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Abstract

The competition between rollercoaster manufacturers to build the most thrilling rollercoasters has always
been fierce. In an attempt to design more spectacular rides than their competitors, rollercoaster manufac-
turers continuously try to push the technical limits without compromising the safety of the passengers. The
design of safe rollercoasters according to the prevalent regulations has the first priority within the industry,
in spite of the eagerness to build ever more spectacular rides. Partial redesigns of rollercoasters due to viola-
tions of the safety regulations or excessive maintenance costs have namely proven to be a costly endeavour.
Operating on the limits while minimizing the risk of exceeding them makes the design of rollercoasters a
delicate process. The technical specifications of rollercoasters can be calculated beforehand with ever more
accuracy, thanks to the progress in computer-aided modelling. The development of sophisticated software
enables engineers to predict accelerations, forces, stresses, and other important parameters during the design
stage. Due to limited computational power, a trade-off should often be made between accuracy and the
computational effort though.

The loads induced on the main chassis beam of a spinning rollercoaster vehicle are typically converted
into a minimum number of loadcases, which consequently leads to a reduction in computational effort at the
costs of accuracy. A spinning rollercoaster is characterized by a gondola that pivots freely under the effects
of track dynamics and passenger weight distribution. The loads induced on the beam are converted into
loadcases for a subsequent finite element analysis, which should reveal the resultant stresses and beam defor-
mation. Due to the desire to minimize the computational time, the forces and moments are represented by
a minimum number of relatively conservative loadcases. In other words, the forces and moments described
by the loadcases are more severe than the actual loads acting on the main chassis beam. The predicted
stresses and deformations are consequently larger than what can be expected based on the actual loads.
This conservative approach might lead to more conservative rollercoaster designs, which conflicts with the
vision of designing the most thrilling and spectacular rollercoasters. Therefore, a need exists for a general
methodology that is capable of accurately predicting stress and deformation levels, while minimizing the
increase in computational effort with respect to the conventional yet conservative approach.

Prior to the development of such a methodology, a kinematic model of a spinning rollercoaster should
be created first. The report commences with the creation of a realistic kinematic model, from which the
forces and moments acting on the main chassis beam can be extracted. Hence, the multi-body model aims
to describe the dynamics of a spinning rollercoaster vehicle as realistically as possible by specification of
the correct constraints and joints between the vehicle components and at the wheel-track interface. The
normal forces at this interface are constantly measured and used for the real-time calculation of the bear-
ing and rolling frictional forces. Simulations are additionally performed to determine the drag coefficient
of the gondola at various velocities. Hence, the drag forces acting on the gondola and the chassis can be
computed at each time-step as a function of the vehicle velocity and gondola rotation. The inclusion of
these friction and drag forces ensures that the rollercoaster vehicle travels along the track lay-out with a
realistic pace. The velocity of the vehicle and the rotation of the gondola are prescribed by a reference
profile at certain track sections, so the vehicle can travel along the entire track lay-out. The vehicle should
accelerate from the station up to the constant velocity that has been prescribed on the lifthill, while in the
meantime the gondola is kept at its initial position. On the brake-section and subsequently at the re-entry
of the station, the vehicle is braked to a standstill while the gondola is rotated back to the regular configu-
ration. The dynamic behaviour of the spinning rollercoaster vehicle can be accurately described thanks to
the previously-described additions to the kinematic model.

The accelerations experienced by the passengers are compared to the regulations for tolerable passenger
accelerations. These passenger acceleration limits are namely of interest to ensure that the kinematic model
includes a realistic track lay-out, so the forces and moments that are exerted on the main chassis beam are of
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realistic magnitude as well. The passenger accelerations are evaluated for four unique passenger occupancy
configurations, since it is unknown beforehand which configuration corresponds to the most severe forces
and moments induced on the beam. By considering a variable number of passengers for each configuration,
the loads extracted from the kinematic model represent a wide range of forces and moments. The linear ac-
celeration magnitudes, acceleration combinations, and acceleration reversals are compared to the regulatory
limits. Several design iterations of the rollercoaster track were required to meet the acceleration norms. The
forces and moments at the joints should first be validated before these loads can be applied on the main
chassis beam in a subsequent finite element analysis. The validation of the reaction forces is based on the
masses and the acceleration values that have been acquired from the kinematic model. Special attention
is paid to the validation of the forces and moments at the joints between the beam and the other vehicle
components, since they are directly used in the finite element analysis of the beam.

Once the forces and moments have been validated successfully, they can be converted into loadcases. The
load data is first sampled and subsequently two different load envelopes are created that enclose all force
and moment data. The conventional method results in cubical and rectangular envelopes for respectively
the force and torque data, whose shapes are defined by a total of twelve unique loadcases. The conventional
loadcases describe forces and moments of relatively large magnitude in comparison to the actual load data
though. On the other hand, the optimized method is characterized by envelopes whose boundaries coincide
with the actual boundaries of the load data, so the loadcases correspond to actual loads exerted on the
main chassis beam. The optimized method results in a total of almost forty unique loadcases. After the
constraints have been modelled correctly in the finite element model, the beam can be subjected to the
conventional and optimized loadcases. The finite element model is validated by means of a comparison with
the kinematic model in terms of the reaction forces at the front and rear axle. The relative percentage
difference between the reaction forces from both models is generally acceptable. Therefore, the stress and
displacement results from the finite element model can be regarded as trustworthy. The maximum stress
and displacement values predicted by the optimized method are nearly ten percent lower than the results
obtained with the conventional method, which confirms the earlier hypothesis. However, the stress and
displacement values could have been predicted too optimistically by the optimized method, and hence these
static results are compared to the results of a transient analysis. A transient analysis is typically character-
ized by a large number of loadcases, and all loads should be evaluated in the correct sequence. A comparison
between the results obtained with the optimized method and the transient analysis shows that the maximum
stress and displacement values are practically similar for both analyses. The duration of the computations
for the transient analysis is at the same time orders of magnitude longer than the computational time for
the optimized method. Hence, if the prediction of the maximum stress and deformation levels is the primary
objective of the analysis, it is advisory to use the optimized method.

Certain types of analyses require a preliminary stress analysis for each load in a load cycle, such as a
fatigue analysis. Contrary to the optimized method, a transient analysis typically comprises a vast number
of loadcases in chronological order, and the resulting stress profile can directly be used as input for a subse-
quent fatigue analysis. The duration of the computations for a full transient analysis can substantial though,
and therefore the computational time is reduced by means of the mode-superposition method at a minimum
cost of accuracy. The principle of the mode-superposition technique is that the displacement of a structure
can be described by a linear combination of its eigenmodes. Hence, this method requires a preliminary
modal analysis to determine the number of eigenmodes that should be taken into account. Four different
mode-superposition transient analyses are performed, where the analyses with ten and thirteen eigenmodes
yield satisfactory results. A minor deviation with the results from a full transient analysis is obtained at
the benefit of an eighty percent reduction in computational time. The stress and displacement profiles can
therefore be calculated relatively accurately and very efficiently by means of a mode-superposition analysis
when a sufficiently large number of eigenmodes is taken into account.
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1. Introduction

Figure 1.1: An example of a recently opened spinning
roller coaster [1]

Roller coasters are regarded by the majority of visi-
tors as the most iconic and popular attractions in
amusement parks. While wooden roller coasters
were the highlight of every amusement park dur-
ing the first half of the previous century, it has
been the development of steel roller coasters over
the last decades that has opened a wide array of
design possibilities. Steel roller coasters are namely
more capable of incorporating complex elements and
inversions in the ride lay-out in comparison to their
wooden equivalents. Especially the introduction of
virtual modelling techniques at the end of the pre-
vious century has enabled manufacturers to design
taller and faster roller coasters than ever before. The
progress in terms of engineering knowledge and com-
putational power has also led to the development of
a wide variety of different roller coaster types over
recent years, since amusement parks wish to com-
pose a diverse portfolio of rides to attract visitors of
all ages. Whereas larger roller coasters typically cre-
ate the most thrilling experience, the development
of new roller coaster types has proven that smaller
family-oriented roller coasters can also be exciting.

The development of a so-called spinning roller coaster is a proper example of a ride innovation that has
made relatively small and compact roller coasters more exciting. Hence, the amusement industry has wit-
nessed a large increase in popularity of these spinning roller coasters over the last two decades. The trains
or coaches on these roller coasters are characterized by a gondola that is capable of rotating freely under
the effects of the track dynamics and passenger weight distribution, making every ride a unique experience.
The entire ride experience is taken to a new level, since the speed of a roller coaster is combined with the
experience of a carousel ride. The spinning coaster is an exciting ride for the entire family, which explains
the addition of several spinning coasters to amusement parks over recent years, such as the one depicted in
Figure 1.1.

Although the thrilling effect of spinning coasters will appeal to the riders mostly, one should also appreciate
the high level of safety that is maintained during the operation of the spinning coasters. Aside from active
safety measures such as an adequate maintenance program, the safe operation of these roller coasters is
also possible thanks to the execution of detailed calculations and dynamic simulations during the design
phase. These calculations are typically characterized by a two-fold focus, since the safety measures need
to guarantee both rider safety and structural integrity. One of the aspects of passenger safety regulations
is for instance the use of a train clearance envelope, which specifies a certain minimum clearance between
the train envelope and any surrounding object to prevent any serious injuries. Another principal objective
with respect to rider safety is to keep the maximum linear accelerations induced on the passengers below a
specified value, so the passengers will feel comfortable throughout the entire ride.

Stringent regulations restrict the linear accelerations resulting from the track lay-out to which the pas-
sengers may be subjected during the ride. The accelerations that are imposed on the riders are measured
at a specified reference point, which is referred to as the passenger measurement point. The exact location
of the passenger measurement point is defined by certain standards that specify the distance between the
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passenger measurement point and respectively the seat pan and seat back. These distances are typically
formulated in terms of a range to take into account a wide variety of shapes and sizes of the passengers.
The tolerable longitudinal, lateral, and vertical accelerations that are experienced by the passenger have
been specified as a function of time according to the norms described in EN-13814. Although different
standards can be applied as well, the norms in EN-13814 can be regarded as the European standard for
the design and manufacturing of amusement rides. A dynamic simulation is performed to obtain the linear
accelerations that the passengers are subjected to during the ride. Accelerations in different directions are
generally encountered on different segments along the track-lay-out. The minimum and maximum longitu-
dinal g-loads are typically experienced by the passenger at respectively a brake section and a drop or launch,
whereas the lateral accelerations are the largest in turns and bends. The extreme values within the domain
of permissible vertical accelerations are generally encountered at valleys and hills. In case of spinning roller
coasters, special attention is paid to the simulation of different passenger loading configurations due to a
change in dynamics of the rotating part for each configuration. The passenger loading configurations can
differ in terms of seat occupancy, where the number of occupied seats can vary between zero and four with
several different configurations possible.

The linear accelerations resulting from the dynamic analysis of a ride cycle can be combined into a two-
dimensional or three-dimensional graph. When this procedure is executed for a variety of different passenger
occupancy configurations, a two-dimensional or three-dimensional cloud of g-loads is obtained. This cloud
of g-loads is bounded by lines that correspond to the minimum and maximum acceleration values that were
obtained during the dynamic simulation, which results in a rectangular or cubical envelope of g-loads. This
envelope can be regarded as the limits given by vehicle design load cases. The vertical and lateral linear
accelerations, resulting from the assessments of a variety of configurations, are for instance combined into
a two-dimensional graph of g-loads for the main beam of the chassis. This cloud of g-load combinations
is then bounded by a rectangle, which represents the limits given by vehicle design load cases. Figure 1.2
shows a typical g-load distribution for the main beam of the chassis that could be observed in reality. In this
cloud of g-loads, the different colours and symbols represent a variety of gondola configurations for which
the linear accelerations were determined. The four red lines that bound the cloud of g-loads correspond to
the extreme values found in the set of linear accelerations. The red dots that connect the red lines therefore
represent the four vehicle design load cases that correspond to the corners of the envelope. Aside from the
directions shown in Figure 1.2, a graph of g-load combinations can also be composed for the longitudinal
accelerations in combination with the accelerations in other directions.

The pivot bearing point forms the centre of rotation on the main chassis beam for the rotating platform.
Hence, the forces and moments induced by the dynamics of a rotating gondola are transferred to the main
chassis beam through the pivot bearing point. The forces and moments can be computed for a variety of
different gondola configurations, after which the resultant forces and moments in different directions can
again be merged into a single graph. In a similar way as for the linear accelerations, all forces and moments
in the graph should be within the boundaries dictated by the vehicle design load cases. It can typically be
stated that a design is safe when each component can successfully withstand the vehicle design load cases
corresponding to the corners of the envelope. All accelerations, forces, and moments that are encountered
during the simulation are namely bounded by the rectangular or cubical envelopes, which means that the
vehicle design load cases are a sufficient test case for assessing the structural integrity of the main chassis
beam. Although this procedure is a respected method for ensuring the safety of spinning coaster trains, it
might also be a too conservative approach. Especially on the corners of the envelope, the distance between
the edges of the g-load cloud and the vehicle design design load cases is substantial, as shown in Figure
1.2. The envelope is made symmetric to keep the proceedings during the structural analysis limited, which
increases the distance between the observed g-load combinations and the load cases on the right-hand side
of Figure 1.2 even further. As a consequence, the structure is tested by means of load cases that are more
stringent than required.
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Figure 1.2: A typical yet random distribution of
g-loads for a variety of configurations and gon-
dola orientations on a spinning roller coaster, in-
cluding the vehicle design load cases (red dots)
and corresponding boundaries (red lines)

If the vehicle design load cases could be optimized based
on the actual boundaries of the g-load clouds instead of
the envelope corners, the resultant maximum stresses in
the structure would simultaneously be lower and more
realistic. This could ultimately lead to a less conserva-
tive and more economical chassis design, for instance for
the main beam. The pivot bearing point facilitates the
transfer of forces and moments to the main chassis beam
that are induced by the dynamic behaviour of the ro-
tating gondola. A typical distribution of forces and mo-
ments that can usually be observed at the pivot bearing
point is shown in Figure 1.3. When the optimization pro-
cedure leads to less severe vehicle design load cases in
terms of forces and moments at the pivot bearing point,
this will consequently lead to lower stress levels in the
main beam. If the stress levels appear to be substantially
lower in comparison to the conservative approach, one
might subsequently conclude that the main beam is over-
dimensioned and that a more light-weight beam design
would also suffice. However, it should be noted that load
factors and other sources of loading should also be taken
into account before any re-dimensioning of the beam can
be considered. To improve the current procedure, an ap-
proach is proposed in which the dynamic behavior of a
coach on a spinning roller coaster vehicle is modelled in Simscape Multibody. A physical multibody system
can be constructed in the Simscape Multibody package, consisting of multiple rigid bodies that are linked
to each other by means of a block scheme. The purpose of the Simscape model is to let a coach with a freely
spinning gondola traverse a roller coaster track that is comparable to existing spinning roller coaster lay-out
designs. A dynamic simulation of the spinning roller coaster is in principle a transient analysis in which
the main chassis beam is subjected to forces and moments at the pivot bearing point and at the axles. The
resulting stresses and strains can subsequently be determined using finite element software.

(a) Force envelope (b) Moment envelope

Figure 1.3: Typical yet random distribution of forces and moments induced by the spinning gondola on the
pivot bearing point, where the room left for optimization of the loadcases is represented by grey surfaces
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The primary objective of this thesis is to subject the roller coaster vehicle to more accurate load cases
that are determined by means of dynamic simulations in Simscape Multibody. The anticipated outcome
of the optimized structural finite element analysis is a decrease of the predicted strain and stress levels
in comparison to the conventional methodology. The structural results of a full transient analysis are
subsequently used as a reference for a comparison between the resultant stresses and strains as acquired
with the conventional and optimized methods. Additionally, the mode-superposition technique is applied
to reduce the simulation time of a transient analysis at a minimum cost of accuracy. Special attention is
contributed towards a minimization of the computational effort during the structural analysis, while meeting
the safety requirements and without any concessions with respect to the safety of passengers during a ride
on a spinning roller coaster.
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2. Methodology

2.1 Rollercoaster Track

To acquire the forces and moments that are exerted on the main chassis beam, a dynamic model should be
developed that is capable of simulating a rollercoaster car with a freely spinning gondola that traverses a
rollercoaster track lay-out. The dynamic analysis of the rollercoaster vehicle requires an accurate description
of the track geometry. A methodology for the description of three-dimensional track geometries is proposed
in which track data generated by the commercially available program NoLimits 2 is used. This simulator
allows the user to create realistic rollercoaster lay-outs of all kinds, such as the spinning rollercoaster lay-
out depicted in Figure 2.1. In this lay-out the car is first pulled to the top of the lifthill by a chain, and
upon reaching the crest of the lifthill the rollercoaster vehicle is disengaged from the lift chain. From that
point on, the car is allowed to freely coast along the track trajectory under the effect of gravity. When the
rollercoaster vehicle traverses through the two almost flat and barely banked turns that follow directly after
the lifthill, the car is subjected to relatively large lateral accelerations. This induces a rotational motion of
the eccentrically mounted gondola. After the drop the car follows a curved section of track trajectory just
above ground level, during which the rider experiences substantial vertical g-forces. The combination of a
reduced velocity and a relatively large banking angle on the next turnaround spark a rotational acceleration
of the gondola during a moment of so-called hang-time. The quick transition on the next element slightly
amplifies the rotation of the gondola, after which the lay-out concludes with another turnaround and helix
before the car reaches the brake section and the station.

The professional version of NoLimits allows the user to export the track geometry as a data file. The exported
data file describes the position coordinates of the control points that are representative of the track heartline.
Additionally, the banking of the track is described by the direction of three vectors that together form a
moving frame along the track lay-out. Appendix C describes the conversion of the track data exported
from NoLimits to the coordinates of the control points that describe both the left and right rail. After the
rail coordinates have been imported into the Simulink model, the rigid rollercoaster track is defined using
piece-wise cubic interpolation to parameterise the geometry of the rails. Hence, the geometry of the rigid
rollercoaster track consists of cubic spline segments that are interconnected by transition curves that ensure
the continuity of the first and second derivatives of the track in the transition points [2]. The continuity of
the first derivative implies that adjacent cubic spline segments share a common control point and a tangent
line at the junction of the two spline curves. Continuity of the accelerations between two adjacent spline
segments is achieved by the continuity of the second derivative, since this continuity condition forces the two
curves to possess equal curvature at their joint. The enforcement of these continuity conditions guarantees
a smooth track trajectory without the appearance of large impulses in the transitions between segments [3].

Figure 2.1: The spinning rollercoaster lay-out that has been created in NoLimits 2
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2.2 Multibody Model of Rollercoaster Vehicle

Figure 2.2: Geometry of the vehicle that will traverse
the spinning rollercoaster track lay-out

A rollercoaster vehicle generally consists of a collec-
tion of bodies whose motion is prescribed by the
track trajectory. These bodies are considered as
rigid bodies due to their high structural stiffness,
while kinematic joints dictate their relative motion.
The multibody model of the rollercoaster vehicle
depicted in Figure 2.2 is assembled using 38 rigid
bodies in total. The elliptically shaped gondola ac-
commodates two pairs of seats that face in oppo-
site direction, including the restraints that secure
the riders in their seats. The seats and restraints
are under all circumstances completely fixed to the
gondola geometry according to a predefined config-
uration, and hence the mentioned components can
be regarded as a single body. This reduces the total
number of rigid bodies within the multibody model
to 32, including 24 wheels. A pivot axle connects the
gondola to the main chassis beam, which is modelled
by means of a revolute joint that constrains all de-
grees of freedom except for the rotational motion of
the gondola. The distance between the rotational axis and the centre of gravity of an empty gondola equals
ten millimeters. The front and rear axle are attached to the main chassis beam by respectively a spherical
and a rotational joint. The spherical joint imposes three kinematic constraints between the front axle and
the chassis main beam to control their relative motion, allowing only three relative rotations. Thanks to the
spherical joint the front axle could be regarded as a steering axle, which is often referred to as the so-called
zero car [4]. The axles are on both sides attached to wheel bogies by means of a revolute joint, and each
wheel bogie holds at least three different types of wheels. The running wheels carry the main load of the
vehicle, whereas the side wheels guide the vehicle on the track. The upstop wheels keep the vehicle on the
track during negative vertical accelerations [5]. The motion of the rollercoaster vehicle along the track is in
reality facilitated by the rotational motion of the wheels. However, as will be elucidated in the next section,
the point-on-curve constraints used in the Simulink model do not require the wheels to accommodate a
rotational degree of freedom. Four of the eight running wheels are assigned a prismatic joint with respect to

Rigid Bodies Mass [kg]

1 Gondola (including seats and restraints) 532.2

2 Main chassis beam 955.3

3 Front axle 88.6

4 Rear axle 112.4

5 Front-left bogie (including wheels) 135.7

6 Front-right bogie (including guide and upstop wheels) 122.9

7 First front-right running wheel 6.4

8 Second front-right running wheel 6.4

9 Rear-left bogie (including guide and upstop wheels) 122.9

10 First rear-left running wheel 6.4

11 Second rear-left running wheel 6.4

12 Rear-right bogie (including wheels) 135.7

Table 2.1: Mass properties of each rigid body
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Kinematic Constraint Body i Body j Nc

1 Revolute joint 1 2 5

2 Spherical joint 2 3 3

3 Revolute joint 2 4 5

4 Revolute joint 3 5 5

5 Revolute joint 3 6 5

6 Revolute joint 4 9 5

7 Revolute joint 4 12 5

8 Prismatic joint 6 7 5

9 Prismatic joint 6 8 5

10 Prismatic joint 9 10 5

11 Prismatic joint 9 11 5

Table 2.2: The connected bodies and number of constraints for each type of kinematic constraint used in
the multibody model of the rollercoaster vehicle

the accompanying bogie, whereas all remaining wheels are completely fixed to the wheel carrier. Hence, the
wheel carrier and the accompanying wheels can be considered as a single body for two of the four bogies.
The four running wheels are regarded as separate bodies for the other two wheel carriers. This reduces the
number of distinctively moving bodies within the multibody model to only twelve. The mass of each rigid
body is presented in Table 2.1, whereas the types of kinematic constraints used to assemble the rollercoaster
vehicle model are listed in Table 2.2. The total mass of the rollercoaster vehicle, excluding passengers, is
equal to 2231.5 kilograms.

2.3 Point-on-Curve Constraints

2.3.1 Constraint Configuration

No degrees of freedom have been assigned to the running wheels at the front-left and rear-right bogie. Hence,
the motion of these four running wheels is completely constrained to the movement of the accompanying
wheel carrier. A follower frame is added underneath each running wheel at some distance from the wheel
centre. Since this distance is equal to the distance between the wheel centre and the heartline of the track,
the follower frames are aligned exactly with the track heartline. The four running wheels cannot move with
respect to the corresponding wheel carriers, which implies that the motion of the follower frames is also
constrained to the movement of the accompanying bogie. On the other hand, the running wheels at the
front-right and rear-left bogie are constrained by means of a prismatic joint that only facilitates sideways
translation. A follower frame is attached to each running wheel in a similar manner as for the other four
running wheels, so each follower frame is aligned with the track heartline. These four follower frames are
capable of moving sideways since the motion of the running wheels is not constrained in this direction. The
point-on-curve constraint is a kinematic constraint that allows the origin of a follower frame to translate
only along a prescribed curve. The follower frame is free to rotate depending on other constraints in the
model [6]. Hence, each point-on-curve constraint introduces two kinematic constraints to the model. The
origins of the eight follower frames are only allowed to translate along the heartline of respectively the left
and right rail. Two pairs of running wheels and the accompanying follower frames cannot move with respect
to the front-left and rear-right wheel carrier. These follower frames cannot move with respect to each other
either, and their origins are constrained to the track heartline. Therefore, the orientation of the front and
rear axle is directly dictated by the orientation of respectively the front-left and the rear-right wheel carrier.
The prismatic joints between the running wheels and the other wheel carriers allow sideways translation of
the corresponding follower frames with respect to the track. Hence, these follower frames are capable of
compensating for any track irregularities or variable track width, as depicted in Figure 2.3.
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The configuration of each body is uniquely described by six independent generalized coordinates Nq in
three-dimensional space. The number of bodies Nb within the multibody model of the rollercoaster vehicle
equals twelve, so the total number of generalized coordinates equals:

Nq = 6 ·Nb = 6 · 12 = 72 (2.1)

The kinematic joints imply relations between the generalized coordinates, and hence the generalized coor-
dinates are generally not all independent. For each dependent generalized coordinate, there is a kinematic
constraint equation that belongs to a certain kinematic constraint. Summation of the kinematic constraints
listed in Table 2.2 yields a total number of kinematic constraints equal to 53. The rollercoaster vehicle
is constrained to the left and right track by means of eight point-on-curve constraints with two kinematic
constraints each. Hence, the total number of kinematic constraints that can be found on the rollercoaster
model equals 69. The number of independent generalized coordinates equals the number of the degrees-of-
freedom NDOF of a system. This parameter is related to the number of kinematic constraints and generalized
coordinates, as shown in Equation 2.2 for the rollercoaster model.

NDOF = Nq −Nc = 72− 69 = 3 (2.2)

The three degrees-of-freedom on the rollercoaster model are the rotation of the gondola and the translation
along respectively the left and right rail.

2.3.2 Track Control Point Increment

The rollercoaster track is defined using piece-wise cubic interpolation to parameterise the geometry of the
rails. However, a major disadvantage of the cubic spline formulation is that it leads to undesired oscillations
in the track model. These track oscillations are sensed by the follower frames at the front-right and rear-
left wheel carriers, since these follower frames can translate in z-direction (Figure 2.3) relative to their
accompanying bogies. The z-translation of the follower frames at the front-left and rear-right bogie is
constrained, which implies that the z-translation sensed at the other four follower frames could be regarded
as small variations in the track width. Table 2.3 presents the z-translation measured at the four follower

Figure 2.3: Configuration of the running wheels and follower frames with respect to a curved section of
track, where the x-axis is depicted in red, the y-axis in green, and the z-axis in blue
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frames for four different levels of control point discretization. These undesired wiggles in the track should
in principle be avoided, since the track perturbations could lead to the modelling of higher reaction forces
between the vehicle wheelsets and the track. However, it can be deducted from Table 2.3 that the track
perturbations are typically small, with a maximum z-translation equal to approximately 0.31 millimeters.
For the considered control point increments it is shown that a smaller distance between between the control
points does not necessarily lead to a noticeably smoother track. Although the difference between the
resultant z-translations is negligible for most levels of control point discretization, it is shown in Table 2.3
that the smallest control point increment is not in alignment with the lowest z-translation values. Hence,
the oscillations cannot be reduced by choosing a smaller control point increment. Using smaller distances
between the control points on the track centre line leads to a substantial increase in the computational time
though. The use of a control point increment equal to one meter is preferred, since it can be deducted from
Table 2.3 that this control point increment yields the most favourable ratio between computational time and
the level of track oscillation. Figure D.1 in Appendix D shows the track oscillations sensed at the front-right
and rear-left wheel carrier for a control point increment ∆s of one meter.

∆s [m] ∆z F-R Bogie
Frame 1 [m]

∆z F-R Bogie
Frame 2 [m]

∆z R-L Bogie
Frame 1 [m]

∆z R-L Bogie
Frame 2 [m]

CPU time [s]

0.25 1.9915 · 10−4 1.7384 · 10−4 1.8565 · 10−4 1.7981 · 10−4 726

0.50 1.9108 · 10−4 1.5700 · 10−4 1.8041 · 10−4 1.6197 · 10−4 448

1.00 1.9532 · 10−4 1.3163 · 10−4 1.7653 · 10−4 1.3592 · 10−4 265

2.00 1.9717 · 10−4 3.0447 · 10−4 1.9411 · 10−4 3.1174 · 10−4 183

Table 2.3: Extent of track oscillations for various control point increments at the front-right (F-R) and
rear-left (R-L) wheel carriers, including the CPU time

2.3.3 Reaction Forces between Track and Wheels

Four of the eight running wheels are connected to the accompanying bogies by means of prismatic joints,
so the rollercoaster vehicle is capable of coping with track irregularities. However, a disadvantage of the
prismatic joints in this context is their inability to sense reaction forces that are exerted by the track on the
wheels in z-direction (Figure 2.3). The reaction forces between the track and wheels are presented in Figure
2.4, which result from a simulation of the rollercoaster vehicle traversing the entire track lay-out starting
at the station. It is physically correct that the reaction force in x-direction equals approximately zero for
all four bogies, since the point-on-curve constraints allow free translation of the follower frames along the
left and right rail. However, the reaction forces in z-direction for the front-right and rear-left bogies that
feature a prismatic joint are equal to zero as well, which is physically incorrect. It appears that the reaction
forces for the front-right and rear-left bogie are sensed at the point-on-curve constraints of respectively the
front-left and rear-right wheel carrier. The reaction forces are registered at the front-left and rear-right
wheel carrier in the positive and negative z-direction. This would erroneously suggest that the guide wheels
are always in contact with the track when the rollercoaster vehicle travels for instance through the two turns
directly after the lift. The negative reaction forces in z-direction in Figure 2.4 are not in accordance with
the actual physical set-up of the guide wheels with respect to the track, since a guide wheel cannot pull on a
rail. Instead, a guide wheel simply comes loose from the track without any reaction forces being exerted on
the track. Hence, the negative reaction forces in z-direction for the front-left and rear-right bogie actually
account for the missing reaction forces at respectively the front-right and rear-left wheel carrier. The issue
of the missing reaction forces is circumvented by transferring the reaction forces from the wheel carriers with
fully constrained follower frames to the bogies with prismatic joints. The main Simulink scheme in Figure
A.1 in the appendices shows that the reaction forces in z-direction are transferred from the front-left bogie
to the front-right bogie and from the rear-right bogie to the rear-left bogie.
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(a) Reaction forces between track and front-left bogie (b) Reaction forces between track and front-right bogie

(c) Reaction forces between track and rear-left bogie (d) Reaction forces between track and rear-right bogie

Figure 2.4: Reaction forces between track and wheels specified for each wheel carrier

2.4 Modelling Rolling and Bearing Friction

Now that the reaction forces between the track and wheels have been modelled appropriately, they can be
used to compute the rolling and bearing frictional forces. The reaction forces from the previous time-step
are used to determine the frictional values at the next time-step.

2.4.1 Rolling Frictional Force

As described elaborately in Appendix E, the Hertzian elliptic contact model is used to model rolling friction.
This model is capable of describing contact between two elastic cylindrical bodies, where the contact area
between the bodies is shaped elliptically. The rate of deformation is unequal to the rate of recovery during
rolling contact due to elastic hysteresis. This internal friction causes the work that is provided to the contact
material to be partly transformed into heat during the deformation process. Hence, part of the work is not
regained, and a torque is experienced as a resistance to rolling. A friction force P can be defined by equating
the hysteresis energy loss to the distance travelled in rolling motion s, as shown in Equation 2.3.

P · s = αr ·W (2.3)

where αr is the hysteresis loss factor for a rolling motion that defines the percentage of work W spent on
deforming the contact bodies that is not regained after relaxation. For the Hertzian elliptic contact model,
Equation 2.3 can be rewritten to the expression shown in Equation 2.4.

P = αr
3

16

N

R
b = µN with µ =

(
αr

3

16

b

R

)
(2.4)

where R is the undeformed outer radius of the rolling body, N defines the normal forces on the bodies
in contact, b represents the longest semi-axis of the elliptic contact area, and µ symbolizes the friction
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coefficient. Substituting the correct values into Equation 2.4 and solving this expression will yield the value
of the frictional force and rolling friction coefficient.

2.4.2 Bearing Frictional Moment

A smooth motion between separate components is facilitated by the use of bearings, which are characterized
by a non-constant frictional moment that depends on certain tribological phenomena. Although the frictional
moment induced by the bearings is typically small in comparison to other sources of resistance such as rolling
friction or air drag, its effect is assigned a sufficient level of significance for it to be included in the model.
The frictional moment induced by the bearings is modelled at two distinct contact areas, namely between the
wheels and the accompanying hubs and at the revolute joint between the gondola and the main chassis beam.
The frictional moment is not modelled for the spherical and revolute joint between respectively the chassis
main beam and the front and rear axle, since the degree of relative motion between these components is
small in comparison to the other components. The SKF model is used for calculating the frictional moment
induced by the bearings, in which the total frictional moment is calculated according to Equation 2.5.

M = Mrr +Msl (2.5)

where M is the total frictional moment, Mrr is the rolling frictional moment, and Msl is the sliding frictional
moment. Please note that the the frictional moment of the seals Mseal equals zero for the types of bearings
considered, and that the frictional moment of drag losses Mdrag is neglected. The rolling and sliding frictional
moments can be calculated according to the expressions presented in Appendix F.

2.4.3 Resultant Rolling and Bearing Friction

The rolling and bearing frictional forces are determined at each time-step during the simulation for each
individual wheel. The resultant frictional values are depicted in Figure 2.5 and 2.6 for respectively one of
the two running and guide wheels on each of the four wheel carriers. These frictional forces result from a
simulation with a fixed time-step equal to 0.01 second. The duration of the simulation (100 s) equals the
time that it takes for the rollercoaster vehicle to complete a single cycle when released from the station at t
= 0 s. An eight-order Dormand-Prince formula was used to compute the model state at the next time-step
as an explicit function of the current model state. Please note that the frictional values found for the upstop
wheels are not shown, since the rolling and bearing frictional forces equal zero for the upstop wheels on
three of the four wheel carriers. The frictional forces are only unequal to zero at the upstop wheels on the
rear-right bogie, but these values are orders of magnitude lower than the frictional forces found at the other
wheels. Proof for the correct modelling of reaction forces between the track and wheels is provided by the
graphs in Figure 2.5 and 2.6. The rollercoaster vehicle traverses through the first almost flat turn directly
after the lifthill between t = 16 s and t = 22 s. As anticipated, relatively large frictional forces can be found
at the running wheels for the bogies on the right-hand side of the rollercoaster car, whereas the frictional
values are highest at the guide wheels on the left-hand side bogies during this time interval. An opposite
pattern can be recognized in the graphs between approximately t = 22 s and t = 27 s when the rollercoaster
vehicle traverses through the next barely banked turn. High frictional forces can namely be found at the
running wheels on the left-hand side bogies and at the guide wheels on the right-hand side bogies of the
rollercoaster car. Additionally, the frictional values at the guide and upstop wheels are correctly set equal
to zero when the guide wheels are not in contact with the track. This also implies that values equal to zero
can be omitted from the calculation of the average rolling friction coefficient for the guide wheels, which
yields a resultant coefficient of 0.0039. On the other hand, the average rolling friction coefficient for the
running wheels equals 0.0066. Based on these values it can be deducted that the the overall rolling friction
coefficient is equal to 0.0053.
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(a) Friction at a running wheel on the front-left bogie (b) Friction at a running wheel on the front-right bogie

(c) Friction at a running wheel on the rear-left bogie (d) Friction at a running wheel on the rear-right bogie

Figure 2.5: Rolling and bearing frictional force for a running wheel on each of the four bogies

(a) Friction at a guide wheel on the front-left bogie (b) Friction at a guide wheel on the front-right bogie

(c) Friction at a guide wheel on the rear-left bogie (d) Friction at a guide wheel on the rear-right bogie

Figure 2.6: Rolling and bearing frictional force for a guide wheel on each of the four bogies
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2.5 Modelling Air Resistance

A moving fluid such as an air flow exerts normal pressure forces and tangential shear forces on the surface
of a body immersed in it. Both of these forces have components in the direction of flow, and thus the drag
force is due to the combined effect of pressure and wall shear forces in the flow direction. The drag force
FD depends on the density ρ of the fluid, the upstream velocity v, and the size, shape and orientation of
the body. The drag characteristics of a body is represented by the dimensionless drag coefficient CD. The
drag force can be calculated according to Equation 2.6.

FD = 1
2ρCDv

2Afront (2.6)

2.5.1 Frontal Surface

In Equation 2.6, the parameter Afront refers to the frontal surface of the body. For bodies that tend to block
the flow, such as the rollercoaster vehicle depicted in Figure 2.2, the frontal surface is the area projected
on a plane normal to the direction of flow. The orientations of the chassis, pivot axle, bogies and wheels
remain constant with respect to the air flow during the ride due to their direct alignment with the track.
The drag force that is exerted on these components can therefore be determined using a constant frontal
surface of 0.386 m2 and presumed drag coefficient of 0.8. On the other hand, the orientation of the gondola
continuously changes with respect to the direction of motion of the train during the ride, which implies
that the gondola frontal surface should be regarded as a variable instead of a constant. The gondola frontal
surface is shown as a function of the gondola rotation in Figure G.1 in Appendix G.2, while tabulated
values can be found in Table G.1 in Appendix G.1. Six piece-wise cubic spline segments were used in Figure
G.1 to interpolate between the seven gondola orientations for which the frontal surface has been manually
determined. A detailed explanation on the topic of cubic spline interpolation can be found in Appendix G.2.
Please note that it suffices to consider a ninety degree range instead of a full rotation when determining
the gondola frontal surface, since the geometry of the gondola is characterized by two planes of symmetry.
Hence, the interpolation functions between 90o and 180o in Figure G.1 are simply the mirrored equivalents
of the cubic splines between 0o and 90o, while the interpolation functions between 180o and 360o would be
identical to the interpolation splines depicted in Figure G.1.

2.5.2 Gondola Drag Coefficient

Numerous numerical simulations have been performed in Ansys Discovery AIM 19.2 (from this point on
referred to as Ansys) to determine the drag force that is exerted by the air flow on the gondola. Aside from
omitting any redundant details from the gondola geometry, the symmetry planes of the gondola were used
to reduce the computational time of the simulations. The air flow around the simplified and halved gondola
geometry can subsequently be modelled by creating an external body around the gondola, while the gondola
itself is excluded from the physics region with boundary layer properties assigned to its surface. The frontal
surface inlet of the enclosure is assigned with a certain upstream velocity, while the rear surface outlet is
assigned a gauge static pressure equal to zero. A major disadvantage of halving the gondola geometry is the
inability to model air flow around the gondola for orientations unequal to 0o or 90o. At these orientations
the symmetry plane of the gondola is namely not aligned with the direction of the air flow. Considering the
full geometry of the gondola during the numerical simulation comes at the cost of a drastically increased
computational time though. Therefore, the air flow is only modelled around a gondola that has been halved
at either two symmetry planes, which corresponds to gondola rotations of respectively 0o and 90o. Appendix
G.3 provides a detailed description on the boundary conditions that were imposed on the model.

Fourteen simulations have been performed at two different gondola orientations and seven different up-
stream velocities, under the presumption of steady-state conditions and incompressible flow. Appendices
G.4 and G.5 provide an extensive description of the reasoning behind the selected upstream velocities at
which the air flows were modelled. Once a simulation is completed, the drag force exerted on the gondola
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surface can be extracted from Ansys. The corresponding drag coefficient can subsequently be calculated by
rewriting Equation 2.6 into the expression shown in Equation 2.7.

CD =
2 · FD

ρ · v2 ·Afront
(2.7)

The resultant drag coefficients and forces have been tabulated in Table 2.4, while Figure 2.7 provides a visual
representation of the drag coefficient as a function of the upstream velocity and gondola orientation. It can
be deducted from this figure that the drag coefficients are substantially higher for a 90o gondola rotation
in comparison to a 0o gondola rotation. The total drag can almost entirely be assigned to the occurrence
of pressure drag, where the majority of the pressure drag is presumably caused by contributions from the
pressure difference between the front and rear of the gondola. When the air stream separates from the
gondola surface, it forms a separated region between the gondola and the air stream with a reduced velocity
relative to the upstream velocity. The larger the separated region, the larger the pressure drag is [7]. The
velocity contours are shown in Appendix G.10 for the performed simulations. From these figures, it can be
deducted that the separated region is typically larger for a 90o gondola rotation than for 0o rotation, which
explains the higher drag force and drag coefficient for the former gondola orientation. The residuals of the
simulations are presented and discussed in respectively Appendix G.9 and G.7.

Figure 2.7: The drag coefficient as a function of the upstream velocity and the gondola rotation

Figure 2.8: The drag force as a function of the upstream velocity and the gondola rotation
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2.5.3 Gondola Drag Force

Calculating the frontal surface and drag coefficient according to the functions depicted in respectively Figure
G.1 and 2.7 and substituting these results in Equation 2.6 yields the resultant gondola drag force, which
has been plotted as a function of the upstream velocity and gondola rotation in Figure 2.8. The function
GondolaDragForce.m in Appendix B describes the procedure of determining the drag force based on the
upstream velocity and the rotation of the gondola. This function first determines the drag coefficient at a
gondola rotation of respectively 0o and 90o. Subsequently, a cubic spline is formulated to interpolate between
these values, so the drag coefficient can be determined at a specified gondola rotation angle. The slopes at
the outer ends of this spline are equal to zero to ensure a smooth transition between the determined drag
coefficient values at 0o and 180o.

2.5.4 Resultant Drag Forces

The resultant drag forces acting on the chassis and the gondola are presented in respectively Figure 2.9 and
2.10. The influence of the rotating gondola on the drag force can clearly be deducted from a comparison
between these two figures. While the constant drag coefficient and frontal surface lead to a relatively smooth
function for the drag force acting on the chassis, the rotational effect of the gondola increases the number of
fluctuations in the gondola drag force plot. The gondola drag force is modelled as an external force acting
on the gondola pivot point on the main chassis beam. Exerting the drag force directly on the gondola
would namely be a rather complex procedure, since the orientations of the reference frames on the gondola
continuously change along with the gondola rotation. On the other hand, the orientation of the chassis main
beam is aligned with the direction of the air flow during the entire ride. Hence, the chassis drag force is
modelled as an external force acting on the frontal surface of the main chassis beam.

Figure 2.9: The resultant drag force acting on the chassis and bogies of the spinning rollercoaster vehicle

Figure 2.10: The resultant drag force acting on the gondola of the spinning rollercoaster vehicle
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v [m/s] α Fd [N] Cd

0 0o 1.1016 1.011

0 90o 1.4985 1.499

3.15 0o 11.526 1.066

3.15 90o 15.581 1.571

6.3 0o 46.266 1.070

6.3 90o 63.975 1.613

9.4 0o 103.47 1.075

9.4 90o 143.17 1.621

13.15 0o 196.5 1.043

13.15 90o 282.72 1.636

16.575 0o 336.52 1.124

16.575 90o 447.35 1.629

20 0o 497.75 1.142

20 90o 647.21 1.619

Table 2.4: Drag forces and drag coefficients resulting from simulations in Ansys at various gondola orienta-
tions and upstream velocities

2.6 Motion Control

Distance [m] Section Type

0 ≤ s < 5 Station exit

5 ≤ s < 50 Lifthill

50 ≤ s < 684 Gravity run

684 ≤ s < 707 Brake-section

707 ≤ s < 737 Turnaround

737 ≤ s < 746 Station entry

Table 2.5: The distance ranges and correspond-
ing section type for the track lay-out of interest

To create a kinematic model that is as realistic as possible,
the Simulink model is expanded with the block schemes
depicted in Figures A.15 till A.22. These schemes control
the motion of the vehicle and the gondola on all track sec-
tions that do not belong to the gravity run. This implies
that the motion of the vehicle is controlled between the
start of the brake run and the end of the liftill. Since an
extensive explanation of each individual control scheme
can be found in Appendix H, this section will explain the
control schemes only in a general sense. The distance cov-
ered along the track by the vehicle is used to determine
at which track section the vehicle is located at each time
step. The distance ranges corresponding to each track section have been determined in advance, of which
the results are presented in Table 2.5. For instance, the brake force is only applied to the vehicle when the
distance covered by the vehicle falls within the range corresponding to the brake section. The translational
motion control of the vehicle is generally explained in the following paragraph, while the subsequent para-
graph elaborates on the rotational motion control of the gondola.

Upon leaving the station at the start of the simulation, the velocity of the vehicle should follow a ref-
erence profile with a slope of 2 m/s2. As depicted in Figure 2.11, the vehicle should enter the lifthill with a
velocity equal to the chain speed, which has been set equal to 4 m/s. Hence, the velocity reference profile
that should be followed by the vehicle on the lifthill is a constant line at a magnitude equal to the chain
speed. When the vehicle is released from the lifthill, the translational control of the vehicle is terminated.
Until the vehicle reaches the brake section, its velocity results from a kinematic analysis of the model per-
formed at each time step, without the application of any external forces that should either decelerate or
accelerate the vehicle according to a prescribed velocity reference profile. At two instances on the right-half
plane of Figure 2.11, a substantial braking force is applied to the vehicle to reduce its velocity. At the
brake section, a reference profile with a slope equal to the desired deceleration of -2 m/s2 should slow the
vehicle down to a maximum velocity of 1 m/s upon leaving the brake section. Due to a slight decline on
the subsequent turnaround, the vehicle again gradually accelerates before entering the station. However, at
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the station entry the vehicle is braked according to a reference profile with a similar deceleration as on the
brake section. In the station the vehicle comes to a standstill at approximately the same location as the
initial position when it left the station. It can be deducted from Figure 2.11 that the vehicle does not move
for the remainder of the simulation once it has come to a standstill.

Figure 2.11: The actual and reference velocity signals for a vehicle with a fully-loaded gondola

The vehicle leaves the station at the start of the simulation with an initial gondola rotation angle equal
to zero. By prescribing an angular velocity reference profile equal to zero, this initial gondola orientation
should be maintained until the vehicle leaves the lifthill. Figure 2.12 and 2.13a show that on the lifthill
the deviation of the actual gondola angular velocity from the reference profile is negligible. The rotational
control of the gondola is terminated at the top of the lifthill, and the gondola is free to spin during the
subsequent gravity run. Upon reaching the brake section, the angular velocity of the gondola is reduced to
zero according to a reference profile with a delicately defined slope. The reference profile namely ensures
that the gondola angular velocity and rotation angle simultaneously equal zero, so the vehicle leaves the
brake section with a non-moving gondola that is orientated approximately at a zero rotation angle. At
the subsequent turnaround between the brake section and the station, a reference profile equal to zero is
defined. Hence, the rotation angle upon leaving the brake section should be maintained until the vehicle
reaches the station entry, as shown in Figure 2.13b. Since it cannot be guaranteed that the vehicle enters
the station with a gondola rotation angle equal to zero, a correction torque is required to rotate the gondola
to its initial orientation. The effect of this correction torque on the angular velocity can be seen on the
right-hand side of Figure 2.12 by means of a gradually increasing and decreasing angular velocity. The final
gondola orientation is characterized by a rotation angle practically equal to zero for all passenger occupancy
configurations (Figure 2.15). Hence, upon termination of the simulation the vehicle configuration in the
station is almost identical to the initial configuration of the vehicle at the start of the simulation.

Figure 2.12: The actual and reference angular velocity signals for a vehicle with a fully-loaded gondola
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(a) The gondola is kept at its initial orientation on the
lifthill despite a mass imbalance of the gondola

(b) The rotational motion of the gondola is controlled at
the turnaround between the brake section and station

Figure 2.13: Rotational motion control of the gondola

2.7 Tolerable Passenger Accelerations

Figure 2.14: Directions of passenger
accelerations

The accelerations experienced by the passengers during a ride on the
spinning rollercoaster are compared to the standardized norms for
tolerable passenger accelerations. The linear accelerations resulting
from the track lay-out to which the passengers may be subjected
are namely restricted by certain regulations. It should be mentioned
that these limits do not represent comfort tolerable limits to prevent
for instance motion sickness. The passenger acceleration limits are of
interest to ensure that the kinematic model includes a realistic track
lay-out, so the forces and moments that are exerted on the main
chassis beam are of realistic magnitude as well. The positive and
negative directions of the accelerations are depicted in Figure 2.14
at the passenger measurement point. The mass of each individual
passenger used in the kinematic model equals eighty kilograms. The
passenger measurement point is a reference point whose location is
specified by standardized norms, and the permissible acceleration
values in each direction are prescribed at this point as well. These
norms define a certain distance between the passenger measurement
point and respectively the seat pan and seat back. This distance
is typically formulated as a range, so a variety of passenger shapes
and sizes can be considered. In practice, the passenger measurement
point is located within the chest of the passenger, as can be seen in
Figure 2.14. The permissible acceleration values at the passenger
measurement point can be deducted from the graphs and scripts in
Appendix I, in which the tolerable passenger accelerations are presented as a function of time. Please note
that the graphs have been truncated at t = 15 s, since the acceleration limits remain constant for longer
durations. Furthermore, the time duration limits are prescribed for t > 0.2 s, since impacts with a duration
less than 200 milliseconds are not addressed by the norms. The time duration limits for accelerations in
x-direction are shown in Appendix I for a so-called base-case restraint. It is presumed that this type of
restraint is used on the spinning rollercoaster. The acceleration limits for the base case restraint are relatively
strict in comparison to other type of restraints such as an over-the-shoulder restraint, since the latter type
of restraint minimizes forward motion of the passenger. Until the direction of the acceleration reverses, the
permissible acceleration values decrease as time advances. However, when the direction of the acceleration
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changes from positive to negative or vice versa, the duration is reset to zero. This implies that after an
acceleration reversal, the permissible acceleration limits again start at their maximum values but with an
opposite sign.

2.7.1 Passenger Occupancy Configurations

The primary incentive for developing the kinematic model is to determine the forces and moments that
are exerted on the main chassis beam. Especially the most severe loadcases are of interest, since these
cause the largest displacements and stresses in the main chassis beam. Beforehand it is unknown which
passenger occupancy configuration leads to the most severe loadcases, and hence four unique configurations
are considered, as depicted in Figure 2.15. The first configuration comprises four passengers, which results
in the largest total mass of the rotating part of all considered configurations. Hence, the forces and moments
exerted on the pivot point are expected to be relatively large for this configuration. On the other hand,
the other configurations are characterized by a mass imbalance that could also lead to the application of
substantial loads on the main chassis beam. It should be mentioned that an empty gondola is not believed to
be a relevant passenger configuration. An empty gondola is namely not characterized by a mass imbalance,
while the total mass of the rotating part is relatively small. Hence, a simulation with an empty gondola is
not expected to result in more severe loadcases than a fully-loaded gondola.

(a) Configuration 1 (b) Configuration 2

(c) Configuration 3 (d) Configuration 4

Figure 2.15: The four different passenger occupancy configurations

The passenger acceleration is determined by measuring the time-dependent relationship between the pas-
senger measurement frame and the global frame. The rotation matrix and the linear accelerations between
these two frames are computed at each time step, as shown in Figure A.19. The negative z-axis is specified
as the direction of the gravitational acceleration, and hence gravity is defined as (0,0,-g) with respect to
the global frame. Multiplying this vector with the rotation matrix results in the gravity components with
respect to the passenger measurement frame. Summation of the gravity components and the relative accel-
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erations yields the total accelerations experienced by the passengers. As can be deducted from the graphs
in Appendix I.2, the passenger accelerations do not exceed the tolerable limits for any of the four considered
passenger occupancy configurations.

2.7.2 Acceleration Combinations

Separate comparisons of the accelerations in x, y, and z-direction with the corresponding limits is not
sufficient for meeting the regulations, since the combination of accelerations should also be evaluated. When
accelerations in different directions occur simultaneously, the combined effect of accelerations is not allowed
to exceed specified limits either. The maximum values for the combined accelerations are specified by the
following expressions. The admissible accelerations for selected durations need to be taken from the figures
in Appendix I. (
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The combined effect of accelerations is extraordinarily relevant for a spinning coaster in particular. In case
of a regular rollercoaster train, the passengers are typically subjected to significant lateral and vertical ac-
celerations when the train traverses through a turnaround, while the effect of longitudinal accelerations is
minor. On most other track sections, only one acceleration direction substantially contributes to the sum of
accelerations experienced by the passenger, such as the vertical acceleration in a valley or the longitudinal
acceleration on a launch. However, on a spinning rollercoaster any combination of passenger accelerations
is possible at practically any section of track. Especially in a turnaround, the combination of vertical and
longitudinal passenger accelerations would often exceed the corresponding combination limit presented in
Equation 2.9 for the initial track lay-out design. The issue of exceeding particularly this combined accel-
eration limit is predominantly caused by the relatively strict acceleration limits in the longitudinal and
vertical direction. For the base case restraint, the admissible acceleration in the negative x-direction may
not exceed the -1.5 g-load limit. This acceleration direction corresponds to pushing the passenger out of the
seat forward. The longitudinal passenger accelerations in this direction are usually small in case of a regular
rollercoaster train. However, on a spinning rollercoaster the gondola could be orientated perpendicularly to
the direction of travel of the train, which implies that the passenger could experience significant negative
x-accelerations when the train traverses through a turnaround. For the spinning rollercoaster of interest,
the passengers are not subjected to any negative vertical accelerations, which implies that the accelerations
in positive z-direction may not exceed the 2.0 g-load limit when t > 12 s. Please note that the 2.0 g-load
limit also includes the contribution from the gravitational acceleration. Although the vertical direction
does not account for the entire gravitational acceleration for most track sections, the effect of gravity still
primarily contributes to the accelerations in the z-direction in turnarounds. Hence, the margin is small for
the combination of positive z-accelerations and negative x-accelerations.

Several design iterations were required to improve the track lay-out up to a level where none of the time
duration limits or combined acceleration limits were exceeded. The radii of the turnarounds were increased
to reduce the accelerations to which the passengers were subjected. Figure 2.16 shows the combined ac-
celeration factors for one of the passengers on a fully-loaded gondola. As can be deduced from this graph,
the combined acceleration factor does not exceed the limit at any point along the ride. The improvements
on the track lay-out have resulted in comparable combined acceleration factors for vertical accelerations in
combination with respectively longitudinal or vertical accelerations.
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Figure 2.16: Combined acceleration factors for a passenger on a fully-loaded gondola

2.7.3 Acceleration Reversals

The norms also prescribe a minimum transition time between consecutive peaks of opposite sign in the x
and y-acceleration signals. When the elapsed time between two consecutive acceleration peaks is less than
200 milliseconds, the allowable limit for the peak values becomes equal to half of the regular acceleration
limit value. However, this regulation only applies to so-called sustained events, which have a duration of
at least 0.2 second from zero-crossing to zero-crossing. Hence, the occurrence of non-sustained events can
be neglected, since the impacts with a duration less than 200 milliseconds are not addressed by the norms.
This implies that a violation of the time duration limits or the reversal norms by a non-sustained event can
be ignored. The previously mentioned design iterations were also used to smooth transitions in the track
lay-out, so the acceleration reversal norms were met. Evaluation of reversals in the z-acceleration data was
not required, since the passengers are only subjected to positive vertical accelerations. The Matlab-script
that checks all aspects of the passenger acceleration data with respect to the tolerable limits is presented in
Appendix I.6. Please note that some sections of the script have been omitted to enhance readability.

(a) Longitudinal acceleration (b) Lateral acceleration

Figure 2.17: Comparison between the actual (blue) and admissible (red) accelerations for a passenger on
a fully-loaded gondola. The acceleration limits for the sustained and non-sustained events are coloured
respectively red and green, while the critical peak values and the corresponding limits are shown in purple
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2.8 Model Validation

A validation of the kinematic model is presented in this section, which will be performed by means of a
validation of the reaction forces sensed at the joints. A validation of the magnitude of these reaction forces
should namely be possible based on the masses, inertias and accelerations of the bodies that comprise the
vehicle multibody model. Please note that only the graphs corresponding to the first passenger occupancy
configuration (Figure 2.15a) are presented in this chapter. The reader is referred to Appendix J for the
graphs that depict the validation of forces and torques for other passenger occupancy configurations.

2.8.1 Forces at Pivot Joint

The forces exerted by the rotating part on the main chassis beam are sensed at the pivot joint. This joint
constrains the translational motion of the gondola relative to the chassis beam, since a revolute joint only
allows rotation around the z-axis. The rotating part includes all bodies that can rotate due to the allowance
of z-rotation at the pivot joint. Aside from the gondola, seats, and the restraints, the rotating part also
comprises the passengers. Hence, the total mass and centre of mass of the rotating part differ for each
passenger occupancy configuration. This means that for each configuration, the accelerations need to be
measured at a different centre of mass. Multiplication of these linear accelerations with the mass of the
rotating part yields the total force that is exerted on the chassis beam at the pivot joint. This total force
is decomposed in longitudinal (x), lateral (y), and vertical (z) forces by means of a local frame at the pivot
joint. As shown by Figure 2.18 for a fully-loaded gondola, the calculated forces are exactly aligned with the
measured forces at the pivot joint at each time-step. These reaction forces are therefore of equal magnitude
as the ones that can be expected based on the mass and accelerations of the rotating part.

Figure 2.18: Comparison between the measured and calculated forces exerted on the main chassis beam by
the rotating part

2.8.2 Torques at Pivot Joint

A similar analysis can be performed for the torques at the pivot joint. The previously-described forces should
be multiplied with the distance between the pivot joint and the centre of mass of the rotating part. These
distances function as a lever arm for the forces, and the relations presented in Equation 2.11 were found for
the torques at the pivot joint. Forces in two separate directions contribute to Tx and Ty when multiplied
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with a perpendicular lever arm. The distinct lever arm components result from a decomposition of the
total distance between the pivot joint and the centre of mass, which differs for each passenger occupancy
configuration. Hence, the values for rx, ry, and rz need to be determined for each individual configuration.
The rotation around the z-axis is not constrained by the pivot joint, so based on the nature of the joint Tz
is expected to equal zero at each time step.

Tx = (m · az · ry)− (m · ay · rz) Ty = (m · ax · rz)− (m · az · rx) Tz = 0 (2.11)

where m represents the mass of the rotating part (including passengers), a symbolizes the acceleration at
the centre of mass of the rotating part, and the lever arms are represented by the symbol r. Figure 2.19
depicts a comparison between the measured torques at the pivot joint and the torques that were calculated
according to the expressions in Equation 2.11. In a similar manner as for the forces, also the magnitudes
of the torques can be logically deducted from the forces at the pivot joint and the centre of mass of the
rotating part.

Figure 2.19: Comparison between the calculated torque and the torque measured at the pivot joint

2.8.3 Forces at Front and Rear Axle Joints

The main chassis beam and rotating part are carried by the front and rear axle. Hence, the reaction forces
exerted by these axles on the main chassis beam can be substantial. The front axle is connected to the
chassis beam by means of a spherical joint. This joint constrains all translations while the rotations are left
unconstrained. On the other hand, the motion between the rear axle and the chassis beam is facilitated by
a revolute joint. This type of joint constrains the translation along each of the three Cartesian axes, while
rotational motion is only allowed around the vertical z-axis. The forces applied at the pivot joint have been
validated at the previous section, while the accelerations at the centre of mass are also known. Hence, the
forces at the spherical and revolute joint can be validated by evaluating the equilibrium of forces acting on
the main chassis beam, as presented by Figure 2.20. The forces at the front axle, pivot joint, and rear axle
act in opposite direction with respect to the accelerations due to the constraints imposed by the joints and
the inertia of the bodies. Only the force acting in the x-direction on the underside of the chassis beam,
which represents the sum of driving force and lift force, acts in a similar direction as the x-acceleration.
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Figure 2.20: The forces acting on the main chassis beam have been decomposed in x (red), y (green), and
z-direction (blue) and they are represented by a solid line, while the accelerations at the centre of mass are
represented by a dashed line

Due to the application of a driving and lift force, separate validations of Fx at the front and rear axle
is complicated. It is namely unknown at which ratio the reaction forces at either the front or rear axle
compensate for the driving or lift force. Due to the dynamic nature of the analysis, a similar reasoning holds
for the forces acting in the y and z-direction. A simple determination of the reaction forces at respectively
the front and rear axle is consequently not possible. Hence, a validation is performed for the sum of forces
in the x, y, and z-direction, as shown in Equation 2.12.

max = −Fx,axes − Fx,pivot + Fdriving + Flift → Fx,axes = −max − Fx,pivot + Fdriving + Flift

may = −Fy,axes − Fy,pivot → Fy,axes = −may − Fy,pivot

maz = −Fz,axes − Fz,pivot → Fz,axes = −maz − Fz,pivot

(2.12)

where Fx,axes, Fy,axes, and Fz,axes represent the sum of forces acting at the front and rear axle.

Figure 2.21: Comparison between the measured and calculated sum of forces exerted by the axles on the
main chassis beam at the spherical joint (front) and revolute joint (rear)
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The expressions on the left-hand side of Equation 2.12 are rewritten in such a way that all known quantities
are on the right-hand side of the equations. The sum of reaction forces at the axles can be calculated using
the mass of the chassis beam (m), the accelerations at the centre of mass (a), the validated forces at the
pivot joint (Fpivot), and the driving (Fdriving) and lift force (Flift). A comparison between the measured and
calculated forces is presented in Figure 2.21. The alignment of the calculated and measured values proves
that the expressions in Equation 2.12 are correct.

2.8.4 Torques at Rear Axle Joint

Since the front axle is connected to the main chassis beam by means of a spherical joint, reaction torques
are only expected at the revolute joint between the rear axle and the chassis beam. The revolute joint
allows rotation around the z-axis though, so only reaction torques around the x and y-axis are exerted at
the revolute joint. The lever arms ry and rz of the spherical joint, centre of mass, and pivot joint with
respect to the rear revolute joint are negligible or even equal to zero. The lever arm rx with respect to the
rear revolute joint is large, but as mentioned before this type of joint does not constrain rotation around the
z-axis. Hence, the forces applied at the other joints and centre of mass do not induce a torque at the rear
revolute joint. Evidently, this also applies to the forces that are applied at the rear revolute joint itself. This
means that only the torques applied at the pivot joint could lead to a reaction torque at the rear revolute
joint, as shown in Equation 2.13.

Tx = −Tx,pivot · cos(θ) Ty = −Tx,pivot · sin(θ) Tz = 0 (2.13)

where θ represents the angle between the rear axle and a reference line perpendicular to the main chassis
beam. The orientation of the rear axle with respect to the chassis beam is of special interest for the validation
of Ty. The bogies can hinge freely around the rear axle, and therefore no reaction torque around the y-
axis is expected when the rear axle is orientated perpendicularly with respect to the chassis beam, which
corresponds to θ being equal to zero. On the other hand, when the angle θ does not equal zero, a reaction
torque Ty can be expected at the rear revolute joint. A comparison between the calculated and measured
torques is depicted in Figure 2.22. The reader is referred to Appendix J for a validation of the reaction
forces between the track and wheels, which were used for the calculation of the rolling and bearing frictional
forces earlier in this report.

Figure 2.22: Comparison between the measured and calculated torques exerted by the rear axle on the main
chassis beam at the revolute joint
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3. Results

3.1 Loadcases

The forces and torques exerted on the main chassis beam have all been validated in the previous chapter,
and hence these loads can be converted into loadcases that are required for a finite element analysis of the
main chassis beam. The kinematic model is solved using a fixed time-step equal to 0.01 second, and at each
time-step the forces, torques, and accelerations are known. Before the loadcases can be determined, the
load data is first sampled with a sample time equal to 0.25 seconds. Prior to the finite element analysis it is
unclear which passenger occupancy configuration results in the largest deformations and stresses. Therefore,
the force and torque data of all four configurations depicted in Figure 2.15 is considered for the compilation
of the loadcases. The duration of a single simulation equals 100 seconds, which implies that a data set with
either accelerations, forces, or torques consists of 1604 values.

Figure 3.1: Forces exerted at the pivot joint for four different passenger occupancy configurations, which
are used to compile the conventional (red) and optimized (blue) loadcases

Figure 3.2: Torques exerted at the pivot joint for four different passenger occupancy configurations, which
are used to compile the conventional (red) and optimized (blue) loadcases
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The forces and torques exerted at the pivot joint are depicted in respectively Figure 3.1 and 3.2. According
to the conventional methodology, the loadcases are described by the corners of the rectangular and cubical
envelopes shown in red in both figures. These two envelopes enclose all forces and torques that are applied
on the main chassis beam at the pivot joint, and hence these loadcases can be regarded as a sufficient test
for a structural assessment of the chassis beam. However, the conventional loadcases are described by forces
and torques with relatively large values in comparison to the actual values found in the data set. The
structural integrity of the main chassis beam is therefore tested according to loadcases that are more severe
than the actual loads induced on the beam. Hence, a different method is proposed that should result in a
more accurate description of the loads by the loadcases. The optimized method is characterized by envelopes
that coincide with the actual boundaries of the force and torque data, so the loadcases correspond to actual
loads exerted on the pivot joint.

The corners of the cubical envelope in Figure 3.1 are defined by the extreme values in each dimension.
For Fx and Fz, the lower and upper boundaries of the envelope are specified by respectively the minimum
and maximum value. On the other hand, the minimum and maximum values of Fy are practically similar
in magnitude, and hence the extreme value with the largest magnitude is selected as the boundary of the
envelope in y-direction. The boundaries of the cubical envelope in the x−z-plane are therefore characterized
by similar extreme values for Fy, aside from a different sign. The minimum and maximum values are also
nearly similar in magnitude for Tx in Figure 3.2. Hence, the left and right-hand boundaries of the rect-
angular envelope are also described by the extreme value with the largest magnitude. On the other hand,
the lower and upper boundaries of the rectangular envelope are described by respectively the minimum
and maximum value of Ty, similar to Fx and Fz in Figure 3.1. The cubical and rectangular envelopes are
defined by respectively eight and four corners, where each corner corresponds to a specific combination of
forces or torques. Twelve unique loadcases result from different combinations of forces and torques for the
conventional method.

The optimized loadcases are determined using a Matlab function named boundary, which results in an
envelope that coincides with the boundaries of the data set. A shrink factor equal to zero has been specified
for the boundary function, so the force and torque data is enclosed with the lowest possible number of corner
points. The optimized method results nevertheless in a total of 39 unique loadcases, which is a substantially
larger number than the number of loadcases for the conventional method. On the other hand, the most
severe loads induced on the main chassis beam are most accurately described by the optimized method.

Figure 3.3: Linear accelerations at the centre of mass of the chassis beam for four different passenger
occupancy configurations, where the corners of the red envelope prescribe the acceleration values used by
the conventional method
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Along with the forces and torques at the pivot joint, also the linear and angular accelerations at the centre
of mass are required for an adequate finite element analysis. The finite element model is namely validated
by means of the reaction forces at the front and rear axle, as will be elucidated at a later stage. Without
a specification of especially the linear acceleration values, the reaction forces at the front and rear axle
would not be similar for the kinematic model and the finite element model. For the optimized method,
the points on the envelopes coincide with force and moment values that are actually exerted at the pivot
joint. Hence, the linear and angular accelerations at the centre of mass of the chassis beam can be obtained
from the kinematic model for each corresponding loadcase. With regards to the conventional methodology,
the acceleration values are obtained using a different approach. In a similar manner as for the forces at
the pivot joint, a cubical envelope is drawn that encloses all linear acceleration data, as shown in Figure
3.3. The linear acceleration values at the corners of the envelope are subsequently matched with each of
the twelve conventional loadcases. A certain corner on the cubical force envelope corresponds to the same
corner on the cubical acceleration envelope, since it is presumed that the chassis beam accelerates in the
same direction as the direction in which the force is applied. Hence, each conventional loadcase is described
by a combination of force, torque, and linear acceleration values. No clear relation can be found between the
force and torque data of the conventional loadcases and the angular acceleration values though, and hence
the angular acceleration is set to zero for the conventional method. Please note that the angular acceleration
of the main chassis beam is typically small, so the effect of the angular acceleration on the results can be
regarded as minor in comparison to the linear accelerations. The forces, torques, and linear accelerations
for the conventional method are presented in Table 3.1, while the loadcases for the optimized method can
be found in Table K.1 and K.2 in Appendix K.

LC
Pivot Joint Centre of Mass

Fx [N] Fy [N] Fz [N] Tx [Nm] Tz [Nm] ax [m/s2] ay [m/s2] az [m/s2]

1 2363.39 -4517.69 -7131.68 -5136.38 -2105.14 2.79 -7.45 -8.74

2 2363.39 -14602.00 -7131.68 -5136.38 -2105.14 2.79 -17.63 -8.74

3 2363.39 -4517.69 7131.68 5486.47 -2105.14 2.79 -7.45 8.74

4 2363.39 -14602.00 7131.68 5486.47 -2105.14 2.79 -17.63 8.74

5 2363.39 -4517.69 -7131.68 -5136.38 3886.92 2.79 -7.45 -8.74

6 -4786.08 -4517.69 -7131.68 -5136.38 3886.92 -5.66 -7.45 -8.74

7 2363.39 -14602.00 -7131.68 -5136.38 3886.92 2.79 -17.63 -8.74

8 -4786.08 -14602.00 -7131.68 -5136.38 3886.92 -5.66 -17.63 -8.74

9 2363.39 -4517.69 7131.68 5486.47 3886.92 2.79 -7.45 8.74

10 -4786.08 -4517.69 7131.68 5486.47 3886.92 -5.66 -7.45 8.74

11 2363.39 -14602.00 7131.68 5486.47 3886.92 2.79 -17.63 8.74

12 -4786.08 -14602.00 7131.68 5486.47 3886.92 -5.66 -17.63 8.74

Table 3.1: Loadcases specified in terms of forces, torques, and accelerations for the conventional method
with respect to the reference frame used in Ansys

3.2 Constraints

The finite element analysis of the main chassis beam is performed in Ansys Mechanical APDL. The point-
and-click operations that are typically required by similar programs would be highly inconvenient due to
the application of a large number of loadcases. Manually entering the forces, torques, and accelerations
for each loadcase would namely be a very costly procedure in terms of time and effort. Ansys allows the
user to import a text-file containing all the commands that should be executed by the program. Instead of
entering all values by hand, loops can be scripted that dictate the program to repeat certain actions, such as
running a large number of loadcases. However, before the forces and torques can be applied on the model,
its constraints should be defined first.
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Once the geometry of the main chassis beam has been imported in Ansys, it is meshed using SOLID186

elements, which are higher order three-dimensional 20-node solid elements that exhibit quadratic displace-
ment behaviour. Hence, this element is defined by twenty nodes having three degrees of freedom per node,
which are the translations in the nodal x, y, and z-directions [8]. The elasticity modulus (E = 200 GPa),
Poisson ratio (ν = 0.3), and density (ρ = 7500 kg/m3) of steel are assigned to the solid elements.

Constraints should be defined at the spherical and revolute joint between the main chassis beam and respec-
tively the front and rear axle. Both axles cannot translate in the y and z-direction with respect to the track,
and hence the translation at the spherical and rear revolute joint should be constrained by prescribing a zero
displacement in these directions. On the other hand, modelling similar x-translation constraints in Ansys as
in the kinematic model appeared not be straightforward. Simultaneously constraining the x-translation at
the front and rear axle, or definition of the x-translation at both axles as a degree of freedom, both proved
to be incorrect approaches. An acceptable modelling technique for the x-translation constraints in Ansys
is the prescription of a zero x-translation at the rear axle, while the translation in the x-direction is left
unconstrained at the front axle. A spherical joint does not constrain any rotations, and hence only the y
and z-translation are constrained at the front axle. The connection between the main chassis beam and the
rear axle is facilitated by means of a revolute joint, which only allows rotation around the y-axis. Hence,
aside from constraining all translations, also the rotations around the x and z-axis are constrained at the
rear revolute joint. The rotation around the x-axis is constrained by prescribing a zero rotation, while the
procedure for constraining rotation around the z-axis is explained in the next paragraph.

Figure 3.4: The target surfaces and pilot nodes are depicted in respectively grey and black, where the
coordinate system in the centre of mass specifies the x (red), y (green) and z-direction (blue) used in Ansys

The constraints should be defined at the interface surfaces between the main chassis beam and the axles.
Specification of a zero displacement or rotation for each node on these interface surfaces does not yield correct
results though. For instance, constraining all translations at the rear revolute joint would automatically
constrain all rotations as well, while the y-rotation should actually be left free. The nodes on the interface
surface are namely all defined at different locations, which constrains any rotational motion if all nodal
translations are set equal to zero. Therefore, the model comprises three so-called pilot nodes. As shown
in Figure 3.4, the pilot nodes are located at the centre of the spherical joint, pivot joint, and rear revolute
joint. The location of the pilot node is important when rotations or torques are specified, which explains
the location of the pilot nodes at the centre of each joint. A TARGE170 element is used to represent a three-
dimensional target surface at the location of a pilot node for the associated contact elements. With regard
to the joints on the main chassis beam, the target surface could therefore be regarded as an element that
consists of a single node. The pilot node governs the motion of each corresponding rigid target surface, which
means that forces, torques, displacements, and rotations for the target surface can therefore be prescribed on
the pilot node [9]. Since the chassis beam geometry has been meshed with twenty-node solid elements, the
interface surfaces are overlaid with eight-node CONTA174 elements. These surface-to-surface contact elements
are used to define a deformable surface at the interface surfaces [10]. The contact between the target surfaces
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and the contact elements is prescribed as always bonded, which implies that a rigid connection is defined
between the pilot nodes and the corresponding interface surfaces. The y and z-translation are set equal to
zero for the pilot node at the centre of the spherical joint, while the x-translation and rotations are left
unconstrained. In addition to the x-translation, the interface surface at the spherical joint can therefore
freely pivot around the associated pilot node. This means that the behaviour of a spherical joint has been
imitated in the finite element model. Furthermore, the forces and torques at the pivot joint are exerted on
the associated pilot node. The application of the loads on the pivot joint is therefore modelled correctly
for the conventional and optimized method. For the revolute joint at the rear axle, the translations and
x-rotation of the associated pilot node are set equal to zero. One would also expect a zero z-rotation at
this pilot node, since the revolute joint only allows rotation around the y-axis. However, the hinge joints
between the rear axle and bogies allow the rear axle to rotate around its longitudinal axis with respect to
the track. The longitudinal axis coincides with the z-axis at the rear revolute joint, and hence the z-rotation
at the associated pilot node should not be fully constrained nor left unconstrained. It appears that the
z-rotation at the rear revolute joint is modelled most realistically by direct application of a torque Tz at the
associated pilot node. Under usual circumstances, the value of this torque is not known prior to the finite
element analysis. However, from the validation it is known that this torque can be calculated according to
the relation presented in Equation 3.1.

Tz = −Tx,pivot · sin(θ) (3.1)

The loadcases for the conventional and optimized method already include a value for Tx,pivot. Hence, this
parameter can be regarded as a known quantity. The value for θ can also be obtained for each loadcase of
the optimized method, since each loadcase corresponds to an actual configuration of the kinematic model.
However, with regard to the conventional method, the exact value for θ is not known beforehand for each
associated loadcase. Hence, the conventional method uses the maximum value of θ to calculate Tz, which
equals approximately 0.19 radians. The applied torques at the rear pilot node for each loadcase are shown
in Table K.3, while an overview of the applied loads and degrees of freedom is depicted in Figure 3.5.

Figure 3.5: Overview of the applied loads (arrows pointing inwards) and degrees of freedom (arrows pointing
outwards) of the pivot nodes, with the x (red), y (green) and z-direction (blue) indicated by colours

3.3 Reaction Forces

The finite element model is validated by means of a comparison between the reaction forces at the pilot
nodes and at the joints in the kinematic model. Ansys namely allows the user to print the reaction forces
at the constrained nodes. Only the reaction forces resulting from the optimized method can be compared
to the reaction forces computed by Ansys, since the reaction forces at the joints in the kinematic model are
known for the optimized loadcases only. As mentioned earlier, the method for constraining x-translations
at the front and rear pilot node is not in full agreement with the kinematic model. This means that a direct
comparison between the forces in x-direction at the front and rear pilot nodes is unfeasible. The values for
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Fx obtained by both the kinematic model and Ansys are therefore summed, so totals of the reaction forces
in x-direction can be compared to each other rather than the individual contributions at the front or rear
pilot nodes. External forces such as the brake or lift force are not modelled in the finite element model.
To achieve an adequate comparison with the reaction forces in x-direction from the kinematic model, the
external force should be added to the sum of Fx as obtained in Ansys. With the exception of Tz at the rear
revolute joint, Table 3.2 shows a comparison between the reaction forces and torques that result from the
kinematic model or Ansys. The value for Tz in Ansys can directly be computed according to the validated
relation presented in Equation 3.1. In other words, a validation of the kinematic model has already proven
that the torque applied at the rear pilot node in Ansys is equal to the reaction torque sensed by the kine-
matic model. A direct comparison between the reaction forces at the rear revolute joint could therefore be
regarded as redundant.

The difference between the reaction forces in Simscape and Ansys can be quantified by means of a measure
called the relative percentage difference (RPD). The expression used for calculating the RPD is shown in
Equation 3.2.

RPD =
|S −A|
|S|+|A|

2

(3.2)

where S and A represent the reaction force or torque from respectively the Simscape model and Ansys.
The value for RPD can range between zero and two, where the latter magnitude is only obtained if the
values for S and A are characterized by opposite signs. Large values for RPD are typically the result of
very low absolute values of the reaction forces. Hence, a minor difference between S and A could already
lead to a very large RPD value. Exceptionally large values for the relative percentage difference are usually
encountered when the value for S or A approaches zero. Therefore, for the calculation of the average RPD
values presented in Table 3.2, the values for the reaction forces were only considered if S and A complied
to the condition shown in Equation 3.3. Please note that the threshold value in this condition has to some
extent been chosen arbitrarily.

|S|+ |A|
2

> 5 (3.3)

Table 3.2 also shows the average RPD values when all data would be taken into account, including the
values that do not comply to the condition in Equation 3.3. In general, the enforcement of the condition
in Equation 3.3 results in RPD values that are more representative for the differences between the reaction
forces from the kinematic model and Ansys. The minimum and maximum RPD values are also presented
in Table 3.2. The RPD values for all individual loadcases are shown in Appendix K.3.

Load Type Minimum RPD Average RPD (All) Average RPD (> 5) Maximum RPD

Fx,total 0.54 % 30.23 % 30.23 % 115.90 %

Fy,front 1.02 % 5.70 % 5.70 % 28.67 %

Fz,front 0.09 % 22.64 % 4.41 % 200.00 %

Fy,rear 0.12 % 2.80 % 2.80 % 9.47 %

Fz,rear 0.14 % 23.48 % 1.44 % 200.00 %

Tx,rear 0.00 % 0.17 % 0.03 % 2.06 %

Table 3.2: Relative percentage difference between the reaction forces obtained in Simscape and Ansys

It can be deducted from the values presented in Table 3.2 that the relative percentage difference is typically
minor if the condition in Equation 3.3 is taken into account. However, for the sum of forces in x-direction
the relative percentage difference remains substantial. It appears that the implemented modelling of the
constraints in x-direction at the front and rear pilot nodes also leads to a flawed result for the sum of Fx,
aside from incorrect results for the individual contributions. Only the reaction force in x-direction at the
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rear pilot node contributes to the sum of Fx, and the absence of a x-translation constraint at the front pilot
node consequently results in an improper total reaction force in x-direction. Constraining the x-translation
at both pilot nodes is not deemed a viable alternative either, since it would lead to excessively large stresses
in the main chassis beam. It should again be mentioned that acceptable relative percentage difference values
were obtained for all other forces and torques. Overall, the reaction forces obtained with the kinematic model
and finite element model show a sufficient level of similarity. The described procedure for applying the loads
and constraints in the finite element model is therefore approved, despite the substantial relative percentage
difference for the sum of reaction forces in the x-direction. The finite element model in Ansys is identical
for the conventional and optimized method. Hence, the previously-described validation of reaction forces
from the optimized method implies that both the conventional and optimized loadcases can be imposed on
an approved finite element model.

3.4 Resultant Stresses and Displacements

Similar to the reaction forces, also the stresses and nodal displacements can be exported from Ansys for each
loadcase. The resultant maximum stresses and displacements for the conventional and optimized method
are presented in Table 3.3. The magnitudes of the stress and displacement values are relatively low due
to the robust design of the main chassis beam. It is therefore more relevant to consider the proportional
differences between the results instead of the absolute differences. Subtracting the result of the conventional
method from the value associated with the optimized method and subsequently dividing this result by the
respectively σmax and dmax of the conventional method, yields the proportional difference between both
methods. The resultant proportional differences are shown in Equation 3.4.

σmax,O − σmax,C

σmax,C
=
−2.99 [MPa]

30.21 [MPa]
= −9.90%

dmax,O − dmax,C

dmax,C
=
−0.021 [mm]

0.238 [mm]
= −8.82% (3.4)

where C and O denote respectively the conventional and optimized method. From the results in Equation
3.4 the conclusion can be drawn that for the same kinematic model, the maximum stress and displacement
values predicted by the optimized method are nearly ten percent lower than the results obtained with the
conventional method. Taking into consideration that the optimized method uses loads that are actually
applied on the kinematic model, one could argue that the loadcases imposed on the finite element model
by the conventional method are too severe. Earlier in the report it was stated that the conventional
approach would be too conservative, since the loadcases of the conventional method are relatively stringent
in comparison to the actual loads induced on the chassis beam. This statement is confirmed by the results
presented in Table 3.3. The resultant stresses and displacements for each individual loadcase are shown in
Table M.1 in Appendix M for both methods. The command lines required by Ansys for the performance of
the conventional and optimized analyses are generated by the Matlab script in Appendix L.

σmax [MPa] dmax [mm]
Conventional Optimized Conventional Optimized

Minimum 24.78 3.16 0.188 0.025

Average 27.61 13.11 0.211 0.113

Maximum 30.21 27.22 0.238 0.217

Table 3.3: Comparison between the maximum Von Mises stress values and nodal displacements of the
conventional and optimized method

3.5 Transient Analysis

The previous section has shown that the optimized method provides a more accurate prediction of the
stresses and displacements in the main chassis beam. The maximum stress and displacement values pre-
dicted by the optimized method are nearly ten percent lower than the values acquired with the conventional
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method. However, the resultant stresses and nodal displacements obtained with the optimized method could
be too optimistic, which could lead to an underestimation of the stress or strain levels in the main chassis
beam. The loadcases of the optimized method are separately applied to the model, and hence the finite
element analysis consists of distinct static structural analyses. On the other hand, a transient analysis also
considers the deformation of the main chassis beam caused by previous loadcases. The deformation of the
chassis beam and accumulated stress levels in the material are therefore taken into account by a transient
analysis when a new loadcase is applied. From this perspective, a transient analysis could be regarded as
a more realistic method for modelling the deformation of the main chassis beam. A comparison between
the results from the optimized method and the transient analysis should reveal if too optimistic results are
obtained by the optimized method.

The loadcases for the optimized and conventional method were obtained by creating two different envelopes
around the load data, which was acquired from the kinematic model with a sample time of 0.25 seconds.
These loadcases are representative for the entire load data set and all passenger occupancy configurations.
It therefore sufficed to consider only a limited number of loadcases during the separate static analyses that
were performed. On the other hand, a transient analysis is not characterized by a relatively small number
of loadcases, since all loads should be evaluated in the correct sequence. Additionally, the loads induced
on the main chassis beam should be evaluated by means of a separate transient analysis for each passenger
occupancy configuration. The load data set contains 401 loadcases for each passenger occupancy configura-
tion, and therefore 1604 loadcases should be evaluated in total by the transient analysis. This total number
of loadcases is orders of magnitude larger than the number of loadcases that had to be evaluated in case of
the conventional or optimized method.

Load Type Configuration Minimum RPD Average RPD (> 5) Maximum RPD

Fx,total

1 0.13 % 56.09 % 200.00 %
2 0.36 % 58.85 % 200.00 %
3 0.20 % 59.32 % 200.00 %
4 0.03 % 61.86 % 200.00 %

Fy,front

1 0.02 % 4.50 % 31.56 %
2 0.15 % 4.52 % 30.40 %
3 0.29 % 4.57 % 29.20 %
4 0.44 % 4.72 % 28.56 %

Fz,front

1 0.00 % 16.93 % 200.00 %
2 0.01 % 9.11 % 200.00 %
3 0.08 % 11.38 % 200.00 %
4 0.04 % 14.48 % 200.00 %

Fy,rear

1 0.01 % 1.59 % 19.21 %
2 0.00 % 1.59 % 19.26 %
3 0.01 % 1.65 % 19.31 %
4 0.00 % 1.70 % 18.71 %

Fz,rear

1 0.01 % 11.79 % 200.00 %
2 0.00 % 5.83 % 200.00 %
3 0.01 % 8.57 % 200.00 %
4 0.00 % 9.45 % 200.00 %

Tx,rear

1 0.00 % 8.58 % 200.00 %
2 0.00 % 0.78 % 35.50 %
3 0.00 % 3.25 % 200.00 %
4 0.00 % 0.87 % 155.45 %

Table 3.4: Relative percentage difference between the reaction forces obtained by the kinematic model in
Simulink and a transient finite element analysis in Ansys
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Except for the nature of the analysis, the finite element model used for the transient analysis is completely
identical to the one previously used for the conventional and optimized methods. The loads and constraints
are applied in a similar way as described in the previous chapters. Nevertheless, the reaction forces from
the kinematic model and Ansys are compared to each other to verify if the transient analysis is conducted
correctly. Table 3.4 shows the relative percentage difference between the reaction forces for all four passenger
occupancy configurations. The RPD values for the sum of forces in x-direction are again substantial, and
even twice the magnitude of the RPD values acquired for the optimized method. This significant difference
could be caused by the application of loads on a deformed beam during a transient analysis. The kinematic
model on the other hand always comprises an undeformed chassis beam, and the deformation of the beam
during the transient finite element analysis could therefore affect the reaction force values. A comparison
between the RPD values of both analyses also reveals significant differences for some other load types.
Aside from the sum of forces in x-direction, also the RPD values for Fz,front, Fz,rear, and Tx,rear significantly
deviate from the RPD values acquired with the optimized method. The different reaction forces lead to
RPD values that are multiple times larger for the transient finite element analysis. The forces applied in
the y-direction are an exception to this general pattern, since the RPD values resulting from the transient
analysis are comparable or even slightly lower than the RPD values shown in Table 3.2 for the optimized
method. Furthermore, the extent to which the RPD values from the transient analysis deviate from the
values of the optimized method also differs for each passenger occupancy configuration. The magnitude of
the main chassis beam deformation apparently differs for each passenger occupancy configuration, which
consequently leads to significantly different RPD values for each configuration. However, it cannot be stated
with absolute certainty that the effect of the beam deformation fully accounts for the large difference in
RPD values between both methods. Therefore, no clear explanation can be formulated that fully eluci-
dates the origin of the increased RPD values for the transient analysis. Aside from the RPD values for
the sum of forces in x-direction, the magnitudes of the RPD values for the other load types are in general
acceptable though. The finite element model used for the transient analysis is therefore approved, despite
the apparent increase in RPD values with respect to the optimized method. The acceptable RPD values
for the majority of the load types namely outweigh the large RPD values for the sum of forces in x-direction.

The Von Mises stresses and nodal displacements resulting from the transient analyses are presented in
respectively Table 3.5 and 3.6. The largest values for σmax and dmax in these tables are observed for the
first passenger occupancy configuration. This configuration is characterized by four passengers and thus
the largest mass of the rotating part, which explains the relatively large stress and displacement values for
this configuration. However, the mass of the rotating part is not the only parameter that contributes to the
stress and displacement levels, as can be deducted from a comparison between the second and third config-
uration. The second passenger occupancy configuration includes three passengers, while two passengers are
seated on one side of the gondola in case of the third configuration. The relatively large mass imbalance
associated with the third passenger configuration leads to larger stresses and displacements than the second
configuration, despite the lower total mass. The increased rotational velocity of the gondola due to the mass
imbalance apparently leads to larger stress and displacement values. This observation indicates that the
rotation of the gondola can significantly affect the stress and strain levels in the main chassis beam. Hence,
it was correct to consider all passenger occupancy configurations during the conventional, optimized, and
transient analysis.

σmax [MPa]
Configuration 1 Configuration 2 Configuration 3 Configuration 4

Minimum 3.53 3.47 2.80 3.03

Average 8.89 8.15 7.50 6.85

Maximum 27.23 24.80 25.45 18.27

Table 3.5: The maximum Von Mises stress values determined with the transient analysis
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dmax [mm]
Configuration 1 Configuration 2 Configuration 3 Configuration 4

Minimum 0.032 0.033 0.029 0.028

Average 0.088 0.083 0.076 0.070

Maximum 0.217 0.197 0.199 0.160

Table 3.6: The maximum nodal displacements determined with the transient analysis

A comparison between the results obtained with the transient analysis and the optimized method shows that
σmax and dmax are practically similar for both analyses. Hence, the optimized method with 39 loadcases
predicts similar maximum stress and displacement values as a transient analysis with 1604 loadcases. The
evaluation of the 39 loadcases of the optimized method takes approximately fifteen minutes, while the total
duration of calculating 1604 loadcases exceeds eight hours. If the prediction of the maximum stress and
displacement is main objective of the analysis, it is advisory to use the optimized method instead of the
conventional or transient analysis. The stress and displacement values obtained with the optimized method
namely have a negligible error with respect to a transient analysis.

For both the transient analysis and the optimized method, a loadcase that leads to a maximum stress
or strain level can be related to a certain passenger occupancy configuration and a specific moment in time.
Given a maximum stress or displacement, it is therefore possible to determine the corresponding passenger
occupancy configuration and the location of the vehicle along the track lay-out with both methods. Only the
transient analysis enables a graphical plot of the stress or displacement level as a function of time though, as
depicted in Figure 3.6 for the first passenger occupancy configuration. Appendix N presents the stress and
displacement levels as a function of time for the other three configurations. It can be deducted from these
graphs that aside from the maximum stress or displacement value, the passenger occupancy configuration
also affects the development of the stress or displacement as a function of time. In general, the stress and
displacement profiles are to a large extent similar. However, a comparison between these graphs also indi-
cates that different passenger occupancy configurations can significantly impact the maximum stress and
displacement levels at specific sections along the track lay-out. This again underscores the significance of
loads induced on the main chassis beam by spinning gondolas.

(a) Maximum Von Mises stress (b) Maximum nodal displacement

Figure 3.6: The maximum Von Mises stress and nodal displacement as a function of time for the first
passenger occupancy configuration

The deformation of the main chassis beam is shown alongside the kinematic model in Figure 3.7. The plot
of the kinematic model namely provides an indication for the location of the vehicle along the track lay-out.
The corresponding deformation plots depict the eight largest maximum Von Mises stress values found for
the first passenger configuration. Hence, these maximum values correspond with the eight largest peaks in
the stress profile depicted in Figure 3.6a. Please note that the deformation of the main chassis beam in
these plots has been exaggerated by means of a scale factor.
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(a) t = 21 s (b) t = 24 s

(c) t = 37 s (d) t = 43 s

(e) t = 54 s (f) t = 56 s

(g) t = 70 s (h) t = 73 s

Figure 3.7: The deformation of the main chassis beam for the first passenger occupancy configuration
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3.6 Mode-Superposition Method

A major advantage of the optimized method over the conventional method or a transient analysis is the
ability to accurately predict the maximum stress and displacement values while the computational effort is
limited. Aside from the maximum stress and displacement results, the optimized method also yields the
stress and displacement values for a substantial number of other loadcases. However, under some circum-
stances the stress and displacement levels at each discrete time-step can be of interest. A preliminary stress
analysis for each load in a certain loading cycle is for instance required by a fatigue analysis. An adequate
fatigue analysis could be performed if this loading cycle is represented by a sufficiently large number of load-
cases. A transient analysis consists of a vast number of load cases in chronological order, which implies that
a certain load cycle can be more accurately described by a transient analysis than by the optimized method.
A transient analysis namely results in a stress profile that can directly be used as input for a subsequent
fatigue analysis. The substantial computational time associated with a transient analysis typically restrains
the number of loadcases considered by such an analysis though. It would therefore be of great interest to
reduce the computational time of a transient analysis at a minimum cost of accuracy.

When analyzing the response of linear structures such as the main chassis beam, mode-superposition is
a powerful technique for reducing the computational time. The principle of mode-superposition is based on
the assumption that the displacement of the structure can be written as a linear combination of its eigen-
modes. Hence, this method requires a preliminary modal analysis, as the response of a structure can be
approximated by superposition of a limited number of eigenmodes. Higher modes may have an insignificant
influence on the dynamic behaviour of the structure, such that they could be neglected. Application of the
mode-superposition technique requires a good deal of understanding of the problem though. The key to
a successful performance of a mode-superposition analysis is to extract and consider all modes that may
contribute to the dynamic response.

3.6.1 Modal Analysis

(a) First eigenmode (f1 = 75.4 Hz)

(b) Second eigenmode (f2 = 117.9 Hz)

(c) Third eigenmode (f3 = 152.6 Hz)

Figure 3.8: The first three eigenmodes

The choice for a certain number of modes basically boils down
to a trade-off between accuracy and computational time. To
make a deliberate choice on the number of modes to consider,
the eigenmodes of the main chassis beam are determined by
means of a modal analysis. The model considered in the modal
analysis is similar to the model used in the full transient analy-
sis. Hence, the pilot nodes at the front spherical joint and rear
revolute joint are constrained in a similar way as described
earlier. The first three eigenmodes resulting from the modal
analysis are depicted in Figure 3.8, while the remaining mode
shapes associated with a frequency range up to a 1000 Hz are
presented in Appendix O.1. The eigenmodes beyond the thir-
teenth eigenmode are therefore presumed to have an insignif-
icant influence on the dynamic behaviour of the main chassis
beam. The first eigenmode of the main chassis beam is de-
scribed by transverse bending of the beam, while the second
and third eigenmode correspond to respectively vertical bend-
ing and torsion of the beam around its longitudinal axis. Since
these first three eigenmodes describe the first bending and tor-
sion modes of the beam, the first mode-superposition analysis
will comprise these three modes. The figures in Appendix O.1
show that higher bending or torsion modes can be identified at elevated frequencies. The next transverse
bending mode, vertical bending mode, and torsion mode are found at respectively the fourth, sixth, and
seventh eigenmode. The fifth eigenmode on the other hand, is characterized by longitudinal vibration of the
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main chassis beam. The second mode-superposition analysis will be performed using the first seven eigen-
modes. Higher bending and torsion mode shapes can be found up to the tenth and thirteenth eigenmode.
Hence, the mode-superposition analysis will also be performed using respectively the first ten en thirteen
eigenmodes.

3.6.2 Mode-Superposition Transient Analysis

The model that is considered during the mode-superposition transient analysis is the same as that described
for the full method, including the constraints, prescribed accelerations, and applied loads. As mentioned
earlier, four different mode-superposition transient analyses will be performed at which the modal expansion
is truncated at respectively the third, seventh, tenth, and thirteenth eigenmode. Since the expansion is per-
formed on these selected modes only, computational time will be saved in the subsequent mode-superposition
transient analysis. The resultant maximum Von Mises stresses and nodal displacement sums for the first
passenger occupancy configuration are presented in Figure 3.9 for the four mode-superposition transient
analyses and the full transient analysis. The reader is referred to Appendix O.2 for a comparison between
the results of the full and mode-superposition transient analyses for the other passenger occupancy config-
urations. From these comparisons it can be deducted that the mode-superposition method is incapable of
correctly predicting the stress or displacement values when truncated at the third eigenmode. Both the pre-
dicted stress and displacement values are substantially lower than the results obtained with a full transient
analysis. In terms of the predicted maximum nodal displacement sums, the results are significantly better
for the mode-superposition transient analysis with seven eigenmodes. However, the difference in predicted
maximum stress values with respect to the full transient analysis is still substantial. In comparison to the
number of eigenmodes that are required for an adequate representation of the displacements, more eigen-
modes must generally be used in the superposition to obtain appropriate stress results. Higher eigenmodes
are typically characterized by more complex mode shapes, which means that the derivatives of the displace-
ments and thus the strains are consequently higher as well. This explains the relatively low stress values
that are predicted by the mode-superposition transient analysis when truncated at three or seven modes.

(a) Maximum Von Mises stress (b) Maximum nodal displacement sum

Figure 3.9: Comparison between the full and mode-superposition transient analyses for the first passenger
occupancy configuration

For the mode-superposition transient analysis with ten or thirteen modes, the predicted stress and displace-
ment levels approach the values predicted by the full transient analysis. The mean deviations from the full
transient results are presented in Table 3.7. In agreement with the graphs in Figure 3.9, the mean deviation
from the full transient stress and displacement results is substantial for the mode-superposition analyses
with three or seven modes. These two mode-superposition analyses are therefore no longer regarded as
relevant, and the focus is shifted to the mode-superposition analyses with ten or thirteen modes. The mean
stress deviation is practically comparable for these two analyses, while the deviation from the displacement
levels predicted by the full transient analysis is in both cases negligible. For the mode superposition analysis
with ten modes, the mean deviation from the stress levels predicted by the full transient analysis is even
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slightly lower. On the other hand, the maximum stress deviation is significantly larger in comparison to
the analysis with thirteen eigenmodes. Hence, based on the results in Table 3.7, no clear preference can
be expressed for either of the two mode superposition analyses. Since both analyses yield practically simi-
lar results, the computational time is the only remaining factor that can make a clear distinction between
both mode-superposition analyses. The average computational time is three minutes longer for the mode-
superposition analysis with thirteen modes, which corresponds to a proportional increase of 16.2% with
respect to the analysis with ten eigenmodes. Therefore, the mode-superposition analysis with ten modes
(up to f = 700 Hz) appears to yield the best ratio between accuracy and computational time, while the
analysis with thirteen eigenmodes (up to f = 1000 Hz) gives slightly better overall results.

Nmodes
∆σeq,max [MPa] ∆dsum,max [mm]

CPU Time [min]
Mean Maximum Mean Maximum

3 1.84 9.08 5.088 · 10−3 23.40 · 10−3 13.75

7 0.67 4.12 1.385 · 10−3 5.270 · 10−3 17.50

10 0.37 2.97 0.352 · 10−3 1.955 · 10−3 18.50

13 0.38 2.14 0.221 · 10−3 2.010 · 10−3 21.50

Table 3.7: Deviation of the results obtained with the mode-superposition method with respect to the results
of a full-transient analysis, including the average computational time for each mode-superposition analysis

The maximum Von Mises stresses and nodal displacement sums are compared in Table 3.8 to the results
from a full transient analysis. The maximum stress and displacement levels are relatively low for the mode-
superposition analyses with three or seven modes, which is in alignment with the earlier observations in
Figure 3.9. The results are again practically similar for the mode-superposition analyses with ten and thir-
teen eigenmodes. Only a minor deviation can be found from the full transient results for both the resultant
maximum stress and displacement values. However, the predicted maximum stress and displacement levels
are still not as accurate as the values predicted by the optimized method. Furthermore, the computational
time associated with the optimized method is still substantially shorter than the computational times for
any of the mode-superposition transient analyses. The optimized method is therefore preferred if predicting
the maximum stress and displacement values is the primary objective of the analysis. On the other hand,
the mode-superposition analysis with ten or thirteen modes is most appropriate when also the stress and
displacement profiles are of interest. Both analyses can predict the stress and displacement profiles with
only a minor error and a dramatic reduction in computational time with respect to a full transient analysis.
The mode-superposition transient analysis with ten eigenmodes is especially suitable for loading cycles with
a large number of load cases, since the stress and displacement profiles are computed relatively accurately
and efficiently. The computational time reduces with over eighty percent, while the maximum stress and
displacement levels are calculated with an error of less than one percent. Furthermore, the predicted stress
and displacement profiles are characterized by a minor deviation from the results of a full transient analysis,
as mentioned earlier. Please note that the time associated with data export is not included in computa-
tional times in Tables 3.7 and 3.8. The stress and displacement results of the mode-superposition transient
analyses are presented in Appendix O.3 for each passenger occupancy configuration.

Nmodes σeq,max [MPa] dsum,max [mm] CPU Time [min]

Full 27.23 0.217 110

3 19.15 (-29.67%) 0.194 (-10.60%) 12 (-89.09%)

7 25.51 (-6.32%) 0.212 (-2.30%) 18 (-83.64%)

10 27.04 (-0.70%) 0.219 (+0.92%) 19 (-82.73%)

13 27.90 (+2.46%) 0.218 (+0.46%) 22 (-80.00%)

Table 3.8: Comparison between the mode-superposition methods and a full-transient analysis in terms of
the maximum Von Mises stress, maximum displacement sum, and computational time
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4. Conclusions

A kinematic model was developed in Simulink to determine the loads exerted on the main chassis beam of a
spinning rollercoaster vehicle. To create a model analogous to an actual spinning rollercoaster, the correct
masses and degrees of freedom are assigned to the bodies of the vehicle multibody model. After friction and
drag forces were added to the model, the passenger accelerations were compared to the regulatory limits to
improve the track lay-out. The compliance of the passenger accelerations to the corresponding limits implies
that the forces and moments sensed at the joints are of realistic magnitude. These loads are subsequently
validated before they can be applied on the finite element model of the main chassis beam. A successful
validation of all reaction forces and moments could be performed based on the masses and the accelerations
of the bodies that comprise the multibody model. Therefore, it can be concluded that the loads exerted on
the main chassis beam are correct and of realistic magnitude.

The forces and moments at the pivot joint are converted into static loadcases by means of two different
methodologies, namely the conventional and optimized method. The respectively twelve and thirty-nine
distinct static loadcases of these methods prescribe different load combinations that are applied on the finite
element model of the beam in Ansys. The constraints could only be prescribed correctly on so-called pilot
nodes, which are located at the centres of respectively the front spherical and rear revolute joint. The
loads are applied on an additional pilot node at the centre of the pivot joint. The finite element model is
validated by means of a comparison between the reaction forces at the pilot nodes and at the joints in the
kinematic model. The difference in terms of the reaction forces between both models is quantified by a mea-
sure called the relative percentage difference. When the contribution from outliers is omitted, the relative
percentage difference values are generally acceptable and therefore the finite element model can be approved.

The static loadcases of the conventional and optimized method are applied on the model, and the resultant
stress and displacement levels are compared to each other. The magnitudes of the stress and displacement
values are relatively low due to the robust design of the main chassis beam. Nonetheless, for loads from the
same kinematic model, the maximum stress and displacement values predicted by the optimized method
are nearly ten percent lower with respect to the conventional method. To verify the resultant maximum
stress and displacement values obtained with the optimized method, a transient analysis with a large num-
ber of loadcases is conducted. Contrary to the distinct static analyses of the conventional and optimized
methods, a transient analysis also considers the deformation of the main chassis beam and accumulated
stress levels caused by previous loadcases. A comparison between the results obtained with the optimized
method and the transient analysis shows that the maximum equivalent stress and displacement sum are
practically similar for both analyses. Thanks to a relatively accurate prediction of the maximum stress and
displacement with limited computational effort, it is therefore advisory to use the optimized method instead
of the conventional or transient analysis if these results are the primary objective of the analysis.

On the other hand, a transient analysis could be required if the resultant stress or displacement of each load
in a certain load cycle is of interest, rather than solely the maximum values. Contrary to the conventional
or optimized methods, a transient analysis can be used to perform a preliminary stress or displacement
analysis for a large number of consecutive loadcases. The long computational times associated with a full
transient analysis can be reduced by more than eighty percent if the mode-superposition technique is used.
A preliminary modal analysis is required by a mode-superposition transient analysis, so all eigenmodes
that may contribute to the dynamic response are linearly superpositioned. If ten or more eigenmodes of
the main chassis beam are taken into account, the stress and displacement profiles are predicted with only
a minor error and a dramatic reduction in computational time with respect to a full transient analysis.
Therefore, given that a sufficiently large number of eigenmodes is considered, it can be concluded that a
mode-superposition transient analysis yields a more favourable ratio between accuracy and computational
time.
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5. Recommendations

A general framework has been presented in which the loads from a kinematic model are converted into
loadcases, which are subsequently applied on a finite element model to determine the maximum stress and
displacement levels. The work presented in this thesis evidently leaves room for improvement, and hence
recommendations for further research are presented in this chapter. Certain methodologies used in this re-
search are also discussed in a general sense to clarify the main incentives for the recommended improvements.

Modelling an entire train: The current kinematic model comprises a single vehicle, whereas roller-
coasters often feature an entire train. A train typically reaches higher velocities than a single vehicle due to
the larger total mass, which could in turn lead to larger accelerations in case of an identical track lay-out.
The accelerations experienced by the passengers is consequently expected to approach the regulatory limits
more closely. The improvements to the track lay-out have fortunately resulted in a sufficiently large margin
between the combined acceleration factor and the corresponding limit. The regulatory limits are therefore
not expected to be violated in case of a short train consisting of only two or three coaches. However, certain
adjustments to the track lay-out could be required if a longer train is used or if the mass properties of
the vehicles or its passengers change. An extension of the kinematic model towards a full train could also
reveal the effects of the interaction between the separate coaches. The forces and moments at the spherical
joints between the coaches are not considered in the current finite element model, since the kinematic model
consists of a single vehicle only. Hence, the performance of a finite element analysis for the chassis beam of
each individual coach could indicate the influence of these loads on the stress and deformation levels of the
beams. Expanding the kinematic model to a full train could therefore prove to be a valuable addition to
the work presented in this thesis.

Modelling wheel-rail contact: The acceleration signals have to a certain extent been idealized due
to the use of point-on-curve constraints between the wheels and the track. Vibrations caused by the wheel-
rail contact do therefore not contribute to the acceleration signals. Hence, inclusion of the wheel-rail contact
in the kinematic model is suggested if the accelerations experienced by the passengers are of primary inter-
est. Additionally, the forces and moments exerted on the main chassis beam could also be affected by the
modelling of play between the wheels and rails. Hence, the inclusion of the wheel-rail contact in the model
might turn out to be relevant for the loads induced on the beam. For modern rollercoasters with a smooth
track geometry, this effect is presumed to be minor though.

More robust motion control: The kinematic scheme has been expanded with a number of blocks that
dictate the motion of the vehicle and gondola at certain track sections. The translational velocity of the ve-
hicle and the angular velocity of the gondola should follow prescribed reference signals at the station, lifthill,
and brake section. The loads on the main chassis beam are determined by the kinematic model for four
different passenger occupancy configurations, and for all four configurations the vehicle should be capable
of following the prescribed reference profiles. Determining the appropriate controller settings is a delicate
process due to the different vehicle properties for each configuration, especially with respect to the gondola
rotational inertia. These controller settings are to a large extent tailored to the vehicle properties and
the track geometry, and finding properly functioning controller settings and reference profiles has therefore
proven to be a trial-and-error process. It is undesirable if each adjustment to the vehicle geometry or track
lay-out should be followed by a costly iterative determination of the appropriate settings. Therefore, if the
loads for the entire ride are to be considered, more robust and sophisticated control schemes are required.
On the other hand, it is sufficient to only model the gravity run if the loads induced on the beam at the
lifthill, brake section, and station are known to be irrelevant. In that case, the vehicle can be released from
the top of the lifthill with an initial velocity equal to the chain velocity on the lifthill. The simulation can
subsequently be terminated when the vehicle reaches the brake section. Therefore, in light of the sensitive
controller settings, it is recommended to carefully consider the necessity of prescribing the vehicle velocity
at the sections outside the gravity run. Composing properly functioning control schemes has namely proven
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to be an expensive procedure in terms of time and effort. The addition of motion control has fortunately
turned out to be worthwhile, since the loads induced on the main chassis beam at for instance the brake
section have contributed to the loadcases considered in the finite element analysis.

Shorter sample time: The conversion of forces and moments at the pivot joint into loadcases for a
subsequent transient analysis occurred with a sample time equal to 0.25 seconds. The resultant stresses
and displacements of the transient analysis are practically equal to the results obtained with the optimized
method. The relatively long sample time could be a reason for this similarity, since the effect of transiently
evaluating the loadcases might be insignificant for such a long duration between consecutive loadcases. In
other words, the deformation of the beam and the accumulated stress levels could only affect the results for
a shorter sample time. This would in turn lead to a larger difference between the optimized results and the
results obtained with a more extensive transient analysis. However, the choice for the sample time used in
this thesis has predominantly been based on the computational time and the available memory. Even with a
relatively low sample frequency, the transient analysis features approximately 1600 loadcases in total when
all four passenger occupancy configurations are considered. For every ten loadcases that are evaluated, one
gigabyte of data is written to a results file. A transient analysis of all loadcases corresponding to a single
passenger occupancy configuration therefore results in a data file of approximately forty gigabytes, whose
size approaches the available disk space. Furthermore, the computational time of such a transient analysis
equals approximately two hours. If a computer with superior specifications is available, it is therefore rec-
ommended to examine the influence of a shorter sample time on the results of a transient analysis.

Using a finer mesh: An increase in computational power could also provide an opportunity for choosing a
finer mesh for the finite element model of the main chassis beam. A mesh refinement typically leads to more
accurate results, especially when the mesh is locally refined at for instance gaps or corners. However, the
mesh density of the finite element model in this thesis was predominantly restricted by a maximum number
of nodes, as specified by the license. Therefore, it is recommended to perform the finite element analyses
with software that does not impose restrictions on the maximum number of nodes in the model. A finite
element model with a denser mesh is namely expected to result in a more accurate prediction of the stress
and deformation levels.

Expansion of the finite element model: Increased computational power in combination with can-
celled license restrictions could also enable an expansion of the model towards an assembly. A rotational
constraint at the rear axle could not be modelled in exact agreement to the kinematic model. This issue was
circumvented by a direct application of the reaction torque, whose relation with other parameters became
clear from the model validation. An inclusion of the rear axle in the finite element model could provide a
more elegant solution to this problem, as the joint between the beam and the rear axle would be modelled
more accurately. The pilot nodes at the outer faces of the rear axle should only be assigned a rotational
degree of freedom around the longitudinal axis. If the angle between the rear axle and beam is not perpen-
dicular, the reaction torque at the rear pilot node is expected to be in agreement with the reaction torque
from the kinematic model. Hence, a direct application of the torque at the rear axle is no longer required
for an accurate description of the rear revolute joint. The model could be extended even further for the
attainment of realistic reaction forces in longitudinal direction at both axles. The longitudinal translation
is namely constrained at the rear axle and set as a degree of freedom at front axle, which results in flawed
reaction forces. The complexity of the finite element model is expected to increase dramatically though,
and the exact implementation is therefore not further elaborated on. Simpler methods could exist that also
allow an accurate modelling of the constraints in longitudinal direction at the front and rear axle.

Less robust beam design: The difference between the resultant stress and displacement values for the
conventional and optimized method is small due to the robust design of the main chassis beam. It is there-
fore suggested to perform a similar analysis with a less robust beam design, so the difference between both
methods can be distinguished more clearly in terms of the results. Aside from an increase in the absolute
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stress and displacement levels, the proportional difference between both methods might also increase. Con-
sidering a less robust beam design could reveal opportunities for a redesign of the main chassis beam, which
would be a valuable addition to the work presented in this thesis.

Including safety factors: The multiplication of the forces and moments by safety factors is expected
to result in increased stress and displacement levels. The safety factors were not considered to keep the
comparison between both methods as genuine as possible. However, in reality the safety factors account for
phenomena whose influence is unknown or hard to implement in the model, such as track irregularities due
to production inaccuracies. Hence, the current research can be extended with the inclusion of safety factors,
so their influence on the results can be examined.

Modelling flexible bodies: The modelling of the main chassis beam as a flexible body in the kine-
matic model would without doubt be a highly interesting addition to this research. The multibody model
considered in this thesis namely assumes that the beam does not deform, since each body is treated as a
rigid unit. The rigid-body approximation generally allows for relatively fast simulations with a very ac-
ceptable accuracy due to the minor deformation of most bodies. Although the transient analysis revealed
that the deformation of the main chassis beam is relatively small as well, it could be interesting to ex-
amine the precise effect of the rigid-body assumption. In case of the transient analysis presented in this
thesis, the loads from a rigid-body kinematic analysis are namely applied on the finite element model of
the beam in its deformed state. This implies that the forces and moments exerted on the deformed beam
could deviate slightly from the loads that would result from a flexible-body kinematic analysis. In other
words, no coupling is present between the body deformation and the multibody dynamic analysis, since
the deformation of the main chassis beam is only determined after the rigid-body kinematic analysis has
been completed. Although the modelling of flexible bodies in the Simscape multibody package can prove
to be a rather cumbersome procedure, the inclusion of flexibility in the multibody model is known to be
possible. The deformed shape of a certain body, including the altered inertia properties, can therefore be
directly considered in the dynamic analysis at each time-step. Determining the corresponding equivalent
stress levels in the post-processing stage could prove to be a rather complex and computationally expensive
procedure though. Certain software packages such as Adams fortunately feature a flexible body integration
in a multibody dynamic analysis, so a multibody dynamic stress simulation is directly available to the user.
The effect of the coupling can be assessed by comparing the resultant stress and deformation levels from
a flexible analysis with the results presented in this thesis. Furthermore, the modelling of a flexible track
could also prove to be a valuable addition to the work presented in this research. The current model namely
assumes a rigid track, while an actual rollercoaster track is characterized by a finite stiffness. Including
a flexible track in the model would reveal the effect of track flexibility on the results, since the coupling
between track and vehicle dynamics would be present in the model. However, this coupling is also expected
to substantially increase the computational time.

Validation with measurement data: The forces and torques at the joints are currently validated by
evaluating their relation with the mass of each component and the acceleration at each centre of mass.
Hence, this validation procedure focuses in essence on the existence of logical relations between various
types of output from the same kinematic model. The validation procedure could therefore be improved with
the use of actual acceleration measurement data from an existing spinning rollercoaster. This approach
requires reliable acceleration measurements and a model with an accurate description of the spinning roller-
coaster track geometry. The resultant acceleration values from these measurements can then be compared
to the accelerations determined by the kinematic model. If the measured and calculated acceleration values
are in agreement with each other, the accelerations and masses can be multiplied in a similar manner as
presented in this report to validate the calculated forces and torques. However, it should be noted that an
adequate comparison between the measured and calculated acceleration signals is challenging due to the
influence of phenomena that are not accounted for by the model, such as track irregularities or wheel-rail
contact.

43



Bibliography

[1] Silver Dollar City. Time Traveler, 2019.

[2] Mathworks. Spline, 2018.

[3] Joao Pombo and Jorge Ambrosio. Modelling tracks for roller coaster dynamics. International Journal
of Vehicle Design, 45(4):470–500, 2007.

[4] Rene Baptist. Modelling the Vibrational Behaviour of Roller Coaster Trains, 2018.

[5] Andreas Simonis and Christian Schindler. Measuring the Wheel-Rail Forces of a Roller Coaster. Journal
of Sensors and Sensor Systems, pages 469–479, 2018.

[6] Mathworks. Point On Curve Constraint, 2018.

[7] Yunus A. Cengel and Afshin J. Ghajar. Heat and Mass Transfer Fundamentals and Applications.
McGraw-Hill Education, New York, 5th edition, 2015.

[8] Ansys. SOLID186 Element Description, 2019.

[9] Ansys. Defining the Target Surface, 2019.

[10] Ansys. CONTA174 Element Description, 2019.

[11] Anton van Beek. Advanced Engineering Design: Lifetime Performance and Reliability. Delft University
of Technology, 1st edition, 2006.

[12] B.F. Bloemendaal. Modelling and Measurement of Rolling Resistance on a Rollercoaster, 2009.

[13] Millennium Elastomers. Para-Phenylene Diisocyanate, 2019.

[14] Jignesh P. Sheth, Derek B. Klinedinst, Garth L. Wilkes, Iskender Yilgor, and Emel Yilgor. Role of
Chain Symmetry and Hydrogen Bonding in Segmented Copolymers with Monodisperse Hard Segments,
2005.

[15] H.J. Qi and M.C. Boyce. Stress-Strain Behavior of Thermoplastic Polyurethane, 2004.

[16] SKF. The SKF Model for Calculating the Frictional Moment, 2019.

[17] G.K. Batchelor. Introduction to Fluid Dynamics, 1967.

44



Appendices

A. Simulink Model

A.1 Main Scheme

Figure A.1: Main scheme of the Simulink model
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A.2 Front-left Wheel Carrier Schemes

Figure A.2: Main Simulink scheme of the front-left wheel carrier, corresponding to the block named Front
Left Wheel Carrier in the main scheme (Figure A.1)

Figure A.3: Simulink sub-scheme of the front-left wheel carrier, corresponding to the block named Front
Left Wheel Carrier in Figure A.2

46



A.3 Front-right Wheel Carrier Schemes

Figure A.4: Main Simulink scheme of the front-right wheel carrier, corresponding to the block named Front
Right Wheel Carrier in the main scheme (Figure A.1)

Figure A.5: Simulink sub-scheme of the front-right wheel carrier, corresponding to the block named Front
Right Wheel Carrier in Figure A.4
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A.4 Rear-left Wheel Carrier Schemes

Figure A.6: Main Simulink scheme of the rear-left wheel carrier, corresponding to the block named Rear
Left Wheel Carrier in the main scheme (Figure A.1)

Figure A.7: Simulink sub-scheme of the rear-left wheel carrier, corresponding to the block named Rear Left
Wheel Carrier in Figure A.6
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A.5 Rear-right Wheel Carrier Schemes

Figure A.8: Main Simulink scheme of the rear-right wheel carrier, corresponding to the block named Rear
Right Wheel Carrier in the main scheme (Figure A.1)

Figure A.9: Simulink sub-scheme of the rear-right wheel carrier, corresponding to the block named Rear
Right Wheel Carrier in Figure A.8
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A.6 Friction Force Schemes

Figure A.10: Simulink scheme for the front-left bogie (corresponding to the block named Rolling and Bearing
Friction Force at FLW1 in Figure A.3) in which the frictional force is determined for a single running wheel,
guide wheel, and upstop wheel (the schemes for the remaining wheels and the rear-right bogie are equivalent)
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Figure A.11: Simulink scheme for the front-right bogie (corresponding to the block named Rolling and
Bearing Friction Force at FRW1 in Figure A.5) in which the frictional force is determined for a single
running wheel, guide wheel, and upstop wheel (the schemes for the remaining wheels and the rear-left bogie
are equivalent)
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A.7 Front Axle Scheme

Figure A.12: Simulink scheme for the front axle, corresponding to the block named Front Axle in Figure
A.1

A.8 Rear Axle Scheme

Figure A.13: Simulink scheme for the rear axle, corresponding to the block named Rear Axle in Figure A.1
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A.9 Gondola Scheme

Figure A.14: Simulink scheme for the gondola, corresponding to the block named Gondola in Figure A.1
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A.10 Main Chassis Beam Scheme

Figure A.15: Main Simulink scheme for the main chassis beam, corresponding to the block named Main
Chassis Beam in Figure A.1

A.11 Air Drag Force Scheme

Figure A.16: Simulink scheme for determining the drag force, corresponding to the block named Air Drag
Force in Figure A.15
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A.12 Beam Scheme

Figure A.17: Simulink sub-scheme for the main chassis beam, corresponding to the block named Chassis
Beam in Figure A.15
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A.13 Pivot Bearing Friction Force Scheme

Figure A.18: Simulink scheme for determining the bearing friction force at the pivot joint, corresponding to
the block named Pivot Bearing Friction Force in Figure A.15
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A.14 Output Scheme

Figure A.19: Simulink scheme for determining the accelerations at the pivot point and the passengers,
corresponding to the block named Output in Figure A.1
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A.15 Motion Control Scheme

Figure A.20: Simulink scheme for motion control at various track segments, corresponding to the block
named Motion Control Brake Section, Station, Lifthill in Figure A.1

A.16 Translation Control Brake Section Scheme

Figure A.21: Simulink scheme for translation control at the brake section, corresponding to the block named
Translation Control Brake Section in Figure A.20
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A.17 Translation Control Station Scheme

Figure A.22: Simulink scheme for translation control at the station, corresponding to the block named
Translation Control Station in Figure A.20
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A.18 Translation Control Lifthill Scheme

Figure A.23: Simulink scheme for translation control along the lifthill, corresponding to the block named
Translation Control Lifthill in Figure A.20
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A.19 Rotation Control Brake Section Scheme

Figure A.24: Simulink scheme for rotation control at the brake section, corresponding to the block named
Rotation Control Brake Section in Figure A.20
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A.20 Rotation Control Station Scheme

Figure A.25: Simulink scheme for rotation control at the station entry, corresponding to the block named
Rotation Control Station Entry in Figure A.20
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A.21 Rotation Control Lifthill Scheme

Figure A.26: Simulink scheme for rotation control at the station exit and lifthill, corresponding to the block
named Rotation Control Station Exit and Lifthill in Figure A.20

A.22 Rotation Control Turnaround

Figure A.27: Simulink scheme for rotation control at the turnaround between the brake section and the
station, corresponding to the block named Rotation Control Turnaround in Figure A.20

63



B. Matlab Functions in Simulink Model

B.1 Copy of FuncRunning.m

The output of this function consists of the bearing and rolling frictional forces for a running wheel. The
script in this function is based on the theory explained in Appendices E and F.

1 function [mu fr running FLW1,F fr rolling running,F fr bearing running] = fcn(v,N y)
2

3 % Define the y-component of normal force as the external radial load (N):
4 F r = N y;
5 % Set the axial load equal to zero (N):
6 F a = 0;
7 % Specify the wheel radius (m):
8 R x = 0.12625;
9

10 %% Calculation of the rolling frictional force
11

12 % Poisson's Ratio for Polyurethane PPDI:
13 nu 1 = 0.48;
14 % Elasticity Modulus for Polyurethane PPDI:
15 E 1 = 55e6; %Pa
16 % Poisson's Ratio for steel:
17 nu 2 = 0.3;
18 % Elasticity Modulus for steel (Pa):
19 E 2 = 200e9;
20 % Determine the inverse effective Elasticity Modulus:
21 E ef inv = ((1-nu 1ˆ2)/(2*E 1)) + ((1-nu 2ˆ2)/(2*E 2));
22 % Determine the effective Elasticity Modulus:
23 E ef = 1/E ef inv; %Pa
24

25 % Track radius (m):
26 R z = 0.0675;
27 % Determine the inverse effective radius:
28 R ef inv = (1/R x) + (1/R z);
29 % Determine the effective radius:
30 R ef = 1/R ef inv;
31

32 % Determine the value for the parameter named lambda:
33 lambda = min([(R x/R z),(R z/R x)]);
34 % Determine the inverse elastic coefficient:
35 kappa inv = 1 + sqrt(log(16/lambda)/(2*lambda)) - sqrt(log(4) + 0.16*log(lambda));
36 % Determine the elastic coefficient:
37 kappa = 1/kappa inv;
38 % Determine the values for the asterisk semi-axes (m):
39 a ast = kappa*nthroot((1 + ((2*(1-kappaˆ2))/(pi*kappaˆ2)) - 0.25*log(kappa)),3);
40 b ast = a ast/kappa;
41 % Determine the lengths of the semi-axes (m):
42 a = a ast*nthroot(((3*F r*R ef)/E ef),3);
43 b = b ast*nthroot(((3*F r*R ef)/E ef),3);
44

45 % Value for the logarithmic decrement is provided to reduce computational time:
46 lambda s = 0.141300172376344;
47 % Determining the shear loss factor:
48 alpha s = (1-exp(-lambda s))/(1+exp(-lambda s));
49 % The generalized compensation factor:
50 f rs = 2.5;
51 % Determining the hysteresis loss factor:
52 alpha r = f rs*alpha s;
53
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54 % Determine the rolling friction coefficient:
55 mu fr running FLW1 = (3*alpha r*b)/(16*R x);
56 % Determine the rolling friction force:
57 F fr rolling running = F r*mu fr running FLW1;
58

59 %% Calculation of the bearing frictional force
60

61 % Bearing bore diameter (mm) of tapered roller bearings (single row) SKF 32912:
62 d = 60;
63 % Bearing outside diameter (mm) of tapered roller bearings (single row) SKF 32912:
64 D = 85;
65

66 % Estimation of actual operating viscosity of the oil or the base oil ...
67 % of the grease (mmˆ2/s), based on the base oil viscosity of ...
68 % Kluber Isoflex Topas NB 52 at 40 degrees Celsius:
69 nu = 30;
70 % Replenishment/starvation constant (for the assumption of a low level oil bath):
71 K rs = 3e-8;
72 % Bearing type related geometric constant (for the assumption of tapered roller bearings):
73 K z = 6;
74 % Geometric constant for rolling frictional moments (for bearing series 329):
75 R 1 = 2.31e-6;
76 % Geometric constant for rolling frictional moments (for bearing series 329):
77 R 2 = 10.9;
78 % Calculation factor (for SKF32912 bearings):
79 Y = 1.8;
80

81 % Sliding frictional moment (for bearing series 329):
82 S 1 = 0.009;
83 % Sliding frictional moment (for bearing series 329):
84 S 2 = 2;
85 % Constant depending on movement (for the rotational speed being larger than zero):
86 mu bl = 0.12;
87 % Sliding friction coefficient in full-film conditions (for tapered roller bearings):
88 mu EHL = 0.002;
89

90 % Bearing mean diameter:
91 d m = 0.5*(d+D);
92 % Rotational speed (r/min):
93 n = (60*v)/(2*pi*R x);
94 % Rolling frictional variable:
95 G rr = R 1*(abs(d m)ˆ2.38)*(abs(F r + (R 2*Y*F a))ˆ0.31);
96 % Inlet shear heating reduction factor:
97 phi ish = 1/(1 + (1.84e-9)*(abs(n*d m)ˆ1.28)*(abs(nu)ˆ0.64));
98 % Kinematic replenishment/starvation reduction factor:
99 phi rs = 1/exp(K rs*nu*n*(d+D)*sqrt(K z/(2*(D-d))));

100 % Rolling frictional moment (Nmm):
101 M rr = abs(phi ish*phi rs*G rr*(nu*n))ˆ0.6;
102

103 % Sliding frictional variable:
104 G sl = S 1*(abs(d m)ˆ0.82)*(F r + S 2*Y*F a);
105 % Weighing factor for the sliding friction coefficient:
106 phi bl = 1/exp(2.6e-8*(abs(n*nu)ˆ1.4)*d m);
107 % Sliding friction coefficient:
108 mu sl = phi bl*mu bl + (1-phi bl)*mu EHL;
109 % Sliding frictional moment (Nmm):
110 M sl = G sl*mu sl;
111

112 % Total bearing frictional moment (frictional moments of seals and drag losses ...
113 % are neglected):
114 M fr bearing running = 2*(M rr + M sl)*1e-3; %Nm
115 % Total bearing frictional force (N):
116 F fr bearing running = M fr bearing running/(R z+R x);
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The script in function FuncRunning.m applies to the first running wheel on the front-left bogie. For the
other wheels and wheel carriers, the frictional values are determined analogous to the procedure shown in
function FuncRunning.m. Certain input parameters such as the wheel radii or bearing dimensions can differ
for each type of wheel, as shown in Appendices E and F. The function FuncPivot.m in the block named
Pivot Bearing Friction Force is similar to the second half of FuncRunning.m.

B.2 Copy of GondolaDragForce.m

The output of this function is the drag force acting on the gondola. The script in this function is based on
the theory explained in Appendix G. The spline coefficients are already provided in the script to reduce the
computational time.

1 function Drag Force Gondola = GondolaDragForce(velocity,alpha)
2

3 %% Input
4

5 % Specify the air density (kg/mˆ3):
6 rho = 1.2;
7

8 %% Gondola Frontal Surface Calculation
9

10 % Take the absolute value of the rotation:
11 rot = mod(abs((alpha/pi)*180),180);
12

13 % The frontal surface is specified for angles in the domain [0,360] with a
14 % stepsize of 15 degrees:
15 Rotation = [0:15:180]; %deg
16 A front = [1.816,1.884,1.969,2.107,2.153,1.983,1.666, ...
17 1.983,2.153,2.107,1.969,1.884,1.816]; %mˆ2
18 % Use cubic spline data interpolation between the data points:
19 SplineDatacoefs = [-1.49310541310540e-05,0.000526188034188032,0,1.816;
20 9.53390313390309e-06,-0.000145709401709400,0.00570717948717948,1.884;
21 -1.25378917378918e-05,0.000283316239316239,0.00777128205128207,1.969;
22 -2.34529914529908e-06,-0.000280888888888890,0.00780769230769230,2.107;
23 -1.48216524216525e-05,-0.000386427350427349,-0.00220205128205128,2.153;
24 8.20763532763534e-05,-0.00105340170940171,-0.0237994871794872,1.983;
25 -8.20763532763534e-05,0.00264003418803419,-8.67361737988404e-19,1.666;
26 1.48216524216525e-05,-0.00105340170940171,0.0237994871794872,1.983;
27 2.34529914529908e-06,-0.000386427350427349,0.00220205128205128,2.153;
28 1.25378917378918e-05,-0.000280888888888890,-0.00780769230769230,2.107;
29 -9.53390313390309e-06,0.000283316239316239,-0.00777128205128207,1.969;
30 1.49310541310540e-05,-0.000145709401709400,-0.00570717948717948,1.884];
31

32 % Determine the interval corresponding to the specified rotation angle:
33 diff = abs(Rotation-rot);
34 [minf1,idxf1] = min(diff);
35 if idxf1 == 1
36 idxf2 = idxf1+1;
37 minf2 = diff(idxf2);
38 elseif idxf1 == length(diff)
39 idxf2 = idxf1-1;
40 minf2 = diff(idxf2);
41 else
42 if diff(idxf1-1) ≤ diff(idxf1+1)
43 idxf2 = idxf1-1;
44 minf2 = diff(idxf2);
45 else
46 idxf2 = idxf1+1;
47 minf2 = diff(idxf2);
48 end
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49 end
50

51 % Determine the index corresponding to the lower endpoint of the interval:
52 lowidxf = min(idxf1,idxf2);
53 lowvalf = Rotation(lowidxf);
54 % Define the polynomial coefficients corresponding to the interval:
55 a = SplineDatacoefs(lowidxf,1);
56 b = SplineDatacoefs(lowidxf,2);
57 c = SplineDatacoefs(lowidxf,3);
58 d = SplineDatacoefs(lowidxf,4);
59

60 % Calculate the frontal surface corresponding to the specified rotation angle:
61 Frontal Surface = a*(rot-lowvalf)ˆ3 + b*(rot-lowvalf)ˆ2 + c*(rot-lowvalf) + d;
62

63 %% Gondola Drag Coefficient Calculation
64

65 % Specify the velocities at which the drag coefficients are known:
66 v = [0,3.15,6.3,9.4,13.15,20];
67 % Specify the corresponding drag coefficients for a rotation of zero degrees:
68 Cd0 = [1.011,1.066,1.070,1.075,1.043,1.142];
69 % Specify the corresponding drag coefficients for a rotation of ninety degrees:
70 Cd90 = [1.499,1.571,1.613,1.621,1.636,1.619];
71 % Store the cubic interpolation spline data for both orientations:
72 SplineData0coefs = [-0.00211273538432178,0.0121980743845239,0,1.011;
73 0.00118717454690726,-0.00776727499731689,0.0139570180697022,1.066;
74 -0.000983270192073580,0.00345152447095673,0.000362403911667667,1.07;
75 0.00137961399857970,-0.00569288831532757,-0.00658582400588194,1.075;
76 -0.00161376342356207,0.00982776916869401,0.00891997919424224,1.043;
77 0.000761927724491951,-0.00675365000840627,0.0194488373182278,1.124];
78 SplineData90coefs = [-0.00198793059623423,0.0135182172058022,0,1.499;
79 0.000396838375944305,-0.00526772692861127,0.0259890443731515,1.571;
80 0.000277832189164854,-0.00151760427593759,0.00461525107882259,1.613;
81 -0.000228578712461560,0.00106623508329556,0.00321600658163231,1.621;
82 0.000131465071931999,-0.00150527543189699,0.00156960527437695,1.636;
83 0.000146998732171020,-0.000154471817795695,-0.00411502905582050,1.629];
84

85 % Determine the interpolation interval corresponding to the specified velocity:
86 difd = abs(v-velocity);
87 [mind1,idxd1] = min(difd);
88 if idxd1 == 1
89 idxd2 = idxd1+1;
90 mind2 = difd(idxd2);
91 elseif idxd1 == length(difd)
92 idxd2 = idxd1-1;
93 mind2 = difd(idxd2);
94 else
95 if difd(idxd1-1) ≤ difd(idxd1+1)
96 idxd2 = idxd1-1;
97 mind2 = difd(idxd2);
98 else
99 idxd2 = idxd1+1;

100 mind2 = difd(idxd2);
101 end
102 end
103

104 % Determine the index corresponding to the lower endpoint of the interval:
105 lowidxd = min(idxd1,idxd2);
106 % Determine the value at this index:
107 lowvald = v(lowidxd);
108 % Define the polynomial coefficients of the interval for a zero degree rotation:
109 a0 = SplineData0coefs(lowidxd,1);
110 b0 = SplineData0coefs(lowidxd,2);
111 c0 = SplineData0coefs(lowidxd,3);
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112 d0 = SplineData0coefs(lowidxd,4);
113 % Define the polynomial coefficients of the interval for a ninety degree rotation:
114 a90 = SplineData90coefs(lowidxd,1);
115 b90 = SplineData90coefs(lowidxd,2);
116 c90 = SplineData90coefs(lowidxd,3);
117 d90 = SplineData90coefs(lowidxd,4);
118

119 % Calculate the drag coefficient corresponding to the specified velocity at
120 % respectively a zero and ninety degree rotation:
121 dragcoeff0 = a0*(velocity-lowvald)ˆ3 + b0*(velocity-lowvald)ˆ2 + c0*(velocity-lowvald) ...

+ d0;
122 dragcoeff90 = a90*(velocity-lowvald)ˆ3 + b90*(velocity-lowvald)ˆ2 + ...

c90*(velocity-lowvald) + d90;
123

124 % Determine the cubic interpolation spline for the data at the specified velocity:
125 SplineDatav = spline([0,90,180],[0,dragcoeff0,dragcoeff90,dragcoeff0,0]);
126

127 % Define the polynomial coefficients for the first interval:
128 av1 = SplineDatav.coefs(1,1);
129 bv1 = SplineDatav.coefs(1,2);
130 cv1 = SplineDatav.coefs(1,3);
131 dv1 = SplineDatav.coefs(1,4);
132 % Define the polynomial coefficients for the second interval:
133 av2 = SplineDatav.coefs(2,1);
134 bv2 = SplineDatav.coefs(2,2);
135 cv2 = SplineDatav.coefs(2,3);
136 dv2 = SplineDatav.coefs(2,4);
137

138 % Calculate the drag coefficient for the specified velocity and rotation:
139 if (0 ≤ rot) && (rot ≤ 90)
140 Drag Coefficient = av1*rotˆ3 + bv1*rotˆ2 + cv1*rot + dv1;
141 else
142 Drag Coefficient = av2*(rot-90)ˆ3 + bv2*(rot-90)ˆ2 + cv2*(rot-90) + dv2;
143 end
144

145 %% Gondola Drag Force Calculation
146

147 Drag Force Gondola = 0.5*Drag Coefficient*rho*(velocityˆ2)*Frontal Surface;

B.3 Copy of ChassisDragForce.m

The output of this function is the drag force acting on the chassis, bogies, and wheels. The script in
this function is based on the theory explained in Appendix G. The functions GondolaDragForce and
ChassisDragForce can both be found in the block named Air Drag Force in Figure A.15.

1 function Drag Force Chassis = ChassisDragForce(velocity)
2

3 %% Input
4

5 % Specify the air density (kg/mˆ3):
6 rho = 1.2;
7 % Presumed drag coefficient of chassis (equal to drag coefficient of a cube):
8 Cd = 0.8;
9

10 %% Chassis Drag Force Calculation
11

12 % Frontal surface of chassis:
13 S front = 0.386; %mˆ2
14 % Drag Force of the main chassis beam and bogies:
15 Drag Force Chassis = 0.5*Cd*rho*(velocityˆ2)*S front;
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C. Track Generator

C.1 NoLimits Track Data to Rail Coordinates

This appendix describes the conversion of NoLimits track data to the Cartesian coordinates that correspond
to the left and right rail of the track. The professional version of NoLimits 2 allows the user to export
and save track data in CSV-format. The user can specify the distance between the nodes along the track
curvature, and each line in the CSV-file corresponds with a node on the centre spline of the track. The
centre spline can either be chosen equal to the editor spline or the centre of the rails, where the editor spline
is unequal to the centre of rails for most track types due to the addition of for instance a backbone that
strengthens the track. However, on the spinning rollercoaster the editor spline and centre of rails coincide
with each other thanks to the simple track geometry.

The CSV-file that is exported from NoLimits consists of thirteen columns. The first column specifies the
node number, while the next three columns specify the Cartesian coordinates of the nodes with respect to a
global reference frame. The remaining nine columns specify the x-, y-, and z-components of respectively the
front F̂, left L̂, and upper vector Û that start at the corresponding centre node, as depicted in Figure C.1a.
Each of these three vectors are unit vectors that are decomposed in Cartesian components with respect to a
global reference frame. Together the F̂, L̂, and Û vectors can be regarded as a local reference frame, since
the three vectors are always mutually perpendicular. The origin of this local reference frame is located at
point P in Figure C.1b.

(a) Specification of the vectors as exported by NoLimits (b) The frames and parameters used during the analysis

Figure C.1: The vectors and frames used for converting the NoLimits track data to Cartesian coordinates
of the left and right rail

Prior to calculating the coordinates of the left and right rail, the data should first be converted from
millimeters to meters. Any track width can be specified by the user, but in case of the spinning rollercoaster
the width of the track is set equal to 0.9 meters. In Figure C.1b, rPPA refers to the distance between P and
either the left or the right rail, formulated with respect to the local reference frame. The value for rPPA equals
0.45 meters in case of the left rail, and -0.45 meters for the right rail. The direction of F̂ and Û can solely be
determined based on the direction of L̂, thanks to the orthogonality between the three vectors. Therefore,
it suffices to only use L̂ for determining the rail coordinates. The position of a certain rail coordinate can
be computed with the expression in Equation C.1.

rOOA = rOOP +ROP rPPA (C.1)

where rOOA is the distance between point O and point A formulated with respect to the global reference
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frame in point O. The distance rOOP is equal to the position of the centre node, and hence the value for this
parameter is known. The rotation matrix ROP between the global reference frame at point O and the local
reference frame at point P is depicted in blue in Figure C.1b. A rotation matrix between any two frames is
defined as the matrix that relates the orientation of the axes of both frames. Taking into account that L̂ is a
vector with unit length, the rotation matrix is determined between L̂ and a local vector [1,0,0] for each node
along the track. This could also be regarded as the specification of a unit vector along the x-axis of the local
reference frame at point P, after which a multiplication with the rotation matrix leads to a decomposition
of this vector in Cartesian coordinates with respect to the global reference frame at point O. The rotation
between the two vectors can be calculated using the built-in function vrrotvec in Matlab. The output is a
four-element rotation row vector, where the first three elements specify the rotation axis and the last element
defines the angle of rotation. The rotation row vector can subsequently be represented in matrix-form by
using the Matlab-function vrrotvec2mat, which results in the rotation matrix ROP with three rows and
three columns. The left and right rail coordinates can subsequently be determined with respect to the global
reference frame by multiplying ROP with rPPA, after which rOOP is added to the result. Please note that rPPA
is defined as [0.45,0,0] or [-0.45,0,0] for respectively the left and right rail, whose direction is in agreement
with the local vector [1,0,0] that was previously defined.

Performing the computation for each node results in a list of xyz-coordinates for the left and right rail.
Plotting these coordinates along with the coordinates of the centre rail results in the plot shown in Figure
C.2. It should be noted that the global reference frames in NoLimits and Simulink are orientated differently
with respect to each other. Hence, the left and right rail coordinates should first be transformed from
one coordinate system to the other before the rail data can be used in Simulink. The user can choose a
convenient location for the global reference frame in Simulink, and subsequently subtract the coordinates
of the chosen location from the rail coordinates. This procedure can for instance be used to assign the
station as the start position of the rollercoaster train. If the default zero-length initial train position vector
is used in Simulink, the train always starts at the origin of the global reference frame which coincides with
the station. Once the transformation has been completed and the global reference frame origin has been
specified, the rail coordinates are saved in two separate text files e.g. LeftRail.txt and RightRail.txt.
These files specify the xyz-coordinates of the left and right rail, which are used by Simulink to define two
cubic interpolation splines that form the track. A copy of the Matlab-script that has been described in this
appendix can be found in Section C.2.

Figure C.2: The track geometry of the spinning rollercoaster lay-out
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C.2 Copy of TrackGenerator.m

1 % 1. Open a blank workbook in Excel
2 % 2. Click on 'From Text/CSV' under the tab 'Data'
3 % 3. Select the right CSV file and click on 'Import'
4 % 4. Click on 'Load' and save the file
5 % 5. Specify the directory path and file name on line 18
6

7 % Specify the track width:
8 TrackWidth = 0.9; %m
9

10 % Define the text-file names to which the left and right rail coordinates will be written:
11 fileID1 = fopen('LeftRail.txt','w');
12 fileID2 = fopen('RightRail.txt','w');
13

14 % Import the Excel sheet with track data from NoLimits:
15 Data = xlsread('C:\Users\Name\Documents\TrackConverter\ExcelFiles\CentreRails.xlsx');
16

17 % Each node on the centre rail is numbered according to the variable below:
18 Nodenr = Data(:,1);
19 % The position of each node is specified according to Cartesian
20 % coordinates in the global reference frame used in Nolimits:
21 PosX = Data(:,2)*1e-6;
22 PosY = Data(:,3)*1e-6;
23 PosZ = Data(:,4)*1e-6;
24 % The Cartesian coordinates of the normalized vector pointing to the left,
25 % again specified according to the global reference frame used in NoLimits:
26 LeftX = Data(:,8)*1e-6;
27 LeftY = Data(:,9)*1e-6;
28 LeftZ = Data(:,10)*1e-6;
29

30 % Preallocation to increase computational speed:
31 LeftRailX = zeros(length(Nodenr),1);
32 LeftRailY = zeros(length(Nodenr),1);
33 LeftRailZ = zeros(length(Nodenr),1);
34 RightRailX = zeros(length(Nodenr),1);
35 RightRailY = zeros(length(Nodenr),1);
36 RightRailZ = zeros(length(Nodenr),1);
37

38 for n = 1:length(Nodenr)
39 % In the new local reference frame, the Left-vector should coincide ...
40 % with the local x-axis:
41 LocalVec = [1;0;0];
42 % Determine the rotation vector between the Left-vector specified
43 % in respectively the local and global reference frame:
44 RotVec{n,1} = vrrotvec(LocalVec,[LeftX(n,1);LeftY(n,1);LeftZ(n,1)]);
45 % Conversion to a rotation matrix:
46 RotMat{n,1} = vrrotvec2mat(RotVec{n,1});
47 % The distance between the track centre and the left rail specified ...
48 % in the local reference frame:
49 LocalLeft = [TrackWidth/2;0;0];
50 % Multiplication with the rotation matrix leads to a specification
51 % of this distance in terms of the global reference frame:
52 GlobalLeft{n,1} = RotMat{n,1}*LocalLeft;
53 % The distance between the track centre and the right rail specified ...
54 % in the local reference frame:
55 LocalRight = [-TrackWidth/2;0;0];
56 % Multiplication with the rotation matrix leads to a specification
57 % of this distance in terms of the global reference frame:
58 GlobalRight{n,1} = RotMat{n,1}*LocalRight;
59
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60 % The Cartesian coordinates of the respectively left and right rail are determined ...
61 % by a superposition of the centre node position and the distance between the ...
62 % centre node and the rail node:
63 LeftRailX(n,1) = PosX(n,1) + GlobalLeft{n,1}(1,1);
64 LeftRailY(n,1) = PosY(n,1) + GlobalLeft{n,1}(2,1);
65 LeftRailZ(n,1) = PosZ(n,1) + GlobalLeft{n,1}(3,1);
66 RightRailX(n,1) = PosX(n,1) + GlobalRight{n,1}(1,1);
67 RightRailY(n,1) = PosY(n,1) + GlobalRight{n,1}(2,1);
68 RightRailZ(n,1) = PosZ(n,1) + GlobalRight{n,1}(3,1);
69 end
70

71 % Conversion to the global reference frame used in Simulink:
72 CentreXSim = -PosZ(:,1);
73 CentreYSim = -PosX(:,1);
74 CentreZSim = PosY(:,1);
75 LeftXSim = -LeftRailZ(:,1);
76 LeftYSim = -LeftRailX(:,1);
77 LeftZSim = LeftRailY(:,1);
78 RightXSim = -RightRailZ(:,1);
79 RightYSim = -RightRailX(:,1);
80 RightZSim = RightRailY(:,1);
81

82 % Plot the centre track (green), left rail (red), and right rail (blue) in a figure:
83 figure(1), clf(1), hold on
84 plot3(CentreXSim(:,1),CentreYSim(:,1),CentreZSim(:,1),'-g')
85 plot3(LeftXSim(:,1),LeftYSim(:,1),LeftZSim(:,1),'-r')
86 plot3(RightXSim(:,1),RightYSim(:,1),RightZSim(:,1),'-b')
87 xlabel('x (m)')
88 ylabel('y (m)')
89 zlabel('z (m)')
90 view(-98,27)
91 hold off
92

93 % Define the top of the lifthill as the start position of the train:
94 [StartZ,StartNode] = max(CentreZSim);
95 StartX = CentreXSim(StartNode,1);
96 StartY = CentreYSim(StartNode,1);
97

98 % Write the coordinates of the left and right rail to the text-files:
99 formatSpec1 = '[%8.4f %8.4f %8.4f ; \r\n';

100 fprintf(fileID1,formatSpec1,LeftXSim(1,1)-StartX,LeftYSim(1,1)-StartY,LeftZSim(1,1)-StartZ);
101 fprintf(fileID2,formatSpec1,RightXSim(1,1)-StartX,RightYSim(1,1)-StartY, ...
102 RightZSim(1,1)-StartZ);
103 for n = 2:(length(Nodenr)-1)
104 formatSpec2 = '%8.4f %8.4f %8.4f ; \r\n';
105 fprintf(fileID1,formatSpec2,LeftXSim(n,1)-StartX,LeftYSim(n,1)-StartY, ...
106 LeftZSim(n,1)-StartZ);
107 fprintf(fileID2,formatSpec2,RightXSim(n,1)-StartX,RightYSim(n,1)-StartY, ...
108 RightZSim(n,1)-StartZ);
109 end
110 formatSpec3 = '%8.4f %8.4f %8.4f]';
111 fprintf(fileID1,formatSpec3,LeftXSim(length(Nodenr),1)-StartX, ...
112 LeftYSim(length(Nodenr),1)-StartY,LeftZSim(length(Nodenr),1)-StartZ);
113 fprintf(fileID2,formatSpec3,RightXSim(length(Nodenr),1)-StartX, ...
114 RightYSim(length(Nodenr),1)-StartY,RightZSim(length(Nodenr),1)-StartZ);
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D. Track Oscillations

An advantage of using piece-wise polynomial schemes is the exhibition of local geometrical control, which
means that a variation in the control point position only affects the neighbourhood of that point while leaving
the rest of the curve unchanged. However, when cubic splines are used to interpolate a set of control points,
undesired oscillations are typically noticed in the track model. Especially in the vicinity of transition regions
between for instance a straight and a circular segment, a curve is obtained that oscillates about the original
line. No physical meaning can be assigned to the oscillatory behaviour, since the small perturbations of the
track are inherent to the interpolation process. Since the undesired oscillations could be confused with track
irregularities during a dynamic analysis, analytical segments are occasionally implemented instead of cubic
interpolation. The implementation of straight, circular, and transition curves does not introduce unwanted
oscillations in the track model. However, analytical segments do typically not prove to be an alternative
method for defining the track geometry, since it is rather complex to describe fully spatial geometries such
as a rollercoaster track [3]. Hence, track parameterisation with cubic splines is still preferred over analytical
segments for describing the track geometry of the spinning rollercoaster. Furthermore, since a vibration
analysis of the wheel-rail contact is beyond the scope of this research, the impact of the apparent oscillatory
behaviour on the model can be regarded as negligible. Figure D.1 shows the track oscillations sensed at the
front-right and rear-left wheel carrier for a control point increment ∆s of one meter. From these figures, it
can be deducted that the extent of the track oscillations is small with a maximum displacement in z-direction
of only 0.195 millimeters.

(a) Track oscillations sensed by the front (red) and rear (blue) follower frame at the front-right wheel carrier

(b) Track oscillations sensed by the front (red) and rear (blue) follower frame at the rear-left wheel carrier

Figure D.1: Track perturbations sensed in the z-direction at the front-right and rear-left wheel carrier
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E. Hertzian Elliptic Contact Model

This appendix presents the analytical modelling of frictional rolling contact on a roller coaster. Although
a variety of models is available to describe the frictional rolling contact between two bodies, the Hertzian
contact model provides the basic contact mechanics in many advanced contact problems. The theory
devised by Hertz provides the contact area shape and stress distribution for contact between different body
geometries with purely elastic surfaces. The Hertzian contact theory is a basic theory that only holds under
the restriction of several criteria, which implies that the application of the Hertzian contact model can only
be justified if the contact surfaces are imposed to the following mathematical boundary conditions:

• There is no penetration by the contact surfaces (the contact pressure is never negative)

• There are not tangential stresses along the contact surfaces

• The displacements are equal to zero where a contact surface goes to infinity

• The contact force is defined by the surface integral of the stresses in the contact area

It should be explicitly mentioned that the Hertzian contact model is only valid for rolling contact between
two purely elastic bodies in free rolling motion, which is the most basic form of rolling contact. The distance
travelled by the free rolling body after a full rotation equals the circumference of the rolling body, which
implies that there is no relative linear motion between the contact surfaces on macro scale. However, the
rollercoaster wheels are allowed some lateral movement and they are always in some misalignment with
the direction of motion of the train. Although lateral sliding and slip are therefore likely to be present to
some degree, free rolling motion is usually considered in models of undriven wheels. Hence, it is presumed
that the rolling contact between the track and a rollercoaster wheel can safely be approximated as pure
rolling motion, since the wheels are not actively driven, braked or steered. The expressions for calculating
the contact pressures and dimensions of the elliptic contact area were derived by Hertz on the basis of the
following presumptions [11]:

• Elastic deformation

• The stress distribution below the surface is not affected by the finite dimensions of the contacting
bodies

• The surfaces are assumed to be frictionless so that only a normal pressure is transmitted

E.1 Modelling Rolling Contact

For properties such as the modulus of elasticity or the surface geometry, a collective equivalent parameter
can be defined for the bodies in contact. The effective modulus of elasticity Eef concerns the combined
material elasticity, while the effective radius Ref concerns the combined surface geometry. The effective
radius Ref is a measure of conformity between the bodies and therefore determines the shape and size of
the contact area. The algebraic equations for Eef and Ref are given in Equation E.1 and E.2 respectively.
The subscripts 1 and 2 in these equations refer to the two bodies in contact, where subscript 1 concerns the
wheel while subscript 2 refers to the track. In both equations, E and ν symbolize respectively the elasticity
modulus and the Poisson ratio.

1

Eef
=

1− ν21
2E1

+
1− ν22
2E2

(E.1)

1

Ref
=

1

Rx
+

1

Rz
(E.2)
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The considered contact area is assumed to be small with respect to the dimensions of the contacting bodies.
Even at curved track sections, the radius of curvature of the track is typically orders of magnitude larger
than the track or wheel radius. It is presumed that the curvature of the track has a negligible effect on the
contact between the rollercoaster wheel and the track, and hence an infinite radius of curvature of the track
is assumed. Furthermore, the running surface of the wheel is presumed to be flat instead of conic, which
implies that the radius of curvature of the wheel cover is taken equal to infinity as well. The implications of
these assumptions with respect to the parameters Rx and Rz are demonstrated in respectively Equation E.3
and E.4. From these equations and Figure E.1 it can be concluded that Rx equals the wheel radius (R1,x),
while Rz is equivalent to the track radius (R2,z).

1

Rx
=

1

R1,x
+

1

R2,x
=

1

R1,x
+

1

∞
=

1

R1,x
(E.3)

1

Rz
=

1

R1,z
+

1

R2,z
=

1

∞
+

1

R2,z
=

1

R2,z
(E.4)

The concentrated load in the wheel-rail interface on a roller coaster is characterized by an elliptic contact
area. The Hertzian elliptic contact model is capable of describing contact between two elastic cylindrical
bodies, where the shape of the elliptic contact area is defined by the semi-axes a and b. The definitions of
the semi-axes a and b are presented by Equations E.5 and E.6, in which the normal force on the bodies in
contact is defined by N .

a = a∗ 3

√
3NRef
Eef

with a∗ = κ
3

√
1 +

2(1− κ2)
πκ2

− 0.25ln(κ) (E.5)

b = b∗ 3

√
3NRef
Eef

with b∗ =
a∗

κ
(E.6)

The value of the parameter κ can be computed according to the expression in Equation E.7.

1

κ
= 1 +

√
ln(16λ )

2λ
−
√
ln(4) + 0.16ln(λ) with λ = min

[
Rx
Rz

,
Rz
Rx

]
(E.7)

E.2 Modelling Viscoelasticity

For the elastic contact surfaces that are considered by the Hertzian contact model, the experience in rolling
contact is that indentation of the surfaces takes place at the front of the contact area, while relaxation
occurs behind the contact area. Although elastic material is regarded, the rate of deformation is unequal
to the rate of recovery due to elastic hysteresis. Elastic material namely suffers from small energy losses
during deformation and recovery due to internal friction in the material. The work that is provided to
the contact material is partly transformed into heat during the deformation process. Hence, part of the
physical work is not regained, and a torque is experienced as a resistance to rolling. Hysteresis can typically
be regarded as a major contributor to the total rolling resistance, since rolling friction is mainly caused
by internal friction. The percentage of the total rolling resistance accounted for by hysteresis is commonly
defined by the hysteresis loss factor of rolling motion αr. The viscoelastic model that is discussed in this
section combines the elastic contact definition with this loss factor. Instead of modelling rolling resistance by
explicitly defining a viscoelastic stress-strain relationship, the deformations in the contact area are modelled
by regarding an elastic rolling contact that is adjusted by the hysteresis loss factor. In purely elastic rolling
contact, compression and relaxation of the contact materials in front and behind the contact area are equal.
The hysteresis loss factor accounts for the mechanical energy that is dissipated into heat in a viscoelastic
contact. The predominant advantage of this approach is the reduced complexity of calculations on linear-
elastic material in comparison with calculations on viscoelastic material. A friction force P can be defined
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by equating the hysteresis energy loss to the distance travelled in rolling motion s, as shown in Equation
E.8.

P · s = αr ·W (E.8)

where αr is the hysteresis loss factor for a rolling motion that defines the percentage of work W spent on
deforming the contact bodies that is not regained after relaxation. For the Hertzian elliptic contact model,
Equation E.8 can be rewritten to the expression shown in Equation E.9.

P = αr
3

16

N

R
b = µN with µ =

(
αr

3

16

b

R

)
(E.9)

where R is the undeformed outer radius of the rolling body and µ symbolizes the friction coefficient. The
hysteresis loss factor αr is a material property that is typically determined by multiplying the equivalent
loss factor for pure shear αs by a compensating factor frs. The values for αs and subsequently αr can be
computed using Equation E.10, in which λs is the logarithmic decrement of the function that bounds the
damped oscillations of a vibration. The empirical compensating factor frs depends on the ratio of elliptic
semi-axes a and b. The compensating factor frs is equal to 2.5 for the track radius and wheel radii considered
in this analysis.

αr = frs · αs with αs =
1− e−λs
1 + e−λs

(E.10)

The logarithmic decrement is related to the mechanical loss factor tan(δ) by Equation E.11. The property
tan(δ) can be regarded as a generalized measure of viscoelasticity [12].

tan(δ) =
λs
π

(
1− λ2s

4π2

)−1
(E.11)

A rollercoaster wheel is typically composed of a polyurethane tire that is bonded around the outside diam-
eter of an aluminum hub. The wheel cover is presumed to be made from polyurethane PPDI, since its low
hysteric energy and superior dynamic properties make this material ideally suited for applications like high
speed rollercoaster wheels [13]. The value of the mechanical loss factor for polyurethane PPDI is presented
in [14] as a function of temperature. The minimum and maximum temperature under which a rollercoaster
is expected to operate are respectively -10oC and 40oC. At the average operating temperature of T = 15oC
the mechanical loss factor equals 0.045. Substituting this value for tan(δ) into Equation E.11 and solving
for λs yields λs = 0.1413, which can subsequently be substituted in the expressions in Equation E.10 to
determine the hysteresis loss factor. The elasticity modulus and Poisson ratio of polyurethane PPDI equal
respectively 55 MPa (E1) and 0.48 (ν1) [15]. Since rollercoaster track is typically composed of steel tubes,
E2 and ν2 are set equal to respectively 200 GPa and 0.30. The input parameters that are used in the rolling
friction analysis are summarized in Table E.1. Substituting these values and a certain normal load into
the expressions presented in this appendix and solving the equations will ultimately yield the value of the
corresponding friction coefficient and friction force.
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Figure E.1: Specification of dimensions used in
the rolling friction analysis

Property Value

E1 55 MPa

ν1 0.48

E2 200 GPa

ν2 0.30

tan(δ) 0.045

Rx (running wheel) 0.12625 m

Rx (guide wheel) 0.1025 m

Rx (upstop wheel) 0.1 m

Rz 0.0675 m

Table E.1: Input parameters used in the rolling
friction analysis and their corresponding values

77



F. Bearing Friction Calculation

A smooth motion between separate components is facilitated by the use of bearings, which are characterized
by a non-constant frictional moment that depends on certain tribological phenomena. Although the fric-
tional moment induced by the bearings is typically small in comparison to other sources of resistance such
as rolling friction or air drag, its effect is assigned a sufficient level of significance for it to be included in the
model. The frictional moment induced by the bearings is modelled for two distinct contact areas, namely
at the revolute joints between the wheels and the accompanying hubs and at the revolute joint between the
gondola and the main chassis beam. The frictional moment is not modelled for the spherical and revolute
joint between respectively the front and rear axle and the chassis main beam, since the degree of relative
motion between these components is small in comparison to the other components.

The SKF model is used for calculating the frictional moment induced by the bearings, since it closely
follows the real behaviour of the bearing. All contact areas and design changes made to SKF bearings over
recent years are considered by this model, including internal and external influences. The SKF model uses
Equation F.1 for calculating the total frictional moment.

M = Mrr +Msl +Mseal +Mdrag (F.1)

where M is the total frictional moment, Mrr is the rolling frictional moment, Msl is the sliding frictional
moment, Mseal is the frictional moment of the seals, and Mdrag is the frictional moment of drag losses,
churning, splashing, and other similar physical phenomena. It should be noted that the SKF model is
derived from more advanced computational models and that it is valid for grease or oil lubricated bearings.
Although the model only provides approximate reference values, it is believed to be sufficiently accurate for
modelling the bearing frictional moment between the mentioned components.

F.1 Rolling Frictional Moment

The first term on the right-hand side of Equation F.1 can be calculated using the expression in Equation
F.2.

Mrr = φish φrsGrr (ν n)0.6 (F.2)

where Mrr is the rolling frictional moment in Nmm, phiish is the inlet shear heating reduction factor, phirs
is the kinematic replenishment reduction factor, Grr is a variable that depends on the bearing type and
load, n is the rotational speed in r/min, and ν is the actual operating viscosity of the lubrication oil in
mm2/s. The inlet shear heating reduction factor captures the effect of a reverse flow caused by repelling oil
close to the contact area. This reverse flow shears the lubricant and generates heat, which lowers the oil
viscosity and reduces the film thickness and rolling friction. The inlet shear heating reduction factor can be
estimated using the expression in Equation F.3.

φish =
1

1 + 1.84 · 10−9 (ndm)1.28 ν0.64
(F.3)

where dm is the bearing mean diameter in millimeters. The velocity of the train can be translated to a
rotational speed according to Equation F.4, where the values for Rx can be found in Table E.1 for each
wheel type.

n =
60 · v

2π ·Rx
(F.4)

The bearing mean diameter can be calculated using the bearing bore diameter d and the bearing outside
diameter D, as shown in Equation F.5.
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dm = 0.5(d+D) (F.5)

It is presumed that both the wheel axles and the gondola pivot joint are fitted with two tapered roller
bearings each, since these bearings are designed to accommodate simultaneously acting radial and axial
loads. The use of two tapered roller bearings constrains motion in all directions except for the desired
rotation around the rotational axis of the wheels or gondola. The selection of the tapered roller bearings
is predominantly based on the dimensions of the axles and the rotating components, while also taking the
limiting rotational speed and load limit into account. The main dimensions of each selected bearing type
are shown in Table F.1. Using these dimensions and Equation F.5, the bearing mean diameter dm can be
calculated for each type of tapered roller bearing.

Component Bearing Width [mm] Bore Diameter [mm] Outside Diameter [mm]

Running Wheels SKF 32912 17 60 85

Guide Wheels SKF 32009 20 45 75

Upstop Wheels SKF 32009 20 45 75

Gondola SKF 32922 25 110 130

Table F.1: Dimensions of the tapered roller bearings

The viscosity of the lubricant ν is presumed to equal 30 mm2/s at a temperature of 40o Celsius. For
low level oil bath lubrication, continuous over-rolling displaces excess lubricants from the raceways. In
applications where the viscosity or rotational speeds are high, the lubricant may not have sufficient time to
replenish the raceways, causing a kinematic starvation effect. Kinematic starvation reduces the thickness
of the hydrodynamic film and rolling friction, and the the kinematic replenishment reduction factor can be
estimated using Equation F.6.

φrs =
1

exp
(
Krs ν n (d+D)

√
KZ

2(D−d)

) (F.6)

where Krs represents the replenishment constant, which equals 3 · 10−8 for the low level oil bath that is
assumed in this analysis. The term KZ is a bearing type related geometric constant, which is equal to 6
for tapered roller bearings. The value that should be assigned to the variable Grr in case of tapered roller
bearings can be calculated according to Equation F.7.

Grr = R1 d
2.38
m (Fr +R2 Y Fa)

0.31 (F.7)

The values for the geometric constants R1 and R2 and the calculation factor Y are listed in Table F.2 for
each of the relevant tapered roller bearing types. Furthermore, Fa and Fr represent respectively the external
axial and radial load applied on the bearings.

Bearing R1 R2 S1 S2 Y

SKF 32912 2.31 · 10−6 10.9 0.009 2 1.8

SKF 32009 2.38 · 10−6 10.9 0.014 2 1.5

SKF 32922 2.31 · 10−6 10.9 0.009 2 1.7

Table F.2: Values for the geometric constants and calculation factor used for computing the rolling and
sliding frictional moments of tapered roller bearings
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F.2 Sliding Frictional Moment

The sliding frictional moment can be calculated using the expression in Equation F.8.

Msl = Gsl µsl (F.8)

where Gsl is a variable that depends on the bearing type and load, while musl represents the sliding friction
coefficient. For tapered roller bearings, the value of Gsl can be computed according to Equation F.9.

Gsl = S1 d
0.82
m (Fr + S2 Y Fa) (F.9)

where the values for the geometric constants S1 and S2 and the calculation factor Y can again be found in
Table F.2. The sliding friction coefficient µsl for full-film and mixed lubrication conditions can be estimated
using Equation F.10.

µsl = φbl µbl + (1− φbl)µEHL (F.10)

where φbl represents the weighting factor for the sliding friction coefficient, whose value can be computed
with the expression in Equation F.11.

φbl =
1

exp (2.6 · 10−8 (n ν)1.4 dm)
(F.11)

where µbl equals 0.12 for n 6= 0 and 0.15 for n = 0, where the former value is considered in this analysis.
Furthermore, the value for µEHL equals 0.002 for tapered roller bearings [16].

F.3 Frictional Moment of Seals and Drag Losses

Since the selected tapered roller bearings are not fitted with contact seals, the term Mseal in Equation F.1
is set to zero. The contribution of the term Mdrag to the total frictional moment is typically very small
in comparison to the contributions from the rolling and sliding frictional moments. Hence, the frictional
moment induced by drag losses is neglected in this analysis. Consequently, the total frictional moment
can be calculated by adding the contributions from the rolling and sliding frictional moments, as shown in
Equation F.12. Hence, all expressions have been provided at this point that are required for calculating the
total frictional moment.

M = Mrr +Msl (F.12)
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G. Modelling Air Resistance

A stationary fluid exerts only normal pressure forces on the surface of a body immersed in it, such as the
gondola geometry surrounded by air. However, a moving fluid such as an air flow also exerts tangential
shear forces on the gondola surface because of the no-slip condition caused by viscous effects. Both of these
forces have components in the direction of flow, and thus the drag force is due to the combined effects of
pressure and wall shear forces in the flow direction. The drag force FD depends on the density ρ of the
fluid, the upstream velocity v, and the size, shape, and orientation of the body. The drag characteristics of
a body is represented by the dimensionless drag coefficient CD. The drag force can be calculated according
to Equation G.1.

FD = 1
2 ρCD v

2Afront (G.1)

G.1 Frontal Surface Values

In Equation G.1, the parameter Afront refers to the frontal surface of the body. For bodies that tend to
block the flow, such as a rollercoaster train, the frontal surface is the area projected on a plane normal
to the direction of flow. Since the effect of wind is disregarded in this analysis, the direction of motion of
the rollercoaster train always directly opposes the relative direction of the air flow. The orientation of the
chassis, pivot axle, bogies and wheels with respect to the air flow remains constant during the ride due to
their direct alignment with the track. The drag force that is exerted on these components can therefore be
determined using a constant drag coefficient and frontal surface, where a drag coefficient of 0.8 is presumed
for the entire assembly of chassis, pivot axle, bogies and wheels. The combined frontal surface of these
components is shown in Figure G.6 in Section G.8. On the other hand, the orientation of the gondola
continuously changes with respect to the direction of motion of the train during the ride, which implies that
the gondola frontal surface should be regarded as a variable instead of constant. The gondola frontal surface
has been determined manually at seven equidistant gondola orientations between 0o and 90o. Please note
that it suffices to consider a ninety degree range instead of a full rotation, since the geometry of the gondola
is characterized by two planes of symmetry. The gondola orientation can be represented as an angle of attack
of the air flow, which is symbolized by α. The frontal surface at the seven different gondola orientations is
shown in Figures G.6 and G.7 in Section G.8. The corresponding values of the frontal surfaces are given in
Table G.1.

Component Orientation Afront [m2]

Chassis α = 0o 0.386

Gondola α = 0o 1.816

Gondola α = 15o 1.884

Gondola α = 30o 1.969

Gondola α = 45o 2.107

Gondola α = 60o 2.153

Gondola α = 75o 1.983

Gondola α = 90o 1.666

Table G.1: Frontal area of the chassis and the gondola at different orientations

G.2 Cubic Interpolation Spline

As mentioned in the previous subsection, the gondola frontal surface has been determined for seven different
orientations. Interpolation between the frontal surface values in Table G.1 is required to determine the
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frontal surface for the entire range of gondola orientations. The implementation of an interpolation spline is
preferred over the use of a regression model, since the latter results in a function that does not necessarily
intersect with the data points. For more than two data points, the interpolation spline consists of two or
more piece-wise polynomials. Local coefficients are determined for each interval between a pair of data
points, and the lower endpoint of the corresponding interval should be subtracted to use the coefficients in a
conventional polynomial equation. For instance, the polynomial for the coefficients [a, b, c, d] on the interval
[x1,x2] is described by Equation G.2. The third power in this expression indicates that the interpolation
spline is a cubic one.

f(x) = a(x− x1)3 + b(x− x1)2 + c(x− x1) + d (G.2)

The built-in Matlab-function spline can be used to determine the polynomial coefficients for each interval.
The lower endpoint and the polynomial coefficients can subsequently be substituted in Equation G.2 to
determine the function that describes the cubic interpolation spline on a specific interval. Hence, when
the corresponding interval is known for a certain gondola orientation, the correct function can be used to
determine the frontal surface of the gondola. The frontal surface values and the piece-wise cubic interpolation
splines are shown in Figure G.1. Please note that the interpolation functions between 90o and 180o are the
mirrored equivalents of the cubic interpolation splines that have been calculated for the domain between 0o

and 90o.

Figure G.1: The frontal surface as a function of the gondola orientation

G.3 Boundary Conditions

Numerous numerical simulations have been performed in Ansys Discovery AIM 19.2 (from this point on
referred to as Ansys) to determine the drag force that is exerted by the air on the gondola. One of the
capabilities of this program is the feature that allows the user to model a fluid flow around an imported
geometry. Several aspects of the gondola geometry were altered to maintain the computational time at a
sufficient level of practicality. For instance, the restraints and other detailed surfaces were omitted from the
gondola design, so only simple and large surfaces would remain part of the gondola geometry. Including
bodies such as the restraints would namely lead to a rather complex mesh with a large number of nodes,
while their effect on the air drag is relatively small in comparison to larger surfaces on the gondola. The
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large number of nodes would drastically increase the required computational time for each simulation with
only limited effect on the results, which underscores the significance of simplifying the gondola geometry.
Another simple yet very effective measure to reduce the computational time is to use one of the symmetry
planes on the gondola geometry. By only modelling half of the gondola the number of nodes is evidently
reduced with a factor two, which could lead to a reduction in computational time of a factor eight.

The air flow around the simplified and halved gondola geometry can be modelled by creating an exter-
nal body around the gondola. The cushion of the enclosure equals five meters at the front and the back of
the gondola, while the left and top clearance equal 2.5 meters each. No clearance is included in the model
at the symmetry plane and the bottom of the gondola. The gondola is excluded from the physics region
with boundary layer properties assigned to its surface. The frontal surface inlet of the enclosure is assigned
with a certain upstream velocity, while the rear surface outlet is assigned a gauge static pressure equal to
zero. The upper surface and the side surface away from the gondola geometry are given the properties
of an opening, with an entrainment pressure equal to zero. At last, the other side view is assigned with
the symmetry condition, while the remaining bottom surface has the properties of a wall. The described
configuration is clarified in Figure G.2.

Figure G.2: The properties of the enclosure surfaces around the gondola

A major disadvantage of halving the gondola geometry is the inability to model air flow around the gondola
with a value for α unequal to 0o or 90o. At 0o < α < 90o the symmetry plane of the gondola is namely
not aligned with the direction of the air flow. Hence, it would be incorrect to model the air flow around
the halved gondola at for instance α = 30o or α = 45o. A conceivable solution to this problem would be to
position the gondola either parallel or perpendicular to the symmetry plane of the enclosure, while specifying
a fluid flow with a certain angle α with respect to the gondola. However, since the symmetry condition also
applies to the air flow, the air flows would start at opposite angles on both sides of the symmetry plane
and realign again when they approach the outlet. The correct modelling of the air flow around the gondola
for 0o < α < 90o is only possible if the full geometry of the gondola is considered during the numerical
simulation. However, this would come at the cost of a drastically increased computational time, which is
unfeasible in light of the relatively large number of simulations that have to be performed. Therefore, the
decision is taken to only model air flow around a gondola that has been halved at its two symmetry planes.
The reader is referred to Figure G.3 for clarification on the approach that has been used for modelling the
air flow around the gondola.
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Figure G.3: Incorrect and correct modelling of the air flow around the gondola in Ansys

G.4 Reynolds Number

The flow regime around an object depends mainly on the ratio of the inertia forces to the viscous forces
in the fluid. The dimensionless quantity that represents this ratio is called the Reynolds number, which is
expressed in Equation G.3 for external flow.

Re =
ρ · v · Lc

µ
(G.3)

where ρ is the density of air, which equals 1.2 kg/m3 at a temperature of 293.15 K. Additionally, v represents
the upstream velocity (in m/s), Lc is the characteristic length of the geometry (in m), and µ is the dynamic
viscosity of the air (in kg/ms). The latter can be determined using Sutherland’s law, which relates the
dynamic viscosity to the absolute temperature of an ideal gas. Sutherland’s law is defined by Equation G.4.

µ = µ0
T0 + S

T + S

(
T

T0

)3/2

(G.4)

where T0 is the reference temperature of 273.15 K and µ0 is the viscosity at the reference temperature,
which is equal to 1.716 · 10−5 kg/ms. Additionally, the Sutherland temperature S is equal to 110.4 K. At
a temperature of 293.15 K, the dynamic viscosity µ equals:

µ = 1.716 · 10−5
273.15 + 110.4

293.15 + 110.4

(
293.15

273.15

)3/2

= 1.813 · 10−5 kg/ms (G.5)

Although the drag coefficient depends on the dynamic properties of the air flow, the coefficient may typically
be regarded as a constant for a Reynolds number larger than Re = 106 [17]. It will be verified by means of
numerous simulations if this statement also applies to the air flow around the gondola. The characteristic
length equals the length of the gondola in longitudinal direction for α = 0o (Lc = 2.4 m), while the charac-
teristic length is equal to the width of the gondola (Lc = 1.6 m) for α = 90o. The velocities corresponding
to Re = 106 can be calculated for both cases, as shown in respectively Equation G.6 and Equation G.7.

α = 0o : v =
Re · µ
ρ · Lc

=
106 · 1.813 · 10−5

1.2 · 2.4
= 6.3 m/s = 22.7 km/h (G.6)

α = 90o : v =
Re · µ
ρ · Lc

=
106 · 1.813 · 10−5

1.2 · 1.6
= 9.4 m/s = 33.8 km/h (G.7)

This would imply that the drag coefficient should be regarded as a variable for velocities lower than respec-
tively 6.3 m/s or 9.4 m/s, while the drag coefficient could be held constant for respectively v > 6.3 m/s and
v > 9.4 m/s.

G.5 Initialization

The maximum velocity during a ride on the spinning rollercoaster is estimated to be vmax = 20 m/s. Hence,
to verify the statement of a constant drag coefficient for v > 6.3 m/s, six simulations are performed at α =
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[0o , 90o] and v = [6.3 , 9.4 , 20] m/s. Please note that the minimum required number of simulations equals
four, but that the two additional simulations allow a better comparison between the results. The adopted
meshes for respectively α = 0o and α = 90o are shown in Figure G.4a and G.4b respectively. The mesh
has been refined near the gondola surface, while the mesh is relatively coarse further away from the gondola
geometry. An equivalent mesh has been used for each simulation despite the varying boundary conditions
that were applied to the different models. Once a simulation is completed, the drag force exerted on the
gondola surface can be extracted from Ansys, of which the results are shown in Table G.2. The drag force
is defined as the net force exerted by a fluid on a body in the direction of flow due to the combined effects
of wall shear and pressure forces. The part of the drag that is due directly to wall shear stress is called the
skin friction drag since it is caused by frictional effects, whereas the part that is due directly to the pressure
is called the pressure drag. When the friction and pressure drag are known, the total drag force can be
calculated by directly adding them. For the six simulations that were performed in Ansys, the pressure drag
accounts on average for 99.5 percent of the total drag, while only the remaining 0.5 percent can be assigned
to frictional effects.

(a) The adopted mesh of the fluid volume for α = 0o (b) The adopted mesh of the fluid volume for α = 90o

Figure G.4: The adopted meshes during the simulations in Ansys

The drag coefficient could be calculated by rewriting Equation G.1 into the expression shown in Equation
G.8. Substituting the corresponding velocity and frontal surface into this formula yields the drag coefficient,
of which the results are presented in Table G.2.

Cd =
2 · Fd

ρ · v2 ·Afront
(G.8)

From the values in Table G.2 it can be deducted that the drag coefficient is substantially higher for α = 90o

in comparison to the drag coefficients found for α = 0o. The total drag can almost entirely be assigned to the
occurrence of pressure drag for both gondola orientations. Hence, the underlying cause of the different drag
coefficients is also likely to originate from the occurrence of pressure drag. The pressure drag is proportional
to the frontal area and to the difference between the pressures acting on the front and back of the gondola.
From Table G.1 it can be deduced that the ratio between the frontal surfaces of both gondola orientations
equals 1.09. However, the average ratio between the drag coefficients of both values for α equals 1.48, which
is substantially larger. Hence, the majority of the pressure drag is presumably caused by contributions from
the pressure difference between the front and rear of the gondola. When the air stream separates from
the gondola surface, it forms a separated region between the gondola and the air stream. The larger the
separated region, the larger the pressure drag is. The effects of flow separation are felt far downstream in
the form of reduced velocity relative to the upstream velocity [7]. The velocity contours are shown in Section
G.10 for the performed simulations. From these figures, it can be deducted that the separated region is
typically larger for α = 90o than for α = 0o, which explains the higher drag force and drag coefficient for
the former gondola orientation.

The statement of a constant drag coefficient for v > 9.4 m/s appears to hold for a gondola orientation of
90o. However, from Table G.2 it can also be deducted that the drag coefficient is substantially larger for
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α v [m/s] Fd [N] Cd

0o 6.3 46.266 1.070

0o 9.4 103.47 1.075

0o 20 497.75 1.142

90o 6.3 63.975 1.613

90o 9.4 143.17 1.621

90o 20 647.21 1.619

Table G.2: Drag forces and drag coefficients at various gondola orientations and upstream velocities

air flows at the maximum velocity than at the velocity that corresponds to Re = 106. Hence, additional
simulations are required to accurately determine the drag coefficient as a function of the upstream velocity.

G.6 Air Flow Simulations

The upstream velocities that are modelled in the additional simulations are distributed as evenly as possible
on the domains [0 , 6.3] and [6.3 , 20] m/s. Fourteen simulations have been performed in total under the
presumption of steady-state conditions and incompressible flow. The resultant drag forces and coefficients
are presented in Table 2.4. Please note that it would be impossible to determine the value for the drag coeffi-
cient in case of a zero upstream velocity. Therefore, an upstream velocity equal to unity has been simulated
for both gondola orientations, and the resultant drag forces and coefficients are presumed similar to their
equivalents at a zero upstream velocity. A cubic spline as described in Section G.2 is used to interpolate
between the drag coefficient values. The data points and the interpolation splines are presented in Figure G.5.

From Figure G.5 the conclusion can be drawn that the drag coefficient is practically constant for v >
9.4 m/s, as was anticipated based on the results in Section G.5. On the other hand, Figure G.5 shows
a significant fluctuation in the value for the drag coefficient between v = 6.3 m/s and vmax. Hence, the
statement of a constant drag coefficient for Reynolds numbers larger than 106 does not apply to the gondola
orientation with α = 0o. The difference between the drag coefficients at v = 6.3 m/s and vmax equals 6.7
percent, of which the significance justifies the additional simulations. The underlying cause for the increasing
drag coefficient for Reynolds numbers larger than 106, in contrast to the constant Cd for α = 90o, remains
unknown up to this point.

G.7 Discussion on the Residuals

The problem of air flow around the gondola geometry is highly non-linear, and the governing Navier-Stokes
equations can only be solved analytically if restrictive conditions are imposed. Hence, the computational
fluid dynamics solutions must be calculated iteratively. The Navier-Stokes equations are always solved
together with the continuity equation, where the former represents the conservation of momentum, while
the latter represents conservation of mass. The mass continuity equation simplifies to a volume continuity
equation for incompressible flow, as shown in Equation G.9.

∇ · u = 0 (G.9)

The residuals are presented in Section G.9 for the performed simulations. Each graph shows the residual
continuity and velocity errors for both gondola orientations at a certain upstream velocity. The residual is
an important measure for judging the convergence of the iterative solution, as it directly quantifies the error
encountered while solving the system of equations. For instance, the continuity residual is the numerical
error that remains after solving the mass continuity equation. The lower the residual value, the more
numerically accurate the obtained solution is. Special attention should be paid to the judgment of the
residuals for the performed simulations, since the solutions rarely converged before the maximum number
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Figure G.5: The drag coefficient values and the cubic interpolation splines for both gondola orientations

of iterations was reached. Aside from the continuity residual, only the residual error for the velocity in
x-direction is shown in the graphs in Section G.9, since the residuals were practically equal for the x-, y-,
and z-direction. Furthermore, the air flow at the inlet has been specified in the direction perpendicular to
the inlet surface, which corresponds to the x-direction. From the graphs it can be deducted that both the
velocity and continuity residual are typically lower for α = 90o than for α = 0o. The size of the continuity
residual error for the former gondola orientation can typically be found between 10−5 and 10−6, which can
be regarded as well converged. The continuity residual error for α = 0o is orders of magnitude larger, and
often coincides with the velocity residuals for α = 90o between 10−3 and 10−4. The velocity residual error
for α = 0o is the largest of all plotted residuals, ranging from a minimum of approximately 10−3 up to a
relatively large numerical error of 10−2. These residuals are considered to be loosely converged. Especially
for the gondola orientation corresponding to α = 0o, smaller residual values would be preferred. A finer
mesh generally results in more numerically accurate results. However, this also comes at the cost of longer
computational times. The choice for a certain mesh density is predominantly a consideration based on a
trade-off between numerical accuracy and computational time. Given the considerable total computational
time for the fourteen simulations, it is believed that a reasonable trade-off between numerical accuracy and
computational time has been made. Hence, the results are presumed to be sufficiently accurate for use in
the Simulink model.
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G.8 Frontal Surfaces used in Drag Analysis

(a) Frontal area of chassis, pivot axle, and bogies (b) Gondola frontal area at α = 0o

(c) Gondola frontal area at α = 15o (d) Gondola frontal area at α = 30o

(e) Gondola frontal area at α = 45o (f) Gondola frontal area at α = 60o

Figure G.6: Frontal area for the assembly of chassis and bogies and for the gondola at five different orien-
tations
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(a) Gondola frontal area at α = 75o (b) Gondola frontal area at α = 90o

Figure G.7: Frontal area of the gondola at the two remaining orientations

G.9 Residuals Plots from Drag Analysis

Figure G.8: Continuity and velocity residuals for α = 0o and α = 90o at v = 1 m/s
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Figure G.9: Continuity and velocity residuals for α = 0o and α = 90o at v = 3.15 m/s

Figure G.10: Continuity and velocity residuals for α = 0o and α = 90o at v = 6.3 m/s
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Figure G.11: Continuity and velocity residuals for α = 0o and α = 90o at v = 9.4 m/s

Figure G.12: Continuity and velocity residuals for α = 0o and α = 90o at v = 13.15 m/s
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Figure G.13: Continuity and velocity residuals for α = 0o and α = 90o at v = 16.575 m/s

Figure G.14: Continuity and velocity residuals for α = 0o and α = 90o at v = 20 m/s
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G.10 Air Velocity Contour Plots from Drag Analysis

Figure G.15: Velocity contour of the airflow over the gondola for a relative angle α equal to 0o between the
direction of the airflow and the gondola orientation and an upstream velocity v of 3.15 m/s (Re = 5 · 105)

Figure G.16: Velocity contour of the airflow over the gondola for a relative angle α equal to 90o between
the direction of the airflow and the gondola orientation and an upstream velocity v of 3.15 m/s

Figure G.17: Velocity contour of the airflow over the gondola for a relative angle α equal to 0o between the
direction of the airflow and the gondola orientation and an upstream velocity v of 6.3 m/s (Re = 106)
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Figure G.18: Velocity contour of the airflow over the gondola for a relative angle α equal to 90o between
the direction of the airflow and the gondola orientation and an upstream velocity v of 6.3 m/s

Figure G.19: Velocity contour of the airflow over the gondola for a relative angle α equal to 0o between the
direction of the airflow and the gondola orientation and an upstream velocity v of 9.4 m/s

Figure G.20: Velocity contour of the airflow over the gondola for a relative angle α equal to 90o between
the direction of the airflow and the gondola orientation and an upstream velocity v of 9.4 m/s (Re = 106)
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Figure G.21: Velocity contour of the airflow over the gondola for a relative angle α equal to 0o between the
direction of the airflow and the gondola orientation and an upstream velocity v of 13.15 m/s

Figure G.22: Velocity contour of the airflow over the gondola for a relative angle α equal to 90o between
the direction of the airflow and the gondola orientation and an upstream velocity v of 13.15 m/s

Figure G.23: Velocity contour of the airflow over the gondola for a relative angle α equal to 0o between the
direction of the airflow and the gondola orientation and an upstream velocity v of 16.575 m/s
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Figure G.24: Velocity contour of the airflow over the gondola for a relative angle α equal to 90o between
the direction of the airflow and the gondola orientation and an upstream velocity v of 16.575 m/s

Figure G.25: Velocity contour of the airflow over the gondola for a relative angle α equal to 0o between the
direction of the airflow and the gondola orientation and an upstream velocity v of 20 m/s

Figure G.26: Velocity contour of the airflow over the gondola for a relative angle α equal to 90o between
the direction of the airflow and the gondola orientation and an upstream velocity v of 20 m/s
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H. Motion Control

The motion of the vehicle is controlled at the brake section, subsequent turnaround, station, and on the
lifthill. The first three sections in this Appendix discuss the schemes used for translational control of the
vehicle at respectively the brake section, station, and lifthill. Rotational control of the gondola is achieved
with the schemes discussed in the four subsequent sections. The reader is referred to Appendix 5 for screen
captures of the motion control schemes.

H.1 Translation Control Brake Section

The physical modelling connection port named Brake Frame (with port number 1) on the left-hand side
in Figure A.21 refers to a measurement frame that is located at the bottom of the main chassis beam.
The motion of this frame is measured with respect to the world frame by the transform sensor named
Brake Frame Sensor 1. The relative velocity between these two frames is subsequently integrated in time
by a discrete time integrator block, which yields the distance covered along the track by the brake frame.
As can be deducted from Table 2.5, the coach enters the brake section when s = 684 meter. The ramp
block on the left-hand side of the scheme outputs a ramp signal, where the slope represents the prescribed
deceleration of the vehicle on the brake section, which equals -2 m/s2. Two triggered subsystems are used
to determine the velocity and the cumulative quantity of the inverted ramp when the vehicle reaches the
start of the brake section. Summation of this result and subtraction of the actual ramp signal results in a
reference signal for the deceleration on the brake section. The combination of If, Merge, and Sum blocks at
the centre of the scheme dictate by means of the first if expression that the reference signal should coincide
with the actual velocity when the vehicle has not reached the brake section yet. On the other hand, the
else expression of the If block is valid when the vehicle is on the brake section and the reference signal
has not reached the desired brake section exit velocity of 0 m/s yet. The corresponding reference signal is
characterized by a ramp with a slope of -2 and an initial output equal to the velocity at s = 684 meter. At
last, the elseif expression dictates that once the reference signal has reached zero, it should stay equal to
zero. The actual and reference velocity are depicted in Figure H.1a.

(a) The actual and reference velocity signals (b) The brake force per wheel

Figure H.1: The velocity profiles and brake force with regard to the vehicle when located on the brake
section

The error between the actual velocity and the reference value is obtained by subtracting the velocity signal
from the reference signal at each time-step. The error signal enters a Saturation block, which bounds
the upper limit of the error to zero. In practice this implies that the error equals zero when the actual
velocity is lower than the reference value. Hence, in case of a negative error, the wheels on the brake section
would simply stop braking the vehicle instead of driving it. The error signal subsequently proceeds to a
PID control block with a proportional gain equal to 30, after which the amplified error signal is used as
input in a Matlab Function block that computes the brake force. Additionally, the gravity component in
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the direction of travel of the vehicle is also needed as input in the Matlab Function block, since the brake
section is slightly declined. The x-component of gravity is computed using the rotation matrix between the
Brake Frame and the World Frame, which is obtained by Brake Frame Sensor 2. At last, the brake frame
acceleration at the previous time-step is the only remaining input parameter required by the the function
block. The acceleration signal is obtained by taking the numerical derivative of the velocity to time. The
actual acceleration value is only used as long as the velocity of the vehicle is positive. In any other case, the
acceleration is set equal to zero to prevent a reversal of the vehicle direction of motion. The brake force is
computed based on the energetic balance presented in Equation H.1.

ma∆s =
1

2
m(∆v)2 +mgx∆s− Fbrake∆s (H.1)

where m represents the mass of a fully-loaded gondola (m = 2550.9 kg), a symbolizes the net acceleration
of the vehicle (in m/s2), the length of brake section (23 meters) is represented by ∆s, ∆v symbolizes the
error between the reference and actual velocity, and gx represents the gravity component in longitudinal
direction. Solving this expression for Fbrake yields the total brake force. The presumption is made that
four equidistantly spaced braking wheels are simultaneously in contact with the bottom of the main chassis
beam. Hence, to obtain the brake force per wheel, the total brake force is divided by four. The brake force
required for braking a fully-loaded gondola equals approximately 1700 N per wheel, as shown in Figure
H.1b. Please note that the negative brake force in this graph stems from application of the brake force in
opposite direction to the local x-axis, which has been aligned with the direction of travel. The If block
on the right-hand side of the scheme states that the wheels keep braking the vehicle as long as the vehicle
is on the brake section, the velocity of the vehicle is larger than 1 m/s, and the gondola is not yet at its
equilibrium position. Please note that the latter condition is prescribed by the inport named Release,
which will later be elaborated on. To avoid the existence of an algebraic loop in the Simulink scheme, the
Memory block applies a one integration step time delay to the brake force signal.

H.2 Translation Control Station

The scheme depicted in A.22 controls the translational motion of the vehicle at the station exit and entry.
The top half of this scheme is dedicated to the computation of the driving force at the station exit, while
the lower half is used to determine the brake force at the station entry.

H.2.1 Station Exit

The desired acceleration at the station entry is set equal to 2 m/s2. When the vehicle leaves the station
and enters the lifthill at s = 5 meters, the velocity of the vehicle should equal the velocity of the chain on
the lifthill (4 m/s). The if expression of the top-left If block states that as long as the velocity of the
vehicle is not equal to the chain speed, the reference signal should be a ramp with a positive slope of 2 and
an initial output value equal to zero. Hence, the reference signal dictates that the vehicle should accelerate
from standstill with the desired acceleration of 2 m/s2. Once the magnitude of the ramp signal has reached
the chain speed value, the elseif expression prescribes that the reference signal should be a constant line
with a magnitude equal to the chain speed, so the velocity of the vehicle is maintained at 4 m/s until it
reaches the lifthill. Once the vehicle has left the station, the else expression of the If block dictates that the
reference signal should coincide with the actual velocity of the vehicle. The previously-described reference
signal is shown in Figure H.2a.

The error between the actual velocity and the reference value is obtained by subtracting the velocity signal
from the reference signal. The subsequent Saturation block bounds the lower limit of the error to zero, so
the error equals zero when the actual velocity is larger than the reference value. In case of an error equal to
zero, the driving wheels would therefore simply stop accelerating the vehicle instead of braking it. The error
signal subsequently proceeds to a PID control block with a proportional gain of 10 and an integral gain equal
to 1. The amplified error signal is one of the two input parameters required by the Matlab Function block
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to compute the driving force at the station exit. The other required input parameter is the longitudinal
component of gravity acting on the vehicle, whose contribution is minor thanks to the flat track in the
station. The driving force at the station exit can be computed according to Equation H.2.

Fdriving =
m(∆v)2

2∆s
−mgx (H.2)

where ∆s equals 5 meters. The top-right If block states that the driving force should be applied to the
vehicle as long as the vehicle is at the station exit, whereas the driving force should equal zero when the
vehicle has left the station.

(a) Station exit (b) Station entry

Figure H.2: The actual and reference velocity signals for the vehicle when located at the station

H.2.2 Station Entry

At the station entry the desired deceleration is set equal to -2 m/s2. The procedure for acquisition of the
reference signal is similar to the approach explained in Section H.1 for translational control on the brake
section. Hence, the scheme for translation control at the station entry is not elaborated on in detail in this
paragraph. The else expression in the If block dictates that the reference signal should coincide with the
actual velocity of the vehicle as long as the vehicle has not reached the station entry yet. When the vehicle
is at the station entry but the vehicle has not come to a standstill yet, the reference signal prescribed by
the if expression is characterized by a ramp with a slope of -2 and an initial output equal to the vehicle
velocity at s = 737 meter. The else expression in the If block dictates a reference signal equal to zero once
the vehicle has come to a standstill.

Subtracting the velocity signal from the reference signal yields the error value, which proceeds to a Saturation
block with an upper limit equal to zero. Hence, the braking wheels simply stop braking the vehicle when
its velocity is lower than the reference value instead of driving it to approach the reference signal again.
The error signal subsequently proceeds to a PID control block with a proportional and integral gain equal
to respectively 15 and 1. The expression used for calculating the braking force at station entry is to a large
extent similar to the expression in Equation H.2, as shown in Equation H.3.

Fbrake =
m(∆v)2

2∆s
+mgx (H.3)

A minus sign is added to the calculated braking force, since this force acts in opposite direction with
respect to the direction of travel of the vehicle. Among the blocks at the bottom of the scheme is a
Triggered Subsystem block that outputs a one when the vehicle has come to a standstill, while the output
equals zero when the vehicle is still at motion. The bottom-right If block uses this signal to prescribe a
brake force that remains equal to zero once the vehicle has come to a standstill in the station. The if

expression in this If block namely passes the calculated brake force to the subsequent Merge block as long
as the triggered subsystem outputs a zero. The system is only triggered when the velocity of the vehicle
at the station entry is equal to zero, and the unity output subsequently ensures that a zero brake force is
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passed on to the Merge block. Since the Triggered Subsystem cannot be triggered again, the brake force
remains equal to zero for the remainder of the simulation. The drive force at station exit and the brake force
at station entry are shown in Figure H.3. The required driving force and braking force at respectively the
station exit and station entry are practically similar, which could be expected based on the equal magnitudes
of respectively the acceleration and deceleration.

Figure H.3: The brake force per wheel required for braking the vehicle at the station entry

H.3 Translation Control Lifthill

The chaindog is a metal component that is engaged by the chain so the vehicle is pulled up the lifthill.
It has been mounted on the underside of the main chassis beam in the proximity of the front axle, and
hence a local frame named Chaindog Frame has been defined at this position. The relative velocity between
the chaindog and World Frame is measured by the transform sensor named Chaindog Frame Sensor 1.
The longitudinal velocity of the chaindog frame with respect to the world frame is subsequently integrated
in time by a discrete time integrator block, which results in the distance covered along the track by the
chaindog frame. The If block at the top-left of the scheme in Figure A.23 states that the reference signal
should equal the desired chain speed of 4 m/s when the vehicle is on the lifthill (5 ≤ s ≤ 50). On the other
hand, the reference signal should equal the actual velocity of the vehicle when the vehicle is not located
on the lifthill. The actual and reference velocity signals are depicted in Figure H.4a, which shows that
the vehicle moves up the lifthill at a relatively constant pace. Subtracting the vehicle velocity from the
reference signal yields the error between the actual and reference velocity. The error signal is subsequently
amplified by respectively a proportional and an integral gain both equal to unity. Aside from the error
value, the longitudinal component of the gravitational acceleration is also required as an input parameter
by the Matlab Function on the right-hand side of the scheme. The x-component of gravity is computed in
a similar manner as described before, using the rotation matrix between the chaindog frame and the world
frame.

(a) The actual and reference velocity signals (b) The lift force exerted on the chaindog

Figure H.4: The velocity profiles and brake force force with regard to the vehicle when pulled up the lifthill
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The acceleration of the vehicle at the previous time-step is the last input parameter required to calculate
the force that is needed to pull the vehicle up the lifthill. The calculation of the vehicle acceleration is
performed at the lower half of the scheme. The acceleration value is used together with the other input
parameters to calculate the lift force (in N) according to Equation H.4.

Flift =
m(∆v)2

2∆s
−ma−mgx (H.4)

where ∆s represents the length of the lifthill (45 m). The If expression of the If block at the right-hand
side of the scheme prescribes a lift force equal to the computed value when the vehicle is on the lifthill. On
the other hand, when the vehicle is not on the lifthill, the else expression dictates a lift force equal to zero.
The computed lift force is exerted at the chaindog frame with a time delay of one integration step to avoid
the occurrence of an algebraic loop. Figure H.4b shows the lift force as a function of the simulation time.

H.4 Rotation Control Brake Section

The distance covered along the track by the brake frame is compared to the constant value of 684 meters,
which corresponds to the start of the brake section. The vehicle is located on the brake section when
684 ≤ s ≤ 707, and two Triggered Subsystems in the top-left corner of Figure A.24 determine respectively
the gondola rotation angle and angular velocity at the moment when the vehicle enters the brake section at
s = 684 meters. These two values are used by the first Matlab Function to compute the gradient angle of
the ramped reference signal. A copy of the function that is used for calculating the slope of the reference
signal is presented below.

1 function Slope = AngleFunc(Omega,Theta)
2

3 if Theta > 0
4 if Omega ≥ 0
5 MinRot = pi - mod(Theta,pi);
6 else
7 MinRot = mod(Theta,pi);
8 end
9 else

10 if Omega ≤ 0
11 MinRot = -pi + mod(abs(Theta),pi);
12 else
13 MinRot = mod(abs(Theta),pi);
14 end
15 end
16

17 dt = 1;
18

19 if MinRot > 0
20 Angle = MinRot + floor(mod(((dt*abs(Omega))-abs(MinRot)),pi)/pi)*pi;
21 else
22 Angle = MinRot - floor(mod(((dt*abs(Omega))-abs(MinRot)),pi)/pi)*pi;
23 end
24

25 Slope = sign(Omega)*(abs(Omega)ˆ2)/(2*abs(Angle));

The parameter MinRot in the above script denotes the smallest possible angle between the equilibrium orien-
tation of the gondola and the gondola rotation corresponding to s = 684 meters. The calculation of MinRot
depends on the direction in which gondola rotates when entering the brake section, so the residual angle
with respect to the equilibrium orientation is in accordance with the direction of rotation. Additionally, the
angular velocity of the gondola on the brake section is taken into account for the first second to prevent an
inordinate angular deceleration of the gondola. Hence, the angular deceleration of the gondola to the initial
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orientation should last at least one second. Please note that the slope of the reference signal should be similar
to the desired angular deceleration of the gondola. After multiplication of the ramp signal with the calcu-
lated gradient angle, the combination of subsequent Triggered Subsystem and Sum block is used to define a
ramped reference signal. This reference signal is characterized by a slope equal to the calculated angular de-
celeration and an initial value that is similar to the gondola angular velocity at the start of the brake section.

The If block assigned with determining a so-called Release indicator can be found on the left-hand side
of the scheme. This block uses three input parameters, and the value of the first parameter depends on the
angular velocity of the gondola. If the gondola angular velocity is practically equal to zero while the vehicle
is on the brake section, the value of the first parameter would cause the If block to assign a unity value
to the release indicator. A release indicator equal to unity denotes that the translational and rotational
control of the vehicle on the brake section can be terminated. However, the value assigned to the release
indicator also depends on two other parameters. The second parameter is similar to the value for Angle in
the script, while the rotation of the gondola after the vehicle has entered the brake section is kept record of
by the third input parameter. A comparison between these two parameters also determines if the vehicle
can be released from the brake section without any further motion control. The release indicator is assigned
a value equal to unity if the accumulated gondola rotation on the brake section equals the absolute value of
the parameter Angle.

Figure H.5: The actual and reference angular velocity signals for the rotating part when the vehicle is on
the brake section

The release indicator is used as input for the subsequent If block that prescribes the reference signal. If the
vehicle is on the brake section and the motion should still be controlled, the reference signal should coincide
with the ramped reference signal described earlier. On the other hand, when the vehicle has passed the
brake section entry and the release indicator equals unity, the elseif expression states that the reference
signal for the gondola angular velocity should equal zero. At last, the else expression dictates that the
reference signal should coincide with the actual angular velocity when the vehicle has not yet reached the
brake section. The error is subsequently obtained by subtracting the actual angular velocity from the
reference signal. Two different PID controller blocks are used for controlling the motion of the gondola while
the vehicle is on the brake section. The actual error is transferred to the controller on top as long as the
rotational control of the gondola cannot be terminated yet. An error equal to zero is transferred to the
controller block once the release indicator equals unity. The proportional and integral gain of this controller
equal respectively 25 and 50. On the other hand, the lower PID controller block amplifies the error with
a proportional and integral gain both equal to 25 once the vehicle can be released from the brake section.
Prior to the termination of motion control on the brake section, the error transferred to the controller equals
zero. The Matlab Function on the right-hand side of the scheme is allocated with the calculation of the
braking torque. While the amplified error is the first input parameter required for determining the braking
torque, the other one is the gondola orientation angle θ when the vehicle enters the brake section. An average
moment of inertia I equal to 240 kg m2 has been presumed for the four passenger occupancy configurations.

102



The braking torque T (in Nm) can be computed according to Equation H.5.

Tbrake =
I ·∆ω2

2θ
(H.5)

where ∆ω represents the error between the reference and actual angular velocity. The blocks at the right-
most part of the scheme ensure an application of the braking torque in opposite direction with respect to the
gondola angular velocity. Figure H.5 shows the actual and reference angular velocity signals for a passenger
occupancy configuration with two passengers seated on one side of the gondola, which corresponds to the
configuration with the largest mass imbalance of the rotating part.

H.5 Rotation Control Station Entry

The rotation of the gondola at the station entry is controlled by the scheme depicted in Figure A.25. Only
a general explanation of this scheme is presented in this section, since a clear explanation is hardly possible
due to the high level of complexity. A constant angular deceleration of π

12 rad/s2 has been specified in case
the gondola angular velocity does not approach zero. Multiplication of this angular deceleration by the
moment of inertia yields a torque that is exerted on the pivot axle in opposite direction with respect to the
angular velocity. On the other hand, when the angular velocity of the gondola is practically zero, a constant
torque of 30 Nm is used to compensate the overshoot of the previous torque. The gondola is kept at the
equilibrium position once this desired final orientation has been reached. Hence, the orientation of gondola
at the end of the simulation is similar to its initial orientation for all four separate passenger occupancy
configurations.

H.6 Rotation Control Lifthill

The If block on the left-hand side of the scheme in Figure A.26 defines a reference angular velocity equal
to zero for 0 ≤ s ≤ 50. Hence, this reference signal applies to the gondola orientation when the vehicle
is located at either the station exit or the lifthill. On the other hand, the reference signal coincides with
the actual angular velocity once the vehicle has left the lifthill. The error between the reference and actual
angular velocity is amplified with a proportional and integral gain of respectively 0.5 and 10. The error
is subsequently used as input in a Matlab Function that outputs the torque required to maintain a zero
gondola rotation angle. The required torque can be computed according to an expression similar to the one
presented in Equation H.5. The subsequent If block specifies that the calculated torque should be applied
on the pivot axle when the vehicle is at the station exit or lifthill and when the gondola rotation angle is
unequal to zero. In any other case, the torque should be equal to zero. The torque should be applied in
opposite direction with respect to the gondola rotation angle and with a time delay of a single integration
step.

Figure H.6: The actual and reference angular velocity signals for the rotating part when the vehicle is
located on the lifthill
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From Figure H.6 it can be deducted that the deviation of the actual angular velocity from the reference
signal is only minor. Hence, the gondola rotation angle is practically equal to zero when the vehicle is at
the station exit and on the lifthill for all passenger occupancy configurations.

H.7 Rotation Control Turnaround

The control scheme depicted in Figure A.27 is practically similar to the scheme used for controlling the
motion at the station exit and on the lifthill (Figure A.26). Hence, the description presented in the above
section also applies to the scheme used for controlling the gondola rotation at the turnaround between the
brake section and the station. However, there are two notable differences between both schemes that are
worth mentioning. First, the PID controller block in Figure A.27 comprises a proportional and integral
gain equal to respectively 1 and 5. The second difference can be found in the conditions formulated in the
subsequent If block, where the computed torque may only proceed if the parameter Angle is unequal to
zero. This parameter is in essence similar to the gondola rotation angle though. When the gondola is in
alignment with the equilibrium position, no torque is required to correct the position of the gondola. Figure
H.7 shows the actual and reference angular velocity signals for a vehicle occupied by two passengers on
a single side of the gondola. The constant need for a correction torque can especially be deducted from
the right-half plane of this graph, which is partly caused by the mass imbalance on the rotating part that
continuously initiates a rotary motion of the gondola.

Figure H.7: The actual and reference angular velocity signals for the rotating part when the vehicle traverses
through the turnaround between the brake section and station
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I. Acceleration Effects on Passengers

I.1 Time Duration Limits for Accelerations

Figure I.1: Time duration limits for accelerations in x-direction

Figure I.2: Time duration limits for accelerations in y-direction

Figure I.3: Time duration limits for accelerations in z-direction
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I.2 Resulting Passenger Accelerations

I.2.1 Configuration 1

(a) Passenger 1 (b) Passenger 2

(c) Passenger 3 (d) Passenger 4

Figure I.4: Actual (blue) and admissible (red) accelerations in the x-direction

(a) Passenger 1 (b) Passenger 2

(c) Passenger 3 (d) Passenger 4

Figure I.5: Actual (blue) and admissible (red) accelerations in the y-direction
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(a) Passenger 1 (b) Passenger 2

(c) Passenger 3 (d) Passenger 4

Figure I.6: Actual (blue) and admissible (red) accelerations in the z-direction

(a) Passenger 1 (b) Passenger 2

(c) Passenger 3 (d) Passenger 4

Figure I.7: Combined acceleration factors with respect to the combination limit
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I.2.2 Configuration 2

(a) Passenger 1 (b) Passenger 2

(c) Passenger 3

Figure I.8: Actual (blue) and admissible (red) accelerations in the x-direction

(a) Passenger 1 (b) Passenger 2

(c) Passenger 3

Figure I.9: Actual (blue) and admissible (red) accelerations in the y-direction
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(a) Passenger 1 (b) Passenger 2

(c) Passenger 3

Figure I.10: Actual (blue) and admissible (red) accelerations in the z-direction

(a) Passenger 1 (b) Passenger 2

(c) Passenger 3

Figure I.11: Combined acceleration factors with respect to the combination limit
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I.2.3 Configuration 3

(a) Passenger 1 (b) Passenger 2

Figure I.12: Actual (blue) and admissible (red) accelerations in the x-direction

(a) Passenger 1 (b) Passenger 2

Figure I.13: Actual (blue) and admissible (red) accelerations in the y-direction

(a) Passenger 1 (b) Passenger 2

Figure I.14: Actual (blue) and admissible (red) accelerations in the z-direction
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(a) Passenger 1 (b) Passenger 2

Figure I.15: Combined acceleration factors with respect to the combination limit

I.2.4 Configuration 4

(a) Actual (blue) and admissible (red) accelerations in the
x-direction for Passenger 1

(b) Actual (blue) and admissible (red) accelerations in
the y-direction for Passenger 1

(a) Actual (blue) and admissible (red) accelerations in the
z-direction for Passenger 1

(b) Combined acceleration factors with respect to the
combination limit for Passenger 1
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I.3 Copy of AdmissibleX.m

1 function [AdmAccX] = AdmissibleX(t,AccX)
2

3 if AccX ≥ 0
4 if 0.2 ≤ t && t ≤ 1
5 AdmAccX = 6;
6 elseif 1 < t && t ≤ 2
7 AdmAccX = 8 - 2*t;
8 elseif 2 < t && t ≤ 4
9 AdmAccX = 4;

10 elseif 4 < t && t ≤ 5
11 AdmAccX = 8 - t;
12 elseif 5 < t && t ≤ 11.8
13 AdmAccX = 3;
14 elseif 11.8 < t && t ≤ 12
15 AdmAccX = 32.5 - 2.5*t;
16 else
17 AdmAccX = 2.5;
18 end
19 else
20 if 0.2 ≤ t && t ≤ 0.5
21 AdmAccX = -(7/3) + (5/3)*t;
22 else
23 AdmAccX = -1.5;
24 end
25 end

I.4 Copy of AdmissibleY.m

1 function [AdmAccY] = AdmissibleY(t,AccY)
2

3 if AccY ≥ 0
4 if 0.2 ≤ t && t ≤ 1
5 AdmAccY = 3;
6 elseif 1 < t && t ≤ 2
7 AdmAccY = 4 - t;
8 else
9 AdmAccY = 2;

10 end
11 else
12 if 0.2 ≤ t && t ≤ 1
13 AdmAccY = -3;
14 elseif 1 < t && t ≤ 2
15 AdmAccY = -4 + t;
16 else
17 AdmAccY = -2;
18 end
19 end
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I.5 Copy of AdmissibleZ.m

1 function [AdmAccZ] = AdmissibleZ(t,AccZ)
2

3 if AccZ ≥ 0
4 if 0.2 ≤ t && t ≤ 1
5 AdmAccZ = 6;
6 elseif 1 < t && t ≤ 2
7 AdmAccZ = 8 - 2*t;
8 elseif 2 < t && t ≤ 4
9 AdmAccZ = 4;

10 elseif 4 < t && t ≤ 5
11 AdmAccZ = 8 - t;
12 elseif 5 < t && t ≤ 11.8
13 AdmAccZ = 3;
14 elseif 11.8 < t && t ≤ 12
15 AdmAccZ = 62 - 5*t;
16 else
17 AdmAccZ = 2;
18 end
19 else
20 if 0.2 ≤ t && t ≤ 0.5
21 AdmAccZ = -(7/3) + (5/3)*t;
22 elseif 0.5 < t && t ≤ 4
23 AdmAccZ = -1.5;
24 elseif 4 < t && t ≤ 7
25 AdmAccZ = -(61/30) + (2/15)*t;
26 else
27 AdmAccZ = -1.1;
28 end
29 end

I.6 Copy of AdmAccelerations.m

1 %% Save the acceleration data
2 clc
3

4 % Save the acceleration data of passenger 1 to .mat-files in the working directory:
5 save('AccX1.mat','AccX1');
6 save('AccY1.mat','AccY1');
7 save('AccZ1.mat','AccZ1');
8 % Save the acceleration data of passenger 2 to .mat-files in the working directory:
9 save('AccX2.mat','AccX2');

10 save('AccY2.mat','AccY2');
11 save('AccZ2.mat','AccZ2');
12 % Save the acceleration data of passenger 3 to .mat-files in the working directory:
13 save('AccX3.mat','AccX3');
14 save('AccY3.mat','AccY3');
15 save('AccZ3.mat','AccZ3');
16 % Save the acceleration data of passenger 4 to .mat-files in the working directory:
17 save('AccX4.mat','AccX4');
18 save('AccY4.mat','AccY4');
19 save('AccZ4.mat','AccZ4');
20

21 %% Data Pre-Processing
22 clear all, clc
23

24 % Specify gravitational acceleration:
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25 g = 9.80665; %m/sˆ2
26

27 % Load the passenger acceleration data of interest:
28 load('AccX1.mat')
29 load('AccY1.mat')
30 load('AccZ1.mat')
31

32 % Convert unit for acceleration from m/sˆ2 to g-loads:
33 AccX = -AccX1/g;
34 AccY = -AccY1/g;
35 AccZ = -AccZ1/g;
36

37 % Specify sample frequency (Hz) and kinematic model time-step (s):
38 fn = 5;
39 dt = 0.01;
40

41 %% Time Duration Limit for Accelerations in X-Direction
42

43 % End-time and time array:
44 t end = 15; %s
45 t vec = 0.2:dt:t end;
46

47 % Determine the positive limit for the x-acceleration:
48 for i = 1:length(t vec)
49 AdmAccXPos(i) = AdmissibleX(t vec(i),1);
50 end
51 % Determine the negative limit for the x-acceleration:
52 for i = 1:length(t vec)
53 AdmAccXNeg(i) = AdmissibleX(t vec(i),-1);
54 end
55

56 %% Time Duration Limit for Accelerations in Y-Direction
57

58 % Determine the positive limit for the y-acceleration:
59 for i = 1:length(t vec)
60 AdmAccYPos(i) = AdmissibleY(t vec(i),1);
61 end
62 % Determine the positive limit for the y-acceleration:
63 for i = 1:length(t vec)
64 AdmAccYNeg(i) = AdmissibleY(t vec(i),-1);
65 end
66

67 %% Time Duration Limit for Accelerations in Z-Direction
68

69 % Determine the positive limit for the z-acceleration:
70 for i = 1:length(t vec)
71 AdmAccZPos(i) = AdmissibleZ(t vec(i),1);
72 end
73 % Determine the negative limit for the z-acceleration:
74 for i = 1:length(t vec)
75 AdmAccZNeg(i) = AdmissibleZ(t vec(i),-1);
76 end
77

78 %% Combined Acceleration Factors
79

80 % Initialization
81 k = 1;
82 t(k) = 1/fn;
83 index = ((1/fn)/dt):((1/fn)/dt):length(AccX);
84 AdmAccX1(k) = AdmissibleX(t,AccX(index(k)));
85 AdmAccY1(k) = AdmissibleY(t,AccY(index(k)));
86 AdmAccZ1(k) = AdmissibleZ(t,AccZ(index(k)));
87
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88 for k = 2:length(index)
89 % Determine the admissible accelerations for positive x-accelerations:
90 if AccX(index(k)) ≥ 0
91 if AccX(index(k-1)) ≥ 0
92 t(k) = t(k-1) + (1/fn);
93 else
94 t(k) = (1/fn);
95 end
96 % Determine the admissible accelerations for negative x-accelerations:
97 else
98 if AccX(index(k-1)) < 0
99 t(k) = t(k-1) + (1/fn);

100 else
101 t(k) = (1/fn);
102 end
103 end
104 AdmAccX1(k) = AdmissibleX(t(k),AccX(index(k)));
105

106 % Determine the admissible accelerations for positive y-accelerations:
107 if AccY(index(k)) ≥ 0
108 if AccY(index(k-1)) ≥ 0
109 t(k) = t(k-1) + (1/fn);
110 else
111 t(k) = (1/fn);
112 end
113 % Determine the admissible accelerations for negative y-accelerations:
114 else
115 if AccY(index(k-1)) < 0
116 t(k) = t(k-1) + (1/fn);
117 else
118 t(k) = (1/fn);
119 end
120 end
121 AdmAccY1(k) = AdmissibleY(t(k),AccY(index(k)));
122

123 % Determine the admissible accelerations for positive z-accelerations:
124 if AccZ(index(k)) ≥ 0
125 if AccZ(index(k-1)) ≥ 0
126 t(k) = t(k-1) + (1/fn);
127 else
128 t(k) = (1/fn);
129 end
130 % Determine the admissible accelerations for negative z-accelerations:
131 else
132 if AccZ(index(k-1)) < 0
133 t(k) = t(k-1) + (1/fn);
134 else
135 t(k) = (1/fn);
136 end
137 end
138 AdmAccZ1(k) = AdmissibleZ(t(k),AccZ(index(k)));
139

140 % Determine the combined accelerations:
141 CombinAccXY(k) = (AccX(index(k))/AdmAccX1(k))ˆ2 + (AccY(index(k))/AdmAccY1(k))ˆ2;
142 CombinAccXZ(k) = (AccX(index(k))/AdmAccX1(k))ˆ2 + (AccZ(index(k))/AdmAccZ1(k))ˆ2;
143 CombinAccYZ(k) = (AccY(index(k))/AdmAccY1(k))ˆ2 + (AccZ(index(k))/AdmAccZ1(k))ˆ2;
144 end
145

146 % Specify the end-time and an accompanying time array:
147 t end = length(index)*(1/fn);
148 t vec = (1/fn):(1/fn):t end;
149

150 %% Reversals in X and Y
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151

152 % Specify a time array:
153 t vec = 0:dt:t end;
154

155 % Initialization:
156 k = 20;
157 SignChangeX(1:k) = 0;
158 SignChangeY(1:k) = 0;
159

160 % Determine the zero-crossings for the x-acceleration and y-acceleration data:
161 for k = 21:length(t vec)
162 if sign(AccX(k-1)) 6= sign(AccX(k))
163 SignChangeX(k) = 1;
164 else
165 SignChangeX(k) = 0;
166 end
167 if sign(AccY(k-1)) 6= sign(AccY(k))
168 SignChangeY(k) = 1;
169 else
170 SignChangeY(k) = 0;
171 end
172 end
173

174 % Determine the location of the non-sustained events for the x-acceleration data:
175 zcridxX = find(SignChangeX == 1);
176 zcrtimeX = (zcridxX-1.5)*dt;
177 iX = 0;
178 for k = 1:(length(zcrtimeX)-1)
179 difzcrX(k) = zcrtimeX(k+1) - zcrtimeX(k);
180 if (difzcrX(k) < (1/fn)) && (zcrtimeX(k) > (1/fn))
181 iX = iX+1;
182 % Determine the lower and upper boundary of the non-sustained events:
183 lownonsusX(iX) = zcrtimeX(k);
184 highnonsusX(iX) = zcrtimeX(k+1);
185 end
186 end
187

188 % Determine the location of the non-sustained events for the y-acceleration data:
189 zcridxY = find(SignChangeY == 1);
190 zcrtimeY = (zcridxY-1.5)*dt;
191 iY = 0;
192 for k = 1:(length(zcrtimeY)-1)
193 ...
194 end
195

196 % Initialization
197 k = 1;
198 tX(k) = 1/fn;
199 tY(k) = 1/fn;
200 AdmAccX2(k) = AdmissibleX(t(k),AccX((1/fn)/dt));
201 AdmAccY2(k) = AdmissibleY(t(k),AccY((1/fn)/dt));
202 t vec = (1/fn):dt:t end;
203

204 for k = 2:length(t vec)
205 % Determine the admissible accelerations for positive x-accelerations:
206 if AccX(((1/fn)/dt) + k) ≥ 0
207 if AccX(((1/fn)/dt) + k-1) ≥ 0
208 tX(k) = tX(k-1) + dt;
209 else
210 tX(k) = (1/fn);
211 end
212 % Determine the admissible accelerations for negative x-accelerations:
213 else
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214 if AccX(((1/fn)/dt) + k-1) < 0
215 tX(k) = tX(k-1) + dt;
216 else
217 tX(k) = (1/fn);
218 end
219 end
220 AdmAccX2(k) = AdmissibleX(tX(k),AccX(((1/fn)/dt) + k));
221 % Determine the admissible accelerations for positive y-accelerations:
222 if AccY(((1/fn)/dt) + k) ≥ 0
223 if AccY(((1/fn)/dt) + k-1) ≥ 0
224 tY(k) = tY(k-1) + dt;
225 else
226 tY(k) = (1/fn);
227 end
228 % Determine the admissible accelerations for negative y-accelerations:
229 else
230 if AccY(((1/fn)/dt) + k-1) < 0
231 tY(k) = tY(k-1) + dt;
232 else
233 tY(k) = (1/fn);
234 end
235 end
236 AdmAccY2(k) = AdmissibleY(tY(k),AccY(((1/fn)/dt) + k));
237 end
238

239 % Determine the admissible x-accelerations corresponding to the non-sustained events:
240 if iX > 0
241 for k = 1:iX
242 t vec1{k} = lownonsusX(k):dt:highnonsusX(k);
243 for i = 1:(length(t vec1{k}(:)))
244 idxnonsusX1{k}(i) = ceil((t vec1{k}(i) - (1/fn))/dt);
245 end
246 AdmAccX3{k} = AdmAccX2(idxnonsusX1{k});
247 end
248 end
249 % Determine the admissible y-accelerations corresponding to the non-sustained events:
250 if iY > 0
251 for k = 1:iY
252 ...
253 end
254 end
255

256 % Determine the peak-to-peak transition times for the x-acceleration data:
257 [pksvalX,pkslocX] = findpeaks(AccX);
258 minlogX = islocalmin(AccX);
259 minlocX = find(minlogX 6= 0);
260 minvalX = AccX(minlocX);
261 % Determine the peak-to-peak transition times for the y-acceleration data:
262 [pksvalY,pkslocY] = findpeaks(AccY);
263 minlogY = islocalmin(AccY);
264 minlocY = find(minlogY 6= 0);
265 minvalY = AccY(minlocY);
266

267 % Determine the critical transition peaks for the x-acceleration data:
268 for k = 1:length(zcridxX)
269 lowpksX1{k} = max(pkslocX(find(pkslocX < zcridxX(k))));
270 if isempty(lowpksX1{k}) == 1
271 lowpksX2(k) = 0;
272 else
273 lowpksX2(k) = lowpksX1{k};
274 end
275

276 lowminX1{k} = max(minlocX(find(minlocX < zcridxX(k))));
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277 if isempty(lowminX1{k}) == 1
278 lowminX2(k) = 0;
279 else
280 lowminX2(k) = lowminX1{k};
281 end
282

283 if lowpksX2(k) > lowminX2(k)
284 lowidxX(k) = lowpksX2(k);
285 else
286 lowidxX(k) = lowminX2(k);
287 end
288

289 highpksX1{k} = min(pkslocX(find(pkslocX > zcridxX(k))));
290 if isempty(highpksX1{k}) == 1
291 highpksX2(k) = inf;
292 else
293 highpksX2(k) = highpksX1{k};
294 end
295

296 highminX1{k} = min(minlocX(find(minlocX > zcridxX(k))));
297 if isempty(highminX1{k}) == 1
298 highminX2(k) = inf;
299 else
300 highminX2(k) = highminX1{k};
301 end
302

303 if highpksX2(k) < highminX2(k)
304 highidxX(k) = highpksX2(k);
305 else
306 highidxX(k) = highminX2(k);
307 end
308 difX(k) = (highidxX(k) - lowidxX(k))*dt;
309 end
310 lowrevidxX = lowidxX(find(difX < (1/fn)));
311 lowrevtimeX = (lowrevidxX-1)*dt;
312 lowrevvalX = AccX(lowrevidxX);
313 highrevidxX = highidxX(find(difX < (1/fn)));
314 highrevtimeX = (highrevidxX-1)*dt;
315 highrevvalX = AccX(highrevidxX);
316 % Determine the critical transition peaks for the y-acceleration data:
317 for k = 1:length(zcridxY)
318 ...
319 end
320 lowrevidxY = lowidxY(find(difY < (1/fn)));
321 lowrevtimeY = (lowrevidxY-1)*dt;
322 lowrevvalY = AccY(lowrevidxY);
323 highrevidxY = highidxY(find(difY < (1/fn)));
324 highrevtimeY = (highrevidxY-1)*dt;
325 highrevvalY = AccY(highrevidxY);
326

327 % Rewrite indices of non-sustained events to array for x-acceleration data:
328 j = 0;
329 if iX > 0
330 for i = 1:length(idxnonsusX1)
331 j(i) = j(i)+1;
332 j(i+1) = j(i)+length(idxnonsusX1{i})-1;
333 IdxNonSusX(j(i):j(i+1)) = idxnonsusX1{i};
334 end
335 end
336 % Rewrite indices of non-sustained events to array for y-acceleration data:
337 j = 0;
338 if iY > 0
339 for i = 1:length(idxnonsusY1)
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340 ...
341 end
342 end
343

344 % Reduction of the allowable limit for x-acceleration data by fifty percent
345 % for transition times lower than 200 ms:
346 n = 0;
347 t vec = (1/fn):dt:t end;
348 if length(find(difX < (1/fn))) > 0
349 for k = 1:length(find(difX < (1/fn)))
350 n = n+2;
351 if lowrevidxX(k) < (((1/fn)/dt)+1)
352 lowsusX(n-1) = (1/fn)+dt;
353 highsusX(n-1) = (1/fn)+dt;
354 elseif isempty(find(zcridxX < lowrevidxX(k))) == 1
355 lowsusX(n-1) = (1/fn)+dt;
356 highsusX(n-1) = (min(zcridxX(find(zcridxX > lowrevidxX(k)))))*dt;
357 else
358 lowsusX(n-1) = (max(zcridxX(find(zcridxX < lowrevidxX(k)))))*dt;
359 highsusX(n-1) = (min(zcridxX(find(zcridxX > lowrevidxX(k)))))*dt;
360 end
361 if highrevidxX(k) < (((1/fn)/dt)+1)
362 lowsusX(n) = (1/fn)+dt;
363 highsusX(n) = (1/fn)+dt;
364 elseif isempty(find(zcridxX > highrevidxX(k))) == 1
365 lowsusX(n) = (max(zcridxX(find(zcridxX < highrevidxX(k)))))*dt;
366 highsusX(n) = t end;
367 else
368 lowsusX(n) = (max(zcridxX(find(zcridxX < highrevidxX(k)))))*dt;
369 highsusX(n) = (min(zcridxX(find(zcridxX > highrevidxX(k)))))*dt;
370 end
371 end
372

373 for m = 1:n
374 t vec3{m} = lowsusX(m):dt:highsusX(m);
375 for i = 1:(length(t vec3{m}(:)))
376 idxsusX{m}(i) = round((t vec3{m}(i) - (1/fn))/dt,-0)-1;
377 if (iX > 0) && (isempty(find(idxsusX{m}(i) == IdxNonSusX)) == 0)
378 idxsusX{m}(i) = 0;
379 end
380 end
381 idxsusX{m}(idxsusX{m} == 0) = [];
382 AdmSusX{m} = t vec(idxsusX{m});
383 AdmAccX4{m} = AdmAccX2(idxsusX{m})/2;
384 end
385 end
386 % Reduction of the allowable limit for y-acceleration data by fifty percent
387 % for transition times lower than 200 ms:
388 n = 0;
389 if length(find(difX < (1/fn))) > 0
390 for k = 1:length(find(difY < (1/fn)))
391 ...
392 end
393

394 for m = 1:n
395 ...
396 end
397 end
398

399 % Conversion to array for sustained events in x-acceleration data:
400 j = 0;
401 if isempty(find(difX < (1/fn))) == 0
402 for i = 1:length(idxsusX)
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403 j(i) = j(i)+1;
404 j(i+1) = j(i)+length(idxsusX{i})-1;
405 IdxSusX(j(i):j(i+1)) = idxsusX{i};
406 end
407 end
408 % Conversion to array for sustained events in y-acceleration data:
409 j = 0;
410 if isempty(find(difX < (1/fn))) == 0
411 for i = 1:length(idxsusY)
412 ...
413 end
414 end
415

416 % Create an array with indices corresponding to x-acceleration transition regions:
417 m = 1;
418 n(m) = 0;
419 if isempty(find(difX < (1/fn))) == 0
420 for k = 1:length(find(difX < (1/fn)))
421 m = m+1;
422 n(m) = n(m-1) + length(lowrevidxX(k):highrevidxX(k));
423 IdxTransX((n(m-1)+1):n(m)) = lowrevidxX(k):highrevidxX(k);
424 end
425 end
426 % Create an array with indices corresponding to y-acceleration transition regions:
427 if isempty(find(difY < (1/fn))) == 0
428 m = 1;
429 n(m) = 0;
430 for k = 1:length(find(difY < (1/fn)))
431 ...
432 end
433 end
434

435 % Detect limit violations for the x-acceleration data:
436 for k = 1:length(AdmAccX2)
437 if (iX > 0) && (isempty(find(difX < (1/fn))) == 0)
438 if (isempty(find(k == IdxNonSusX)) 6= 0) && (isempty(find(k == IdxSusX)) 6= 0)
439 VioChkX(k) = ¬isempty(find(abs(AccX(k + ((1/fn)/dt))) > abs(AdmAccX2(k))));
440 elseif isempty(find(k == IdxSusX)) == 0
441 if isempty(find((k + ((1/fn)/dt)) == IdxTransX)) == 0
442 VioChkX(k) = ¬isempty(find(abs(AccX(k + ((1/fn)/dt))) > ...

abs(AdmAccX2(k)/2)));
443 else
444 VioChkX(k) = ¬isempty(find(abs(AccX(k + ((1/fn)/dt))) > abs(AdmAccX2(k))));
445 end
446 else
447 VioChkX(k) = 0;
448 end
449 elseif (iX > 0) && (isempty(find(difX < (1/fn))) == 1)
450 if isempty(find(k == IdxNonSusX)) 6= 0
451 VioChkX(k) = ¬isempty(find(abs(AccX(k + ((1/fn)/dt))) > abs(AdmAccX2(k))));
452 else
453 VioChkX(k) = 0;
454 end
455 elseif (iX == 0) && (isempty(find(difX < (1/fn))) == 0)
456 if isempty(find(k == IdxSusX)) 6= 0
457 VioChkX(k) = ¬isempty(find(abs(AccX(k + ((1/fn)/dt))) > abs(AdmAccX2(k))));
458 else
459 if isempty(find((k + ((1/fn)/dt)) == IdxTransX)) == 0
460 VioChkX(k) = ¬isempty(find(abs(AccX(k + ((1/fn)/dt))) > ...

abs(AdmAccX2(k)/2)));
461 else
462 VioChkX(k) = ¬isempty(find(abs(AccX(k + ((1/fn)/dt))) > abs(AdmAccX2(k))));
463 end
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464 end
465 else
466 VioChkX(k) = ¬isempty(find(abs(AccX(k + ((1/fn)/dt))) > abs(AdmAccX2(k))));
467 end
468 end
469

470 % Detect limit violations for the y-acceleration data:
471 for k = 1:length(AdmAccY2)
472 ...
473 end
474

475 %% Transitions in Z
476

477 % Initialization
478 k = 1;
479 tZ(k) = 1/fn;
480 AdmAccZ2(k) = AdmissibleZ(t(k),AccZ((1/fn)/dt));
481 t vec = (1/fn):dt:t end;
482

483 for k = 2:length(t vec)
484 % Determine the admissible accelerations for positive z-accelerations:
485 if AccZ(((1/fn)/dt) + k) ≥ 0
486 if AccZ(((1/fn)/dt) + k-1) ≥ 0
487 tZ(k) = tZ(k-1) + dt;
488 else
489 tZ(k) = (1/fn);
490 end
491 % Determine the admissible accelerations for negative z-accelerations:
492 else
493 if AccZ(((1/fn)/dt) + k-1) < 0
494 tZ(k) = tZ(k-1) + dt;
495 else
496 tZ(k) = (1/fn);
497 end
498 end
499 AdmAccZ2(k) = AdmissibleZ(tZ(k),AccZ(((1/fn)/dt) + k));
500 end
501

502 % Determine if additional criteria apply to the z-acceleration transitions:
503 if isempty(find(AccZ ≤ 0)) == 1
504 disp('The criteria for transitions in a z do not apply')
505

506 for k = 1:length(AdmAccZ2)
507 VioChkZ(k) = ¬isempty(find(abs(AccZ(k + ((1/fn)/dt))) > abs(AdmAccZ2(k))));
508 end
509

510 if isempty(find(VioChkZ == 1)) == 0
511 VioIdxZ = find(VioChkZ == 1);
512 for k = 1:length(VioIdxZ)
513 VioAccZ(k) = AccZ(VioIdxZ(k) + ((1/fn)/dt));
514 VioTimeZ(k) = t vec(VioIdxZ(k));
515 end
516 end
517 else
518 disp('Please investigate if the criteria for transitions in a z are met')
519 end
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J. Model Validation

The reaction forces between the wheels and track will be validated by evaluating the equilibrium of forces
at all four bogies. Since only reaction forces were used to determine the rolling and bearing frictional forces,
the upcoming sections will focus on a validation of forces rather than torques. Before this validation can
be performed, the equilibrium of forces at respectively the front and rear axle needs to be evaluated first
though, as shown in the first section of this appendix.

J.1 Forces at Front and Rear Hinge Joints

The bogies are connected to the front and rear axle by revolute joints, so the bogies can hinge around the
axle. The forces at the spherical and revolute joint between the chassis beam and respectively the front and
rear axle have already been validated. Additionally, also the masses of the axles and the linear accelerations
at their centres of mass can be regarded as known quantities. The location of the centre of mass and the
points of application of the hinge forces have been indicated in Figure J.1.

(a) Front axle (b) Rear Axle

Figure J.1: The forces acting on an axle have been decomposed in x (red), y (green), and z-direction (blue)
and they are represented by a solid line, while the accelerations at the centre of mass are represented by a
dashed line

Calculating the forces at each individual hinge joint is unfeasible due to the dynamic nature of the model.
The presumption of an equal distribution of the load over the two hinge joints is namely flawed for most
track sections. Hence, the decision is taken to validate the sum of forces at the two hinge joints, as shown
in Equation J.1.

Fx,hinges = −max − Fx,axle Fy,hinges = −may − Fy,axle Fz,hinges = −maz − Fx,axle (J.1)

where Fhinges represents the sum of forces at the hinges, Faxle symbolizes the force at the joint, m denotes
the mass of the axle and a represents the acceleration at its centre of mass. Calculation of the sum of hinge
reaction forces according to Equation J.1 and a subsequent comparison with the measured hinge forces
yields the results presented in Figures J.7 and J.8 (Section J.3) for respectively the front and rear axle.
The alignment of the calculated and measured hinge forces in these graphs proves that the expressions in
Equation J.1 are correct and that the motion of the axles is described by a logical relation between mass,
accelerations, and forces. Hence, the validated hinge forces can be used in the validation analysis of the
forces between the track and wheels, as presented in the next section.
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J.2 Forces between Track and Wheels

Figure J.2: The forces (solid line) and accel-
erations (dashed line) acting on a bogie have
been decomposed in x (red), y (green), and
z-direction (blue)

Two local frames have been defined at a specified distance
from the running wheels, so their origins are exactly aligned
with the heartline of the track. The relative motion of the
bogies with respect to the track is constrained by means of
point-on-curve constraints, which constrain the origins of the
local frames to the track splines. The normal forces exerted
by the track on the wheels at the point-on-curve constraints
can be measured, and a validation of the measured force
values is presented in this section. Hinge joints connect the
bogies to the axles, and the forces sensed at these joints have
already been validated in the previous section. Hence, these
forces can be used for the validation of the reaction forces
between the track and wheels. Reversing their direction and
reformulating these forces in terms of the prevalent reference
coordinate system yields force values that can be used as
input for the current validation analysis. The mass of the
bogies and the linear accelerations measured at the centre
of mass are also required for an appropriate evaluation of
the forces exerted by the track on the wheels. These normal
forces are decomposed in x, y, and z-direction according to
the convention specified by the local frames, as shown in
Figure J.2. The normal forces are subsequently redefined
in terms of forces sensed at respectively the running, guide,
and upstop wheels. The forces in y-direction are assigned to either the running or upstop wheels, while the
guide-wheels account for the forces in the z-direction. Please note that the reaction forces in z-direction are
only sensed at the front-left and rear-right bogies. The general expression presented in Equation J.2 applies
to all wheelcarriers.

ma = −Nsum − Fhinge → Nsum = −ma− Fhinge (J.2)

where m denotes the mass of the bogie including wheels, a represents the accelerations at the centre of
mass, Nsum symbolizes the sum of normal forces measured at the two point-on-curve constraints for a
certain wheel-type, and Fhinge denotes the forces exerted by the axle on the bogie at the hinge joint. As
shown in Figure J.2, the normal forces in y-direction are assigned to the running wheels if Ny,sum acts in
the negative direction with respect to the local reference frame. On the other hand, these normal forces are
assigned to the upstop wheels if Ny,sum is positive, as shown in Equation J.3.

Ny,sum < 0 :Nrunning = Ny,sum

Nupstop = 0

Ny,sum = 0 :Nrunning = 0

Nupstop = 0

Ny,sum > 0 :Nrunning = 0

Nupstop = Ny,sum

(J.3)

Similar conditions can be formulated for the forces measured in the z-direction at either the front-left or
rear-right bogie. The lateral normal forces measured at the front-left bogie can be assigned to the guide
wheels on either the front-left or the front-right bogie, depending on the lateral acceleration of the bogie. The
conditions formulated in Equation J.4 apply to the normal forces in z-direction measured at the front-left
bogie.
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Nz,sum > 0 :NFL,guide = Nz,sum

NFR,guide = 0

Nz,sum = 0 :NFL,guide = 0

NFR,guide = 0

Nz,sum < 0 :NFL,guide = 0

NFR,guide = Nz,sum

(J.4)

where FL and FR denote respectively the front-left and front-right bogie. Similar conditions can be formu-
lated for the forces sensed at the rear-right bogie, as shown in Equation J.5.

Nz,sum > 0 :NFL,guide = −Nz,sum

NFR,guide = 0

Nz,sum = 0 :NFL,guide = 0

NFR,guide = 0

Nz,sum < 0 :NFL,guide = 0

NFR,guide = −Nz,sum

(J.5)

The exchange of forces between the wheels and the track is successfully validated if the calculated normal
forces (Equation J.2) equal their measured equivalents (Equation J.3 till J.5) for the running, guide, and
upstop wheels. The graphical results of the validation are presented in the next section for all four bogies
and passenger occupancy configurations.

J.3 Model Validation Graphs

J.3.1 Forces at Pivot Joint

(a) Configuration 1 (b) Configuration 2

(c) Configuration 3 (d) Configuration 4

Figure J.3: Comparison between the measured and calculated forces at the pivot joint
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J.3.2 Torques at Pivot Joint

(a) Configuration 1 (b) Configuration 2

(c) Configuration 3 (d) Configuration 4

Figure J.4: Comparison between the measured and calculated torques at the pivot joint

J.3.3 Forces at Front and Rear Axle Joints

(a) Configuration 1 (b) Configuration 2

(c) Configuration 3 (d) Configuration 4

Figure J.5: Comparison between the measured and calculated forces at the front and rear axle joints
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J.3.4 Torques at Rear Axle Joint

(a) Configuration 1 (b) Configuration 2

(c) Configuration 3 (d) Configuration 4

Figure J.6: Comparison between the measured and calculated torques at the rear axle joint

J.3.5 Forces at Front Hinge Joints

(a) Configuration 1 (b) Configuration 2

(c) Configuration 3 (d) Configuration 4

Figure J.7: Comparison between the measured and calculated hinge forces at the front bogies
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J.3.6 Forces at Rear Hinge Joints

(a) Configuration 1 (b) Configuration 2

(c) Configuration 3 (d) Configuration 4

Figure J.8: Comparison between the measured and calculated hinge forces at the front bogies

J.3.7 Forces between Track and Wheels at Front-Left Bogie

(a) Configuration 1 (b) Configuration 2

(c) Configuration 3 (d) Configuration 4

Figure J.9: Comparison between the measured and calculated track-wheel forces at the front-left bogie
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J.3.8 Forces between Track and Wheels at Front-Right Bogie

(a) Configuration 1 (b) Configuration 2

(c) Configuration 3 (d) Configuration 4

Figure J.10: Comparison between the measured and calculated track-wheel forces at the front-right bogie

J.3.9 Forces between Track and Wheels at Rear-Left Bogie

(a) Configuration 1 (b) Configuration 2

(c) Configuration 3 (d) Configuration 4

Figure J.11: Comparison between the measured and calculated track-wheel forces at the rear-left bogie
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J.3.10 Forces between Track and Wheels at Rear-Right Bogie

(a) Configuration 1 (b) Configuration 2

(c) Configuration 3 (d) Configuration 4

Figure J.12: Comparison between the measured and calculated track-wheel forces at the rear-left bogie
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K. Loadcases and Reaction Forces

K.1 Loadcases Optimized Method

K.1.1 Forces and Torques

Loadcase Fx [N] Fy [N] Fz [N] Tx [Nm] Tz [Nm]

1 -4607.46 -8260.40 -0.77 -0.78 3777.74

2 -4786.08 -7949.48 0.47 0.67 3886.92

3 -4731.13 -6824.44 -1.04 -0.78 3775.43

4 -78.00 -10098.87 6871.55 5272.15 -9.22

5 -200.97 -9989.89 7131.68 5486.47 156.24

6 396.73 -8986.49 -5522.78 -4066.52 -410.70

7 -85.93 -9676.18 -6782.97 -5136.38 29.71

8 207.81 -14602.00 -2733.30 -1596.01 -90.80

9 -6.99 -14518.65 -3178.50 -2145.92 118.68

10 93.22 -14114.23 5328.74 3984.29 29.82

11 3.21 -14241.42 4890.17 3632.41 149.99

12 1010.33 -11608.46 -2961.39 -2154.59 -1241.69

13 624.17 -13463.67 -2506.57 -1647.40 -803.77

14 695.85 -6714.95 5028.64 4135.62 -798.23

15 2324.48 -8320.94 762.96 675.84 -1721.81

16 2363.39 -8333.26 38.73 72.62 -1739.83

17 -4319.25 -6073.08 -0.13 -163.73 3243.01

18 366.97 -8084.37 -5074.93 -3926.52 -205.65

19 -95.03 -8794.89 -6269.27 -4731.46 377.35

20 439.65 -6136.12 4540.96 3596.17 -701.95

21 2035.85 -7560.96 1742.80 1823.71 -1589.58

22 -3846.99 -5423.25 -1.39 -1.05 2571.56

23 -100.82 -8184.03 6189.84 5202.74 -3.93

24 221.42 -7241.05 -4781.31 -3723.13 -38.61

25 -107.98 -7900.55 -5587.93 -3738.40 484.69

26 981.40 -9846.10 -2205.05 -1260.25 -2105.14

27 312.47 -5492.20 3857.39 2677.59 -24.02

28 1986.15 -6760.53 76.10 466.64 -1621.55

29 1979.48 -6764.14 39.13 364.03 -1736.39

30 -3393.39 -4816.26 0.16 -154.81 2376.16

31 -2267.91 -4517.69 -1.73 -147.98 1487.25

32 294.87 -6261.93 -3802.59 -2635.62 -68.07

33 -57.03 -6978.86 -4914.48 -3137.12 97.70

34 84.41 -4702.45 -889.64 -820.65 -120.57

35 174.42 -4613.70 -698.86 -688.17 -283.55

36 94.45 -5167.34 3485.59 2834.88 -368.83

37 530.39 -5063.95 3199.96 2485.31 -970.04

38 1646.04 -5975.11 618.07 567.14 -900.59

39 1755.16 -5982.89 -80.35 -296.12 -1094.37

Table K.1: The forces and torques exerted at the pivot joint, which belong to the loadcases of the optimized
method with respect to the reference frame used in Ansys
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K.1.2 Accelerations

Loadcase ax [m/s2] ay [m/s2] az [m/s2] ωx [rad/s2] ωy [rad/s2] ωz [rad/s2]

1 -4.80 -9.45 0.00 0.00 0.00 0.74

2 -5.12 -9.07 0.00 0.00 0.00 0.63

3 -5.26 -7.85 0.00 0.00 0.00 0.37

4 0.46 -11.91 8.30 0.03 -0.10 -0.03

5 0.48 -11.69 8.58 0.03 -0.06 0.19

6 0.40 -10.64 -7.11 0.26 0.87 -0.36

7 0.44 -11.36 -7.89 -0.33 0.02 0.02

8 0.52 -17.63 -4.73 1.28 0.16 -0.25

9 0.53 -17.48 -4.31 0.19 -0.07 0.02

10 0.45 -16.84 6.72 -0.08 0.18 -0.02

11 0.45 -16.91 6.13 -0.13 0.36 0.15

12 0.18 -14.53 -4.57 0.58 0.80 -1.04

13 0.33 -16.44 -4.43 1.17 0.18 -0.52

14 0.29 -8.42 5.55 0.81 -1.08 -0.35

15 2.72 -9.76 0.64 0.16 0.32 -0.01

16 2.77 -9.77 0.05 0.00 0.00 0.00

17 -5.07 -7.62 0.00 0.00 0.00 0.68

18 0.42 -10.60 -7.19 0.22 0.92 -0.37

19 0.44 -11.40 -8.08 -0.34 0.02 0.02

20 0.33 -8.31 5.31 1.27 -1.20 -0.06

21 2.65 -9.75 1.06 1.34 0.44 0.00

22 -5.14 -7.65 0.00 0.00 0.00 0.57

23 0.43 -11.73 8.64 0.02 -0.05 0.17

24 0.51 -10.67 -7.40 0.27 0.88 -0.37

25 0.43 -11.41 -8.16 -0.32 0.02 0.01

26 0.13 -14.73 -4.31 0.68 0.71 -1.02

27 0.34 -8.27 5.17 1.57 -1.31 0.15

28 2.76 -9.76 0.02 -0.01 0.00 0.00

29 2.76 -9.77 0.03 -0.01 0.00 0.00

30 -5.00 -7.61 0.00 0.00 0.00 0.75

31 -3.54 -7.45 0.00 0.00 0.00 0.15

32 0.43 -10.37 -6.74 0.04 1.03 -0.34

33 0.41 -11.40 -8.11 -0.14 -0.01 -0.01

34 0.17 -7.84 -1.15 -0.09 -0.53 0.03

35 0.14 -7.71 -0.85 -0.12 -0.46 -0.16

36 0.38 -8.38 4.75 2.09 -1.42 0.49

37 0.24 -8.67 5.15 0.44 -0.89 -0.46

38 2.73 -9.76 0.66 0.32 0.31 -0.01

39 2.71 -9.77 0.03 -0.01 0.00 0.00

Table K.2: The linear and angular accelerations at the centre of mass of the main chassis beam, which
belong to the loadcases of the optimized method with respect to the reference frame used in Ansys
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K.2 Torques at Rear Revolute Joint

Loadcase Tz [Nm]

1 -974.89

2 -974.89

3 1041.33

4 1041.33

5 -974.89

6 -974.89

7 -974.89

8 -974.89

9 1041.33

10 1041.33

11 1041.33

12 1041.33

Loadcase Tz [Nm]

1 0.00

2 0.00

3 0.00

4 -817.48

5 -861.61

6 -578.56

7 -832.60

8 -112.48

9 -151.19

10 -325.87

11 -267.54

12 -149.95

13 -129.82

14 -446..04

15 -8.74

16 0.01

17 0.02

18 -548.04

19 -765.59

20 -335.95

21 -29.63

22 0.00

23 -817.31

24 -530.34

25 -606.53

26 -90.40

27 -218.14

28 0.04

29 0.03

30 0.01

31 0.00

32 -334.94

33 -513.14

34 10.23

35 18.29

36 -164.97

37 -286.01

38 -7.63

39 -0.03

Table K.3: Torques exerted at the rear pilot node for the conventional (left) and optimized (right) method
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K.3 Comparison between Reaction Forces

Loadcase
Fx,total [N] Fy,front [N]

Simulink Ansys RPD Simulink Ansys RPD

1 -2520.2 -2663.6 5.53 % 5528.5 4142.1 28.67 %

2 -3215.9 -3368.1 4.62 % 5139.1 5628.3 9.09 %

3 -3889.2 -4044.6 3.92 % 4172.9 4729.5 12.51 %

4 -217.1 -345.9 45.76 % 10450.8 10080.0 3.61 %

5 -102.9 -246.4 82.15 % 10157.5 9806.4 3.52 %

6 -649.9 -768.1 16.67 % 9461.2 9207.7 2.72 %

7 -184.3 -318.4 53.37 % 9960.9 9624.7 3.43 %

8 -384.6 -691.0 56.97 % 14963.2 14422.0 3.68 %

9 -159.6 -490.0 101.74 % 14705.8 14155.0 3.82 %

10 -284.6 -512.6 57.22 % 14273.1 13814.0 3.27 %

11 -182.5 -416.5 78.15 % 14231.0 13765.0 3.33 %

12 -875.0 -1177.1 29.45 % 12810.8 12519.0 2.30 %

13 -589.1 -927.3 44.60 % 14143.2 13800.0 2.46 %

14 -821.4 -967.0 16.29 % 7431.2 7355.5 1.02 %

15 1751.8 1693.4 3.39 % 9402.5 8725.1 7.47 %

16 1823.6 1892.9 3.73 % 9431.1 8737.2 7.64 %

17 -3731.2 -3884.4 4.02 % 3920.1 4455.1 12.78 %

18 -641.9 -757.4 16.49 % 8998.5 8747.8 2.83 %

19 -181.8 -309.4 51.96 % 9467.0 9127.9 3.65 %

20 -651.9 -747.4 13.65 % 7003.6 6897.7 1.52 %

21 1726.0 1648.3 4.61 % 9035.6 8378.2 7.55 %

22 -3746.0 -3902.5 4.09 % 4042.7 4549.5 11.80 %

23 -167.5 -300.4 56.80 % 9550.4 9196.6 3.77 %

24 -570.6 -694.3 19.56 % 8637.4 8385.3 2.96 %

25 -186.0 -293.8 44.94 % 9018.8 8683.1 3.79 %

26 -871.9 -1105.1 23.60 % 12588.2 12287.0 2.42 %

27 -493.3 -632.2 24.69 % 6350.0 6223.7 2.01 %

28 1809.0 1779.5 1.64 % 8750.1 8085.1 7.90 %

29 1811.7 1801.9 0.54 % 8805.5 8139.3 7.86 %

30 -3713.8 -3865.3 4.00 % 3844.9 4325.5 11.76 %

31 -3030.0 -3144.2 3.70 % 4436.2 4708.4 5.95 %

32 -571.3 -689.6 18.76 % 8028.9 7782.4 3.12 %

33 -216.5 -320.4 38.68 % 8786.5 8460.7 3.78 %

34 -65.0 -244.1 115.90 % 5936.4 5696.8 4.12 %

35 -138.6 -301.1 73.94 % 5953.5 5727.4 3.87 %

36 -327.2 -449.7 31.53 % 6338.8 6171.0 2.68 %

37 -622.2 -759.2 19.83 % 6979.0 6894.9 1.21 %

38 1793.4 1761.4 1.80 % 8124.3 7480.9 8.25 %

39 1792.9 1805.1 0.68 % 8218.5 7567.3 8.25 %

Table K.4: Comparison between the reaction forces from the kinematic model in Simulink and the finite
element model in Ansys for Fx,total and Fy,front
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Loadcase
Fz,front [N] Fy,rear [N]

Simulink Ansys RPD Simulink Ansys RPD

1 -1.1 0.4 200.00 % 11763.2 12932.0 9.47 %

2 2.2 0.6 113.56 % 11479.9 10779.0 6.30 %

3 2.1 0.8 90.32 % 10153.0 9406.3 7.63 %

4 -7004.8 -6742.2 3.82 % 11025.6 11085.0 0.54 %

5 -7234.4 -6964.6 3.80 % 10998.7 11053.0 0.49 %

6 6161.5 5889.5 4.51 % 9685.7 9647.7 0.39 %

7 6726.7 6477.8 3.77 % 10568.2 10610.0 0.39 %

8 3594.1 3426.3 4.78 % 16482.1 16553.0 0.43 %

9 3429.3 3310.3 3.53 % 16510.7 16606.0 0.58 %

10 -5530.9 -5285.5 4.54 % 15933.1 15953.0 0.12 %

11 -4979.2 -4767.4 4.35 % 16167.9 16200.0 0.20 %

12 3952.5 3637.4 8.30 % 12678.2 12550.0 1.02 %

13 3498.7 3197.3 9.00 % 15023.0 14916.0 0.71 %

14 -5168.0 -5001.0 3.28 % 7331.5 7173.2 2.18 %

15 -511.8 -505.1 1.31 % 8240.6 8663.2 5.00 %

16 -37.1 -37.2 0.09 % 8236.0 8675.5 5.20 %

17 1.9 0.7 96.55 % 9430.2 8723.4 7.79 %

18 6052.3 5776.0 4.67 % 9209.8 9169.8 0.43 %

19 6632.8 6378.5 3.91 % 10214.6 10258.0 0.42 %

20 -4901.8 -4734.4 3.47 % 7070.9 6956.3 1.63 %

21 -1054.9 -1041.4 1.29 % 7836.2 8238.1 5.00 %

22 2.3 1.2 62.69 % 8687.2 8003.3 8.20 %

23 -6899.3 -6631.8 3.95 % 9836.2 9891.3 0.56 %

24 6039.9 5758.0 4.78 % 8797.2 8756.5 0.46 %

25 6417.9 6160.4 4.09 % 9780.6 9820.3 0.40 %

26 3504.2 3196.9 9.17 % 11331.7 11208.0 1.10 %

27 -4614.7 -4443.4 3.78 % 7042.3 6957.1 1.22 %

28 -39.1 -39.7 1.57 % 7337.0 7747.8 5.45 %

29 -28.4 -28.8 1.33 % 7290.6 7702.4 5.49 %

30 1.3 0.3 117.75 % 8244.2 7594.5 8.20 %

31 0.9 1.7 60.75 % 7197.3 6736.7 6.61 %

32 5371.4 5106.9 5.05 % 8136.8 8099.9 0.45 %

33 6125.7 5869.2 4.28 % 9081.2 9110.1 0.32 %

34 774.2 734.6 5.25 % 6255.4 6292.0 0.58 %

35 567.4 538.3 5.27 % 6027.0 6046.1 0.32 %

36 -4309.9 -4127.8 4.32 % 6838.8 6804.5 0.50 %

37 -4199.4 -4045.6 3.73 % 6369.9 6209.5 2.55 %

38 -464.1 -457.3 1.48 % 7172.5 7561.0 5.27 %

39 13.0 15.0 14.80 % 7098.0 7494.8 5.44 %

Table K.5: Comparison between the reaction forces from the kinematic model in Simulink and the finite
element model in Ansys for Fz,front and Fy,rear
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Loadcase
Fz,rear [N] Tx,rear [Nm]

Simulink Ansys RPD Simulink Ansys RPD

1 2.3 0.8 99.53 % 0.8 0.8 0.69 %

2 -1.6 -0.1 167.12 % -0.7 -0.7 2.06 %

3 0.1 1.4 179.27 % 0.8 0.8 1.64 %

4 -7797.2 -7839.9 0.55 % -5236.3 -5235.0 0.03 %

5 -8094.4 -8138.7 0.55 % -5449.5 -5448.0 0.03 %

6 6153.4 6206.2 0.85 % 4031.8 4030.1 0.04 %

7 7593.2 7636.4 0.57 % 5105.5 5104.1 0.03 %

8 3659.6 3696.8 1.01 % 1562.0 1562.4 0.03 %

9 3863.9 3873.4 0.24 % 2125.2 2125.6 0.02 %

10 -6222.0 -6299.4 1.24 % -3954.3 -3954.3 0.00 %

11 -5765.4 -5831.4 1.14 % -3604.8 -3604.8 0.00 %

12 3371.9 3536.6 4.77 % 2127.0 2127.1 0.00 %

13 3241.2 3419.3 5.35 % 1615.3 1616.4 0.07 %

14 -5166.5 -5147.9 0.36 % -4118.4 -4116.0 0.06 %

15 -867.1 -869.6 0.28 % -675.2 -675.2 0.01 %

16 -44.9 -43.7 2.76 % -72.4 -72.4 0.03 %

17 -1.2 0.0 200.00 % 163.7 163.7 0.01 %

18 5892.8 5945.9 0.90 % 3893.1 3891.3 0.05 %

19 7358.4 7402.0 0.59 % 4701.6 4700.2 0.03 %

20 -4710.8 -4694.5 0.35 % -3585.8 -3583.4 0.07 %

21 -1697.3 -1701.7 0.26 % -1833.9 -1833.7 0.01 %

22 0.5 1.6 100.72 % 1.0 1.0 1.03 %

23 -7541.1 -7581.8 0.54 % -5168.0 -5166.5 0.03 %

24 5814.2 5868.7 0.93 % 3689.4 3687.7 0.05 %

25 6969.6 7014.2 0.64 % 3709.8 3708.4 0.04 %

26 2820.7 2987.4 5.74 % 1234.0 1234.4 0.03 %

27 -4184.2 -4171.4 0.31 % -2672.4 -2670.0 0.09 %

28 -58.7 -57.5 2.01 % -466.3 -466.3 0.00 %

29 -37.7 -36.6 3.03 % -363.8 -363.8 0.01 %

30 -1.6 -0.6 86.59 % 154.8 154.8 0.01 %

31 2.7 1.9 36.46 % 148.0 148.0 0.00 %

32 4872.4 4921.2 1.00 % 2608.3 2606.5 0.07 %

33 6535.7 6581.4 0.70 % 3108.4 3107.0 0.04 %

34 1211.6 1241.9 2.47 % 818.1 818.2 0.01 %

35 947.5 972.4 2.60 % 686.9 687.0 0.02 %

36 -3711.5 -3716.8 0.14 % -2837.3 -2835.1 0.08 %

37 -3917.0 -3902.5 0.37 % -2469.7 -2467.6 0.09 %

38 -781.0 -783.3 0.29 % -568.7 -568.7 0.01 %

39 37.2 36.0 3.44 % 296.1 296.1 0.00 %

Table K.6: Comparison between the reaction forces from the kinematic model in Simulink and the finite
element model in Ansys for Fz,rear and Tx,rear
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L. Ansys Command Lines

1 clear all, clc
2

3 % Specify the number of conventional loadcases:
4 n ConventionalLC = 12;
5 % Specify the number of optimized loadcases:
6 n OptimizedLC = 39;
7 % Specify the gravitational acceleration constant (in m/sˆ2):
8 g = 9.80665;
9

10 % Define the files to which the command lines will be written:
11 fileID1 = fopen('AnsysStatic C.txt','w');
12 fileID2 = fopen('AnsysStatic O.txt','w');
13

14 % Open the files that list the corresponding nodes for each area:
15 fileID3 = fopen('A1Nodes.txt');
16 A1Nodes = textscan(fileID3,'%f %f %f %f');
17 A1Nodes = A1Nodes{1,1}(:);
18 fclose(fileID3);
19 fileID4 = fopen('A2Nodes.txt');
20 A2Nodes = textscan(fileID4,'%f %f %f %f');
21 A2Nodes = A2Nodes{1,1}(:);
22 fclose(fileID4);
23 fileID5 = fopen('A3Nodes.txt');
24 A3Nodes = textscan(fileID5,'%f %f %f %f');
25 A3Nodes = A3Nodes{1,1}(:);
26 fclose(fileID5);
27 fileID6 = fopen('A4Nodes.txt');
28 A4Nodes = textscan(fileID6,'%f %f %f %f');
29 A4Nodes = A4Nodes{1,1}(:);
30 fclose(fileID6);
31 fileID7 = fopen('A96Nodes.txt');
32 A96Nodes = textscan(fileID7,'%f %f %f %f');
33 A96Nodes = A96Nodes{1,1}(:);
34 fclose(fileID7);
35 fileID8 = fopen('A97Nodes.txt');
36 A97Nodes = textscan(fileID8,'%f %f %f %f');
37 A97Nodes = A97Nodes{1,1}(:);
38 fclose(fileID8);
39 fileID9 = fopen('A98Nodes.txt');
40 A98Nodes = textscan(fileID9,'%f %f %f %f');
41 A98Nodes = A98Nodes{1,1}(:);
42 fclose(fileID9);
43 fileID10 = fopen('A99Nodes.txt');
44 A99Nodes = textscan(fileID10,'%f %f %f %f');
45 A99Nodes = A99Nodes{1,1}(:);
46 fclose(fileID10);
47

48 %% Enter the Structural Pre-Processor Phase
49

50 % Import the geometry:
51 fprintf(fileID1,'FINI\r\n/CLEAR,NOSTART\r\n¬PARAIN,MainBeam4,x t,,SOLIDS,0,0\r\n/);
52 fprintf(fileID1,'FACET,NORML\r\nVPLOT\r\n');
53 fprintf(fileID2,'FINI\r\n/CLEAR,NOSTART\r\n¬PARAIN,MainBeam4,x t,,SOLIDS,0,0\r\n/);
54 fprintf(fileID2,'FACET,NORML\r\nVPLOT\r\n');
55

56 % Enter the structural pre-processor phase:
57 fprintf(fileID1,'/PREP7\r\nSMRT,OFF\r\n/TRIAD,OFF\r\nKEYW,STRUCTRL,1\r\n/);
58 fprintf(fileID1,'UNITS,SI\r\n/VIEW,1,0,0,1\r\n');
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59 fprintf(fileID2,'/PREP7\r\nSMRT,OFF\r\n/TRIAD,OFF\r\nKEYW,STRUCTRL,1\r\n/');
60 fprintf(fileID2,'UNITS,SI\r\n/VIEW,1,0,0,1\r\n');
61

62 % Define the element types:
63 fprintf(fileID1,'ET,1,SOLID186\r\nET,2,TARGE170\r\nET,3,CONTA174\r\n');
64 fprintf(fileID2,'ET,1,SOLID186\r\nET,2,TARGE170\r\nET,3,CONTA174\r\n');
65

66 % Define the element type options:
67 fprintf(fileID1,'KEYOPT,3,1,0\r\nKEYOPT,3,2,2\r\nKEYOPT,3,4,2\r\nKEYOPT,3,12,5\r\n');
68 fprintf(fileID2,'KEYOPT,3,1,0\r\nKEYOPT,3,2,2\r\nKEYOPT,3,4,2\r\nKEYOPT,3,12,5\r\n');
69

70 % Specify the material properties:
71 fprintf(fileID1,'EX,1,200E9\r\nPRXY,1,0.3\r\nDENS,1,7500\r\n');
72 fprintf(fileID2,'EX,1,200E9\r\nPRXY,1,0.3\r\nDENS,1,7500\r\n');
73

74 % Mesh the model:
75 fprintf(fileID1,'SMRTSIZE,6\r\nMSHAPE,1,3D\r\nMSHKEY,0\r\nVMESH,1\r\n');
76 fprintf(fileID2,'SMRTSIZE,6\r\nMSHAPE,1,3D\r\nMSHKEY,0\r\nVMESH,1\r\n');
77

78 %% Specify the Constraints at the Front Axle
79

80 % Determine which nodes correspond to the areas at the front spherical joint:
81 j = 1;
82 FrontVec = unique([A4Nodes;A96Nodes]);
83 FrontMin(j) = min(FrontVec);
84 FrontMax(j) = 0;
85 for i = 2:length(FrontVec)
86 if FrontVec(i) 6= FrontVec(i-1)+1
87 j = j+1;
88 FrontMin(j) = FrontVec(i);
89 FrontMax(j-1) = FrontVec(i-1);
90 end
91 end
92 FrontMax(length(FrontMax)+1) = max(FrontVec);
93 % Select the nodes at the front spherical joint:
94 formatSpec = 'NSEL,S,NODE,,%6.0f,%6.0f\r\n';
95 fprintf(fileID1,formatSpec,FrontMin(1),FrontMax(1));
96 fprintf(fileID2,formatSpec,FrontMin(1),FrontMax(1));
97 for k = 2:length(FrontMin)
98 formatSpec = 'NSEL,A,NODE,,%5.0f,%5.0f\r\n';
99 fprintf(fileID1,formatSpec,FrontMin(k),FrontMax(k));

100 fprintf(fileID2,formatSpec,FrontMin(k),FrontMax(k));
101 end
102 % Define the geometric surface for the target segment elements:
103 fprintf(fileID1,'REAL,1\r\nTYPE,3\r\nTSHAP,QUA8\r\nESURF\r\n');
104 fprintf(fileID2,'REAL,1\r\nTYPE,3\r\nTSHAP,QUA8\r\nESURF\r\n');
105 % Specify a pilot node at the front spherical joint centre:
106 fprintf(fileID1,'N,200000,2.74095,0.1395,0.13425\r\nTYPE,2\r\nTSHAP,PILO\r\nE,200000\r\n');
107 fprintf(fileID2,'N,200000,2.74095,0.1395,0.13425\r\nTYPE,2\r\nTSHAP,PILO\r\nE,200000\r\n');
108 % Define the translational constraints at the front axle:
109 fprintf(fileID1,'F,200000,FX,0\r\nD,200000,UY,0\r\nD,200000,UZ,0\r\n');
110 fprintf(fileID2,'F,200000,FX,0\r\nD,200000,UY,0\r\nD,200000,UZ,0\r\n');
111 % Define the rotational constraints at the front axle:
112 fprintf(fileID1,'F,200000,MX,0\r\nF,200000,MY,0\r\nF,200000,MZ,0\r\n');
113 fprintf(fileID2,'F,200000,MX,0\r\nF,200000,MY,0\r\nF,200000,MZ,0\r\n');
114

115 %% Specify the Constraints at the Rear Axle
116

117 % Determine which nodes correspond to the areas at the rear revolute joint:
118 j = 1;
119 RearVec = unique([A1Nodes;A2Nodes;A98Nodes;A99Nodes]);
120 RearMin(j) = min(RearVec);
121 RearMax(j) = 0;
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122 for i = 2:length(RearVec)
123 if RearVec(i) 6= RearVec(i-1)+1
124 j = j+1;
125 RearMin(j) = RearVec(i);
126 RearMax(j-1) = RearVec(i-1);
127 end
128 end
129 RearMax(length(RearMax)+1) = max(RearVec);
130 % Select the nodes at the rear revolute joint:
131 formatSpec = 'NSEL,S,NODE,,%6.0f,%6.0f\r\n';
132 fprintf(fileID1,formatSpec,RearMin(1),RearMax(1));
133 fprintf(fileID2,formatSpec,RearMin(1),RearMax(1));
134 for k = 2:length(RearMin)
135 formatSpec = 'NSEL,A,NODE,,%5.0f,%5.0f\r\n';
136 fprintf(fileID1,formatSpec,RearMin(k),RearMax(k));
137 fprintf(fileID2,formatSpec,RearMin(k),RearMax(k));
138 end
139 % Define the geometric surface for the target segment elements:
140 fprintf(fileID1,'REAL,2\r\nTYPE,3\r\nTSHAP,QUA8\r\nESURF\r\n');
141 fprintf(fileID2,'REAL,2\r\nTYPE,3\r\nTSHAP,QUA8\r\nESURF\r\n');
142 % Specify a pilot node at the rear revolute joint centre:
143 fprintf(fileID1,'N,200001,0.40695,0.13275,0.13425\r\nTYPE,2\r\nTSHAP,PILO\r\nE,200001\r\n');
144 fprintf(fileID2,'N,200001,0.40695,0.13275,0.13425\r\nTYPE,2\r\nTSHAP,PILO\r\nE,200001\r\n');
145 % Define the translational constraints at the rear axle:
146 fprintf(fileID1,'D,200001,UX,0\r\nD,200001,UY,0\r\nD,200001,UZ,0\r\n');
147 fprintf(fileID2,'D,200001,UX,0\r\nD,200001,UY,0\r\nD,200001,UZ,0\r\n');
148 % Define the rotational constraints at the rear axle:
149 fprintf(fileID1,'D,200001,ROTX,0\r\nF,200001,MY,0\r\n');
150 fprintf(fileID2,'D,200001,ROTX,0\r\nF,200001,MY,0\r\n');
151

152 %% Define a Pilot Node at the Pivot Joint Centre
153

154 % Determine which nodes correspond to the areas at the pivot joint:
155 j = 1;
156 PivotVec = unique([A3Nodes;A97Nodes]);
157 PivotMin(j) = min(PivotVec);
158 PivotMax(j) = 0;
159 for i = 2:length(PivotVec)
160 if PivotVec(i) 6= PivotVec(i-1)+1
161 j = j+1;
162 PivotMin(j) = PivotVec(i);
163 PivotMax(j-1) = PivotVec(i-1);
164 end
165 end
166 PivotMax(length(PivotMax)+1) = max(PivotVec);
167 % Select the nodes at the pivot joint:
168 formatSpec = 'NSEL,S,NODE,,%6.0f,%6.0f\r\n';
169 fprintf(fileID1,formatSpec,PivotMin(1),PivotMax(1));
170 fprintf(fileID2,formatSpec,PivotMin(1),PivotMax(1));
171 for k = 2:length(PivotMin)
172 formatSpec = 'NSEL,A,NODE,,%5.0f,%5.0f\r\n';
173 fprintf(fileID1,formatSpec,PivotMin(k),PivotMax(k));
174 fprintf(fileID2,formatSpec,PivotMin(k),PivotMax(k));
175 end
176 % Define the geometric surface for the target segment elements:
177 fprintf(fileID1,'REAL,3\r\nTYPE,3\r\nTSHAP,QUA8\r\nESURF\r\n');
178 fprintf(fileID2,'REAL,3\r\nTYPE,3\r\nTSHAP,QUA8\r\nESURF\r\n');
179 % Specify a pilot node at the pivot joint centre:
180 fprintf(fileID1,'N,200002,1.29375,0.13275,0.13425\r\nTYPE,2\r\nTSHAP,PILO\r\nE,200002\r\n');
181 fprintf(fileID2,'N,200002,1.29375,0.13275,0.13425\r\nTYPE,2\r\nTSHAP,PILO\r\nE,200002\r\n');
182 % Specify free rotation around the y-axis at the pivot joint:
183 fprintf(fileID1,'F,200002,MY,0\r\n');
184 fprintf(fileID2,'F,200002,MY,0\r\n');
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185

186 %% Solve the Model for the Conventional Loadcases
187

188 for LC = 1:n ConventionalLC
189 % Specify the reaction torque at the rear revolute joint
190 formatSpec = 'F,200001,MZ,%10.5f\r\n';
191 fprintf(fileID1,formatSpec,Tz RearAC(LC,1));
192

193 % Specify the force in x-direction at the pivot joint:
194 formatSpec = 'F,200002,FX,%10.5f\r\n';
195 fprintf(fileID1,formatSpec,Fx PivotSC(LC,1));
196

197 % Specify the force in y-direction at the pivot joint:
198 formatSpec = 'F,200002,FY,%10.5f\r\n';
199 fprintf(fileID1,formatSpec,Fy PivotSC(LC,1));
200

201 % Specify the force in z-direction at the pivot joint:
202 formatSpec = 'F,200002,FZ,%10.5f\r\n';
203 fprintf(fileID1,formatSpec,Fz PivotSC(LC,1));
204

205 % Specify the torque around the x-axis at the pivot joint:
206 formatSpec = 'F,200002,MX,%10.5f\r\n';
207 fprintf(fileID1,formatSpec,Tx PivotSC(LC,1));
208

209 % Specify the torque around the z-axis at the pivot joint:
210 formatSpec = 'F,200002,MZ,%10.5f\r\n';
211 fprintf(fileID1,formatSpec,Tz PivotSC(LC,1));
212

213 % Specify the linear accelerations:
214 formatSpec = 'ACEL,%10.5f,%10.5f,%10.5f\r\n';
215 fprintf(fileID1,formatSpec,-aX BeamSC(LC,1),-aY BeamSC(LC,1),-aZ BeamSC(LC,1));
216

217 % Solve the model:
218 fprintf(fileID1,'FINISH\r\n/SOLU\r\nANTYPE,0\r\nALLSEL,ALL\r\n);
219 fprintf(fileID1,'SOLVE\r\nFINISH\r\n/POST1\r\n');
220

221 % Export the equivalent stress values:
222 formatSpec = '/OUTPUT,Conventional LC%1.0f NodalS,TXT\r\n';
223 fprintf(fileID1,formatSpec,LC);
224 fprintf(fileID1,'PRNSOL,S,PRIN,\r\n');
225 fprintf(fileID1,'/OUT\r\n');
226 % Export the displacement sum values:
227 formatSpec = '/OUTPUT,Conventional LC%1.0f NodalU,TXT\r\n';
228 fprintf(fileID1,formatSpec,LC);
229 fprintf(fileID1,'PRNSOL,U,COMP\r\n');
230 fprintf(fileID1,'/OUT\r\n');
231 fprintf(fileID1,'FINISH\r\n!\r\n/PREP7\r\n');
232 end
233 fclose(fileID1);
234

235 %% Solve the Model for the Optimized Loadcases
236

237 for LC = 1:n OptimizedLC
238 % Specify the reaction torque at the rear revolute joint
239 formatSpec = 'F,200001,MZ,%10.5f\r\n';
240 fprintf(fileID2,formatSpec,Tz RearAO(LC,1));
241

242 % Specify the force in x-direction at the pivot joint:
243 formatSpec = 'F,200002,FX,%10.5f\r\n';
244 fprintf(fileID2,formatSpec,Fx PivotSO(LC,1));
245

246 % Specify the force in y-direction at the pivot joint:
247 formatSpec = 'F,200002,FY,%10.5f\r\n';
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248 fprintf(fileID2,formatSpec,Fy PivotSO(LC,1));
249

250 % Specify the force in z-direction at the pivot joint:
251 formatSpec = 'F,200002,FZ,%10.5f\r\n';
252 fprintf(fileID2,formatSpec,Fz PivotSO(LC,1));
253

254 % Specify the torque around the x-axis at the pivot joint:
255 formatSpec = 'F,200002,MX,%10.5f\r\n';
256 fprintf(fileID2,formatSpec,Tx PivotSO(LC,1));
257

258 % Specify the torque around the z-axis at the pivot joint:
259 formatSpec = 'F,200002,MZ,%10.5f\r\n';
260 fprintf(fileID2,formatSpec,Tz PivotSO(LC,1));
261

262 % Specify the linear accelerations:
263 formatSpec = 'ACEL,%10.5f,%10.5f,%10.5f\r\n';
264 fprintf(fileID2,formatSpec,-aX BeamSO(LC,1),-aY BeamSO(LC,1),-aZ BeamSO(LC,1));
265

266 % Define the location of the beam centre of mass:
267 fprintf(fileID2,'CGLOC,1.68895,0.13275,0.13575\r\n');
268

269 % Specify the angular accelerations:
270 formatSpec = 'DCGOMG,%10.5f,%10.5f,%10.5f\r\n';
271 fprintf(fileID2,formatSpec,-bX BeamSO(LC,1),-bY BeamSO(LC,1),-bZ BeamSO(LC,1));
272

273 % Solve the model:
274 fprintf(fileID2,'FINISH\r\n/SOLU\r\nANTYPE,0\r\nALLSEL,ALL\r\n);
275 fprintf(fileID1,'SOLVE\r\nFINISH\r\n/POST1\r\n');
276

277 % Export the nodal reaction forces:
278 formatSpec = '/OUTPUT,Optimized LC%1.0f ReactionF,TXT\r\n';
279 fprintf(fileID2,formatSpec,LC);
280 fprintf(fileID2,'PRRSOL,F\r\nPRRSOL,M\r\n');
281 fprintf(fileID2,'/OUT\r\n');
282 % Export the nodal loads:
283 formatSpec = '/OUTPUT,Optimized LC%1.0f AppliedF,TXT\r\n';
284 fprintf(fileID2,formatSpec,LC);
285 fprintf(fileID2,'FLIST,200000\r\nFLIST,200001\r\nFLIST,200002\r\n');
286 fprintf(fileID2,'/OUT\r\n');
287 % Export the equivalent stress values:
288 formatSpec = '/OUTPUT,Optimized LC%1.0f NodalS,TXT\r\n';
289 fprintf(fileID2,formatSpec,LC);
290 fprintf(fileID2,'PRNSOL,S,PRIN,\r\n');
291 fprintf(fileID2,'/OUT\r\n');
292 % Export the displacement sum values:
293 formatSpec = '/OUTPUT,Optimized LC%1.0f NodalU,TXT\r\n';
294 fprintf(fileID2,formatSpec,LC);
295 fprintf(fileID2,'PRNSOL,U,COMP\r\n');
296 fprintf(fileID2,'/OUT\r\n');
297 fprintf(fileID2,'FINISH\r\n!\r\n/PREP7\r\n');
298 end
299 fclose(fileID2);
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M. Resultant Stresses and Displacements

Loadcase σmax [MPa] dmax [mm]

1 24.78 0.188

2 27.50 0.238

3 26.89 0.197

4 29.05 0.235

5 26.40 0.192

6 27.61 0.191

7 27.68 0.229

8 28.89 0.229

9 26.72 0.192

10 25.87 0.191

11 30.21 0.226

12 29.72 0.226

Loadcase σmax [MPa] dmax [mm]

1 9.08 0.025

2 5.57 0.047

3 4.99 0.040

4 26.33 0.211

5 27.22 0.217

6 21.48 0.173

7 26.61 0.205

8 12.17 0.137

9 14.11 0.146

10 22.57 0.192

11 21.16 0.182

12 12.49 0.131

13 11.68 0.130

14 20.08 0.154

15 6.00 0.071

16 4.14 0.062

17 4.49 0.038

18 20.54 0.164

19 24.81 0.193

20 17.69 0.139

21 10.64 0.087

22 4.03 0.035

23 25.45 0.199

24 19.62 0.156

25 20.93 0.170

26 8.75 0.108

27 13.83 0.117

28 4.63 0.058

29 4.19 0.058

30 3.70 0.034

31 3.16 0.033

32 14.89 0.126

33 18.25 0.152

34 5.30 0.051

35 4.76 0.047

36 14.32 0.113

37 12.66 0.108

38 5.02 0.056

39 3.97 0.052

Table M.1: Resultant stresses and displacements for the conventional (left) and optimized (right) method
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N. Stress and Displacement as a function of Time

N.1 Configuration 2

(a) Maximum Von Mises stress (b) Maximum nodal displacement

Figure N.1: The maximum Von Mises stress and nodal displacement as a function of time

N.2 Configuration 3

(a) Maximum Von Mises stress (b) Maximum nodal displacement

Figure N.2: The maximum Von Mises stress and nodal displacement as a function of time

N.3 Configuration 4

(a) Maximum Von Mises stress (b) Maximum nodal displacement

Figure N.3: The maximum Von Mises stress and nodal displacement as a function of time
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O. Mode-Superposition Method

O.1 Modal Analysis

(a) Fourth eigenmode (f4 = 271.7 Hz) (b) Fifth eigenmode (f5 = 367.7 Hz)

(c) Sixth eigenmode (f6 = 397.0 Hz) (d) Seventh eigenmode (f7 = 438.2 Hz)

(e) Eighth eigenmode (f8 = 488.1 Hz) (f) Ninth eigenmode (f9 = 608.5 Hz)

(g) Tenth eigenmode (f10 = 693.2 Hz) (h) Eleventh eigenmode (f11 = 771.3 Hz)

(i) Twelfth eigenmode (f12 = 885.5 Hz) (j) Thirteenth eigenmode (f13 = 986.7 Hz)

Figure O.1: The eigenmodes of the main chassis beam, up to the thirteenth eigenmode
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O.2 Comparison with Full Transient Analysis

O.2.1 Configuration 2

(a) Maximum Von Mises stress (b) Maximum nodal displacement sum

Figure O.2: Comparison between the full and mode-superposition transient analyses for configuration 2

O.2.2 Configuration 3

(a) Maximum Von Mises stress (b) Maximum nodal displacement sum

Figure O.3: Comparison between the full and mode-superposition transient analyses for configuration 3

O.2.3 Configuration 4

(a) Maximum Von Mises stress (b) Maximum nodal displacement sum

Figure O.4: Comparison between the full and mode-superposition transient analyses for configuration 4
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O.3 Tabulated Results

Configuration Nmodes

∆σeq,max [MPa] ∆dsum,max [mm]
CPU Time [min]

Mean Maximum Mean Maximum

1

3 2.18 9.08 5.780 · 10−3 23.40 · 10−3 12
7 0.77 4.12 1.590 · 10−3 5.270 · 10−3 18
10 0.44 2.97 0.382 · 10−3 1.955 · 10−3 19
13 0.42 1.73 0.234 · 10−3 2.010 · 10−3 22

2

3 1.90 8.04 5.402 · 10−3 20.03 · 10−3 14
7 0.69 3.79 1.452 · 10−3 4.850 · 10−3 17
10 0.41 2.90 0.361 · 10−3 1.780 · 10−3 19
13 0.42 1.72 0.229 · 10−3 1.826 · 10−3 20

3

3 1.72 7.86 4.747 · 10−3 21.90 · 10−3 14
7 0.63 3.00 1.319 · 10−3 4.820 · 10−3 18
10 0.35 2.28 0.344 · 10−3 1.680 · 10−3 18
13 0.31 2.14 0.213 · 10−3 1.621 · 10−3 22

4

3 1.54 5.09 4.422 · 10−3 14.82 · 10−3 15
7 0.60 2.53 1.177 · 10−3 3.640 · 10−3 17
10 0.30 1.91 0.320 · 10−3 1.419 · 10−3 18
13 0.35 2.12 0.206 · 10−3 1.466 · 10−3 22

Table O.1: Deviation of the results obtained with the mode-superposition method with respect to the results
of a full-transient analysis for each passenger occupancy configuration, including the computational time

Configuration Nmodes σeq,max [MPa] dsum,max [mm] CPU Time [min]

1

Full 27.23 0.217 110
3 19.15 (-29.67%) 0.194 (-10.60%) 12 (-89.09%)
7 25.51 (-6.32%) 0.212 (-2.30%) 18 (-83.64%)
10 27.04 (-0.70%) 0.219 (+0.92%) 19 (-82.73%)
13 27.90 (+2.46%) 0.218 (+0.46%) 22 (-80.00%)

2

Full 24.80 0.197 110
3 17.28 (-30.32%) 0.177 (-10.15%) 14 (-87.27%)
7 21.74 (-12.34%) 0.193 (-2.03%) 17 (-84.55%)
10 23.13 (-6.73%) 0.199 (+1.02%) 19 (-82.73%)
13 23.85 (-3.83%) 0.198 (+0.51%) 20 (-81.82%)

3

Full 25.45 0.200 108
3 17.59 (-30.88%) 0.178 (-11.00%) 14 (-87.04%)
7 23.89 (-6.13%) 0.195 (-2.50%) 18 (-83.33%)
10 25.29 (-0.63%) 0.201 (+0.50%) 18 (-83.33%)
13 26.11 (+2.59%) 0.200 (0.00%) 22 (-79.63%)

4

Full 18.27 0.160 108
3 13.96 (-23.59%) 0.145 (-9.38%) 15 (-86.11%)
7 16.21 (-11.28%) 0.157 (-1.88%) 17 (-84.26%)
10 17.33 (-5.15%) 0.161 (+0.63%) 18 (-83.33%)
13 17.86 (-2.24%) 0.160 (0.00%) 22 (-79.63%)

Table O.2: Comparison between the mode-superposition methods and a full-transient analysis in terms of
the maximum Von Mises stress, maximum displacement sum, and computational time for each passenger
occupancy configuration
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