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I1.

Management summary

Management summary

In this paper we determine the impact of a no-arbitrage condition on parameter estimation using
models which otherwise possibly yield arbitrage opportunities. By establishing a positive impact
on the overall out-of-sample fit, we aim to assist banks in their dual goal to implement a proxy
methodology which generates sufficiently realistic market risk scenarios, and to gain the approval
of the regulator to apply the methodology (BCBS, 2016) (BCBS, 2018).

Our generic proxy is defined as follows:

Definition 1. Generic proxy methodology - In the event we observe at a given historical date t
insufficient market prices to infer all risk factor values x, we can derive a proxy value X; from risk
factors and a historical overnight risk-free rater observed att — 1 with the following expression:

O6F,_
M,_, * (Ft@t, 7)) — Frqy x (1 + 1p4) + diag { 6;’ 1}) = 0. (33)
With historical data observed at date t —1we can solve the linear system (3. 3) for the
instruments’ theoretical prices at time t and subsequently solve for the risk factor values X,
which then serve as the proxy values for the unidentified x; at time ¢

In order to use our proxy methodology to estimate risk factors, we first need to establish the
soundness of our imposed condition. This paper gives insight into this by providing answers to
the following questions:

What are the implications on the overall fit of a pricing model, which potentially yields arbitrage
possibilities, when a no-arbitrage condition is imposed?

We use Matlab to test the effect on the Nelson Siegel model and the Principal Component Model
in combination with US constant maturity treasuries based yield data and the Stochastic Alpha
Beta Rho model on S&P 500 index option prices. We first test the overall fit of the pricing models
on the full data set, and sequentially we add our proxy penalties with distinct weights on the RMSE
and the proxy error. Sequentially we strip tenors or strikes from the data set to determine the
effect of our proxy in market with missing data.

Based on the observed results we conclude that our generic proxy has a slightly preferred status
over using set pricing model directly based on overall RMSE but mostly on out-of-sample RMSE
in scenarios where data is stripped from the original set. Our proxy also does not require
additional data or expert judgements, which eases implementation process in existing pricing
platforms.
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Introduction

1. Introduction

In this paper we determine the impact of a no-arbitrage condition on parameter estimation using
models which otherwise could yield arbitrage opportunities. Our aim is to test the
appropriateness of using the generic proxy to fill in blanks in historical data sets.

We perform this study at Triple A Risk-Finance, a financial risk consultancy company based in
Amsterdam. This study is part of a bigger research and development venture the banking team is
undertaking, to establish itself as an expert party within the industry.

With this proxy methodology we aim to assist banks in their dual goal to implement a proxy
methodology which generates sufficiently realistic market risk scenarios, and to gain the approval
of the regulator to apply the methodology (BCBS, 2016) (BCBS, 2018).

Under new Basel regulations, banks are required to provide databases containing risk factors
which influence their market book. These risk factors need to be based on historical data and give
arealistic view of several market shocks. However, in practice these databases contain gaps where
data is missing. These gaps come from illiquid markets, characterized by big bid-ask spreads,
which are often linked to stressed markets, and therefore certainly relevant for these databases.

Regulations do allow for proxy methodologies, however these are submitted to regulatory review.
Regulators want to see proxies which show a good track record for the actual positions. (BCBS,
2013). The methodologies themselves also need to be straightforward and based on models that
are eligible to enjoy regulatory approval based on previous amendments.

In order to use our proxy methodology to estimate risk factors, we first need to establish the
soundness of our imposed condition. This paper gives insight into this by providing an answer to
the main question:

What are the implications on the overall fit of a pricing model, which potentially yields arbitrage
possibilities, when a no-arbitrage condition is imposed?

We accompany this question with the following sub questions:
What is arbitrage?

We give a brief introduction on arbitrage followed by an example, demonstrating an arbitrage
opportunity in a pricing model. To conclude we discuss the existence of arbitrage in affine term-
structure models.

Which pricing models are non-arbitrage free by definition?

We provide an overview of models that contain arbitrage and make an exposition of when models
are generally arbitrage free.

How do we introduce a no-arbitrage condition to pricing models?



Introduction
We explain our working method; we set out our methodology and prove its soundness.
How does a proxy effect the out-of-sample fit of a pricing model?

Concluding we come back to our main question by answering the last sub question. We test our
methodology by implementing it in different pricing models. We compare estimated parameters
of the pricing model with and without our imposed condition. Sequentially, we test our
methodology for its soundness to backfill missing data in historical databases of risk factors.

In order to derive the result necessary to answer our main question, we also deliver three Matlab
models which can be used to fit a Nelson Siegel model on yield data, a SABR model on volatility
curves and a PCA model on yield data. These models can be fitted directly or by addition of our
proxy, where different weights can be put on the proxy.

Our paper is organized as follows: in section 2 we discuss arbitrage and implicitly answer on sub
question 2 and 3, followed by section 3 in which we explain our working method and so answer
our last sub question. In section 4 to 6 we discuss pricing models and elaborate on our findings.
We conclude, discuss and suggest further research in the last sections.
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2. Arbitrage

A portfolio of financial instruments (portfolio) is represented by a vector of values, either positive
or negative, where each point in the vector represent the position in an instrument. One is long in
a position if the value is positive and short in the instrument if the value is negative. We define a
portfolio u as an arbitrage portfolio if:

- The portfolio strategy is self-financing;

- VO =0;
- Vy =20,P — almost surely;
- PWV; >0)>0.

Where V; is the value of the portfolio at time ¢ and P is a probability measure on some space (2 and
afiltration i.e. an increasing family of o-algebras {F;};»o. The portfolio is self-financing if the value
process satisfies:

N
v, = Z hids!,
i=0

where S, is the price of a stock at time ¢ and is assumed to be a P-martingale! and portfolio h! is
the number of units of asset i at time t.

Arbitrage can be created by longing a set of financial products and/or derivatives at a certain
prices and shorting another set of financial products and/or derivatives at a higher price, and vice
versa, while making sure no exposure to the underlying is created.

We introduce one plain example; consider the stock Arcelor Mittal, which is traded on both the
Euronext Amsterdam (MT) as well as the Bolsa de Madrid (MTS). Since it concerns the exact same
stock type, in a perfect world?, the prices of both instruments should be the same. When MT trades
ata higher price than MTS, one could short MT and long MTS making an instantaneous profit while
adding no exposure to Arcelor Mittal to his portfolio.

An extension of this example can be found by making the arbitrage trade triangular. Arcelor Mittal
does not only trade on the Euronext Amsterdam (AMS: MT) and Bolsa de Madrid, but also on the
New York Stock Exchange (NYSE: MT). If AMS: MT trades at a higher price as the NYSE: MT divided
by the current EUR/USD exchange rate, one shorts AMS: MT, longs NYSE: MT and exchanges the
euros it received for the short AMS: MT position into dollars, leaving the trader with an excess
euro amount for its arbitrage trade while no exposure to Arcelor Mittal is added to his portfolio.

One of the main pillars supporting the modern theory of Mathematical Finance is the first
Fundamental Theorem of Asset Pricing (FTAP). FTAP finds its origin dating back to work of Black

1 Since V is self-financing and it consists only of martingales, itself is also a martingale.
2 E.g. no transaction costs, no tax benefits, no costs for shorting a stock.

3
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and Scholes (1973) and Merton (1973). In this framework one changes the underlying P-measure
into a risk-neutral or martingale measure Q.

As an example, we prove that the underlying process in the Black and Scholes model is free of
arbitrage, taken from lecture notes from Bjork (2010), let us consider the Black and Scholes
model. We define a process for an equity underlying S as:

dSt = aStdt + UStth,

where « is a factor that projects an average return, o is the volatility of the underlying and W is
an Geometric Brownian Motion (GBM). Next we define a process of a risk free bond B by:

dB; = rB.dt,
where 1; is the (stochastic) risk free rate.
We introduce Z and setitto Z = §/B. This results in the process of Z of:
dZ; = Zi;(a — ry)dt + Z,odW,. (2.1)

Next, we need to formulate a measure to transform real world probabilities P into risk neutral
probabilities Q. We apply a Girsanov transformation, which is used to transform a physical
measure into a risk-neutral measure, on [0, T]:

LO = 1,

dQ = LTdP,OanT,

where ¢, is a process that we can define later and L is a random variable denotes as:

dqQ
L= d—P,onT.

From the Girsanov Theorem we have:

t
WtQ =W, —f @sds, or
0

dW, = @dt + dw,?, (2.2)

where W9 is a Q-Wiener process.. A Wiener process is used to represent the integral of a white

noise Gaussian process.

By using (2. 2) and substituting this into the P-dynamics given in (2. 1) we obtain the Q-dynamics
for Z:

dZt = Zt[a - T't + G(pt]dt + ZtO'dVVtQ
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We find a unique martingale measure Q, with Girsanov kernel given by:

T't—Ol

Pt = .

From here we induce the Q-dynamics of S, which are given by:
ds, = r,.S.dt + oS, dw,°.

Since we showed the existence of a unique martingale measure for S, we have proven that the
underlying process in the Black and Scholes model is free of arbitrage (Bjork T., 2009).
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3. Working method

In this section, we set out the working method as developed by Jakob Bosma (2018). We provide
an example throughout the theory which is in italics. The example consist of a set of 4 call options
with a price of c; at time t, where our options have a tenor of 1, 2, 3 and 4 years respectively. The
options are priced using the Black and Scholes method, for which’s theoretical outset we refer to
section 5.1.

“We consider a vector of m risk factors x, derived at time t from n observable instruments with prices
denoted by p. (t) for various time-to-maturity tenors t. These risk factors could for instance be zero-
coupon rates and plain interest-rate swaps as associated instruments; or forward volatilities derived
from interest-rate caps and floors for a particular strike level.3

The bank maintains an in-house pricing system to value the underlying instrument with the
valuation function F(x;,t;). We gather all n prices observed at time t in a vector p;, all
corresponding maturities at time tin T, := (T; — t, T, — t, ..., T, — t) and the associated valuation
functions in

F(x,,t) = (F(x(, Ty — ), F(x(, Ty — ©), .., F(x, Ty — 1)) .

Note that t = 0 lies in the past and min(T, — t,.) > 0 otherwise the instrument would have been
terminated. Typically, implied risk factors are inferred by solving the following system for x; a
process also referred to as bootstrapping or stripping:*

p: = F(x,7,) 3.1

For the construction of a complete historical database of risk factors, (3. 1) solves the set of risk
factors corresponding to the historical date. If prices (or quotes) for the underlying instrument are
observed for all relevant historical dates there is no need for a proxy methodology.

However, due to changing appetite for instruments or periods of illiquidity in which insufficient
market prices are observed that qualify as observable market data, not all risk factors for a historical
date can be inferred from the prices and the historical database features missing risk factor values.
To alleviate this issue, we propose a generic proxy methodology that incorporates the banks'in-house
pricing functionalities.”

3 Although the approach can be straightforwardly extended to include for instance heterogeneous
strike levels. To maintain a clear outline we safe these extensions for Section 3.3 on examples.

4 In some cases, m < n, this system is not solved as such, but used to calibrate a limited number of
parameter to infer an underlying relation between the risk factors, e.g. in the case of implied
volatility smile models.
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In the case of our call options, the pricing function F; is defined by the Black and Scholes (BS)
pricing function. The vector containing prices is denoted by:

F(x:,t:) = (BS(x:,1),BS(xt,2), BS(x,3), BS(xt,4)) .

The risk factors in x; are: the price of the underlying, linked to delta (A); the underlying risk free
rate, linked to rho (p) and the underlying Black and Scholes volatility o, linked to vega (v) of
the underlying options.

“In addition to the valuation functionalities, the second item the method requires from a bank’s
pricing system are the Delta sensitivities with respect to each risk factor in x, for all n instruments
considered. We gather these Deltas in the following n-by-m matrix, where each row §F (x;,T;)/dx
denotes all Delta sensitivities associated with instrument i and with tenor t;:

3.2)

OF _ (8F(x;, Ty—t) 8F(x;, T,—t)  6F(xy, T, — )\
Sx' 5x ’ 5x 5x '

The matrix containing all risk sensitivities is given by (note that this matrix is not transposed):

4 p1 1n
5F,_ 4; py vy

5x 43 p3 v
Ay py Vg

“Third, we require from the in-house pricing system the Theta sensitivities for each instrument
with respect to the remaining time-to-maturity and allocate these in a n dimensional vector,
implicitly defined as:

. {6F} (8F(xe, Ty —t) 8F(xp, T, —t)  8F(x, T — )
IS T st st T et '
The diagonal of theta’s (©) is described by:
) 6F ,
dlag {ﬁ} = (@15 02! 03' 04-)
“The next step is to use (3. 2) to calculate ann-by-n projection matrix:
M - SF (5F)'<6F) _1<6F)'
Yot = n ™ 5w \\5x) 6w 5x'/)’

wherel,, denotes an-by-n identity matrix. In subsequent notation we suppress the arguments for
Mt ) ”
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In M,, each row (or column due to symmetry) can be interpreted as a portfolio vector containing
weights of each of the 4 call options, which together sum up to 1.

“With the three components, which merely comprise a valuation function and two first-order
Greeks, we are now in a position to define the generic proxy methodology.

Definition 1. Generic proxy methodology - In the event we observe at a given historical date t
insufficient market prices to infer all risk factor values x; we can derive a proxy value X, from risk
factors and a historical overnight risk-free rater observed att — 1 with the following expression:

O0F;_
M,_; * (F(ic},tt) — Fe_y *(1+ 1,_y) + diag { 5;' 1}) = 0. (3.3)
With historical data observed at date t — 1 we can solve the linear system (3. 3) for the
instruments’ theoretical prices at time t and subsequently solve for the risk factor values %,
which then serve as the proxy values for the unidentified x; at timet. A full derivation of (3. 3)
can be found in Section A in the Appendix.

From (3. 3), we can regard each row (or column) in M, in (A. 5) as a hedging portfolio with asset
weights associated with the considered derivatives at time t. These portfolios are instantaneously
unaffected by changes in the underlying risk factors x;.”

Using our “hedging portfolio” M,_; we are able to reduce the difference between F(X, T;) and
F,_; to the risk free rate r and the time effect ©.

The theorem described in definition 1 describes that the return of a vector of instruments,
corrected for the return of the risk free rate and theta, multiplied with the hedging portfolio M;_;

is equal to zero. Using this knowledge and by determining M;_, F;_4,7:_1 and diag {62271} we

are able to derive a value for F; (X;, T¢). Then using the valuation function F we can deduce a proxy
value for all risk factors X;.
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4. Nelson Siegel model

In this, and the following two chapters, we apply our working method to a set of models to
determine the effect the working method has on the estimated parameters. These models are
chosen given that they are relatively simple and widely used within the industry. We start with
the Nelson Siegel model.

4.1. Introduction

Nelson and Siegel (Nelson & Siegel, 1987) introduced a yield curve model with the purpose to be
simple, parsimonious and flexible enough to represent the range of shapes generally associated
with yield curves; monotonic, humped and S shaped. This yield structure could be used to
determine the values of bonds. The Nelson Siegel model is widely used by central banks (BIS,
c2005) (Gurkaynak, Sack, & Wright, 2006).

In their paper, Nelson and Siegel found a high correlation between the present value of a long-
term bond implied by the fitter curves and the actual reported prices of the bond. This confirms
their assumption that their model reflects the basic shape of the term structure and not just a local
approximation.

Their proposed function is described by the function:

_ ,—m/t 1— e—m/r

m/t Bl m/t

1
y(m) = Bo+ B — e

Where m denotes the maturity and y(m) the yield of the curve at maturity m. 5, 1, 8, and t are
parameters that need to be fitted via a least-squares or similar statistical technique. S, is
interpreted as the long run level of interest rates; (8; is the short term component; 3, is the
medium term component and 7 is the decay factor. The effect of both the short and medium term
component f; respectively B, converge to zero over time, which leaves f; as the singular
component to determine the yield on the long run.

A research performed by Diebold and Li (Diebold & Li, 2005), addresses a key-practical problem
with studies performed so far. They make a novel twist of interpretation of the Nelson Siegel
model and furthermore go in of out-of-sample of forecasting of yield curves with their model. They
point out that 8, can be interpreted as a level, §;as the slope and 3, as the curvature of the yield
curve. Their research shows that these parameters can be interpreted as factors that may vary
over time and further more shows that the models are consistent with a variety of stylized facts
regarding the yield curve. They use their models to produce term-structure forecasts at both short
and long horizons, with encouraging results.

4.2.Proxy

We examine the effect of our proxy condition in the case of the Nelson Siegel model. The
parameters [y, B1, f> and 4, that are used in the Nelson Siegel model to define the yield curve, are
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estimated based on a statistical fit, like the Root Mean Squared Error (RMSE). First, 8y, f; and [,
are estimated per time unit, using a given A. The fit error at time ¢ is minimized using the following
two equations:

e—ltt 1-— e—/h't .
y(BL, Bt BE A T) = BY +.8t + B¢ <—— e T‘);

AT,

fit ervor 82, 1, B2, ) = Jz (ym) A )

T

Where y(7) presents the observed yield at time t for each of the maturities in 7; := (T} — t, T, —
t, ..., T, — t). We name the §’s that minimize the fit error at time t §*. Next, A* is determined by
altering A in order to achieve the minimal final errors:

final error(A, 1) = Zfit error (B, BL*, B2, A, o).
t

In our example we look at yield data of Constant Maturity Treasuries (CMT) on a daily basis. Since
an increment of a day does not lead to the shortening of the maturity with one day (e.g. we look at
a bond with a maturity of 1 year and the next day we look at the next bond with a maturity of 1
year), in our case, maturity is defined as: t; := (T, Ty, ..., T,,)- Hence, from now on we suppress t
for ;.

The first component we require to implement our proxy is the valuation function. The value of a
bond is determined by the price function of a bond:

B=e*T

Where we replace the general yield A4 with our Nelson-Siegel based yield:

—AT —AT
—T1(Bt 31(1 el 1) Bt<(1 eTl 1) —AT1>>
e

_ (1= 3_”) (1- e~T2) T
FBLALBEAD = Tz(ﬁf et (e ))

(Bt+31(1 e )" <(1_Aer_:”) fm))
e

This function determines the price of a bond given maturity T with the corresponding yield at

time t, which follows from the Nelson Siegel equation. Next we introduce the delta sensitivities to
each underlying of the three f’s at time t (we suppress the arguments of F; from now on):

5 Note that for each try for lambda all 8’s are determined again by minimizing the total error.

10
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<ﬁt+ﬁ1(1 8—11T1) /3:2((1_;,[_.1”1) e_”1>>

_Tle
SF [(1—e72) ,((1-e?T2) o—AT2
= —T,| B + Bt T, ﬁt( T > '
T
—ATp, _ ,—ATp
(ﬁt +Bl(1 en ) ﬁ?<(1 ;Tn ) e—ﬂ.Tn))
-T,e
—AT
. (1_ e—lTl) —T1<ﬁt +B1(1 €T1 1)*/3'1-((1 eTl 1) _AT1>)
T )¢
e—AT _ AT
SF (1 et —Tz<ﬁt +31(1 o Z)Gﬁ‘?((l §T2 2) e-AT2)>
7T -7, — ,
5B2 2\" )¢
—ATp _ ,—ATp
1— e—zrn) —Tn<ﬂt +ﬁl(1 eTn ), ﬁ’?((l an ) e‘”ﬂ))
S L I S
n\an, )¢
1— —ATl 1— e—AT1 _
, (1_ e‘”ﬁ) L, —T1<[>’t +[,>1( e ). mz(( §T1 ) e /1T1>>
1 AT e e
OF —AT. =T, Bt +Bl(1 e T2 )*ﬁt<(1 _ATZ) _)“T2>
2[ = — T M_ e_ATZ e 2 TZ
8¢ z AT,
-ar, i g+ 20, /32((1 e n) —m)
_T (1 — € n) _ e_ATn e ATy, ATy,
" AT,

We combine these sensitivities into our Delta sensitivity matrix for a given time ¢:
6F
sx'

Since, in our dataset, there is no effect of time decay on our bond prices, we neglect the effect Theta

6F 6F oF
) .

IR 1’ 1
6By 8B 8p¢

would otherwise have. We are now able to form a projection matrix based on (4) and a n-by-n
identity matrix I,,:

M(xt,‘[) =1

SF (6F)' <6F) - <6F)'
moosx \\Sx') \&x’ 5x’'
The proxy error at a given time t can now be calculated by using the following equation where
F(x;_4,T) represents the prices of the bonds with the observed betas from the day prior.

proxy error(B, B, B2.A,T) = MCxer,70) * (Fo(Re0) —

Ft—l(xt—lvt))

Next the fit error at time t is calculated in the same way as it is calculated for the regular Nelson
Siegel fit.

11
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_ e—lr 1— e—lr

2 _ AT
AT + ﬁt( AT e )

fit error (30, B2, B2, A,7) = jz (v(e - (80,82 82.1.))°

T

1
y(Be, Bt BE AT = B+ BE

The final error for time t can now be determined. We add a weight p to the proxy error in order
to asses to impact on the parameter estimation for different scenarios. The final error is minimized

by changing 3,, f; and f,.
final error(B2, Bt, 2,1, 7)
= Z (fit error(BL, Bt B2, A7) + p = proxy error(B?, Bt, B2, A, T)) :

T

When we have the optimal betas 8,5, 1 and 85, we can determine the final error, and we minimize
it by altering lambda to achieve the optimal value (1%).

final error(A, 1) = Zfinal error(BY, BL*, B2, A, T)
t

Due to the fact our minimizing algorithm does not behave properly (e.g. it returned local minima),
we introduce boundaries for the values that the 5’s can take. For 5 which reflects the level (e.g.
long term yield) of the yield, we take (B, + 2 * ("™ — y/°%9)), where y'"9 represents the

longest available tenor. For { which reflects the slope of the yield (e.g. long yield minus the short
yield) , we take <5t0—1 T2+ ((Ytlong — yhort) — (ytlfrllg — ytsf‘frt))) , where ys"°"t represents the

shortest available tenor. Finally, for f? which represents the curvature of the curve, we take
(B% +0.01).

4.3.Results

We introduce our proxy to a dataset containing US Constant Maturity Treasuries (CMT) quotes
retrieved from the Federal reserve of Louisiana website. The dataset ranges from the first trading
day of 2006 (January 314 ) to the last trading day of 2015 (December 30th), as to include a financial
crisis, namely the credit crisis of 2007/2008. Tenors include the 1, 3 and 6 months, and the 1, 2,
3,5,7,10, 20 and 30 years.

We fit a yield curve for each day, using the method we described above for the p factor 0, 10 and
100. In this model, choosingp = 10, makes the size of the fit and proxy error about equal.p = 0
shows the fit of only using the Nelson Siegel model, and p = 100 puts a heavy weight, with an
approximate ratio 1:10, on the fit and proxy error respectively. We test for a dataset which
contains the full spectrum of tenors, and sequentially remove the short (1, 3, 6 month), medium
(2,3, 5,7 year) and long (10, 20, 30 year) tenors. This will give us an insight in the information
the other part of the term structure contains about the removed part.

At first, we determine the mean residual difference between the yield, as presented by the fitted
yield curve for that day, and the actual yield from our data set, to create insight in the overall level

12
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of our fitted yield curves. We also determine the Root Mean Squared Error (RMSE), to show how
large the deviance is. We advise the reader to focus on the RMSE in fit as well as out of fit and the
total RMSE. The lower the RMSE the better the fit of the model. The results can be seen in Table 1
through

SUM LONG 0 5.5000 E - 3.2000 E - 4.7481 E - 4.9020 E - 48971 E -
06 06 03 03 03
SUM OTHER | -3.2897e-03 -1.4089e-03 -1.2270e-03 13788e-02 1.2622e-02 1.3417e-02

Table 4 and Figure 1, where we show what happens when we remove the short, medium and long
tenors. The development of the ’s over time can be observed in appendix B.

What becomes evident in our results is that while the sum of the RMSE of each tenor for p = 10 is
higher for the full data set, it is lower out-of-sample for all datasets where some tenors are missing,
indicating that our proxy version can model yield curves that are better fitting to the actual data
when we leave out some data. This encourages us to believe that when data cannot be observed
in the market, out proxy is a meaningful addition to the regular Nelson Siegel estimation process.

We also observe that the total fit (sum RMSE) drastically reduces when tenors are removed from
the dataset. The scenarios in which data is removed have a total RMSE which is about 50 to 100%

higher. This is however expected since these are out of sample results.

It is particularly noticeable that the proxy reduces the RMSE the most, in comparison the regular

Nelson Siegel, in the regions where yield data has been left out.

FULL DATA  MEAN RESIDUALS RMSE
P=0 P=10 P=100 P=0 P=10 P=100
im -4.5678 e-04 -4.9019 e-04 -4.8769e-04 1.2128e-03 1.2180e-03 1.2189e-03
M -1.6203 e-04 -1.7476 e-04 -1.7265e-04 52235e-04 53055e-04 53967 e-04
6M 54720 e-04 55774e-04 55928e-04 9.7023e-04 9.7463e-04  9.9451 e-04
1Y 39840 e-04 4.3424e-04 4.3480e-04 1.1168e-03 1.1244e-03 1.1357e-03
2Y -7.0983 e-06  3.0426 e-05 2.9772e-05 7.9862e-04 7.9830e-04 8.2505e-04
3Y -3.0276 e-04 -2.8834e-04 -2.8924e-04 58561e-04 57776e-04 6.3341 e-04
5Y -2.0876e-05 -2.3801e-04 -23741e-04 7.5279e-04 7.7038e-04 7.8699 e-04
7Y 3.9699e-05 -53295e-06 -2.0889e-06 9.8897e-04 9.8970e-04 1.0001 e-03
10Y 5.9369e-05 2.3262e-05 3.0429e-05 57161e-04 56770e-04 6.1283e-04
20Y -3.2958e-04 3.4887e-04 3.6326e-04 9.7683e-04 1.0003e-03 1.0858e-03
30Y -2.3952e-04 -1.9464e-04 -1.7722e-04 9.7694e-04  9.7627e-04  1.0009 e-03
SUM -2.7068e -06  3.2620e-06 51233 e-05 9.4735e-03 9.5280e-03  9.8338e-03
Table 1 Statistics of the full data set
MISSING MEAN RESIDUALS RMSE
SHORT
P=0 P=10 P=100 P=0 P=10 P=100

1M -2.0622e-03 -1.7378e-03 -1.5320e-03 4.6523e-03 4.4657e-03 4.3773e-03
3M -1.4725e-03 -1.2228e-03 -1.0610e-03 3.4287e-03 3.2841e-03 3.2133e-03
6M -3.9433e-04 -2.3478e-04 -1.2661e-04 1.8653e-03 1.8009¢e-03 1.7935e-03
1Y -1.6267e-05 2.4079e-05 59790e-05 4.4176e-04 4.5741e-04 5.1153¢-04
2Y 84439e-05 3.1628e-05 1.3688e-05 59512e-04 58167¢e-04 58043¢e-04
3Y -8.0713e-05 -1.2670e-04 -1.5266e-04 55593e-04 5689 ¢e-04 59289e-04
5Y -6.9272e-05 -57716e-05 -54078e-05 3.4192e-04 3.3907e-04 3.5325e-04
7Y 58092e-05 1.0306e-04 1.2651e-04 6.1612e-04 6.1589e-04 6.1516¢e-04

13
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10Y -2.3790e-06 4.3879e-05 7.0278e-05 4.7532e-04 4.9102e¢-04 51177e-04
20Y 2.8002e-04 2.6951e-04 2.6621e-04 87022e¢-04 87585e-04 9.2256¢e-04
30Y -2.5713e-04 -2.9500e-04 -3.1328e-04 9.0715e-04 9.0919e-04 9.5204 e -04
SUM -3.9322e-03 -3.1981e-03 -2.7032e-03 1.4750e-02 1.4390e-02 1.4424e-02
SUM SHORT | -3.9290e-03 -3.1953e-03 -2.7196e-03 9.9463e-03 9.5507e-03 9.3841¢e-03
SUM OTHER | -3.2100e-07 -7.2600e-07 1.6460e-06 4.8035e-03 4.8391e-03 5.0396¢-03
Table 2 Statistics of the data set without short tenors
MISSING MEAN RESIDUALS RMSE
MEDIUM
P=0 P=10 P=100 P=0 P=10 P=100
M -2.7773 e-04 -2.3273e-04 2.4587e-04 7.7855e-04 81150e-04 1.3750e-03
M -1.0392 e-04 -9.2451e-05 85703e-05 4.3074e-04 4.3606e-04 5.6032e-04
6M 4.4305e-04 4.1810e-04 2.3861e-04 7.7677e-04 7.8250e-04  8.4529 e-04
1Y 3.1160e-05 -2.8980e-05 -6.5679e-04 57328e-04 6.1508e-04 1.3704e-03
2Y -7.0531 e-04 -7.5143e-04 -1.5947e-03 1.4826e-03 14818e-03 2.3100e-03
3Y -1.1499 e-03 -1.1428e-03 -1.7701e-03 2.1364e-03 2.1004e-03 2.7207 e-03
5Y -1.0622 e-03  -9.6629 e-04 -9.5263e-04 2.2453e-03 2.1698e-03 2.1764e-03
7Y -6.6703 e-04 -54212e-04 -1.6113e-04 2.0343e-03 1.9839e-03 1.6601 e-03
10Y -3.9630e-04 -2.9234e-04 1.0074e-04 1.0437e-03 1.1064e-03 7.1634e-04
20Y 34716 e-04 3.3795e-04 4.4277e-05 9.2826e-04 9.3364e-04  7.8729 e-04
30Y -4.4145e-05 -1.0421e-04 -57351e-05 8.1950e-04 8.0812e-04 42828 e-04
SUM -3.5851 e-03 -3.3973 e-03 -4.4775e-03 1.3249e-02  1.3139e-02  1.4950e-02
SUM -3.5844e-03 -3.4026e-03 4.4786e-03 7.8986e-03 7.7359e-03 88672¢-03
MEDIUM
SUM OTHER | 7.0000e- 07 5.3000e-06 1.1000e-06 53508e-03 54933e-03 6.0829¢-03
Table 3 Statistics of the data set without medium tenors
MISSING MEAN RESIDUALS RMSE
LONG
P=0 P=10 P=100 P=0 P=10 P=100
im -3.4785e-04 -3.6539e-04 -3.4986e-04 9.1704e-04 93096 e-04  9.4489 e-04
3M -1.3514 e-04 -1.3528e-04 -1.3429e-04 43513 e-04 4.4491e-04 44459 e-04
6M 4.8735e-04 50426 e-04 49093 e-04 9.1548e-04 9.2184e-04 9.1963 e-04
1Y 2.6208 e-04 2.8953e-04 2.6708e-04 7.4762e-04 7.4948e-04 7.5720e-04
2Y -8.9261 e-05 -8.6851e-05 -89274e-05 33883e-04 3.7920e-04 3.7627e-04
3Y -2.5534e-04 -2.8663e-04 -2.6158e-04 59716e-04 6.1774e-04 6.0154 e-04
5Y -3.2401 e-05 -6.8677e-05 -3.9194e-05 4.0954e-04 4.1756e-04 4.2228 e-04
7Y 1.1056 e-04  1.5458e-04 1.1934e-04 3.8726e-04 4.4034e-04 4.3071e-04
10Y -2.3820e-04 -5.9969e-06 -1.9290e-04 2.2263e-03 2.1559e-03 2.2034e-03
20Y -9.8671e-04 -2.7286e-04 -84623e-04 52636e-03 4.8418e-03 51313e-03
30Y -2.0648 e-03 -1.1300e-03 -1.8791e-04 6.2987e-03  5.6245e-03  6.0823 e-03
SUM -3.2897 e-03  -1.4033 e-03 -1.2239e-03 1.8537e-02 1.7524e-02  1.8314e-02
SUM LONG 0 55000e-06 3.2000e-06 4.7481e-03 4.9020e-03 4.8971¢e-03
SUM OTHER | -3.2897e-03 -1.4089e-03 -1.2270e-03 1.3788e-02 1.2622e-02 1.3417e-02
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Table 4 Statistics of the data set without long tenors
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Figure 1 RMSE per tenor for all datasets
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5. SABR model

Next we apply our working method to the Stochastic Alpha Beta Rho (SABR) model.

5.1.Introduction

The Black and Scholes (1973) and Black-76 (1975) model, developed to determine the value of an
option in an arbitrage free or risk neutral world, are the industry standards for valuing vanilla
options on equity and futures respectively. They can be extended to account for complex options
like Bermudans and Asian options as well.

In the Black and Scholes model the value of a call option cgs can be determined by the following
function:

cgs = SN (dy) — KN (dy)e™™,

where

S o3
; _ln(?)+(r+%>*(T—t)
! ogsVT —t '

dz = dl - O-BSVT —t,

and S is the spot price of an equity, V' is the cumulative normal distribution function, K is the
strike price of the option, r represents the risk-free rate, ags is the Black and Scholes implied
volatility of the underlying, t is the current time and T is the expiration date.

In Black-76’s model the value of a call option cp_5 is represented by the following equations:
cg_76 = € "t % (FN(dy) — KN (dy)), 5.1

where,

op-76VI —
dy =d; —0p_76VT — ¢,

and F is the futures prices, gg_5 is the Black-76 implied volatility and all others are the same as
in the Black and Scholes model.

The Black and Scholes and Black-76 model assume a constant implied volatility o over all strikes
K.However when calibrated to market data, a volatility skew or smile is often observed. In Figure
2 we can see the implied volatility of a put option on the iShares Russel 2000 ETF versus the strike
price. The star indicates the spot price.

The Stochastic Alpha Beta Rho (SABR) model, was developed by Hagan et al. (2002) in order to
deal with the observed market skew in implied volatilities observed for different strikes. In a
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volatility skew, or volatility smile in jargon, one observes higher implied volatilities for In The
Money (ITM) and Out of The Money (OTM) options as for At The money (ATM) options. Market
skews started occurring in option pricing after the 1987 stock market crash. They were not
present in the U.S. markets prior, indicating a market structure more in line with what the Black-
Scholes model predicts. After 1987, traders realized that extreme events could happen, hence
raising the prices (and implicitly the implied volatility) for ITM and OTM options.

30

28 p
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24 r

207

Implied vol {%)

18T

16T ~

14 1 y
/

12
100

130 140
Strike (3)

110 120 170

Figure 2 implied volatility vs. strike retrieved from a put (03/16/2018) on 09/21/2017 with iShares Russell 2000 ETF as
underlying

The SABR model introduces stochastic volatility and lets the forward value satisfy:

where t denotes time and in which the forward F and volatility @ are correlated by the following
process:

A singular perturbation technique is used to obtain the prices of European options. The prices of
the European options on a forward are given by (5. 1), where the implied volatility og_-¢ is given
by the stochastic az_4(K, f) which can be derived from:

« z
op-76(K, f) = — — - .
T e ) T ]
a-p°_ o’ 1 pfva 2 -—3p?
1+ BT - VvZ[(T =t) + -
2 G b TE 2
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where,

=Ly ml
Z—a K’

V1—2pz+322+z—0p

1-p

x(z) =In

a, 3, p and v are factors that determine the shape of the volatility skew. All other variables are as
in (5. 1). @ can be interpreted as the level of the volatility. 5, often referred to as the backbone,
turns the curve from diagonal to horizontal. When = 0 a stochastic Gaussian model is assumed,
giving a steeply downward sloping backbone and when f = 1 is assumed the lognormal model is
assumed. v determines the steepness of the curve. p has the same effect on the curve as 8 does,
hence it is common practice to choose a level of § and fitting p respectively. The effect of these
Greeks can be seen in Figure 33.
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= 24.0 TTT——1 =240 o
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22.0 22.0
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Figure 3 Effect of Greeks on volatility skew

5.2.Proxy

The SABR model parameters can be deduced by fitting the theoretical call prices, using the SABR
volatility as input, to the observed market prices. First we choose a 8 that represents our view on

Strike (% of f)

the market. We assume lognormal shocks in the underlying prices, so we take § = 1.
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We use the RMSE as a function for the fit error at time t that can be calculated using the following

formula:

fiterror(@., B, Ve, Pr. 70, K, ft) = \]Z(C(Tt; K, f:) — cg—76(@s, B, 19t’ﬁt’Tt:Kth)) 2,
K

Where c(7¢, K, f;) denotes the observed market price of a call option with tenor t, strike K and

futures price f, all at time ¢.

If we minimize the fit error at time t by changing &;,V; and p;, we end up with the best fit
represented by af, v{ and p;.

Before we can introduce our proxy error, we first need to define our valuation function. This
valuation function is equal to the Black-76 function:

cg-76(A¢, B, Ve, P Te, K1, f2)
cg-76(t, B, Ve, Pt Te, K3,
F(ay, By Ve por T K, f2) = 5-76(Qt, B Ve, Pt Tes Ko, ft)

Cg-76(t, B, Ve, Pr. T, Ky ft)

Next we determine the delta sensitivities of F; to the underlying risk factors. Since a closed form

. F F F . . . .
solution of 575 and 57 is extremely complex, we derive an analytical alternative. We shock the

risk factor of which we want to know its influence on the price by 1 basis point, subtract it from
the regular price and multiply it by 10 thousand. In formula (we suppress the arguments of F;
from now on):

(F(ae, By ve, pe, e, Ku, fr) — F(ap — 0.0001, B, ve, pr, Tr, K1, ft)) * 10000

6F ~ (F(ae, By ve, pe.Te, Ko, fr) — F(ay — 0.0001, B, ve, pr, Tr, K3, f)) * 10000 (5.2.1)
5a o

(F(at, B,ve, pe, Te, K, fe) — F(ap — 0.0001, B, v, pr, Tr, Kn, f¢)) * 10000

OF [ (F(ay, B,ve perTe, Ko fr) — F(ag, B,ve — 0.0001, py, 71, Ky, f)) * 10000

(F(ag, B, ve, pr. Te, K1, fe) — F(ag, B, ve — 0.0001, pe, 74, Ky, f1)) * 10000>

50 ~ (5.2.2)
(F(ae, By ve, perTe, Kn, fr) — F(ag, B,ve — 0.0001, py, 7y, Ky, f¢)) * 10000
(F(ae, B ve, peTe. Ku, fr) — F(ag, B, ve, pe — 0.0001,7,, Ky, f,)) * 10000\

g ~ | (F(O-’t' B, ve, pe, Te, Ko, ft) — F(a, B,ve, pe — 0.0001, Tt:Kert)) *10000 [, (5.2.3)

pt nw
\(F(at, B, Ve, PeTes Ky fr) — F(ag, B, ve, pe — 0.0001, 7., Ky, 1)) * 10000/
(F(“t' B Ve, pe. e, Ku, fr) — F(ae, Byve, pe o Te, Ku, fe — 0-0001)) * 10000
;;: ~ (F(“t' B, ve, pe,Te, Ko, ft) — F(ae, Bve, pe, T, Ko, fr — 0-0001)) *+ 10000 (5.2.4)
t
(F(“t' B Ve, pe. Te, K, fr) — F(@e, B, ve, pe, e, Ko fr — 0-0001)) * 10000
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SABR model
Note that we are not interested in the effect of beta on the price since we keep this factor constant.

Using the risk sensitivities (5. 2. 1) through (5. 2. 4) in

OF .
Sx'

O0F O6F O6F O6F
Sa;’ 6v. 8p.’ 8f ]’

enables us to form a projection matrix using an n-by-n identity matrix I,,:

SF (/6FN' /SF\\ ' /SF'
M= L-5-( () 5)) G5

We define theta as:

(F((Xt, B:Vt; Pe, Tt Kl' ft) - F(at' ﬂl Ve, Pt Te — 00001' Kl'ft)) *10000

8—F =~ (F(at,[)’, Ve, Pt Te, Ko, f) — F(ag, B, ve, pe, T — 0.0001, Kz;ft)) * 10000
T
(F((Xt, Blvt' Pt Tt Kn' ft) - F(at' ﬂl Ve, Pt Te — 00001' Kn'ft)) *10000

We introduce our proxy by adding an additional term to the fit error at time t, namely the proxy
error. Which is given by:

proxy error(@:, B, V¢, P, Te, K, ft)
= M(x¢-1,T¢)

OF
* (F(Et:‘[t) — F(x¢_q,70—1) * (1 + 1)t "1 + diag {@ (xt—1'Tt—1)} )

Note that for the SABR model, unlike for the Nelson Siegel model, we do account for the passing
of time by use of the theta term and risk free return over the price att — 1.

Finally we determine the final error, by multiplying the proxy error at time t with a weight p and
add the fit error at time ¢:

final error(@, B, Vs, pe, e, K, f)
= > (Fit error(&e, f, 90, b 70, K. f2) + p * proxy error(@e, f, 90, b 70, K. £).
K

Minimizing the final error at each time t gives us the optimal values for a;,v; and p; ~ af,v{ and
Pr-

5.3.Results

We introduce our proxy to a dataset containing data on S&P 500 options maturing at jan-2020,
with strikes ranging from 2100 to 3300, ranging from 09-10-2018 to 13-03-2019, retrieved from
a Bloomberg Terminal. In addition we use S&P 500 price data over the same time span, retrieved
from Yahoo Finance. Finally, we use 1 week Libor (interest) rates, retrieved from Federal reserve
of Louisiana website.
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SABR model

We fit a SABR curve for each day, using the method we described above for the p factor 0, 100 and
1000. In this model, choosingp = 100, makes the size of the fit and proxy error about equal. p =
0 shows the fit of only using the SABR model, and p = 1000 puts a heavy weight, with an
approximate ratio 1:10, on the fit and proxy error respectively.

At first, we determine the mean residual difference between the observed price, as presented by
price based on the fitted SABR curve for that day, and the actual price from our data set, to create
insight in the overall level of our fitted SABR curves. We also determine the Root Mean Squared
Error (RMSE), to show how large the deviance is. The results can be seen in Table 5 through

SUM HIGH 1.0297 E-02 1.0293 E - 1.0255 E - 2.0560 E - 2.0561 E - 2.0577 E -
02 0z 0z 0z 0z
SUM OTHER ‘ -1.2343 e-02  -9.0316e-.03 -9.4793e-03 52399e-03 52398e-03 52429e-03

Table 8 and Figure 4, where we show what happens when we remove the low (2100-2450),
medium (2475-2825) and high (2850-3300) strikes. The development of the «, §,v and p over
time can be observed in appendix C.

Our results show that our proxy only reduces the RMSE for the data set without the medium
strikes. However, the reduction is only minimal. Therefore we cannot conclude that our proxy has
material benefits, which contradicts our observations for the Nelson Siegel model. We propose
three possible reasons for this:

- We tested our proxy on an equity option. Equity markets may show less of a functional
relationship with parameters (in this case the «, 8, p and v) as interest rate markets. This
may allow consistency between two consecutive periods to be minimal. Perhaps we might
see distinct results when we apply it on an interest rate related option.

- Our dataset is quite small, which can lead to distorted results.

- Perhaps the term structure of the SABR model at a specific part does not contain
information about the other parts of the volatility curve.

We also observe that the total fit (sum RMSE) drastically reduces when tenors are removed from
the dataset. The scenarios in which data is removed have a total RMSE which is about 20 to 180%
higher. Where 20% is linked to the scenario in which the medium strikes are removed, from which
we can derive that these strikes have little influence on the shape of the SABR curve in comparison
to the low and high strikes.
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SABR model

FULL DATA  MEAN RESIDUALS RMSE
P=0 P=100 P=1000 P=0 P=100 P=1000

0.729 -9.7652e-05 -9.8315e-05 -1.0448e-04 3.0415e-04 3.0398e-04 3.0482¢-04
0.737 -1.1070e-04 -1.1134e-04 -1.1726e-04 2.5564e-04 2.5558e-04 2.5781e-04
0.746 -1.2911e-04 -1.2972e-04 -1.3538e-04 2.4125e-04 2.4123e-04 2.4362¢-04
0.755 -1.3035e-04 -1.3093e-04 -1.3631e-04 22156e-04 22166e-04 2.2550e-04
0.763 -1.3385e-04 -1.3440e-04 -1.3947e-04 2.1513e-04 2.1552e-04 2.2104e-04
0.772 -1.2347e-04 -1.2399e-04 -1.2872e-04 2.1636e-04 2.1652e-04 2.1960 e -04
0.781 -8.5628e-05 -8.6102e-05 -9.0478e-05 2.1771e-04 2.1801e-04 2.2230e-04
0.789 -4.3518e-05 -4.3950e-06 -4.7945e-05 1.7150e-04 1.7196e-04 1.7771e-04
0.798 -3.1937e-05 -3.2326e-05 -3.5916e-05 1.7937e-04 1.7961e-04 1.8325e-04
0.807 -4.1092e-05 -4.1435e-05 -4.4596e-05 1.5465e-04 1.5477e-04 1.5729e-04
0.815 -7.7359e-06 -8.0301e-06 -1.0740e-06 1.7104e-04 1.7130e-04 1.7467e-04
0.824 -3.8680e-07 -4.1112e-06 -6.3485e-06 1.7109e-04 1.7117e-04 1.7267e-04
0.833 9.6320e-07 9.4421e-06 7.6981e-06 1.8853e-04 1.8859e-04 1.8948e-04
0.841 3.0904e-05 3.0770e-06 2.9538e-05 1.6935e-04 1.6930e-04 1.6906¢e-04
0.850 3.8379e-05 3.8302e-05 3.7598e-05 1.8194e-04 1.8194e-04 1.8229e-04
0.859 7.5289e-05 7.5271e-05 7.5108e-05 2.5811e-04 2.5816e-04 2.5889¢-04
0.867 8.4055e-05 8409 e-05 84484e-05 1.8840e-04 1.8831e-04 1.8775e-04
0.876 1.0890e-04 1.0900e-04 1.0995e-04 1.9857e-04 1.9864e-04 1.9922e-04
0.885 1.2675e-04 1.2691e-04 1.2841e-04 22340e-04 22304e-04 2.2347e-04
0.893 1.3084e-04 1.3106e-04 1.3312e-04 22701e-04 22731e-04 2.2982¢e-04
0.902 1.675e-04 1.6778e-04 1.7038e-04 3.1191e-04 3.1246e-04 3.1763e-04
0.911 1.4402e-04 1.4436e-04 14748e-04 2.4309e-04 2.4361e-04 2.4856¢-04
0.920 1.5607e-04 1.5646e-04 1.6008e-04 3.8381e-04 3.8345e-04 3.8186e-04
0.928 1.1737e-04 1.1781e-04 1.2188e-04 2.3659e-04 2.3699e-04 2.4169e-04
0.937 1.5049e-04 1.5098e-04 1.5545e-04 4.2752e-04 4.2835e-04 4.3490e-04
0.946 7.4335e-05 7.4860e-06 79680e-06 1.7969e-04 1.8005e-04 1.8589¢e-04
0.954 54082e-05 54638e-05 59728e-05 1.9943e-04 1.9983e-04 2.0617e-04
0.963 -5.2179e-06 -4.6416e-06 0.6304e-07 1.7273e-04 1.7241e-04 1.7392e-04
0.972 -3.3312e-05 -3.2725e-05 -2.7374e-05 3.2084e-04 3.2106e-04 3.2543e-04
0.980 -5.8938e-05 -58355e-05 -53041e-05 14317e-04 1.4281e-04 1.4440e-04
0.989 -1.1915e-04 -1.1858e-04 -1.1344e-04 2.0744e-04 2.0749e-04 2.1010e-04
0.998 -1.3104e-04 -1.3050e-04 -1.2566e-04 2.1753e-04 2.1756e-04 2.1987e-04
1.006 -1.3560e-04 -1.3511e-04 -1.3073e-04 2.4495e-04 2.4452e¢-04 2.4227e-04
1.015 -1.6940e-04 -1.6898e-04 -1.6521e-04 23024e-04 22994e-04 2.2875e-04
1.024 -1.4937e-04 -1.4902e-04 -1.4601e-04 2.4971e-04 2.4960e-04 2.4951e-04
1.032 -1.6855e-04 -1.6830e-04 -1.6619e-04 23457e-04 2.3430e-04 2.3281e-04
1.041 -1.2109e-04 -1.2095e-04 -1.1987e-04 2.2886e-04 2.2867e-04 2.2766¢e-04
1.050 -1.1556 e-04 -1.1553e-04 -1.1558e-04 1.7558e-04 1.7549e-04 1.7547e-04
1.058 -9.6572e-05 -9.6676e-05 -9.7901e-05 1.9190e-04 1.9230e-04 1.9691e-04
1.067 -3.9647e-05 -3.9882e-05 -42309e-05 1.0564e-04 1.0589e-04 1.1133e-04
1.076 1.1966e-06 83315e-07 -2.7719e-06 1.0977e-04 1.1022e¢-04 1.1875e-04
1.084 6.0428e-05 59942e-05 55227e-05 12171e-04 12191e-04 1.2975e-04
1.093 7.9630e-06 7.9033e-05 73312e-05 14515e-04 1.4542e-04 1.5466¢e-04
1.102 1.1979e-04 1.1910e-04 1.1251e-04 1.6025e-04 1.5978e-04 1.6387e-04
1.111 1.7351e-04 1.7274e-04 1.6542e-04 2.5152e-04 25112e-04 2.5341e-04
1.119 1.7090e-04 1.7006e-04 1.6219e-04 24750e-04 2.4703e-04 2.4956¢-04
1.128 1.9552e-04 1.9463e-04 1.8636e-04 2.7588e-04 2.7529e-04 2.7629 ¢ -04
1.145 2.2210e-04 22118e-04 2.1252e-04 3.2339e-04 3.2252e-04 3.2036e-04
SUM 2.0935e-04 2.0537e-04 1.6504e-04 1.0495e-02 1.0497e-02 1.0622e-02

Table 5 Statistics for full data set
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MISSING MEAN RESIDUALS RMSE
Low
P=0 P=100 P=1000 P=0 P=100 P=1000

0.729 -5.9401e-04 -59430e-04 -59696e-04 9.3191e-04 9.3259e-04 9.3930e-04
0.737 -5.9999e-04 -6.0028e-04 -6.0295e-04 89003e-04 89063e-04 89668e-04
0.746 -6.1010e-04 -6.1039e-04 -6.1306e-04 8.6013e-04 8.6070e-04 8.6636¢e-04
0.755 -6.0176 e-04 -6.0205e-04 -6.0471e-04 83718e-04 83777e-04 84357e-04
0.763 -5.9437e-04 -59466e-04 -59731e-04 8.0097e-04 80141e-04 8.0590e-04
0.772 -5.7175e-04 -57204e-04 -57467e-04 7.7139e-04 7.7184e-04 7.7633e-04
0.781 -5.2030e-04 -52058e-04 -52319e-04 7.2635e-04 7.2670e-04 7.3028e-04
0.789 -4.6319e-04 -4.6347e-04 -4.6604e-04 6.5036e-04 6.5089¢e-04 6.5605¢-04
0.798 -4.3522e-04 -4.3550e-04 -4.3802e-04 6.1353e-04 6.1403e-04 6.1895¢e-04
0.807 -4.2659e-04 -4.2686e-04 -4.2932e-04 57382e-04 57417e-04 57769 e-04
0.815 -3.7408e-04 -3.7434e-04 -3.7673e-04 50715e-04 50755e-04 5.1150e-04
0.824 -3.4969e-04 -34995e-04 -3.5225e-04 4.6832e-04 4.6864e-04 4.7179e-04
0.833 -3.1437e-04 -3.1461e-04 -3.1681e-04 4.2519e-04 4.2563e-04 4.2969¢-04
0.841 -2.7003e-04 -2.7026e-04 -2.7234e-04 3.7123e-04 3.7172e-04 3.7615e-04
0.850 -2.3831e-04 -2.3853e-04 -2.4047e-04 3.3686e-04 3.3728e-04 3.4110e-04
0.859 -1.7601e-04 -1.7629e-04 -1.7809e-04 2.9485e-04 2.9512e-04 2.9757e-04
0.867 -1.4108e-04 -1.4126e-04 -1.4289e-04 2.1392e-04 2.1418e-04 2.1653e-04
0.876 -8.9203e-05 -89362e-05 -9.0804e-05 1.4249e-04 1.4266e-04 1.4431e-04
0.885 -4.3715e-05 -4.3852e-05 -4.5091e-05 1.1975e-04 1.1987e-04 1.2109e-04
0.893 -1.1585e-05 -1.1698e-05 -1.2721e-05 1.0199e-04 1.0194e-04 1.0171e-04
0.902 53258e-05 53170e-06 52376e-05 2.2457e-04 2.2455e-04 2.2445e-04
0.911 57833 e-05 57772e-05 57218e-05 1.3383e-04 1.3380e-04 1.3362e-04
0.920 9.7496 e-05 9.7462e-05 9.7154e-05 3.3559e-04 3.3561e-04 3.3585e-04
0.928 85619e-05 85613e-05 85554e-05 1.8443e-04 1.8442e-04 1.8438e-04
0.937 1.4439e-04 1.4441e-04 1.4460e-04 4.1646e-04 4.1655e-04 4.1729e-04
0.946 9.2296e-05 9.2343e-05 9.2769e-05 1.5916e-04 1.5924e-04 1.6005e-04
0.954 9.4085e-05 9.4157e-05 9.4809e-05 2.0241e-04 2.0253e-04 2.0371e-04
0.963 54351e-05 54446e-05 55302e-05 1.6166e-04 1.6165e-04 1.6176e-04
0.972 4.2886 e-05 4.3000e-05 4.4035e-05 2.9801e-04 2.978l1e-04 2.9597e-04
0.980 3.0500e-05 3.0631e-05 31812e-05 94310e-05 9.4164e-05 9.3226e-05
0.989 -2.0280e-06 -2.0137e-05 -1.8847e-05 1.2652e-04 1.2650e-04 1.2632e-04
0.998 -2.6904e-05 -2.6753e-05 -2.5397e-05 12909e-04 1.2907e-04 1.2898e¢-04
1.006 -3.0648e-05 -3.0496e-05 -2.9118e-05 1.4958e-04 1.4957e-04 1.4964¢e-04
1.015 -6.8237e-05 -6.8087e-05 -6.6734e-05 1.0335e-04 1.0328e-04 1.0297e-04
1.024 -5.6564e-05 -5.6422e-05 -55140e-06 1.6132e-04 1.6143e-04 1.6255e-04
1.032 -8.8477e-05 -88347e-05 -87179e-05 1.2849e-04 1.2846e-04 1.2841e-04
1.041 -5.7665e-05 -57553e-05 -56535e-05 1.6157e-04 1.6160e-04 1.6204e-04
1.050 -7.2008e-05 -7.1916e-05 -7.1080e-06 1.0913e-04 1.0924e-04 1.1050e-04
1.058 -7.5207e-05 -7.5138e-05 -7.4505e-05 1.6015e-04 1.5970e-04 1.5563e-04
1.067 -4.1679e-05 -4.1634e-05 -41216e-05 85311e-05 85594e-05 88572¢e-05
1.076 -2.4266e-05 -2.4246e-05 -2.4044e-05 9.5739e-05 9.6128e-05 1.0001e-04
1.084 1.2642e-05 1.2639e-05 1.2633e-05 9.7277e-05 9.7644e-05 1.0144e-04
1.093 1.1609e-05 1.1583e-05 1.1383e-05 88284e-05 87795e-05 83803e-05
1.102 3.434 e-06 3.4295e-05 33922e-05 78774e-05 7.9062e-05 8.2608e-05
1.111 7.3839e-05 73777e-05 7.3257e-05 1.5624e-04 1.5643e-04 1.5866¢€-04
1.119 6.0324e-05 6.0248e-05 59606e-05 1.2573e-04 1.2507e-04 1.1968e-04
1.128 7.7207e-05 7.7120e-06 7.6383e-05 1.5170e-04 1.5123e-04 1.4750e-04
1.145 9.6488e-05 9.6388e-05 9.5529e-05 1.7461e-04 1.7434e-04 1.7252e-04
SUM -6.8682e-03 -6.872e-03  -6.9059e-03 1.5131e-02 1.5138e-02 1.5215e-02
SUM LOW -7.1399e-03 -7.1441e-03 -7.1829e-03 1.0059e-02 1.0067e-02 1.0139e-02
SUM OTHER | 2.5899 e-04 1.5189e-04 3.9064e-04 4.9866e-03 50711e-03 50758e-03

Table 6 Statistics for data set without low strikes
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MISSING MEAN RESIDUALS RMSE
MEDIUM
P=0 P=100 P=1000 P=0 P=100 P=1000

0.729 -8.1864e-05 -82386e-05 -86722e-05 2.8356e-04 2.8325e-04 2.8262¢-04
0.737 -8.9858e-05 -9.0328e-05 -9.4235e-05 2.2812e-04 22820e-04 2.3070e-04
0.746 -1.0295e-04 -1.0337e-04 -1.0682e-04 2.1241e-04 2.1237e-04 2.1355e-04
0.755 -9.8604e-05 -9.8958e-05 -1.0193e-04 18071e-04 1.8072e-04 1.8213e-04
0.763 -9.6248e-05 -9.6540e-06 -9.9011e-05 1.7230e-04 1.7245e-04 1.7455e-04
0.772 -7.9747e-05 -7.9974e-05 -81921e-05 1.7615e-04 1.7591e-04 1.7434e-04
0.781 -3.5518e-05 -3.5677e-05 -3.7080e-06 18379e-04 1.8386e-04 1.8464¢-04
0.789 1.3228e-05 1.3138e-05 1.2296e-05 1.3925e-04 1.3928e-04 1.3958¢-04
0.798 3.1684e-05 3.1664e-05 31397e-05 1.5918e-04 1.5919e-04 1.5928e-04
0.807 2.9628e-05 2.9680e-06 2.9998e-05 14379e-04 1.4378e-04 1.4389e-04
0.815 7.0285e-05 7.0409e-05 71319e-05 1.9217e-04 1.9210e-04 1.9180e-04
0.824 81631e-05 81828e-05 83331e-05 2.0327e-04 2.0326e-04 2.0389e-04
0.833 1.0275e-04 1.0302e-04 1.0511e-04 23201e-04 23196e-04 2.3253e-04
0.841 1.3175e-04 1.3209e-04 13477e-04 2.4498e-04 2.4473e-04 2.4383¢-04
0.850 1.4701e-04 14742e-04 1.5066e-04 2.6562e-04 2.6552e-04 2.6645e-04
0.859 1.9170e-04 1.9217e-04 1.9596e-04 3.5600e-04 3.5596e-04 3.5731e-04
0.867 2.0817e-04 2.0871e-04 2.1301e-04 3.3069e-04 3.3049e-04 3.3097e-04
0.876 2.4058e-04 2.4117e-04 24595e-04 3.6785e-04 3.6760e-04 3.6774e-04
0.885 2.6574e-04 2.6638e-04 2.7160e-04 4.0631e-04 4.0596e-04 4.0543¢e-04
0.893 2.7680e-04 2.7749e-04 2.8310e-04 4.2809e-04 4.2778e-04 4.2778¢e-04
0.902 3.1995e-04 3.2068e-04 3.2661e-04 50216e-04 50180e-04 50129e-04
0.911 3.0234e-04 3.0311e-04 3.0931e-04 4.5940e-04 4.5938e-04 4.6191e-04
0.920 3.1951e-04 3.2029e-04 32669e-04 56113e-04 56089e-04 5.6105e-04
0.928 2.8498e-04 2.8578e-04 29230e-04 4.5024e-04 4.4999e-04 4.5092e-04
0.937 32116e-04 32196e-04 32852e-04 59683e-04 59682e-04 5.9891e-04
0.946 2.4674e-04 2.4753e-04 2.5404e-04 4.0314e-04 4.0292e-04 4.0426¢-04
0.954 2.2670e-04 2.2747e-04 2.3386e-04 3.9669e-04 3.9631e-04 3.9635e-04
0.963 1.6587e-04 1.6662e-04 1.7279e-04 3.3966e-04 3.3917e-04 3.3839e-04
0.972 1.3433e-04 1.3504e-04 1.4091e-04 3.6990e-04 3.6997e-04 3.7294e-04
0.980 1.0313e-04 1.0379e-04 1.0929e-04 23073e-04 2.3079e-04 2.3448e-04
0.989 3.5073e-05 35681e-05 4.0724e-05 2.0856e-04 2.0803e-04 2.0679e-04
0.998 1.2969e-05 1.3514e-05 1.8037e-05 1.5338e-04 1.5409e-04 1.6284¢e-04
1.006 -42174e-06 -3.7441e-06 2.0056e-07 1.7058e-04 1.7079e-04 1.7414e-04
1.015 -5.3003e-05 -52606e-05 -4.9289e-05 1.1307e-04 1.1337e-04 1.1775e-04
1.024 -5.0124e-05 -4.9808e-05 -4.7156e-05 1.5195e-04 1.5241e-04 1.5710e-04
1.032 -8.8338e-05 -88105e-05 -8.6142e-05 1.2839e-04 1.2835e-04 1.2863e-04
1.041 -6.1329e-05 -6.1181e-05 -59918e-05 1.689e-04 1.6888e-04 1.6893e-04
1.050 -7.7081e-05 -7.7015e-05 -7.6450e-06 1.1942e-04 1.1942e-04 1.1946e-04
1.058 -7.9510e-06 -7.9525e-05 -7.9639e-05 1.6963e-04 1.6986e-04 1.7161e-04
1.067 -4.3364e-05 -4.3457e-05 -4.4218e-05 9.6145e-05 9.5870e-05 9.4105e-05
1.076 -2.1911e-05 -2.2075e-05 -2.3439e-05 1.0827e-04 1.0797e-04 1.0637e-04
1.084 1.9977e-05 1.9748e-05 1.7838e-05 1.0881e-04 1.0825e-04 1.0496¢-04
1.093 2.4370e-06 2.4085e-05 2.1693e-05 1.0514e-04 1.0598e-04 1.1354e-04
1.102 52533e-05 52199e-05 4.9395e-05 9.3633e-05 9.2631e-05 8.7059e-05
1.111 9.7110e-06 9.6736e-05 93594e-05 1.8218e-04 1.8169e-04 1.7943e-04
1.119 88074e-05 87669e-05 84258e-05 1.4975e-04 1.5073e-04 1.5965e-04
1.128 1.0870e-04 1.0827e-04 1.0466e-04 1.7010e-04 1.7081e-04 1.7782e-04
1.145 1.3317e-04 1.3271e-04 1.2888e-04 2.1552e-04 2.1578e-04 2.1921e-04
SUM 3.7240e-03 3.7333e-03 3.8081e-03 1.1830e-02 1.1827e-02 1.1883e-02
SUM 3.4640e-03 3.4752e-03 3.5667e-03 6.2048e-03 6.2020e-03 6.2221e-03
MEDIUM

SUM OTHER | 2.2216e-04 3.1826e-04 34357e-04 56248e-03 55390e-03 5.6609¢e-03

Table 7 Statistics of the data set without medium strikes
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MISSING MEAN RESIDUALS RMSE
HIGH
P=0 P=100 P=1000 P=0 P=100 P=1000

0.729 74022 e-05 7,3897e-05 72694e-05 1.9585e-04 1.9576e-04 1.9525e-04
0.737 4,6508e-05 46397e-05 45334e-05 1.3903e-04 1.3911e-04 1.4009 e-04
0.746 1,2818e-05 1,2721e-05 1,1803e-05 1.4203e-04 1.4206e-04 1.4259 e-04
0.755 -4,4557e-06 -4,5364e-06 -53072e-06 1.0145e-04 1.0148e-04 1.0196 e-04
0.763 -2,4689e-05 -2,4754e-05 -2,5375e-05 1.2609e-04 1.2619e-04 1.2719e-04
0.772 -3,1665e-05 -3,1714e-05 -3,2183e-05 1.5022e-04 1.5020e-04 1.5002 e-04
0.781 -1,1703e-05 -1,1737e-05 -1,2056e-05 1.7564e-04 1.7565e-04 1.7579 e-04
0.789 1,2099e -05 1,2081e-05 1,1911e-05 14039e-04 1.4039e-04 1.4038e-04
0.798 50743 e-06 50710e-03 50461e-06 1.5516e-04 1.5516e-04 1.5521 e-04
0.807 -2,2835e-05 -2,2824e-05 -22710e-06 1.3043e-04 1.3041e-04 1.3022 e-04
0.815 -8,2141e-06 -81892e-06 -7,9432e-06 1.4691e-04 1.4691e-04 1.4692e-04
0.824 -2,2867e-05 -2,2829e-05 -2,2462e-05 1.4472e-04 1.4473e-04  1.4485e-04
0.833 -2,7455e-05 -2,7406e-05 -2,6928e-05 1.5840e-04 1.5850e-04  1.5946 e-04
0.841 -2,3590e-06 -2,3531e-05 -2,2959e-05 13407e-04 1.3416e-04 1.3504e-04
0.850 -3,2568e-05 -3.2500e-05 -3,1850e-06 1.4621e-04 1.4634e-04 1.4765e-04
0.859 -1,0850e-06 -1,0776e-05 -1,0067e-05 2.0597e-04 2.0611e-04 2.0741e-04
0.867 -1,5680e-06 -1,5603e-05 -1,4855e-05 1.1659e-04 1.1662e-04 1.1703e-04
0.876 -2,4681e-06 -2,3891e-06 -1,6270e-03 81196e-05 81186e-05 81340e-06
0.885 6,1064e-06 6,1845e-06 6,9362e-06 1.1671e-04 1.1668e-04 1.1658e-04
0.893 3,7153e-06 3,7897e-06 45047e-06 1.2079e-04 1.2069e-04 1.1994e-04
0.902 3,7128e-05 3,7196e-05 3,7847e-05 2.3264e-04 2.3258e-04 2.3206 e-04
0.911 1,4118e-05 1,4177e-05 1,4736e-05 1.2945e-04 1.2948e-04 1.2986 e-04
0.920 3,0847e-05 3,0893e-05 3,1332e-05 3.2967e-04 3.2963e-04 3.2933e-04
0.928 1,5354e-06 1,5664e-06 1,8583e-06 1.6861e-04 1.6858e-04 1.6832e-04
0.937 4,9249e-05 49262e-05 49381e-05 3.7272e-04 3.7273e-04 3.7288e-04
0.946 -6,6271e-06 -6,6342e-06 -6,7122e-06 1.0829e-04 1.0831e-04  1.0846 e-04
0.954 -4,7015e-03 -4,9987 e-03 -7,9582e-03 1.5467e-04 1.5468e-04 1.5487e-04
0.963 -2,6850e-06 -2,6904e-05 -2,7436e-05 13509e-04 1.3515e-04 1.3579e-04
0.972 -1,5225e-05 -1,5306e-05 -1,6086e-05 2.8327e-04 2.8309e-04 2.8146e-04
0.980 58227e-06 57156e-06 46767e-06 1.1278e-04 1.1252e-04 1.1056 e-04
0.989 -7,7702e-03 -9,1149e-03 -2,2124e-06 1.3514e-04 1.3531e-04 1.3749e-04
0.998 47642e-05 4,7480e-06 45919e-05 2.4977e-04 2.4945e-04 2.4691 e-04
1.006 1.0954e-04 1.0936e-04 1.0754e-04 3.1895e-04 3.1877e-04 3.1753e-04
1.015 14747 e-04 14726 e-04 1.4520e-04 3.9601e-04 3.9588e-04 3.9510e-04
1.024 24322 e-04 2.4298e-04 2.4071e-04 55978e-04 55959e-04 55828 e-04
1.032 3.0195e-04 3.0169e-04 2.9922e-04 6.5981e-04 6.5975e-04 6.5963e-04
1.041 4.2727 e-04  4.2700e-04  4.2437e-04 83114e-04 83109e-04 83107 e-04
1.050 50786 e-04 50757 e-04  5.0482e-04 9.8549e-04 9.8544e-04 9.8537e-04
1.058 59594 e-04 59564e-04 59281e-04 1.1699e-03 1.1701e-03 1.1728e-03
1.067 7.1257 e-04 71227 e-04  7.0942e-04 1.3310e-03 1.3310e-03 1.3311e-03
1.076 8.0037 e-04 8.0007 e-04 7.9724e-04 1.4970e-03 1.4970e-03  1.4972e-03
1.084 89081 e-04 89052e-04 88777e-04 1.6343e-03 1.6343e-03 1.6348e-03
1.093 9.2333e-04 9.2306e-04 9.2044e-04 1.7496e-03 1.7498e-03 1.7519e-03
1.102 9.5804e-04 9.5778e-04 9.5534e-04 1.8241e-03 1.8243e-03 1.8257e-03
1.111 9.8820e-04 9.8796e-04 9.8572e-04 1.9115e-03 1.9117e-03 1.9135e-03
1.119 9.4622 e-04  9.4601e-04 9.4398e-04 1.9102e-03 1.9106e-03  1.9140e-03
1.128 9.1940e-04 9.1921e-04 9.1739e-04 1.8991e-03 1.8994e-03 1.9030e-03
1.145 8.2516e-04 82502e-04 82356e-04 1.8824e-03 1.8828e-03  1.8863e-03
SUM -2.0461 e-03  1.2618e-03  7.7627e-04 2.5800e-02  2.5801e-02  2.5820e-02
SUM HIGH 1.0297 e-02  1.0293e-02 1.0255e-02 2.0560e-02 2.0561e-02 2.0577e-02
SUM OTHER | -1.2343e-02 -9.0316e-.03 -9.4793e-03 52399e-03 52398e-03 52429e-03

Table 8 Statistics of the data set without high strikes
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Figure 4 RMSE per strike for all datasets
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6. Principal component model

The final model on which we apply our theorem is the Principal Component model.

6.1. Introduction

In recent years, data science has played an increasingly bigger role in the financial world. One of
the techniques that has gotten a lot of attention from financial institutions is the Principal
Component Analysis (PCA). PCA is a statistical procedure that uses an orthogonal transformation
to convert a set of observations of possibly correlated variables into a set of values of linearly
uncorrelated variables called principal components. Where the first component explains the most
of the variance and each next component explains most of the remaining variance. The main
advantage of PCA is that it does not require some predefined functional form.

PCA was invented by Karl Pearson (1901) and later independently named and developed by
Harold Hotelling (1933). Besides its use in finance, it is also widely used in chemistry, geology,
engineering and other fields where big data streams need to be analyzed.

We use a Singular Value Decomposition (SVD) variant of PCA. We define M as in m-by-n
dimensional matrix whose entries come from the filed K, which is either the field of real numbers
or the field of complex numbers. Then the singular value decomposition of M exists and is a
factorization of the form

M =UxV’,
Where

- U is anm-by-m-dimensional unitary matrix over K (if K = R, unitary matrices are
orthogonal matrices),

- X is a diagonal m-by-n-dimensional matrix with non-negative real numbers of the
diagonal,

- Visannx n unitary matrix over K, and V' is the conjugate transpose V.

A visualization of PCA can be seen in Figure 5.
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Figure 5 visualization of PCA

This model differs from the two examples we have treated before. Whereas the Nelson Siegel and
SABR model are described by a functional form, the PCA is not bounded. The principal components
can take any shape. However, when applying the PCA to yield data, one does observe a linked with
the Nelson Siegel model. Where in the Nelson Siegel model 3, can be interpreted as variable linked
to the level, 5, to the slope and 3, to the curvature. When applying PCA, the first PC is also linked
to level, the second also to slope and the third also to the curvature. We visualize this phenomenon
in the figure below.
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Figure 6 principle components of yield changes

6.2. Proxy

The dataset we use for the PCA, is equal to the data set used to test the Nelson-Siegel model. This
has the added benefit that we are able to compare the results, not only between the model with
and without the proxy itself, but also between the models both using the proxy or not using the

proxy.

We set out how the scores can be fit in two scenarios; with and without our proxy. The first step
in both scenarios is to determine the principal components. We determine the principal
components using the function Matlab provides, which is based on singular value decomposition.
Using the first three components we are able to determine the yield using the following formula:

v(s1ls, 524,83, pcl, pe2,pc3,,t;) = sl * pcl + 52, * pc2 + s3; * pc3,

where sx; denotes the score of component x at time t and pcx is a vector denoting the principal
component x. Note the lack of the T parameter, which implies that the yield is not (directly)
depended on the time. Due to the distinct values in the pc vector (pcy, pcy, ..., pc,) (each value
corresponding to one maturity) we do have an indirect effect of z.

The fit error is defined by:

. . 2
fit error(sls, s2¢,83:, pcl,pc2,pc3,,t;y) = Z (yt(rt) -y, (s1,,52,, S3t,pcl,pC2,pC3,Tt)) :

T

29



Principal component model

Where y,(7) presents the observed yield at time t for each of the maturities in 7; := (T; — t, T, —
t, ..., T, — t). We name the scores that minimize the fit error at time ¢ sx™.

In our example we look at yield data of Constant Maturity Treasuries (CMT) on a daily basis. Since
in increment of a day does not lead to the shortening of the maturity with one day (e.g. we look at
a bond with a maturity of 1 year and the next day we look at the next bond with a maturity of 1
year), in our case, maturity is defined as: t,; := (T, Ty, ..., T,)- Hence, from now on we suppress t
for t;.

The first component we require to implement our proxy is the valuation function:

e T (s1¢xpcly +52¢xpc21+53¢xpc31)

—To(51¢*pCcly+52¢%pCc2,+53¢xpC3y)
F(s1,, 52, 53, pcl,pc2,pc3,t) = €

e—Tn(slt*pcln+52t*pc2n+s3t*pc3n)

This function determines the price of a bond given maturity T with the corresponding yield at
time t, which follows from the PCA equation. Next we introduce the delta sensitivities to each
underlying of the three sx’s at time t. Due to the fact that there is not functional form in the PCA,
we use a numerical approximation to find the deltas. From now on we suppress the arguments of
F:

6F
8s1;

(F(s1y 52,53, pcly, pc2y,pe34,71) — F(s1, — 0.0001, 52,53, pcly, pe2q,pe3y,74)) * 10000 \

~ k (F(s1;,52¢,83;,pc13,pc24,pC3,,72) — F(s1; — 0.0001, 52,53, pcl,,pe2,,pe3,,T5)) * 10000)

(F(s1;,52¢, 534, p¢1p, pC20, D30, Ty) — F(s1, — 0.0001, 52,53, pcly, pe2y, pe3y, T,)) * 10000

SF
8s2;

(F(s1;,52¢,83;,pc1y,pc24,pc31,71) — F(s1;,52, — 0.0001, s3,,pcly, pe2y, pe3y, 1)) * 10000 \
~ k (F(s1;,52¢,83;,pc15,pc24,p¢3,,72) — F(s1;,52, — 0.0001, 53, pcl,, pe2,, pe3y, 12)) * 10000)

(F(s1;,52¢, 534, p¢1p, DC20, D30, Ty) — F(s1,, 52, — 0.0001, 3, pcly, pe2y,, pe3y, T,)) * 10000
SF,
8s3;

(F¢(s1;, 524,53, pcly, pe2y,pe3y, 11) — F(s1y,52¢,53; — 0.0001, pcly, pc2q, pe3y,71)) * 10000 \
~ | (Fe(s1;, 524,53, pcl,,pC2,,035,75) — Fe(s1, 52,53, — 0.0001, pcly, pe2,,pe3,, 7)) * 10000 |

\(Ft(slt,sZt,SSt,pcln,pCZn,pc3n, Tn) — Fe(s1, 524,53, — 0.0001, pcly, pe2,, pe3y,,T,)) * 10000/

We combine these sensitivities into our Delta sensitivity matrix for a given time t:

OF __( OF OF OF )
sx' \&s1,' ' 6852, 853, )
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Since, in our dataset, there is no effect of time decay on our bond prices, we neglect the effect Theta
would otherwise have. We are now able to form a projection matrix based on the equation above
and a n-by-n identity matrix I,:

SF (/6F\' /SF\\  /6FY'
M(xe,te) = In = ox’' (6x’) <8x’) <8x’)'

The proxy error at a given time t can now be calculated by using the following equation where

F(Xx;_1,T) represents the prices of the bonds with the observed betas from the day prior.
proxy error(sl;,s2;,53.,T) = M(x,—1,7;) * (F(®;, T) — F(x,_1,7)).

The final error for time t can now be determined. We add a weight p to the proxy error in order
to asses to impact on the parameter estimation for different scenarios. The final error is minimized
by changing s1, s2 and s3, in order to achieve s1*,s2* and s3*.

final errory(s1s,52¢,53¢,T)

= Z(fit errory(sly, s2¢,53;,T) + p * proxy errory(sl, s2,,53,,7)).

T

Due to the fact our minimizing algorithm does not behave properly (e.g. it returned local minima),
we introduce boundaries for the values which the scores can take. We choose these boundaries to
be sx + 0.005 based on observed daily score changes.

6.3.Results

We introduce our proxy to a dataset containing US Constant Maturity Treasuries (CMT) quotes
retrieved from the Federal reserve of Louisiana website. The dataset ranges from the first trading
day of 2006 (January 3rd) to the last trading day of 2015 (December 30th), as to include a financial
crisis, namely the credit crisis of 2007/2008. Tenors include the 1, 3 and 6 months, and the 1, 2,
3,5,7,10, 20 and 30 years.

We use Matlabs PCA function to determine our principal components. Note that we fit these on
the full data set. This implicitly means that we are using an “in-sample” fit, in contrast to an “out-
of-sample” fit where determines the principal components based on data and test its model on
other data.

We fit a yield curve for each day, using the method we described above for the p factor 0, 10 and
100. In this model, choosingp = 10, makes the size of the fit and proxy error aboutequal. P = 0
shows the fit of only using the Nelson Siegel model, and p = 100 puts a heavy weight, with an
approximate ratio 1:10, on the fit and proxy error respectively.

At first, we determine the mean residual difference between the yield, as presented by the fitted
yield curve for that day, and the actual yield from our data set, to create insight in the overall level
of our fitted yield curves. We also determine the Root Mean Squared Error (RMSE), to show how
large the deviance is. The results can be seen in Table 10 through Table 12 and Figure 7, where
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we show what happens when we remove the short (1, 3, 6 month), medium (2, 3, 5, 7 year) and
long (10, 20, 30 year) tenors. The development of the §’s over time can be observed in appendix
D.

What becomes evident in our results is that while the sum of the RMSE of each tenor for p = 10 is
higher for the full data set, it is lower in all datasets where some tenors are missing, indicating
that our proxy version can model yield curves that are better fitting to the actual data when we
leave out some data. This encourages us to believe that when data cannot be observed in the
market, out proxy is a meaningful addition to the regular PCA estimation process.

We also observe that the total fit (sum RMSE) drastically reduces when tenors are removed from
the dataset. The scenarios in which data is removed have a total RMSE which is about 50% higher.
This is however expected since these are out of sample results.

Also note that the fit of the PCA, while based on an “in-sample” method still performs far worse as
the Nelson-Siegel model based on a much lower mean residual and lower RMSE as well for the
Nelson-Siegel model.

Table 10 Statistics of the data set without short tenors
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FULL DATA  MEAN RESIDUALS RMSE
P=0 P=10 P=100 P=0 P=10 P=100
M -1.0041e-03 -1.0017e-03 -1.0649e-03 1.5001e-03 1.5016e-03 2.0877e-03
M -8.8380e-04 -88201e-04 -9.3938e-04 1.0390e-03 1.0381e-03 1.5863e-03
6M -4.5998e-06 -3.7974e-06 -53200e-06 6.2898¢e-04 62796e-04 1.0706¢-03
1Y 6.1582e-04 6.1555e-04 57962e-04 1.0527e-03 1.0526e-03 1.1419e-03
2Y 1.4959e-03 1.4936e-03 1.4907e-03 1.6492e-03 1.6470e-03 1.7502¢e-03
3Y 1.6317e-03 1.6281e-03 1.6545e¢-03 1.6877e-03 1.6836e-03 2.1047e-03
5Y -5.6103e-04 -5.6429e-04 -4.9438e-04 7.7174e-04 7.7475e-04 1.8545e-03
7Y -1.4743e-03 -1.4762e-03 -1.3840e-03 1.6261e-03 1.6282e-03 2.3373e-03
10Y -1.5723e-03 -1.5719e-03 -1.4724e-03 1.6204e-03 1.6210e-03 2.0668¢-03
20Y -1.2274e-03 -1.2245e-03 -1.1104e-03 1.4288e-03 1.4286¢e-03 1.8000¢-03
30Y 3.4671e-03 3.4709e-03 3.569e-03 3.5188e-03 3.5240e-03 3.7118e-03
SUM 4.8301e-04 48356e-04 7.7513e-04 1.6524e-02 1.6528e-02 2.1512e-02
Table 9 Statistisc of the full data set
MISSING MEAN RESIDUALS RMSE
SHORT
P=0 P=10 P=100 P=0 P=10 P=100

M -4.0553e-03 -4.0455e-03 -3.9664e-03 4.8171e-03 4.8107e-03 4.8272¢-03
3M -3.6981e-03 -3.6894e-03 -3.6201e-03 4.1436e-03 4.1366e-03 4.1527¢e-03
6M -2.4560e-03 -2.4490e-03 -2.3948e-03 2.6519e-03 2.6461e-03 2.6795e-03
1Y -1.3043e-03 -1.2996e-03 -1.2643e-03 1.3597e-03 1.3560e-03 1.4088¢-03
2Y 7.3162e-04 7.3160e-04 72778e-04 82818e-04 82791e-04 83301e-04
3Y 1.6982e-03 1.6950e-03 1.6653e-03 1.7459e-03 1.7430e-03 1.7313e-03
5Y 83392e-05 79192e-05 43022e-05 2.6314e-04 2.6818e-04 53464e-04
7Y -8.1144e-04 -81448e-04 -83903e-04 89701e-04 9.0037e-04 1.0395e-03
10Y -1.3961e-03 -1.3958e-03 -1.3908e-03 1.4426e-03 1.4425e-03 1.4859¢-03
20Y -1.4541e-03 -1.4507e-03 -1.4171e-03 1.5932e-03 1.5911e-03 1.6172¢-03
30Y 2.8948e-03 2.8999e-03 2.9476e-03 2.9593e-03 2.9656e-03 3.0431¢e-03
SUM -9.7672e-03 -9.7388e-03 -9.509e-03 22702e-02 2.2688e-02 2.3353e-02
SUM SHORT | -1.0209e-02 -1.1084e-02 -9.9813e-03 1.1613e-02 1.1593e-02 1.1659e-02
SUM OTHER | 44207 e-04 4.4511e-04 4.7247e-04 1.1089e-02 1.1095e-02 1.1693e-02
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MISSING MEAN RESIDUALS RMSE
MEDIUM

P=0 P=10 P=100 P=0 P=10 P=100
M -1.2232e-03 -1.2213e-03 -1.2252e-03 1.4520e-03 1.4528e-03 1.5901e-03
M -7.7855e-04 -7.7756e-04 -7.8325e-04 8.8354e-04 88309e-04 9.6440¢e-04
6M 59244 e-04 59203e-04 58335e-04 7.9129e-04 7.899e-04 7.9746¢e-04
1Y 1.7079e-03 1.7060e-03 1.6955e¢-03 1.8011e-03 1.7990e-03 1.8291e-03
2Y 3.5588e-03 3.5538e-03 35419e-03 3.7245e-03 3.7184e-03 3.8819e-03
3Y 4.2985e-03 4.2915e-03 4.2817e-03 4.6333e-03 4.6247e-03 4.9189e-03
5Y 1.9414e-03 1.9342e-03 1.9408e-03 2.7516e-03 2.7432e¢-03 3.3937e-03
7Y 3.8782e-04 3.8195e-04 4.0337e-04 1.8455e-03 1.8411e-03 2.6454e-03
10Y -8.5312e-04 -85601e-04 -81888e-04 1.1283e-03 1.1304e-03 1.7979e-03
20Y -1.6465e-03 -1.6467e-03 -1.5910e-03 1.7581e-03 1.7582e-03 2.0012e-03
30Y 24617e-03 2.4633e-03 2.5189e-03 2.5169e-03 2.5183e-03 2.6479e-03
SUM 1.0447e-02 1.0421e-02 1.0547e-02 2.3286e-02 2.3259e-02 2.6468e-02
SUM 1.0187e-02 1.0161e-02 1.0168e-02 1.2955e-02 1.2927e-02 1.4840e-02
MEDIUM
SUM OTHER | 2.6067e-04 2.5967e-04 3.794¢e-04 1.0331e-02 1.0332e-02 1.1628¢e-02

Table 11 Statistics of the data set without medium tenors

MISSING MEAN RESIDUALS RMSE
LONG

P=0 P=10 P=100 P=0 P=10 P=100
iM -7.5025e-06 -7.4817e-06 -6.9683e-06 89658e-04 89653e-04 8.9155e-04
3M -24179e-04 -2.4177e-04 -2.4097e-04 51544e-04 51543e-04 5.1085e-04
6M 54170e-06 54180e-06 55486e-05 6.1629e-04 6.1633¢e-04 6.2402¢e-04
1Y 1.4590e-04 1.4591e-04 1.4754e-04 7.1311e-04 7.1316e-04 7.2283e-04
2Y 1.7577e-04 1.7576e-04 1.7771e-04 3.3665e-04 3.3664e-04 3.4012e-04
3Y 7.0717e-05 7.0704e-05 72386e-05 49138e-04 4.9135e-04 4.8646¢e-04
5Y -5.2855e-04 -52855e-04 -52936e-04 6.5260e-04 6.5266e-04 6.5497 e -04
7Y 3.1554e-04 3.1556e-04 3.1244e-04 4.8203e-04 48194e-04 4.8395e-04
10Y 2.3968e-03 2.3969e-03 23913e-03 29314e-03 2.9313e-03 2.9227e-03
20Y 5.1756e-03 51756e-03 51671e-03 6.1651e-03 6.1651e-03 6.1514e-03
30Y 1.0130e-02 1.0130e-02 1.0121e-02 1.0588e-02 1.0588e-02 1.0576¢e-02
SUM 1.7686 e-02 1.7687e-02 1.7668¢e-02 2.4389e-02 2.4388e-02 2.4365e-02
SUM LONG 1.7702e-02 1.7703e-02 1.7679e-02 1.9685e-02 1.9684e-02 1.9650e-02
SUM OTHER | -6.4499¢e-05 -6.4450e-05 -1.1736e-05 4.7041e-03 4.7040e-03 4.7148e-03



Principal component model

Table 12 Statistics of the data set without long tenors
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Discussion

7. Discussion

In this chapter we discuss the analysis and results which we respectively performed and
determined in the section above. To begin with, we point out that our results are influenced by
the used datasets. These datasets however from reliable sources (Fed St. Louisiana and
Bloomberg) are still subjected to manipulation (CMT yields are bootstrapped) or market limited
liquidity (option data). Specifically in the case of the options used for the SABR model, we point
out that the dataset is limited and only tested over distinct strikes, not maturities. The choice for
the option chain used was mostly based on data limitations.

Secondly, we acknowledge that the results for the Nelson Siegel and PCA models are, however
present, low in absolute terms. We point out that RMSE are lowered for out of sample maturities,
but since the RMSE is higher overall than the in-sample errors, regardless of the chosen p value,
the absolute effect of the error reduction might provide a skewed view. We did not perform a test
for significance, which means that we are not sure of the statistical significance of our results,
allowing our observed results to be solitarily based on chance. However, due to the large sample
size used, we have implicitly reduced the chance component.

Finally we also point out that our proxy is only tested for a small sample of pricing models, related
to vanilla instruments. The introduction of more complex models in order to price exotic products
like caps or variance swaps might result into a lower improvement in out of sample performance
of our proxy or worse.

35



Conclusion

8. Conclusion

Based on the observed results we conclude that our generic proxy has a slightly preferred status
over using set pricing model directly based on overall RMSE but mostly on out-of-sample RMSE
in scenarios where data is stripped from the original set. Our proxy also does not require
additional data or expert judgements, which eases implementation process in existing pricing
platforms. In the remaining of this chapter we discuss the conclusion on a model level.

What becomes evident in our results for the Nelson Siegel model is that while the sum of the RMSE
of each tenor for p = 10 is higher for the full data set, it is lower out-of-sample in all datasets where
some tenors are missing, indicating that our proxy version can model yield curves that are better
fitting to the actual data when we leave out some data. This encourages us to believe that when
data cannot be observed in the market, out proxy is a meaningful addition to the regular Nelson
Siegel estimation process.

Our results for the SABR model show that our proxy only reduces the RMSE for the data set
without the medium strikes. However, the reduction is only minimal. Therefore we cannot
conclude that our proxy has material benefits.

In case of the PCA model our analysis show results similar to those of the Nelson Siegel model.
While the sum of the RMSE of each tenor for p = 10 is higher for the full data set, it is lower out-
of-sample in all datasets where some tenors are missing, indicating as with the Nelson Siegel
model, that the proxy has value. We point out that the Nelson-Siegel model overall showed a lower
RMSE for all data sets, and that the added value of the proxy was more significant for the Nelson
Siegel as for the PCA. The latter can be subjected to the reduction in overall RMSE for the dataset
where medium and high maturities are missing with the Nelson Siegel model, where in the case
of the PCA our model fails to do so.
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Further research

9. Further research

In this chapter we highlight some relevant topics which were not part of our thesis, but where we
envision relevant findings to be made. Starting off with the use of our proxy on data sets where
gaps in the datasets are artificially created. In our tests we left out complete tenors/strikes to
test whether the functional forms of our selected pricing model contained information on the
missing tenors. A quick analysis has shown that creating gaps and backfilling them with our proxy
shows good results.

Furthermore, we suggest to test our proxy on pricing models which are used on more exotic
marketable instruments. For example: floors and variance swaps, where the need for an
alternative backfilling methodology may even be of greater use due to the significantly more
stressed markets.

We also recommend to investigate the possibility of using our proxy outside the financial markets.
Backfilling data is a general problem in the practical world. We suspect that underlying factors
can be derived as long as they are linked to a functional form, which’s derivative can be either
derived or approximated.

Finally we suggest to extent the performed research on the PCA, by focusing on the phase in which
we construct the components (perform the PCA). We performed regular PCA directly on the data,
therefore the components do not contain any added information. We see room the combine our
proxy with the PCA to get enhanced components.
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11. Appendices

A. Derivation of risk factor proxy value

[This chapter is written by Jakob Bosma]

Let P,(7) denote the price of a derivate at time t with time-to-maturityt:=T —tand T > t. We
assume that derivative prices are generated by the following continuous-time model:

Py (1) = F(xt, 7);
dx; = p(x;, t)dt + o(x;, t)dW,.

Where F, is a strictly positive twice differentiable function, and x; a m-dimensional vector of
tradable factors. u(x;, t) and o(x;,t) are adapted processes and W, denotes a k-dimensional
Brownian motion; all satisfying the usual regularity conditions. 6

Using Itd’s Lemma, we obtain the following specification for the dynamics of the
derivative’s price, where we suppress the arguments for F;:

F, 2F,

5 1 (6 SF
dp, = <§ u(x,, t) + Str {ma(xt, t)o(x;, t)'}) dt + 5—xf (x,, t)dW,. (A1)

No-arbitrage requires that the derivative’s instantaneous return equals the instantaneous
shortrate r; in addition to the various market risk premia derived from the exposure to the factors
A(x;, t), including time-to-maturity decay. For a derivation of instantaneous returns under the
risk natural measure we refer to Chapter 15 in Bjork (2009). This chapter covers the
multidimensional case with the number of risk sources k not necessarily equal to the number of
factors m, as considered here. We arrive at the following no-arbitrage condition:

2 SF;

ox’'

OF;
ox’'

OF;
o(xq, )A(xs, t) + — (A.2)

5t

( t)+1t O7F
#xe 2" 5xx’

a(xt) t)a(xt) t),} = Ftrt +

6 Note that the dynamics of x, are not necessarily incorporated in the derivation of the derivative’s
valuation function F;. To illustrate this point, consider the Black Scholes call option price with constant
volatility. In this context we consider the Vanilla pricing function of Black Scholes as such and regard it as a
factor model in the above specification with the constant volatility parameter replaced with a dynamic
volatility factor.

39



Appendices

We now move on to the multi-dimensional case and consider n prices for the derivative p;
with time-to-maturities given by z; := (Ty — ¢, T, — ¢, ..., T;, — t), such that:

!
P = Fe(x, 1) = (Ft(xt: Ty —t),Fe(x, T, = t), oo, Fe (X, Ty, — t)) .

Substitution of the no-arbitrage condition (A. 1) into (A. 2) and considering the vector of
derivative prices p; then yields (we again suppress the arguments for F;):

OF;
ox'

. (5F, SF,
a(xt,t)/l(xt,t)+dlag{ })dt+—a(xt,t)th (4.3)

dp, = (F
Pe =\t 5T ox'

We introduce the following projection matrix which features a collection of Delta price

sensitivities of the derivative price with respect to the considered risk factors. This n-by-n
dimensional matrix is defined as follows:

SF, [ (SFp (6F N\ (6F
M (o) = In =52 (5x’) <5x’> (5x')’ @4

where I,, denotes a n-by-n identity matrix. This projection matrix eliminates the noise term and

the unidentified risk premium in (A. 3) by premultiplying the dynamics (A. 3) with (A. 4). This step
results in the following expression, where we suppress the arguments for M,:

6F

Medp, = M, (Fer, + diag {+) de. (A.5)
We may need to check whether a pseudo-inverse applies here to ensure invertability of

the inner matrix term in the projection matrix, for instance the Moore-Penrose inverse matrix.

The rows (and columns due to symmetry) of M; in (A. 5) can be regarded as portfolio
weights associated with the considered derivatives at time t. These portfolios are instantaneously
unaffected by changes in the underlying risk factors x; and are therefore risk free. As this
expressions follows the condition of absence of arbitrage, the instantaneous return comprises the
short rate and the time-to-maturity decay premium resulting from a finite maturity tenor.

For a sufficiently small time interval At condition (A. 5) can be approximated by:

. [OF,
M.Ap, = M| F.r + diag - | At,
oty

Where Ap; := Priar — Pe-

With At = 1 we have the following condition to infer the missing factor value X;:

~ . SF;_
M;_, (Ft(xt' T) —Froy (X1, T 1) (A + 1) + dlag{ 5;,1 (xt—1,Tt—1)}) =0 (A.6)

Given realized prices and risk factor values at time ¢t — 1 we can identify with (A. 6) current prices

F:(x;.t;) of the considered derivative at time t, and estimate the missing factor by inferring the
approximate value X; for x;.
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B. Nelson Siegel parameter developments

B.1. Full data
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Figure 8 p = 0, full data
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Figure 9 p = 10, full data
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Figure 10 p =100, full data

42

2008 2009 2010 2011 2012 2013 2014 2015



Appendices

B.2. Missing short tenors

D_DE T T T T T T T T T
betal
0.04F hetal | |
heta?
a
0021 b

) '\"MI' N, oy Ap 'J“’)
0.04 P -H J#H ;# h{\@qﬂfdw ]
Wikt 1

—’I]_1 i i i i i i i i i
2007 2008 2009 2010 2011 2012 2013 2014 2015

Figure 11 p = 0, missing short tenors
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Figure 12 p = 10, missing short tenors
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Figure 13 p = 100, missing short tenors

B.3. Missing medium tenors
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Figure 14 p = 0, missing medium tenors
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Figure 15 p = 10, missing medium tenors
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Figure 16 p = 100, missing medium tenors
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B.4. Missing long tenors
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Figure 18 p = 10, missing long tenors
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Figure 19 p = 100 missing long tenors
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C. SABR parameter development
C.1. Full data
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Figure 21 p = 100, full data
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Figure 22 p = 1000, full data
C.2. Missing low strikes
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Figure 23 p = 0, missing low strikes
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Figure 24 p = 100, missing low strikes
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C.3. Missing medium strikes
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Figure 26 p = 0, missing medium strikes
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Figure 27 p = 100, missing medium strikes
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Figure 28 p = 1000, missing medium strikes

C.4. Missing high strikes
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Figure 29 p = 0, missing high strikes
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Figure 31 p = 1000, missing high strikes
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D. PCA score developments

Figure 32 p = 0, full data

Figure 33 p = 10, full data
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Figure 34 p =100, full data

D.2. Missing short tenors
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Figure 35 p = 0, missing short tenors

55

2012 2013 2014 2015 2016



Appendices

Figure 36 p = 10, missing short tenors

Figure 37 p = 100, missing short tenors
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D.3. Missing medium tenors
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Figure 38 p = 0, missing medium tenors
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Figure 39 p = 10, missing medium tenors
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Figure 40 p = 100, missing medium tenors

D.4. Missing long tenors
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Figure 41 p = 0, missing long tenors
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Figure 42 p = 10, missing long tenors
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Figure 43 p = 100 missing long tenors
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