
Software Metrics as Indicators for Effort of
Object-Oriented Software Projects

Wouter F. A. Bos
University of Twente

P.O. Box 217, 7500AE Enschede
The Netherlands

w.f.a.bos@student.utwente.nl

ABSTRACT
In the world of software development, it is essential to de-
crease the effort developers need to change or add function-
ality to software. A lower effort lead to lower cost, both
in human and financial resources. One way to achieve this
may be increasing the agility of software. It would be use-
ful to know if there are existing measurable software prop-
erties (software metrics) which could indicate the agility
of the software. Recent research has found a way to find
software metrics which could indicate the agility of soft-
ware. Furthermore, it found eight software metrics which
can be considered. Unfortunately, more metrics were not
in the scope of this research.
This research uses new data to show if any suitable in-
dicators of software agility are consistent. Furthermore,
we consider more software metrics. Significance tests will
validate the results. Next, we review relevant research to
rule out the mathematical cause for unexpected results of
recent research.

Keywords
Software Agility, Software Metrics, Code Properties, Com-
plexity, Cohesion, Coupling, Estimation of Effort, Ob-
ject Oriented-Software, Pearson’s Correlation Coefficient,
Spearman’s Correlation Coefficient

1. INTRODUCTION
In the world of software development, it is essential to de-
crease the effort developers need to change or add function-
ality to software. A lower effort lead to lower cost, both
in human and financial resources. One way to achieve this
may be increasing the agility of software.

Currently, it is not very clear what the agility of software
is. It would be useful to know if there are existing mea-
surable software properties which could show the agility
of the software. Based on these properties, developers
may be able to improve their software’s agility. Thus,
reducing the needed effort to change or add functional-
ity at a later stage of the project. Furthermore, these
indicators may help to improve the accuracy and speed
of effort-estimation based on the history of a software
project. Since effort-estimation is often a large part of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
30th Twente Student Conference on IT Febr. 1st, 2019, Enschede, The
Netherlands.
Copyright 2019, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

software project management [12] this may further reduce
the cost.

Nowadays, software developers often use software metrics
to evaluate software properties. One or more software
metrics can contribute to evaluating one software prop-
erty. For example, the Lines of Code1 metric contributes
to evaluating the complexity property. Other properties
can be flexibility and maintainability.

Our goal is to find out which software metrics of Object-
Oriented Systems are suitable indicators of agility in soft-
ware. Recent relevant research [9] shows that many met-
rics can be considered as an indicator for the agility of
software. Examples are the Weighted Methods per Class
(WMC, see section 2.1.1) and the Depth of Inheritance
Tree (DIT, see section 2.1.2). Furthermore, there is a way
to test the suitability of those metrics. This method uses
Pearson’s and Spearman’s correlation coefficients (see sec-
tion 2.3).

Based on recommendations of recent relevant research [9],
this research looks if it is possible to consider two more
metrics: Afferent Coupling and Efferent Coupling (see sec-
tions 2.1.6 and 2.1.7). The research will also investigate if
different data consistently show suitable indicators of soft-
ware agility. Furthermore, the research focuses on finding
other ways to test the suitability of software metrics as
indicators of software agility.

To reach our goals, we will perform a measurement exper-
iment on an agility testbed. We will analyse the results
using Pearson’s and Spearman’s correlation coefficients.
Finding other testing methods for the suitability of soft-
ware metrics as indicators is primarily done by reviewing
other relevant research.

The rest of this paper has the following structure. Sec-
tion 2 elaborates on the background of this research pro-
posal. Next, section 3 discusses the research setup. Fol-
lowing is the methodology in section 4. After that, sec-
tion 5 shows the results and section 6 will discuss them.
In section 7 we conclude our research, after which we rec-
ommend future work in section 8.

2. BACKGROUND
This chapter will provide the information essential for un-
derstanding the research. The chapter will start by dis-
cussing relevant software metrics and properties. After
that, section 2.2 explains the agility testbed in more de-
tail. Section 2.3 gives information about Pearson’s and
Spearman’s correlation coefficients.

.

1The size of software based on the number of code lines.

1

2.1 Software metrics and properties
There are many different metrics, used for many differ-
ent applications. In general, metrics are used to evaluate,
classify and identify flaws in software.

This research will use ten different metrics:

• WMC, DIT, RFC and AMC for complexity

• CBO, CA and CE for coupling

• CAM and two versions of LCOM for cohesion

The metrics are selected based on other relevant work (see
section 9) and availability of measurement tools (see sec-
tion 3.2). The following subsections will elaborate on the
selected metrics by defining them. Formal definitions can
be found in relevant work [3, 4] and the source of the tool-
ing we use2.

2.1.1 Weighted Methods per Class (WMC)
WMC is the sum of all the complexities of the methods
in a class and is the first metric described in the metrics
suite by Chidamber and Kemerer (CK) [3]. This metrics
suite consists of six metrics. In the initial definition of the
WMC, all methods only had a complexity of one, which
made it the number of methods per class [4]. Nowadays,
there are other definitions of a method’s complexity. The
amount of branches is an example of this. In our research,
we will use the initial definition.

2.1.2 Depth of Inheritance Tree (DIT)
The DIT is the number of a class’ ancestors. This includes
more than the parent classes. In Java, the Object class is
an ancestor of all other classes. This results in a DIT value
of at least one. It is the second metric described in the
CK metrics suite.

2.1.3 Response For a Class (RFC)
The Response For a Class is the size of a class’ response
set. This set is the union of the class’ methods that can
be called when a method of a class’ instance is invoked
and the class’ methods. Ideally, all deeper nested calls
are included. Since this can be expensive to carry out
correctly, often only once-nested calls are counted. This
follows the proposed definition as the fifth metric in the
CK metrics suite and gives a rough indication of the ideal
RFC value.

2.1.4 Average Method Complexity (AMC)
The Average Method Complexity is comparable to the
WMC. The difference is that the AMC calculates the av-
erage of all complexities, where the WMC calculates the
sum.

2.1.5 Coupling Between Object classes (CBO)
The CBO looks for classes acting on other classes. Exam-
ples are using methods or variables of another class.

2.1.6 Afferent Coupling (CA)
The Afferent Coupling of a class counts the number of
classes which depend on it [6].

2.1.7 Efferent Coupling (CE)
The Efferent Coupling of a class counts the number of
classes on which it depends [6].

2.1.8 Cohesion Among Methods of a class (CAM)
The CAM looks at method parameters and class attributes
to measure a class’ cohesion.
2http://gromit.iiar.pwr.wroc.pl/p inf/ckjm/metric.html

2.1.9 Lack of Cohesion in Methods (LCOM/LCOM3)
Lack of Cohesion in Methods measures the similarity of
methods within a class. This research uses two versions.
Generally, software projects use the LCOM metric. Yet,
Object-Oriented software projects use the LCOM3 most
often.

For the LCOM metric, we use the definition of the CK
suite. It subtracts the number of pairs of distinct methods
in a class that do not share instance variables with those
which do. If the value of LCOM is negative, it evaluates
to 0.

Handerson et al. [8] defines our LCOM3 metric. The
definition of is as follows:

LCOM3 =
(1
a

∑a
j=1 µ(Aj))−m

1−m

Here, m is the number of the class’ methods, a is the
number of the class’ variables and µ(A) is the number
of methods that access a variable. The LCOM3 varies
between 0 and 2 and it does not take constructors, getters
and setters into account.

2.2 Agility Testbed
Two Agility Testbeds were made with the aim of simpli-
fying the study of software agility. Recent research [9]
has used the first testbed3 to perform a measurement ex-
periment. We will use a newer testbed4 to perform our
measurement experiment.

In this testbed, thirteen different developers implemented
a banking software system (API) in Java. All have the
same functionality at predetermined points of progress in
the project. This allows for better comparison between
different systems than when comparing two different soft-
ware projects.

In the first phase, the developers were divided into groups
of two or three. Each group implemented a base system,
which resulted in seven usable repositories for the second
phase. These repositories are marked with letters (A - G).

The second phase consisted of six extensions which added
functionality to the base system. Each individual devel-
oper extended the base system they developed in the first
phase on their own. The order of implementing the ex-
tensions was predetermined. The developers only could
continue with a next extension when they completed the
previous one. It was not mandatory to complete all exten-
sions, which resulted in a progress difference between all
thirteen repositories. Table 1 shows the progress of each
repository. The progress is indicated by the extension a
developer finished (e.g. X1 indicates that the developer
finished the first extension). Due to different reasons, the
developers who worked on repository E in the first phase
decided to stay together for the second phase. Repository
G split off repository A.

To determine the effort spent by the developers, they recorded
the hours they spent. The developers could mark those
ours with three categories:

1. Primary development: Time worked on developing
the actual functionality, thinking about the archi-
tecture and writing the code.

2. Secondary development: Writing documentation, test-
cases and tests.

3https://agilitytestbed.github.io
4https://agilitytestbed.github.io/2018

2

Table 1. Progress of each repository of the Agility
Testbed

Repository Progress.
A1 Base (B)
A2 B
B1 X5
B2 X6
C1 B
C2 X3
D1 X6
D2 X4
E X2
F1 X4
F2 X4
G B

3. Other tasks: Time spent on other things like looking
into libraries and joining in meetings.

The testbed also contains which study the developers were
following during the project and the study-year they were
in. This might help eliminate the skill level of a developer
when determining the effort put into developing.

2.3 Statistical Methods
This research will use Pearson’s r and Spearman’s ρ. These
indicate if there is a correlation between two data sets.

2.3.1 Pearson’s r

Pearson’s r indicates the strength of a linear relationship
between two variables. An r of 1 indicates a perfect pos-
itive relationship. This means that for any two variables
X and Y if X increases then Y linearly increases. An r of
-1 indicates a perfect negative relationship. If X increases,
then Y linearly decreases. If the r is 0 it indicates that
there is no correlation.

The definition of Pearson’s r is as follows:

r =
n
∑

xy − (
∑

x)(
∑

y)√
(n

∑
x2 − (

∑
x)2)(n

∑
y2 − (

∑
y)2)

Here, n is the number of pairs of values X and Y. Pear-
son’s r assumes that the variables X and Y are normally
distributed.

2.3.2 Spearman’s ρ

Spearman’s ρ indicates the strength of a parameter-independent
monotonic relationship between two variables. A ρ of 1 in-
dicates a direct relationship. This means that for any two
variables X and Y if X increases then Y increases. A ρ of -1
indicates an indirect negative relationship. If X increases,
then Y decreases. If the ρ is 0 it indicates that there is
no correlation. Not every monotonic relationship is linear,
but every linear relationship is monotonic. The coefficient
uses ranks instead of variable values. For example:

Let X := [4, 7, 1, 3, 9, 6, 7],

Then the ranks R(X) := [2, 4.5, 0, 1, 6, 3, 4.5]

If multiple values have the same rank, we use the average
of these ranks. The definition of Spearman’s ρ is as follows:

ρ = 1− 6
∑

d2

n(n2 − 1)

Here, n is the number of pairs of values X and Y. d is the
difference between the ranks R(x) and R(y) of a pair of
values. Spearman’s ρ does not assume a normal distribu-
tion of variables X and Y.

2.3.3 Significance tests and hypotheses
The statistical significance of the calculated correlation co-
efficients can validate the results of this research. To deter-
mine this, the independence can be tested by formulating
hypotheses. The first hypothesis is the null-hypotheses
H0. This hypothesis proposes that no significant relation-
ship exists between two tested variables. This is usually
the opposite of the hypothesis H1. For example, for Pear-
son’s r:

H0 : r = 0

H1 : r 6= 0

For H1 to hold, the p-value should be less than the sig-
nificance a. The p-value represents the chance that H0 is
accepted. The a is the risk we are willing to take that H0

is true. The level of certainty we want that H1 holds is
95%. This is the confidence interval. Now, the sum of a
and the confidence interval is 1, so a equals 0.05.

3. RESEARCH SETUP
This chapter will elaborate on the preparation and selec-
tion of the testbed’s data as well as the used tooling. It
also discusses a prediction of the influence of metrics on
developer effort. We begin with establishing the scope of
the research by making a selection of data. Then, we will
discuss the used tooling. In section 3.3 a prediction is
made of the influence of metrics on effort.

3.1 Selection of Data
It is not trivial to choose which data to use in the statistical
analysis. We here establish which extensions we take into
account. The preparation and selection of time data will
be discussed as well as the option to scale this data.

3.1.1 Extensions
The first choice we can make is between which extensions
we want to compare. Our sample size is the main consid-
eration here. The possibilities are B-X1, X1-X2, X2-X3,
X3-X4, X4-X5 and X5- X6. Since the sample size decreases
significantly after X4 (from six to three), we chose to elim-
inate the last two possibilities. To keep the sample size as
big as possible, we chose to use all other possibilities.

3.1.2 Reported Time Data Set
Creating the new testbed finished recently. This meant
that the administered times were not ready for our re-
search yet. So, we had to calculate the actual effort put
into the base and the extensions ourselves. We decided
to take the sum of time developers spent on primary or
secondary development since these times reflect the effort
put in development.

While most effort was administered carefully, there were
some developers who made small mistakes. Relevant mis-
takes were as follows:

• Repository E did not assign a category to three of
their recorded hours. Since they did keep track of the
date of administration, we could determine it was
part of the development of the Base. We chose to
assign the three hours in proportion with the earlier
assigned hours.

• Repositories B1 and B2 both assigned two categories
to respectively 10.5 and 18.75 hours. Most of them
were marked for both primary and secondary devel-
opment. In this case, it did not have any effect since
we need the sum of categories one and two. Only

3

Table 2. Times Scaled on B
B-X1 X1-X2 X2-X3 X3-X4

B1 0.152 0.065 0.203 0.100
B2 0.359 0.294 0.156 0.026
D1 0.203 0.170 0.184 0.116
D2 0.499 0.443 0.366 0.201
E 0.185 0.343
F1 0.363 0.316 1.148 0.281
F2 0.156 0.133 0.141 0.094

Table 3. Times Scaled on B and Preceding Exten-
sions

X1-X2 X2-X3 X3-X4
B1 0.056 0.167 0.070
B2 0.217 0.094 0.014
D1 0.141 0.134 0.075
D2 0.295 0.188 0.087
E 0.290
F1 0.232 0.684 0.099
F2 0.115 0.109 0.066

for B2, we did have to divide one hour between cat-
egories two and three. The developer of B2 did keep
track of the date of administration too, we were pos-
sible to proportionally assign the time within the rel-
evant extension.

When discussing time scaling and selection, there are four
options:

1. Select the reported times for reaching the extension,
raw.

2. Select the reported times for reaching the extension
combined with preceding extensions (and the base),
raw

3. Select the reported times for reaching the extension,
scaled on the base.

4. Select the reported times for reaching the extension,
scaled on the base and all preceding extensions.

There are two sub-choices: use raw or scaled times and
put times together or not. Since scaling should help to
eliminate the factor of developer skill, we decided to scale
the reported times. However, we are not sure how this
factor can be eliminated best. While scaling on the base
already factors in the developer skill per group, adding all
preceding extensions would also include some individual
skill. So, we chose to do both scaling on the base and
scaling on the base plus all preceding extensions.

The selected times are shown in tables 2 and 3.

3.2 Tooling
Our research needs tools that can analyse software projects,
retrieve software metrics and perform statistical analysis
on the metrics. To retrieve the software metrics, the re-
search will use the CKJM Extended5 tool. This is an ex-
tended version of the Chidamber and Kemerer Java Met-
rics tool. The source code has been edited slightly to ac-
commodate for Java 8, which was used in all projects of
the testbed. The tool analyses the compiled bytecode to
export the resulting values for the software metrics per
class. This then can be used for further statistical anal-
ysis. Unfortunately, it was not possible to compile the

5http://gromit.iiar.pwr.wrod.pl/p inf/ckjm/

Table 4. Metric predictions and result
metric Pred. Res. New Pred.
WMC + - -
DIT + - -
RFC + - -
AMC + - -
CBO + - -
CA N.A. N.A. -
CE N.A. N.A. -

CAM - + +
LCOM + - -
LCOM3 + Inc. -

bytecode of repository C2 because of a dependency issue.
Since solving this would take time and affect the time data
we chose to ignore C2.

For the statistical analysis, we use Python with the Scipy,
Numpy and Matplotlib modules. We managed to save
time using earlier work by Hollander [9]. The code can be
found on GitHub6.

The retrieved metric data is shown in tables 5, 6, 7 and 8.

3.3 Prediction Of Metric Signs
Table 4 shows an overview of the metrics described in sec-
tion 2.1. The first column shows the metric. Column two
and three state Hollander’s prediction and result for each
metric [9]. The last column a prediction for this research.
A plus means a direct or positive relation. This means
that a higher metric value amounts to more effort. A mi-
nus means an indirect or negative relation. Thus mean-
ing a lower metric value amounts to more effort. ”N.A. ”
stands for ”Not Available”.

The result of LCOM3 was inconclusive. Pearson’s corre-
lation coefficient indicated a positive relation. Yet, Spear-
man’s indicated an inverted relation. Since the resulting
sign of the LCOM metric was negative, we predict the sign
of LCOM3 to be negative too.

Since the methodology won’t differ much from Hollander’s
research, the new prediction is based on the result for all
metrics. For CA and CE it is logical to predict that a
higher value amounts for more effort, based on the CBO.
Since Hollander’s results were all reversed, we predict that
the sign will be negative.

Hollander’s research also found that the CAM and WMC
metrics are highly correlated. Thus, indicating that they
are suitable indicators of software agility. Since these are
not coupling metrics, we expect that the CA and CE are
not highly correlated.

4. METHODOLOGY
This research will consist of three parts:

1. Measurement: retrieve relevant software metrics from
the testbed

2. Statistical Analysis: analyse software metrics and
possible correlations

3. Literature Research: investigate Pearson’s and Spear-
man’s correlation coefficients

The first two parts will be done after each other, with
the measurement part as the first one. In this part, the

6https://github.com/wouwouwou/2018-2019 AgilityResearch

4

Table 5. Metrics B
WMC DIT RFC AMC CBO CA CE CAM LCOM LCOM3

B 8.778 2.111 21.111 22.518 3.444 1.667 2.444 0.603 80.556 1.479
D 7.214 1.214 15.357 11.141 4.429 2.000 2.571 0.573 9.429 1.164
E 4.394 1.182 9.121 7.052 5.848 2.091 3.758 0.559 4.455 1.133
F 4.538 0.923 17.846 36.706 4.538 1.385 3.154 0.611 8.846 1.495

Table 6. Metrics X1
WMC DIT RFC AMC CBO CA CE CAM LCOM LCOM3

B1 9.455 1.909 21.909 23.047 4.273 2.091 2.727 0.479 89.909 0.916
B2 10.636 1.909 24.455 17.293 3.455 1.636 2.364 0.604 117.091 1.459
D1 9.400 1.200 20.267 11.493 4.667 2.133 2.667 0.542 18.000 1.140
D2 9.667 1.200 20.200 11.446 4.733 2.133 2.733 0.530 18.667 1.144
E 5.073 1.146 10.634 7.256 6.488 2.512 3.976 0.557 7.049 1.145
F1 4.933 0.933 19.267 44.188 4.533 1.400 3.133 0.603 10.267 1.486
F2 5.438 0.938 21.688 31.895 6.000 1.812 4.188 0.572 12.562 1.522

Table 7. Metrics X2
WMC DIT RFC AMC CBO CA CE CAM LCOM LCOM3

B1 10.077 1.846 22.923 17.691 4.308 2.077 2.692 0.477 102.769 0.914
B2 10.500 1.786 25.286 16.903 3.500 1.714 2.357 0.570 110.714 1.407
D1 9.056 1.444 20.111 13.612 4.611 2.111 2.611 0.568 16.833 1.156
D2 10.471 1.176 22.059 11.678 4.529 2.059 2.588 0.530 20.647 1.103
F1 5.111 0.944 20.444 48.818 4.611 1.389 3.222 0.611 10.667 1.347
F2 5.222 0.944 22.278 33.777 6.222 1.889 4.333 0.551 10.000 1.511

Table 8. Metrics X3
WMC DIT RFC AMC CBO CA CE CAM LCOM LCOM3

B1 11.429 1.786 25.000 17.390 4.286 2.071 2.643 0.471 141.714 0.903
B2 11.375 1.688 25.000 14.887 3.562 1.750 2.312 0.547 153.875 1.403
D1 10.526 1.421 22.895 13.400 5.000 2.316 2.789 0.545 25.789 1.140
D2 11.889 1.167 24.778 11.681 4.722 2.167 2.667 0.518 26.944 1.088
F1 6.323 0.935 18.452 17.467 6.710 2.452 4.323 0.544 16.161 0.961
F2 5.429 0.952 24.143 34.997 7.619 2.143 5.476 0.545 10.429 1.522

5

CKJM Extended tool analyses the bytecode and generates
the values for every metric. The Statistical Analysis will
process these results and determin the characteristics of
the data.

4.1 Measurement
In this part, we use Python to execute command line com-
mands. This makes it possible to automatically clone the
Git repository to the local machine. For every extension,
the head is reset to the corresponding extension version
hash. After compiling, the CKJM Extended tool is run
on the compiled bytecode, which results in an XML file.
This file contains the values for the metrics, per class in
the project. Once the CKJM Extended tool has been used
for all projects and all extensions (including the base), an
XML file exists for every extension in a project. Using
these files, we can carry out the statistical analysis.

4.2 Statistical Analysis
The statistical analysis part will process the data gath-
ered in the measurement part. It calculates the corre-
lation coefficients using this data. The first thing that
we did was creating a CSV file containing the develop-
ers’ reported times. The Python code contains classes for
projects, their versions, the time data and the metric data.
We loaded all data from XML files into the class structure.
For most metrics, we took the average of its values for each
class to get its value for a whole project. Exceptions were
the Lines Of Code (LOC) and the Cyclomatic Complexity
(CC) metrics. Here, we took the summed total (LOC) and
the bare value (CC).

Once we populated the class structure of a project, we
calculated the correlation coefficients. In the first run, we
took the times scaled on the base version. In the second
run, we included the preceding exceptions in these times.

To calculate the correlation coefficients per project, we
needed pairs of the metric of an extension, and the time it
took to get to the next one. Furthermore, to show the sta-
tistical significance of the found coefficients we calculated
the p-values.

4.3 Literature Research
To determine if there are other ways to test the suitabil-
ity of metrics as indicators of software agility, we perform
a literature research. Furthermore, we contacted teach-
ers and scientists of the University of Twente with this
question.

4.4 Summary
We compare the metric values of WMC, DIT, RFC, AMC,
CBO, CAM, CA, CE, LCOM and LCOM3 for the projects
B1, B2, D1, D2, E, F1 and F2 at B, X1, X2, X3 to the
time it took for the developers to reach the next extension,
scaled to B and scaled to B plus preceding extensions. The
CKJM Extended tool measures the metric values. We use
Python to, per metric, calculate the Pearsons and Spear-
mans correlation coefficients of the data sets of the times
and means. Literature research should determine if there
are other ways to test the suitability of the software met-
rics as indicators of software agility.

5. RESULTS
Appendix A shows all tables which contain the results.
Tables 9 up to and including 15 show per metric the values
for the two correlation coefficients and the sign of these
coefficients. Tables 9, 10, 11 and 12 use the times scaled
on B and tables 13, 14 and 15 use scaling based on B plus
preceding extensions. The values of the coefficients will

Figure 1. Scatter plot for CA metric (X2-X3,
times scaled on B plus preceding extensions)

Figure 2. Scatter plot for CA metric (X3-X4,
times scaled on B plus preceding extensions)

Figure 3. Scatter plot for AMC metric (X2-X3,
times scaled on B plus preceding extensions)

6

be discussed in section 5.1. After that, we will discuss the
sign in section 5.2.

5.1 Coefficient Values
When we look at the values of the coefficients, there is a
small amount of statistically significant values (taking α =
0.05) In tables 12 and 15 the p-values for both Pearson’s
r and Spearman’s ρ are lower than 0.05 when looking at
the CA metric. Tables 11 and 14 show that the p-values
for Pearson’s r for the CA and AMC come close to the
threshold.

Furthermore, we generally see lower p-values for the co-
efficients over X2-X3 and X3-X4. This is the result of a
smaller sample size of n = 6, instead of n = 7 over B-X1
and X1-X2. If the sample size is smaller, then the correla-
tion has to be higher to be found statistically significant.
Correlation coefficients can be interpreted using the fol-
lowing loose rules:
0.0 - 0.3 No correlation
0.3 - 0.5 Weak correlation
0.5 - 0.7 Moderate correlation
0.7 - 1.0 Strong correlation
Several metrics would have a strong correlation based on
these rules. However, the p-values show that these are not
statistically significant. Other than the CA, the RFC is
the only metric with a hint towards a strong correlation
across multiple result tables.

If we look at the scatter plots for the CA for X2-X3 and
X3-X4 with the times scaled on B plus preceding exten-
sions, we can see a clear linear relationship. This is visible
in figures 1 and 2 by looking at the red linear regression
lines.

For the ACM metrics, figure 3 shows a less clear linear
relationship. However, it is not as bad as the monotonic
relationship as reflected by the blue linear regression line,
which partly falls below the x-axis. This is also reflected by
the values of both Pearson’s and Spearman’s correlation
coefficients: Pearson’s r is higher than Spearman’s ρ.

5.2 Coefficient Signs
The Sign column in table 9 - 15 show the sign of the corre-
lation coefficients for each metric. In section 3.3 we made
a prediction for these signs.

We can see that across all tables the signs are pretty in-
consistent. Furthermore, tables 9, 11 and 14 have three or
more signs which are inconclusive. Especially interesting
is that for the significant values of the CA metric, the signs
contradict each other. This is also visible in the discussed
scatter plots shown in figures 1 and 2.

5.3 Literature Research
During our literature research we first searched for the
original papers which define the correlation coefficients [14,
13]. We also found several works using and / or discussing
one or both correlation coefficients [1, 7, 11, 15].

We also contacted assistant professor Doina Bucur and
Dick Meijer from the University of Twente. They both
acknowledged that Pearson’s and Spearman’s correlation
coefficients are valid methods for our goal of finding met-
rics as suitable indicators of software agility. Bucur did
suggest Machine Learning as an alternative. This way, the
research takes multiple variables into account, instead of
comparing one metric with the effort spent by developers.

6. DISCUSSION
In the previous section we found some interesting and fas-
cinating results. In this section, we will reflect on these

results.

Most notable is that the p-values across all measurements
are relatively high. This means that the measured values
for the correlation coefficient are generally not significant
enough. Interesting is that the measurements with a sam-
ple size of n = 7 (tables 9, 10 and 13) showed higher
p-values than the measurements with a lower sample size
of n = 6.

This can mean that there is not any metric which could
be used as an indicator for software agility. However, we
did find the CA metric to be highly correlated and with
a low enough p-value to be significant. This confirmed
that Hollander’s interest in the metric [9] was valid Yet,
the found correlation was with a positive sign in two mea-
surements (tables 12 and 15) and negative in two others
(tables 11 and 14). A plausible explanation for this may
be that the requirements for the extensions are a big factor
in the resulting values for the correlation coefficients.

Unfortunately, leaving out the data of the C2 repository
was necessary. If there was more time to resolve the de-
pendency issue, this may have given a bit more data to
get statistically significant results.

In figures 1 and 3 we can see that repository F1 is an out-
lier. The reported times seem too high. Therefore, we
have taken a look at the descriptions given to the time ad-
ministration for repository F1 over X2-X3. From those de-
scriptions, it became clear that the developer refactored a
significant part of his code to include the use of an Object-
Relational Mapping (ORM) framework.

7. CONCLUSION
The goal of our research is to find out which software met-
rics of Object-Oriented Systems are suitable indicators of
agility in software. We looked if it is possible to consider
two more metrics (CA and CE) and investigated if differ-
ent data consistently show suitable indicators of software
agility. A small literature research focused on finding other
ways to test the suitability of software metrics as indica-
tors of software agility.

Next to CBO as metrics for the coupling property of soft-
ware, CA and CE can be considered as indicators of soft-
ware agility. CA was even the metric with the highest sig-
nificance and highest values for its correlation coefficients.
However, the results showed an opposing relationship be-
tween the CA metric and developer effort.

Where Hollander’s research showed that the CAM and
WMCmetrics are highly correlated [9], our research pointed
to the CA metric. As mentioned, this metric showed an
opposing result, which means that this contributes to a
higher inconsistency. This, combined with the low signif-
icance of the found values for our correlation coefficients,
lets us conclude that the data over different extensions
and different testbeds do not consistently show suitable
indicators of software agility.

Our research also found that Pearson’s and Spearman’s
correlation coefficients are suitable mathematical tools to
find out if there is a relationship between a software metric
and developer effort. However, one different method was
suggested in the form of Machine Learning.

All in all, we did not find any software metrics of Object-
Oriented Systems which are suitable indicators of agility
in software.

.

7

8. FUTURE WORK
Because the scope of our research was limited, it may be
interesting to consider the following considerations for fu-
ture work:

• In our research, we scaled our times in two different
ways to accommodate for developer skill. For a new
research, we suggest investigating if there are other
ways to improve this. One option could be including
years of experience as a factor. Another is to cate-
gorise the developer skill based on experience with
the programming language.

• We found out that using correlation coefficients only
finds relationships between two variables. It would
be interesting to use Machine Learning to look if
there are relationships between multiple software met-
rics on the one side and the developer effort on the
other. However, this would need a big training set
of data and a validation set. This is a problem,
since creating Agility Testbeds as used in our re-
search takes a lot of time.

• Instead of looking at software metrics as indicators
of software agility, future work could look at other
factors. We may be able to learn from the way we
commit our changes to software projects and the fre-
quency our commits. Or it could be possible to inves-
tigate the effect of branching policies within software
projects. It would be very beneficial to know how our
behaviour with version control systems would affect
the needed effort to create or change features in soft-
ware projects.

9. RELATED WORK
Our research builds on Hollander’s recent work [9], which
had the same goal as our research: finding out which soft-
ware metrics of Object-Oriented Systems are suitable in-
dicators of agility in software. No other related work was
found on this goal. We have performed the same measure-
ment experiment and tooling Hollander has used, while
using different data. The tooling has been adapted to ac-
commodate for the new data while retaining the possibility
to run with the Agility Testbed of 2017. We also added
the functionality to run the tools on Ubuntu, since this
was not the case yet.

Relevant to software metrics are Ferreira et al. [6] and
Riaz et al. [5]. Furthermore, Chidamber and Kemerer [4]
have defined a well-established suite for measuring soft-
ware metrics.

Papers of Arifin et al. [2] and Mendes [12] are relevant be-
cause they confirm that the development effort of software
can be measured by using the time reported by develop-
ers. Furthermore, M. Jørgensen [10] gave a summary of
general existing knowledge about effort estimation.

10. ACKNOWLEDGEMENTS
First and foremost, I would like to thank my supervisor
Arend Rensink for his valuable input and feedback during
the research project. He and David Huistra also provided
me with the Agility Testbed, for which I am very grate-
ful. This research would not have been possible without
the honours students, who worked so hard to create the
testbed.

Secondly, the fact I could use code from René Boschma
and Han Hollander saved a lot of time in this research.

Finally, I want to thank my family and friends for helping
me and supporting me during my study. It was a won-
derful trip and I hope to continue it with studying for the
Master Computer Science.

11. REFERENCES
[1] J. Adler and I. Parmryd. Quantifying colocalization

by correlation: The pearson correlation coefficient is
superior to the Mander’s overlap coefficient.
Cytometry Part A, 2010.

[2] H. H. Arifin, J. Daengdej, and N. T. Khanh. An
Empirical Study of Effort-Size and Effort-Time in
Expert-Based Estimations. In 2017 8th International
Workshop on Empirical Software Engineering in
Practice (IWESEP), pages 35–40. IEEE, 2017.

[3] S. R. Chidamber and C. F. Kemerer. A Metrics
Suite for Object Oriented Design. IEEE
Transactions on Software Engineering,
20(6):476–493, 1994.

[4] C. F. Chidamber, S. R., & Kemerer. Towards a
metrics suite for object oriented design, volume
26(11). ACM, 1991.

[5] D. Datyal and A. Kaushik. A Systematic Review of
Software Maintainability Prediction and Metrics. In
Third International Symposium on Empirical
Software Engineering and Measurement, volume
3(1), pages 217–219. IEEE Computer Society, 2016.

[6] K. A. M. Ferreira, M. A. S. Bigonha, R. S. Bigonha,
L. F. O. Mendes, and H. C. Almeida. The Journal of
Systems and Software Identifying thresholds for
object-oriented software metrics. The Journal of
Systems & Software, 85(2):244–257, 2012.

[7] J. Hauke and T. Kossowski. Comparison of values of
pearson’s and spearman’s correlation coefficients on
the same sets of data. Quaestiones Geographicae,
2011.

[8] B. Henderson-Sellers, L. L. Constantine, and I. M.
Graham. Coupling and cohesion (towards a valid
metrics suite for object-oriented analysis and
design). Object oriented systems, 3(3):143–158, 1996.

[9] J. P. Hollander. Using Software Metrics as
Indicators for Agility of Object-Oriented Projects.
In 29th Twente Student Conference on IT (TSCIT).
University of Twente, 2018.

[10] M. Jorgensen. What we do and don’t know about
software development effort estimation. IEEE
Software, 31(2):37–40, 2014.

[11] J. Lee Rodgers and W. Alan Nice Wander. Thirteen
ways to look at the correlation coefficient. American
Statistician, 1988.

[12] E. Mendes. Improving Software Effort Estimation
Using an Expert-Centred Approach. In M. Winckler,
P. Forbrig, and R. Bernhaupt, editors,
Human-Centered Software Engineering, pages 18–33,
Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[13] K. Pearson. Mathematical contributions to the
theory of evolution. III. Regression, heredity, and
panmixia. Philosophical Transactions of the Royal
Society of London. Series A, containing papers of a
mathematical or physical character, 187:253–318,
1896.

[14] C. Spearman. Demonstration of Formulae for True
Measurement of Correlation. The American Journal
of Psychology, 18(2):161, 1907.

[15] J. H. Zar. Significance testing of the spearman rank
correlation coefficient. Journal of the American
Statistical Association, 1972.

8

APPENDIX
A. RESULT TABLES

Table 9. Coefficients B-X1, Times Scaled on B
metric Pearson’s r Spearman’s ρ Sign
WMC 0.169 (p=0.717) -0.018 (p=0.969) Inc.
DIT -0.053 (p=0.910) -0.092 (p=0.845) -
RFC 0.083 (p=0.860) -0.239 (p=0.606) Inc.
AMC -0.079 (p=0.866) -0.092 (p=0.845) -
CBO -0.143 (p=0.759) 0.018 (p=0.969) Inc.
CA 0.091 (p=0.847) 0.092 (p=0.845) +
CE -0.294 (p=0.523) 0.018 (p=0.969) Inc.

CAM -0.051 (p=0.913) -0.092 (p=0.845) -
LCOM -0.076 (p=0.871) -0.018 (p=0.969) -
LCOM3 -0.126 (p=0.787) -0.092 (p=0.845) -

Table 10. Coefficients X1-X2, Times Scaled on B
metric Pearson’s r Spearman’s ρ Sign
WMC -0.057 (p=0.903) -0.071 (p=0.879) -
DIT -0.280 (p=0.544) -0.273 (p=0.554) -
RFC -0.359 (p=0.429) -0.679 (p=0.094) -
AMC -0.251 (p=0.588) -0.536 (p=0.215) -
CBO 0.040 (p=0.932) 0.357 (p=0.432) +
CA 0.042 (p=0.928) 0.288 (p=0.531) +
CE -0.078 (p=0.868) 0.143 (p=0.760) Inc.

CAM 0.392 (p=0.384) 0.143 (p=0.760) +
LCOM -0.278 (p=0.546) -0.321 (p=0.482) -
LCOM3 0.180 (p=0.699) 0.143 (p=0.760) +

Table 11. Coefficients X2-X3, Times Scaled on B
metric Pearson’s r Spearman’s ρ Sign
WMC -0.536 (p=0.273) -0.200 (p=0.704) -
DIT -0.529 (p=0.281) -0.116 (p=0.827) -
RFC -0.485 (p=0.330) -0.429 (p=0.397) -
AMC 0.758 (p=0.081) 0.029 (p=0.957) +
CBO -0.046 (p=0.931) -0.116 (p=0.827) -
CA -0.776 (p=0.070) -0.143 (p=0.787) -
CE 0.091 (p=0.864) -0.029 (p=0.957) Inc.

CAM 0.586 (p=0.222) 0.086 (p=0.872) +
LCOM -0.395 (p=0.438) 0.029 (p=0.957) Inc.
LCOM3 0.129 (p=0.807) -0.600 (p=0.208) Inc.

Table 12. Coefficients X3-X4, Times Scaled on B
metric Pearson’s r Spearman’s ρ Sign
WMC -0.334 (p=0.518) 0.086 (p=0.872) Inc.
DIT -0.663 (p=0.151) -0.543 (p=0.266) -
RFC -0.769 (p=0.074) -0.667 (p=0.148) -
AMC -0.196 (p=0.710) -0.200 (p=0.704) -
CBO 0.435 (p=0.388) 0.371 (p=0.468) +
CA 0.822 (p=0.045) 0.886 (p=0.019) +
CE 0.279 (p=0.592) 0.371 (p=0.468) +

CAM 0.043 (p=0.935) -0.486 (p=0.329) Inc.
LCOM -0.633 (p=0.177) -0.371 (p=0.468) -
LCOM3 -0.593 (p=0.214) -0.600 (p=0.208) -

Table 13. Coefficients X1-X2, Times Scaled on B
plus Preceding Extensions

metric Pearson’s r Spearman’s ρ Sign
WMC -0.176 (p=0.705) -0.071 (p=0.879) -
DIT -0.328 (p=0.472) -0.273 (p=0.554) -
RFC -0.512 (p=0.240) -0.679 (p=0.094) -
AMC -0.297 (p=0.518) -0.536 (p=0.215) -
CBO 0.177 (p=0.704) 0.357 (p=0.432) +
CA 0.131 (p=0.780) 0.288 (p=0.531) +
CE 0.051 (p=0.914) 0.143 (p=0.760) +

CAM 0.433 (p=0.332) 0.143 (p=0.760) +
LCOM -0.338 (p=0.458) -0.321 (p=0.482) -
LCOM3 0.185 (p=0.692) 0.143 (p=0.760) +

Table 14. Coefficients X2-X3, Times Scaled on B
plus Preceding Extensions

metric Pearson’s r Spearman’s ρ Sign
WMC -0.571 (p=0.237) -0.429 (p=0.397) -
DIT -0.503 (p=0.309) -0.319 (p=0.538) -
RFC -0.504 (p=0.308) -0.543 (p=0.266) -
AMC 0.789 (p=0.062) 0.143 (p=0.787) +
CBO -0.021 (p=0.968) 0.174 (p=0.742) Inc.
CA -0.771 (p=0.072) -0.086 (p=0.872) -
CE 0.123 (p=0.817) 0.257 (p=0.623) +

CAM 0.560 (p=0.248) -0.029 (p=0.957) Inc.
LCOM -0.374 (p=0.465) -0.257 (p=0.623) -
LCOM3 0.110 (p=0.836) -0.543 (p=0.266) Inc.

Table 15. Coefficients X3-X4, Times Scaled on B
plus Preceding Extensions

metric Pearson’s r Spearman’s ρ Sign
WMC -0.321 (p=0.535) 0.086 (p=0.872) Inc.
DIT -0.602 (p=0.206) -0.543 (p=0.266) -
RFC -0.582 (p=0.225) -0.667 (p=0.148) -
AMC -0.036 (p=0.946) -0.200 (p=0.704) -
CBO 0.518 (p=0.292) 0.371 (p=0.468) +
CA 0.921 (p=0.009) 0.886 (p=0.019) +
CE 0.343 (p=0.506) 0.371 (p=0.468) +

CAM -0.175 (p=0.740) -0.486 (p=0.329) -
LCOM -0.718 (p=0.108) -0.371 (p=0.468) -
LCOM3 -0.620 (p=0.190) -0.600 (p=0.208) -

9

