
1

Faculty of Electrical Engineering,
Mathematics & Computer Science

Aggression Based Audio Ranking
Annotation and Automatic Ranking

Daan H. Wiltenburg
M.Sc. Thesis
August 2019

Supervisors:
dr. M. Poel

dr. K.P. Truong
dr. ir. J. van Dorp Schuitman

Human Media Interaction Group
Faculty of Electrical Engineering,

Mathematics and Computer Science
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands

Summary

In many places, public and private, aggression can be a big problem. Therefore, surveillance
is essential. Sound Intelligence builds software especially for this purpose. Currently an
aggression classifier is used as surveillance assistant. In this study, techniques from the
field of information retrieval are applied in order to improve the performance of this classifier.
More specifically, aggression based audio ranking is investigated.

To automatically rank audio files, a ground truth is needed. Therefore this research is
twofold. The first part of this research focuses on annotation of the data set. Different
methods of rank annotations are compared on transitivity and efficiency. The annotation
methods are based on pairwise and list-wise comparisons. The methods are compared on
time efficiency and transitivity. 50 subjects participated in this experiment. First a ground
truth is established by pairwise comparing every sample in a subset of the data. This subset
is used to evaluate different, more efficient methods. Furthermore, a simulation is done to
predict the time needed to annotate a bigger data set.

The results show that a pairwise comparison method based on binary insertion sort is
the most efficient way to annotate audio samples into a ranking. To annotate a set of 300
audio samples, this method would take 8 hours whereas the second best method would take
21 hours. Furthermore this method yields the most transitive ranking, with an in-transitivity
value of 0.146 which is better than the baseline(0.15) and the list-wise methods(0.157 and
0.169). The pairwise method is used to annotate 300 audio samples into a ranking. The
rankings of 4 annotators are used to assemble a data set that is used for supervised machine
learning.

The second problem addressed in this research is in the field of machine learning and
learning-to-rank. Two type of loss functions are compared. The first loss function is Mean
Squared Error, which uses a continuous target between 0 and 1 to train a network making
this a regression approach. The second loss function is the log-likelihood function, which
takes an ordered list as target making this a list-wise approach. For both approaches two
network architectures are developed and optimized: A fully connected neural network and a
convolutional neural network. For optimization hyperopt1 is used. The combination of these
architectures and loss functions yields 4 models.

The models are evaluated based on the final ranking they yield. The measures used are
Kendalls Rank Correlation Coefficient, Spearmans Rank Correlation Coefficient and Mean

1Hyperopt is a python library that can be used to perform hyper-parameter optimization.

iii

IV SUMMARY

Squared Error. The best model achieved an KRCC of 0.6049, an SRCC of 0.8228 and an
MSE of 0.0364. Furthermore, the results are compared to the performance of the anno-
tators. This comparison shows that the models yield rankings that correlate moderate to
strong with the rankings of annotators.

The research shows that audio samples can be ordered automatically based on aggres-
sion. Furthermore it is shown that machine learning can be applied to automatically rank
audio samples based on aggression.

Contents

Summary iii

1 Introduction 1
1.1 Sound Intelligence . 1
1.2 Goal of the Research . 1
1.3 Reader’s Guide . 2

2 Background 3
2.1 Background in Data Annotation for Audio . 3

2.1.1 Individual Annotation . 4
2.1.2 Paired Comparison . 5
2.1.3 Binary Insertion Sort . 5

2.2 Background in Audio Processing . 6
2.3 Background in Machine Learning . 6

2.3.1 Support Vector Machines . 7
2.3.2 Neural Networks . 7
2.3.3 Convolutional Networks . 7
2.3.4 Recurrent Neural Networks . 8

2.4 Audio Processing Using Machine Learning 8
2.4.1 Deep Learning Audio Event Detection 8
2.4.2 Convolutional Neural Networks and Audio 9
2.4.3 Weakly labeled data . 10
2.4.4 Varying Length Audio Input . 10

2.5 Ranking and Machine Learning . 11
2.5.1 Pointwise . 11
2.5.2 Pairwise . 11
2.5.3 List-wise . 12

2.6 Loss Functions . 12
2.6.1 Loss Functions for Regression . 12
2.6.2 Loss Functions for list-wise Learning-to-rank 13

2.7 Hyper Parameter Optimization . 14
2.8 Background Ranking Statistics . 14

2.8.1 Similarity Metrics . 14

v

VI CONTENTS

2.8.2 Rank Evaluation . 17

3 State of the Art 19

3.1 Aggression detection in audio . 19

3.2 State of the Art in Audio Annotation . 19

3.2.1 Hybrid Comparison . 20

3.3 State of the Art in Automatic Audio Ranking 21

3.4 Conclusion of State of the Art . 22

4 Research Questions 23

4.1 Research Goals . 23

5 Research Methodology 25

5.1 How can 3000 audio files be annotated in a ranking in an efficient manner? . 25

5.1.1 Baseline . 25

5.1.2 Binary Search . 25

5.1.3 Hybrid Comparison Insertion . 25

5.2 Automatic Ranking of Aggression . 27

5.2.1 Data . 27

5.2.2 Data Analysis . 28

5.2.3 Audio Ranking using Machine Learning 29

5.2.4 Performance . 30

5.2.5 Hyper Parameter Optimization . 31

6 Results: Efficient Rank Annotation 35

6.1 RQ1: How can 3000 files be efficiently annotated? 35

6.1.1 Transitivity . 36

6.1.2 Time Efficiency . 38

6.1.3 Conclusion Exploration of Annotation Methods 38

6.2 Expected time for 3000 samples . 39

6.2.1 Simulate annotation . 40

6.2.2 Conclusion . 42

7 Results: Data analysis 43

7.1 Individual KRCC results . 43

7.2 Individual SRCC results . 43

7.3 In-transitivity versus the different normalized rankings 44

7.4 KRCC and SRCC against ground truth . 44

7.5 Qualitative Feedback From Annotators . 44

7.6 Conclusion . 45

CONTENTS VII

8 Results: Machine Learning 47
8.1 Hyper parameter optimization . 47

8.1.1 Regression . 47
8.1.2 List-wise . 48

8.2 Results five fold cross validation . 48
8.2.1 Regression . 48
8.2.2 List-wise . 49
8.2.3 Results against test set . 51

8.3 Results sensitivity test . 52
8.4 Remove difficult to rank samples . 52

9 Conclusion 55
9.1 RQ1: How can 3000 files be efficiently annotated? 55

9.1.1 SQ1.1: What is the level of transitivity in aggression annotation in au-
dio samples? . 55

9.1.2 How can audio samples be annotated into a ranking based on aggres-
sion? . 55

9.1.3 How efficient are the different types of audio annotation when ranking
based on aggression? . 56

9.2 How can audio samples automatically be ranked based on aggression? . . . 57
9.2.1 How can regression be applied to rank audio files based on aggression? 57
9.2.2 How can list-wise learning-to-rank be applied to rank audio files based

on aggression? . 57
9.2.3 List-wise versus Regression . 57
9.2.4 Sensitivity test . 58
9.2.5 Easy data . 58

10 Discussion 59
10.1 Results Compared to Kooij et al. 59

10.1.1 Data annotation very time consuming 59
10.2 SRCC vs KRCC . 60
10.3 Automatic Ranking of Audio Based on Aggression 60
10.4 Value based treshold . 61
10.5 Future Research . 61

10.5.1 Different Machine Learning Techniques 61
10.5.2 Data Source . 61
10.5.3 Exclude Irrelevant Samples . 61

11 Acknowledgement 63

References 65

Appendices

VIII CONTENTS

A Statistical Formulas 71
A.1 Z-scores . 71
A.2 Paired Students T-Test . 71

B Pairwise Comparison Experiment Tool 73

C Binary Comparison Experiment Tool 75

D List-wise Comparison Experiment Tool 77

E List-wise Comparison Experiment Tool 79

F Annotation Tool 81

G Simulation of Annotation Process 83

Chapter 1

Introduction

Although Speech Emotion Recognition(SER) already in the fifties, lately there is a growing
interest in this research field. In 2017 more than 150 papers have been published in SER [1].
This review summarizes different classification techniques used in emotion recognition. All
techniques described in this paper focus on discreet classification into different emotion
labels. Nassif et al. [2] describe supervised machine learning in SER application. They
define classification and regression as the main categories of machine learning. Another
field in supervised machine learning is learning-to-rank, in which a model predicts a ranking
rather than a label or continuous value, is relatively unexplored in SER.

1.1 Sound Intelligence

Sound Intelligence (SI) is a company that uses supervised machine learning techniques for
event detection in audio. One of the events that the software of SI can detect is aggression.
Currently the software works as a classifier, where some event is either aggression or it is
not. The user of the system can modify the sensitivity of the classifier, which determines
the trade off between false positives and false negatives. SI wants to extend this software
to a more advanced sensitivity system, where this functionality is not a trade of between
two wrongs. The new functionality should allow the user to set a threshold from which
aggressive events should be reported. This research is aimed to find ways of automatically
ranking audio files based on aggression. This ranking will make it possible to set such
a threshold, which is a more sophisticated method of control than the current sensitivity
control and should lead to fewer false or missed reports.

1.2 Goal of the Research

Supervised machine learning is a specific type of machine learning where the correct output
given an input is known [3]. To apply supervised machine learning techniques a labeled
data set is needed. The labeling of this data is referred to as data annotation. A set of 2427
unlabeled audio samples is available at SI for this research.

1

2 CHAPTER 1. INTRODUCTION

The goals of this research are two-fold: First, the different possibilities of data annotation
will be investigated in order to determine an efficient way to rank the data set. This data set
will be used as a training-, validation and test set for different supervised machine learning
techniques.

Secondly, different supervised machine learning techniques are investigated to deter-
mine how to automatically rank audio based on aggression.

1.3 Reader’s Guide

For readability this report is structured according to these two aspects of the research. First,
a background is given on data annotation, followed by a background on (supervised) ma-
chine learning. Then, the state of the art in data annotation is presented, followed by the
state of the art in audio ranking using supervised machine learning. After that, the research
goals for data annotation and the research goals for supervised machine learning are given.
Following, the research methodology for respectively data annotation and supervised ma-
chine learning are described. After the methodology, the results of the data annotation are
presented followed by the results of supervised machine learning experiment. Lastly, a con-
clusion and discussion of the research project are given.

Chapter 2

Background

2.1 Background in Data Annotation for Audio

Susini et al. [4] describe different measurements that are used in psychoacoustics, a field in
which ..research aims to establish quantitative relationships between the physical properties
of a sound [..] and the perceived properties of the sound [4]. First the classical evaluations
methods are described, divided into indirect and direct methods:

• Ratio scaling: In this scenario the sensation related to a sound has to be expressed
on a numerical judgment scale.

• Cross Modal Matching: According to the dictionary of psychology this is A scaling
method [..] in which a [participant] makes the apparent intensity of stimuli across two
sensory modalities, as when an [participant] adjusts the brightness of a light to indicate
the loudness of [an audio sample]. [5]

Previous methods are usable for stationary sounds, but everyday sounds are not station-
ary, neither is aggression. Non stationary sounds require continuous rating of sound. The
paper describes five categories of continuous sound judgment:

• Method of continuous judgment using categories: Participants judge an attribute of a
sound in real time into categories ranging from very loud to not loud at all, they change
to another category when their evaluation of the sound changes.

• Audiovisual adjustment method: Participants adjust the length of a line proportional to
the auditory sensation in real time.

• Continuous cross-modal matching: this is similar to cross modal matching of a station-
ary sound; only now the participant changes the evaluation modality along the length
of the stimulus.

• Analog categorical scaling: Participants can slide a cursor continuously along five
discrete categories [4]. As opposed to continuous judgment using categories, the
results are now measured on an analog instead of a discrete scale.

3

4 CHAPTER 2. BACKGROUND

• Semantic scale used in real time: This is used to track real-time emotional response
to music or sound. In this set up a participant has to evaluate the related sensation on
one or more emotion scales in real time when a sound sample is presented.

Next to classical evaluation methods, multi-dimensional and exploratory methods are de-
scribed.

• Semantic differential (SD): The participant has to rate stimuli on a semantic scale with
two opposed descriptors. Examples of these descriptors are good-bad or pure-rich.
When using SD the participant has to evaluate one stimulus at a time.

• Dissimilarity judgments: Contrary to SD no descriptors are used; now two samples
are compared with each other and rated on similarity scales. Euclidean distance is
calculated to determine similarity. This leads to N(N − 1)/2 comparisons.

• Sorting tasks: listeners are required to sort a set of sounds and to group them into
classes. [4]

• Free sorting tasks: no predefined (number of) classes. Various methods of free sorting
and grouping of stimuli into different categories are explained. Free sorting is out of
the scope of this research, for more information the reader should review [4].

• 2AFC: two alternatives, forced choice. Two stimuli are presented, the listener has to
choose one of the two as the best option related to a certain scale (i.e. choose the
most aggressive sample).

Following the paper of Susine et al. [4], some interesting categories of sound annotation
methods can be defined. These techniques are tested in other papers as well.

2.1.1 Individual Annotation

This is the technique where one stimulus is judged at a time. Continuous sound judgment
and SD are techniques described by Susini et al. [4] that fall into this category. A widely
used measure for individual affect annotation is the valance (positive/negative) and arousal
(high/low) two dimensional scale, proposed by James Russell [6] which can be used to
describe every emotion. Because the annotator does not have to name a specific emotion,
language ambiguity is omitted.

Individual evaluation is the most time efficient way of annotating data. Since there are no
comparisons, the amount of annotations needed is equal to the amount of stimuli. however
multiple studies [7]–[10] have shown that this evaluation leads to in-transitive1 results.

1(in)Transitivity is explained in chapter 2.8.1.

2.1. BACKGROUND IN DATA ANNOTATION FOR AUDIO 5

2.1.2 Paired Comparison

Susini et al. [4] describe Dissimilarity judgments and 2AFC, which is a form of paired com-
parison. Parizet, Guyader and Nosulenko [8] used pairwise comparison in their experiment
to find the sound of a car door closing, that evokes the best quality. The comparison had
to be answered by either choosing one sample, or both samples were perceived equal. 40
participants evaluated 12 sounds, resulting in 66 pairwise comparisons (N(N − 1)/2. If x
is preferred over y, then the preference score px,y = 1. If y is preferred over x, then the
preference score px,y = 0. If x and y are indifferent, px,y = 0.5. The preference scores are
averaged over the 40 participants. The correlation between the measured and the estimated
probability was 0.94, indicating that this is a very accurate way of comparison. The fact that
66 comparisons are needed to evaluate 12 sounds is a major drawback.

Poirson et al. [9] compare the evaluation of 11 diesel engine sounds by experts and
naive subjects, where experts are subjects trained in the evaluation of audio samples. The
experiment included two panels: an expert panel, consisting of 10 trained subjects; a panel
of naive subjects, consisting of 30 students. They found that the evaluations of experts and
naive subjects are very similar when it comes to paired comparison. only 5 out of 30 naive
subjects are discarded for giving in-transitive results, indicating that naive subjects can be
suitable annotators for paired comparison tests. On the other hand they found that naive
subjects find it difficult to evaluate individual sound samples on a numeric scale, leading to
in-transitive evaluations.

As opposed to Parizet et al. [8], the participants of [9] did not have to compare the entire
comparison matrix. To get computable results the subjects had to compare one full row of
the matrix and 12 additional comparisons. This leads to 10 + 12 = 22 comparisons, instead
of (11 ∗ 10)/2 = 55 comparisons.

As literature shows, comparisons are more discriminant than judgments. On the other
hand this is very time consuming. Furthermore, in most of the above papers the author is
working with up to 12 stimuli, where as sound Intelligence is looking for a solution to annotate
thousands of files. It is not feasible to compare every stimulus with each other. Therefore
two methods of inserting new data into a ranked list will be evaluated on efficiency, which
are explained in 5.1.

2.1.3 Binary Insertion Sort

There is a variety of sorting algorithms used in computer science, Binary Insertion Sort is
such a sorting algorithm that is widely used. In this method an unranked sample x will be
compared to multiple samples in the ordered list. The comparison will start with comparing
the sample y that is in the middle of the ordered list. If x has a higher value than y, x will
be compared to another sample in the ordered list: the sample right in between y and the
end of the ordered list. If x has a lower value than y, x will be compared to the sample right
in between y and the beginning of the list. It will repeat this process until there are no more

6 CHAPTER 2. BACKGROUND

samples to compare with, which will be the position where the new sample is added to the
ordered list. This can be used to efficiently build a ranking: O(n log n).

2.2 Background in Audio Processing

Before mathematical operations can be applied to audio, it has to be transformed to a digital
format. When the data is transformed from an analog to a digital signal, the data can be
processed digitally. Often this digital signal is transformed into a more usable format. ”Signal
analysis transforms a signal from one domain to another, for example from the time domain
to the frequency domain. By transforming the signal, the intent is to emphasize information
in the signal and cast it into a form that is easier to extract” [11]. In most machine learning
applications the wave input files are transformed into the frequency domain because this
is a representation of the audio input over which machine learning models can efficiently
generalize. To transform the data from the time domain to the time-frequency domain the
data has to be processed in small frames. To transform these frames into the frequency
domain Fast Fourier Transform (FFT) and Discrete Fourier Transform (DFT) are widely used.
These techniques are explained in [11].

A type of audio input that is often used in audio classification are Log-Mel-Spectrums.
First the audio signal is transformed to the frequency domain. This is done for a short
window of the audio signal using Fourier transformation. The energy spectrum is obtained
by taking the this transformation squared. The energy obtained by this transformation are
transformed to the Mel scale, which is divided into multiple filterbanks. The logarithms of the
powers in these filterbanks form the Log-Mel-Spectrums(LMS) [12], [13].

In speech recognition Mel-Frequency Ceptrum Coefficients (MFCC) are widely used.
The MFCC of a signal is obtained by taking the spectrum of the LMS. A spectrum of a
spectrum is called a ceptrum [14].

El Ayadi et al. [15] describe different features for emotion detection in audio. They de-
scribe energy and pitch as main continuous features. They mention MFCC as widely used
frequency feature along with Linear Predictor Ceptral Coefficients (LPCC). Lately there have
been experiments on raw audio wave input [16].

2.3 Background in Machine Learning

Machine Learning aims to find patterns in data. To do so different techniques are used,
which will be explained in this chapter. All of the models take representation of data as input
together with a target value. The models transform the input so that it can predict the output.
In this research the input is refered to as feature vector.

2.3. BACKGROUND IN MACHINE LEARNING 7

2.3.1 Support Vector Machines

A Support Vector Machine (SVM) algorithm is an algorithm that finds the hyper plane that
separates data points of two classes, with the maximum margin between the two classes.
SVM’s are widely used, but since computational expenses become less of a problem new
architectures are replacing SVM’s [17].

2.3.2 Neural Networks

Kevin Gurney [18] published a book called An Introduction to Neural Networks in which he
describes the basic concept of Neural Networks. This book gives a clear and understandable
explanation to readers who are new to this field. A Neural Network (NN) is a combination of
simple mathematical operations in order to learn patterns from a set of training data. An NN
consists of multiple layers and these layers typically consists of multiple nodes. The nodes
in different layers are connected by weights. Each node receives input from multiple other
nodes in the previous layer. Within a node the inputs are summed. Whenever this sum
exceeds a certain threshold the neuron will generate an output that can be used for classifi-
cation. A typical NN will consist of multiple layers: An input layer, which is a representation

of the data. One or more hidden layers in which operations on the input will take place and
an output layer. This output layer can be one node in a binary classification problem, but can
also consist of multiple nodes. For example in character recognition this layer might contain
26 nodes, one for each character of the alphabet. Furthermore an NN can be used in a

regression task where the network does not output a classification but predicts a value for
a certain input.If all the nodes in layer x are connected to all the nodes in layer x + 1 for all

layers, the network is called a fully connected NN. If the network consists of more than one
hidden layer, the network is called a Deep Neural Network (DNN).

2.3.3 Convolutional Networks

Sandro Skansi [19] gives a detailed explanation about Convolutional Neural Networks (CNNs)
and their mathematical background in his book An introduction to Deep Learning. CNNs are
a specific type of NNs that are widely used, especially in image processing, but in many other
fields as well. A CNN is an NN which has one or more convolutional layers. A convolutional
layer is similar to a fully connected layer as it also consists of nodes that are connected with
the previous layer through weights, but now these nodes are not connected to all nodes in
the previous layer simultaneously. The filter size of a convolutional layer is smaller than the
previous layer and moves step wise over the previous layer in order to learn local features.
The convolutional layer can apply multiple filters to the same filter window.]

8 CHAPTER 2. BACKGROUND

2.3.4 Recurrent Neural Networks

Skansi [19] also explains the use of Recurrent Neural Networks (RNNs). An RNN is a type
of NN that feeds the output of data point x back into the network when processing data point
x + 1. This way the network has information about previous inputs, giving it some sort of
memory. Next to that, this makes it possible to process data of different sizes without the
need to re-size the input data. This is specifically useful in audio processing for two reasons:
First of all when processing audio it can be expected to have samples of different sizes. Next
to that silence is an important aspect of audio so padding audio samples with zeros, in order
to get same sized data inputs, will change the meaning of these audio samples. This can
lead to a drop in accuracy. Two commonly used types of recurrent layers are Long-Short
Term Memory (LSTM) and Gated Recurrent Units (GRU).

Sak et al. [20] describes the use of LSTMs in a speech recognition task. An LSTM
architecture consists of three gates. An input gate determines which parts of the input to
this LSTM layer should be kept. A forget gate, which decides what data is not usable and
can be omitted. The final gate is an output gate which determines what should be passed
on. An LSTM has two outputs. A cell state which, will be passed on to the LSTM layer of the
next data input. Next to the cell state it outputs a hidden state which is used for prediction.

Wu and King [21] apply LSTMs as well as GRUs in a speech processing task. They
describe GRUs as similar to LSTM architectures only now the forget and input gates are
combined into a reset gate, which reduces the amount of operations making GRUs compu-
tationally less expensive. In this reset gate, information is only forgotten if something new is
inserted in it’s place.

2.4 Audio Processing Using Machine Learning

2.4.1 Deep Learning Audio Event Detection

Lane et al. [22] describe the development of an audio event detection system intended to run
on mobile devices: ”Deep Ear: The first mobile audio sensing framework built from coupled
DNNs that simultaneously perform common audio sensing tasks” [22]. The system consists
of four DNNs, every network performs a specific task: Ambient audio sensing analysis;
speaker identification; emotion detection; stress detection. The framework is optimized for
mobile devices by taking into account battery cost and use in a variety of environments. One
of the research questions discussed in this paper is: Can deep learning assist audio sensing
in coping with unconstrained environments?

The system first uses an energy threshold to detect silence. If there is no detection
of silence, the first DNN will be activated. This is the Ambient Scene Analysis, which can
detect the following: Voicing, music, water, traffic. If voicing is detected the other three
DNNs are activated. Stress Detection returns a binary state, Emotion Detection returns

2.4. AUDIO PROCESSING USING MACHINE LEARNING 9

anger, fear, neutral, sadness or happiness. Speaker Identification can discriminate between
23 speakers.

To train the system both labeled and unlabeled data is used. The unlabeled data is used
as background noise for the labeled data as well as to initialize the DNNs. All DNNs consists
of the same architecture: 3 hidden layers with 1024 nodes in each layer. ReLU is used in
combination with dropout to optimize the networks.

For validation a benchmark experiment is done, in which Deep Ear is compared to four
systems with shallow architectures as oppose to the deep architecture in Deep Ear. These
four systems each addressed one specific task that relates to one of the DNNs in Deep Ear.
The results show a gain in accuracy for all four aspects, ranging from 7.7% to 82.5% for
Ambient Scene Analysis to Speaker Identification respectively.

Deep Ear outperforms systems for comparable tasks greatly when these are trained
on clean data. When the same benchmark systems are trained on noisy data, their per-
formance improves but are still outperformed by Deep Ear. The Ambient Scene Analysis
achieves an accuracy of above 80%, Stress and Emotion Detection both approximately 80%
and Speaker Identification approximately 50%.The paper proves that using deep learning

techniques greatly outperform shallow systems and can better cope with data with noise on
different levels, indicating that deep learning can improve audio sensing with unconstrained
environments.

2.4.2 Convolutional Neural Networks and Audio

Piczak [23] developed a system using a Convolutional Neural Network (CNN) to classify
environmental sounds from three publicly available data sets: ESC-50, ESC-10 and Urban-
Sound8K. The performance of the CNN is compared to a baseline system. The baseline
system is a Random Forest with MFCC as input.

The proposed system consists two 2 convolutional layers with max pooling, combined
with two fully connected layers. The system uses segmented spectrograms with deltas as
input. Furthermore the system makes use of dropout and uses ReLU as activation function.

ESC-50 consists of 2000 clips(five seconds each) with a total of 50 balanced classes.
The baseline model used in this research scored 44% on this data, human participants
achieved an accuracy of 81%, the best CNN proposed in this paper reached an accuracy
of 64.5%. ESC-10 consists of 400 of these records and a total of 10 classes, the baseline
system reached 73% accuracy, human annotators reached 96% accuracy and the proposed
system reached approximately 80%. UrbanSound8k consists of 2732 clips of four seconds
or shorter, with a total of 10 classes. The baseline system2 achieved an accuracy of 73.7%,
the proposed system an accuracy of 73.1%.

Choi et al. [24] describe the comparison of a Convolutional Recurrent Neural Network
(CRNN) to three different CNNs. The networks are tested on a music data set to predict the

2Different baseline than for the previous two data sets.

10 CHAPTER 2. BACKGROUND

top 50 tags in this set, including genres, moods, instruments and era’s. Approximately 215
thousand clips are used. As a metric, Area Under Receiver Operating Characteristics Curve
(AUC-ROC) is used, because the clips are multi-label tagged.

The CRNN uses 4 CNN layers, after that follow two RNN layers with Gated Recurrent
Units (GRU). The results show that the CRNN outperforms the CNNs on all experimented
amounts of parameters, but needs more training time to achieve this. The highest AUC-ROC
achieved by the CRNN is 0.86.

2.4.3 Weakly labeled data

Kong et al. [25] propose a Joint Detection Classification Model (JCD), which finds the in-
formative and uninformative parts of an audio sample and only uses the informative parts
to classify the sample. They describe two types of audio annotation: Clip level annotation,
where each clip as one or more labels; Event level annotation, where each clip has one
or more labels and every label has an occurrence time. The proposed system is based on
human analyses of sound, where the writer assumes that humans detect when to attend to
a sound. Subsequently humans classify the sound.

The system takes as input data that is annotated at clip level. The JCD algorithm can
output labels at event level, leading to an Equal Error Rate (EER) of 16.9% which is lower
than the baseline(19%) without the need of event level annotation.

2.4.4 Varying Length Audio Input

Varying length audio samples can lead to problems in Machine Learning. Since silence is
part of audio, padding audio samples to a specific length might not be the best solution.
[26] describe the use of a convolutional layer on the input. For the use of acoustic scene
classification and domestic audio tagging they use the short-time Fourier transform (STFT)
of steps of 25ms as one dimension. The amount of steps depends on the length of the
sample, which determines the other dimension. The convolutional layer can handle this
varying length, as long as the layer is smaller or equal to the least amount of steps occurring
in the data set. The pooling layer will be applied on a dynamic pooling window.

Phan et al. [27] describe another shallow CNN architecture which uses a convolutional
layer directly on the input. The network consists of three layers, one convolutional layer,
one one-max-pooling layer and a Softmax layer. By using convolutional filters directly on
the input, inputs can be of different sizes as long as they are longer than the longest filter.
The convolutional layer is followed by a one-max-pooling layer, which reduces each filter to
the size of one regardless of the input length. The described architecture makes use of four
filters, this leads to a vector of length four after the pooling layer.

To train, validate and test the system respectively 2000, 500 and 1500 samples are used
coming from 10 balanced classes. Noise is added from the NOISEX-92 database. four types

2.5. RANKING AND MACHINE LEARNING 11

of noise are selected. The results show a great improvement of performance compared to
the state of the art DNNs (76.3% Relative Error Reduction). The best system achieved a
mean accuracy of 98.6% over four different noise levels.

2.5 Ranking and Machine Learning

A field in which ranking algorithms are widely used is information retrieval (IR). Thread or
result ranking of big data sets are central problems in this field. These techniques can be
relevant for Aggression ranking as well.

Jian Jiao [28] describes a system that is used for the ranking of usefulness of online
treads based on specific queries. Furthermore he states that the state of the art ranking
algorithms can be divided into three categories:

• Pointwise

• Pairwise

• List-wise

these algorithms are very similar to the described annotation schemes for ranking pur-
poses.

2.5.1 Pointwise

For every input a (relevance) score is calculated. The inputs are ordered based on these
scores, yielding a ranked list. The ground truth is an ordinal score or numeric value. This
output can be human annotated or automatically generated based on some mapping. Li et
al. [29] propose such a system.

2.5.2 Pairwise

The input of this algorithm is representations of two documents, the output is a binary value
indicating the preferred document. as opposed to pointwise this yields a ranking of two
documents. On the other hand, all documents have to be compared to each other to get to
an ordered list, which can be computationally expensive. Such a system is proposed in [30].

Lotfain and Busso [31] also investigated the possibility of generating a pairwise data set
for preference learning based on categorical labels. They developed a framework in which
inter annotator agreement is used to assign a preference over a specific axis(angry, happy
or sad) in a pairwise ranked data set. They applied Gaussian Process (GP) which slightly
outperformed alternative systems.

12 CHAPTER 2. BACKGROUND

2.5.3 List-wise

The final ranking of all the documents is used to determine loss of the model. This is state
of the art and is competitive with pairwise approaches. Fang et al. [32] propose a recom-
mendation system that is validated on two real world data sets. The first data set consists
of product reviews, the second data set consists of movie reviews. The system makes use
of list-wise learning-to-rank (LTR) instead of the widely used pointwise ranking. To do so
they take the cross entropy between the predicted ranking and the full ground truth ranked
list as loss function. The proposed system outperforms pointwise as well as pairwise based
systems. Furthermore they use similarity measures to validate individual rankings in order
to filter out malicious input.

2.6 Loss Functions

In the different Machine Learning Applications a variety of loss functions are used to evaluate
the quality of a regression or ranking output. Furthermore the gradient of this loss function is
used to update the model during training. The loss functions used in classification are omit-
ted in this paper, since those loss functions are not applicable for the algorithms developed
in this project.

2.6.1 Loss Functions for Regression

Mean Squared Error Loss (MSE)
The Mean Squared Error Loss is a widely used error function. It is closely related to the
Sum of Square Error function. In both cases the difference between predicted (p) and target
(t) is squared. The squares of every input is summed together. When using Mean Squared
Error Loss, this sum is divided by n. This error is sometimes referred to as L2 loss.

SE(p, t) =
1

2

∑
(p− t)2

The factor of 1
2 is convenient when determining the gradient [33].

Mean Squared Logarithmic Error Loss (MSLE)

MSLE(p, t) =
1

n

∑
(log(t+ 1)− log(p+ 1))2

Mean Squared Logarithmic Error is sometimes preferred over MSE when the target values
are widely spread. When using MSLE the error does not increase enormously when a high
value target is miss-classified. For example if x1 and x2 are predicted as 0.3 and 6 while
there respective targets are 0.1 and 5:

SE(x1, t1) =
1

2
(0.1− 0.3)2 = 0.02

2.6. LOSS FUNCTIONS 13

SE(x2, t2) =
1

2
(6− 5)2 = 0.5

SLE(x1, t1) = (log(0.1 + 1)− log(0.3 + 1))2 = 0.02791

SLE(x2, t2) = (log(6 + 1)− log(5 + 1))2 = 0.02376

When using SE the error increases enormously between x1 and x2, even though the relative
error is smaller for x2 than for x1. Jackner et al. [34] state that logarithmic errors are better
suited for relative regression targets.

Mean Absolute Error Loss (MAE)
Mean Absolute Error Loss is the average of the absolute difference between the target and
predicted value. This error is sometimes referred to as L1-loss.

MAE(p, t) =

∑
|p− t|
n

A problem with this Loss Function lies with the gradient, which is linear for every value. This
means that the gradient is especially large when the error is small. To fix this problem some
alterations of MAE are made. Next to that, this loss function is not differenticable when p-t is
0.

Huber Error Loss
Huber Loss [35] is a combination of MSE and MAE. In fact Huber loss is MAE until the error
comes below a certain threshold δ. This loss function is less sensitive for outliers but does
not have the gradient problem that MAE encounters.

Hδ(p, t) =

1

2
(t− p)2 for |t− p| ≤ δ

δ|t− p| − 1

2
δ2 otherwise.

HE =

n∑
n=1

Hδ(pn, tn)

A problem with this Error function is that it introduces a new parameter δ that has to be
tuned.

2.6.2 Loss Functions for list-wise Learning-to-rank

When applying list-wise learning-to-rank a loss functions is needed that determines the loss
based on the position a sample takes in the ranking. Xia et al. [36] describe different list-wise
loss functions and conclude that the likelihood loss(LL) has the best properties.

LL(g(x), y) = − logP (y|x; g)

whereP (y|x; g) =
n∏
i=1

exp g(xy(i))∑n
k=i exp g(xy(k))

14 CHAPTER 2. BACKGROUND

2.7 Hyper Parameter Optimization

When working with machine learning models, many parameters can have an influence on
the performance of a model. Parameters such as: number of layers, number of nodes,
dropout rate, learning rate and many more. These are all parameters of a neural network
model. Next to that the parameters of the audio feature vector can have an influence on the
performance of models, such as input format, frame size, frame rate etc. Hyperopt [37] is
a python library that can be used to optimize these parameters. As input it needs a search
space, in which the different parameters and settings are defined and a loss function which
has to be optimized. Hyperopt maps a probability function to the configurations of the search
space and the loss function, in order to find the best configuration of hyper parameters for a
model given a certain loss function. Bayesian optimization is used to find the best model for
a certain loss function.

2.8 Background Ranking Statistics

When comparing machine rankings, there are several standard metrics which are based
on precision and recall. Mean Average Precision (MAP) is one of these metrics which is
specifically usable to validate the top k ranks of a list. To use this metric, a ground truth is
needed to compare the results with. For the machine learning algorithms MAP can be used,
but when comparing different annotation techniques another metric is needed.

2.8.1 Similarity Metrics

Fagin et al. [38] describe different ways to compare the top k results of a ranked list without
the need of a ground truth. They describe different metrics and measures of similarity. Next
to that they describe two metrics of similarity that can be used on the full ranked lists: the
permutations.

D = Set of all elements

n = |D|

SD = Set of permutations of D

σ = One permutation out of SD

σ(i) = position of i in permutation σ

ρ = set of pairs

ρ = ρD = (i, j)|i 6= j and i, j ∈ D

Kendall’ Tau This metric checks the order of pairs of elements i, j. If i and j are in similar
order in both permutations: Ki,j(σ1, σ2) = 0. Else, if i, j are in reverse order,Ki,j(σ1, σ2) = 1.

2.8. BACKGROUND RANKING STATISTICS 15

K(σ1, σ2) =
∑
i,j∈ρ

Ki,j(σ1, σ2)

Kendalls tau has the highest value if the two permutations are in reverse order, the max-
imum Kendalls tau is Max K = n(n − 1). To normalize Kendall’s tau, K(σ1, σ2)/Max K.
Kendalls tau is equal to the amount of exchanges needed in bubble sort to convert one per-
mutation in the other.

Spearman’s Footrule The Spearmans footrule metric calculates the L1 distance between
two permutations.

F (σ1, σ2) =
n∑
i=1

|σ1(i)− σ2(i)|

The maximum value(Max F) of Spearmans footrule metric is (n2)/2 if n is even and
(n + 1)(n − 1)/2 if n odd, to normalize Spearman’s Footrule: F (σ1, σ2)/Max F. A variation
of Spearmans footnote, Spearmans rho, is developed to compare the top k results of two
permutations.

Where Kendall’s Tau looks at the order within a permutation, Spearman’s footrule com-
pares the ranks of elements between permutations. This means that if only one sample
is ranked differently and the order of the other samples is the same, this could generate a
high penalty although one might argue that the two permutations are very similar. The next
example explains this problem:

σ1 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

σ2 = [1, 10, 2, 3, 4, 5, 6, 7, 8, 9]

F (σ1, σ2) = 16

K(σ1, σ2) = 8

When using Kendall’s Tau, only the element 10 is penalized, when using Spearman’s footrule
also the following elements give a small penalty.

The above mentioned measures are discussed in different papers. [39] and [40] discuss
the transformation from these measures into metrics of correlation coefficients. These met-
rics calculate a value between -1 and +1, where -1 suggests a negative correlation(rankings
are reverse) and +1 suggests a positive correlation(rankings are identical).

The transformation of Kendalls tau into correlation metric Kendall’s Rank Correlation
Coefficient(KRCC) is discussed in [39]. d∆(ρ1, ρ2) denotes the count in the set of pairs
which are only in one of the ordered pairs.

KRCC =
1
2n(n− 1)− d∆(ρ1, ρ2)

1
2n(n− 1)

= 1− 2d∆(ρ1, ρ2)

n(n− 1)

16 CHAPTER 2. BACKGROUND

Mukaka et al. [40] discuss Spearman’s Rank Correlation Coefficient(SRCC).

SRCC = 1− 6
∑

(σ1 − σ2)2

n(n2 − 1)

The interpretation of KRCC and SRCC is discussed in [41]. In this paper both coeffi-
cients are referred to as r values. The interpretation of this r value is different depending on
the research field. For example, an r value of 0.7 or −0.7(positive or negative correlation) is
defined as strong, very strong and moderate for the respective fields of Psychology, Politics
and Medical. Since this project is focused on aggression, the ranges defined for Psychology
are used in this project, see table2.1.

Table 2.1: r value interpretation
r value Relation
1.0 | − 1.0 Perfect
0.9 | − 0.9 Strong
0.8 | − 0.8 Strong
0.7 | − 0.7 Strong
0.6 | − 0.6 Moderate
0.5 | − 0.5 Moderate
0.4 | − 0.4 Moderate
0.3 | − 0.3 Weak
0.2 | − 0.2 Weak
0.1 | − 0.1 Weak
0.0 Zero

Transitivity

Clinit Davis-Stober describes the transitivity of preference as follows: ”To have transitive
preferences, a person, group, or society that prefers choice option x to y and y to z must
prefer x to z [42]. Furthermore a binary preference is defined as a preference choice be-
tween two alternatives, where one is chosen over the other. This can be transformed in the
following statement:

∀x, y, z if x � y and y � z then x � z

If this proposition holds, this is perfect transitivity. Let matrix A be a preference matrix of
elements a, b, c, d, e, where a is the most preferred option and e the least preferred option. If
matrix A is perfectly transitive, it would look like this:

A =

0 1 1 1 1

0 0 1 1 1

0 0 0 1 1

0 0 0 0 1

0 0 0 0 0

2.8. BACKGROUND RANKING STATISTICS 17

Where aij = 1 means that i � j.When working with real world data, more often than not,
perfect transitivity cannot be assumed. To measure the level of in-transitivity, the preference
n ∗n matrix (P) can be compared to a reference n ∗n matrix (R) using the following formula:

Transitivity Error =

∑
|P −R|
n2 − n

In this formula the difference between the preference matrix P and the reference matrix
R is divided by the amount of comparisons, excluding the diagonal because no element is
compared with itself.

To calculate the weight associated with element x in matrix P , the sum of row i is divided
by the sum of the full matrix P .

Wx =

∑
j Px,j∑

i

∑
j Pi,j

The sample with the highest weight, will be the highest rank. If the situation of matrix A

would be a real world situation with a probability of 0.1 of an in-transitive preference, matrix
B could be the preference matrix of this situation.3

B =

0 0.9 0.96 0.91 0.93

0.1 0 0.91 0.84 0.87

0.04 0.09 0 0.89 0.88

0.09 0.16 0.11 0 0.9

0.07 0.13 0.12 0.1 0

Transitivity Error =

∑
|B −A|
52 − 5

= 0.101

The Transitivity Error is 0.101 ≈ 0.1.

Wx=1 =

∑
j P1,j∑

i

∑
j Pi,j

=
0.9 + 0.96 + 0.91 + 0.93

10
= 0.37

The weight associated with element x = 1 is 0.37.
Multiple publications suggest that there can be in-transitivity when working with real world

data [43]–[45], but no clear acceptable transitivity error is defined.

2.8.2 Rank Evaluation

(Mean) Average Precision In information retrieval Mean Average Precision is widely used
as an evaluation measure. Average Precision (AP) is ”the precision at each relevant [sam-
ple], averaged over all relevant [samples]” [46]. This measure is mostly used in cases where

3Matrix B is obtained by simulation the experiment 100 times, dividing the preference count by 100. Where
the probability of preferring a over b wrongly is 0.1.

18 CHAPTER 2. BACKGROUND

a binary relevant score is used(a document is either relevant or not). Mean Average Preci-
sion(MAP) is AP averaged over multiple search queries. This is standard practice in Infor-
mation Retrieval to validate a system. Since this project focuses on one query(aggression),
MAP is less relevant.

Normalized Discounted Cumulative Gain (NDCG) When working with continuous rel-
evance scores instead of binary relevance scores, NDCG is a widely used measure in Infor-
mation Retrieval [47]. Cumulative Gain is the summation over these scores up til a certain
index. Discounted Cumulative Gain adds a penalty D for every index further up the list.
These measures are mostly used up until a certain point, indicated after the ’@’ sign.

Dr =
1

log(1 + r)

DCG@p =

p∑
r=1

IrDr =

p∑
r=1

Ir
log(1 + r)

Where Ir is the relevance score of the sample at position r in the ranking.
This measure can be normalized by dividing by DCG of the ideal ranking (IDCG), this

measure is called Normalized Discounted Cumulative Gain (NDCG).

NDCG =
DCG

IDCG

Chapter 3

State of the Art

3.1 Aggression detection in audio

Kooij et al. [48] describe the development of CASSANDRA, a multi model system for surveil-
lance purposes. The system uses 3D cameras in combination with audio classifiers in or-
der to detect aggression. The audio component classifies audio as Speech, screaming,
singing and ’kicking objects’. Furthermore, different audio features are extracted. The clas-
sification labels, audio features and video features are combined using a Dynamic Bayesian
Network(DBN) in order to determine the level of aggression. The Root Mean Squared Er-
ror(RMSE) of the DBN while only using audio features is 0.223, where the full system, using
all audio and visual features, yields an RMSE of 0.188.

3.2 State of the Art in Audio Annotation

In emotion annotation, including but not limited to the annotation of audio, the arousal-
valance scale [6] is widely used [49], [50]. This scale used to be the state of the art anno-
tation method, but a paradigm shift is taking place. Recent studies [51]–[58] show improved
transitivity as well as improved accuracy when using ranked data sets, especially in affective
computing.

Yang et al. [52], [53] describe two frameworks in which music is annotated in a ranking
for both valence and arousal. In this framework annotators evaluate 8 randomly selected
pairs of samples. The samples are compared as in a tournament, which leads to one final
top sample. This way of annotating lowers the cognitive load, which makes it easier for
annotators. Subjective evaluation of this annotation method, compared to a rating based
annotation, showed positive results. On the other hand this only leads to most sample
and not to a least sample, since in the tournament set up only the ’winning’ samples are
compared to each other in the next round. If this set-up would be extended so that the
’losing’ samples are compared to each other as well, the evaluation would also yield a least
sample.

Yannakakis and Martinez [51] evaluate quality of different annotation methods on inter

19

20 CHAPTER 3. STATE OF THE ART

annotator agreement. They compared rating annotation with ranking annotation(both on
arousal-valance scale) and found that ranking annotation improved inter annotator agree-
ment. They extend their work in [57]. They state different disadvantages of rating based
evaluation.

• Inter-personal difference; Two subjects may experience something(i.e. likability of a
sound) the same, but rate it differently. One subject might rate the sound as very
likable where the other subject rates the sound as extremely likable.

• Ratings are transformed to numerical scales and used as interval, even though the
numerical scale is unknown. When subjects rate data through actual labels(i.e. Likert
scale), the numerical scale of these labels is unknown, but the annotation is trans-
formed assuming this numerical scale is known. Even when rating is done numerically,
these values represent labels. For example ranging from very pleasant to not pleasant
at all. Furthermore the assumption is made that this scale is linear, assuming that the
distance between fairly pleasant (4) and moderately pleasant (3) is the same as the
distance between fairly pleasant (4) and extremely pleasant (5).

On the other hand there is rank-based evaluation, which minimizes the assumptions that
a subject has to make and is therefore a fairer evaluation. This is supported by Yannakis
and Hallam [56], who compare rating-based and ranking-based evaluation. Within-subject
analysis yielded higher in-transitivity for rating-based evaluation.

In an other study Martinez and Yannakakis [54] transform a rating based annotations into
classes as well as into a ranking. They train a neural network to classify a sample as either
more or less pleasant; by doing so, the model builds a ranking. Next to that they train a
neural network to learn a ranking. Both systems are evaluated using Kendall’s Tau [59]. The
ranking-based network outperformed the classification network.

3.2.1 Hybrid Comparison

Rank annotation is also applied in fields other than emotion annotation. Chevret and Parizet
[7] did an experiment where they let a group of 36 people evaluate 12 sounds of closing car
doors. The participants were asked to answer the following question: What is the quality of
the door?. They had to answer this question on a continuous scale, which was supported
with 5 labels ranging from very poor to very high. The 12 sounds were available in one
screen, giving the users the opportunity to compare the different sounds. Furthermore the
ranking program incorporated an ordering button, which could be used to order the different
sounds based on the users quality rating.The authors call this a ”mixed procedure”, because
it is a combination of individual annotation(the continuous scale) and comparison(ordering
the samples). The scores of the 36 participants were set against the results of a pairwise
comparison test. The scores of the mixed method were comparable to the pairwise compar-
ison, while the participants needed less time to rate the sounds. It has to be noted that the
mixed procedure leads to higher variances.

3.3. STATE OF THE ART IN AUTOMATIC AUDIO RANKING 21

3.3 State of the Art in Automatic Audio Ranking

In audio ranking similar methods as for audio detection are applied. The research of Lot-
fian and Busso [50] focuses on the comparison of ranking to two different types of Support
Vector Machines (SVMs) in a speech recognition task. They investigate if Rank-SVMs can
outperform ordinary SVMs and SVMs meant for regression (SVR).

To do so, the SEMAINE1 database is used, which includes audio data that is annotated
with absolute values for arousal and valance. A preference for each pair is determined by
comparing these absolute values.

Evaluation is done according to median split. In fact it is a binary classification problem
for a specific axis (arousal or valance), this makes it possible to use recall and precision as
metrics.

All models use 50 high level descriptors as input. The rank-SVM outperforms both other
models in this classification task. For arousal up to 20%, for valence with 7% and 4% for
SVM and SVR respectively.

Parthasarathy, Lotfain and Busso [60] elaborate on their own work [50] by extending the
work with DNNs. Ranknet is used to create a ranking of arousal, valence and dominance
for a spoken conversation corpus. Ranknet outperforms RankSVM as well as the DNN
regression model.

Yang et al. [61] use CNNs to predict hit rankings for Western and Chinese pop music.
The target value of these songs is based on user listening data and used in a regression
task. The hit score is calculated by multiplying a songs play count by the number of distinct
users. In both of the subsets there are 10 thousand songs, 8 thousand are used for training,
1 thousand as validation and another 1 thousand as test set.

The study compares shallow networks and deep networks as well as two different types
of inputs and the combination of these inputs. One of these inputs is the low-level mel-
spectrogram. The other input is generated by using an auto-tagger that extracts 50 high
level audio features of a sample. These features are used as input for the different neural
networks.

Four metrics are used to evaluate the systems: Recall@1002; nDCG@100(which is
similar to recall@100 but also takes the order of the recalled samples into account); Kendall’s
Tau and Spearman’s Footnote.

The results show that deep models perform better than shallow models on the first two
metrics. However on the two metrics that take the full ranking into account they score worse.
The same goes for the auto-tagged input, this does have a positive effect on the metrics
based on recall, but not on Kendall’s Tau and Spearman’s Footrule.

In two other studies [52], [53] applied learning-to-rank on similar data sets, only these
data sets were human annotated. In this project the songs were annotated on the valance-

1Sustained Emotional coloured Machine-human Interaction Using Nonverbal Expression
2Which is recall of the first 100 returned items.

22 CHAPTER 3. STATE OF THE ART

arousal scale, either as an absolute rating or through paired ranking. Two types of machine
learning models were tested on this data set: a regression model and a list-wise learning-
to-rank model. The paired-wise learning-to-rank model is omitted in [53] because it is to
computationally expensive(O(n(n − 1))). In [52] pair-wise learning-to-rank is evaluated but
turns out to be highly time consuming.

In both experiments learning-to-rank outperforms the regression model, the best models
achieving an accuracy of 73.6% for valance and 87.6% for arousal.3

Li [62] describes the use of point-wise, pair-wise and list-wise learning-to-rank for differ-
ent applications. He states that there is no model that always outperforms the other two,
but list-wise and pairwise usually outperform point-wise models. Furthermore the list-wise
model approaches the learning problem more natural since it takes the ordered ground truth
itself as a target variable. The results of Li are supported by Ghanbari [63], who investigates
the effect of different loss functions.

3.4 Conclusion of State of the Art

Although rating-based annotation methods are still widely used, different studies show the
improvements that can be made using ranking-based annotation methods. This same struc-
ture is used in automatic ranking, including but not limited to audio. Learning-to-rank is
widely used in information retrieval but has also gained attention in affective computing.

In this research the following ranking-based annotation methods will be investigated:

• Paired comparison. Two types of paired comparison will be investigated to find the
most efficient method, while still maintaining transitivity in the rankings. In the first
method all samples will be pairwise compared. In the second method the binary search
algorithm will be used to build a ranking, so that not all samples will be compared with
each other explicitly.

• list-wise comparison. In this method the participant will evaluate more than 2 samples
will be ordered in a ranking. The combination of different lists will yield a final ranking.
The results of the list-wise approach will be compared to the two paired comparison
methods on time efficiency and transitivity.

The results will yield a balance between time efficiency and transitivity, based on which the
best method is chosen and applied to a larger data set.

The larger data set will be used to evaluate a regression based machine learning model
as well as a list-wise machine learning model, to investigate if audio samples can be ranked
automatically based on aggression.

3To calculate the accuracy of rankings Gamma is used [53]. In this research transitivity, KRCC and SRCC

will be used to evaluate the quality of rankings.

Chapter 4

Research Questions

4.1 Research Goals

Through this research we investigate a way to automatically rank audio files based on ag-
gression. To do so a target ranking is needed, which can be used to train a machine learning
model that can automatically rank audio files.

In this research two problems are discussed. The first problem is an annotation problem,
where audio files have to be ordered based on aggression. In this project a system is
developed that can be used to efficiently rank 3000 audio files based on aggression.

RQ1: How can a data set of 3000 audio files be annotated in a ranking in an efficient
manner?
To answer this question, some sub questions must be answered.

SQ1.1: What is the level of transitivity in aggression annotation in audio samples?
This question must be answered in order to determine if there is a logical order in audio files
based on aggression. If humans cannot find an order, then it will not be possible to rank
audio files on human annotations.

SQ1.2: How can audio samples be annotated into a ranking based on aggression?

SQ1.3: How efficient are the different types of audio annotation when ranking based on
aggression?

By answering these questions on a small subset of the data, an efficient way of annotat-
ing the entire data set can be found. When an efficient method is determined the data set
will be annotated and can be used for automatic processing.

Another problem in this project is the automatic ranking of audio files. After the data is
annotated, different machine learning techniques are evaluated for automatically rank audio
files.

RQ2: How can audio samples automatically be ranked based on aggression? To answer
this question, different sub questions are answered:

SQ2.1: How can regression be applied to rank audio files based on aggression?

23

24 CHAPTER 4. RESEARCH QUESTIONS

SQ2.2: How can list-wise learning-to-rank be applied to rank audio files based on ag-
gression?

The results of both methods are compared in order to find a suitable application for
Sound Intelligence.

Chapter 5

Research Methodology

5.1 How can 3000 audio files be annotated in a ranking in an
efficient manner?

The data set supplied by Sound Intelligence consists of roughly 3000 audio samples. To
pairwise compare all files is not feasible, therefore two frameworks for building the ranked
data set are proposed and tested.

5.1.1 Baseline

The baseline ranking is build using pairwise comparison, which is the most discriminat-
ing way of comparing audio samples into a ranking. For more information see chapter
2.1.2. This ranking is build using a pairwise comparison, in which the subjects have to
compare the full matrix. In the first experiment 12 samples are evaluated, which lead to 66
comparisons(N(N − 1)/2) for the baseline.

5.1.2 Binary Search

The first tested method is based on paired comparison and binary search explained in 2.1.3.
The comparison is based on aggression. if the subject evaluates sample x more aggressive
than sample y, the algorithm will move up in the list. If the comparison is evaluated the other
way around, the algorithm will move down in the list.

5.1.3 Hybrid Comparison Insertion

This method is based on the hybrid comparison method explained in 3.2.1. It is not possible
to let subjects make an ordered list of all the audio samples. In previous research partici-
pants had to compare at most 12 samples at a time. To use this technique on a bigger data
set, the existing ordered list is split into 12 parts. Of each part one sample will be used in a
selection that has to be ranked by the participants. To this selection an unranked sample x

25

26 CHAPTER 5. RESEARCH METHODOLOGY

is added. The samples in between which x is ranked determine the new ordered list which
will again be split into 12 parts. This process will be repeated until x has a final position.

In order to simulate this ranking method while answering RQ1, the participant has to
rank two lists of 7 samples in the first experiment. In these samples there will be two anchor
samples, which occur in both lists. The anchors are obtained from the baseline. The lowest
ranked sample and the highest ranked sample from the baseline will be used as anchors for
the multi-list method.

Audio Samples 12 audio samples are selected randomly from the labels human speech,
raised voice and aggression. Of all three labels, four samples will be selected.

Participants The participants are naive subjects, in other words: not trained in audio
annotation. The participants are students present at the University of Twente at the moment
of the experiment. For each type of comparison, 25 subjects will take part in the experiment.

Analysis The results of the first experiment are validated based on transitivity and time
efficiency.

Transitivity
Within every method, the following measures are compared. These measures should indi-
cate if different participants agree with each other when using the same annotation tech-
nique.

• transitivity(as explained in 2.8.1) within group

• Mean KRCC/SRCC within group (one vs rest)

The above two measures are useful to see the level of agreement within one method. If
this differs over the ranking methods, this can be an argument to choose one over the oth-
ers. Furthermore the methods are compared to the baseline results, which counts as a
groundtruth for this experiment.

• transitivity compared to baseline.

• KRCC/SRCC compared to baseline

Literature suggests that a full paired comparison yields the most transitive and discriminating
results. This analysis should find a more efficient method that achieves similar results as the
baseline.

Time spend
time cost is rated using the following measures:

• Mean time spend(for 12 samples)

• Mean time spend per comparison

• Amount of comparisons needed to rank full and partial data set

5.2. AUTOMATIC RANKING OF AGGRESSION 27

• Time needed to annotate full and partial data set.

Based on the above measurements a simulation of the annotation process is done. The
most important measurement is based on the quality of the ranking. To evaluate the quality,
transitivity, KRCC and SRCC is used. Based on the values of these measures, the most
discriminating method is selected.

If these values are similar for multiple methods, time efficiency is used to select the best
method. First, it the amount of comparisons needed to annotate 3000 samples is calculated
for each individual method. The amount of comparisons multiplied by the time spend per
comparison is used to give an indication of the time needed to annotate the full data set.
Based on the combination of the quality of the ranking and the time needed to annotate a
full ranking the most appropriate method is selected.

Ranking Simulation
When the most efficient ranking method is found, a simulation of the ranking process is
done. this is used to find an indication of the expected in-transitivity for specific batch sizes,
count of annotators and rank aggregation methods.

The simulation is done using a range of integers according to the different batch sizes.
This range of integers is ranked using the most efficient ranking method. The simulation
is done for different error rates, which defines the probability of a mistake: 0.05, 0.1, 0.15.
A mistake is defined as two samples that are not ordered in descending, but in ascending
order.

The simulation is done using the following parameters:

• Batch size: 10, 50, 100, 200, 300

• # annotators: 3, 5, 10

• Rank aggregation methods: Mean, Mode, Median

Furthermore, a simulation of the extension of the first batch ranking is done. In this
simulation a start batch of size 10, 50 or 100 is generated using the best rank aggregation
method and optimal annotator count. This ranking is used to add new files 1 by 1, based on
the agreement of multiple annotators.

5.2 Automatic Ranking of Aggression

5.2.1 Data

Sound Intelligence supplied a data set of recordings that they use to train their current ag-
gression detector. These recordings are from a variety of sources. The bulk of the recordings
are from a database called A. Next to database A there are two other sources that supply a
fair amount of recordings, called database B and database C. Next to these 3 main sources
there are recordings from other small databases.

28 CHAPTER 5. RESEARCH METHODOLOGY

The recordings in database A are recorded in healthcare institutions, the recordings in
database B are recorded in prisons, the recordings in database C are recorded in an exper-
tise centre for epilepsy. The recordings within a database can be very similar. Furthermore
it is difficult to compare recordings from outside of a specific database, if most of the other
samples are from the same database. Therefore a maximum number of recordings from
these three main databases is set. The diversity in sources yields a diversity in audio frag-
ments, which improves the generalizability of machine learning models.

The full data set consist of 2427 audio samples drawn from the Sound Intelligence
databases. The data is labelled by a group of trained annotators. The annotators select
the part of an audio sample in which an event occurs and giving this part the appropriate
label. The selected part of the audio is saved with the label. The labels used in this re-
search are Voice, Raised Voice and Screaming. The samples are drawn using the following
conditions:

• A maximum of 1000 files is randomly drawn from each of the following categories:
Voice, Raised Voice and Screaming, since these categories are relevant for aggression
detection. Furthermore, these categories are used in the current aggression detection
model.

• A maximum of 1
3 samples in each category may come from database A.

• A maximum of 1
3 samples in each category may come from database B.

• A maximum of 1
3 samples in each category may come from database C.

• The other samples come from diverse sources.

A final ranking is obtained by applying the annotation method developed answering Re-
search Question 1, 5.1.

5.2.2 Data Analysis

The rankings of different annotators are compared to determine if a final ranking can be
obtained that can be used to train and validate machine learning models. This final ranking
should be acceptably transitive. It can be assumed that there is some degree of in-transitivity
when working with real world data. Furthermore, the individual rankings should be positively
correlated with each other. This indicates that the different annotators agree on the order of
the recordings based on aggression. Therefore the rankings are individually compared with
each other on KRCC, SRCC and in-transitivity. These measures are explained in 2.8.1.

Furthermore, the annotations are used to build four matrices and used to compare the
individual annotations.

• Weighted Matrix, this is the matrix obtained by transforming every individual ranking
into one paired matrix. In this matrix every position Mij is the probability that i � j.

5.2. AUTOMATIC RANKING OF AGGRESSION 29

• Linear Matrix, this is the reference matrix obtained by the ranking of the Weighted
matrix. Note that this matrix is perfectly transitive.

• Median Matrix, this is the paired matrix that follows from the final ranking, obtained by
aggregating the individual rankings using the median position of every sample.

• Median Matrix(equal allowed), this is the paired matrix similar to the median matrix
only now shared positions are allowed. If two samples share a position, the position in
the matrix takes a value of 0.5.

More information on these matrices can be found in 2.8.1.

Next to the individual rankings, the individual sample will be analyzed. It is assumed
that the samples that are difficult to rank, will be ranked far apart over the different rankings.
Based on the standard deviation of individual samples in the different rankings, a list of
difficult to rank samples is specified.

The median ranking are used as a target for the machine learning models. For the
regression model, the position of a sample is divided by the length of the ranking. This
yields a value between 0 and 1 which can be used as a target value. For the list-wise
learning-to-rank approach, a scoring function per sample is optimized, which gives a high
value to relevant samples and a low value to irrelevant samples, so that the samples are
ordered from most aggressive to least aggressive.

5.2.3 Audio Ranking using Machine Learning

When applying fully connected Neural Network architectures it is important to supply the
architecture with an input of the same size for every data point. Figure 5.1 shows the archi-
tecture of a fully connected neural network with an input layer, 1 hidden layer and an output
layer. The size of the input in this example is 3 nodes. This means that every data point that
goes through this network, should be represented as a vector of length 3.

The data set used in this project consists of audio recordings of different lengths. All
recordings are sampled at the same frame rate. Therefore the data points of this this data
set all have different lengths, and should be processed before they can be supplied to an
NN architecture. The problems that occur in the processing of unequal length audio samples
are explained in 2.4.4.

Furthermore, the recordings will be annotated at clip level, which means it is unclear
in which part of the recording the actual aggression occurs. This might not be a problem
because the recordings are already trimmed to the event of the original label(Voice, Raised
Voice or Screaming), but the new annotation would still be classified as clip level annotation.
More information on weakly labeled data can be found in 2.4.3.

To deal with varying length data input, all samples are split into data frames. Every frame
is supplied to the network individually or in sets, with the clip level annotation as the target

30 CHAPTER 5. RESEARCH METHODOLOGY

Figure 5.1: Fully Connected NN with an input layer of length 3.

value. The predicted value of the different frames of a specific recording are averaged to
predict the value of a full recording. It is assumed that most information about aggression
will be in the frames with the most energy. Therefore the predicted value is weighted by the
energy of that sample to determine the average predicted value for each recording. This is
done to deal with the weak labels. These values are compared to the unweighted predicted
values for each recording to see if this leads to improvements in performance.

The wave recordings are sampled at a frame rate of 8000Hz and transformed into Log-
Mel-Spectrums(LMS) of different frame sizes. These frame sizes are optimized during hyper
parameter optimization. Next to the LMS of the current frame, the feature vector includes
the LMS of previous frames, this is added to the current frame. The amount of frames in one
feature vector is optimized during hyper parameter optimization.

The error function of the regression model is based on the distribution of the target
values. As explained in 2.6.1, Mean Squared Loss is useful if the distribution of target
values approaches the normal distribution, while Mean Squared Logarithmic Loss is more
resistant to outliers.

The error function of the list-wise model is the Likelihood Loss explained in 2.6.2.

5.2.4 Performance

To determine if it is possible to automatically rank audio samples based on aggression, a
set of 300 samples is manually annotated using the most efficient method(selected through
the first experiment) and used as input for different machine learning architectures. This
annotated set is split into two sets, a training set of 250 samples and a test set of 50 samples.
The training set is used to configure different architectures. This is done by applying 5-fold

5.2. AUTOMATIC RANKING OF AGGRESSION 31

cross validation: The set is split in five parts of 50 samples, a model is trained on four of
these parts and tested on the remaining 50 samples. This is done five times, so that each
part is used for validation. The validation scores are averaged to give a more generalized
score for each model. Based on the validation scores the best models are selected and
trained on the full training set. These models are then tested on the test set to determine
the best model. The results will be analyzed on different aspects:

• Loss results. The results of the loss functions will be used to tune the parameters
of the different models. Although MSE is not used as a loss function in the list-wise
systems, it is calculated as a metric.

• KRCC/SRCC, these values can be compared to the results of the annotated rankings.

• Difficult to rank samples. This set will be used to see if the system improves if those
samples are removed.

• Sensitivity test. First the models will be trained on all available training data. When the
best models are selected, they will also be trained on less data to see what effect this
has on the performance.

5.2.5 Hyper Parameter Optimization

To find the best model; hyper parameter optimization is done using the python library Hy-
peropt(more information in 2.7). The search space can be divided into two parts, the feature
search space and the model search space. Furthermore, two types of models are optimized,
a Fully connected neural network(Dense) and a Convolutional Neural Network(CNN). As a
loss function, 1 − SRCC is used since this would optimize a model that returns the ranking
closest to the ground truth ranking. This measure only takes the order of samples into ac-
count and ignores the target/predicted value. Furthermore, it is a measure calculated over
the final clip level ranking instead of the value per frame or frame set.

A fully connect neural network is included because it is the most basic structure of a
neural network. Furthermore, other networks are based on or include parts of this type of
structure. Figure 5.2 shows the structure of the Dense network. The length of the input
depends on two variables that are optimized through hyper parameter optimization: The
frame size and frame count. The input consist of the LMS of the current frame, which can
be 256, 512, 1024 or 2048 long. This frame is extended by adding the LMS’s of previous
frames, this can be done for 1 up to 32 frames(the maximum frames is lower when the frame
size increases). The output layer always consists of one node with the sigmoid activation
function. The hidden layer consists of x layers with y nodes. x and y are selected using
hyper parameter optimization, and are chosen from: x layers from an integer value between
1 and 10; and y nodes per layer chosen from: 10, 50, 100, 200, 350, 500. All layers include
a dropout value uniformly chosen between 0 and 1. The activation function for all layers
except the output layer are chosen from the following set: Relu, Tanh, Sigmoid or Selu. Next

32 CHAPTER 5. RESEARCH METHODOLOGY

Figure 5.2: Dense Network structure

to that a regularization is applied to these layers, either L1 or L2 regularization is applied
with a factor log-uniformly chosen from the range of 10−5 up to 10−1. The learning rate is
optimized as well, log-uniformly chosen from the range of 10−5 up to 10−1.

The convolutional neural network is included because the data used in this project is
annotated at clip level. Because this is the case, it is unclear in which part of the audio
sample the annotated level of aggression occurs. The convolutional structure can learn
local features of the input, and ignore the noise in the rest of the data. Figure 5.3 shows
the structure of the CNN. Again the frame size and frame count are optimized similar to the
dense network. Only in the CNN the frames are not extended in a one-dimensional array.
The LMS’s of the different frames are stacked in a second dimension, making it possible
to apply 2D convolution. After every convolutional layer a max-pooling function is applied.
The window size of this max pooling layer is optimized in the following range: 1-4. The filter
size for the convolutional layers are optimized out of the following range: 2-6. The number of
filters is optimized using 32, 64, 128, 256 and 512 as options. After the convolutional layers a
flatten layer is added. This layer is followed by a number of fully connected layers optimized
similar to the layers in the dense network. Learning rate, dropout and regularization are
optimized in the same manner as for the dense network.

Of both architectures a regression and a list-wise model is optimized, yielding 4 different
models: Dense regression, Dense list-wise, CNN regression and CNN list-wise.

5.2. AUTOMATIC RANKING OF AGGRESSION 33

Figure 5.3: CNN structure

34 CHAPTER 5. RESEARCH METHODOLOGY

Chapter 6

Results: Efficient Rank Annotation

6.1 RQ1: How can 3000 files be efficiently annotated?

As explained in the methodology 5.1 different annotation methods are compared in order to
find the most efficient and accurate method for the ranking of audio samples. The following
systems are tested:

• Baseline system; 25 participants carried out a pairwise comparison of 12 audio sam-
ples. This led to 66 comparisons.

• Binary system; 50 participants did a pairwise comparison of 12 files, only now the
ranking is build using insertion sort, reducing the amount of comparisons. The system
assumes transitivity, this can be applied.

• list-wise system; based on the system of Chevret and Parizet [7]. 25 participants eval-
uated 12 sounds in a list. For every sound they could set a slider value of aggression.
The system would sort and they could check the ranking

• Multi-list system; Similar to list-wise, only now two lists of 7 files(including 2 anchors)
had to be made.

Table 6.1 shows the in-transitivity as well as Mean KRCC and mean SRCC for the four
different methods. The in-transitivity score is calculated by comparing the normalized pair
matrix to the reference matrix of the ground truth as explained in 2.8.1. This reference matrix

Table 6.1: Transitivity results RQ1
In-Transitivity Mean KRCC Mean SRCC Mean Time Spend

Baseline 0.150 0.715 0.845 793.25
Binary 0.146 0.707 0.831 360.53
list-wise 0.157 0.682 0.809 209.29
multi-list 0.169 0.631 0.770 227.82

35

36 CHAPTER 6. RESULTS: EFFICIENT RANK ANNOTATION

Figure 6.1: Z-scores per sample(x-axis) for the list-wise system

is a perfectly transitive matrix related to the ranking that was extracted from the ground truth
experiment(baseline).1

The mean KRCC and mean SRCC are calculated as the mean value over all individual
rankings compared to a ranking of the combination of all other rankings(one vs rest). The
mean time spend is the average time in seconds, that was needed to rank 12 samples.

Figure 6.1 shows the z-scores2 and error bars per sample for the list-wise system. Figure
6.2 shows these scores for the multi-list system. The z-scores are the normalized values
obtained from the sliders in respectively the list-wise and the multi-list system. The values
are normalized by subtracting the mean and dividing by the standard deviation.

The z-scores extracted from the results of the list-wise system seem to be uniformly
distributed. The multi-list system does not show this result as clearly, but the samples on the
x-axis were not presented at the same time. Figure 6.3 shows the z-scores for each position
in the multi-list sytsem. These values seem to be linearly distributed.

6.1.1 Transitivity

The KRCC and SRCC of the baseline(Table 6.1) as well as the binary system show a
strong positive correlation over the different annotators, indicating that they agree on the
ranking of the 12 samples. The KRCC of the list-wise and multi-list system only indicates a
moderate correlation. The SRCC of these systems indicates a strong correlation.

1The value of the baseline in-transitivity is not 0, because the normalized matrix of the baseline is compared
to a perfect transitive pair matrix(only including zeros and ones).

2z-scores are used to normalize the samples around the sample mean in terms of STD, as explained in A.1

6.1. RQ1: HOW CAN 3000 FILES BE EFFICIENTLY ANNOTATED? 37

Figure 6.2: Z-scores per sample(x-axis) for the multi-list system

Figure 6.3: Z-scores per position(x-axis) per ranking window in the multi-list system

38 CHAPTER 6. RESULTS: EFFICIENT RANK ANNOTATION

6.1.2 Time Efficiency

The mean time spend to annotate 12 samples can be found in table 6.1. The baseline com-
parison took the most time to complete, with an average time of approximately 13 minutes
to arrange 12 samples into a ranking. The binary method took approximately 6 minutes, the
multi-list system took approximately 4 minutes and the list wise approach is the most time
efficient, with approximately 31

2 min.

6.1.3 Conclusion Exploration of Annotation Methods

The paired comparison shows a strong correlation (KRCC and SRCC) over the different an-
notations. Furthermore it shows a value of 0.15 in-transitivity rate, which is acceptable since
real world data is used. When judging emotions, disagreement over different annotators can
be expected. Based on these results it can be concluded that there is an order in the audio
samples based on aggression.

The binary comparison approach shows the lowest in-transitivity value, as well as the
strongest correlation on both KRCC and SRCC. Therefore this is the most discriminating
method of the methods feasible to use for a bigger data set.

The z-score values(figure 6.1) obtained from the list-wise approach seem to be uniformly
distributed. In the multi-list system the shape looks stepwise. It has to be noted that only
half of the samples(minus the most and least aggressive samples) were presented in one
screen. Figure 6.3 shows the z-scores for each position in the compare frames of the multi-
list system. It seems that the annotators distributed the values on the scales uniformly
between 0 and 1, which would mean that two files cannot be ranked based on this value if
they were not presented in the same list. This is in line with the results of [9].

The list-wise system is the most time efficient manner, although a problem occurs. For
12 samples it is possible to order the files in one list, but this is impossible for 3000 sam-
ples. Therefore the multi-list system is needed. The binary system took significantly more
time to arrange 12 samples then the list-wise alternatives, approximately 6 minutes against
approximately 3 to 4 minutes. On the other hand, when applying the binary system more
comparisons had to be made, in the worst case 33 comparisons. When applying a list-wise
approach, 12 comparisons can be made at a one time. This leads to an average time per
comparison of 12.41 seconds for the binary approach and 17.44 seconds for the list-wise
approach. This information is used to simulate the annotation of 3000 files, as explained in
the next section.

6.2. EXPECTED TIME FOR 3000 SAMPLES 39

Figure 6.4: Number of comparisons needed per system

6.2 Expected time for 3000 samples

When applying the binary system, log n comparisons are needed to add one sample to a
ranking of length n. To calculate the amount of comparisons needed to build a ranking of
length n when there is no initial ranking, the following formula applies:

NBinary worst case =
n∑
i=1

log2(i)

When applying a list-wise system the participant makes a ranking of x files, narrowing
the search field to 1

x th of the ranking of length n. this leads to logx n lists to add one file
to the ranking. To calculate the amount of lists needed to build a ranking of length n while
applying a list-wise system, the following formula applies:

Nlist-wise worst case =

n∑
i=1

logx(i)

Furthermore, the amount of lists has to be multiplied by the amount of files in that list to
compute the number of comparisons needed. For the simulation a list of 12 items is used.

figure 6.4 shows the amount of comparisons needed to annotate rankings of different
batch sizes(x axis). It is clear to see that the amount of comparisons needed when applying
the listwise approach is a lot higher compared to the binary approach. Therefore the binary
approach is the most time efficient option. When annotating 300 samples this would take 8
hours. When annotating 3000 samples this would take 115 hours.

The most time efficient method is binary comparison. This is also the method in which
the participants agreed most with each other. Therefore this method is chosen as most
efficient method to annotate audio samples in a ranking based on aggression.

40 CHAPTER 6. RESULTS: EFFICIENT RANK ANNOTATION

Since it would still take one person 115 hours to annotate the full data set, a subset
will be annotated. It seems feasible to annotate 300 samples; this would take 8 hours per
person. To decide on the exact annotation method different simulations are done which will
be explained below.

6.2.1 Simulate annotation

To determine an indication of the expected in-transitivity for specific batch sizes, number
of annotators and rank annotation methods a simulation of the annotation process of 300
samples is done.

The simulation is done using a range of integers according to the different batch sizes.
The goal is to build an ordered list by applying the binary comparison algorithm on a list of
integers. Instead of aggression, the integers are compared based on their value. The error
rate determines if this comparison is answered correctly, or a mistake is made. The simula-
tion is done for different error rates, which define the probability of a mistake: 0.05, 0.1, 0.15.

The simulation is done using the following parameters:

• Batch size: 10, 50, 100, 300

• # annotators: 3, 5, 10

• Rank aggregation methods: Mean, Mode, Median

Figure 6.5 and figure 6.6 summarize the information in Appendix G. These figures show
the results of these simulations individually. The plots show the average values ofKRCC(Figure
6.5) and SRCC(Figure 6.6). The blue line indicates the average value of the individual sim-
ulated annotations, the blue field covers the minimum and maximum values belonging to
these annotations over the following error rates: 0.05, 0.1, 0.15.

The other three colors relate to the three different rank annotations methods, yellow:
Mean position of the different annotations. Red: Median position of the different annotations.
Green: Mode position of the different annotations.

As can be seen the median rank aggregation yields the highest KRCC, closely followed
by mean rank aggregation. On SRCC mean and median rank aggregation yield similar
results. On both measures mode rank aggregation scores lower than the other two.

Next to that the Mean KRCC and SRCC of the final ranking is calculated while using
3 different numbers of annotators. The values are calculated for 3, 5 and 10 annotators.
The median ranking of a sample is used to construct the final rankings. The best case is
calculated using a 0.05 mistake probability. The worst case is calculated using a 0.15 mistake
probability, the results are shown in table 6.2.

Next to the simulation of annotation, in which every annotator first completes a full rank-
ing before the rankings are combined, another system is simulated. In this system the

6.2. EXPECTED TIME FOR 3000 SAMPLES 41

Figure 6.5: SRCC values for the different simulations

Figure 6.6: KRCC values for the different simulations

42 CHAPTER 6. RESULTS: EFFICIENT RANK ANNOTATION

Table 6.2: KRCC and SRCC for the different annotator counts.
KRCC SRCC

annotators Best Worst Best Worst
3 0.9085 0.6814 0.98 0.8525
5 0.9383 0.7404 0.9915 0.9049
10 0.961 0.8248 0.9969 0.9576

annotators build on a final set together. To do this, a starting set is needed. To build this
starting set every annotator builds a ranking of 10, 50 or 100 samples. These rankings are
combined into one ranking. After this files are added one by one based on the votes of
different annotators. In this case every annotator compares one file to the existing list, if
every annotator has compared the sample, it is added to the ranking and a new sample is
selected. This method is simulated with starting size 10, 50 and 100 samples, the results
are shown in figure 6.7.

(a) Start size 10 samples (b) Start size 50 samples (c) Start size 100 samples

Figure 6.7: 300 samples

6.2.2 Conclusion

The results of the simulations show that the final ranking will be most similar to the ground
truth if every annotator ranks the full subset of 300 samples and rank aggregation is applied
using the full set of every annotator. Next to that the median is chosen as optimal aggrega-
tion method, since it ignores outliers. If the median of two samples is equal, the mean value
is used to determine the position.

Chapter 7

Results: Data analysis

The annotations of four different annotators are compared on transitivity, KRCC and SRCC.
The different annotations are aggregated into final ranking, which are also compared on
transitivity, KRCC and SRCC.

7.1 Individual KRCC results

Table 7.1: KRCC for different Annotators
Anno. 1 Anno. 2 anno. 3 anno. 4

Anno. 1 1.0 0.574 0.505 0.509
Anno. 2 1.0 0.510 0.498
Anno. 3 1.0 0.476
Anno. 4 1.0

KRCC is computed for every combination of two annotators, the results are shown in ta-
ble 7.1. The mean KRCC over the different annotators is 0.511, which indicates a moderate
positive correlation.

7.2 Individual SRCC results

Table 7.2: SRCC for different Annotators
Anno. 1 Anno. 2 anno. 3 anno. 4

Anno. 1 1.0 0.78 0.689 0.695
Anno. 2 1.0 0.703 0.688
Anno. 3 1.0 0.659
Anno. 4 1.0

SRCC is computed for every combination of two annotators, the results are shown in
table 7.2. The mean SRCC over the different annotators is 0.702, which indicates a strong

43

44 CHAPTER 7. RESULTS: DATA ANALYSIS

positive correlation.

7.3 In-transitivity versus the different normalized rankings

Table 7.3: In-transitivity versus the different normalized rankings
Anno. 1 Anno. 2 anno. 3 anno. 4

Linear matrix 0.141 0.146 0.158 0.159
Weighted Matrix 0.176 0.177 0.189 0.19
Median Matrix 0.136 0.137 0.160 0.164
Median Matrix (Eq) 0.136 0.138 0.160 0.164

Four different matrices are used to compare the individual results of the annotators: The
weighted matrix, the linear matrix, the median matrix and the median matrix with equal
positions. These matrices are explained in chapter 5.1.

The mean in-transitivity value of the linear matrix is 0.151, of the weighted matrix 0.183,
of the median matrix and the median matrix with shared positions the in-transitivity value are
0.149 and 0.15 respectively.

To further analyze the data, a ground truth ranking is generated. The groundtruth ranking
is based on the median position of the sample. The simulation of the experiment suggested
that this is the best rank aggregation method. This is supported by the fact that this matrix
has the lowest mean in-transitivity value.

7.4 KRCC and SRCC against ground truth

Table 7.4: KRCC and SRCC against ground truth
Anno. 1 Anno. 2 anno. 3 anno. 4

KRCC ranking 0.718 0.708 0.685 0.682
SRCC ranking 0.896 0.897 0.867 0.861

The meanKRCC value of the final ranking is 0.698, the mean SRCC value of the ranking
is 0.88. both indicating moderate to strong correlation.

7.5 Qualitative Feedback From Annotators

The annotators sometimes encountered difficulties when comparing the samples. They
indicated that some samples are very similar to each other which can make it difficult to
determine which sample is more aggressive. On the other hand, some samples were found
to be irrelevant when it comes to aggression in cases where there is undefinable human
noise in the audio sample.

7.6. CONCLUSION 45

7.6 Conclusion

As explained in 7.4 there is a moderate to strong correlation in the rankings. According to the
literature a moderate correlation can be assumed if the correlation value is between 0.4 and
0.6 and a strong correlation can be assumed if the correlation value is between 0.7 and 0.9.
Based on the mean KRCC score(0.698) a moderate to strong correlation exists between
the final rankings and the individual annotations.

Based on the mean SRCC score(0.88) a strong correlation exist between the final rank-
ing and the individual annotations.

The in-transitivity values explained in 7.3 indicate that there is a level of in-transitivity in
the rankings, which can be assumed when working with real world data.

The ranking seem to be usable for machine learning applications because there is a mod-
erate to strong relation between the individual annotations and the final ranking. The simu-
lation of the annotation process showed that the median ranking yields the best groundtruth,
therefore the median ranking is used as target value for both the regression and the list-wise
machine learning approach.

46 CHAPTER 7. RESULTS: DATA ANALYSIS

Chapter 8

Results: Machine Learning

This part can be split into two separate methods of ranking, regression and list-wise ranking.
In the first method: regression, neural network models are applied to predict a value between
0 and 1 for each input data. These architectures make use of the Mean Squared Error Loss
function, explained in 2.6.1. The target is a linear value, based on the position of a sample
divided by the length of the data set. In this research the target of x is the position of x in
the median ranking divided by 300. This is done because the ranking is build using binary
comparison and no information about the target distribution is known, therefore uniform
distribution is assumed.

8.1 Hyper parameter optimization

8.1.1 Regression

The best parameter settings given the the search space for the dense model can be found
in table 8.1, the best settings for the CNN can be found in table 8.2. In both cases the Adam
optimizer is used.

Dense
input values model values
mels 128 activiation tanh
frame size 512 regularization L2(0.0000138)
frame count 8 learning rate 0.00374

dropout rate 0.3613
number of layers 3
number of nodes 50

Table 8.1: best parameter settings Dense Network.

47

48 CHAPTER 8. RESULTS: MACHINE LEARNING

CNN
input values model values
mels 64 activiation relu
frame size 512 regularization L2(0.00455)
frame count 14 learning rate 0.0000305

dropout 0.3318
number of filters layer 1 256
number of filters layer 2 32
filter size 1 3
filter size 2 4
pool size1 3
pool size2 3
nodes 20
layers 2

Table 8.2: Best parameter settings CNN Network.

8.1.2 List-wise

The best parameter settings given the the search space for the dense model with list-wise
loss function can be found in table 8.3, the best settings for the CNN with list-wise loss
function can be found in table 8.4. In both cases the Adam optimizer is used.

Dense
input values model values
mels 32 activiation selu
frame size 1024 regularization L1(0.0775)
frame count 1 learning rate 0.00306

dropout rate 0.7057
number of layers 5
number of nodes 50

Table 8.3: best parameter settings Dense Network with list-wise loss function.

8.2 Results five fold cross validation

8.2.1 Regression

Table 8.5 show the results of Dense and CNN when trained on exactly the same data set.
The data set is loaded, shuffled and split in 5 parts. Each of the 5 parts is used as a validation
set, on which KRCC and SRCC is calculated. The other 4 parts are used for training. The
same train/validation set is used for the list-wise models, which are explained in 8.2.2. The

8.2. RESULTS FIVE FOLD CROSS VALIDATION 49

CNN
input values model values
mels 64 activiation sigmoid
frame size 256 regularization L2(0.0000159)
frame count 17 learning rate 0.000316

dropout 0.487
number of filters layer 1 128
number of filters layer 2 128
filter size 1 3
filter size 2 6
pool size1 1
pool size2 2
nodes 50
layers 3

Table 8.4: Best parameter settings CNN with list-wise loss function.

Table 8.5: KRCC, SRCC and MSE for Dense and CNN on the same data set using 5-fold
cross validation using regression. The best results are made bold.

Dense Regression CNN Regression
fold n KRCC SRCC MSE KRCC SRCC MSE
1 0.5543 0.7613 0.0529 0.5641 0.7608 0.0602
2 0.5200 0.7352 0.0533 0.5265 0.7237 0.0372
3 0.4433 0.6075 0.0789 0.5331 0.7356 0.0349
4 0.5478 0.7603 0.0512 0.5902 0.8064 0.0311
5 0.4890 0.6910 0.0576 0.4661 0.6549 0.0501
mean 0.5109 0.7111 0.0588 0.5360 0.7363 0.0427

last row of the table indicates the mean value per measure. In table 8.5 the highest value
for each measure for each fold is in bold. For MSE the lowest value is made bold, since this
indicates the best result.

When calculating the significance of both models over the 5-fold cross validation, paired
student t-test1. is used. None of the above mentioned measures indicated significant differ-
ent means. The p-values for KRCC can be found in table 8.8, the p-values for SRCC can
be found in table 8.9 and the p-values for MSE can be found in table 8.7.

8.2.2 List-wise

Table 8.6 show the results of Dense and CNN(list-wise models) when trained on exactly
the same data set, both networks are trained on exactly the same folds as the regression

1T-test is used to determine significance when comparing two means drawn from a dependent sample group.
T-test is explained in A.2

50 CHAPTER 8. RESULTS: MACHINE LEARNING

Table 8.6: KRCC, SRCC and MSE for Dense and CNN on the same data set using 5-fold
cross validation using list-wise. The best results are made bold.

Dense list-wise CNN list-wise
fold n KRCC SRCC MSE KRCC SRCC MSE
1 0.5265 0.7149 0.0797 0.5592 0.7713 0.1301
2 0.4008 0.5731 0.0734 0.4253 0.6352 0.1139
3 0.5706 0.7678 0.0780 0.4412 0.6115 0.0885
4 0.3681 0.5215 0.0552 0.5020 0.7026 0.0899
5 0.3420 0.5038 0.0593 0.4857 0.6840 0.1004
mean 0.4416 0.6162 0.691 0.4828 0.6810 0.1046

Figure 8.1: The mean training and validation loss of 5-fold cross validation(MSE) for the
regression approach.

8.2. RESULTS FIVE FOLD CROSS VALIDATION 51

Figure 8.2: The mean training and validation loss of 5-fold cross validation(MSE) for the
list-wise approach.

models. In table 8.5 the highest value for each measure for each fold is in bold. For MSE
the lowest value is made bold, since this indicates the best result. The last row indicates the
mean of the different measures.

When calculating the significance of both models, paired student t-test is used. When
comparing on MSE, the difference between the Dense list-wise approach and CNN list-wise
approach is significant at 1% with a p-value of 0.0062 < 0.01. When comparing KRCC (p-
value is 0.45) and SRCC (p-value is 0.3523) no significant difference can be found based
on these results.

The training and validation MSE of the regression approaches is plotted in figure 8.1, the
MSE during training of the list-wise approach are plotted in figure 8.2.

8.2.3 Results against test set

For the list-wise approach, the Dense network outperformed the CNN model on MSE and
the difference is significant(see tables 8.7, 8.8 and 8.9 for the p-values). The results obtained
with the easy data can only be compared to results on same data set, or results obtained
with the same network. If this is not the case, the paired t-test is not applicable. Therefore
the Dense list-wise model is trained on the full data set and tested against the test set.
Moreover the CNN regression model outperformed the Dense network outperformed the
Dense list-wise model. The CNN regression model is trained on the full data set as well and
tested on the test set.

The Dense list-wise model achieved an KRCC of 0.3632, an SRCC of 0.5151 and an
MSE of 0.0723. The CNN regression model achieved an KRCC of 0.6049, an SRCC of
0.8228 and an MSE of 0.0364.

52 CHAPTER 8. RESULTS: MACHINE LEARNING

Table 8.7: The p-values when comparing 5-fold MSE values. Bold if significant at 5%.
Dense(reg) CNN(reg) Dense(list) CNN(list) Dense(list, easy)

Dense(reg) 0.1281 0.1332 0.0156
CNN(reg) 0.0118 0.0002
Dense(list) 0.0062
Dense(list, easy) 0.0155
CNN(reg, easy) 0.1461 0.0004

Table 8.8: The p-values when comparing 5-fold KRCC values. Bold if significant at 10%.
Dense(reg) CNN(reg) Dense(list) CNN(list) Dense(list, easy)

Dense(reg) 0.2603 0.2786 0.2117
CNN(reg) 0.0988 0.1015
Dense(list) 0.4500
Dense(list, easy) 0.8923
CNN(reg, easy) 0.2320 0.4243

8.3 Results sensitivity test

To see if the system performance is likely to improve by adding more data, the models are
trained on different sized data set. This is done by randomly removing samples in steps
of 50. The KRCC and SRCC can be found in figure 8.3. It can be seen that the Dense
list-wise model performance decreases faster than the CNN regression model.

8.4 Remove difficult to rank samples

In order to see how the Machine Learning model performs on annotated data on which the
annotators agree, a set of 250 samples is selected from the original data. The 50 samples
with the highest variance in positions over the different annotators are dropped from the
original data. A set of 250 samples is selected so that the results can be compared to the
5-fold cross validation results. This data set is called easy-data. By keeping the training size
the same as with the 5-fold cross validation, the results of the models can be compared with
the results of the models(with the same architecture) that were trained and tested using 5
fold cross validation. A comparison can be done by applying a paired students t-test. The
results of this test can indicate if models perform significantly better if easier data is used.

Tables 8.10 and 8.11 show the KRCC and SRCC values when comparing the individual
annotations of the new data set, yielding a mean KRCC of 0.602 and a mean SRCC of
0.807.

Table 8.12 shows the in-transitivity values for the individual annotations against the new
ground truths, which are generated from the new data set. The linear matrix achieves a

8.4. REMOVE DIFFICULT TO RANK SAMPLES 53

Table 8.9: The p-values when comparing 5-fold SRCC values. Bold if significant at 10%.
Dense(reg) CNN(reg) Dense(list) CNN(list) Dense(list, easy)

Dense(reg) 0.4333 0.2534 0.2279
CNN(reg) 0.0892 0.1522
Dense(list) 0.3523
Dense(list, easy) 0.8836
CNN(reg, easy) 0.3237 0.0625

Figure 8.3: KRCC and SRCC for the sensitivity test.

mean in-transitivity value of 0.122, the weighted matrix a mean in-transitivity value of 0.149,
both the median matrices a mean in-transitivity value of 0.1223.

Table 8.13 shows the KRCC values and SRCC values against the new ground truth for
each individual annotator, yielding a mean KRCC of 0.7558 and an SRCC of 0.9235 for the
final ranking.

The results of the Dense list-wise approach and the CNN regression approach trained on
the easy-data data set are shown in table 8.14. The difference in MSE for the Dense list-wise
approaches(comparing easy data with the 5 fold cross validation on the data set) resulted
in a significant difference at 5%. The CNN regression model trained on the easy data set
outperformed the Dense list-wise model trained on the easy data set and the difference is
significant at 1%. The p-values can be found in tables 8.7, 8.8 and 8.9.

54 CHAPTER 8. RESULTS: MACHINE LEARNING

Table 8.10: KRCC for different Annotators(easy-data).
Anno. 1 Anno. 2 anno. 3 anno. 4

Annotator 1 1.0 0.619 0.601 0.611
Annotator 2 1.0 0.601 0.587
Annotator 3 1.0 0.593
Annotator 4 1.0

Table 8.11: SRCC for different Annotators(easy-data).
Anno. 1 Anno. 2 anno. 3 anno. 4

Anno. 1 1.0 0.827 0.802 0.815
Anno. 2 1.0 0.808 0.793
Anno. 3 1.0 0.799
Anno. 3 1.0

Table 8.12: In-transitivity versus the different normalized rankings(easy-data).
Anno. 1 Anno. 2 anno. 3 anno. 4

Linear matrix 0.117 0.125 0.123 0.123
Weighted Matrix 0.146 0.149 0.15 0.151
Median Matrix 0.114 0.123 0.124 0.128
Median Matrix (Eq) 0.114 0.123 0.124 0.128

Table 8.13: KRCC and SRCC against ground truth(easy-data).
Anno. 1 Anno. 2 anno. 3 anno. 4

KRCC ranking 0.766 0.75 0.753 0.754
SRCC ranking 0.929 0.924 0.922 0.919

Table 8.14: KRCC, SRCC and MSE for Dense list-wise and CNN Regression on the same
data set using 5-fold cross validation(easy-data). The best results are made
bold.

Dense list-wise CNN
fold n KRCC SRCC MSE KRCC SRCC MSE
1 0.3437 0.4966 0.0986 0.5951 0.7917 0.06
2 0.5265 0.7088 0.1059 0.5559 0.7243 0.0683
3 0.5118 0.6776 0.1129 0.6718 0.8597 0.0339
4 0.3355 0.5267 0.1377 0.5429 0.7444 0.0778
5 0.5396 0.7345 0.1124 0.5249 0.7467 0.0587
mean 0.4514 0.6286 0.1135 0.5781 0.7733 0.0597

Chapter 9

Conclusion

The following conclusions are based on the results presented in chapters 6, 7 and 8.

9.1 RQ1: How can 3000 files be efficiently annotated?

9.1.1 SQ1.1: What is the level of transitivity in aggression annotation in audio
samples?

To answer this question the pairwise comparison in the first experiment is done. The level of
transitivity is 1−in-transitivity, which is 0.85 where perfect transitivity would be 1. When work-
ing with real world data in-transitivity can be expected, as state in the background(2.8.1).
Since 0.85 is a reasonably high value, this indicates that the annotators agree globally on
the order of audio samples when ranking on aggression. This means that humans can order
the samples on aggression, which makes it interesting to see if machine learning can be
applied to automatically determine this order.

9.1.2 How can audio samples be annotated into a ranking based on aggres-
sion?

In this project pairwise rank annotation is compared to list-wise rank annotation. Both meth-
ods are used in early research(such as [10]) where participants had to rank audio samples.
In earlier research the methods were used on smaller data sets, fore scalablity the binary
comparison and multi-list approach are introduced. In the first experiment four methods are
compared: the pairwise comparison method, in which all samples are compared with each
other; the binary comparison approach, in which a ranking is build using the binary insertion
sort algorithm; the list-wise approach, where all samples are compared in one list; and the
multi-list approach, in which two list containing 5 samples plus two anchors are compared.

55

56 CHAPTER 9. CONCLUSION

9.1.3 How efficient are the different types of audio annotation when ranking
based on aggression?

The efficiency of all individual systems can be found in chapter 6. The most efficient method
tested in this research is binary comparison. The results of the first experiment show that
this method yields more transitive results than the list-wise and multi-list approach. Even
the baseline approach, in which all samples are pairwise compared, is beaten by the binary
comparison method.

The first experiment also shows that the binary comparison method is most time efficient.
The values obtained through the sliders in the list-wise and multi-list approaches carry too
little information to make these approaches time efficient. Since participants would always
distribute the sliders uniformly, the value difference between sample a and sample b and
the value difference between sample a and sample c does not hold information about the
difference between b and c if these samples were in different windows. That is if both b and
c are ranked as more, or both are ranked as less aggressive than a. These results are in
line with previous research such as [7]–[10] This makes the list-wise approaches inefficient,
because only one new sample can be added at a time. The fact that the list-wise approaches
narrow the search field smaller than the binary approach after every iteration does not way
out the time loss per iteration.

Annotation Results

Binary Comparison is used to annotate a set of 300 audio samples. The data is annotated by
4 people, the results can be found in chapter 7. The rankings of the different achieved moder-
ate strong correlation on bothKRCC and SRCC. This indicates that the different annotators
agreed moderate to strong with each other on the order of audio samples. Furthermore the
in-transitivity value of the different annotators compared to four different groundtruth matrices
is comparable to that of the baseline in the first experiment, with a mean in-transitivity value
of 0.151 for the linear matrix, and 0.149 for the median matrix. The median matrix reaches
the lowest in-transitivity value. Median aggregation proved the best method in data simula-
tion as well. Therefore this is used to build the final ranking. This final ranking yields even
stronger correlation on both KRCC and SRCC. The chosen annotation method yielded
similar rankings over the different annotators; this means it is a useful method to annotate
audio samples based on aggression.

9.2. HOW CAN AUDIO SAMPLES AUTOMATICALLY BE RANKED BASED ON AGGRESSION? 57

9.2 How can audio samples automatically be ranked based on
aggression?

9.2.1 How can regression be applied to rank audio files based on aggres-
sion?

Two models are developed in this project. A fully connect network, referred to as Dense, and
a convolutional neural network, referred to as CNN. The result of the 5-fold cross validation
as well as the results on the test set are shown in chapter 8.

Both models performed comparable on KRCC and SRCC. Dense achieved a mean
KRCC 0.5109 and SRCC of 0.7111, the CNN achieved a KRCC of 0.536 and SRCC of
0.7363 on the 5-fold cross validation. Furthermore no statistical significant difference was
found in the results of the 5-fold cross validation. Both methods achieved lower values than
the annotators(KRCC: 0.698, SRCC: 0.88). Still the results of the models both indicate
moderate to strong positive correlation. Since the CNN performed best, this model is chosen
as the regression model that is tested on the test set, on which it achieved an KRCC of
0.6049 and an SRCC of 0.8228, indicating moderate to strong correlation. The moderate to
strong correlations indicate that a regression model can be used to predict a linear target,
which can be used to order the samples based on aggression.

9.2.2 How can list-wise learning-to-rank be applied to rank audio files based
on aggression?

Both list-wise models are based on the same architectures as the regression models. The
models are not equal in terms of hyper parameters, because they are both optimized using
Bayesian optimization with a loss based on the output of that model. Both methods perform
similar and no statistically significant difference can be found based on these results. The
Dense list-wise model achieved a mean KRCC of 0.4416 and a mean SRCC of 0.6162

indicating moderate correlation. The CNN list-wise model achieved a meanKRCC of 0.4333

and a mean SRCC of 0.6810 indicating moderate to strong correlation. Based on MSE
significant difference is found, indicating that the Dense list-wise model(0.0691) outperforms
the CNN list-wise model(0.1046). Since this is the only significant difference, the Dense
list-wise model is chosen as best model and tested on the test set, achieving an KRCC

of 0.3632, an SRCC of 0.5151 and an MSE of 0.0723. These results indicate a weak to
moderate correlation between the ground truth of the test set and the predicted ranking.

9.2.3 List-wise versus Regression

When comparing the rank coefficients, only in one combination a statistical significant differ-
ence was found. The CNN Regression model outperforms the Dense list-wise model. When
comparing MSE the CNN list-wise model is outperformed by the Dense list-wise model as

58 CHAPTER 9. CONCLUSION

well as the Dense Regression model. The CNN regression model achieved an MSE of
0.0364.

When comparing the best list-wise model and the best regression model, the regression
model outperformed the list-wise model. Based on the results in this paper, the regression
approach is better suitable for aggression based audio ranking.

9.2.4 Sensitivity test

The sensitivity test yielded stable results. In figure 8.3 it can be seen that the KRCC and
SRCC greatly improve until 150 training samples. From 150 onward the results are stable.
Therefore, the sensitivity test did not give any indication of data shortage. In machine learn-
ing problems, more data leads to better results in most cases, but this conclusion cannot be
drawn from the results in this report.

9.2.5 Easy data

It is expected that the annotation scores improve, if the samples that cause errors are re-
moved. On the other hand, the scores of automatic models did not change a lot: Dense
list-wise model trained on the standard data set achieved a KRCC of 0.4416 and a SRCC
of 0.6162, on the easy-data data set this system achieved a KRCC of 0.4514 and a SRCC of
0.6286. Both rank measures slightly improved however the difference is not significant. The
Dense list-wise model achieved an MSE of 0.0691, which increased to 0.1135 when training
on the easy data. This difference is in fact significant and might be due to over-training.

The CNN Regression achieved a KRCC of 0.5360 and a SRCC of 0.7363 on the stan-
dard data set and a KRCC of 0.5781 and a SRCC of 0.7733 on the easy-data data set,
showing slight decrease on both measures however not significant. The MSE for the CNN
regression model increased from 0.0427 to 0.0597 when changing to the easy data, however
this difference is not significant.

Machine Learning algorithms aim to learn two things from data. First of all, these algo-
rithms try to fit the data. This means extracting relevant features in order to predict a target
belonging to a value. Next to that, these algorithms try to recognize noise in the data in
order to ignore this noise. By removing difficult to rank samples, you are essentially remov-
ing noise. This can be an explanation for the fact that removing difficult samples did not
improve the performance of the models, because the initial models were already capable to
distinguish noise. Something in these recordings made it difficult for the annotators to rank
these samples. This might be due to noise which the models had already learned and did
not influence the ranking.

Chapter 10

Discussion

In this section the conclusions(chapter 9) of this report are discussed. First the final perfor-
mance is compared to related research. This is followed by some notes on the evaluation
measures. Finally some future research is suggested.

10.1 Results Compared to Kooij et al.

Kooij et al. [48], as discussed in chapter 3, build an aggression detection system, including
audio classification. They measure the performance of the system in Root Mean Squared
Error(RMSE) and achieved an RMSE of 0.223 for the audio classification system and an
RMSE of 0.188 when using the full system. The CNN regression model achieved an MSE
of 0.0364, to compare this with the results of Kooij et al. the square root of this value is
calculated, which translate to a value of 0.1907. The performance of the models in this paper
is in the same range as the results found by Kooij et al. [48].

10.1.1 Data annotation very time consuming

The annotation of the data using the binary comparison method is very time consuming.
Some samples are very similar while others are so different that it is difficult to compare
them. It might be interesting to see if it is easier to compare only samples from the same
source. In this project audio samples from different sources are used. It is for example very
difficult to compare a sample recorded in a correctional institution with a sample recorded
in a health care institution. This has multiple reasons. The recording sounds different due
to different recording hardware and room acoustics. Another reason is the interpretation of
aggression. This interpretation depends on the place where an event occurs. Something
might be judged as aggressive in a health care institution, but when the same even occurs in
a correctional institution it might not be judged as aggressive. This might make the current
approach generalize better over different situations, but this might go at a cost of precision
in individual situations.

59

60 CHAPTER 10. DISCUSSION

10.2 SRCC vs KRCC

In every case in this paper, SRCC is higher than KRCC. This goes for the annotation part
as well as the machine learning part. A probable cause of this is explained through the
following example:

a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

b = [1, 2, 3, 4, 5, 6, 7, 8, 9, 0]

d = [5, 1, 2, 3, 4, 0, 6, 7, 8, 9]

SRCC(a, b) = 0.4545

KRCC(a, b) = 0.6

SRCC(a, c) = 0.6969

KRCC(a, c) = 0.6

The example above shows that SRCC penalizes a big positional difference harder than
KRCC. So if one sample is far out of place, SRCC will drop more than KRCC.

d = [1, 0, 3, 2, 5, 4, 7, 6, 9, 8]

SRCC(a, c) = 0.9394

KRCC(a, c) = 0.7778

In above example, all samples are switched one place. No sample is in it original position,
but the samples are only one position out of place. This kind of error is penalized harder by
KRCC than by SRCC.

It seems that the latter error occurs throughout this project, samples are switched but not
far out of place. This explains that KRCC is lower than SRCC in every case in this paper.

10.3 Automatic Ranking of Audio Based on Aggression

This paper proofs that audio samples can be ordered based on aggression by annotators.
Next to that the paper proofs that audio can automatically be ranked based on aggression.
The automatic scores might improve by applying different machine learning techniques such
as Recurrent Neural Networks and other combination of networks. These techniques are ex-
plained in the background(2.3) and State of the Art(3). Recurrent Neural Networks are widely
used in emotion detection and audio processing. The research shows great improvements
in system performance when applying these techniques.

10.4. VALUE BASED TRESHOLD 61

10.4 Value based treshold

Although the list-wise approaches seem to be able to learn an aggression ranking in audio
samples, this approach does not optimize the target value for the individual samples very
well. This is indicated by the low MSE achieved by both list-wise models. The goal of Sound
Intelligence is to build a sensitivity control. It is useful if this sensitivity control can be set by
a value between 0 and 1. For this a low MSE is needed. Next to that, the regression model
outperformed the list-wise model on the ranking task. Therefore it is more useful for Sound
Intelligence to use a regression based algorithm.

10.5 Future Research

10.5.1 Different Machine Learning Techniques

As described in the background(2.3) and state of the art(3), different machine learning tech-
niques are used in audio processing and affective computing. Techniques such as Recurrent
Neural Networks show great improvements in this field. It would be interesting to see if ap-
plying these techniques could improve the performance on the data set defined in this paper.

10.5.2 Data Source

The feedback of the annotators(7.5 indicated that the combination of different data sources
makes it difficult to compare samples. It would be interesting to see if annotators deliver
more similar rankings when only samples from one source are used. The data set recorded
in the correctional facility would be an interesting data set for this purpose, because this data
set covers the full aggression scale. Next to the annotation results, it would be interesting to
see if machine learning models are better able to rank such a data set.

10.5.3 Exclude Irrelevant Samples

The annotators indicated(7.5 that some samples were irrelevant when it comes to aggres-
sion. These samples are still being ranked into this data set. It would be interesting to see if
the results would improve if annotators could exclude certain samples.

62 CHAPTER 10. DISCUSSION

Chapter 11

Acknowledgement

I would like to thank Sound Intelligence for the opportunity and resources to do this research
project. During this project Jasper van Dorp Schuitman has been a great supervisor, for
which I am grateful. Next to that, I want to thank Maarten Duijndam, for giving me the
opportunity.

In addition, I would like to thank Mannes Poel for his guidance during the graduation
project as well as the preliminary research topics. Furthermore, I would like to thank Khiet
Truong for her feedback during the project.

Finally, I want to thank the Sound Intelligence annotation team for their time. I know the
ranking of the samples was a tedious and time consuming job.

63

64 CHAPTER 11. ACKNOWLEDGEMENT

Bibliography

[1] T. S. Gunawan, M. F. Alghifari, M. A. Morshidi, and M. Kartiwi, “A review on emotion
recognition algorithms using speech analysis,” Indonesian Journal of Electrical Engi-
neering and Informatics (IJEEI), vol. 6, no. 1, pp. 12–20, 2018.

[2] A. B. Nassif, I. Shahin, I. Attili, M. Azzeh, and K. Shaalan, “Speech recognition using
deep neural networks: A systematic review,” IEEE Access, vol. 7, pp. 19 143–19 165,
2019.

[3] S. B. Kotsiantis, I. Zaharakis, and P. Pintelas, “Supervised machine learning: A review
of classification techniques,” Emerging artificial intelligence applications in computer
engineering, vol. 160, pp. 3–24, 2007.

[4] P. Susini, G. Lemaitre, and S. McAdams, “Psychological measurement for sound de-
scription and evaluation,” Measurements with persons: Theory, methods, and imple-
mentation areas, vol. 227, 2012.

[5] A. M. Colman, A dictionary of psychology. Oxford University Press, USA, 2015.

[6] J. A. Russell, “A circumplex model of affect.” Journal of personality and social psychol-
ogy, vol. 39, no. 6, p. 1161, 1980.

[7] P. Chevret and E. Parizet, “An efficient alternative to the paired comparison method for
the subjective evaluation of a large set of sounds,” in 19th International Congress on
Acoustics, 2007.

[8] E. Parizet, E. Guyader, and V. Nosulenko, “Analysis of car door closing sound quality,”
Applied acoustics, vol. 69, no. 1, pp. 12–22, 2008.

[9] E. Poirson, J.-F. Petiot, and F. Richard, “A method for perceptual evaluation of products
by naive subjects: Application to car engine sounds,” International Journal of Industrial
Ergonomics, vol. 40, no. 5, pp. 504–516, 2010.

[10] E. Parizet, N. Hamzaoui, and G. Sabatie, “Comparison of some listening test methods:
a case study,” Acta Acustica united with Acustica, vol. 91, no. 2, pp. 356–364, 2005.

[11] J. G. Ackenhusen, Real-Time Signal Processing: Design and Implemen-Tation of Sig-
nal Processing Systems. Prentice Hall PTR, 2007.

65

66 BIBLIOGRAPHY

[12] M. Sahidullah and G. Saha, “Design, analysis and experimental evaluation of block
based transformation in mfcc computation for speaker recognition,” Speech Communi-
cation, vol. 54, no. 4, pp. 543–565, 2012.

[13] V. Tyagi and C. Wellekens, “On desensitizing the mel-cepstrum to spurious spectral
components for robust speech recognition,” in Proceedings.(ICASSP’05). IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Processing, 2005., vol. 1. IEEE,
2005, pp. I–529.

[14] V. Tiwari, “Mfcc and its applications in speaker recognition,” International journal on
emerging technologies, vol. 1, no. 1, pp. 19–22, 2010.

[15] M. El Ayadi, M. S. Kamel, and F. Karray, “Survey on speech emotion recognition: Fea-
tures, classification schemes, and databases,” Pattern Recognition, vol. 44, no. 3, pp.
572–587, 2011.

[16] W. Dai, C. Dai, S. Qu, J. Li, and S. Das, “Very deep convolutional neural networks
for raw waveforms,” in 2017 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2017, pp. 421–425.

[17] W. S. Noble, “What is a support vector machine?” Nature biotechnology, vol. 24, no. 12,
p. 1565, 2006.

[18] K. Gurney, An introduction to neural networks. CRC press, 2014.

[19] S. Skansi, Introduction to Deep Learning: From Logical Calculus to Artificial Intelli-
gence. Springer, 2018.

[20] H. Sak, A. Senior, and F. Beaufays, “Long short-term memory based recurrent neu-
ral network architectures for large vocabulary speech recognition,” arXiv preprint
arXiv:1402.1128, 2014.

[21] Z. Wu and S. King, “Investigating gated recurrent networks for speech synthesis,”
in 2016 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2016, pp. 5140–5144.

[22] N. D. Lane, P. Georgiev, and L. Qendro, “Deepear: robust smartphone audio sensing in
unconstrained acoustic environments using deep learning,” in Proceedings of the 2015
ACM International Joint Conference on Pervasive and Ubiquitous Computing. ACM,
2015, pp. 283–294.

[23] K. J. Piczak, “Environmental sound classification with convolutional neural networks,” in
Machine Learning for Signal Processing (MLSP), 2015 IEEE 25th International Work-
shop on. IEEE, 2015, pp. 1–6.

[24] K. Choi, G. Fazekas, M. Sandler, and K. Cho, “Convolutional recurrent neural networks
for music classification,” in 2017 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2017, pp. 2392–2396.

BIBLIOGRAPHY 67

[25] Q. Kong, Y. Xu, W. Wang, and M. D. Plumbley, “A joint detection-classification model
for audio tagging of weakly labelled data,” in 2017 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2017, pp. 641–645.

[26] L. Hertel, H. Phan, and A. Mertins, “Classifying variable-length audio files with all-
convolutional networks and masked global pooling,” arXiv preprint arXiv:1607.02857,
2016.

[27] H. Phan, L. Hertel, M. Maass, and A. Mertins, “Robust audio event recognition with
1-max pooling convolutional neural networks,” arXiv preprint arXiv:1604.06338, 2016.

[28] J. Jiao, “A framework for finding and summarizing product defects, and ranking helpful
threads from online customer forums through machine learning,” Ph.D. dissertation,
Virginia Tech, 2013.

[29] P. Li, Q. Wu, and C. J. Burges, “Mcrank: Learning to rank using multiple classification
and gradient boosting,” in Advances in neural information processing systems, 2008,
pp. 897–904.

[30] N. Usunier, D. Buffoni, and P. Gallinari, “Ranking with ordered weighted pairwise classi-
fication,” in Proceedings of the 26th annual international conference on machine learn-
ing. ACM, 2009, pp. 1057–1064.

[31] R. Lotfian and C. Busso, “Retrieving categorical emotions using a probabilistic frame-
work to define preference learning samples.” in INTERSPEECH, 2016, pp. 490–494.

[32] C. Fang, H. Zhang, M. Zhang, and J. Wang, “Recommendations based on listwise
learning-to-rank by incorporating social information.” KSII Transactions on Internet &
Information Systems, vol. 12, no. 1, 2018.

[33] C. M. Bishop, Pattern recognition and machine learning. springer, 2006.

[34] S. Jachner, G. Van den Boogaart, T. Petzoldt et al., “Statistical methods for the qual-
itative assessment of dynamic models with time delay (r package qualv),” Journal of
Statistical Software, vol. 22, no. 8, pp. 1–30, 2007.

[35] P. J. Huber, “Robust estimation of a location parameter,” Annals of Mathematical Statis-
tics, vol. 35, pp. 73–101, 03 1964.

[36] F. Xia, T.-Y. Liu, J. Wang, W. Zhang, and H. Li, “Listwise approach to learning to rank:
theory and algorithm,” in Proceedings of the 25th international conference on Machine
learning. ACM, 2008, pp. 1192–1199.

[37] J. Bergstra, D. Yamins, and D. D. Cox, “Hyperopt: A python library for optimizing the
hyperparameters of machine learning algorithms,” in Proceedings of the 12th Python in
science conference. Citeseer, 2013, pp. 13–20.

68 BIBLIOGRAPHY

[38] R. Fagin, R. Kumar, and D. Sivakumar, “Comparing top k lists,” SIAM Journal on dis-
crete mathematics, vol. 17, no. 1, pp. 134–160, 2003.

[39] H. Abdi, “The kendall rank correlation coefficient,” Encyclopedia of Measurement and
Statistics. Sage, Thousand Oaks, CA, pp. 508–510, 2007.

[40] M. M. Mukaka, “A guide to appropriate use of correlation coefficient in medical re-
search,” Malawi Medical Journal, vol. 24, no. 3, pp. 69–71, 2012.

[41] H. Akoglu, “User’s guide to correlation coefficients,” Turkish journal of emergency
medicine, 2018.

[42] M. Regenwetter, J. Dana, and C. P. Davis-Stober, “Transitivity of preferences.” Psycho-
logical review, vol. 118, no. 1, p. 42, 2011.

[43] A. Tversky, “Intransitivity of preferences.” Psychological review, vol. 76, no. 1, p. 31,
1969.

[44] L. S. Temkin, “A continuum argument for intransitivity,” Philosophy & Public Affairs,
vol. 25, no. 3, pp. 175–210, 1996.

[45] A. Rubinstein, “Similarity and decision-making under risk (is there a utility theory reso-
lution to the allais paradox?),” Journal of economic theory, vol. 46, no. 1, pp. 145–153,
1988.

[46] D. Harman, “Information retrieval evaluation,” Synthesis Lectures on Information Con-
cepts, Retrieval, and Services, vol. 3, no. 2, pp. 1–119, 2011.

[47] Y. Wang, L. Wang, Y. Li, D. He, W. Chen, and T.-Y. Liu, “A theoretical analysis of ndcg
ranking measures,” in Proceedings of the 26th annual conference on learning theory
(COLT 2013), vol. 8, 2013, p. 6.

[48] J. F. Kooij, M. Liem, J. D. Krijnders, T. C. Andringa, and D. M. Gavrila, “Multi-modal
human aggression detection,” Computer Vision and Image Understanding, vol. 144,
pp. 106–120, 2016.

[49] Y. E. Kim, E. M. Schmidt, R. Migneco, B. G. Morton, P. Richardson, J. Scott, J. A. Speck,
and D. Turnbull, “Music emotion recognition: A state of the art review,” in Proc. ISMIR,
vol. 86. Citeseer, 2010, pp. 937–952.

[50] R. Lotfian and C. Busso, “Practical considerations on the use of preference learning
for ranking emotional speech,” in Acoustics, Speech and Signal Processing (ICASSP),
2016 IEEE International Conference on. IEEE, 2016, pp. 5205–5209.

[51] G. N. Yannakakis and H. P. Martinez, “Grounding truth via ordinal annotation,” in 2015
international conference on affective computing and intelligent interaction (ACII). IEEE,
2015, pp. 574–580.

BIBLIOGRAPHY 69

[52] Y.-H. Yang and H. H. Chen, “Music emotion ranking,” in 2009 IEEE International Con-
ference on Acoustics, Speech and Signal Processing. IEEE, 2009, pp. 1657–1660.

[53] ——, “Ranking-based emotion recognition for music organization and retrieval,” IEEE
Transactions on Audio, Speech, and Language Processing, vol. 19, no. 4, pp. 762–774,
2011.

[54] H. P. Martinez, G. N. Yannakakis, and J. Hallam, “Dont classify ratings of affect; rank
them!” IEEE transactions on affective computing, vol. 5, no. 3, pp. 314–326, 2014.

[55] A. Metallinou and S. Narayanan, “Annotation and processing of continuous emotional
attributes: Challenges and opportunities,” in 2013 10th IEEE international conference
and workshops on automatic face and gesture recognition (FG). IEEE, 2013, pp. 1–8.

[56] G. N. Yannakakis and J. Hallam, “Ranking vs. preference: a comparative study of self-
reporting,” in International Conference on Affective Computing and Intelligent Interac-
tion. Springer, 2011, pp. 437–446.

[57] G. N. Yannakakis and H. P. Martı́nez, “Ratings are overrated!” Frontiers in ICT, vol. 2,
p. 13, 2015.

[58] S. Tognetti, M. Garbarino, A. Bonarini, and M. Matteucci, “Modeling enjoyment prefer-
ence from physiological responses in a car racing game,” in Proceedings of the 2010
IEEE Conference on Computational Intelligence and Games. IEEE, 2010, pp. 321–
328.

[59] M. G. Kendall, “A new measure of rank correlation,” Biometrika, vol. 30, no. 1/2, pp.
81–93, 1938.

[60] S. Parthasarathy, R. Lotfian, and C. Busso, “Ranking emotional attributes with deep
neural networks,” in Acoustics, Speech and Signal Processing (ICASSP), 2017 IEEE
International Conference on. IEEE, 2017, pp. 4995–4999.

[61] L.-C. Yang, S.-Y. Chou, J.-Y. Liu, Y.-H. Yang, and Y.-A. Chen, “Revisiting the problem
of audio-based hit song prediction using convolutional neural networks,” arXiv preprint
arXiv:1704.01280, 2017.

[62] H. Li, “Learning to rank for information retrieval and natural language processing,” Syn-
thesis Lectures on Human Language Technologies, vol. 7, no. 3, pp. 1–121, 2014.

[63] E. Ghanbari and A. Shakery, “Err. rank: An algorithm based on learning to rank for
direct optimization of expected reciprocal rank,” Applied Intelligence, vol. 49, no. 3, pp.
1185–1199, 2019.

[64] P. Diehr, D. C. Martin, T. Koepsell, and A. Cheadle, “Breaking the matches in a paired
t-test for community interventions when the number of pairs is small,” Statistics in
medicine, vol. 14, no. 13, pp. 1491–1504, 1995.

70 BIBLIOGRAPHY

Appendix A

Statistical Formulas

A.1 Z-scores

Z-scores are used as a normalization of experimental results around the sample mean. The
z-score of a sample defines the distance of that sample to the mean in terms of standard
deviation. The z-score is calculated using the following formula:

z =
x− µ
σ

where µ = Sample mean,

σ = Standard deviation

A.2 Paired Students T-Test

Paired students T-Test is used to compare two means, where under the null hypothesis equal
means are assumed. The paired t-test compares samples drawn from the same group, as
oppose to independent sample T-Test, which compares two independent sample means. To
use paired students T-Test, the t value has to be calculated as follows [64]:

t =
d̄
Sd√
N

where d̄ = Mean difference,

Sd = Standard deviation,

N = Sample size

The t value has to be compared to with the t table with N − 1 degrees of freedom,
resulting in a p-value which can be interpreted as the probability of the difference occurring
by chance. This means that if the p-value is high, equal means can be assumed. If the
p-value is low, different means can be assumed.

71

72 APPENDIX A. STATISTICAL FORMULAS

Appendix B

Pairwise Comparison Experiment
Tool

The Pairwise tool(figure B.1) is used to compare every sound with every other sound. The
results of this test are used as a baseline ranking. The tool loads and shuffles a set of
12 sounds. After that it makes a set containing every distinct pair of samples in the set of
sounds, where x, y = y, x∀x, y. The set of pairs is then again shuffled.

The participant has to compare all pairs based on aggression. Before the participant
can vote for the most aggressive sample, both sounds in the pair have to be played at least
ones(figure B.2). After all pairs are compared, the votes, total time spend, time spend per
comparison and times played per sound are saved.

Figure B.1: Start screen of the paired compassion tool

73

74 APPENDIX B. PAIRWISE COMPARISON EXPERIMENT TOOL

Figure B.2: Comparison screen before and after both sounds are played

Appendix C

Binary Comparison Experiment Tool

The Binary tool(figure C.1) first loads and shuffles the 12 audio samples. The first sample
in this shuffled list is used as initial ranked list. The other samples are added by comparing
them individually to the ranked list. First a sample is compared to the middle sample in the
ranked list. If this is the last sample to compare to, the new sample is added before of after
this sample in the ranked list, depending on the outcome of the comparison. If this is not
the last sample to compare to, the compare window shifts. If the new sample is evaluated
less aggressive, the middle sample-1 of the compare window becomes the upper bound of
the new compare window. If the sample is evaluated more aggressive, the middle sample
+1 becomes the upper bound of the new compare window. This method is repeated until all
samples are in the ranked list.

Before the participant can vote, both samples of the comparison have to be played. The
screens look similar to the screens of the paired comparison tool.

Figure C.1: Start screen of the binary compassion tool

75

76 APPENDIX C. BINARY COMPARISON EXPERIMENT TOOL

Appendix D

List-wise Comparison Experiment
Tool

The list-wise tool(figure D.1 loads and shuffles the 12 audio samples. On the screen a play
button and a slider is shown for every sample. The sliders are initialized in the middle.
The participant can raise the slider if he evaluates the belonging sample as aggressive and
lower the slider if he evaluates the sample as not aggressive. When all individual samples
are played and evaluated the samples can be sorted, yielding a ranking from least to most
aggressive. The participant can now evaluate this ranking and save it if he agrees.

77

78 APPENDIX D. LIST-WISE COMPARISON EXPERIMENT TOOL

Figure D.1: Multi-list comparison

Appendix E

List-wise Comparison Experiment
Tool

The Multi-list tool(figure E.1) works very similar to the list-wise tool, but now two lists have
to be evaluated. The lists both consist of seven samples. First the Multi-list tool loads the
12 samples, it extracts the least and most aggressive sample(obtained through the Pairwise
comparison experiment). It shuffles the other samples and splits it in two lists, the least
and most aggressive samples are shuffled through the two lists. The two lists have to be
evaluated in the same manner as the list-wise sample. A final ranking is build based on the
values of the sliders.

Figure E.1: Multi-list comparison

79

80 APPENDIX E. LIST-WISE COMPARISON EXPERIMENT TOOL

Appendix F

Annotation Tool

The annotation tool(figure F.1 is based on the binary comparison technique. The tool is
functionally the same as the binary comparison tool, but runs on a Sound Intelligence server
so that annotators can use it remotely.

Figure F.1: Annotation tool user interface

81

82 APPENDIX F. ANNOTATION TOOL

Appendix G

Simulation of Annotation Process

(a) Mode(0.01) (b) Mode(0.05) (c) Mode(0.1) (d) Mode(0.15)

(e) Mean(0.01) (f) Mean(0.05) (g) Mean(0.1) (h) Mean(0.15)

(i) Median(0.01) (j) Median(0.05) (k) Median(0.1) (l) Median(0.15)

Figure G.1: 3 annotators

83

84 APPENDIX G. SIMULATION OF ANNOTATION PROCESS

(a) Mode(0.01) (b) Mode(0.05) (c) Mode(0.1) (d) Mode(0.15)

(e) Mean(0.01) (f) Mean(0.05) (g) Mean(0.1) (h) Mean(0.15)

(i) Median(0.01) (j) Median(0.05) (k) Median(0.1) (l) Median(0.15)

Figure G.2: 5 annotators

85

(a) Mode(0.01) (b) Mode(0.05) (c) Mode(0.1) (d) Mode(0.15)

(e) Mean(0.01) (f) Mean(0.05) (g) Mean(0.1) (h) Mean(0.15)

(i) Median(0.01) (j) Median(0.05) (k) Median(0.1) (l) Median(0.15)

Figure G.3: 10 annotators

	Summary
	Introduction
	Sound Intelligence
	Goal of the Research
	Reader's Guide

	Background
	Background in Data Annotation for Audio
	Individual Annotation
	Paired Comparison
	Binary Insertion Sort

	Background in Audio Processing
	Background in Machine Learning
	Support Vector Machines
	Neural Networks
	Convolutional Networks
	Recurrent Neural Networks

	Audio Processing Using Machine Learning
	Deep Learning Audio Event Detection
	Convolutional Neural Networks and Audio
	Weakly labeled data
	Varying Length Audio Input

	Ranking and Machine Learning
	Pointwise
	Pairwise
	List-wise

	Loss Functions
	Loss Functions for Regression
	Loss Functions for list-wise Learning-to-rank

	Hyper Parameter Optimization
	Background Ranking Statistics
	Similarity Metrics
	Rank Evaluation

	State of the Art
	Aggression detection in audio
	State of the Art in Audio Annotation
	Hybrid Comparison

	State of the Art in Automatic Audio Ranking
	Conclusion of State of the Art

	Research Questions
	Research Goals

	Research Methodology
	How can 3000 audio files be annotated in a ranking in an efficient manner?
	Baseline
	Binary Search
	Hybrid Comparison Insertion

	Automatic Ranking of Aggression
	Data
	Data Analysis
	Audio Ranking using Machine Learning
	Performance
	Hyper Parameter Optimization

	Results: Efficient Rank Annotation
	RQ1: How can 3000 files be efficiently annotated?
	Transitivity
	Time Efficiency
	Conclusion Exploration of Annotation Methods

	Expected time for 3000 samples
	Simulate annotation
	Conclusion

	Results: Data analysis
	Individual KRCC results
	Individual SRCC results
	In-transitivity versus the different normalized rankings
	KRCC and SRCC against ground truth
	Qualitative Feedback From Annotators
	Conclusion

	Results: Machine Learning
	Hyper parameter optimization
	Regression
	List-wise

	Results five fold cross validation
	Regression
	List-wise
	Results against test set

	Results sensitivity test
	Remove difficult to rank samples

	Conclusion
	RQ1: How can 3000 files be efficiently annotated?
	SQ1.1: What is the level of transitivity in aggression annotation in audio samples?
	How can audio samples be annotated into a ranking based on aggression?
	How efficient are the different types of audio annotation when ranking based on aggression?

	How can audio samples automatically be ranked based on aggression?
	How can regression be applied to rank audio files based on aggression?
	How can list-wise learning-to-rank be applied to rank audio files based on aggression?
	List-wise versus Regression
	Sensitivity test
	Easy data

	Discussion
	Results Compared to Kooij et al.
	Data annotation very time consuming

	SRCC vs KRCC
	Automatic Ranking of Audio Based on Aggression
	Value based treshold
	Future Research
	Different Machine Learning Techniques
	Data Source
	Exclude Irrelevant Samples

	Acknowledgement
	References
	Statistical Formulas
	Z-scores
	Paired Students T-Test

	Pairwise Comparison Experiment Tool
	Binary Comparison Experiment Tool
	List-wise Comparison Experiment Tool
	List-wise Comparison Experiment Tool
	Annotation Tool
	Simulation of Annotation Process

