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Abstract

In this thesis I worked with a physical model for silicon dopant net-
works, a potential future solution for computation in materio. The phys-
ical model uses Kinetic Monte Carlo simulation to simulate various sce-
narios, and can be used to make simulated experiments at a much lower
cost than we could do them on physical devices. In this work I worked on
improving the simulation speed for this model, but also explored many
other aspects to move towards streamlining simulated experiments, such
as visualization, more general Genetic algorithm for searches, and par-
allelism. I also made a few example experiments, which already took
advantage of the increased performance of the simulations achieved dur-
ing the Thesis. When I started the Thesis, B. de Wilde had already laid
the grounds for the physical model in code. I built upon that and here
I document my findings on different simulation optimization attempts,
visualization functions, genetic search improvement attemps, and several
parallelization attempts. In the end I give my recommendation of how to
perform large scale simulated experiments and suggest a few experiments
to be done in the future based on the example experiments made during
the Thesis.
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1 Introduction

Artificial neural networks is an increasingly important topic in todays world, as
they are used to solve complex problems, which were at some point supposed
to be out of reach from computers, such as image recognition, sound-to-text
translation and mastering complex games like Go. However, currently artificial
neural network solutions use a lot of power, as simulating these networks on tra-
ditional transistor-based computers is computationally expensive. It is believed
that it can be made more efficient by taking advantage of physical processes in
materio (cf. [8], [4]), such as in our case silicon dopant networks.

This thesis is close collaboration with the NanoElectronics research group
from Center for Brain Inspired Nano Systems at University of Twente. By
now they have shown that silicon dopant networks can perform 6 basic boolean
operations (cf. [4] (OR, AND, XOR, NOR, NAND and NXOR)) and further
exploration of their complexity capacity is taking place. In addition to the
physical devices, the group has been working on two models of those devices:
Machine learned neural network which predict the behaviour of a single real
life physical device, and a Kinetic Monte Carlo simulation of a physical model.
In my work I will be working with the latter. The advantages of the Machine
learned model is mainly speed and that it simulates quite accurately an actual
physical device. The main advantage of the Kinetic Monte Carlo model is that
we can create any number of simulated devices, to perform simulated experi-
ments on a larger scale than would currently be feasible to be done on physical
devices, as the number of physical devices is limited, remember that the same
limitation carries over to the machined learned model.

The goal of this Thesis is to pave a path for large scale simulated experiments
using KMC simulations of a physical model. I aim to achieve this by improving
the simulation speed of the Kinetic Monte Carlo model, attempting to optimize
the Genetic Algorithm to perform various searches, and looking into ways to use
parallelism to make use of cluster computing. In addition I attempt to answer
a few example research questions using the new sped up solution, and discuss
the considerations one would have to make regarding time, simulation solutions
and parallelism in order to perform further simulated experiments in the future.
In addition I did make a few visualization functions, that can be useful to make
sanity checks in the process.

In Chapter 2, I introduce the work done in the NanoElectronics group and
in more detail the Kinetic Monte Carlo model used in B. de Wilde’s work (cf.
[11]) that is the foundation for my Thesis. In Chapter 3, I talk about the
different approaches I developed to improve the speed of simulations on that
model. It culminates with a comparison in time performance and accuracy.
In Chapter 4, I discuss my Genetic Algorithm, which has a few features not
available to the Genetic Algorithm used by NanoElectronics group. I use my
Genetic Algorithm along with simulation improvements to perform 2 simulated
experiments explained in Chapters 6 and 7. In Chapter 6 I examine how the
number of dopants and ease of finding a XOR gate is related. In Chapter 7 I
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measure the complexity of simulated networks with different number of dopants
using Vapnik–Chervonenkis dimension (cf. [9], later I call it VC dimension). In
Chapter 5, I discuss some of the visualization functions I developed during the
thesis including how to read these visuals and how they are made. Visualization
was used as a sanity check while working on all the other aspects of the thesis
and is considered as a supportive tool for the overall goal. Finally in Chapter
8, I talk in more detail about how my code base is structured, where various
features reside and also discuss use cases of other people using the codebase
developed during my Thesis and their feedback.
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Figure 1: Figure 3.1 taken from Ref. [11]. This shows the general idea about
boron dopant networks. You have a chip of silicon in which you have randomly
placed dopants and 8 electrodes. Electrode endpoints form a cirlce of around
300 nm.

2 Background

2.1 Silicon dopant network

The devices that my work relates to are boron doped silicon networks. That
means there is a piece of silicon around 1cm2 of size, which by itself is a very
bad electricity conductor, and boron atoms have been added to it. Adding
boron atoms creates so called “holes”, which electrons can use to jump to and
from. The process of making such a chip is quite complex (cf. [5]), however the
important part is that at the end of it, there is around 300nm circle, inside which
there are scattered around 100 boron atoms (from personal communication with
dr T. Chen: ”The number of boron dopant sites in the silicon is currently
estimated to be around 100”). When I started my thesis, that number was
believed to be around 30 - 40 atoms. This has had some impact on my Thesis.

Then 8 aluminium electrodes are connected to the edge of that circle, 2 for
input, 1 for output and 5 for configuration. The configuration electrodes have
some steady voltage, which has to be maintained during experiments. The input
voltages are also maintained and the output current is measured. Now the idea is
that since the electrodes are separated enough between themselves, the current
that is formed must go through the dopant sites as electrons jump from hole
to hole, using variable range hopping as a mechanism under 77K temperature
(77K is due to the technique being used, which is cooling the experiment with
liquid nitrogen, as nitrogen’s boiling temperature is 77K).

In addition to the boron dopants in the silicon, which act as acceptors, there
are also donor sites in silicon due to impurities. While acceptors create holes
where electrons can jump to, in which case they get a negative charge, donor
sites are impurities within Silicon which have given away their electron, and
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Figure 2: Figure 5.6 a taken from [4]. This shows the input voltages, that
represent the true/false values for the experiments. P and Q represent the two
inputs. At first both of them have 0 voltages, meaning they represent false
values as input. Then P changes to true, then P to false and Q to true and
finally both of them are true. This setup is used to go through all the input
combinations to assert if the device is working as the intended boolean gate.

therefore have a positive charge. It is estimated that there would be 10 times
fewer of them compared to boron dopant sites. They also influence the behaviour
of the whole system electrostatically, meaning that based on the current model,
they do not allow jumping of electrons to and from them, but since they have a
charge, they do influence the behaviour of the system. For example, if a donor
and acceptor sites are close to each other, then it is very likely that whenever
an electron jumps to the acceptor site, it will get stuck there, because of the
pull from the nearby donor site.

2.2 State of experiments

The NanoElectronics research group has demonstrated such networks to be able
to perform basic Boolean logic. This means that by having high or no voltage
for the input electrodes, representing true and false respectively (See figure 2),
the output electrode had a current which could be mapped to a true or false
value.

For operations such as XOR, negative differential resistance is required,
which demonstrated that such systems have such a property. Negative dif-
ferential resistance means, that as the voltage of one of the electrodes increases,
then under certain conditions, the current of the output starts to instead de-
crease, meaning that as the voltage increases, the resistance between the input
and output electrodes must increase even faster. The reason why XOR demon-
strates a device having negative differential resistance, is that while for input
combination (true, false), the output is true, meaning the output electrode has
a high current, then for input combination (true, true), where the voltage of
one of the inputs has indeed increased (needed to represent the true value), but
the output current has become smaller in order to represent the expected false
value. Since the system managed to perform as a XOR gate they therefore have
negative differentila resistance.
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Figure 3: Figure 5.6 b from [4]. This shows the output voltages when performing
different boolean operations with the input displayed in figure 2

Note that the output is typically not either high or none, but more like high
or less high. It was however possible to draw a line between the expected true
and false values, meaning they were separable (for example see output of XOR
from figure 3). That means that there existed a current value cur, so that for
each possible input configuration ((true, true), (true, false), (false, true), (false,
false)), when we expected true for output it was higher than the chosen current
value cur, and when we expected false, it was lower than the chosen current
value cur.

For the whole network to be able to perform as one of the 6 Boolean gates,
AND, OR, XOR, NAND, NOR or XNOR, they had to use a genetic algorithm
to learn values for the 5 configuration electrodes ([4] Chapter 4.6). For each of
these Boolean operations, a different configuration had to be learnt. And since
the placement of boron atoms is different for all the samples (as we have little
to no control over that), you also have to learn new configurations when using
a new sample, as the results don’t carry over. This is quite a limitation for
practical use.

2.3 Kinetic Monte Carlo simulation

For part of his Master thesis, B. De Wilde ([11]) has implemented a new mea-
surement and simulation system for these networks. For simulations he uses a
rejection free kinetic Monte Carlo algorithm, which given electrode voltages and
boron positions, calculates the currents for all the electrodes.

In general Monte Carlo algorithms work by choosing a small set of events or
possible outcomes randomly instead of for example covering the entire search
space. This is useful when the complete state space or combination of events is
too vast and too complex to solve a problem using brute force or analytically.
The hope is that by choosing enough random states or events we get a good
enough sample size to arrive close to the most optimal/accurate solution.
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The Kinetic Monte Carlo algorithm simulates some process, by starting in an
initial state and then choosing occurring events one by one from all the possible
events that can happen in a given state. The events are chosen using weighted
randomness and the weights come from transition rates, which is not provided
by the algorithm but has to be given by the model. Finally the transition rates
are used to calculate the passing of time between all events.

In general there are two different KMC solutions - rejection KMC and re-
jection free KMC. The difference of rejection KMC and rejection free KMC is
mainly that rejection KMC allows for not picking any event during an iteration,
and because of that there is a slight difference in calculating the time step and
picking of the events.

For this algorithm to work we need clear definitions of all the possible states
and a starting state. We need to define what are the neighbouring states, and
how to calculate or what are the rates between states. A state i is neighbouring
another state j, if rate rji > 0. A rate shows how likely a state would transition
to that neighbouring state in a single time step.

The overall flow of the Rejection free Kinetic Monte Carlo algorithm is the
following:

1. set time t = 0, and choose a starting state and set it as current state. Let
current state at all times be marked as k

2. For the current state k, form a list of transition rates Nk, so that all
possible transitions from the current state to its neighbouring states are
present in that list. Let rateki be the i-th element of that list.

3. Use the transition rates to generate a list, from which to randomly choose
an event. Let that list be R, then Ri =

∑i
j=0 ratekj . Meaning the i-th

element of R is the sum of 0 to i elements in Nk. We call R a cumulative
list.

4. Generate a random number rnd in [0 .. 1)

5. pick the event index i so that Ri ≥ rnd ∗Rlast > Ri−1, where Rlast is the
last element in the cumulative list R. Note that Rlast is the sum of all
rates in step 2.

6. Execute the chosen event, by moving to the state that is matched by the
transition rateki, and set k as the chosen neighbouring state i

7. Generate another random number rnd2

8. increment time t by t = t + R[last]−1ln(1/rnd2). This is given by the
algorithm, but basically what it says is, that the higher the total rates
of all possibilities, the lower is the length of the timestep for the current
iteration.

9. If enough iterations have been run, then end, else go to step 2. This is
either set by the user, based on simulation time constraints, or by a given
convergence criterion.
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As you can see the time is incremented inversely to the total sum of all rates.
This is because the more likely any event is to happen, the more often some
event happens and therefore in each step we can progress less time.

To decide when to end one can either provide a specific number of events after
which the algorithm is terminated, or one can have some kind of convergence
criterion, after achieving that, we terminate. In my thesis I don’t use any
criteria, but instead run simulation for a given number of hops (events, but we
use the term hop, as each event is an electron hopping from one site to another,
or between an electrode and a site).

2.4 Current implementation specifics

The core of using KMC in physical model is simulating single electron jumps,
one at a time. Therefore, in this case, states represent the electron occupations
in the dopant sites. Since boron atoms have 3 electrons in the outer layer but
silicon has 4, then it creates a sort of hole, which can be occupied by an extra
electron (this is due to the fact that optimal number of combined electrons is
8).

Each site either has an extra electron or it doesn’t. Therefore in a 30 site
system there would be 230 possible different states. A neighbouring state is
a state which can be reached by making an electron jump between two sites,
or between a site and an electrode. For an electron to jump from one site
to another, the first site has to be occupied and the second one cannot be
occupied. For an electron to jump from an electrode to a site, the site has to
be unoccupied, and for the electron to jump from a site to an electrode, the site
has to be occupied.

Since donor sites only effect the system electro-statically, their influences has
to be calculated only once, and can therefore be reduced into a constant.

An event in our case is a single electron jump. If the electron either jumps
to or from an electrode, we keep track of it, so that we can in the end estimate
the current for all the electrodes by also using the time calculation method from
the Kinetic Monte Carlo algorithm.

The rates are calculated based on the Miller-Abraham hopping rate. That in
return requires to estimate the change of system energy, for which we only take
into account Coulomb interaction between the dopant sites and local chemical
potential. A more detailed explanation can be read in [11]. Note that in our
calculations we separate the acceptor and donor sites.

Miller-Abraham hopping rate used to calculate rates for our algorithm (cf.
[11], [7]).

rateij =

{
v0e
−2

dij
a −

∆εij
kT if∆εij > 0

v0e
−2

dij
a if∆εij ≤ 0

(1)
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rateij is the rate at which an electron jumps from site i to site j. For
our purposes v0, a, k, T are constants given by the physicist, and they can be
precalculated, e = 2.71828, dij is the distance between i-th and j-th site, which
has to be calculated only once per site placement (which does not change during
simulation), and ∆εij is the energy difference caused by a jump from site i to
site j, which is something we have to calculate and depends on the current state
of the system (electron placements).

To calcualte ∆εij , we need to be able to calculate the total energy of the
system. We do it so:

H =
e20

4πε0ε
(
1

2

∑
i∈acc

acc∑
j∈acc\{i}

ninj
dij
−

∑
i∈acc

∑
k∈don

ni
dik

+
1

2

∑
n∈don

∑
k∈don\{n}

1

dnk
)

− e0
acc∑
i

niV (posi)

For our purposes π, ε, ε0 and e0 (in this case e0 is elementary charge and is
not related to e = 2.71828) are constants given by the physicists. What we do
track is ni, which is 1 if site i has an extra electron in it, or 0 otherwise. dij is
once again the distance between sites i and j. V is a function of site position posi
and electrode voltages, the latter staying the same during a single simulation.
As an electron jumps from one site to another the value of H changes, and this
change is the energy difference ∆εij . Events that would decrease the energy of
the system are of course more likely to occur.

However calculating the entire energy each iteration and the energy in all
the neighbouring states would be quite costly. We can improve that by first
noting that the effect of donor sites don’t change by changing the state:

1
2

∑
n∈don

∑
k∈don\{n}

1
dnk

stays constant.
Secondly, to quickly calculate the change of energy a transition would effect,

we can instead calculate for each site, the impact of adding an extra electron.
To do that we just sum up all the terms which would be added to H, when we
change ni from 0 to 1.

εi =
e20

4πε0ε
(

acc∑
j 6=i

nj
rij

)−
dom∑
k

1

rik
− e0V (posi)

We call εi site energy for site i. Note that since donor sites don’t change
their charge in our model, and neither do the electrode voltages (at least during
a single simulation), then these parts stay the same, and are not re-calculated
during hops. However the electrostatic effect of donor sites, as well as the effect
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of electrode voltages are captured by eV (posi), which physicists call chemical
potential at acceptor i position. This value does not change during the simu-
lation. We can use these site energies to calculate ∆εij , the energy difference
caused by electron jumping from site i to site j:

∆εij = εj − εi −
e20

4πε0εrij

To understand why this works let’s consider what each of those terms mean.
εj is the amount of energy that would change when an electron jumps to site j.
εi is the amount of energy that would change when an electron jumps to site i.
But since an electron jumps from site i we instead put a minus in front of it.

However since since εj is a sum which also currently consists of term
e20

4πε0εrij
,

since ni used to be 1 and there will no longer be an electron in site i after the
jump, we have to subtract that term from εj . Calculating energy difference for a
jump between electrode and a site is even easier. As the electrode is considered
to be able to maintain it’s voltage stably, then for some acceptor i and electrode
j, if we have a jump from i to j we get ∆εij = −εi. And if we have a jump
from j to i we get ∆εji = εi.

Now we have everything we need to calculate the rates at each step.

2.5 From physical to model

One important question is how does the model relate to the real life experiments.
And for that I will first discuss the scales of various forces inside the physical
devices, and then I’ll discuss what that translates to in our simulation.

As discussed previously the diameter of the area where the boron atoms
reside is around 300nm. The voltage range, which is used in the experiments
is from -2 V to 2 V, but may be lower for some devices. If you would increase
the voltages too large for a device, you would risk changing the properties of
the device, meaning it will no longer give the same results as it gave before (for
example if you trained a XOR gate for the device, you cannot use that result
anymore).

The current seen in the output electrode has a really wide range. It is
between the orders of 10−6A and 10−11A. And the difference at which we
detect true and false values varies similarly. For example in [4] Figure A.2 he
demonstrated finding boolean gates so that the differences between true and
false current values was in the orders between 10−10 and 10−11.

When moving to computer simulations, it is however non-trivial to get a
1-on-1 match with reality. These are just a few complications:

• We get a current based on the number of electrons that have hopped to or
from an electrode and dividing it by the time that has passed. However
we increment time based on the calculated rates, which all are linearly
related to a constant v0 in equation 1, which we call hopping rate. The
problem is we do not know it’s exact value, which means we cannot know
exactly what the current value would be that is arrived at in a simulation.
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• Second parameter a in the same equation 1, refers to localization length
and is also unknown and we currently only have a rough estimate for
that (cf. [11]). In this Thesis I use a dimensionless value for a

R with
a value of 0.25, R in this case is the average distance between boron
sites. Basically the smaller a/R is, the harder it is for electrons to jump
over larger distances. This value is taken from [11]. The justifications
for that are also described there and are a very important part of that
Thesis, which is why I am not going to delve any deeper here. Shortly the
parameter values were trained so that the resulting model most resembles
real life experimental results.

• Finally, we have a coulumb interaction energy I0 =
e20

4πε0ε
1
R (cf. [11] chap-

ter 4.2.1). We do not know the exact value of I0, but in our model we
use a dimensionless parameter value for I0

kT = 100, where kT is thermal
energy. You can read about it in more details in [11], but the most impor-
tant takeaway is that, the larger the value of I0

kT , the more electrons repel
each other between sites, making it hard for having many more electrons
in the system than positively charged impurity sites. Secondly the used
value for I0 is physically impossible, but it does provide us with simula-
tion results which resemble very closely the behaviour we have seen in real
life samples. The current explanation is that its unfeasably large value is
explained due to us using much fewer dopants in our simulated system
than the latest estimations have estimated for real life samples ([11]).
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3 Simulation Improvements

In the course of the Thesis I implemented several simulation approaches with
the goal to find solutions that would perform faster with an acceptable margin
of error. I generated 2 sets of tests that would be used to evaluate the error,
but also the time performance of these approaches.

All the approaches were implemented in the Go language.
The approaches shortly are:

• Kinetic Monte Carlo (I will call it KMC from now on), but implemented in
Go. This is essentially the same approach used by B. De Wilde in his work
(cf. [11]), but with slight optimisations to calculations of site energies (see
Chapter 2.4) and an option to record transition rate lists, which can be
reused if we return to the same state.

• Using an approach with Probabilistic occupation. This means that instead
of discretely considering each site to either have an electron or not, we
consider it having an electron with a certain probability. And at each
time-step we instead change the probabilities based on all the possible
transitions. The hope with this approach was to see faster convergence to
a result, but the main concern was its range of error.

• Transition rates pruning, which means that I would not consider transi-
tions between sites when the chemical potential between those sites was
low enough (due to range, placement of donors or placement of electrodes)
compared to other pairs. This would provide me with certain gains in
speed, but would risk in lowering the accuracy. However, this approach
may also shed light into the importance of low probability events.

3.1 Using Go language

The original KMC solution for the silicon dopant networks was written in
Python by Bram de Wilde. Since Python by default is not a compiled lan-
guage, but instead runs the code on runtime, then based on my prior experience
it is usually around 5 - 10 times slower compared to compiled languages like
C++, Java or Go language. However this was already addressed by Numba
JIT compiler, which could turn the KMC function into compiled code, meaning
that this weakness of Python would disappear. Numba did however have a few
problems. Overall it is only able to compile limited Python code, which meant
that you cannot take the full use of the language. This became a problem for
example when I wanted to save the probabilities of visited states into a hash
map and generate 64 bit key using binary operations in order to do so.

Now the advantage of Python is its ease of use, and that many in the Nano
Electronics group are familiar with it, and its two very popular libraries Numpy
and Mathplotlib. So in order to try all the different optimizations and par-
allelisation, I decided to implement the KMC simulation function itself in Go
language, and turn it into a library, which can then be called from Python using
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builtin Python library CTypes and builtin function cdll to call code made in
Go. This solution also has a few limitations, namely I cannot pass 2-dimensional
arrays directly, but instead have to wrap them into 1-dimensional arrays and
unpack them on the other side. However after you resolve such communica-
tion issues, you will have access to a full compiled language, and since we are
using Go, we have also access to very simple and supposed-to-be efficient paral-
lelism by using Go routines. Making go functions available to python was done
following a tutorial in [2].

3.2 Kinetic Monte Carlo optimisations

3.2.1 Site energy calculation

In the baseline solution of Kinetic Monte Carlo simulation, we use a helper
variable called site energy to quickly calculate the change to the overall energy
in the system for all the possible jumps. As mentioned previously, the site
energy for site i, called εi shows how much the energy changes when an electron
would jump to site i. By knowing the site energies for all the sites we can
quickly calculate the energy difference caused by any transition. However, as a
transition takes place, the site energies for all the sites actually change.

The optimisation at hand is about knowing exactly how much it changes. If
you consider the original calculation for site energies:

εi =
e20

4πε0ε
(
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rij
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− e0V (posi)

Notice, that for most i values, the values in the sum stay the same, except
for the 1 or 2 sites that were involved in the jump. This means that if we had a
jump from site a to site b, then for all sites except a and b, εi can be calculated
using its old value εiold and knowledge about a and b as follows:

εi = εiold +
e20
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This lowers the number of calculations necessary for site energies from N2

to 2N at each hop, where N is the amount of sites for which we have to cal-
culate the site energy. Since we also have to calculate the values for transition
rates, which there are also roughly around N2 of, then the overall reduction to
time performance is only around 2 times, since calculating the transition rates
becomes the main bottleneck after this optimization.
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3.2.2 Reuse of transition rate calculations

In order to tackle the large price that we pay by calculating the transition rates
at each hop, I considered reusing these calculations when we arrive to the same
state as previously. As we have N acceptor sites, which can either have or not
have an electron, we have 2N states in total, for which the transition rates could
be different.

In practice we decoded a state using 64 bits, where each bit was 1 if corre-
sponding site had an electron and 0 otherwise. This meant that this optimisation
cannot be used with more than 64 acceptor sites, for now this is enough but
one can consider expanding it, though as the number of unique states increases
and the memory requirement for storing the information for each state also in-
creases, there are quite a few things to keep in mind when doing so. At the
start our main concern was how effective this solution would be with 30 dopant
networks, as this was supposed to be around the number of dopants in our real
life experimental samples. However, this turned out to not be the case, in real
life samples it is now estimated that there are more than 100 dopant sites (see
chapter 2.1).

In table 1 you can see how often a state found previously is revisited de-
pending on the number of hops and the number of dopants in the network.

Now the number of unique states we find during KMC depends heavily on
the parameter values of a and I0. For testing the usability of this approach I
used the parameter values provided by B. De Wilde a

R = 0.25 and I0
kT = 100

(cf. [11] chapter 4.2.1). Also when generating the random layouts and electrode
voltage values I used quite a high voltage range for electrodes - between -2V
and 2V. This is the highest reasonable voltage that could be used so to see how
the simulations perform under the most difficult conditions.

Table 1: This table shows how many different states on average were encountered
for 20, 30 and 60 dopant networks. For each of those N values, we generated
100 random tests (random placement and random voltages for electrodes), and
ran for 10 million hops. We recorded the state for every power of 10 hops, and
in the table the average of these results is displayed.

hops 20D states 30D states 60D states
10 9.9 10.0 9.9
100 55.3 68.6 80.9
1000 129.2 178.0 258.8
10000 289.1 520.1 669.8
100000 600.1 1317.2 2216.6
1000000 1114.5 2986.7 6981.5
10000000 1870.5 6162.3 19932.7

As you can see from table 1 there are not many unique states for 30 and 60
dopant networks considering the total number of states is 230 and 260 respec-
tively. That means we can use this optimization to easily simulate up to 60
dopant networks, and if we made changes to the key generation, then possibly
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go even further. However the main thing to consider when dealing with this
approach is memory. As you increase the size of the network, the number of
transition rates you would have to store increases polynomially (N2, where N
is number of dopants). Even if the number of unique states continues to rise
slowly, since remembering each unique state costs more it is still going to be
a problem. Running a KMC without this optimization is however going to be
even worse time wise for larger dopant networks.

To get a better idea, suppose with haveNA of acceptors andNE of electrodes.
Then the number of possible transitions from each state is NA ∗ (NA−1)+NA ∗
NE ∗ 2.

For example when storing all the transition rates for a single state for 60
dopant networks with 8 electrodes you would need at least (3540 + 960) ∗ 32 =
144000 bits or 18000 bites (with the assumption one uses 32 bit float for the
transition rate), so on average, since we have to save all the transitions for 20000
unique states, you would need around 360M of memory, and potentially much
more in some scenarios.

3.3 Probabilistic occupation

One idea to improve the performance of the simulations was the following: in-
stead of simulating the process discretely, one jump at a time, where each site
either has an electron or doesn’t, we would consider, what if each site had an
electron with some probability. And instead of doing only one jump at each
step, we would do all the jumps with a certain probability. There is no question
that this model would be different from the one we had previously, and I have
no physical justifications for this shortcut. But the hope was that this solution
would converge to a solution faster, and if we measured the error compared to
the KMC model, we could still find it usable. The question is if this is an useful
approximation.

3.3.1 Algorithm

The algorithm itself has lot of similarities to the KMC solution. We again
need to calculate both the rates and the site energies. The calculation of site
energy does not actually change except for the fact that the values of nj are a
probability within range [0, 1] in the following calculation:
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The second adjustment is that since we consider transitions between all the
sites, and each site has an electron with a certain probability, we have to consider
what is the probability that such a transition is possible. It is still only possible
when one of them has an electron and the other one doesn’t. So if we consider a
jump from site a to site b, then we have to multiply the original rateab to which
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we arrive to with na ∗ (1 − nb), since that is the probability for the scenario
where site a has an electron and site b doesn’t have one.

So the new rate formula is:

rateij = ni ∗ (1− nj) ∗

{
v0e
−2

dij
a −

∆εij
kT if∆εij > 0

v0e
−2

dij
a if∆εij ≤ 0

Here ni is the probability that site i has an electron (and same for nj , but
for site j). The rest is same as in KMC.

When in KMC at each step we did a single jump, then in probability oc-
cupation, I adjust all the probabilities. Instead of picking an event at random,
I use all the rates and adjust the corresponding occupation probabilities using
rate values as weights. I make sure that the total sum of change in a single step
does not go above a value maxchange, which by default is 1, but I also have to
make sure that none of the values ni go out of the range of [0, 1].

To achieve these goals I firstly calculate total rate affecting each site, I call
it diffi (diff as difference from current state to the next one), where i is site
index.

diffi =

acc∑
j 6=i

rateji −
acc∑
j 6=i

rateij

Secondly I calculate the total sum of rates totalrates.

totalrates =

acc∑
i

acc∑
j 6=i

rateij

Now for each site I can calculate if given that the total change is 1, will it’s
value remain within the range [0, 1]. For that I can calculate the expected new
value niNew

niNew = niOld + diffi/totalrates

If for some i, niNew would go outside the range of [0, 1], then I can calculate
a value requiredchange. If maxchange is larger than that, I set the value of
maxchange to requiredchange. At the beginning of each hop I set maxchange
back to 1.

If niNew is lower than 0, then requiredchange = niOld/(−diffi/totalrates).
If niNew is larger than 1, then requiredchange = (1− niOld)/(diffi/totalrates).
Now if I set the maxchange to the lowest requiredchange among all sites, then I
can calculate the actual niNew like so:

niNew = niOld + diffi/totalrates ∗maxchange
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Because of the value of maxchange, it is guaranteed that niNew will be in the
range [0, 1]. In order to calculate the current we also keep track of electrons
moving to and from the electrodes. This is done similarly tp changing the
electron odds in the dopant sites, however these values do not have any limit,
so electrodes are not considered when calculating maxchange.

So to calculate electrode occupation eoi for some electrode i, firstly note, that
the same formula for rate is used for between acceptors and between electrode
and acceptor site. Secondly the energy difference caused by acceptor to electrode
or electrode to acceptor is discussed in 2.4, and so we can update electrode
occupation at each step as follows:

eoiNew = eoiOld + diffi/totalrates ∗maxchange
Finally the timestep is calculated similarly as in KMC, with the only differ-

ence that we also have to take into account maxchange. So time t is adjusted
like so t = t+R[last]−1ln(1/rnd2) ∗maxchange (compare with Chapter 2.3).

There were 2 main questions regarding this approach.

• How well does this solution predict the currents on the electrodes.

• How fast does the result converge.

Note that I have little to no reason to believe that this model would match
the Kinetic Monte Carlo model, or that it would be somehow more accurate to
the real world solution. However the hope was that this method would converge
faster and if the error is not too big, could still be useful in different search
algorithms where I need to simulate hundreds of test cases each step and need
to do hundreds or thousands of steps to reach some kind of useful result.

3.4 Pruning

Another approach to reduce the time we spend to calculate transition rates is to
decide not to consider some of the transitions. The hope is by not considering
cases, that are very unlikely to occur, we will not introduce too big of an error
while at the same time considerably reducing the number of transition rates we
calculate.

In formula 1, the ∆εij value depends on the actual state of the system (which

sites are occupied by electrons) and therefore part of formula 1, e−
∆εij
kT , has to

be recalculated at each step. However the rest can be precalculated and we do
so. In our code we call that part the transition constant. Let the transition
constant for transition between sites i and j be TCij and TCCompij be it’s
complement in the sense that rateij = TCij ∗ TCCompij

TCij = v0e
−2

dij
a
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Then

TCCompij =

{
e−

∆εij
kT if∆εij > 0

1 if∆εij <= 0
(2)

The idea of pruning is to not look at pairs ij for which TCij is smaller than
some threshold t. The hope is that at some point the precalculated value TCij
has enough of an effect that in all relevent cases the actual jump from i to j is
unlikely enough that we may justify ignoring it.

As you decrease the t value, you prune less transitions but increase in accu-
racy. I tried multiple values for t, and in the end results I demonstrated 3 such
values, where you can see the accuracy increasing as you decrease t, but also
the time consumption increasing.

The motivation for this idea comes from trying to improve performance, and
I had no way of predicting what is the impact on accuracy for this approach.
However I did test its performance against the initial unoptimized approach.

3.5 Validation and performance measurement

As I try different approaches, a very important question is how much time saving
that actually provides me, and whether the solution is still correct. In the cases
of pruning and probability occupation I also want to know how much do I lose
in accuracy. When measuring these things I assume that the implementation in
Python is correct and I also compare the other solutions with it.

First, I have to define test sets. I use 2 different test sets:

• 100 random dopant placements of 30 dopant networks with randomized
electrode voltages in a -2V and 2V range. I call this test set RND.

• 100 tests based on 25 XOR search results, produced during the course of
the Thesis. That means there are 25 different random placements, and 25
distinct control voltage values for all of those placements. But for each of
them we change the input voltage values (see chapter 6.1 ) to generate 4
test cases per search result, hence total of 100 test cases. I call this set
XOR. Note that these were XOR search results, in some of the cases a
proper XOR gate was not found!

All the tests use the parameter values a
R = 0.25, I0kT = 100 as discussed in

2.5.
Now I would like to get the results for each of the test cases using the

Python solution and then getting the same thing in the other solutions so I
could compare them. However there are a few things to consider when deciding
how to compare them.

The biggest problem is that the results can have quite a lot of noise. The
level of noise may even change between test cases.

Secondly, the range of current output varies a lot, around 3 orders of magni-
tude (base 10). This means that simply comparing absolute results is not going
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to provide us with much useful information. At the same time, if we compared
the results on percentage basis, meaning given baseline current CB and another
current for the same test arrived using one of the other approaches Calt, then
mistake would be |CB − Calt|/|CB |. This approach has however the problem,
that solutions close to 0 have naturally very high variance, so we would see huge
mistake values even if the actual behaviour is completely normal.

So the goal is to get a mistake in a normalized manner, also taking into
account the noise. For that I decided to firstly, for each test run the simulation 5
times. For the baseline I ran it 5 times 1E6 hops. Secondly I decided to compare
the results by using Bhattacharyya distance (cf. [1]). I used this to find the
distance between two gaussian distributions. I got the gaussian distributions by
calculating the mean and standard deviation based on the 5 simulations’ current
results and assumed that the noise follows normal distribution.

So given a test case t, which is some kind of dopant placement and electrode
voltage combination, we can run simulations in the baseline solution b and get
some current values on all electrodes. For all electrodes I calculated the mean
and standard deviation over 5 simulations (for currents). So given any elec-
trode e in test case t, I have mean current Ecbte (E for mean, c for current, b
for baseline, t for test case and e for electrode) and standard deviation σbte. For
some other solution s we have similarly Ecste and σste. The Bhattacharyya dis-
tance can be calculated using following formula (assuming normal distribution
for current values):

DB(b, s, t, e) =
1

4
ln(

1

4
(
σ2
bte

σ2
ste

+
σ2
ste

σ2
bte

+ 2)) +
1

4
(
(Ecbte − Ecste)2

σ2
bte + σ2

ste

DB score has values in the range [0,+∞]. When DB score is 0, that means
the two Gaussian distributions are identical. In reality because of the noise we
will never get that, but in general I see as DB score of less than 1 and even
around that as good, and as it grows larger it becomes more and more useless.
To get a better idea about DB possible values and corresponding meanings I
compiled a few example bell curves to be compared in figure 12.

Using all of this I did the following to measure the quality and speed of
different solutions.

• Generate mean and standard deviation for each test case by simulating it
using existing Python solution for 1E6 hops 5 times.

• Generate mean and standard deviation for each test case for each other
solution by again running it 5 times.

• Calculate DB score for each test case and for each other solution s by
providing the baseline and s’s mean and standard deviations.

• For each solution I calculated the average DB score for both test sets, and
also it’s standard deviation. See table 2
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• For each test set I drew all the solution performances on a graph (except
the probability occupation, drawing them out would have been meaning-
less considering their extremely large error). See figures 13 and 14

• I also measured how long each solution took time in performing the sim-
ulations for both test sets separately. See table 2

The different solutions I tested were:

• Go Kinetic Monte Carlo solution with only site energy optimization. 1E6
hops.

• Go Kinetic Monte Carlo solution with recording transition rates and reusing
them. 1E6 hops and 5E6 hops.

• Go Kinetic Monte Carlo solution with pruning. Pruning thresholds were at
1E-5, 1E-7 and 1E-9. These were chosen by trial and error to show around
were the sweet spot to achieving any reasonable accuracy is. Again, 1E6
hops were used.

• Probability occupation with 2000, 5000, 25000 and 100000 hops. This
range is selected to see when does it converge and to show that at some
point we cannot expect better accuracy.

Table 2: The results of measuring different solutions on 2 test sets RND and
XOR and comparing them to baseline python solution with 1 million hops. Note
that the time given was for running all the simulations in corresponding test
set. Both sets had 100 tests. that means the times are about running 100
simulations.

setup RND time XOR time RND EDB RND σDB XOR EDB XOR σDB
Python 1E6 hops 11881s 12231s 0.15 0.19 0.32 1.3

Go 1E6 hops 12394s 13343s 0.18 0.46 0.36 1.1
Go recording 1E6 hops 139s 85s 0.21 0.61 0.36 1.1
Go recording 5E6 hops 494s 377s 0.27 0.22 0.47 1.1

Go pruning 1E6 hops 1E-5 threshold 2879s 2977s 117 750 56 227
Go pruning 1E6 hops 1E-7 threshold 4291s 4373s 0.52 6.9 0.40 1.2
Go pruning 1E6 hops 1E-9 threshold 5898s 6115s 0.2 0.54 0.37 1.1

Probability occupation 2K hops 47s 46s 4.1E6 1E8 2.3E10 4.7E11
Probability occupation 5K hops 114s 118s 4.3E7 1.1E9 3E8 5.1E9
Probability occupation 25K hops 585s 576s 1.9E8 5.1E9 2.9E10 5.9E11
Probability occupation 100K hops 2291s 2319s 8.2E6 1.7E8 4.6E10 9.2E11

Based on the these results I could validate that the newly implemented solu-
tions most likely work as intended, with the exception of Probability occupation,
for which I fairly confident that it works as intended, but is just a inherently bad
idea. Now that I have a very fast simulation solution using recording of states,
I can easily get more accurate results by having 5 million hops as baseline.
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Table 3: The results of measuring different solutions on 2 test sets RND and
XOR and comparing them to a baseline of 5 million hops using Go simulation
with recording of states.

setup RND time XOR time RND EDB RND σDB XOR EDB XOR σDB
Python 1E6 hops 11929s 12058s 0.3 0.4 0.49 1.2

Go 1E6 hops 13176s 14084s 0.46 4.3 2.5 44
Go recording 1E6 hops 138s 81s 0.34 0.73 3.7 53
Go recording 5E6 hops 484s 352s 0.17 0.19 0.2 0.67

Go pruning 1E6 hops 1E-5 threshold 3668s 3522s 340 2200 290 1300
Go pruning 1E6 hops 1E-7 threshold 5077s 5035s 2 25 2.2 24
Go pruning 1E6 hops 1E-9 threshold 6651s 6800s 0.4 1.5 3.1 62

3.5.1 Conclusion

To conclude there are some interesting results.

• The Go baseline solution does not perform faster compared to the Python
solution. It could be due to Python making the library call, or due to the
compiled Python solution Numba is actually very good.

• With these parameters the best performer is clearly using Go simulation
with recording of transition rates as it is around 100 times faster.

• It may look from the first set of results that 5E6 hops performs worse,
but remember, when calculating DB score I am measuring the distance
between 2 standard distributions. As we do more hops I expect the results
to have less variance, which means even if they have similar means, since
the standard deviation is going to be lower for 5E6 hops, then those distri-
butions are also going to be further apart from each other. To understand
this more intuitively look at the second row of bell curves in figure 12.
This is the reason I decided to make a second set of results where I took
5E6 hops using Go recording solution as baseline.

• Another interesting result is that in almost all cases XOR test cases re-
sulted in worse results than RND test case. That indicates that there is
much more noise when trying to find XOR gates, and could be because
setups which involve negative differential resistance are more noisy.

• One of the weird things was that occasionally Go 1E6 performed much
worse than Python 1E6, and it performed consistently at least a little bit
worse. It is possible that it is due to a few extreme cases, which dramat-
ically increased the average and standard deviation. Other possibilities
however include the potential inaccuracies of the calculations that rise
from using 32 bit floats in Go, while in python the float size is not limited
specifically.

• Finally we can see from the results that the probability occupation per-
formed very bad, much worse than pruning. That means this is a dead end
for now. Weather or not it converges within 1E5 hops is still inconclusive,
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I would say it does, but there is no point in testing it with higher number
of hops because it is unlikely to improve in accuracy and for this solution
to be useful we would have to find usability at around 1E4 hops, otherwise
it will not outperform simple reusing of rates speed wise.

3.6 Parallelism

One of the reasons for choosing Go as the language to do the simulation improve-
ments in, was the promise of easy parallelism using Go routines. Go routines
promise less overhead compared to traditional threads and all the thread han-
dling is done in the background by Go. However in my work I did not manage
to get a performance boost by using Go routines.

Before continuing I would like to explain 2 very important terms used in Go
language:

• Go routine - a lightweight thread. Go routines run in parallel. Go starts
actual threads in background and manages assigning Go routines for these
threads in the background.

• channel - channels are used to read and write shared values.They have a
few important properties. Whenever some Go routine writes to a channel,
no one can write to that channel until someone has read from it. After
some Go routine reads from a channel, noone else can read the same thing
again.

I ended up trying 3 different solutions for parallelisation with the goal being
able to run simulations or searches on a cluster.

• Start and check solution - The idea behind this solution is to start simula-
tions from Python by calling some function in Go library and later calling
another function that reads the results after the Go routine has finished.

• Start simulations in a bulk - The idea behind this solution is to send all the
simulations data to the Go library that we want to start at once. Then Go
starts simulations in Go routines in parallel and once everything is done,
returns the results for everything.

• Start separate scripts - Instead of using Go routines, we just start separate
Python scripts that perform separate and independent searches.

The use case for first two solutions was to start multiple simulations during
the same generation in a genetic search algorithm.

3.6.1 Start and check

The idea here is to start multiple simulations from Python 1-by-1. Starting the
simulations would be very similar to starting the none parallel simulation from
coding perspective. However you do not receive the results immediately, but
instead you receive a key to some channel. You can use this key to request the
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results from that channel, which will be provided to you once the corresponding
simulation finishes.

The idea is that you first start some number of simulations, and then you
retrieve the results for all of them at once. When you call the retrieving function,
you provide it the channel key, and that key is used to attempt to read from the
channel. Once it manages to read from the channel we know that Go routine
has finished the simulation.

In theory that solution would have been really nice, however in practice
there was one huge problem. The current solution for calling Go functions from
Python did not support Go routines. To be more exact whenever the function
returned to Python, all the memory addresses used were unlocked for further
use. That meant that once I made a second start Go routine call from Python,
when the first Go routine was still running, I would get a memory error and the
whole thing would crash. This was because the second Go routine started using
the same memory locations as the first one.

3.6.2 Start simulations in bulk

The second solution was designed to address the problem in the first one. The
limitation of the Python Go binding is that we can have only one Go function
called from Python running at any given time. That function may however start
multiple Go routines inside Go, as long as it doesn’t terminate before all the Go
routines terminate.

So the idea was that I pack all the data necessary for making multiple solu-
tions, send it to go, unpack it and then run multiple solutions in parallel.

Technically it worked, but the problem with this solution was that I did
not see any performance increase compared to not running anything in parallel,
even though I did experience higher use of CPU (meaning it did use multiple
cores).

3.6.3 Start separate scripts

Finally I considered what are the practical cases for using a cluster, and realized
that since a single search could be run within a reasonable time (up to 1 hour),
I may be satisfied with just running multiple searches in parallel. Since searches
don’t need to share data between each other, I could just start multiple Python
scripts in parallel. This is exactly what I ended up doing on a cluster using
SLURM, and that finally did provide me with substantial speed boost. For
example I completed 600 searches within the span of 48 hours, which on my
laptop would have taken around 300 - 600 hours. I used 2 nodes with 20 cores
each, and I used a regime of 50 % efficiency, which was required since I wanted
to use them for more than 8 hours (cluster configurations).

3.6.4 Conclusion

To conclude Go parallelism provided me of little use. It is possible that this is
due to the binding of Python with Go and the performance could be better if
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I used purely Go solution. However the latter is not practical. In the end the
simplest solution proved to be the most useful one, even though it certainly has
some limitations as well (smallest parallelizable unit is a single search, not a
single simulation).
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4 Genetic algorithm

To find boolean gates or any desired behaviour in silicon dopant networks, Na-
noElectronics group uses Genetic algorithm, to fine tune the voltage values of
the control electrodes. In general having a search solution is very important in
order to perform most simulated experiments on the physical model.

Quoting wikipedia (cf. [3]) ”In computer science and operations research, a
genetic algorithm (GA) is a metaheuristic inspired by the process of natural se-
lection that belongs to the larger class of evolutionary algorithms (EA). Genetic
algorithms are commonly used to generate high-quality solutions to optimiza-
tion and search problems by relying on bio-inspired operators such as mutation,
crossover and selection.”

In my thesis GA is used to solve a search problem. Originally I intended
to search for dopant placement positions that would give me similar behaviour
to real life test data, however during the course of the work, it became obvious
that this is currently not very useful, because they can use machine learning to
manufacture models that are already able to predict physical device behaviour.
Currently GA in my work is used to find boolean logic in simulated dopant
networks. Because of this legacy however, my GA solution is more generic and
it is possible to adapt it to different search problems with minimal effort. In
addition that has a few extra features, uniqueness and disparity, which I will
discuss in the following chapters.

Let’s first introduce basic but very important terms related to GA.

• Individual - this is used to refer to a single solution proposal, which may
be a good or a bad solution for a given search problem.

• Population - a set of individuals.

• Fitness function, or error function - this is a function that is able to eval-
uate an individual. We want to find individuals which either high fitness
or low error. In my thesis I use error functions.

• Initial generation - As we start GA process, we generate NG random
individuals, where NG is given as an input to the algorithm. NG therefore
becomes the population size, as we intend to keep population size constant
throughout the process.

• Generation - Every generation after initial generation is generated based
on previous generation. Afterwards the individuals from the previous
generation are forgotten. The generation may potentially use various
crossover functions, mutation functions and various other techniques to
arrive to a new generation. Each generation is numbered. So we could
say something like ”We found our first good solution in generation 6”.

• Genes - The relevant properties of the individual with regards to the so-
lution are decoded as a gene. For example I use a array of 16bit integers
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for that. This is nice as you can separate operations on genes such as
cross-over and mutation from the actual meaning of the properties.

• Crossover function - Given 2 parent individuals and their Genes we can
generate a new Gene sequence for a child Individual using some crossover
function. Some popular crossover functions are single point crossover, two
point crossover and uniform crossover.

• Mutation function - Given an individual’s gene, performs a random but
minimal change on the gene.

• Elitism - To avoid losing best found results genetic algorithms sometimes
remember X number of best candidates as they are, and transfer them to
the next generation without crossover, mutation or any other alteration.

4.1 Technical details

As mentioned before, I implemented a generic GA solution, that can be used for
searching boolean logic gates for simulated dopant networks as well as searching
dopant placements. The core functionality is in a dn search class, which has an
entry point to the GA function, and all the helper functions. Also the legacy
dopant position search is implemented in that class.

My generic GA solution does have one assumption, that the individuals are
somewhat based on the dopant network object. This is a class object, which
has all the necessary information about the dopant network, in order to perform
simulations on it (positions of acceptors and donors, positions of electrodes,
electrode voltages, physical constants etc.).

In order to use this as a boolean logic finder I implemented a new class
voltage seach which inherits from dn search. In order to get GA working I had
to reimplement following functionality:

• Error function

• Random dopant network - In order to initialize the first generation, GA
needs a way to generate random individiuals. For example when finding
boolean logic, the difference between individuals is only in the control elec-
trode voltage values. The positions of the dopants are same for everyone.
This means that this function returns a new individual with random con-
trol electrode voltage values which are within given voltage range. This
function gets a base dopant network as an input.

• Get genes from dopant network - Since a lot of generic functionality
(crossover functions, mutations) relies on having a uniform structure for
genes, we have to implement a way to get gene values from an individual
based on the relevant functionality. For example for boolean logic, we only
take into account control electrode voltages when generating genes values.

• Get dopant network from genes - This does exactly the opposite from the
previous function.
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• Copy data from one dopant network to another - Since we assume indi-
viduals having most things in common, we can only copy electrode values
and genes.

• Parallel simulation - This has to only be implemented if you want to
evaluate individuals in parallel. However so far I haven’t managed to see
any performance improvements so far, so this is not recommended. (see
chapter 3.6).

As you can see in order to use the genetic algorithm you have to reimplement
quite a minimal number of of functionality.

To use the genetic algorithm you have to create a class object, which inherits
dn search such as voltage search, and provide it with relevant information. This
object must also define either manually or through input following things:

• initial dopant network - used as a basis for making the initial population.
For example in boolean logic search we require the initial dn in order to
know the positions of the dopants, and individuals in the search only differ
in their control electrode voltage values.

• parallelism - weather or not parallelism is used when evaluation individuals
in each generation. I suggest to set it to 0, as so far I haven’t managed to
gain any performance boost by using multiple cores.

• error function - this has to be set, as the current design allows for mul-
tiple error functions in a class, so to control which one of them is used,
class object has a value which stores the right one. For example in volt-
age search there are 3 error functions: one that only uses separation, one
that uses separation and correlation and one that uses results from parallel
simulations.

• simulation strategies - My generation algorithm allows to define list of
strategies. When starting out the first strategy is used, and after we have
reached a certain threshold for error we can change to another strategy.
You can also use this to terminate the search when we find a good enough
solution. A strategy includes list of arguments to be passed to the sim-
ulation. This has to include the number of hops, but may also include
other arguments that is possible to be passed to simulations, such as the
simulation method used.

After you have the search object you can use it to initiate the GA search.
For that it is possible to pass a lot of parameters:

• Generation size - number of individuals in the population

• Available time in seconds - After each generation, if we have spent more
than this amount of time on the search, we just terminate it.

• Disparity - usually set to 2. In short, the higher the disparity the more
children high fitness or low error individuals will have. I will explain it in
more details (see 4.3)
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• Uniqueness - This value enforces the population to comprise of unique in-
dividuals. The higher the uniqueness value, the more different individuals
have to be from each other. This is good, since evaluating equal or too
similar individuals will result in just wasting computing power.

• Cross-over function - Which cross-over function to use to generate children
from 2 parent individuals.

• Mutation power - The higher the number the more likely it is that higher
bit values will change in the mutations. That means that a single mutation
can have a more drastic effect.

• Unique schedule - It is possible, but one does not have to use that, to
specify the schedule by which the uniqueness value changes. For example
it is possible that one wants to start out with a large uniqueness value,
and lower it gradually similarly to simulated annealing.

• Max generations - Similarly to max available time, if we have reached the
maximum number of generations, the search terminates and returns the
best result so far.

• Mutation rate - the probability of a child to mutate before considering
uniqueness. In practice I either use mutation rate or uniquness but not
both.

4.1.1 Gene encoding

As mentioned previously genes are encoded into a list of 16 bit integers. To
encode for example 5 control electrode voltages (in all cases in this Thesis I
used 5, but this is not hard coded, and it is possible to have different set ups)
I use 5 16-bit integers, each of which represent one voltage value. To take full
advantage of the range that 16 bits provide (65 536), I provide voltage search
with a voltage range Vr, so that given voltage value Vi for i-th control electrode,
I can get the value of i-th gene Gi = (Vi + Vr)/2/Vr ∗ 65535. This assumes that
|Vi| ≤ Vr, meaning that voltage values are within the desired range.

Later we can retrieve the new voltage values (after cross-over and mutations)
like so: Vi = Gi/65535 ∗ 2 ∗ Vr − Vr.

4.2 Uniqueness feature

One problem GA in general faces, is how to maintain diversity. This is important
both to avoid spending resources on evaluating identical results, but also to
stay out of local optimum solutions. One way to solve this is by guaranteeing
uniqueness (cf. [6]). This means that we have a distance function, which, given
2 individuals we provide a number value of how different they are from each
other. For instance [6] uses Hamming distance, which counts the number of bits
that do not match.
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In my thesis, however, I use a different distance function. Given 2 individuals
a and b and their gene values Gai and Gbi where i is from 1 to number of
control electrodes Nce I can calculate the distance between them as Dab =∑i<=Nce

i=1 |Gai −Gbo|.
I would argue that in this case it is ok to use such distance function compared

to counting number of bit differences, because each gene value is linearly related
to the underlying voltage. And since we know that the system behaves mostly
continuously, we know that depending on which bit you change, you will have
much more drastic effects on the behaviour of the systems (higher bits effect
more).

Given this distance function we can now talk about uniqueness. Given a set
of individuals P and a new individual I, we can say that the uniqueness score
of I compared to the individuals in P is UI = max(DIb for b ∈ P ). I use this
concept in my GA as I add individuals to the new generation’s population. I
always compare the new individual I to the already added individuals, and if
UI < UR, where UR is the required uniqueness provided as an input to the GA
function call, I mutate individual I until I get that UI ≥ UR. One thing to keep
in mind is to not have so large of an UR that it could be impossible or unlikely
to find a compatible individual through mutation.

So is uniqueness useful? To test that I compared using uniqueness without
additional mutation rate to not using it and instead having a certain mutation
rate. To compare results I generated 30 dopant simulated networks and tried
to find XOR gate for them using my GA. For that I had 3 different setups. All
of them shared these parameters:

• population size: 100

• max generations: 10

• hops per simulation: 1E6

The uniqueness of these setups were in UR and mutation rate or Rm values:

• UR = 1000, Rm = 0. I call this setup U1000.

• UR = 0, Rm = 0.05 (5%). I call this setup M5.

• UR = 0, Rm = 0.3 (30%). I call this setup M30.

For each of the setups I tried learning XOR gates for 20 different dopant
placements. Results are in table 4.

After running these tests and rereading [6], I realized I could have reduced
the amount of randomness by instead of generating a random placement for
each search, I could generate 20 random placements and an initial population
of size 100 for each of them, and use these as a starting point for each of the
setups to have a more fair comparison.

This is exactly what I did to generate the second set of data. I also added
a fourth setup named U5kto1k, which uses the uniqueness schedule feature. It
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Table 4: Results for trying to find XOR gates using different parameter values
for GA

setup successes failures
U1000 10 10

M5 5 15
M30 8 12

starts with uniqueness value of 5000, and reduces it to 1000 within half an hour,
which is approximately how long it takes to go through 10 generations.

The results are in table 5.

Table 5: Results of second iteration of uniqueness testing
setup successes failures
U1000 8 12

M5 8 12
M30 7 13

U5kto1k 7 13

Since in the last set I had the exact same starting conditions for all the setup
variants, I could analyze results in more detail. Even though each of the setups
found only 7 or 8 XOR gates on its own, between all of them the number of
found XOR gates increased to 12 out of 20. There were some obviously simpler
cases as well, since for 5 starting conditions, an XOR gate was found every single
time.

As you can see from the results using the uniqueness feature gave similar
results as using simple mutation rate, so between the two sets of tests I would
conclude that it is probably just fine using only mutation rate. However it is
possible that trying different values for uniqueness or having a larger test set
would give us different results. Another thing to consider is trying different
distance functions.

Table 6: Results of third iteration of uniqueness testing in cluster. The total
sample size is now 5 times larger.

setup successes failures
U1000 47 53

M5 38 62
M30 46 54

U5kto1k 41 59

Finally I decided to also try using a cluster to run the same experiment
but with a larger sample size. The results are in table 6. From here it seems
that mutation rate of 5 % and the strategy of using uniqueness schedule seem
to perform worse than mutation rate of 30 % and only using single uniqueness
value of 1000. This is interesting as it does show the importance of having a
large sample size and the benefits of being able to run more simulations.
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4.3 Disparity feature

Before I talk about disparity I will first have to explain in more detail how in
GA I determine how many children any individual in a generation will have
after I have already evaluated their fitness/error.

In [10] the author shows how you can assign a number of children to each
individual by ranking them by their fitness and then assigning each of them a
number from 2 to 0. The highest ranking individual is assigned 2, second one 1.9
and so on, down to 0 for the 21-st individual. Then each individual is assigned
0, 1 or 2 children based on the full part of their assigned number, and then 1
more if a random number between 0 and 1 is smaller than the leftover part of
their number (cf. [10]).

Finally notice that since children have 2 parents, then the number of children
we just calculated must actually be multiplied by 2 in order to get the exact
number of times that individual is going to be a parent. You could see that
number as a number of times that individual is going to be mother (left most
parameter for generating new child individual).

Using this method you are very likely to end up with the same number of
individuals in the next generation, however this is not guaranteed. In practice
I want to have complete control over the population size so that it doesn’t go
smaller or larger by random chance. I achieved this by carrying over either a
penalty or a bonus to the odds for the next individual based on the random
result of the previous one. For example if rank 8 individual is assigned number
1.3 and because of luck is assigned 2 children, I carry over −0.7, so that the
next, rank 9 individual, instead of having a number 1.2, now has 0.5. If however
rank 8 individual would have failed the ”dice roll”, I would have carried over
0.3, so that rank 9 individuals number is 1.5.

Now about disparity. Suppose you wanted your best individuals to have more
children than just 4. For that I have a parameter called disparity. Disparity
shows what number is assigned to the highest ranking individual. So in the
previous example the disparity would have been 2. If you however increase the
disparity then you cannot reduce the numbers for next ranks at a linear pace
like in [10], but instead have to use some other function for that, if you want to
maintain the number of individuals in a population.

This problem is essentially an integration problem. Consider for example a
line from x = 0, y = 0 to x = 1, y = D, where D is disparity. What we want
to achieve is that the area under the line to be 1. If we had such a function
f(x), then if we had a population size P , then we could make another function

fP (x) = f(x/P ), which basically stretches out f(x) so that
∫ P
0
fP (x) = P .

Which is what we wanted to achieve. Now such f(x), given D is not hard to find.
Suppose f(x) = D∗xD−1. Then its anti derivative would be F (x) = xD. Now if

you would integrate from 0 to 1 over f(X) you would get
∫ 1

0
f(x) = F (1)−F (0),

which would always be 1, except when D would be 0, since 0x = 0 and 1x = 1
no matter the x value.

So, let i be an index from 1 to P and Mi be the number assigned to ranked i
individual, which represents approximately the number of times that individual
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is going to be a mother. Given disparity D I calculate Mi = D ∗ ((1 − (i −
0.5)/P )D−1. The −0.5 is so that the sum of all Mi would be closer to P . I flesh
it out by calculating the difference and adjust all the numbers evenly based on
the difference.

In practice I’ve been using D = 2, but in principle one could use other D
values, since the Disparity feature is implemented as explained above.

4.4 Fitness functions

For control voltage search I’ve implemented 2 error functions, one which uses
only separation and another one which uses both separation and correlation.
What such an error function does, is given a list of input electrode values with
corresponding expected boolean value, it evaluates how well the given control
voltages achieve these desired boolean values by measuring the output current.

The error function performs X separate simulations using the KMC model,
where X is the number of test cases (usually 4) and the one of the solutions
explained in chapter 3. Each of the simulations’ only difference is the input
eletrode voltage values, which match the corresponding test cases. As a result
of these simulations I get output current values.

To calculate the separation I keep track of the highest false current value (or
falsemax) and lowest true current (or truemin) value. The highest false current
is equal to the highest current value from the test cases for which we expected
the output to be false. The lowest true current value is equal to the lowest
current value from the test cases for which we expected the output to be true.
These values can be used to calculate separation sepa = truemin− falsemax. If
the separation is positive we have achieved separation.

Secondly we can calculate correlation corr by correlating the resulting output
current values with a correlation list. For example, if we are looking for an
XOR gate, where the input list is [(false, false), (true, false), (false, true), (true,
true)] and expected outputs are (false, true, true, false) we would generate the
following correlation list: [0, 1, 1, 0].

• The error function, that only uses separation will return −sepa

• The error function, which uses both separation and correlation is a bit
more complicated. In addition it makes use of another parameter called
corrpow or correlation power:

– if separation is negative, we just return −sepa
– If separation is positive, but correlation is negative we return 0,

though I believe we should not arrive to this case.

– Finally if separation is positive and correlation positive, we return
−sepa ∗ corrcorrpow

The idea of this is that first we find a solution which is able to separate
true and false values, and then start to also take correlation into account.
With corrpow you can adjust the importance of correlation.
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5 Visualization tools

As part of the Thesis I developed several visualization functions, with the aim
to make it easier to get an intuitive idea of what is happening in the simu-
lated dopant networks and through that also perhaps get insight what could be
happening in the real life samples.

To do that I either developed from scratch or built upon the code of B. De
Wilde to get following visual functions:

• Traffic visualization - As we run the simulation we can keep track of how
many jumps were made between each pair of dopants or each pair of
dopant and electrode. This information can be used to visualize the traffic
of electrons jumping between sites.

• Traffic subtraction visualization - if we make slight changes to a dopant
network, then it is possible that it is hard to tell the difference between
their traffic visualizations. What we can do instead, is subtract the traffic
data of one of them from the other and visualize the result similarly as
in traffic visualization. This would show us the change in behaviour.
However one has to be careful as the change can also be caused by the
general noise from one state to the other.

• Traffic and chemical potential combined visualization - B. De Wilde had
already developed a chemical potential visualization. I did improve that a
little bit and I used the improved version of it to put traffic and chemical
potential landscape on a single picture.

• Swipe animation - Often in the project we have wanted to perform swipes.
Swipe is when we gradually change the voltage value of one electrode from
starting value to end value. By dividing the swipe into a certain number
of steps to provide graduality and simulating the network at each of those
steps, I could use the results at each step to generate a frame using already
existing traffic and chemical potential visualizations and combining them.

5.1 Traffic visualization

Traffic visualization is supposed to highlight pairs of two dopant sites or dopant
site and electrode with the highest currents, so that we get the idea which
transitions are more likely to occur within some time frame.

The main challenge with visualizing traffic is how to separate the current
strength between different sites and from which point you don’t visualize it at
all to avoid clutter in the picture.

I do that as following: given N sites S, which includes both dopant sites
(acceptors in our case) and electrodes. Let P be a set of pairs (A,B), where
A,B ∈ S and A 6= B. For each pair p ∈ P I know the net jumps of electrons,
called |e(p)|. For example if we have sites A,B ∈ S, then if during the simulation
we had 30 electrons jump from A to B and 100 electrons from B to A, we know
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the net difference of 70, so e((A,B)) = −70 and e((B,A)) = 70. I know that the
time frame for all of those net differences is the same, so I can compare them
with each other as if I compared their currents (even though the underlying
meaning is different).

I first find a pair pmax, which has the highest e(p) value, let that value
be emax(P ). I use this value to set the base line for clearest and strongest
visualizing and I compare all other values with that when deciding if or how
strongly I should visualize the current.

To visualize traffic between a pair (A,B) I use arrows to determine the di-
rection of the jumps and alpha channel to show how p((A,B)) compared to
emax(P ). Whenever p((A,B)) ∗ 100 < emax(P ) I do not visualize the traffic be-
tween that pair. Otherwise I set the alpha value to alpha =

√
p((A,B))/emax(P ).

Note that alpha value is between 0 and 1, where in the case of 1, the arrows are
completely clear, and at 0 it is completely faded out.

Another feature that I visualize in the traffic visualization is the probability
that any site holds a dopant. If it is close to 100 % then it is completely white.
If it is close to 0 %, then it is completely black and otherwise it is somewhere in
between. The color changes linearly with the percentage value. The necessary
information was provided in the simulation if you set simulation parameter
”record=True”.

5.2 Chemical potential visualization

Dn object has a function, which is able to evaluate chemical potential caused by
the electrode voltages at each point. Differences in chemical potential between
two points show which direction the current takes. Current goes from negative to
positive chemical potential. Funcion to calculate this value was already provided
by the work done by B. De Wilde (cf. [11]). Using that he already had a chemical
potential visualization. The only original part that I changed regarding that was
to instead of having gradually changing color to visualize the change in chemical
potential I divided it to discrete steps. For example, I had 10 discrete steps with
easy to distinct color differences. This was useful so that it would be easier to
spot shapes in the chemical potential landscape.

To compare previous and updated versions see figures 5 and 6.

5.3 Swipe animation

Final visual functionality that I created is a swipe animation. A swipe is when
we change one electrode voltage from some value to another gradually and leave
the rest of the electrode voltages unchanged. In practice I used this to visualize
XOR or other gate behaviours as I changed the inputs between the 4 states.

The animation has 2 parts. Firstly a visualization of the dopant network
which combines traffic visualization and chemical potential visualization. Sec-
ondly a graph that displays output current parallel with the animation.

To generate the animation I first run a simulation on the dopant network
for each frame. This is necessary to generate the data that is going to be used
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Figure 4: Example of traffic visualization. The black and white dots are the
acceptor sites (dopants), x crosses are donor sites, which only interact electro
statically so they are not in set S. As you can see, some acceptors are white,
meaning they are very likely to hold an electron and thus have negative charge
at any given time. There are arrows between all sites which have relatively large
interaction between them. It doesn’t mean that electrons don’t jump between
the other pairs, it just means they do so much more rarely or with less direction
than the ones we have visualized. Finally the red dots at the edges are the 8
electrodes.
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Figure 5: An example of chemical potential visualization previously. Black dots
are the dopant sites, while corsses being donor sites. The color shows chemical
potential at each location, which changes from blue (small) to green(medium)
to yellow (high).

Figure 6: Example of chemical potential using discrete steps. As you can see
some of the shapes come out much better than previously. The underlying
dopant network is the same. In this figure I left out the dopant sites. Yellow
areas have high chemical potential while dark purple areas the smallest.
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in the animation. The exact number of frames can be controlled by parameters.
As I visualize a XOR gate for example, I specify how many frames does each
of the swipe take place, but also how many frames do I want to just hold still
after the swipe. The latter is nice, because I can easily visualize the noise to
have a better idea about the quality of a given solution.

The data required from the visualization is the following (this lists the items
required by each frame):

• simulated time

• electrode voltages used for the simulation

• currents at the end of electrodes

• traffic information - this is same as used by traffic visualization

• expected output true value. This is in the range of 0 to 1. During the
gradual transition it can be a value between that. It is used to draw an
expected output line, which makes tracking simulated gate quality easier.

After I have all the data for all the frames, I have to find the maximum
current, which is important for the traffic part of visualization. When traffic
visualization on a single network calculated emax(P ), then now this is no longer
useful. Firstly between all the simulations for the frames, the time frames may
no longer be the same even though we do simulate the same number of hops
(see chapter 2.3). That means we have to instead find the maximum current
between all pairs between all frames.

Current can be calculated easily: c(p) = e(p)/timef , where p is a pair in Pf
and f is some frame.

The maximum current is simply the highest c(p) value between all frames.
Let that be C(Pall). Now as I generate frame f , I pass C(Pall) to the traffic
visualization along with timef , then I replace emax(P ) with C(Pall)∗ timef and
rest of the traffic visualization behaves similarly.

Similar approach has to be taken with regards to chemical potential. I don’t
want the minimum and maximum to be calculated per frame, but instead get
the minimum and maximum between all the frames and use that as a baseline
so that color values would stay consistent.

For example see figure 7.

5.4 Validation / Testimonials

As part of the validation for this work I asked other members from the Nano-
electronics group to provide me with testimonials and feedback for the visual-
izations. Firstly the positive testimonials:

• Prof.dr. Peter A. Bobbert - ”This is the first time, I’ve seen something
like this”.
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Figure 7: One frame in the swipe animation. The left side is the combination
of traffic visualization on top of chemical potential landscape. On the right
you see the current of the output electrode. This frame is at the end of the
animation, as you can see the output current has already been mostly drawn
out. I1 and I2 are inputs, O is output, C1-5 are control electrodes. To separate
traffic arrows from the chemical potential, they are drawn green. Black line
shows the expected output (this is an example of where we expect a XOR gate),
and the blue line is the actual simulated current in output electrode. x axis is
time during the animation, and y axis is the current.
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• Prof.dr.ir W. G. van der Wiel - ”This is going to be used in all the future
presentations.”

• Bram Van de Ven - ”A nice tool to check the hypothesized inner workings
of the devices”.

During the feedback a few concerns were also raised:

• Requires a bit more polishing. For example some of the problems were a
lack of legend, which might be useful for new users, and the voltage text
overlapped with the graphics.

• How is this going to be useful.

Regarding polishing I’ve already addressed the text overlap. However re-
garding usability, that question is hard for me to answer. From the testimonials
you can see that at least someone found some use for these visualizations, but
overall I hope that over time others will also find questions to ask from the
visualizations. Also it could be a way to get some sanity checks for extreme
findings. For example throughout my own work, visualizations helped me to
find bugs.

5.5 Conclusion

So to sum things up, visualizations are used as supplementary tool to give
sanity checks while performing simulated experiments. However the resulting
visualizations received generally positive feedback, and could be used in the
future to also present the work done by the group more generally.
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6 Finding XOR gate with varied number of dopants

So far the NanoElectronics team has worked with fixed sized silicon dopant
networks.

Now it would be interesting to know if having more or less dopants would
still retain the desired properties - negative differential resistance, none-linearity,
ability to perform boolean operations.

We can attempt to predict that by using the simulations. However to test
that we have two options, we could assume the same density, meaning that
having less dopants means a smaller device, or we could assume that we can
control the density, and we would instead keep the size of the device constant.
In this experiment I chose the first option.

At the beginning of the thesis, the estimation I received of the number of
dopants on the current networks was around 30-40. Based on the new calcula-
tions however it could range between 100 (see Chapter 2.1). Now the problem
with such large values is, that KMC is going to be too slow to help make any
sort of analysis for such networks. There are several reasons for that:

• calculating the rates at each step, where N is number of dopants in the
system, has complexity of O(N2).

• As we increase the number of dopants in the network, the number of
possible states also increases, it does so exponentially. However in prac-
ticality, with the current parameters the increase of unique states that
we see in practice, does increase more like linearly. Storing these unique
states however again takes U ∗N2 space, where U is the number of unique
states.

• It is very likely that as we increase the number of dopants, we also need
to do more hops to achieve the same level of accuracy as previously.

In addition, since currently we are storing unique states’ keys as 64 bit
integers, I would need to rework this part to facilitate larger than 64 size systems.

That said we can still test the performance of simulated networks using a
wider range of dopants, which can still tell us something about the size of the
range where we could still see desired behaviour. For that we chose N values:
5, 10, 20, 30, 45 and 60. For each of those values of N, where N is the number
of dopants, I generated 14 different random placements and by using genetic
algorithm I tried to find them XOR gates. The parameters for this setup were
aR = 0.25 and I0 = 100kT . These parameter values were chosen, because
so far, using 30 dopant networks in the simulations, Bram de Wilde managed
to observe the most similarities between the simulated network’s and physical
devices’ behaviours (cf. [11]).

It is possible, but not confirmed that since simulated 30 dopant networks
behave similarly to the physical devices, then lowering or increasing the number
of dopants would also have similar effects for physical devices. Notice that since
we have no control over the density of dopants in practice, then lowering and
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increasing the number of dopants is done by decreasing or increasing the area
while not changing the density.

The genetic algorithm uses simulation solution written in Go, which took
advantage of recording of rates whenever we reach a new unique state (see
chapter 3.2.2). I also tried to make use of parallelism but I failed to find any
gains in time savings so far.

6.1 Finding XOR gates, problem definition

Finding XOR gate for a dopant network means that given X electrode positions
relative to the dopant network, from which 2 are for input, 1 is for output and
X − 3 are for control, we find voltage values for all the control electrodes, so
that the dopant network is able to perform as an XOR gate. XOR means, that
if exactly 1 of the inputs is true, the output has to be true. In both other cases
(inputs both true or both false) the output is false.

Since we are dealing with electrode voltages here, then we have to translate
these to true and false. In this setup true means having 0.5 V applied to the
input electron and false means having 0 V applied to the input electron. For
the output however, since it is not feasable to find a specific output value, what
we are looking for instead are three things. Firstly, that you can separate the
true values from the false values, meaning that the current values are distinct
enough to be separable even after taking noise into account. Secondly, that the
current for the true values is more positive that the current for the false values.
Finally we also want all true values to be close to each other, and same for false
values. The latter is achieved by using correlation.

To achieve all these goals I use an error function which uses both separation
and correlation explained in 4.4. I aim to minimize this error function using
Genetic algorithm.

The reason for trying to also maximize separation is that solutions with
higher separation are more robust to noise and other potential system effects,
which means that in practice you can determine their true false value faster.
This is due to the fact that better signal to noise ratio allows us to have a larger
bandwidth in practice. This is because increasing the bandwidth increases the
noise, but having a better signal to noise ratio initially allows us to overcome
that (source: personal communication with Dr. T. Chen).

6.2 Using genetic algorithm to find XOR gates

The genetic algorithm used is the one developed as part of this thesis (see
Chapter 4) The total number of searches I had to perform was 84 (6 N values,
14 placements for all those values). To make the results fair, same settings were
used for all the N values.

The genes in this case are the control voltage values. In this case we used
5 control voltages in all cases. (see figure 8). That meant, that a solution
effectively consisted of 5 numbers, which we fit into 5 16 bit integers.

The Genetic search parameter values were:

44



Figure 8: This shows the layout used in the simulated experiments. All red dots
at the edges are the locations of electrodes. I1 and I2 are the inputs. C1 to
C5 are the control voltages for which we aim to search voltage values. O is the
output electrode. In between the electrodes dopants are randomly placed for
each sample. In this sample there are 30 dopants and 3 donor sites (marked by
x).
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• Population size: 100

• Disparity: 2, this makes it effectively behave like in the example in external
source [6]

• Maximum number of generations to run: 10

• Uniqueness value: 1000.

• Number of best solutions kept unchanged: 4 (Elitism)

• crossover function: single point crossover.

• Mutation is only done to maintain uniqueness.

• Each simulation is 1E6 hops.

• voltage range for control voltages: -1V to 1V

There are 2 main outputs for the genetic algorithm:

• Error score for the best configuration

• Dopant network object, which control electrodes have the learnt voltages.

6.3 Results

As a result of genetic algorithm we get an object which has the original place-
ment of dopants but learnt voltages for the control electrodes. As we also receive
the error score we can already guess how well that configuration will perform
as a XOR gate. However since for calculating the error we only run each test
cases once and only for 1E6 hops (which often is enough), it is possible that
the error score is negative (meaning that there is separation) only by accident
and in practice the noise of the current when doing more or longer simulations
would actually not show any separation. This is especially important when the
resulting error score is negative but still close to 0.

To get a more accurate idea about the results, I simulate each input com-
bination (previously test case) for 40 times 5E6 hops. That way I get 40 data
points, and by drawing them on a graph I get quite a clear idea about the noise
and separation. I also calculate a new separation value, which takes into account
all the data points and calculates more accurate falsemax and truemin.

After having such graphs I can determine if the solution is correct by seeing
if the expected true and false values are separable.

6.4 Interpretation of results

Firstly I would like to note that there was no significant difference in finding
XOR gates for N values 5 to 45. The differences of 1-3 successes could easily
be caused by chance. But only finding an XOR gate 3 out of 14 times for 60
dopant networks does lead us to believe that it is harder to find a XOR gate as
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Figure 9: An example of near perfect XOR gate.

Figure 10: An example of clear failure to find XOR gate.

Figure 11: An example of almost finding a XOR gate, but due to the noise the
final separation was not positive so I decided to count this example as a failure.
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Table 7: Results of finding an XOR gate using genetic algorithm for 5, 10, 20,
30, 45 and 60 dopant networks.

results 5DOP 10DOP 20DOP 30DOP 45DOP 60DOP
success 9 8 7 6 9 3

fail 5 6 7 8 5 11

you increase the number of dopants further. Now this could however also be due
to the fact that we use the same voltage ranges for control electrodes and same
voltage values for input electrodes, as with fewer dopants. This is important,
since it is possible that these values are just too small for 60 dopant networks.
This theory is also supported by the fact that we know that increasing these
voltage values improves finding the gates in general, which you can see from the
results in Chapter 7.3.

Secondly it is important to note that even though we found XOR gates for 5
dopant networks, there are a few considerations one should take into account. In
practice there are maximum voltage ranges which we can use without damaging
or changing the device. It is possible that by making the device smaller the
allowed voltage range also drops, as the total resistance goes down and current
goes up (which is the probable cause for device changes). We can see from
figure ?? compared to figure ??, the average current values are much larger for
5 dopant systems compared to 30 dopant systems (current is y axis).

To be able to better read the graphs in the appendix I included 3 examples
(see figures 9, 10 and 11), to show a an ideal example, a clear failure and a
borderline failure when finding XOR gates.

6.5 Followup simulations on cluster

During the late stages of the Thesis I gained access to a cluster and had worked
out a workflow to effectively use parallelism provided by cluster. So I could run
the same experiment but instead of just having 14 data points for each number
of dopants I now had 100 data points for each number of dopants. In addition
since I wanted to confirm the theory that the main reason for low number of
dopants to have such high success rate was the relatively high current that the
same voltage range provides I also include the averages of currents on all the
electrodes for each number of dopants.

Table 8: Results of 100 data points for each number of dopants, which we got
from cluster

Number of dopants success rate average model current average supposed physical current
5 DOP 52/100 0.00267 2674.8nA
10 DOP 48/100 0.000673 673.4nA
20 DOP 42/100 0.000219 218.9nA
30 DOP 41/100 7.75e-05 77.5nA
45 DOP 22/100 3.3e-05 33.0nA
60 DOP 9/100 1.49e-05 14.9nA
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By looking table 8, there are 2 very important take aways. Firstly by in-
creasing the number of data points the results draw out a much more convincing
picture. For example previously I wasn’t sure if the number of successful gates
would actually be lower for 45 dopant networks compared to 30 dopant net-
works, while now I am. Secondly I can be fairly certain that the high success
rate for lower number of dopants is due to allowing too large currents in the
simulation. In practice these devices would most likely break long before reach-
ing these levels of currents, while for networks with higher number of dopants
we could most likely safely increase the voltage range.

6.6 Conclusion

To summerize it does indicate that there is probably a large window of picking
the size of the device in terms of finding negative differential resistance effects
to perform as XOR gate. However these results could be improved if we knew
more about the exact relation between the model and the physical device, and
if we knew more about the viable voltage ranges as we decrease or increase the
size of the network.

So I would recommend to running a new experiment in the future with an
adjusted error function, which also takes into account the currents at the end of
electrodes, but with an increased voltage range to have more freedom for finding
the most optimal but still realistic solution.

Finally using a cluster to increase the number of datapoints is clearly ad-
vantageous, clearly demonstrated by the fact that based on the initial results I
would have guessed there is not difference between 30 or 45 dopants, while in
the second set one could clearly see that there was.
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7 Calculating VC dimensions in simulation

Another use case for which I used the improved simulation solution was to ex-
plore VC dimensionality of simulated networks. VC stands for Vapnik–Chervonenkis
(cf. [9]), and VC dimension is a way to measure complexity of some system.
In our case we want to measure the complexity of our simulated networks. We
would say that a simulated dopant network has VC dimension N (VC N for
short), when having a finite set of points P of size N , the system is able to per-
form all the possible functions in F such that f : P → {true, false} =⇒ f ∈ F .
It should be clear that there are 2N different functions. If a system is only able
to perform some of those functions, let that number be X, then we say that VC
capacity for N points for the system is X

2N
.

Let’s look at an example. In our case we have 2 input electrodes, that
means a single point in P is a combination of voltages on those inputs. So
p ∈ P =⇒ p ∈ IR × IR. Let’s consider VC 5. Let the 5 points be (1V, 1V),
(-1V, 1V), (1V, -1V), (-1V, -1V) and (-2/3V, 0). We can consider each of these
functions in F as a boolean gate. One such gate could expect true for the first,
second and fifth input point, while false for the third and fourth input point.
As with finding XOR gate previously, finding any of the functions in F means
finding the right control voltages for the 5 control electrodes, so that the dopant
network performs as that function.

As mentioned before there are 25 different boolean gates for 5 points. We
say that 2 of them are trivial: when we expect always true or always false. We
do not explore these trivial cases as we do not need to know the input values to
calculate an output for those.

We say that our simulated network has VC dimension of 5 when we are able
to perform all the 30 none trivial classifications. As part of my thesis I explored
if I am able to find VC dimensionality of 5 (VC 5 for short) for simulated dopant
networks similarly to what was found in real life samples. So far for a single
real life sample VC 4 and 5 were found and around 90% capacity was measured
for 6 points (source: personal communication with dr. H. Ruiz).

In my simulated experiment I try to find VC 4 and 5 for different sized
networks and finally for a single 30 dopant network I also measure the capacity
for 6 points.

7.1 Setup

As mentioned before when measuring VC dimensionality we first have to define
some points. A point is a combination of 2 voltage values, which represent the
voltages applied to input electrodes. The points we use are following: (-1V, -1V),
(1V, -1V), (-1V, 1V), (1V, 1V), (-1/3V, 0V), (1/3V, 0V). When measuring VC 4
we only use first four points, for 5 the first five and for 6 all of them. Notice that
the voltage values here are larger than used in the previous experiment. This
has three reasons, firstly we believe higher voltages make finding gates easier,
secondly, in real sample VC measurements also higher voltages were used.
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Secondly we have the voltage range for the control electrodes. We allow
their voltage values to be between -2V and 2V. This was chosen as this is the
maximum allowed voltage in real life experiments. However after speaking with
dr. T. Chen from the NanoElectronics group, it became clear that this range
can vary from one sample to another. The important part is that the overall
current going through the device wouldn’t go too large.

To find the classifications I used the same genetic algorithm and parameters
as in previous chapter, with only two differences (explain in Process). That
means to prove that a dopant network is VC 4 I would have to perform 14
searches, for VC 5, another 30 searches and for VC 6 another 62 searches.
Since I didn’t have my parallel solution ready when performing this simulated
experiment, I was fairly limited in the amount of samples I would go through.
Since I also wanted to explore VC dimensionality for different sized networks I
have a following set of samples:

• 1 sample of 30 dopant network, for which I attempted to find VC 4, 5 and
6.

• 1 sample of 20 dopant network, for which I attempted to find VC 4 and 5.

• 4 samples of 10 dopant networks, for which I attempted to find VC 4 and
5.

7.2 Process

I used the same genetic algorithm and parameter values as in chapter 6.2, except
for two differences:

• The voltage range for measuring VC dimensionality was larger: -2 V to 2
V.

• I had no maximum number of generations, instead I just ran it for 1 hour
on my laptop, however within 1 hour I did get more than 10 generations,
but not more than 20.

I tried to search for each classification within the given 1 hour once, and for
all the failed cases I tried searching for a second time, the results after the first
and second iteration are presented separately. That means that not finding a
classification doesn’t mean there doesn’t exist one. However we are able to talk
about the lower bound of both VC dimensionality of a dopant network, and VC
capacity for some dimension.

To evaluate if a found solution was actually a correct solution I used the same
method as in chapter 6.3. That meant that for each point I made 40 simulations,
and I could find a much more robust truemin and falsemax current values to
calculate a separation, that if being positive, I could confidently say that given
classification is correct. You can see an example of VC 4, where all the test
cases are drawn out for a single 30 dopant network in figure 15. There you can
see all the non-trivial classifications (by looking at the black line), and what
kind of solutions we found for a single sample of 30 dopant network.

51



7.3 Results

For results I can count how many classifications did the genetic algorithm man-
age to find within 1 hour of search. Firstly I am going to display the results
based on the first run of searching. Later on I did try to run the search algorithm
a second time for all of the missing cases.

Table 9: Results of finding VC dimensionality on 6 different simulated dopant
networks after first run of searches. The results are in the form of X/Y , where
X means the number of functions in F found and Y is the total number of
functions looked for that VC dimension (all the none-trivial were looked).

test VC 4 VC 5 VC 6
30 DOP, 1 14/14 27/30 59/62
20 DOP, 1 14/14 29/30 -
10 DOP, 1 14/14 30/30 -
10 DOP, 2 14/14 30/30 -
10 DOP, 3 14/14 30/30 -
10 DOP, 4 14/14 27/30 -

As you can see from table 9, I could find VC 4 for all samples and VC 5
for 3 out of 4 of the 10-dopant networks after the first run of searches. After
doing a second run of searches for the missing classifications I found 9 out of
10 missing classifications. The only one I didn’t find was a classification for
VC 6 for 30 dopant network. One explanation for the high success rate in
finding missed classifications could be having an unlucky initial population for
the genetic algorithm, another simply arriving to a bad local optimum.

From the results it would seem that as you reduce the number of dopants
you would find VC 5 easier. However similarly to the previous experiment, it is
possible that I should not be using the same voltage ranges for smaller networks.
I believe that for smaller dopant networks the allowed dopant range should be
smaller. That could be further backed if the current on average increases as you
have less dopants (more current means more heat, means more likely that the
network will ”scramble” and start acting differently).

One of the problems is that it is none trivial to translate the current we get in
our model to some real world value. Currently I work under the approximation
that 1nA = 10−6 of the current value in the simulations (source: personal
communication with B. de Wilde, cf. [11]).

As you can see from table 10 the four samples of 10 dopant networks all have
higher average currents compared to the 30 and 20 dopant networks samples.
However the 20 dopant network has much smaller currents compared to 30
dopant network, so that was wierd. However I currently only took into account
the average current of the output electrodes. Since I am working with simulated
dopant networks I do have access to currents at the end of all electrodes. I show
them in table 11 and as you can see from there the current clearly does go up as
you lower the number of dopants. Now it could be possible that this difference
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Table 10: Average currents for all the 6 samples, over the 14 classifications made
for VC 4. The average is only over the output electrodes.

test average model current average supposed physical current
30 DOP, 1 3.6e-05 36.0nA
20 DOP, 1 3.77e-06 3.8nA
10 DOP, 1 0.000159 159.1nA
10 DOP, 2 0.000136 135.9nA
10 DOP, 3 0.00073 730.3nA
10 DOP, 4 0.00113 1126.6nA

Table 11: A verage currents for all the 6 samples, over the 14 classifications
made for VC 4. The average is over all the electrodes.

test average model current average supposed physical current
30 DOP, 1 0.000129 129.5nA
20 DOP, 1 0.000222 222.2nA
10 DOP, 1 0.000502 502.1nA
10 DOP, 2 0.00134 1339.4nA
10 DOP, 3 0.000323 322.8nA
10 DOP, 4 0.000887 886.8nA

in average could be made by a few outliers, but if you compare figures 15 and
16 you can see this is not the case.

7.4 Follow up simulations on cluster

Similarly to the previous experiment (see Chapter 6.5), I used my access to the
cluster, which I gained during the late stages of my Thesis to get more data
points and see if that would improve the quality of the experiments. I decided
to test VC 4 and 5 on 12 different samples: 4 with 30 dopants, 4 with 20 dopants
and 4 with 10 dopants. The first notable improvement was that when the first
set of results it took me more than a week to generate, then it only took around
3 days on a cluster to get all the new results. The results are in table 12.

This time the cluster results provided little new insight for me. The results
are very similar to the previous ones, but do confirm that finding VC 4 and 5 is
very likely for a wide range of dopant network sizes. However you can see from
the data that there are quite a wide range of average current values even among
same sized networks.

One thing I noticed that in for 3 cases, where the number of cases found was
significantly lower than average (30 DOP,3 VC 5; 10 DOP, 3, VC 4 and 10 DOP
4, VC 5), the average absolute currents were also lower than other samples with
similar size. So I thought that perhaps there is a relation there. But then again
we have a counter example of 20 DOP, 3 VC 5, for which we found all gates,
but the average current was the lowest of all the samples. Perhaps the latter
was an outlier, or perhaps the whole observation is a result of pure randomness.
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Table 12: Results for finding VC 4 and 5 for 12 different samples.
sample VC 4 VC 5 current VC 4 current VC 5

30 DOP, 1 14/14 28/30 139.7nA 123.9nA
30 DOP, 2 13/14 29/30 107.5nA 85.4nA
30 DOP, 3 14/14 25/30 68.8nA 59.7nA
30 DOP, 4 14/14 30/30 252.3nA 210.2nA
20 DOP, 1 14/14 29/30 84.9nA 130.7nA
20 DOP, 2 14/14 30/30 418.5nA 498.6nA
20 DOP, 3 14/14 30/30 272.9nA 28.5nA
20 DOP, 4 14/14 30/30 198.8nA 155.5nA
10 DOP, 1 14/14 28/30 525.1nA 488.8nA
10 DOP, 2 13/14 30/30 876.6nA 823.0nA
10 DOP, 3 11/14 30/30 296.0nA 520.6nA
10 DOP, 4 14/14 26/30 280.7nA 275.8nA

This is a potential thing to explore in a future more larger experiment.

7.5 Conclusion

To summerize it is possible to find VC 4 and 5 in the simulated networks as it was
demonstrated on a real life device. I’ve also outlined some of the criticism for my
solution for the current experiment with regards to choosing the voltage range
and I suggest to look into ways to incorporate electrodes’ current values into
the fitness function to incorporate the fact that high currents may be harmful
to the real life devices (of course we cannot see that harm in simulations, as this
is not part of the model). The problem with this currently is that the exact
dangerous current values for the real life samples is not known since only the
output current is measured. Hopefully in the future more information will be
known about that.

In this experiment using the cluster provided less benefits, but it could be
because the increase in data points was not very dramatic. By running for
more time or using more cluster resources one could consider making larger
experiments to perhaps find some interesting patterns.
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8 Implementation overview

8.1 Structure

The code written in this Thesis can be accessed from . The repository has
both the code made for this Thesis and for B. de Wilde’s Thesis ([11]). In this
Chapter I am going to discuss both my additions to B. de Wilde’s code and my
original code.

The relevant code can be divided into 3 parts:

• root functionality - most reusable code. Dopant network object, genetic
algorithm, utility functions.

• Go code - everything written in go language, that mostly includes various
simulation functions explained in Chapter 3

• thesis related scripts - These are python scripts that use the root func-
tionality to achieve various research goals. These include generating test
sets and validating different simulation functions on those test sets for
Chapter 3, starting lot’s of GA searches for Chapters 6 and 7, generating
animations and compiling graphs (like in figure 15) for GA search results
which relates to Chapters 5, 6 and 7, a script for uniqueness validation
used in Chapter 3.

To use any functionality in the repository make sure to read README.md
in the root, as that explains what you need to install. Both me and B. de Wilde
used Linux based systems to run this code, but in principle it should also work
in Windows, as both Python and Go are cross platform.

8.1.1 Root functionality

There are 5 important files in the root folder. All of them are python code:

• kmc dopant networks.py - This defines the dopant network object. It has
the dopant placements, donor placements, electrode information (place-
ment and voltage), various pre-calculations. This code is mostly written
by B. de Wilde, but I did make a few additions. Namely saving and load-
ing that object from a file, and adding the ability to start simulations
on that object using different simulation methods (for both go and the
original python simulation).

• kmc dopant networks utils.py - This has various utility functions, mainly
related to making visuals. This was also started by B. de Wilde, but I’ve
added all the visual related functions here (see Chapter 5). I’ve also added
a few additional functions that I keep reusing in thesis related scripts.

• dn search.py - My general implementation of Genetic search algorithm as
described in 4. It also has several other search algorithms like simulated
annealing and greedy, but since I did not end up using them much in the
Thesis, I’m not going to discuss them further.
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• voltage search.py - This implements my dn search object to be used for
searching control voltage values as needed in Chapters 6 and 7. It is a
good example of what has to be reimplemented if you would want to use
the GA, but for slightly different purpose.

• dn animation.py - This is in the root, and it has various functions that
are used to create animations in the Thesis.

8.1.2 Go code

Various simulation solutions explained in Chapter 3 were written in Go lan-
guage. They are still called from Python, and in order to do so I have to
export go functions into a C shared library (by following tutorial from [2]),
which Python then uses. One big problem with this solution was passing multi
dimensional arrays. I couldn’t find examples of how to do that directly, so I
ended up wrapping them into 1 dimensional arrays and unpacking them in go.
To do that nicely I separated wrapping part from functionality. There are 4
important files in goSimulation folder:

• simulation.go - has the functions for optimized go simulation (you can
control weather or not you use recording of states or not), and pruning
solution explained in Chapters 3.2 and 3.4

• probabilitySimulation.go - has the functions for probability occupation
simulation explained in Chapter 3.3.

• simulationWrapper.go - has the functions that are exported into C shared
library. All issues related to transferring data from python to go and back
are dealt in this file. Functions in simulation.go and probabilitySimula-
tion.go are called from here, but could also be used independently if one
was simply working in pure Go environment. Also the second solution for
the parallelism described in Chapter 3.6.2 is implemented here.

• pythonBind.py - this wraps the technical parts of calling a simulation
from a C shared library in python. This opens two functions up for the
rest of the python code - one for single simulation and one for paralleled
bulk simulations discussed in Chapter 3.6.2. The packing of data and
formatting it to acceptable data structures (since python itself is very
loose with it’s data structures) is all done here.

8.1.3 Thesis related scripts

In order to arrive to many of the results in this Thesis additional code had to
be written to use the core functionality in an intelligent way. They can serve as
examples for future work on this code base. Some of these scripts take use of
passable parameters. This was mainly done so I could easily use these scripts
in the paralleled way as explained in 3.6.3.

They include following files:
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• generate tests.py - this file has functions which were used to generate the
test sets used in Chapter 3.5.

• validate tests.py - this file has functions which were used to validate dif-
ferent solutions with different parameter values (like number of hops or
pruning threshold). Based on the results it outputs statistics as reported
in Table 2 and graphs as seen in Figures 13 and 14.

• voltage search tests.py - this file is used to initiate searches and was used
to get the results in Chapter 6 and 7. It has functions to perform all the
searches for some VC dimension (like 4, 5 or 6), to start a second run of
searches for a subset of cases only (used for cases, for which we didn’t find
a solution), or to just run searches on cases one is interested in (like XOR).
It is also possible to pass parameters for this script so that we could use
this script in a cluster.

– -m : mode, currently either ”xor only” or ”vc”, which decide what
kind of searches are going to be performed.

– -d : number of dopants, if we are generating a new random dopant
network to perform searches, how many dopants does it have?

– -i : starting index, as the search results are going to be saved into a
file, this index is used as a starting point when deciding the file name.
This is used to avoid overrides when executing scripts in parallel, or
when I want to preserve previous results.

– -t : If you choose the mode ”xor only”, then how many different
random placements are we going to use to search for XOR boolean
gate. The larger the number, the more time it is going to take to
execute the script.

– -v : If you choose the mode ”vc”, then what vc are we going to explore
- 4, 5 or 6? Currently I don’t support more as I haven’t defined the
points for higher dimensions, but once someone does that, it should
work for higher dimensions as well.

– -f : If you choose the mode ”vc”, and want to load the dopant network
from a file, you can specify the file name to load it from. This is used
so I could start multiple different VC searches in parallel.

• AnimateSwipe.py - this script can generate the animations explained in
Chapter 5.3 from a dopant network object file, that is generated as a result
of search algorithm. In addition to creating the animation this script does
lot’s of simulations on the final voltage configuration, that is used to get
a better idea about the noise and actual separation of the solution.

• SaveResults.py - This is used to do lot’s of simulations on some dopant net-
work object saved in a file, similarly as in AnimateSwipe.py, but without
generating an animation.
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• CompileGraphs.py - this script is used to compile several results into
a single pictures as for example seen in figures ?? or 15. Either Ani-
mateSwipe.py or SaveResults.py has to run before this script can be used
as it relies on having the necessary simulations made for generating these
pictures.

• generate samples.py - This is used to create random dopant network ob-
jects. This can be used in parallel experiments that want to use the same
dopant network object.

• UniquenessValidation.py - This is used to generate the results seen in
Tables 4 and 5.

• printTables.py - This is used to generate the latex tables for my thesis.

8.1.3.1 Experiment process

In order to carry out a simulated experiment there are a few steps one would
most likely have to take. Firstly to decide the initial conditions (for exam-
ple how many dopants), search target (for example which boolean gate, or
are we measuring VC) and search strategies (what are the parameter values
for Genetic search). Examples of defining these things can be found in volt-
age search tests.py and UniquenessValidation.py. The result of this step should
be files of dopant network objects. For each result you will have one file (so if I
check VC 4 for 1 network, I will get 14 files, as I have to do 14 searches).

Second step that I always did was to simulate the results in a higher detail. I
would run 40 simulations with 5 million hops for each of the input combinations,
that would give me a really good estimate for noise to signal ratio and the
overall quality of the solution. This is done in both AnimateSwipe.py and
SaveResults.py. The results of this step are again saved into a file, and the
exact location depends on the script used. You can also use these scripts as an
example starting point.

Finally I want to compile the results, most likely to get some statistics etc.
In my thesis I used CompileGraphs.py to generate graphs to visualize the results
(for example see Figure 15) and also to count the number of successful searches.
If you used AnimateSwipe.py you could also see an animation of the behaviour
of the found simulated dopant network.

If you want to run large scale experiments, one would have to consider using
cluster and parallelism. Currently that however requires one to break the ex-
periment down to smaller pieces, where each piece involves discrete number of
searches. For example during my Thesis I played around with a cluster which
used SLURM workload manager, for which I made several .sbatch files, which
can be found in slurm folder in the repository. There you can see how I use
command line arguments and starting scripts in the background to make a job
that does many searches in parallel.
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8.2 Other people using the library

As a lot of work was put into improving the simulation, trying new techniques
for genetic algorithm and adding new visualization functionality, that all formed
into something of a library. One very important question is if that functionality
is also usable by other people now and in the future.

So far there have been 2 other users using my parts of my code. B. de Wilde,
who mainly used the Go simulation with transition rate recording in his own
thesis and B. van de Ven, who tried to look for VC dimensionality for lower
electrode systems.

Since the sample size is very small, to evaluate the library usage I decided
to use a free-form questionnaire to be answered by the 2 users. I am including
the following questions:

• What did you want to do with the library?

• Did you manage to do what you set out to do?

• Did you have any hurdles using the library? Which of those were a one
time problem, which were continous problems?

• What potential use do you see for that in the future?

• What are your general concerns related to the library?

8.2.1 Questionnaire results

8.2.1.1 Case 1

B. de Wilde wrote the initial KMC simulation and the core code for the silicon
dopant network simulations in python. For both our theses we worked on the
same code base, and he took advantage of my speed improvements for his work.
These are the questionnaire results, all the answers are quotes from B. de Wilde:

Q: What did you want to do with the library?
A: ”For me the main goal was to do the exact same simulations I was already

doing, but faster. Also, I wanted to use the library in a way that modified my
previous scripts as little as possible.”

Q: Did you manage to do what you set out to do?
A: ”Yes. Indrek also provided a Python wrapper function which I could use

in place of one of my own functions. That way, most simulations ran 10x faster
with hardly any work on my side.”

Q: Did you have any hurdles using the library? Which of those were a one
time problem, which were continous problems?

A: ”I have had no continuous problems. In the process of debugging I be-
lieve there were one or two instances where the wrapper/library returned wrong
results, but that is only natural in development. In the beginning I also had
some trouble finding the right function arguments due to documentation, but
that was very minor.”
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Q: What potential use do you see for that (I am assuming the library?) in
the future?

A: ”I think the library will remain the backbone of any kinetic Monte Carlo
work within NanoElectronics. It works well and is general enough to be future
proof. New people can develop new simulation tools using the library as a
starting point.”

Q: What are your general concerns related to the library?
A: ”My main concern would be regarding documentation. As I mentioned

above, I think the library is very nice and could help many people. A condition
for that to be effective is that people can understand it, preferably without
person to person interaction (i.e., just from text/documentation/thesis).”

8.2.1.2 Case 2

B. Van de Ven, who is doing PhD in the Nanoelectronics research group used
the library to explore having different number of electrodes. These are the
questionnaire results, all the answers are quotes from B. Van de Ven:

Q: What did you want to do with the library?
A: ”I want to analyze the influence of the number of electrodes on the com-

putation complexity of the devices used in the simulations.”
Q: Did you manage to do what you set out to do?
A: ”Not yet, I am still using the library since the search over the parameter

space takes time. However, I do have some initial results that show that I can
achieve what I want.”

Q: Did you have any hurdles using the library? Which of those were a one
time problem, which were continuous problems?

A: ”It took me some time to find which parameters to tune to be able to
make the variations I want to achieve. Now that I know where I can change the
parameters this is no longer a problem for me.”

Q: What potential use do you see for that in the future?
A: ”This library can now be used to perform simulations and analysis that

reduce the timescale of such an optimization project as described above to 1 or
2 weeks instead of months when making the hardware. This can help us define
design rules that can be iteratively improved using this library.”

Q: What are your general concerns related to the library?
A: My main concern is that some things could be slightly more user friendly,

especially for potential new users.

8.3 Summary

Based on the questionnaire it is clear that the library has functional capacity
to be useful. However the main concern is the ease of use, since it does cur-
rently rely on user having at least basic understanding of Python programming
language.

Regarding the documentation this has been fixed by now, in addition there
are some example uses, but in the end I believe that person from person knowl-
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edge transition is still going to be vital for the usefulness of this library. Also
as more use cases accumulate within the group, a second iteration to make it
more user friendly could be considered as part of some future Thesis.
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9 Summary

9.1 Recap

During this Thesis I had following successes:

• Improved KMC algorithm for simulated physical model of silicon dopant
networks.

• Developed a code base that could be used to perform large scale simulated
experiments for the physical model of silicon dopant networks, and also
ran a few of such experiments on my own laptop but also on a cluster.

• Had other people successfully use my code base that demonstrate the
usefulness of my work.

9.2 Contributions

The main contribution of this Thesis is making the Kinetic Monte Carlo algo-
rithm that is used to simulate silicon dopant networks more efficient. Even if
under different parameters the current best solution (remembering transition
rates for all unique states) is no longer viable (because too many unique states),
tools to evaluate the new best approach are still available. It is possible that
certain parameters would increase the number of unique states significantly in
which case we could probably make gains using pruning with certain threshold.
However if we can show that the current solution with less dopants but physi-
cally impossible parameter values simulates reality well and we could actually
have a 1 on 1 map between the number of dopants in simulation vs. real life,
that would have the benefit of being a fast performing solution, while still being
very useful for simulated experiments.

As part of the thesis a genetic algorithm solution, separate from the one
used by NanoElectronics was developed. One important feature was supposed
to be the uniqueness feature, which was supposed to help against getting stuck
in a local mimimum. So far it did not show to do so, but further investigation
into that could be made. The tools to try different uniqueness values and also
to have an uniqueness schedule are all there. It is also possible that we should
consider different distance functions.

In addition I laid out a path to making large scale simulated experiments,
as there are sample code to carry out the experiments, analyze them and run
these experiments on a cluster.

The usefulness of the developed code base (library) was validated in a few
ways. Firstly I used it to perform some simulated experiments, which Nano-
Electronics group had interest in, and secondly a few members from that group
have already used the code base in their own work as discussed in chapter 8.

The final potential contribution is to open up more cooperation between
NanoElectronics group and Computer Science students. This Thesis should be
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a good starting point to understand the silicon dopant networks enough to be
useful, without going too deep into physics.

9.3 Conclusions

There are three big group of conclusions that can be drawn with this Thesis:

• Firstly regarding the performance of the Kinetic Monte Carlo simulation.
With the parameters found in [11] the best solutions was the record tran-
sition rates and reuse them as we revisit the same states. This can mostly
be explained by the fact that since I0 is quite large, the electrons entering
the system repel other electrons from entering the system, meaning that
there are fairly small number of electrons in the system at any given time.
Another promising improvement is pruning, but recording is currently just
far superior.

• Secondly the simulated experiments have added more positive arguments
to support that the simulation model resembles reality. For example I
found very similar results when exploring VC dimensions as did dr. H.
Ruiz in his experiment on the real device. Another thing I found that
the output current may quite often be much smaller than the currents
between other electrodes (compare tables 10 and 11).

• Thirdly as you can see from the cluster results in Chapters 4.2 and 6.5
you can see that by having more data points, we gain new results which
smaller sample sizes may miss. This is a clear case for using cluster and
fast simulations to run large scale simulated experiments.

• Finally the usability of the code base. The most positive take away is that
it is functionally working and usable. Even though the user friendliness can
be improved, it definitely saves a lot of effort when making new simulated
experiments. As you can see from both of the use cases in chapter 8, the
goals were achieved both times.

9.4 Outlook

There are multitude of paths to develop upon my work.

• Firstly one can use this library to run new simulated experiments but
also to extend existing ones: One thing I would do if I had more time
and knowledge is to adjust the current experiments to take into account
the currents during the genetic algorithm. That means that after certain
amount of current I would penalize the score to avoid solutions which
would break the device in real life examples. The main consideration
here however is what should the current be? And that requires additional
insight from the NanoElectronics group. After that it could easily be made
by simply programming a new error function and using that instead.
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• Secondly another Computer Science student could work on making the
library more user friendly for the physicians. I do believe however that
this would be more reasonable to do once we have gathered more use cases,
so that we could find commonality in both use cases and biggest hurdles,
before we start tackling user friendliness.

• Thirdly further investigation into Genetic Algorithm uniqueness feature
could prove to be useful. Also related to Genetic Algorithm another ap-
proach to make simulations faster is to adjust the total number of hops.
From what I’ve seen so far, there are cases where we could allow much
more noise to still validate viable solutions, and also the noise seems to
be different depending on the conditions (dopant placement and electrode
voltages), as seen when comparing the two test sets in chapter 3.5. If we
could predict the noise in real time during search, we could theoretically
adjust the number of hops accordingly to increase efficiency.
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10 Appendix

10.1 Bhattacharyya distance

Bhattacharyya distance is used to compare two Gaussian distributions. I use
this in my work to compare different simulation solutions, and to deal with the
inherint noise that my KMC simulations will have in their results. I use this to
both have a sanity check for optimizations actually working as intended, but to
also test the accuracy for solutions where I know beforehand that there should
be no equivelance in the behaviour compared to the baseline KMC solution.

The main downside of Bhattacharyya distance is that it is potentially hard
to interpret. In my work I refer to Bhattacharyya distance as DB score. DB

score has values in the range [0,+∞]. 0 meaning both Gaussian distributions
being identical, and as the value grows larger the more different the Gaussian
distributions are. The difference may be cause by both the mean and standard
deviation. In general I consider a score of less or around 1 to be ok. In figure 12
you can see different pairs of Gaussian distributions and the resulting DB score
to get a better intuition about how the score changes. Each row in the picture
is meant to show a different scenario as to what may be the underlying story
behind a high score.

• First row shows the difference of means growing larger, while still having
substantial amount of overlap.

• Second row shows the difference of standard deviation growing. This could
happen if we compared two solutions where one of them simply runs more
number of hops and therefore gets less noise.

• Third row shows the difference of means growing significantly larger, and
having no overlap.

• Fourth row shows how even if having vastly different means, if standard
deviation increases for one of them, the DB score goes down.
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Figure 12: This is to give one an idea about what DB score means in practice.
In general things with 1 or less DB score can still have some overlap, and in
the case of comparing simulation solutions could easily be caused by noise error
even after 5 simulations.
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Figure 13: This is the DB score for RND test set for all the different solutions.
I only plot DB values from 0 to 1.
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Figure 14: This is the DB score for XOR test set for all the different solutions.
I only plot DB values from 0 to 1.
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Figure 15: VC 4 Results for a single 30 dopant network. Here you can see
all the different classifications and corresponding currents. In this case all 14
classifications were found.
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Figure 16: VC 4 Results for the forth sample of 10 dopant networks. Here you
can see all the different classifications and corresponding currents. In this case
all 14 classifications were found.
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