resulted in new and more
efficient algorithms to predict and classify that require significant
amounts of resources still.
In recent years MLaaS has gained popularity and is now supported

by most cloud service providers (sources). But the trust in a party to
present correct results is currently primarily based on the name of the
company of a company and their assessment of the financial impact a
potential scandal might have.

To the best of our knowledge there exist only three works that have
effectively looked into the computational verification of artificial neural
networks via proof systems. Because we distinguish two components
in the ANN algorithms we categorise related work following the two
categories.

inference , also known as feed-forward or classification, uses the
weights and topology of a prior trained ANN to label input to
the algorithm.

training , also known as back-propagation, consists of two steps
that follow inference, starting with the evaluation of an error or

7
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the cost of the result and consecutively propagate the error back
through the network to update its internal state.

Chabenne et al. 2017[19] focus on the inference part alone. The work
constructs a system that uses proof composition to separate general
purpose VC from specialised embedded efficient VC. In the context
of ANN inference the matrix multiplication is delegated to the prov-
ing and verification of the more efficient Sum-Check[40, 51] protocol,
made non-interactive with an algebraic hash function and the Fiat
Shamir Heuristic. All other computations including the verification
of the Sum-Check are proven and verified by Pinocchio[43], a general
purpose proof system.

Ghodsi et al. 2017[27] focus on the inference part as well. This work
describes a specialised proof system called SafetyNets that builds on
Interactive Proof (IP) system GKR[29] and uses efficient Sum-Check[51]
for matrix multiplication as well. The system limits itself to proving
and verification of deep neural networks that can be represented as
arithmetic circuits over finite fields. Besides the dense network struc-
ture of ANNs this work also implements pooling layers to reduce the
network size and to help prevent overfitting. Instead of the common
ReLu activation function this system uses x2 demanding finite fields
with large primes. Through scaling and quantisation a similar network
trained on floating point values can be transformed to a feed-forward
network that allows for verification.

Wu et al. 2018[56] focus on the training part but with respect to a dif-
ferent algorithm and thus a different computation, in particular linear
regression and covariance matrix multiplication. This work describes
a new system DIstributed Zero-Knowledge (DIZK) that leverages par-
allelisation in the proving algorithm of the Succinct Non-interactive
ARgument of Knowledge (SNARK) by Groth[32] to reduce the limitia-
tions of this, and similar, monolithic systems. They manage to improve
the 1 ms per gate to 10 µs per gate and expand the upper bound of
previously 10-20 million gates per statement to multiple billions.



3
ART I F IC IAL NEURAL NETWORKS

3.1 how machines learn

Machine learning is the field of study that aims to find algorithms that
make machines learn from prior experience. In this context learning
means to reduce the error with respect to a specific goal, an optimi-
sation problem. One particular algorithm that has gained significant
attention and led to a multitude of applications in recent years, is the
ANN introduced by McCulloch and Pitts in 1943 [46].

This early work describes how the mathematician and neuroscientist
aim to mimic neurons of the human brain in a mathematically model.
This model consisted of multiple layers of artificial neurons that based
on some binary input compute an aggregation g(x) and activation
f (g(x)) successively to come to some binary output defining one of
the inputs for the neurons in the next layer. These artificial neurons, al-
though not accurate, mimic the biological neurons with respect to the
dendrites (input), soma (aggregation), axon (activation) and synapse
(output). In the following decennia algorithms like back-propagation
and stochastic gradient descent, but also hardware improvements that
allow for parallelism e.g. GPUs, led to successful training of these
networks. Networks that are now progressively used in applications
in everyday life.

3.2 artificial neural networks

More formally, an ANN tries to approximate an unknown function t
that represents the ”truth” on some input x and does this by testing an
hypothesis h on the inner state of the network, prior experience, and
that same input x. The learning happens in three steps; first an evalua-
tion of the hypothesis h(x), also known as feed forward, results in an
output ŷ, secondly an evaluation of some error function E that com-
pares the ground truth t(x) and the output ŷ which results in an error
and finally an update of the internal state through back-propagation
of this error. This final step is what improves future hypothesis and
represents the learning of an ANN.

This process can be split up in two categories based on their applica-
tion; inference and training, step 1. The former feeds the input to the
network forward allowing for classification and prediction while the

9



10 artificial neural networks

latter calculates the error of the inference result and propagates this
error back through the network directly updating the internal state to
improve future outputs, step 1, 2 and 3.

The artificial neural network itself consists of a set of layers with
an aggregation and activation function per node, a set of weights
that connect the previous layer to the next layer and finally an error
function to determine the deviation from correct results.

3.3 dense neural network

A simple example of a network is a fully connected three layer network
with one input layer, a hidden layer and an output layer respectively.
This network is often used as an example to classify the written digits
0-9 of the MNIST data set. With 784 nodes in the input layer namely
the 26 x 26 pixels of the written digits, 300 nodes in the hidden layer
an arbitrary number in between 10-784 and 10 nodes in the output
layer each representing one of the digits 0-9.

An image of a written digit assigns a byte value to each of the 784
input nodes which in turn feed these values multiplied with their
corresponding weights to each node in the hidden layer. For each of
the nodes in the hidden layer computes the aggregation function on
the multiple outputs of the previous layers including an input indepen-
dent value, called the bias, and computes a single result through the
non-linear activation function. Similar to the previous layer, inputs to
the output layer are the products of outputs and their corresponding
weights of the previous layer and aggregated to come to a single value
per node. Often the label associated with the node with the maximal
value is chosen as the prediction or classification result.

In the context of supervised learning, the learning situation where
we have a correct label for each of the inputs, the error function
computes the error based on the difference between the correct and
the predicted label. This error value or cost is then propagated back
through the network updating the weights proportional to its signifi-
cance in a misclassification and a predetermined learning rate. These
algorithms that define the significance based on the aggregation, acti-
vation and error functions generally use some form of derivative to
move towards an optimum, a prime example is called gradient descent.
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3.4 complex networks in practice

This example gives a general idea on the inference and training algo-
rithms and a basic design and topology of an artificial neural network.
But in practice the flexibility in choice of functions, layers and topol-
ogy of networks have lead to significantly more complex constructs.
Following the overview of common network structures by Salvaris
et al.[47] and a generalisation of the works described by Schmidhu-
ber[48] we describe four general constructs that have led to applica-
tions in image classification, object detection, speech recognition and
natural language processing. We distinguish Convolutional Neural
Network (CNN), Recurrent Neural Network (RNN), Generative Adver-
sarial Network (GAN) and Variational Auto-Encoder (VAE).

3.4.1 Convolutional Neural Network

Convolutional Neural Networks[25] have been proven to be successful
in the use cases of a.o. image classification and object detection. These
networks are similar to the simple example but generally consist of
more layers, of which at least one implements a convolutional layer.
Convolutional layers take advantage of the context, surrounding pix-
els, of each pixel similar to how we classify furry animals when we see
a furred paw. Via a range of convolutional filters, kernels, and limited
perceptive fields, sliding windows, this network can cross-correlate
the pixel values of (parts of) some image and reduce them to features
that are in turn used for classification. To reduce the complexity of
the network so called pooling layers are introduced to reduce the
dimensionality. A pooling layer reduces a cluster of outputs to a single
maximal or average value.

A CNN can be seen as a composition of two separate networks:

feature extractor a dense network using the convolutional and
pooling layers to detect and aggregate features, a more compre-
hensive representation of the input.

classifier another dense network but similar to the simple network
example that classifies input based on the extracted features of
the feature extractor.

3.4.2 Recurrent Neural Network

RNNs[45] have been proven to be effective in use cases that have
recurring or sequential input data. Good examples are applications
such as natural language processing and time series analysis. What
differentiates this network structure from the simple example or the
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other networks is that the inference algorithm of the network is not
feed-forward but allows for feed-back loops. This results in a network
that uses a previous state with the current feature vector to create
some effect that is often referred to as “memory”.

3.4.3 Generative Adversarial Network

GANs[31] have been proven in a variety of translation problems such
as text-to-image creation, image-to-image creation or enhancement.
The adversarial aspect of its name originates from the two competing
networks that make up the system. We recognise two networks; a
generative network that aims to generate some output or label based
on some input and a discriminative network that aims to distinguish
between the generated input and the real input. The success of one
or the other is again propagated back through the network depend-
ing on either error function. An interesting and recent result is the
StyleGAN1[37] that is trained to generate images fulfilling specific char-
acteristics.

Similar to the CNN, the GAN can be seen as the composition of two
seperate networks:

generator a dense network that is trained to generate realistic
output from a random input.

discriminator another dense network but similar to the simple
network example that is trained to classify whether its input is a
generated or a real input.

3.4.4 Variational Auto-Encoder

VAEs[39] have proved their effectiveness in use cases like anomaly de-
tection or recommender systems but also as an essential part of other
networks as method for dimensionality reduction. What distinguishes
this type of network from the other networks is to be found in the
approach to the training of the network. Instead of input data and
labels these networks are tasked to generate the input from its input.
The networks are designed with a restriction that prevents simply
copying the input data to the output layer. This restriction is generally
realised through a lower dimension hidden layer that has to encode
the essential independent features in separate neurons to be able to
recreate the output.

1 A prime example of an implementation can be found here: https://www.
thispersondoesnotexist.com and shows a randomly generated face at each page
load.
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Combinations of these networks exist as well, a prime example of
such a composition are Long Short-Term Memory (LSTM) networks[34]
that are a combination of a CNN and a RNN. This combination creates
a network suitable for object detection and image classification on
single images but also on videos, essentially image streams, as it uses
both new and prior input to infer the next output.

3.5 definition of computation

Each of the previous complex networks relies to a great extent on
the composition of multiple dense layers or more abstract, multiple
networks. An ANN G takes a single input x, vector ~x or batch X and
evaluates to a prediction or classification ~y, inference. This evaluation
is then compared with some label ~̂y and results in a cost, also error,
that is then propagated back through the layer and network to update
the inner state, training. The updates of each element are proportional
to the influence of each element on the eventual error of the inference
computation.

We define a network G to be the set of L connected layers and the
cost function C to determine the error. Each of the layers is defined
by the tuple of weights and the activation function of that layer, the
weights define the influence of the m(i�1) outputs of the previous layer
on the m(i) artifical neurons in this layer. Here m(i) denotes the number
of neurons in layer i.

G =
⇣
C,

n
L(1), . . . , L(L)

o⌘
(3.1)

L(i) =
⇣
W(i), s(i)

⌘
(3.2)

Where the input, output, label and state are defined by:
~x 2 Rm(0) the input
X 2 Rm(0)⇥n batch input with batch size n
~y 2 Rm(L) the output
~̂y 2 Rm(L) the output label
W(i) 2 Rm(i�1)⇥m(i) the weight matrix of layer i
h the learning rate

And the thus the corresponding cost and activiation functions are
defined by:
C : Rm(L)

⇥Rm(L)
! Rm(L) cost function

s : Rm(i)⇥n ! Rm(i) activation function

The exact composition of the layers including the specific cost and
activation function determine for a large part what the computation
looks like under the hood. For this reason we will have a closer look
into the layer composition and network composition and define their
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respective computations in terms of matrix multiplications, both dot
products ”·” and the element-wise Hadamard product ”�”.

3.5.1 Layer Composition

Each layer L(i) is defined by its weights and activation function. The
weights connect this layer to the previous layer and the activation in-
troduces non-linearity to the network which transforms it in a model
that is able to describe more complex relations over a linear regres-
sion model. There is a wide variety of activation functions available
therefore we restrict the selection to the the most generic and common
functions used in practice. We distinguish five different activation
functions: the sigmoidal function (equation 3.3), softmax (equation
3.4), hyperbolic tangent function (equation 3.5), Rectified Linear Unit
(equation 3.6) and the unconventional x squared (equation 3.7). We
will denote the activation function f (x) with s if there is no need for
further specification.

f (x) = s(x) =
1

1+ e�x (3.3)

f (x) = s(x)i =
exi

Âk
j=1 e

xj
for i = 1, . . . , k with k = m(L) (3.4)

f (x) = tanh(x) =
(ex � e�x)
(ex + e�x)

(3.5)

f (x) = ReLU(x) =

8
<

:
0 if x < 0

x if x � 0
(3.6)

f (x) = x2 (3.7)

Also we will not consider any aggregation functions h(x) differ-
ent from the weighted sum inherent to the dot product between the
weights and output.

Feed-Forward

The feed-forward computation consists of the weighted sum and the
elementwise activation per layer. So when we consider a a single
neuron this is defined by;

a(l) = s(
k

Â
i=0

w(l)
i · a(l�1)) with k = m(l�1)

= s(~w(l)
·~a(l�1))
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and generalises to a dot product and elementwise activation with
respect to full layer. For completeness we define the activation of this
layer based on the previous layer;

A(l) = s(W(l)
· A(l�1))

Back-Propagation

Similar to the feed-forward algorithm the back-propagation algorithm
can be reduced to a sequence of tensor products as well. Individually
each of these products represents, informally, the proportion to which
each of the feed-forward steps contributed to the consequent error. The
algorithms used to determine this proportion are called optimisation
algorithms. There exist a wide variety of these optimisation algorithms
of which Gradient Descent (GD), Stochastic Gradient Descent (SGD)
and Mini-Batch Gradient Descent (MB-GD) are most common2 and will
be considered in this thesis.

All of the Gradient Descent-based methods use the gradient to
account for this proportion or influence in each of the subsequent
steps. This means that, for the final layer, we compute the gradient of
the error function evaluation towards the final activation (defined by
equation 3.10) to determine the difference in input that was required
for a better result. The resulting error is then propagated further back
as the product of the error and the gradient of the activation towards
the aggregation (defined by equation 3.11). Finally we propagate the
error further back to the activation of the previous layer A(l�1) (defined
by equations 3.8 and 3.12) and to the weights of this layerW(l) (defined
by equations 3.9 and 3.13).

∂E
∂A(l�1) =

∂Z(l)

∂A(l�1) ·
∂A(l)

∂Z(l) ·
∂E

∂A(l) = d(l�1) (3.8)

∂E
∂W(l) =

∂Z(l)

∂W(l) ·
∂A(l)

∂Z(l) ·
∂E

∂A(l) (3.9)

2 It is important to note that there exist alternative optimisation algorithms, to name a
few for the interested reader; Simulated Annealing (SA) and Levenberg–Marquardt
Algorithm (MLA)
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Where the partial derivatives are defined by:

∂E
∂A(L) =C0 (y, ŷ) (3.10)

∂A(l)

∂Z(l) =s0

⇣
Z(l)

⌘
(3.11)

∂Z(l)

∂A(l�1) =W(l) (3.12)

∂Z(l)

∂W(l) =A(l�1) (3.13)

As such, the composition of these equations results in the delta
towards the previous layer and to the internal state of the model,
the latter is essential to the learning of these ANN models. Updating
the internal state, the weights, of the model to reduce the error on
future predictions. The weights are updated corresponding to the
proportional error scaled by a learning parameter called the learning
rate.

W(l) =W(l)
� h

∂E
∂W(l) (3.14)

3.5.2 Network Composition

Each network G is defined by its cost function and its layers. Similar to
the activation functions for each layer each network has a cost function
and again there exists a wide variety of functions to choose from.
Also in this case we limit our scope to the most generic and common
cost functions in practice. We consider both the Mean Squared Error
(equation 3.15) and the Cross Entropy (equation 3.16) cost functions.

CMSE(y, ŷ) =�
1
n

n

Â
i=1

(yn � ŷn)2 (3.15)

CCE(y, ŷ) =
eyi

Âk
j=1 e

yj
for i = 1, . . . , k with k = m(L) (3.16)

Feed-Forward

Feed-forward generalises well to a full network as only the input
and the weights contribute to the final result. This means that the
inference computation can be defined by the following sequence of
tensor products and element-wise activations.

~y =s(W(L)
· s(W(L�1)

· . . . s(W(2)
· s(W(1)

·~x)) . . . ))
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Back-Propagation

Back-propagation generalises to a full network as well but at a greater
cost. Where in the feed-forward computation the weight tensors are
the only data stored in memory the back-propagation computation
requires the A(l) and Z(l) to be stored or re-computed for each of
the layers. The computation itself does generalise well and is defined
by the following sequence of tensor products and element-wise func-
tion evaluation, specifically the derivative of the cost and activation
functions.

d(1) =
⇣
W(1)

· . . .
⇣
W(L)

· C0 (y, ŷ)
⌘
� s0

⇣
Z(L)

⌘
. . .

⌘
� s0

⇣
Z(1)

⌘

Similar to this computation is the computation that updates the
weights for each layer. On the way propagating back, the algorithm
can update the weights of each layer using the yet computed gradi-
ents of this layer and the activations computed in the feed-forward
computation, prior to this back-propagation.

∂E
∂W(l) =

⇣
A(l�1)

· d(l)
⌘
� s0

⇣
Z(l)

⌘
(3.17)

3.6 computational complexity

Aside from the exact definition of the computation and its composing
elements for implementation, the complexity and inherent cost of
the computation are of particular interest in the context of Verifiable
Computation. An understanding of the computational complexity of
the inference and training algorithms allows for a comparison between
the expected cost of native computation and the cost of verification.

Although the optimisation problems core to machine learning al-
gorithms, including ANNs, are assumend to be NP-hard[17] both the
inference and training algorithms are, as described in the sections
3.5.2 and 3.5.2, a sequence of dot and Hadamard tensor products.
This means that the verification of the inference and training compu-
tations, subject to this thesis, are in Pin contrast to the underlying
NP-hardoptimisation problem. Specifically, for a simple dense net-
work the complexity of inference the computational complexity is
polynomial and bound by k · O

�
n3
�
+ k · O (n) = O

�
n4
�
considering

naive matrix multiplication, n neurons per layer over k layers. The
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training or back-propation is an order of magnitude larger due to
the gradient computation in each of the layers, resulting in O

�
n5
�
.

Convolutional layers will increase the complexity of the network and
are therefore often used in combination with pooling layers, to com-
pensate this additional computational complexity. Both inference and
training of each of these networks are in P.

A direct consequence of this characterisation is that there does exist
a polynomial time algorithm that verifies the computation with a
complexity lower than that of the computation itself. This means that
a VC system to be of use, will need to have a verification time sublinear
to native execution. In all other cases the cost for the verifier to execute
the computation herself is more attractive as it is more efficient and is
trustless.

3.7 conclusion

In this chapter we abstracted the core computations for both the
inference and training algorithms to the extend that the mathematical
representation describes most common scenarios of artificial neural
networks used in practise. This abstraction helped in the identification
of characteristics of named algorithms in the context of their use cases.
We give a summary of these characteristics:

1. Practical efficiency of both training and inference rely to a great
extent on parallel computations and elementary GPU operations
such as tensor products.

2. The input, output and internal state are generally represented
as floating points and so is the arithmetic used in computation.

3. The activation functions are generally of high degree or even
exponential to ensure the required non-linearity.

4. Both inference and training are in Pand therefore require sub-
linear verification with respect to the computation.

With respect to the case subject to this thesis and its practicality we
distinguish the sequential and parallel nature of the to be outsourced
combination and whether it relies on maintaining intermediate states
or not. Specifically:

1. Outsourcing inference is primarily of value in a parallel fashion,
specifically on a large number of different inputs and on a pre-
trained network because of the static weights. An example of
such a use case is the labelling of a large collection of pictures.

2. Outsourcing training is inherently a sequential procedure as
the algorithm updates its own state based on new inputs. This
results in a computation that, in terms of efficiency, relies on
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storing intermediate values of the computation for reuse later in
the computation.





4
INFORMAT ION THEORET ICAL PROOF SYSTEMS

Core to the design and implementation of argument systems for Veri-
fiable Computation are information theoretical proof systems. These
systems integrate a prover and verifier algorithm and use random-
ness, interactivity or a proof structure to convince the verifier to
accept a valid proof or, with non-negligible probability, to decline
an invalid proof. This chapter will recall the notion of formal proofs,
extend this notion to probabilistic proofs and elaborate on how the
randomness, interactivity and proof structure contribute in the con-
struction of succinct and efficient proofs, in particular; Interactive
Proof, Probabilistically Checkable Proof, Interactive Oracle Proof and
their non-interactivity counterparts in the Random Oracle Model.

4.1 intuition on proving

To present an intuition and to elaborate on the properties we require
from mathematical proofs we introduce an informal example: Con-
sider a professor and a class of students. At the end of the semester
the professor is required to verify whether she was successful in trans-
ferring the knowledge to the students and whether her students are
capable of reproducing the knowledge. To conduct this test the profes-
sor considers four forms of examination that will allow the students
to prove to the professor that they possess the required knowledge
and the skill to reproduce this later in time. We start with the naive
approach and will come back to the three other strategies later in this
chapter, when succinctness and efficiency comes to play.

The naive way for the professor to check sufficient skill and knowl-
edge of her students is to ask the students to write a report. This report
should contain all the knowledge subject to this course. The resulting
report then serves as a proof for the student of being able to reproduce
the appropriate knowledge, as was intended by the professor.
This test fulfils two important properties that we require of proof

systems:

completeness : A student with the appropriate knowledge and
skill will most certainly pass the test.

soundness : A student without the appropriate knowledge or skill
will not pass this test with high probability.

It also shows the impracticality of a naive approach and hints on
other favourable properties we will require from a proof system to

21
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make it suitable in the context of verification of correct computation on
a artificial neural network. A non-exhaustive list of Informal examples
of such properties:

succinctness : A reduction in proof length, one can imagine that
the full report detailing all knowledge will most likely be of
considerable size and therefore demand a similar portion of,
let’s say, the inbox or available printing budget.

prover efficiency : The student has to write the full report which
takes considerable time and resources.

verifier efficiency : The professor has to read each of the reports
in full to ensure that not one of the students cheated by replacing
one of the paragraphs with some Lorum Ipsum.

zero knowledge : A little far-fetched, but imagine a PhD candidate
that includes some additional information, some of his own
ideas, in his work. A zero-knowledge proof system ensures
the professor does learn that bit of information that tells her
whether the candidate has the appropriate knowledge and skill
but nothing more than this one bit of information.

4.2 formal proofs

In contrast to the student report mentioned in the previous section
we consider formal proofs. These mathematical proofs represent an
inferential argument that combines the input, axioms and rules of
inference to show the validity of a mathematical statement. This infer-
ential argument can be represented as a tree that combines the (inputs
and )axioms via inference to the statement, the root. A proof string
p of such a proof could be the transcript of the inferential arguments
from the root of the tree to the previous layer, recursively, all the way
to the input and axioms. A prime example of such a tree is a boolean
circuit with boolean inputs and predicate logic, AND, OR and NOT,
that evaluates these inputs to a final output that represents the validity
of the statement.

Because of our particular interest in the verification of outsourced
computation, but also to allow for the zero knowledge property to
hold, we focus on decision problems alone. These computational theo-
retical problems evaluate to either true or false, one bit of information,
depending on the input to the problem. Note that the verification of
computation is inherently a computational decision problem as we
only accept the results true and false. Also note that the verification of
the correct output can easily be transformed to a non-deterministic
computational decision problem, e.g. f (x) = y via the arithmetic equa-
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tion 9 y : g(x, y) = 0 given 9 y : g(x, y) = f (x)� y.

More formally: the combination of parameters that define a specific
computational problem are referred to as the instance and the knowl-
edge or transcript that accounts for the non-deterministic choices in
the algorithm is referred to as the witness , or certificate in complex-
ity theory. The binary witness relation R is defined to be the set of
instance-witness tuples that are polynomial time decidable. The formal
language L is defined to be the set of instances that have a correspond-
ing witness in the relation R, specifically: L , { | 9 ( , ) 2 R}.

In the context of Verifiable Computation is the NEXP-complete
Computational Integrity language of particular interest. A first varia-
tion of this language got introduced as the ‘’Computationally Sound”
language by Micali[42] and refined to the ‘’Universal” language by
Barak and Goldreich[7] and finally the Computational Integrity (CI)
language by Ben-Sasson et al.[10, 14]. The language, following the
definition of the latter works, is defined by the instance-witness tuples
under the relation RCI where:

instance = (M, x, y, T, S) is a quintuple that consist of a non-
deterministic Turing Machine, an input, an output, a time bound
in terms of the number of steps and a space bound in terms of
the number of bits respectively.

witness is a transcript of the computation, a description of the
non-deterministic steps of M to get from x to y.

The Computational Integrity language: LCI , { | 9 ( , ) 2 RCI}.

4.3 proof systems

Up until now we considered static proofs where a verification algo-
rithm verifies the integrity of the proof independent of its origin. These
static proofs are inherently transferable, in the sense that the proof
can be used by anyone to prove this exact same statement. To argue
about transferability and the efficiency of proving and verification we
follow the traditional complexity theoretical notion of proofs analogue
too that of NP. We define a two-party proof system consisting of a
polynomial bound time Interactive Turing Machine (ITM) that runs the
proof verification procedure, the verifier V , and an unbound ITM that
runs the proof generation procedure, the prover P . This system with
the separate prover and verifier creates a model that is closer to the
way these proof systems will be implemented in practice. Additionally
this allows us to argue about the computational and memory costs for
both the prover and verifier as well as the communication between
the two parties.
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Following the conventions of complexity theory: a language L be-
longs to the complexity class NP if and only if there exists an efficient
algorithm such that V in the system P = (P ,V) where P and V are
two, respectively unbound and probabilistic polynomial bount ITMs,
such that the following properties hold:

completeness 8 2 L : Pr[V( ,p) accepts] = 1

soundness 8 /2 L,p⇤ : Pr[V( ,p⇤) accepts] = 0

The communication, or interaction, in proof systems has first been
introduced by Goldwasser, Micali and Rackoff[30] parallel to and
independent of Babai[5] in 1985. These new proof systems, coined In-
teractive Proofs and Arthur-Merlin protocols, are not only interactive
but also probabilistic in nature, meaning that there exists a chance
the verifier algorithm accepts a false proof. Via interactivity and ran-
dom challenges, the verifier can query each prover with unique set of
challenges resulting in a transcript that is non-transferable due to the
random challenges. Furthermore the randomness in the challenges
raised the question on what amount of additional information is re-
quired to prove the validity of a statement, in other words, what is
the knowledge complexity of a proof. The answer to this question
appeared to be that to prove a decision problem statement zero ad-
ditional bits of information are required to make an honest verifier
accept the proof, leading to the notion of zero-knowledge proofs.

4.4 efficient and succinct proof systems

The introduction of interactivity resulted in a variety of new proper-
ties such as adaptivity of proofs, non-transferability of proofs, zero-
knowledge proofs but most important for this research probabilistic
and more efficient proofs. The years after the introduction of IPs,
research identified three ingredients to efficient and succinct proof
systems: randomness, interactivity and proof structure. Composition of
these ingredients lead to the Interactive Proof, the Probabilistically
Checkable Proof and the Interactive Oracle Proof that serve as the core
information theoretical proof systems of practical implementations.
For each of the information theoretical proof systems we introduce:

1. an intuition of the idea behind the system via an example in line
with the student-professor example.

2. the essential properties and metrics of each theoretical system
with respect to Verifiable Computation.

3. variations on these systems and how these influence the expres-
siveness and efficiency of the system.

4. transformation of the public coin proof system to a non-interactive
variant in the Random Oracle Model.
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In order to compare the different proof systems, for example on ex-
pressiveness, we denote the appropriate parameters of a proof system
P[r, q, k, a, l, #, d, tv, tp] such that:
r( ) randomness
q( ) query complexity
k( ) round complexity
a( ) answer alphabet size
l( ) proof length
#( ) soundness error
r( ) robustness parameter
d( ) proximity parameter
tv( ) verifier time
tp( ) prover time

represent the bounds of P for a particular problem instance . This
allows us to argue about the implications and applicability of such a
system in reality. An example of a natural question to ask about such
a system is whether a proof system has the expressiveness to prove
outsourced computation with negligable error and realistic prover and
verifier times.

4.4.1 Interactive Proofs

An Interactive Proof[5, 30] uses both randomness and interactivity to
come to a verdict on the validity of a statement. A high level analogue
of this proof system would be an oral exam: The professor asks the
student targeted or, to stick with the proof system, random questions
and the student has to answer each and every one of them correctly.
Note that in this situation, a student with the required knowledge and
skill will always pass the test whereas a student lacking the knowl-
edge is likely to fail this form of examination. The chance of a slacking
student failing the test increases with the number of questions asked
by the professor. Also note that, although the overall proof length,
question and answer, is again similar for both parties the total length is
considerably shorter for long proofs compared to the naive approach
at the cost of a small chance that a slacking student might pass the test.

The formal definition of an Interactive Proof system P = (P ,V) is
given by a tuple of two ITMs P and V respectively unbound and prob-
abilistic polynomial time bound. such that the following properties
hold:

completeness 8 2 L : Pr[V(hP ,Vi( )) accepts] � 2
3

soundness 8 /2 L,P⇤ : Pr[V(hP⇤,Vi( )) accepts]  1
3
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Where h·, ·i( ) denotes the interaction between two entities over some
instance .

After the invention of a two-party interactive proof system adding
extra provers and exploring the consequences is an evident follow-up
step. Interestingly, adding multiple provers and prevention of com-
munication among provers results in non-adaptivity for interactive
proofs. Non-adaptivity in the sense that a prover can not effectively
adapt its response strategy based on prior challenges. This resulted
in Multi-prover Interactive Proof[8] that extend the expressiveness of
traditional IP = PSPACE[40, 50] to MIP = NEXP[6].

A public coin IP can be transformed to a Non-Interactive Random
Oracle Proof (NIROP) using the Fiat-Shamir heuristic[22]. In this case
the prover executes the interactive protocol and uses a random oracle
to determine the verifier‘s challenges by himself. The randomness is
based on the transcript of prior interaction using the instance . In
turn the verifier checks whether the simulated verifier computed the
response messages correctly and whether the challenges correspond
with the transcript and the random oracle.

4.4.2 Probabilistically Checkable Proofs

A Probabilistically Checkable Proof[2, 3], first introduced as the oracle
model[23] uses randomness and the structure of a proof to make the
verification of the proof more efficient. The structure of a proof can
be compared to the abstract, introduction and conclusion of academic
papers that adds redundancy and ensures consistency but allows for
the reader to get convinced by reading only parts of the work. The
professor asks the students to write their reports following these re-
quirements with respect to the structure. Similar to how we verify
related work by reading the abstract, introduction, results and conclu-
sion and some figures, the professor can use a similar strategy to verify
the knowledge and skill of each student by probabilistically checking
parts of the reports. Note that again a student with the appropriate
knowledge will pass this form of examination and depending on the
interdependency of the report structure a slacking student gets caught
with non-negligible probability. Another note, the time it takes for the
student to write the report increased slightly due to the redundant
parts of the proof and the constraints opposed by the structure. The
professor, on the other hand, does not have to read the full report as
she can read only parts of the proof and check whether the argument
is consistent. The cost to get the proof from the student to the professor
increased over the naive approach again due to the redundancy.
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The formal definition of the Probabilistically Checkable Proof system
PCPa,b[r, q] 1 is given by a tuple of two ITMs (P ,V), a prover and
verifier respectively unbound and probabilistic polynomial time bound.
The prover P( , ) computes a samplable proof string p such that
the verifier V( ,p) accepts or rejects the proof by querying only q(n)
bits of the proof using r(n) bits of randomness such that the following
properties hold:

completeness 8 2 L : Pr[Vp( ) accepts] � a

soundness 8 /2 L : Pr[Vp( ) accepts]  b

A public coin Probabilistically Checkable Proof (PCP) can be trans-
formed to a Non-Interactive Random Oracle Proof following the
approach of ‘’CS-proofs” by Micali[42] based on the earlier Merkle
proof[41] and an extension of the non-interactive arguments by Kil-
ian[38]. Following the respective approach the prover computes the
PCP proof string p, stores this proof in samplable chunks and con-
structs a Merkle tree, this results in the root of the tree that with the
help of the random oracle results in the indices of the chunks that
will be queried in the verification process. Finally, the prover sends
one proof to the verifier that composes the root of the Merkle tree,
the queried chunks and the authentication paths to these chunks. The
verifier, who has access to the same random oracle, can efficiently
verify the indices with a the Merkle root and a query to the oracle and
the Merkle inclusion proofs for respective chunks consecutively.

4.4.3 Interactive Oracle Proofs

An Interactive Oracle Proof [9] or Probabilistically Checkable Inter-
active Proof (PCIP)[44] uses all three, randomness, interactivity and
the proof structure and basically generalizes the IP and PCP to create
an efficient system. This form of examination can be compared to a
combination on the previous two. The professor asks the students
to write a small report with the summary, like in with the PCP, on
one topic of her choice every week and she verifies the each of the
reports by checking this summary. One can compare the appearing
random choice of topics by the professor with the random questions
of an IP and analogous the report sent back to her as the answer to
this question. Note that a student with the required knowledge will
pass this examination procedure and depending on the number of
topic report iterations and the inter-dependency of the summaries
a slacking student gets caught with non-negligible probability. Also
note that this does require the student to write this additional section

1 In contrast to the notion specified in 4.4 PCPs have the convention to denote the
completeness and soundness error explicitly via a and b respectively



28 information theoretical proof systems

for every report but if not all topics are chosen less than the naive or
the PCP. The professor on the other hand only has to choose the topics
and assess the reports by reading only part of it.

The formal definition of the Interactive Oracle Proof system IOP[k, a, l, r, q, #]
is given by a tuple of two ITMs (P ,V), a prover and verifier respec-
tively unbound and probabilitc polynomialtime bound. The protocol
consists of multiple rounds of interaction k, each of those starts with a
random challenge by the verifier on which the prover responds with a
proof pi. Finally the verifier queries q(n) bits of each proof using the
same r(n) bits of randomness for each proof and accepts or rejects the
proof, such that the following properties hold:

completeness 8 2 L : Pr[V(hP ,Vi( )) accepts] = 1

soundness 8 /2 L : Pr[V(hP⇤,Vi( )) accepts]  #

Where h·, ·i( ) denotes the interaction or transcript between the two
entities over some instance .

A public coin Interactive Oracle Proof (IOP) can be transformed into
a Non-Interactive Random Oracle Proof following a combination of
the approaches used to transform IP and PCP to their non-interactive
variants. Again, the prover simulates the interaction of the protocol
and uses the random oracle as the source of randomness for the veri-
fiers queries. For the PCP part, the prover computes the initial proof
p0 based on the randomness returned from a query to the random
oracle with the instance as input. From each of these proofs, the prover
constructs a Merkle tree of which the Merkle root and the previous
proof form, with the help of the random oracle, the challenge for the
next round, the IP part. As such the consecutive proofs are linked
via the Merkle-Damgard construction and result in a random output
that serves as the index for the samplable chunks to be queried in
the proofs p0, . . . ,pk. For each of the samples the prover provides
the Merkle roots and the authentication paths. The verifier can effi-
ciently check whether the instance and the Merkle roots compose to
the queried index and can subsequently verify the relevant chunks via
their respective Merkle roots and authentication paths.

4.5 argument systems

Each of the information theoretical proof systems has improved effi-
ciency for either the prover, the verifier, communication or a combina-
tion of the prior mentioned. In 1986 Brassard, Chaum, and Crépeau[18]
introduced the concept of an argument system that considers both the
verifier and the prover to be probabilistic polynomial time bound, in
contrast to the all powerful Merlin and the unbound prover in NP.
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This alteration of the resource assumptions of the prover and indirectly
the malicious prover and adversary, allows for cryptographic primi-
tives to hold that would not be secure against unbound adversaries.
Implicitly this means that such an argument system does no longer
retain its perfect soundness but computational soundness instead. As a
super-polynomial prover will still be able to cheat with non-negligible
probability. The introduction of cryptographic primitives in proof sys-
tems did not only allow for better efficiency but also introduced novel
concepts such as reusability of proofs and public verifiability.

4.6 proofs and arguments of knowledge

Proofs or arguments of knowledge are systems that satisfy the knowl-
edge soundness property, this property ensures that a convincing
prover also knows the witness. How to test whether an entity ”knows”
something and what the definition of knowledge is, is a topic on
its own. In the context of proof systems knowledge is defined to be
information that is stored or can efficiently be deduced or computed
from the information available. This deduction, load from memory or
computation is called the knowledge extractor E, a polynomial time
bound procedure that extracts the designated information from the
information available. A prover ”knows” the witness and presents a
Proof of Knowledge (PoK) if there exists an extractor that can derive

from the inner state and randomness of a prover if the prover con-
vinces the verifier.

More formally: a proof system is #-knowledge sound if there exists
a probabilistic polynomial time bound extractor with oracle access
to a possible malicious prover EP̃ such that the probability of the
extractor extracting the witness from the transcript is greater than
the probability of this same prover convincing the verifier in normal
execution.

knowledge soundness : 9 E, 8 2 L, P̃ : Pr[( , ) 2 R|  

EP̃( )( )] � Pr[V( , P̃( )) accepts]� #

4.7 zero knowledge

When we discussed the invention of IPs we hinted on the notion of
zero-knowledge and what this informally means for a proof system.
In the context of Verifiable Computation and more specifically with
respect to the use case of this thesis this would mean that a prover
could classify, for example a set of images, using a secret pre-trained
network and proof that the classification was done correctly without
disclosing the network.
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The formal notion of zero-knowledge is similar to the more intuitive;
Everything a malicious verifier learns from its interaction with the
proof system could have been deduced without this interaction. For-
mally: if there exits a probabilistic polynomial time simulator S( , )
that with the available public information, the instance and context,
can generate a transcript indistinguishable from a transcript between
an honest prover and verifier.

zero knowledge : 9 S, 8 2 L, ,V⇤ : hS( , )i ⇠= hP( ),V⇤( )i( )

This definition describes the strongest notion of zero-knowledge,
specifically Perfect Zero-Knowledge with respect to auxiliary input.
Most of the implementations discussed in this thesis satisfy the perfect
zero knowledge property hence we do not elaborate on alternative
notions that for example, relax indistinguishability to statistical or
computational indistinguishability, consider an honest verifier or no
auxiliary input at all.

4.8 conclusion

In this chapter, we introduced the basic concepts and definitions of in-
formational theoretical proof systems. Specifically, we introduced and
formally defined the notions of completeness, soundness, succinctness,
zero-knowledge and what it means for a proof system to be scalable
and doubly-efficient. In terms of succinctness and efficiency we dis-
cussed the effects of interactivity, randomness and proof structure
on the immediate costs for proof generation, proof verification and
communication. This resulted in the categorisation of the following
three probabilistic proof systems:

interactive proofs : use interactivity and randomness for ran-
dom challenges to the prover which results in non-transferable
proof transcripts.

probabilistically checkable proofs : use randomness and
the structure of proofs to reduce the verification cost signifi-
cantly at the cost of communication and prover complexity.

interactive oracle proofs : use interactivity, randomness and
the structure of proofs to balance the reduction in complexity
for verification and proof generation.

For each of these information theoretical proof systems there exists
a transformation to a non-interactive variant in the Random Oracle
Model, resulting in Non-Interactive Random Oracle Proofs. And fi-
nally, we formally define the language of computational integrity
that, if proven and verified, ensures correct execution of a particular
algorithm.
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This chapter aims to elaborate on the exact implementation of the
argument systems used today and their relation to the fundamental
information theoretical proof systems introduced in chapter 4. We
will follow the literature in the separation of the so called frontend
and backend. The frontend reduces the problem, for example writ-
ten in code, to a more generic representation of computation such
as boolean or arithmetic circuits. Depending on the backend more
structured representations might be required such as Quadratic Span
Program (QSP), Quadratic Arithmetic Program (QAP), Square Span Pro-
gram (SSP) or TinyRAM. The backend uses this input together with an
implementation of the information theoretical proof systems to create
a proof with the required properties. In some cases additional cryptog-
raphy is used to enhance or add properties in the final implementation.

Multiple works have hinted at but in particular the work by Bitansky
et al.[16] have advocated for a more modular approach specifically
separating the information theoretical proof systems from the crypto-
graphic primitives, we endorse the stance on the modular approach
but we take a different approach and will use the afore mentioned char-
acteristics of proof systems, randomness, interactivity and proof structure
to differentiate categories over the use of primitives.

Via this new and stricter categorisation we elaborate on a selection
of the important and novel proof systems that present the state of
the art, realised in code. Finally we compare each of the systems
on the input format, prover complexity and most important verifier
complexity.

5.1 a novel categorisation

Mentioned briefly is the alternative approach on the categorisation of
proof systems in this thesis. The aim to introduce more modularity to
the field of proof systems, or how Ishai describes this field; the ‘’ZK
Zoo” 1 does require more structure for obvious reasons. Simplicity is
a first, this helps those new to the field to break down the complexity
of systems that often combine concepts from pure complexity theory
to cryptography, a pallete not every graduate student has at his or
her disposal, let alone the industry. More simple or smaller building

1 Specifically the talk on Compilers for Zero-Knowledge: https://cyber.biu.ac.il/
event/the-9th-biu-winter-school-on-cryptography/
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blocks with clear properties will help in the focus of future research,
for example proving lower bounds or the use of components in differ-
ent and new contexts. Ultimately leading to more innovation in the
field and more efficient proof systems.

An initial differentiation is made in the separation of information
theoretical proof systems and the consecutive use of cryptographic
primitives to enhance some or all of the properties. Although this
proposed categorisation might appear as a natural categorisation, this
turns out to be less the case than we would have liked. The challenge
with this categorisation emanates in the definition of the categories;
what is the information theoretical proof system and where does the
cryptography start. The translation from each of the public coin proof
systems in section 4.4 to its non-interactive counter part is fully in-
formation theoretical but makes use of an oracle, while some of the
commit-reveal schemes make use of either information theoretical
binding or hiding commitment schemes. Both are examples of systems
where it is hard to draw a line between the information theoretical
components and the cryptography.

We argue that a categorisation on an abstract level, that of the even-
tual use case, the implementation and the involved actors, results
in a more descriptive and practical categorisation. The information
theoretical proof systems in chapter 4 describe generic systems that
have the expressiveness to prove certain problems based on the con-
text. The context being; the actors involved and their resource bounds
in terms of computation, memory and communication or access to
private or public randomness. Given such a description of a proof
system, we can argue about its efficiency but more importantly about
generic transformations that, independent of the implementation of
the proof system can enhance or add new properties. This means
we can have two or more bounded parties exchanging, potentially
structured, messages.

Among these conceptual systems the exact implementation might
significantly deviate. For example for the classification and the context
it does not matter whether a partially samplable proof is implemented
through Secure Multi Party Computation, Quadratic Arithmetic Pro-
grams or Error Correcting Codes as long as it satisfies the constraints
imposed by the context. We will see that exactly these three approaches
to structured proofs with the help of commitment schemes and effi-
cient reductions build the majority of today’s implementations. We will
see that all of the efficient systems, in the context of Verifiable Compu-
tation we will require both the proof structure and the interactivity to
create succinct proofs resulting in a variety of implementations in the
categories IP, PCP and IOP.
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5.2 frontend : circuits and constraint systems

The definition of the frontend is a means to abstract the exact imple-
mentation and inner workings of the proof system from its user or
application and present the core constraint satisfaction problem to the
proof system, the backend. The frontend is presented with a problem
in for example high level code which is then compiled to an inter-
mediate representation that efficiently defines the problem at hand.
This intermediate representation is then transformed to its equivalent
NPor NEXPrelation in the language specific to the backend.

These systems will be introduced later but for example, the backend
of a QAP-based Linear Probabilistically Checkable Proof (LPCP) or
Ligero take a set of 2-degree constraints in the NP-complete language
Rank-one Constraint System (R1CS). The front end takes high level code
and translates the problem in these constraints via an algebraic circuit.
Alternatively the STARK frontend takes its problem defined as an
execution trace in combination with the boundary constraints and the
transition relation called the Algebraic Intermediate Representation
(AIR). This AIR is then translated to the NEXP-complete ans chip
architecture inspired language Algebraic Placement and Routing (APR).
There exist a wide variety of languages and which are excepted by
which proof system is dependent on its implementation. The core idea
of the frontend is that it compiles a problem definition to it analogue
constraint system in the apropriate language.
Algebraic circuits offer a natural way to describe computation and

will therefore be used as a means to compare the relative complexity
of the different procedures with respect to the computation. Circuit
complexity is primarily depend on the number of gates in the circuit
C and the depth d in number of layers. Due to specific representations
en implementations some additional metrics have a direct influence on
the complexity, specifically: the input size n, number of multiplication
gates n⇤, the number of wire conditions m and the length of the
statement l

5.3 backend : implementations

The backend defines the proof system and its proving protocol. It takes
a relation in a specific constraint system as an input and generates the
proof according to this instance witness relation. The constraint system
that defines the relation and the proof system specify the expressive-
ness of a backend. Ideally these frontends and backends should be
interoparable but so far the state of the art follows the monolithic
approach with hand tuned problem and proof compilers.
In the following three sub-sections we outline the consequential tech-
niques and innovations that led to implementations in code and detail
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a selection of these implementations for each of the categories de-
scribed in chapter 4.

5.3.1 Interactive Proofs

In the context of this thesis matrix multiplication is a computation of
particular interest but supplementary a prime example in the com-
parison of succinctness in non and interactive verification algorithms.
Perhaps the most well known algorithm to verify matrix multiplica-
tion (MATMUL) is Freivald‘s algorithm[24].

In short; a prover P claims that A · B = C with A, B,C 2 Fn⇥n
p . To

verify this a verifier V selects a random vector ~x 2R Fn
p and computes

A · (B~x) = C~x which is essentially three matrix vector products. This
results in a proof system with a verifier complexity of O

�
n2
�
, prover

complexity O
�
n2.3728639

�2 and a communication complexity of W
�
n2
�

as the product matrices have to be send to the prover. This is perfectly
fine for the “in the head” verifier simulation in proof composition, but
is undesirable for practical prover verifier interaction.

An alternative for this is the protocol described by Thaler[51] that
preserves the prover and verifier complexity of Freivald‘s algorithm
but reduces the communication complexity to O (log n). This protocol
leverages the SumCheck protocol[40] and Multilinear Extensions to
realise this improvement.

In short; we consider the same problem, but this time we interpret
A, B and C as functions mapping {0, 1}log n ⇥ {0, 1}log n ! F and as
such the product is defined by C̃ (~x,~y) = Â~z2{0,1}log n Ã (~x,~z) · B̃ (~z,~y).
Which directly results in the log n-variate polynomial, input to the in-
teractive SumCheck protocol, g(~z) , Ã (~x,~z) · B̃ (~z,~y). This SumCheck
protocol basically forces the prover to compute the equality sum for
the verifier. The protocol consists of k rounds where k is equal to
number of variables in the polynomial, in this case log n. Each of these
rounds the verifier challenges the prover with a random value ri and
subsequently the prover responds with a univariate polynomial that
can be evaluated by the verifier. Either with the help of an oracle or
via the prover who computes g(r1, . . . , rd) for the verifier. The first and
last round acount for all input or all random variables as shown in
equation 5.1 and 5.3 respectively, in every intermediate step the verifier
forces the prover to compute the values with respect to one additional
variable as shown in equation 5.2 such that the verifier comes to a de-
cision in k steps, the exact number of variables. For each of these steps
the verifier challenges the prover with a new random challenge and
checks 1) whether she got an univariate polynomial of the appropriate

2 Williams algorithm as described in “Breaking the Coppersmith-Winograd barrier”
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degree and 2) whether the equality gi�1(ri�1) = gi(0) + gi(1) holds. If
the prover passes all k rounds the verifier accepts the proof.

g1 (X1) = Â
(x2,...,xd)2{0,1}d�1

g (X1, x2, . . . , xd) (5.1)

gi (Xi) = Â
(xi+1,...,xd)2{0,1}d�1

g (r1, . . . ,Xi, · · · xd) (5.2)

gd (Xd) =g (r1, . . . , rd�1,Xd) (5.3)

This SumCheck protocol forms the basis for all efficient interactive
proof systems, for the first sub-linear system, GKR, but also for the
state of the art, Libra. We outline a selection of four works that define
todays landmarks when it comes to interactive proof systems.

GKR

The proof system named after the inventors Golwasser, Kalai and
Rothblum[29] was the first interactive proof that realised sub-linear
verification times. The protocol takes as input a logspace uniform arith-
metic circuit and verifies the claim via an approach similar to the
SumCheck protocol. First it verifies the evaluation of the final layer via
a Multilinear Extension and checks whether this satisfies the claimed
output. As the verifier is not able to verify this yet it reduces this claim
to a claim for the previous layer. Finally, after traversing all layers, the
claim is reduced to the input of the computation which is available to
the verifier and easy to verify.
This protocol does not have the zero-knowledge property but is

highly efficient for data parallel circuits, computations in NC.

CMT

A second system named after its originators Cormode Mitzenmacher
and Thaler[21] improved on the performance of GKR through the
observation that the polynomials in the SumCheck are generally sparse
and well structured. Making use of this structure they were able to
reduce all of the communication, prover and verifier complexity. Most
importantly the prover complexity from poly(S) to O (S log S).

Hyrax

Hyrax[55] is the last in a line of increasingly more efficient interactive
systems and the first to add zero-knowledge to the acquired properties.
The system itself is an improvement of the Giraffe[54] system which
in turn is inspired by the Zebra[53], Allspice[52] and T13[51].
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Libra

The final work, also the most recent and efficient, still builds upon the
GKR SumCheck based system. Libra[57] improved the original GKR
protocol, again based on the observation of the sparse polynomials
that led to CMT, through the execution of two SumChecks in parallel.
This results in a significant efficiency improvement and reduces the
prover running time to O (S). Additionally this work introduces zero-
knowledge through random masking polynomials.

system |p| P V

GKR d·polylog(n) poly(n) (n+ d)·polylog(n)
CMT 3 d log(C) O (C · logC) O (n+ d · logC)
Hyrax O

�p
n · logC

�
O (C · logC) O

�p
n · logC

�

Libra 4 O (d · logC) O (C) O (d · logC)

Table 5.1: A comparison of IP systems in terms of overall proof length |p|,
prover compexity Pand verifier complexity Vbased on the results
published in the seminal works[21, 29, 55, 57]

5.3.2 Probabilistically Checkable Proofs

To realise sub-linear verification time there is no alternative to the
probabilistic checking of structured proofs. This is inherent to the
fact that reading the proof alone will already result in a linear time
complexity. There are two common approaches to the creation of
these structured proofs. The first and best known is arithmetization,
the reduction of computational problems to an analogue problem in
the algebraic domain. A suitable analogue for PCPs are polynomials,
polynomials allow for efficient constraint testing and essentially Error
Correcting Codes. A second approach is virtual Secure Multi Party
Computation where the prover performs the computation virtually,
‘’in the head” with at least 3 parties. The consistency between the
views of two parties ensures the complete and sound-ness properties
while the hiding property of the scheme makes it a zero-knowledge
-PCP.

With respect to the implementation of these systems we distinguish
two types of PCPs and will consider arithmetization and accordingly
polynomials to resemble the proof structure of the following PCPs.

The first category are the so called short-PCPs5 that take a univariate
polynomial of relatively low-degree and leverage this low-degree as
an Error Correcting Code (ECC) or Low Degree Extension (LDE) to

5 “short” means quasilinear with respect to the circuit size
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amplify a potential error. The verification of such a proof essentially
consist of two steps;

1. One or a small number of queries to the proof to verify satisfia-
bility

2. A low-degree test to ensure the proof is actually a low-degree
polynomial

Although the idea of these systems is simple and clean the practical
and especially efficient implementation of low-degree testing is more
complex. Solutions to enable this second check to be conducted effi-
ciently are the so called proofs of proximity that, although they can
be made non-interactive through the transformations mentioned in
section 4.4, are interactive. We will discuss these proximity proofs and
respective implementations in more detail in the next subsection on
IOPs.

We recall the challenge inherent to the separation of the information
theoretical proof systems and the cryptographic primitives in section
5.1. A naive implementation of a system with these two checks would
result in a linear proof system. Following the naive way degree test,
by querying degree + 1 points, in this case approximately the number
of gates in the circuit or the number of constraints. This system would
not rely on any assumptions and would hold perfect zero-knowledge
without any cryptography, or does it? The polynomial ECC and LDE
are essentially an alternate form of Shamir‘s secret sharing[49]. This
shows that a categorisation on related fields of study might not be as
expressive and practical as a categorisation based on properties.

The second category is defined by the long-PCP, LPCP or Hadamard
PCPs. This category of proof systems has most implementations and as
such most practical applications today. Backed by strong communities
in the area of crypto currencies and distributed ledgers also the line of
research that dictates the course and terminology in the field. A good
example of this terminology is the SNARK that implicitly refers to pre-
processing-SNARKs, the range of works that build succinct arguments
from the transformation introduced by IKO.

The first such system was proposed by and named after the origina-
tors Ishai, Kushilevitz, and Ostrovsky[35] and designed around the
observation that the prover does not have to materialise the full proof,
often of exponential size in the short-PCP structure, to commit to it.
The protocol uses the fact that due to the highly structured nature
of the proof a single encrypted query from the verifier would retain
the prover from computation of, for example the full Merkle tree.
This does mean that the verifier has to create this encrypted query
of proof length resulting in significant additional complexity on the
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verifier side and cancel the succinctness of the system. But because the
query is only dependent on the computation and hidden due to the
encryption it can be reused for multiple proofs that verify the same
computation, but on different inputs. This initial constant query can
be considered to be the structured Common Reference String (CRS),
also Structured Reference String (SRS), that is set in the setup phase of
the protocol, and therefore reducing the query complexity form two
to one rounds, essentially making it a non-interactive protocol. We
call this amortised computation the preprocessing of the protocol that
defines the preprocessing Succinct Non-interactive ARGument (SNARG)
or the knowledge sound, preprocessing SNARK.
The main challenges in this setup is how to ensure linearity of the the
queries and consistency of the proof(s). Additive Homomorphic Com-
mitment (HC) and bilinear pairings offer a solution for the former by
cryptographically constraining the set of valid operations. The latter is
can be solved with an interactive round as proposed by Bitansky et al.

The paradigm of information theoretical proof systems and the cryp-
tographic primitives fits best in this category. The work of Bitansky et
al. [16] introduces transformations from any PCP to a LPCP or directly
to their final information theoretical Linear Interactive Proof (LIP) and
in turn a cryptographic transformation that enforces the constraints
of the LIP to a privately verifiable preprocessing SNARG. Parallel to this
reduction they presented transformations to reduce any low-degree
LPCP to a low-degree LIP and consecutively a public verifiable prepro-
cessing SNARG.

Similar to the improvement of CMT on GKR, Genarro et al.[26]
observe the structure in the constraints imposed by the program and
were able to leverage this to improve the efficiency of the system
significantly. Specifically they found that the constraints where all of
the form Qi(W) = ci �Wi = 0, Qi(W) =

�
Wj +Wk

�
�Wi = 0 and

Qi(W) =
�
Wj ·Wk

�
�Wi = 0 that allowed them to efficiently reduce

the constraints to a single univariate polynomial that vanishes for a
correct transcript C(x, y,W). The univariate polynomial serves directly
as the arithmetization for the proof itself. This compact encoding of
arithmetic constraints has been termed QAP and QSP in the case of
Boolean circuits and follows directly from a R1CS.

Pinocchio

Pinocchio[43] was in 2013, still is, the first general-purpose verifiable
computation system with an implementation that had faster verifica-
tion time than native execution of the program. The system comes
with both a frontend and backend that translates high level code, e. g.
C, to the corresponding arithmetic or boolean constraints, the QAP or
QSP and the final ECC used in the proof.
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BCTV14

BCTV14[11] proposes the first SNARK that is fully succinct and incre-
mentally computable. It is based on the work of [15] and uses recursive
proof composition together with a specification of a Random Access
Machine (RAM) to prove and verify a sequence of machine steps in-
crementally. Each proof proving the correctness of the previous state,
memory, and correctness of the next machine step.

Groth16

Groth16[32] describes the current most efficient SNARK with a proof
of only three group elements and a verification time proportional to
the statement. The system itself takes arithmetic circuits as an input is
QAP based and can be instantiated with any type of bilinear pairing.

GM17

GM17[33] introduces the smallest Simulation Extractable-SNARK with
the prove minimum of three group elements and two verification
equations. This system is based on Groth16, has similar size is not as
fast, but comes with better proven security.

system |p| P V crs

SNARK 6 3� 8 Õ (C) O (1) O (C)

Pinocchio 8 G 7m+ n⇤ � 2l E l E, 11 P 7m+ n⇤ � 2l G
BCTV14 7 G1, 6m+ n⇤ � l E1 l E1, 12 P 6m+ n⇤ + l G1

1 G2 m E2 m G2

Groth16 2 G1 m+ 3n⇤ � l E1 l E1, 3 P m+ 2n⇤ G1

1 G2 n⇤ E2 (n⇤ G2)

GM17 2 G1 m+ 4n⇤ � l E1 l E1, 5 P m+ 4n⇤ + 5 G1

1 G2 2n⇤ E2 2n⇤ + 3 G2

Table 5.2: A comparison of PCP systems in terms of overall proof length |p| in
number of group elements, prover and verifier complexity, Pand V ,
where E,M and P represent exponentiations, multiplications and
pairings respectively and finally the size of the CRS based on the
results published in the seminal works[11, 32, 33, 43] in particular
the works by Groth

5.3.3 Interactive Oracle Proofs

The Interactive Oracle Proof is essentially a generalisation of IPs and
PCPs, meaning that these generic proof systems can leverage that bit
of interactivity or proof structure they need to be more expressive or
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more succinct.

We differentiate between two variations of IOPs the first is based
on the proofs of proximity discussed in the previous section. Both of
these, Interactive Oracle Proof of Proximity (IOPP) and Probabilistically
Checkable Proof of Proximity (PCPP), aim to test the proximity to some
ECC like the Reed-Solomon code. The second variation is an example
of the “MPC in the head” paradigm that is based on an Interactive
PCP, a special case of IOP.

STARK

Scalable, Transparant ARguments of Knowledge (STARK)[14] intro-
duces the first implementation in line with the checks for a short-PCP.
It presents both an interactive and a non-interactive STARK. that takes
the NEXPAPR relation as an input to create a Reed-Solomon and verify
the low degree via the novel Fast Reed-solomon IOP (FRI) protocol[13].

Aurora

Aurora[12] implements an IOP that takes the NPR1CS relation as an
input and solves the univariate analogue of the SumCheck protocol
using multiple Reed-Solomon encoded IOPPs.

Ligero

Ligero[1] introduces an implementation in line with ZKBoo[28] and
ZKB++[20] that implement a paradigm called “MPC in the head”[36]
that, as described in the previous section, allows the prover to vir-
tually execute a Secure Multi Party Computation (MPC) scheme and
subsequently commit to the views of two of the virtual participants.

system |p| P V q

STARK O (C logC) O

⇣
C log2 C

⌘
O (C) O (logC)

Aurora O (C) O (C logC) O (C) O (logC)
Ligero O (C) O (C logC) O (C) O

⇣p
C
⌘

Table 5.3: A comparison of IOP systems in terms of overall proof length |p|

in number of field elements, prover and verifier complexity, Pand
V , in terms of field operations and the query complexity q based
on the results published in the seminal works[1, 12, 14]

5.4 collation

The previous section pre-selected the most fundamental and state of
the art systems that have led to implementations in code. Because
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almost all7 of the systems satisfy the primary properties the research
question requires from a VC system we make a more detailed selection.
All systems in the selection are zero-knowledge, complete, sound and
succinct. The most efficient systems are provided that there is at least
one system representing each category and associated technologies
and input types. In the case of LPCPs GM17 is chosen over Groth16
because it enjoys better proven security for relatively similar perfor-
mance. Table 5.4 presents the relative complexity and table 5.5 presents
an overview of the properties satisfied fro the selection of systems.

stark aurora ligero gm17 libra

P O

⇣
C log2 C

⌘
O (C logC) O (C logC) Õ (C) O (C)

V O (C) O (C) O (C) O (1) O (d · logC)
q O (logC) O (logC) O

⇣p
C
⌘

O (1) O (d · logC)

S - - - O (C) O (n)

Table 5.4: A comparison on asymptotic complexity, specifically prover and
verifier complexity, Pand V , and the query complexity q based on
the actual query complexity in a PCP based system or the proof
length, S depicts the setup costs

stark aurora ligero gm17 libra

input APR R1CS R1CS AC AC
complete 3 3 3 3 3

sound 3 3 3 3 3

succinct 3 3 3 3 3

zero-know. 3 3 3 3 3

setup public public public private private
assumptions standard standard standard AGM q-SBDH
post-quantum 3 3 3 7 7

Table 5.5: An overview of the properties of the selected systems based on
the seminal works[1, 12, 14, 33, 57]. On the assumptions; AGM and
q-Strong Bilinear Diffie-Hellman (q-SBDH)

5.5 conclusion

In this chapter we introduced the frontend and backend of proof
systems to abstract the high level problem definition to constraint
system reduction from the actual proof systems. Then we argued about

7 GKR and CMT do not fulfil the zero-knowledge property
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a slight change in the categorisation of these actual proof systems
and follow this novel categorisation to elaborate on the fundamental
techniques that make the practical proof systems. Finally we compare
a selection of the systems realised in code and find that the properties
of interest for this thesis are satisfied in the majority of these systems
by default and that therefore the prover and verifier efficiency and the
trusted setup become key metrics in a final verdict.

ip and SumCheck-based systems tend to have the lowest prover effi-
ciency and except from Libra do not require a trusted setup

pcp specifically LPCP has the fastest verification time but relies on
public key cryptography and a trusted setup of considerable size

iop presents framework for a variety of techniques to combine inter-
activity and proof structure that supports short-PCPs but also
“MPC in the head”. These systems are generally less efficient but
are by default transparent, rely on standard assumptions and
are plausibly post-quantum secure.
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VER I F ICAT ION OF ANN COMPUTAT ION

This chapter builds on chapter 3 that answers the first sub-question on
the essential building blocks of Artificial Neural Network and what
constraints these impose on a practical proofsystem and chapters 4
and 5 that answer the second sub-question on the essential building
blocks of proof systems and what constraints their construction and
expressiveness impose with respect to specific computations. Building
on these findings this chapter maps these constraints of both constructs
Artificial Neural Networks and proof systems together to ultimately
answer the main research question by considering both the theoretical
case, practical case and the actual practical case.

6.1 computation reduction

Both the inference and training algorithms can be reduced to a se-
quence of dot and Hadamard tensor products and the corresponding
cost and activation functions. These computations can, both for fied
as for floating point arithmetic, be implemented in an boolean circuit.
This circuit takes the input, a label and weights and evaluates to the
correctly updated weights or the correct prediction depending on the
computation. This is inherently a circuit satisfiability problem and this
problem can be reduced to a relation in the input language, specific
to each of the selected proof systems, and as such this relation can be
proven by each of the selected proof systems.
To ensure that the algorithms are executed on the appropriate data, the
input to the model, the corresponding labels (in the case of training)
but also the initial state of the model will be defined in the instance of
the computational problem.

Randomness

Inherent to machine learning is a degree of randomness that shows up
in the order of inputs, batch selection, drop out but in particular in the
choice of initial weights. Similar to the free variables for the certificate
or witness in NP problems proof systems we can use this freedom to
define a variable input for the verification function. In the context of
NP this additional input is generally unique and evaluation marks a
correct or incorrect result. The discrepancy here is that; theoretically
any random initialisation can be the basis for a correct computation
and should therefore be accepted, but practically a prover is likely to
choose an all zero initialisation which is, in the context of machine

43
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learning, not in the interest of a verifier, the party outsourcing the
training algorithm and relying on actual randomness.

A first and simple, naive, solution is to include the required ran-
domness in the problem instance definition which effectively makes
the computation deterministic. An alternative approach would be to
do some sort of verification of randomness which ensures a close-
to-uniform distribution and the appropriate complexity in a specific
range. To the best of our knowledge there exist no such tests that run
within polynomial time. Therefore we limit ourselves to the naive and
in this particular case suitable solution.

A similar problem arises in the choice of the order of the inputs,
or which inputs to batch together, as this order is generally random
as well. Also in this case the naive solution will do the job in the
absence of a better solution. As such, the best way to ensure proper
randomness in an outsourced computation is for the verifier to gener-
ate it herself and make it part of the instance definition of the problem.

Input Selection

Ideally one would allow the prover to generate its own randomness
and select the inputs randomly from a specified source. This means
that in addition to a form of verification to guarantee randomness this
would require a proof of inclusion, that specifies that this input or
this batch of inputs is a (random) selection from the provided training
set. Although proofs of inclusion exist, e. g. Merkle trees, we consider
this type of proofs out of scope in this thesis as the nature of the out-
sourced computation dictates that the random selection is an essential
part of proof. Specifically a proof of inclusion alone is not enough as
it would still allow a prover to classify or train on one input of the
provided data set. Therefore we again follow the naive approach and
present the inputs to the inference and training algorithm, just like the
randomness, in the problem instance definition. We consider both of
the verification problems, randomness and indexed inclusion as open
questions for future work.

6.1.1 Computational Complexity

All of the selected proof systems have sufficient expressiveness for
both of the ANN computations as both of these are, if bound by a
number of iterations, executable in polynomial time. The fact that
both computations are in Palso means that the prover verification
procedure is the execution of the computation itself. This in contrast
to the polynomial evaluation of a problem in NPwhere the computa-
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tion itself is different from the verification computation of the prover.
More concretely solving the NPproblem might require exponential
complexity while the verification of the relation is by definition poly-
nomial time bound. Effectively this defines a class of problems that are
inherently efficient to verify. The computations studied in this thesis
are, although in this class, not of this nature and do not separate a
computation and verification algorithm. The computation itself is the
one single approach to non-probabilistic verification of completeness
and soundness.

The fact that both inference and training are polynomial procedures
implies that the verification algorithm performed by the prover is of
similar complexity compared to that of native execution. This means
that succinctness and concrete verification efficiency are key to a solu-
tion for the case subject to this thesis. We require a potential solution
to be either sub-linear or in the case of more significant computations,
e. g. training, an order of magnitude smaller.

6.1.2 System Computation Pairing

At the end of chapter 3 a differentiation was made in the use cases of
both the inference and training computation. Later, chapter 5 presents
a selection of proof systems that all satisfy the zero-knowledgeȧnd
sub-linear verifier properties. The properties that are different for ex-
ample inherent to the category of proof system makes a difference in
the system to computation fit in terms of its use case.

In the case of inference, the computation consist of a large number
of executions each with different input data but the exact same com-
putation and therefore the same circuit. This means that any setup
costs that can be shared over all the seperate executions reduces the
relative cost per execution. This means that the creation of a CRS can
be amortised. The LPCP class of problems, with the Groth16 and GM17
to be the most efficient protocols in its category, offers the best fit to
this problem.

Training on the other hand is sequential and therefore represented
by a circuit of significant depth and inherent complexity. But the re-
peated structure in the computation itself presents a natural fit to the
execution trace and corresponding transition relation that defines the
AIR that is taken as an input in STARKs. Although the system has
considerable constant costs, long repeated computations enjoy good
asymptotics that out perform the performance of other systems.
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6.2 verdict

This leads us to the verification of this thesis by answering the mainr
research question. We recall: Can Zero-Knowledge ARguments of
Knowledge verify correct training of Artifical Neural Networks ful-
filling the completeness, soundness, succinct and zero-knowledge
properties?

6.2.1 Theory

Yes, theoretically both the training and inference computations of ANN
fall within the class of problems P that, because P✓ NP ✓ NEXP, can
be proven and verified by the selection of proof systems in chapter
5. For example via a boolean circuits and a sufficiently large field
it is possible to mimic all operations, including floating point arith-
metic, exactly the same way a machine with bounded registers would
physically. The important observation here is that both the prover and
verifier run virtually, meaning that the prover cannot directly use the
efficiency of its CPU nor GPU neither can the verifier.

These are significant constraints on the practicallity in the case of
the verification of outsourced training of an ANN as this will impose an
increase of computational cost of several orders of magnitude. Because
of this gap between theory and practice it is only fair to refine and
extend this answer and consider the practical case as well.

6.2.2 Practice

The difference between theory and practice is significant and it is
clear that the computation in its exact native form will not allow any
efficiency increase. As there are two key constructs here it is either one
or both that has to relax to allow for an efficient match in constraints.
True to the objective of this thesis identify the limiting constraints of
the proof systems first and then consider how to alter the computation
slightly to progress in a more practical implementation.

Because the inference and training computations are highly parallel
and data intense in nature the underlying circuits will have many
intermediate wire conditions that have to accounted for to gener-
ate the proof. This results in a large stream of data for all parallel
computations, effectively rendering dedicated computation optimised
hardware such as the GPU useless.
To mitigate this problem the prover will require more freedom, one
way to do this is via am input problem in a different representation
from a circuit. The frontend takes a high level representation of the
computational problem and reduces this to a set satisfiable constraints
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that do not require intermediate wire conditions. As this might not be
possible an alternative approach is proof composition as was used in
the work by Chabenne et al.[19] that used the SumCheck protocol to
verify the matrix multiplication via subproofs and use a general proof
system, Pinocchio, to verify the subproofs and activation functions.
This approach has the added advantage that, for example when using
Freivald‘s algorithm, the communication complexity and proof length
of the subproofs are irrelevant as they are transferred virtually, “in
the head”, by the prover. Additionally this gives the freedom to the
prover to use any MATMUL algorithm it pleases, e. g. naive, Strassen‘s
or William‘s, on any hardware it pleases as only the relation between
the input and output is verified with a probabilistic check.
An additional challenge presents itself in the nature of the finite fields
at the core of proof system implementations. Because of the modulus
in these fields the values do not have a relative relation, say a maxi-
mal or minimal value, one is greater than the other, a property that
is essential to many of the delegatable computations among which
machine learning and the training of ANNs. A solution for this is first
of, choosing a large field. Second, a compiler that sets the value to
the maximal accepted value when it should have done a modulus
following algebra, this prevents the overflow. To actually use the order
in the finite field is costly, but possible as well. Through the definition
of a so called De-Militarized Zone (DMZ) and the apropriate arithmeti-
sation it is possible to verify inequalities like x < y. This makes the
go to efficient Rectified Linear Unit (ReLU) activation function a costly
counterpart in the context of finite fields.

Aside from the proof system there are slight addaptations possible
in the definition of the computation as well. To support floating point
arithmetic we turn to multiple gates per value in boolean circuits
that are represented by multiple arithmetic gates before the final
arithmetisation. Changing the computation from floating points to
fixed point arithmetic will prevent this blow up in the number of gates
and corresponding constraints accordingly. Additionally the circuits
of the activation functions are generally high degree approximations
that result in complex constraints and again a blow up in the number
of gates in the circuit. Similar to how activation functions are now
choosen for efficient computation on floating point arithmetic and
clean derivatives this line of work will have to optimise activation
and cost functions to have low degree polynomial representations for
both the function as it derivative. A good example of such functions
are the x2 and Mean Squared Error (MSE) that are both low degree
polynomials with derivatives suitable for finite fields.





7
CONCLUS ION

This thesis explores the real practicality of state of the art arguments
systems in the application of Verifiable Computation, specifically the
verification of correct outsourced training of an Artificial Neural Net-
work. This thesis decomposes the two concepts at the core of this
challenge to identify the elementary building blocks that make both
constructs, proof systems and Artificial Neural Network. From this
decomposition the constraints are derived that one might impose on
the other. Constraints that are ultimately mapped and incorporated to
one verdict on the feasibility problem at the core of this thesis.

Starting from an intuition on machine learning and in particular
Neural Networks, various topologies and common model designs are
identified. The mathematics that makes these models is then trimmed
to the most generalised but still practical mathematical definition that,
in turn, forms the basis from where the elementary computation is
derived. Fully generalised both the inference and training algorithm
boil down to a sequence of dot and Hadamard tensor products and
element-wise evaluation of activation and cost functions on floating
point arithmetic. Although the underlying optimisation problem is
presumed to be NP-hardthe bound inference and training computa-
tions are both in P. Based on the understanding of the case subject
to this thesis and the nature of both computations we distinguish
between the use cases of both ANN algorithms.
First of outsourcing inference has most value in a parallel fashion,
specifically in the case of a large number of different inputs on a pre-
trained network. In contrast to training, that is an inherent sequential
computation that relies on memory access to store intermediate values
and typically processes a large number of inputs as well.

Continuing with an intuition on proving, specifically completeness,
soundness, (zero)-knowledge and proof systems a new categorisation
is proposed that uses the traits interactivity and proof structure together
with randomness to differentiate between three categories of proof
systems. Each of these, Interactive Proof, Probabilistically Checkable
Proof, Interactive Oracle Proof comes with its own characteristics in
terms of trusted setup, cryptographic primitives. prover and verifier
complexity and thus efficiency. For each of the categories the underly-
ing techniques fundamental to many of the practical implementations
are discussed as the elementary building blocks.
Based on the literature a selection of implementations is discussed and
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compared in more detail on the metrics and characteristics described
in the seminal works. As succinctness and both prover and verifier
efficiency are key to a practical implementation a pre-selection is
made deciding on the properties zero-knowledge, succinctness, cryp-
tographic assumptions and at least one per category and input type.

Finally the constraints imposed by the implementations are mapped
on the constraints imposed by the inference and training computations.
This led to a variety of challenges and observations, in particular: the
input data and randomness of the computation will have to be pre-
defined as part of the problem instance. In the ideal case the verifier
would point at a a data set on a local or remote location and the
prover would randomly select input (batches) from this set. Both the
randomness and proofs of inclusion exist but the combination that
ensures random selection of a data set efficiently is not described in
literature. Both inference and training are computations in Pwhich
implies that non-probabilistic verification is of the same complexity
as re-executing the algorithm. This means that the proof system will
need to be succinct and have a verifier complexity that is sub-linear to
the computation.

This leads to two-fold answer of the main research question: Can
Zero-Knowledge ARguments of Knowledge verify correct training
of Artifical Neural Networks fulfilling the completeness, soundness,
succinct and zero-knowledge properties. Yes, theoretically there exist
argument systems that have the expressiveness to prove and verify
both the inference and training computations, including the floating
point arithmetic, fulfilling the completeness, soundness, succinctness
and zero-knowledge properties. The negative counter-part of this
answer is that although theoretically possible this remains far from
practical in a real use case for two reasons. First of, the prover will
need to perform the computation virtually keeping track of the inter-
mediate states that will later represent the witness of the computation.
Secondly computations on ANNs have become feasible because of
a combination of innovations in the field that led to more efficient
algorithms, more data and access to dedicated hardware e. g. GPUs.
Because the intermediate wire conditions are required in the proof
generation this will require a potential GPU to stream a log of all the
intermediate results of all parallel computations undermining the use
of this dedicated hardware.

7.1 final recommendations

Even though not practically feasible there are argument systems better
fit the computations, subject to this thesis, better than others. In the
case of the inference computation we talk about effectively the same
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computation and therefore the same circuit for a large number of
inputs. This reduces the relative cost of amortisation, the creation of
a CRS. The LPCP class of problems, with the Groth16 protocol most
efficient and GM17 to be second most efficient but more secure, offers
the best fit to this problem.

On the contrary the training algorithm is sequential and therefore
resulting in a circuit of significant depth and inherent complexity. But
due to the repeated structure in the computation itself it presents a
natural fit to the execution trace and corresponding transition relation
that defines the Algebraic Intermediate Representation that STARKs
take as an input. Although the system has high constants over long
repeated computations this system has good asymptotics that out
perform other systems. An important note is that the influence of this
amount of input data maintains this efficiency or defeats it purpose.

7.2 future work

The field of proof and argument systems has predominantly been the-
oretical and has only seen practical implementations in the past five
years. These practical implementations have led to a wider interest in
the field increasing the pace novel constructions and implementations
enter the playing field. This has resulted in the so called “ZK Zoo”
with a wide range of terms, definitions, constructions and metrics,
both qualitative and quantitative but no clear structure on how these
relate.

With respect to the verification of outsourced training of an ANN by
argument systems the primary problem is in the requirement to have
access to all wire conditions on order to be able to create a valid proof.
This is inherent to the language taken as an input by the backend
that is, within the scope of this thesis, a representation derived from
arithmetic circuits or an internal representation of circuits that enforces
the wire conditions.

There exist two approaches to mitigate this challenge. The first is
to use proof composition as was done in the work by Chabenne et
al. [19]. This allows creates the freedom for the prover to choose its
own method for a subcomputation, in this case matrix multiplication,
for which a generic prover computes a composite proof consolidating
all computation specific subproofs to one final proof. In their work
they opt for the SumCheckprotocol optimised to reduce communica-
tion. The advantage of proof composition is that the subproofs are
generated “in the head” which makes communication cost irrelevant.
This means that in a similar implementation to the one just mentioned
with a newer more efficient generic proof system and the well known
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and communication expensive Freival algorithm might lead to more
efficient verification of both the inference and perhaps the training
computations.
A second solution to the wire conditions is the search for a new lan-
guage (and compilers to that language) that translates problems to
higher order constraints that do not require the intermediate values.
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