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Summary

Domain squatting is a phenomena where attackers register domains that mimic pop-
ular domains and/or trademarks, in order to trick people into believing they are vis-
iting a legitimate website. A distinct form of domain squatting is combosquatting;
adding one or more words to an existing domain/trademark to craft a new domain.
Think of http.//utwente-login.nl as a combosquat domain for the original domain
utwente.nl. A literature study revealed that a lot of research was performed in the
field of malicious domain detection, however not specifically tackling the problem
of combosquatting domains. Given this information, combined with the active DNS
measurements available from the OpenINTEL project, a research was initiated that
aimed at creating model to detect these combosquat domains.

At first, it was investigated whether a generic detection model for combosquat do-
mains existed. After a validation, implementation and evaluation phase involving a
ground truth dataset of 10.548 labeled domains, it became clear that no generic fin-
gerprint of combosquat domains could be created given the data that was available.
This led to the conclusion that it is extremely difficult to construct a generic model
for detecting combosquat domains without a predefined list of trademarks.

The next part of the research focused on the lifecycle of combosquat domains, more
specifically in which stages of the killchain they reside and which features could be
used to determine when a combosquat domain turns into a malicious state.

Finally, a model that was trained on the information from the sub-questions was de-
signed and validated in a real-world context. The results showed that the detection
of combosquat domains turning malicious based on active DNS measurements is
not sufficient. Future work includes the use of additional data sources and a bigger
responsibility for registrars.
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Chapter 1

General Introduction

In the current information age, being connected to the internet is a major part of life.
Social media, online shopping, movie streaming; all examples of services that are
frequently used on the modern-day internet. Despite providing a lot of convenience
to people, these services also bring unwanted side-effects [1]. Privacy and identity
are at stake when personal data gets compromised, stolen credit card information
may result in illegitimate transactions and ransomware may infect one’s device, en-
crypt the files and ask for ransom.

Not only individuals are targeted in this harsh world of cyber crime. Businesses
and governments are attacked on a regular basis by a diverse set of attackers.
These attackers can be individuals looking for personal gain, hacktivists attacking
for propaganda purposes, organized crime groups looking for financial benefits or
even military cyber units, disrupting and degrading an adversary’s capabilities [2].
Although it is hard to accurately calculate the global cost of cyber security, several
models estimate the costs into hundreds of billions of US dollars. In the future, the
global costs of cybersecurity will grow even more. Therefore, the academic com-
munity as well as business around the world are providing knowledge, methods or
services to minimize the impact of cybercrime.

On the one hand, businesses need to protect themselves in advance to minimize
the risk of a being a victim of cybercrime. On the other hand, a business should also
acknowledge that 100% security can never be achieved and thus, sooner or later
the business might become victim.

Fox-IT [3] provides managed & professional services to protect businesses and
governments against cyber attacks. The Threat Intelligence (T1) department is re-
sponsible for detecting and reporting threats on external networks, that is, out on
the internet (e.g. DDoS attacks, phishing campaigns, Advanced Persistent Threat
(APT)). More specifically, the Managed Intelligence Service of Fox-IT automatically
collects Open Source Intelligence (OSINT) and performs the corresponding anal-
ysis/triage for customers. The Managed Security Services (MSS) department is

1



2 CHAPTER 1. GENERAL INTRODUCTION

| Managed Intelligence Service | | Managed Security Service |
1. 2. 3. 4., 5. 6. Command & 7. Actions on
Reconnaissance Weaponization Delivery Exploitation Installation Control objectives

| Part |

| Part Il |

Figure 1.1: Relation of both parts of the thesis to the CKC and Fox-IT departments

responsible for detecting and reporting attacks and other anomalies on an inter-
nal network and individual endpoints (e.g. propagating virusses & trojans, insider
crime). Part of this is the Security Operation Center, which actively monitors cus-
tomers’ networks and reports if anything suspicious is discovered. New technical
developments and the emergence of new malicious actors in the cyber crime do-
main force Fox-IT to evaluate and improve their products on a continuous basis.

Since this thesis covers two separate but related parts, it's useful to plot the
scope of both parts on some scale. A common way to do this in the academic & pro-
fessional community is to use an attack modelling technique. An attack modelling
technique is useful to understand the characteristics of an attack and the objectives
of the attackers, in order to gain information about how and when the attack can
be stopped. Over the years, several attack modelling techniques have been devel-
oped [1], [4], one of which is the Cyber Kill Chain (CKC). The CKC that has been
introduced by Lockheed Martin [5] provides 7 common stages of an attack. This
CKC will be a connecting thread throughout the thesis so that at any stage of de-
tecting & reporting an incident, a reference to the CKC can be made. Within Fox-IT,
the CKC is also widely adapted. In Figure 1.1, the 7 stages of the CKC are shown
in relation to two parts of the thesis and the aforementioned Fox-IT departments in
order to provide a high-level overview of the thesis.

The CKC consists of 7 stages, which are briefly described below:

1. Reconnaissance: An attacker searches for any publicly available information
on the victim, in order to prepare the attack.

2. Weaponization: An attacker selects the malicious payload that will be sent to
the victim. This payload usually contains code that is capable of performing
some action on the victims machine, e.g an .exe file on Windows machines.

3. Delivery: An attacker delivers the malicious payload to the victim using any
communication medium, e.g. providing a link to download the payload or at-
taching the payload to an email message.

4. Exploitation: The victim accidentally or deliberately stores the malicious pay-
load on the victims machine.
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5. Installation: The malicious payload on the victims machine gets executed, ei-
ther automatically or by the victim performing some action.

6. Command and control: An attacker creates a communication channel to the
victims machine to control the status and remotely execute commands. At this
stage, the attacker is in control of the victims machine.

7. Action on objectives: An attacker performs the actions required to achieve
his/her goals on the victims machine or the connected network. From the
victims machine, the attacker can also launch a new attack to achieve a goal
that requires more access.

At any stage in the killchain the attack can be stopped. In general, the earlier the
attack is stopped in the killchain, the less damage is inflicted on the victim. The CKC
will be addresses as the ’killchain’ throughout the thesis for legibility.

1.1 Thesis structure

The thesis is split into two distinct parts: Part | covers the Computer Science-focused
research on combosquat domains and subsequently, Part |l covers the BlT-focused
research on the communication of incident severity in a Security Operations Cen-
ter. The reasoning behind this is the fact that besides the overlap of literature and
killchain stages of the parts, the research objectives and methodology is unique for
each part. Furthermore, each part consists of a distinct research question and cor-
responding subquestions. Still, both parts have a similar structure, as outlined in
Table 1.1.

Part | Il
Introduction Chapter 2 | N/A
Background information | Chapter 3 | N/A
Methodology Chapter 4 | N/A
Chapter 5
Results Chapter 6 | N/A
Chapter 7
Conclusion Chapter 8 | N/A

Table 1.1: Chapter structure of the thesis
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Chapter 2

Introduction

This introductory chapter will provide information about the current state of research
into Cyber Threat Detection (CTD). Section 2.1 will provide a introduction in the
research field of CTD and explain some of the basic (technical) concepts related to
CTD. Section 2.2 describes the shortcomings in current literature and outlines the
ideas that led to the motivation of this research. Next, in Section 2.4 the research
questions that are used in this research are displayed. Finally, in Section 2.3 the
requirements for the detection model are discussed.

2.1 Introduction into Cyber Threat Detection

The CTD research field covers a lot of subjects [6]. From a technical perspective,
CTD looks at e.g. email indicators (email traffic, attachments, subject lines), host-
based indicators (malware hashes, binaries, DLLS, registry keys) and network indi-
cators (malicious URLs and domain names) to discover new or emerging threats.
Furthermore, OSINT information can be used to identify potential threats in a stage
long before it develops into an actual incident. CTD based on network indicators is
a subject that has been researched for quite some time and is used to detect a wide
range of threats in an early stage. The detection of malicious domain names implies
the involvement of the Domain Name System (DNS), the backbone of the internet.
DNS is a globally used protocol & system. In short, DNS translates human-readible
domain names (e.g. utwente.nl) into |IP-addresses used in the worldwide TCP/IP
infrastructure (e.g. 130.89.3.249). The aforementioned domain names are first reg-
istrered and configured through DNS, before attackers can make use of it. This
provides DNS with the unique opportunity to detect malicious domains in the ear-
liest stages of the killchain (weaponization and delivery) and prevent the attackers
from exploiting their malicious domain name.

A subset of malicious domains are ’squatted’ domains. These domains are de-

7
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signed in such a way that end users are tricked into believing they are connecting
to a legit domain. Domain squatting exists in many forms (see Section 3.3), one of
them being combosquatting. In short, combosquatting is the act of combining one
or more arbitrary words with an existing trademark, to craft a seemingly legitimate
domain. An example would be utwente-login.nl, which acts like a login-page for
the University of Twente but in fact passes on these credentials to an attacker. Al-
though the loss of university credentials might not be the end of the world, imagine
losing credentials for a service authorized to perform financial transactions.

A study on combosquatting by Kintis et al. [7] suggests that combosquatting do-
mains are currently observed 100 times more than typosquat domains. The lack of
a generic model for combosquatting domains contributes to this problem, accord-
ing to Kintis et al. In their large-scale empirical study, they furthermore found out
that combosquat domains often remains undetected for a long period of time and
that the abuse of combosquat domains is increasing by the year. An analysis of the
attacker’s usage of combosquat domains resulted in a list of many different forms
of abuse, e.g. phishing, social engineering and affiliate abuse. Because of their
findings, they called for more research into combosquatting domains & abuse.

It should be clear that malicious combosquat domains pose a serious threat to
the mostly uninformed end users. Though some forms of domain squatting have
been throughoughly studied, research into combosquatting is (besides the study by
Kintis et a) still in its infancy. This leads us to the motivation of this research.

2.2 Motivation

The recent study by Kintis et al. called for the urge of further research after perform-
ing an empircal study and finding out that combosquatting domains are a growing
threat. Before that, only one other empircal study was performed on combosquat-
ting, which is an industry whitepaper published in 2008 [8]. Moreover, no actual
detection models have been proposed in current literature. Kintis et al. state that
in comparison to typo squatting, for which detection models have been created and
validated, combosquatting lacks a generic model because of its nature; there are
infinite amounts of possible combinations. While at the first glance this statement
may look credible, no proof is provided for this claim. A frequently heard and simple
solution to this would be a trademark search on newly registered domain names.
This would however result in a lot of false positives, as Kintis et al. already stated.
As an example, imagine the Dutch bank ING; if a substring search is performed on
'ing’, the domains ’burgerking.com’ and 'bing.com’ would be flagged as malicious.
Since investigating positives is a costly & time-consuming activity, a more refined
model using multiple features is needed to minimize the amount of false positives.
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Furthermore, this trademark search on new domain names limits the detection of
combosquat domains to the trademarks included in a predefined list. This raises
the desire for a generic model that is capable of detecting combosquatting domains
regardless of the trademark involved.

For several types of domain abuse, not limited to domain squatting, DNS data can
be used to create detection models. A recent study on the detection of snowshoe
spam using active DNS data resulted in several characteristics that were useful to
detect these domains [9]. Therefore, the question arose whether a model based on
active DNS data could also be created for combosquatting domains.

Since the study by Kintis et al. (only) covers an empirical research, no real
detection methods have been proposed for combosquat domains. Since attackers
seem to be able to keep these domains off the blacklist for a long period of time,
the early detection of combosquat domains is beneficial. While Kintis et al. present
a temporal analysis of combosquat domains and their presence on blacklists, they
do not specify which changes in DNS resource records correlate to the addition
on a blacklist. The suspicion arises that a change of IP addresses related to the
combosquat domain may be an indicator of a combosquat domain turning malicious.
The majority of the detection models described in literature use passive DNS data,
implying that the attackers have set-up and abused a malicious domain before it is
detected. The latter also applies to the Tl platform of Fox, which is fed by passive
data on current attacks, e.g. malicious domains appearing in phishing campaigns.
This means that businesses are warned only after the attack has been successfully
set up. The desire is to actively detect combosquatting domains in order to warn
the involved businesses in an earlier stage and thus, reduce the impact of attacks
involving combosquatting domains.

Concluding, the motivation was to design a detection model that was better able
to detect combosquatting domains using active DNS data, when compared to exist-
ing generic detection models.

2.3 Requirements

Section 3.2 gives an overview of detection methods that have been proposed to
detect a wide array of domain abuse, using different data sources. These studies
achieve False Positive rates of as low as 1%, and precision rates as high as 98%.
However, no reference percentage is known for specifically detecting combosquat
domains with active DNS measurements. Since this is an experimental study the
lowest False Positive rate and highest precision rate as possible are desired, but as
a bare minimum for the model to be of practical use, the following requirements are
set:



10 CHAPTER 2. INTRODUCTION

REQ1: The model should have a False Positive rate of at most 5%.
REQZ2: The model should have a precision rate of at least 90%.

2.4 Research Questions

Because there is a need for detecting combosquatting domains in an earlier stage,
this will be the main focus of the thesis. An additional challenge is the fact that
seemingly, it is difficult to design a generic model that can distinguish combosquat
domains from legitimate domains. This leads us to the following technical research
problem:

CTD: How to develop an active combosquatting detection model that meets the
requirements set in Section 2.3, so that businesses can be warned in an earlier
stage within a threat intelligence platform?

In order to provide an answer to this problem, first some sub questions have to be
answered, which provide the basis for the Combosquatting Detection Model (CDM)
design.

CTD1: Is it possible to construct a generic model for detecting combosquat do-
mains?

CTD2: In which stages of the killchain can a combosquat domain reside?

CTD3: Which features define the transitions between Killchain stages?

2.5 High level approach

This research approach is based on the engineering cycle, described in [10]. The
main research question is a design problem; a treatment needs to be designed
in order to a solve problem in a specific context. In this case, the treatment to
be designed is a model that is able to detect combosquat domains as they turn
malicious, and the context is a threat intelligence platorm.

Furthermore, the first sub-question about a generic model for combosquat domains
is also a design problem, which has to be solved separately in the early phase of
the research.

After all sub-questions have been answered, the approach consists of constructing a
prototype, placing it in a model of the intended context and apply some scenarios to
observe the responses, after which the model can be validated. These requirements
are described in Section 2.3. It should also be noted that these requirements are
not definitive; they may change based on the outcomes of the design cycles.



Chapter 3

Background Information

This chapter will provide background information on detecting squatted domains:
domains that impersonate existing trademarks in order to let members of the public
think the domain name legitimately belongs to the existing trademark. The DNS,
discussed in Section 3.1, is an OSI Layer 7 level protocol & global system that
seems inseparable with the detection of malicious domains. Afterwards, Section 3.2
will provide insight in the latest research into malicious domain detection in general.
In Section 3.3 will this literature study will continue, but will be focused on squatted
domain specifically.

3.1 Domain Name System

The Domain Name System DNS is a global protocol & system that is a major part
of the internet [11]. Its most basic function is to translate human readable domain
names (e.g. people.utwente.nl) into IP-addresses (e.g. 130.89.252.58) used by
the global TCP/IP network. DNS is set up as a distributed, hierarchical client-server
system to ensure scalability and high availability. A client can perform a DNS query,
which will result in a response from a resolver containing the requested information.
Throughout this background information, the people.utwente.nl domain and cor-
responding IPv4-address 130.89.252.58 will be used as a reference.

A domain name consists of multiple levels, separated by a single dot.

The Top-Level Domain (Top-Level Domain (TLD)) is the rightmost level of the
domain name; often called the domain suffix. TLD’s can further be split up into
country-code TLD’s (ccTLD) and generic TLD’s (gTLD). Where ccTLD’s are allo-
cated to specific countries (e.g. nl for The Netherlands), gTLD’s are not bound to a
country and are thus independent. In the example, nl is the TLD.

After the TLD, the domain is further identified by the Second-Level Domain (2LD).

11
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This level of the domain usually corresponds to the organization that has registered
the domain name. Every individual person or business can register a 2LD under a
TLD, only bound by regulation regarding trademark names. In the example, the 2LD
is utwente.

After the 2LD, many more domains levels are possible. In the example, people refers
to a 3LD. This makes it possible for organizations to have multiple 3LD or even 4LD
domains for different services within the organization (e.g. ftp.utwente.nl for a
FTP-server, www.utwente.nl for a webserver)

The functions and components of DNS will be described according to the DNS
resolve sequence shown in Figure 3.1.

Root
nameserver

k.root-servers.net

people.utwente.nl
Goto

ISP nsl.dns.nl TLD

nameserver

resolver
people.utwente.nl

\ 4

A

Go to
nsl.utwente.nl

nsl.dns.nl

people.utwente.nl

Authorative
nameserver

<§}
{

nsl.utwente.nl

Client
(stub resolver)

Figure 3.1: An example iterative DNS resolve for people.utwente.nl

Resolver

A resolver is the client-side application in the DNS system; it is responsible for
initiating and finishing a full DNS query. Resolvers come in different forms; a
simple stub resolver is a piece of software that can check whether the answer to a
DNS query is available locally, or can pass the query onto another resolver. This
second resolver can be hosted at the user’s ISP (e.g. 212.54.44.54); it may be
a more complex system and can perform more difficult tasks. The resolver can
make iterative or recursive requests to nameservers, which are explained next.
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Since iterative requests are mostly used in resolvers, this type of request will be
discussed. In Figure 3.1, the client’s stub resolver cannot find the IP-address of
people.utwente.nl locally, so it forwards the request to the recursive resolver.
The ISP resolver is now responsible for returning the query to the client. The
ISP resolver consecutively queries the root nameserver, TLD nameserver and
authoritative nameserver.

Root nameserver

A root nameserver’s function is to refer the resolver to the correct TLD name-
server. A total of 13 root nameservers exist geographically distributed around the
globe, each one operated by a separate organization. In the example, the root
server on k.root-servers.net IS queried and responds with a TLD nameserver
(ns1.dns.nl) for the n1 TLD , to which the resolver heads next. One could say
that the TLD part of the domain name has now been resolved.

TLD nameserver

The TLD nameserver holds references to all authoritative nameservers for a cer-
tain TLD. Usually TLD nameservers for ccTLD’s are hosted by state-owned orga-
nizations, whereas gTLD nameservers can also be hosted by other organizations.
A TLD nameserver responds to a query by providing the authoritative nameserver
for a certain 2LD. In the example, the nameserver for the n1 TLD responds to
the resolver that one of the the authorative nameservers for utwente is located at

nsl.utwente.nl.

Authorative nameserver

The authoritative nameserver holds all the information for certain 2LD, in the form
of a Resource Record (RR). These records have a fixed layout, but the informa-
tion in each of the RR’s may be different. The most common RR’s are:

Type Description Function
A IPv4 address Returns the IPv4 address for the domain
AAAA IPv6 address Returns the IPv6 address for the domain
MX Mail exchange | Returns the location of the mail server for the domain
NS Name server Returns the authoritative name server for the domain
CNAME | Canonical name | Returns an alias to refer from one domain to another

The authoritative nameserver responds the requested RR’s to the resolver, which
in turn responds the completed DNS query to the client. In the example, the au-
thoritative nameserver for utwente, which is ns1.utwente.nl, has a RR of type A
for the people 3LD; 130.89.252.59. Note that to the client, the process is recur-
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sive; the client only has to perform one action, after which the resolver iteratively
queries the different nameservers on behalf of the client.

From an organizational perspective, there are three major roles when it comes
to managing & registering new domain names. Figure 3.2 displays the sequence
diagram provided in the paper by Kidmose et al. [12], along which the different roles
will be explained.

Registrant Registrar Registry Zone

Apply

Register !

—

Update

L Update
— > E

Figure 3.2: Sequence diagram for registering a new domain name

Registrant

The registrant is an individual person or organization that wants to register a 2LD.
In the example, this is the University of Twente. Usually, a registrant registers a
domain name at a registrar.

Registrar

A registrar is an organization that sells domain names on behalf of one or more
registries. Registrars are typically webhosting providers or businesses providing
internet services. Registrars have direct contact with the registries and function
as an intermediary agency for the registrant.

Registry

A reqistry is the operator of a TLD and is responsible for taking care of the tech-
nical aspects of that operation. Furthermore, it takes care of meeting the require-
ments set by the ICANN and making the TLD available for commercial use. The
latter is most often outsourced to the registrars. In the example, the n1 TLD is
operated by SIDN [13].
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As can be seen in Figure 3.2, a registrant applies for a domain name at a reg-
istrar. The registrar passes the request on to the registry, which makes sure the
domain name does not violate any of the abuse rules. The registry approves and
charges a fee for the registration; the registrar on its turn charges a fee to the reg-
istrant. Now that the registration is complete, the new domain gets included in the
zone file update of the registry. Kidmose et al. call this stage of the registration
the pre-registration stage. After the update is published, the new domain name
gets propagated over the other nameservers on the internet and can be resolved
everywhere around the globe as displayed in Figure 3.1. This stage is called the
post-registration phase. The post-registration can, in regard to abuse, be split into
a pre-abuse and post-abuse stage. Combining these different stages in the do-
main name registration process with the CKC introduced in Chapter 1 results in
Figure 3.3.

1. 2. 3. 4. 5. 6. Command & 7. Actions on
Reconnaissance Weaponization Delivery Exploitation Installation Control objectives
Pre-registration Pre-abuse Post-abuse
Regqistration ~ First update Decomission

Figure 3.3: DNS registration process combined with CKC

3.2 Detecting Malicious Domains

A starting point for the literature review on the detection of malicious domains is the
study performed by [12]. The authors perform an analysis on existing frameworks
and theories. In addition, the study by Zhauniarovich et al. [14] provides a system-
atic review of malicious domain detection approaches based on this DNS data. This
is a good starting point for enumerating state of the art research into malicious do-
main detection using DNS data. Several studies discussed in these overviews will
now be discussed. EXPOSURE [15] is a passive DNS analysis service. It focuses
on detecting DGA & C&C domains. The service was built en tested on billions of
DNS requests, and during the 17 months of operation it detected over 100.000 ma-
licious domains using a J48 decision tree algorithm. The classifier used multiple
feature categories; time series based, DNS answer based, TTL value based and
domainname based features were used. During the evaluation phase, the service
managed to achieve a high detection rate on the training data (99.5%), as well as a
low False Positive rate (0.3%).

Phoenix [16] is a system that focuses on detecting and distinguishing DGA and non-
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DGA domains, and furthermore is able to find groups of DGA-generated domains
that are used alongside in botnets. The system uses passive DNS data. It uses a
combination of linguistic and IP-based features to do this ‘fingerprinting’ of botnet
DGA domain groups. During the evaluation phase, the system was able correctly
distinguish DGA-generated domains from non-DGA-generated domains in 94.8% of
the cases. Furthermore, the system was also able to detect these DGA domain
groups in a real-world setting.

DFBotKiller [17] is another system that is able to detect botnet traffic to malicious
C&C servers. This is done by analyzing passive DNS data within the network. Its
main task is to assign a negative reputation score to a domain, that takes into ac-
count three suspicious measurements. These three metrics are then, along with a
number of failed DNS queries, processed into a verdict. The system was evaluated
in a test settings and resulted in interesting scores.

A system that acts in the domain pre-registration stage is the PREDATOR frame-
work [18], which has a detection rate for new malicious DNS entries of 70%, in
combination with a low false positive rate of 0.35%. This means that as early as
in the pre-registration phase, a majority of the malicious domains can already be
identified before they can be abused. The system uses features based on registrar
data, characteristics of the domain name, previous registration history and correla-
tion with registration bursts. This data is used, since no active nor passive DNS data
is present in the pre-registration phase.

The study performed by Vissers et al. [19] is interesting since it provides an auto-
mated clustering process that analyzes the registration of malicious registrations in
any TLD during the pre-registration stage. Using DNS registration data and publicly
available blacklists, they found that at least 80.04% of the data corresponded to 20
malicious DNS registration campaigns. A remaining 19.30% of the traffic could also
be related to these campaigns, after more rigorous inspection of the individual cam-
paigns features, resulting in a false positive rate of only 0.92%.

Finally, another study outlines the malicious domain registration ecosystem and puts
the different types of abuse in perspective regarding absolute numbers and total
costs [20]. This study does not propose a concrete detection system, but gives in-
sights into a malicious actor’s preferences and economic incentives.

Having covered most of the existing theory, Kidmose et al. state that future re-
search should be into detecting malicious & abusive domains in the pre-registration
stage and should not be limited to spam domains. They suggest to use new, cur-
rently unused, features in this stage of detection, namely a lexicology analysis of a
domain name, the registration history of domain name, the registrant information,
contents of first zone update and the reputation of the registrar.
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3.3 Domain Squatting

A specific type of domain name abuse is called is domain squatting. In the case
of domain squatting, an attacker registers a domain name that appears to be the
legitimate domain name of a trademark, while in fact it hosts some malicious or
abusive content. Domain squatting is particularly hard to detect since it involves no
technical errors or flaws in the DNS protocol; in the end it is up to the user to spot
a 'squatted’ domain. Several types of domain squatting can be identified, each type
with its own characteristics and features. To illustrate the different types of domain
squatting, Figure 3.4 displays some examples. Additionally, the domain squatting
types are briefly explained in Figure 3.4, with combosquatting outlined more in detail.

Type Example Literature
Typosquatting utwent.nl [21], [22]
Bitsquatting utwenpe.nl [23]
Homophone-Based squatting | youtwente.nl [24]
Homograph-Based squatting utvvente.nl [25], [26]
Abbrevsquatting ut.nl [27]
Combosquatting utwente-login.nl [7], [8]

Figure 3.4: Different types of domain squatting targeting utwente.nl

Typosquatting

Typosquatting is a type of domain squatting where the domain names consist
of typo variations of popular websites. This method of domain squatting re-
quires an end user to make a mistake when entering a domain name in the
browser. In the example, a user wants to visit utwente.nl, but accidentally for-
gets to type the e in the domain name. The user then ends up at a completely
different website, which could be used for malicious purposes.

Typosquatting is phenomena that has been around for many years. The study
by Wang et al. [21] from 2006 already presents a tool that is able to detect
and monitor typosquat domains. In their study they list five different forms of
typos, ranging from a missing dot typo (e.g. wwwutwente.nl to the character-
omission typo mentioned in the example. With respect to combosquatting, it
is worth mentioning that the amount of typosquat domains for a given popular
domain is fixed; at a certain point, no further variations can be computed.

Bitsquatting
Bitsquatting is a type of domain squatting where the attacker anticipates on
random bit-errors originating from the hardware in client devices (e.g. comput-
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ers & smartphones). The study by Nikiforakis et al. [23] shows that these
domains are actively being registered and used for abuse purposes. End
users are often unaware of being redirected to a malicious website, since they
have not performed a faulty action but rather are the victim of hardware er-
rors and the attackers who anticipated for this. In the example, the users re-
quests utwente.nl, but due to a random bit-error the client actually resolves

utwenpe.nl.

Homophone-Based squatting

In another study by Nikiforakis et al. [24], homophone-based squatting or squat-
ting based on words that sound exactly like the original domain, but are written
in a distinctive matter. In the example, imagine someone telling the end user to
visit the 'utwente’ website, which then misinterprets the URL as youtwente.nl.
Another example would be weather.com and whether.com; two URLs who
sound exactly the same but would resolve to different hosts.

Homograph-Based squatting

Homograph-based squatting is a type of domain squatting where an attacker
registers a domain that is visually (almost) indistinctable from the original pop-
ular domain. Research on this topic has been done by Holgers et al. [25]. An
example attack (using this thesis’ font) would be replacing a Latin lower case
letter 1 with a number 1; this would make paypal.com hard to distinguish from
paypal.com. A study that used homograph-based domain squatting was con-
ducted at the University of Twente, where the original domain was replaced
by utvvente.nl [26]; in this study the double v’s in the domain name were
impersonating a w. Since the adoption of International Domain Names, which
allow non-ASCII characters to be used, homograph-based squatting has be-
come harder to detect since many Latin letters have similar looking characters
in different alphabets.

Abbrevsquatting

Abbrevsquatting is a type of domain squatting where an attacker uses the ab-
breviation of popular domains to trick users into believing they are visiting the
legitimate website. In the example, an attacker registers ut.nl because the
University of Twente is often abbreviated as UT. The study by Lv. et al [27]
shows that attackers are aware of the principles of abbrevsquatting and are
already leveraging them in malicious ways.

Combosquatting
Combosquatting is the act of combining one or more arbitrary words with an
existing trademark, to craft a seemingly legitimate domain. The first research
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into combosquatting dates back to 2008, when an industry whitepaper by Fair-
Winds Partners, LLC was published [8]. An initial set of 30 trademarks was
selected based on their "strength” and number of search terms that were reg-
ularly associated with the trademarks. A keyword suggestion tool was used to
generate the top 50 most popular keywords associated with the trademarks,
and these were then combined into a total of 1500 domain names. Using
the major search engines at that time (Google, Yahoo! and MSN), the daily
searches for these domain names were analyzed per month. Furthermore
the traffic for each domain name was registered. Afterwards, the domains
were ordered by their traffic/search ratio and the top and bottom 500 were ex-
cluded, leaving 500 domains for manual testing purposes. Results showed
that 50.6% domains contained Pay Per Click (PPC) advertisement, 22% of the
domains were legitimately used for trademarking purposes and 75% of the
trademark+keyword combinations that were not owned by the trademark con-
tained PPC advertisements.

Nine years later, in 2017, the study by Kintis et al. [7] was published. This was
and until now is the only academic research into combosquatting. For the first
time, they introduce a definition of a combosquat domain; the domain contains
a trademark and the domain cannot result by applying the five typosquatting
models of Wang et al. [21]. Furthermore, they perform an empirical study on
the presence of combosquat domains on the internet, using several large-scale
datasets.

They conclude that current domain squatting detection techniques are not de-
tecting combosquat domains properly due to the different threat models in-
volved. They also state that no generative model can be constructed, since
in theory an infinite amount of trademark+keyword combinations exist. This
makes detection harder to perform than for example typosquatting, for which
an exhaustive list of mutations regarding a trademark can be made. A temporal
analysis of the detected combosquat domains shows that most domains were
active for several months, before the domains were blacklisted. Combosquat
domains are used in phishing campaigns, affiliate abuse and other types of
abuse. All of these findings result in their call for future research regarding
combosquat domains. Kintis et al. argue that not only registrants and regis-
trars can help resolving this threat, but there is also a task for third parties to
search for and monitor new combosquat domains.
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Chapter 4

Approach

This chapter describes the approach that was used to provide the answer to the
research questions. In Section 4.1 the approach that was used to answer the main
research question is explained. In Section 4.2 the approach that was used to find
out if a generic model could be designed is explained. Section 4.3 described how
the different killchain phases are measured and assigned t the stages a combosquat
domain can reside in. Finally, Section 4.4 describes the approach to find the most
relevant features for the detection model.

4.1 Main research question

Following the problem statement & objectives in Chapter 1, this chapter will the de-
scribe the research approach that was used during the research. This provides
structure in the research and gives an overview of the steps that were taken. In
Figure 4.1 the research approach is displayed. This research approach is based
on the engineering cycle, described in [10]. Since this approach focuses on an-
swering knowledge questions and solving design problems, it fitted the needs of
this research. The five individual phases of the engineering cycle, interpreted in
the context of this research, are outlined below. This approach also keeps in mind
the framework provided by [14], which outlines a general framework to design a de-
tection model primarily based on DNS data. Steps included in the framework are
data collection, data enrichment, algorithm design & evaluation; these steps will be
identifiable in the engineering cycle as well. Before continuing, let us first define a
combosquat domain. The definition of a combosquat domain is based on the defini-
tion provided by Kintis et al. as shown in Section 3.3, but is extended to fit the needs
of this research. Below, the formal definition is outlined alongside a few examples
to make the definition more tangible. This definition is expressed in Python code in
Section B.2, which is used for validation purposes throughout the thesis.

21
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Figure 4.1: Schematic view of the research approach

Domain name C is considered a combosquat domain of trademark T, if:

1) T is the original trademark name, without a spelling deviation

2) T is left intact within a set of other characters, in this case C

3) T is a standalone word in C

4) The owners of domain names C and trademark T are different

5) C can not be classified as any other form of domain squatting as listed in

Section 3.3

Next, the four phases of the design cycle will be explained in the context of this
research.

Problem investigation
During the first stage of the research, the initial problems are defined, research
questions are created and objectives are set. This stage is described in Chapter 2.

Treatment design
In the treatment design phase, the sub questions will be answered. It should be
noted that since CTD1 in itself is an extensive design problem it is only answered
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once when iterating over the design cycle multiple times. The different methodolo-
gies to answer the sub questions are described in the subsections of this chapter.
The results from CTD2 (a list of killchain phases that a combosquat domain can
reside in) will function as input for CTDS3.

Treatment validation

After the sub questions have been answered, it is time to construct the prototype
and validate the results. This is done by checking if the prototype matches the
requirements. More specific, this means that it is validated that the classifier can
distinguish between features that define a ’benign’ combosquat and a malicious
combosquat. The validation of the prototype is done by constructing a confusion
matrix, as shown in Table 4.1. This is a common method to validate results regarding
predicted and actual values.

Prediction outcome

p n Total
, | True False )
P Positi Negative P
Actual ositive 9
value
, | False True )
n - ) N
Positive || Negative
Total P N

Table 4.1: Example confusion matrix

From the confusion matrix, three important metrics can be calculated:

PP

FPrate = ———
T TP Y TN

The FP rate represents the amount of wrongly predicted positives compared to the
total amount of actual negatives. In this research, a low False Positive rate is desir-
able since every domain that is predicted as combosquat needs to be investigated;
when the domain turns out to be a False Positive, the time spent on the analysis is
‘'wasted’.
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Figure 4.2: k-fold cross validation

TP+TN

Accuracy = PIN

The accuracy score represents the amount of correctly classified labels out of the
total. A high accuracy score means that the classifier does not make many errors in
relation to the total amount of predictions.

TP

Precision = m——F'_P

The precision score represents the amount of labels that are correctly labeled pos-
itive relative to the wrongly labeled positives. A high precision score means that
the classifier makes little mistakes when labeling positives. On the other hand, a low
precision score implies that a lot of positives labels are predicted while in facts, these
are negative. In this research a high precision score is one of the main requirements,
in order to keep the amount of False Positives as low as possible.

A common problem with ML classifiers is overfitting: a classifier performs per-
fectly on the training data, but it does not perform well on newly, previously unseen
data. To get a better picture of the performance of the classifier, a process called
k-fold cross validation is performed on the training data. This process is shown in
Figure 4.2.

The training data upon which the model is trained is split into £ sections. In each
one of the k iterations, a different section is used for training & testing purporses.
This approach has another advantage, namely that the scores for the classifiers are
calculated over the total training data and do not rely on a randomly chosen test
sample. Each one of the £ iterations produces a False Positive, accuracy and a pre-
cision score, which are in the end summed up and divided by & to get the average
scores of the False Positive rate, accuracy and precision.
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Treatment implementation & Implementation evaluation

In this phase, the validated prototype is placed in its intended context: a threat intel-
ligence platform. An external Virtual Private Server, functioning as an abstraction of
such a platform was chosen for this purpose.
Afterwards, the implementation is evaluated and will answer the main research ques-
tion. A question to be asked is: Did the CDM setting function according to its re-
quirements in the real world context? In most design researches, the design cycle
is iterated over multiple times. When a new iteration is started, this phase redefines
the problems, research questions and objectives in order to improve the quality of
the CDM. The treatment implementation phase, along with the implementation eval-
uation is shown in Figure 4.3.

As can be seen, all combosquat domains from a specific day X are retrieved from
OpenINTEL and fed to the classifier, which predicts the domain as either benign’ or
malicious. To evaluate this decision, it is checked whether the domain was actually
on a blacklist on day X or not. Note that this validation completely relies on the
presence of a domain on a blacklist; if the classifier manages to predict a malicious
domain while it was undetected at that moment, it cannot be verified. Therefore,
an extra check is performed; if the domain is not listed on a blacklist on day X,
the features of the day it actually got detected are obtained and verified against the
features of day X. If the features match the domain is labeled malicious and ‘benign’
if the features do not match, If no appearance on a blacklist can be observed after
the prediction, the domain is also labeled 'benign’.
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Figure 4.3: Treatment implementation & evaluation
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4.2 Generic model design

This subsection describes the approach that was used to answer sub question
CTD1: Is it possible to construct a generic model for detecting combosquat do-
mains? Since this sub question in itself is a design problem, another design cycle
has been constructed with the sole purpose of providing an answer to this sub ques-
tion. This design cycle is shown in Figure 4.4.

Treatment implementation Implementation evaluation / problem investigation Treatment design

Evaluate
implementation

Implement model

: ) Re(design) problems,
in real world

and objectives

Y

A

Treatment validation

A

| Extract ground truth |
data

A v

Validate prototype Define ground truth

Construct prototype [«

Aggregate & label
data

51

Calculate internal
features

l€—|

Extract DNS data

Define internal

features

v

|| Calculate contextual

features

Extract data from
additional sources

Define contextual

features

Figure 4.4: Design cycle used to answer CTD1

4.2.1 Problem investigation

This problem is also described in Chapter 2; it is a direct result of the claim that
there is no generic model possible for combosquat domains [7]. Since no proof was
provided to support this claim, an attempt was made to design a generic model to
check if it was indeed the case.

4.2.2 Treatment design

The design of the generic model is based on the approach used by van der Toorn
et al. [9]; first a ground truth has to be composed of combosquat domains and non-
combosquat domains because labeled data is needed for the model to be based
on. Since no labeled dataset was available regarding combosquatting domains, this
was created manually using the approach described below.

Before diving into detail regarding the ground truth creation, the different datasets
need to be defined. D is the set of domain names in the .com TLD. T is the set
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Figure 4.5: Approach to construct the ground truth
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of trademarks. This set is based on the global Alexa top 500 domains, retrieved
from [28]. Ambiguous domain names are excluded, as well as short names (<
4 chars). This manual selection of domain names resulted in 106 unique domain
names, displayed in Appendix A.1. F is the set of frequently used combosquatting
words, as displayed in the paper by Kintis et al. [7]. B is the set of the blacklisted
domains. This set is constructed out of the blacklists as shown in Appendix A.3. A
is the set of . com domains appearing on the Alexa top 1M list [28].

Next, two string operations should be clarified. Consider a string as a sequence of
characters, represented as: S = ¢y, ¢s...c,. Then, a substring B is formally defined
as B = ¢y44...Cipy; Where 0 < i and m + i < n. For example, ent is a valid substring
of utwente, but twete is not. In the same way, a full match is when two strings are
equal; utwente is a valid full match of utwente.

Now that the different datasets and functions are defined, the ground truth is cre-

ated using a filtering process. The approach used in this filtering process is shown
in Figure 4.5.
First, a list of combosquat domains (CD) is created; for each domain in D, it is
checked if there exists at least one substring match with a trademark from T and a
word from F. Afterwards, for each of these domains, a check is performed whether it
is present on a blacklist. If this is the case, then it is added to CD. In order to create
a proper ground truth that is usable for training & testing purposes, an equally long
list of ‘’non-combosquatting’ domains should be appended. This 'whitelist’ is built
out of two sources. 50% of the 'whitelist’ consists of malicious domains which do
not contain a trademark, called Malicious Domains (MD). The other 50% consists of
Benign Domains (BD). These domains are first extracted from A. Then, the domains
containing a trademark from T are excluded, except when there is a full match. The
rationale behind this is that according to Kintis et al., popoular combosquat domains
frequently make their way into the Alexa top list. Since the BD set should definitely
not include any combosquat domains, these popular combosquatting domains are
filtered out. For example, youtube.com must be included in the set of benign do-
mains, but youtubedownloader . com should not. In the end, a ground truth consisting
of #CD combosquat domains, #CD/2 'whitelisted’ domains and #CD/2 malicious but
non-combosquat domains is present.

After the groundtruth is constructed, the ground truth needs to be enriched with
features. Features are essentially datapoints used to train Machine Learning (ML)
classifiers. ML is a technique that enables automated binary classification and pre-
diction of entities and is commonly used to pick new features out of a large data pool.
Following the terminology introduced by Zhauniarovich et al. [14], internal features
are features based on DNS data, while contextual features are features based on
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additional, non-DNS data.

The main data source for the internal features will be historical measurements of
domains extracted from the OpenINTEL project. The available variables (for exam-
ple domain name) must be transformed into features ready to be processed
(for example number of characters, number of digits). Moreover, the data source
may contain a large amount of features and since they are not equally interesting to
the model, the most relevant features have to be selected. These features can be
found in literature, but also arise as a result of statistical analysis on the ground truth
data. A list of most valuable internal features will be the answer to this question. For
the purpose of this research the internal features are further split up in lexical fea-
tures, which are extracted from the domain name itself, and DNS features, all other
features extracted from the OpenINTEL project. The study by Kintis et al. [7] already
provides several lexical features that are commonly observed at combosquatting do-
mains, which can be of use.

The contextual features are extracted from the Certificate Transparency Log, as
well as the WHOIS service. The Certificate Transparency Log is an append-only
Merkle-hash tree, which is used to verify the validity of a SSL/TLS certificate. Since
new certificates are added on a continuous basis, Google stores information about
these certificates and provides reports for all domains [29]. The WHOIS-servers
provide information about a domain name through a special WHOIS query. Usually,
these queries hold information about for example the registrant, registrar and name-
servers. While there are standards in place for WHOIS queries & responses, it is
up to the registries and registrars to determine what is inserted in the fields. While
the WHOIS-information might not be fully reliable, it may still be a significant feature.
Because WHOIS information is also used in relevant literature, it is initially included.

4.2.3 Treatment validation

In this phase, the a prototype of the CDM will be constructed and validated. All of
this is performed on the ground truth sample dataset, functioning as a model of the
intended context. The prototype is validated against the requirements that will be
shown at the end of this section. The construction & validation of the prototype is
itself an iterative process; by applying small changes to the prototype, the outcome
of the validation model will slightly be changed.

The corresponding requirements which the generic model has to meet are spec-
ified as follows:
Functional requirements
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FRQ1: The CDM should be able to classify a combosquat domain into the correct
killchain phase.

FRQZ2: The CDM should not include any other form of domain abuse other than
combosquatting.

FRQ3: The CDM should be able to detect combosquat domains without the use of
a predefined list of trademarks.

Non-functional requirements

NRQ1: The CDM should have a False Positive rate of at most 5%.

NRQZ2: The CDM should have a precision rate of at least 90%.

NRQ3: If either NRQ1 and NRQ2 can be met, NRQ1 should be given a higher pri-
ority when selecting a single classifier.

The 5% and 90% percentages are set as a bare minimum. Since no reference
percentages are known due to the lack of research into generic combosquatting
detection models. The values will however be adjusted according to performance
of the first prototype, since a generic model is new ground and realistic threshold
values are not known up front.

4.2.4 Treatment implementation

In this phase, the validated prototype is placed in its intended context: a threat
intelligence platform. The initial idea was to use Fox’s threat intelligence platform for
this purpose. In the end a simplified solution was chosen, in which the model was
hosted on a Virtual Private Server, with a live connection to the OpenINTEL system.
This VPS was used as an abstraction of a real threat intelligence platform.

4.2.5 Implementation evaluation

In this stage, a check was performed whether the model in context met the require-
ments set earlier in this section. For this research, it meant that the model should be
able to distinguish newly added combosquats from newly added non-combosquats
according to the requirements. This stage of the design cycle was used to answer
directly sub question CTD1; whether it is possible to create a generic model to detect
combosquat domains.
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4.3 Domain lifecycle analysis

Since a generic model is not available for detecting combosquat domains, at this
point the list of 106 trademarks as listed in Appendix Section A.1 is used; com-
bosquat domains impersonating those trademarks are taken into account.
A starting point for answering this subquestion is a collection of blacklists, that have
been scraped from 2016-07-08 until 2019-01-11. For the analysis, the blacklists up
to 2018-12-31 were included to leave some data untouched for later validation us-
ages. More information about the blacklists that have been scraped can be found in
Appendix C.
The blacklisted domains functioned as the starting point for the analysis. First, out of
the total domains on the blacklists, the combosquat domains were filtered according
to the definition of a combosquat domain provided in Chapter 4. This means that
each domain on the blacklist was checked against the five specified requirements,
and those who did not match all of the requirements were dropped. The code that
performed this combosquat filtering is shown in B.2.

Since in this analysis the complete combosquat domain is being researched,
combosquat domains that were present on a blacklist on the first and last day of the
selected blacklists were left out.

Filter out
first = 2016-07-08 &
last = 2018-12-31

A

Calculate first and
last date

A

Filter combosquats
according to code in
Appendix B.2

A

Raw
blacklists

106 trademarks

Figure 4.6: Blacklist filtering process

This resulted in a list of blacklisted combosquat domains, not present on the first
and last day of the blacklist collection period. The domains on this list were then en-
riched with data from OpenINTEL. For every day, starting on 2015-02-20 (the start-
ing day of OpenINTEL . com measurements) until 2018-12-31 (the fixed end date for
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the analysis) the presence of the domain in OpenINTEL was checked. The check
was performed by checking if any records for the domain were present in OpenIN-
TEL. It should be noted that a domain can be registered without any record being
related to it; if absolutely no records related to the domain are present in the zone
file it is not measured by OpenINTEL. In this case, while the domain is registered,
it is considered inactive and thus, not present in OpenINTEL. Afterwards, a list of
domains and the corresponding first and last day in OpenINTEL is present.
Before continuing, only the domains of which the full lifecycle could be observed
were taken into account; domains that were already active at the start of the Open-
INTEL measurements, or still active at the last day of the analysis were filtered out.
This means that the domains whose first date was 2015-02-20 and/or last date was
2018-12-31 were removed from the dataset.

For convenience, the OpenINTEL data combined with the blacklists is shown in
Figure 4.7; the parts marked in grey are included in the dataset.

first seen on last seen on
2015-02-21 2018-12-30

OpenINTEL

Blacklists

first seen on
2016-07-09

Figure 4.7: Overview of the selected dataset

At this point, a dataset containing only combosquat domains that could be ob-
served throughout their full lifecycle are present. This dataset was used to calculate
several graphs and metrics regarding the lifecycle of the domains. The results are
described in Section 6.1.

4.4 Feature selection

Following the analysis in sub question CTD2, a distinction can be made between
combosquat domains in the different killchain phases. More specifically, combosquat
domains can be detected in two phases; the Weaponization and Delivery phase. It
was also stated that domains in the Weaponization phase are considered benign
and domains in the Delivery phase are considered malicious.

The dataset containing only combosquat domains that could be observed through-
out their full lifecycle, produced by CTD2, is again used and enriched with the fea-
tures described in Section B.1. This dataset consisted of 13693 domains. All these
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domains appeared in OpenINTEL, have gotten blacklisted and disappeared from
either OpenINTEL or the blacklist during the measurement period.

Historical DNS & blacklist data was used in favor of creating a new dataset con-
taining more data sources (for example HTTP), since the limited time available for
this research would result in a dataset that only contains domains with a lifetime up
to a few months, excluding the undetected long-living domains pointed out by Kintis
et al. Note that this is only a preliminary study; it is only a starting point to see if
additional measurements are feasible.

This means that the label benign or malicious has to be extracted from the
blacklists alone. Since historical data is being processed, it cannot be verified
whether the blacklisted domains were actually malicious. This also means that this
detection can only be based on changes in the DNS records of that domain. There-
fore, a change in the DNS records of a domain is considered an indicator of an
attacker’s activity. Keeping this in mind, a ground truth can be created as shown
in Figure 4.8.

CTD2 dataset
B|C M Domain in OpenINTEL
I
<«-Presumed_, Domain on blacklist
malicious
Presumed Known
benign malicious
Y Y
First day before First day on
change )
blacklist
observed
label=benign label=malicious
Y Y

Ground truth —» One-hot encoding [ Feature selection

Figure 4.8: Constructing the ground truth and extracting features

Regarding the lifecycle of a combosquat domain, three important days can be
marked. M is the day that a domain is known to be Malicious; this is the first day the
domains appeared on a blacklist. C is the day when the Change to the current DNS
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settings was observed. This means that the features on day M and C are equal. B is
the day Before the change was observed; the features of this day differ from M and
C. The assumption that was previously made can not be narrowed down; a change
in the DNS records of a domain, with the new DNS records matching the DNS
records at the time of blacklisting, is an indicator of a benign domain turning
malicious. The time between B and M is the time to be ‘'won’ with earlier detection;
in this period the domain is presumed to be malicious.

The features obtained from OpenINTEL on day B are then labeled as benign, while
features obtained on day M are labeled as malicious. This was then aplied to all
13693 domains of whose B and M days, with a ground truth dataset as a result. One-
hot encoding is performed to transform the data for Machine Learning, after which
the most important features will be extracted by using a DecisionTreeClassifier.
Note that in this approach, combosquat domains that are being registered and do not
change their DNS records before being blacklisted are excluded; since no change
can be observed, there are no indicators based on DNS data that the domain is
turning malicious. Since OpenINTEL has a resolution of one measurement per day,
the DNS data that was analyzed is oblivious to quick changes in the DNS records.
Therefore, if a domains has a malicious lifespan of less than one day (or even a few
hours) and is pointed to a ‘domain is blocked’ page afterwards, the DNS records
belonging to the 'domain is blocked’ page are labeled malicious in the ground truth.
This problem might be mitigated by investigating HTTP data, but for now this remains
future work.
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Chapter 5

Generic model design

In this chapter, the outcomes of the generic model design are displayed and dis-
cussed. First, in Section 5.1 the ground truth is shown. Afterwards, Section 5.2 pro-
vides an overview of the features that were selected and used. The generic model is
then designed, validated and implemented in respectively Section 5.3, Section 5.4
and Section 5.5. Finally, the outcomes are discussed in Section 5.6.

5.1 Designing a ground truth

According to the approach described in Section 4.2, first all the . com domains having
a substring match with both a trademark and a frequent combosquatting word were
selected, which resulted in 285.327 domains. Next, the blacklists were retrieved and
combined. After filtering only the . com domains out of the the blacklists, as displayed
in Appendix Section A.3, 433.757 .com domains were present on the list. out of
the 285.327 domains retrieved from OpenINTEL, 5274 were also present in the
combined blacklist dataset. According to the approach another 2637 domains were
added from the Top Alexa list, along with 2637 blacklisted domains not containing
a trademark. In the end, this resulted in a labeled ground truth dataset of 10548,
in which 5274 domains were labeled combosquat and 5274 domains were labeled

not-combosquat.

5.2 Defining features

In this section, the features that were extracted are described. This is done accord-
ing to the analogy by Zhauniarovich et al. [14]; internal features are features based
on DNS data, while contextual features are features based on additional, non-DNS
data.
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Lexical feature Type Source
domainname words Ordinal [7]
domainname_segments Ordinal [7]
domainname popular_combosquatting words | Ordinal -
percentage lms_of total Ordinal | [15], [18]
domainname_characters Ordinal [7], [18]
contains minus_char Boolean [18]
contains digit Boolean [18]

Table 5.1: Lexical features (total 7)

5.2.1 Defining internal features

For the purpose of this research the internal features are further split up in lexical
features, which are extracted from the domain name itself, and DNS features, all
other features extracted from the OpenINTEL project.

Lexical features

The lexical features that are used are displayed in Table 5.1. There are sim-
ple features (contains digit, contains minus _char, domainname characters) and
more complex features. The more complex features are explained below
domainname words and domainname_segments are based on the word segmentation
algorithm, originally proposed by [30] and also used in the paper by Kintis et al. [7].
Using this algorithm, the domain name is split into different sections based on their
probability to be standalone sections. For example, 00fr-youtubevideos would re-
sult in the sections 00fr, youtube and videos. Following the classification by Kintis
et al., if a section is present in one of multiple dictionaries [31]-[34] it is considered
a word; otherwise it is considered a segment. In the example above, youtube and
videos are considered words and 00fr is considered a segment. The two features
count the number of these words and segments in a domain name.
The study of Kintis et al. furthermore provides a list of most frequent combosquat-
ting words per category. All of these words are added to a dictionary set, and if a
word matches one of these words the domainname popular_combosquatting words
value increases by 1. This dictionary of words is displayed in Appendix Section A.2.
Finally, the percentage 1ms_of total is calculated as the Longest Meaningful String
of the total domain. The largest word in the domain name is selected and calculated
as a percentage of the total domain name. In the example above, youtube is the
longest meaningful string. Since it has length 7 and the total length of the domain
name is 18, the value of percentage 1ms of total will be 39%.
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DNS feature Type Source
number_of _A_records Ordinal -
number_of _AAAA records Ordinal -
number_of _NS_records Ordinal -
number_of MX records Ordinal -
number_of SOA records Ordinal -

number_of _CNAME_records Ordinal -
number_of _DNSKEY_records Ordinal -

number_of TXT_records Ordinal -
number_of _ipv4_addresses | Ordinal [9], [15]
list_of_ipv4_addresses | Categorial [15]
AS _number Categorial | [7],[9], [14]
response name matches Ordinal [9]
country_code Categorial [9], [15]
soa_refresh Ordinal -
soa.retry Ordinal -
soa_minimum Ordinal [9]

Table 5.2: DNS features (total 16)

DNS features

The DNS features are all extracted from the OpenINTEL project. In Section 3.1
background information is provided on the DNS. OpenINTEL stores many DNS
record types and DNS fields'. Initially, all fields were taken into account when defin-
ing the features. Based on relevant literature, a selection of initial fields was made.
In addition to that some experimental features were also added, such as the number
of certain types of records. The fields were then converted into features, as shown
in Table 5.2. It should be noted that this selection is broad; feature selection should
later on filter out the less significant features so that only truly distinctive features
remain.

Most of these features count occurrences of different types of RR’s, IP addresses,
AS numbers etc. The response name matches field indicates whether the query
name & response name of a DNS query match.

5.2.2 Defining contextual features

Given the defintion in [14], contextual features are obtained when DNS data is com-
bined with external data sources. In this research, the external data sources are

'https://openintel.nl/background/dictionary/
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WHOIS feature Type Source
whois registrar Categorial | [15],[18]
whois number of nameservers Ordinal -
whois registrant name Categorial -
whois_registrant_organization | Categorial -
whois_registrant_country Categorial -
Table 5.3: WHOIS features (total 5)
CTL feature Type Source
ctl number_of current_certs | Ordinal -
ctl list of providers Categorial -

Table 5.4: CTL features (total 2)

respectively the WHOIS-servers available on the internet and the Certificate Trans-
parency Logs.

WHOIS information

10 features were chosen from the total list of WHOIS-information response fields.
Features such as whois_zipcode were left out, since they provide too specific infor-
mation. Similarly some features were left out because they were based on time.
For example, the whois _created day_ago held the number of days that had passed
since the domain was registered; a feature that is not useful to detect combosquat-
ting domains at any fixed point in time. In the end 5 features were left out, leaving a
total of 5 features as shown in Table 5.3.

Certificate Transparency Log

The reports as described in the approach function as data input for the features.
For a given domain, the CTL outputs a list of certificates that are currently issued
to a domain. Here, the certificates issued to the 2LD and the www 3LD are taken
into account. These certificates may be issued by multiple providers, for example
Let’s Encrypt Authority X3 and TERENA SSL High Assurance CA 3. Both the list
of certificate providers, as well as the number of current certificates associated with
a domain are used as features. If a certificate for a www 3LD is issued, the domain is
stripped down to its 2LD equivalent. The used features are shown in Table 5.4.
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Figure 5.1: Schematical overview of the CDM training phase

5.3 Prototype construction

After constructing a ground truth and having it enriched with the 30 features de-
scribed in Table 5.1, Table 5.2, Table 5.3 and Table 5.4, a prototype was constructed
in order to be able to validate the performance. The Python? programming lan-
guage was chosen as the main language because of the author’s proficiency with
the language and the availablity of data processing & machine learning libraries,
such as scikit-learn®, pandas*, numpy® and scipy®. In Figure 5.1 and Figure 5.2 a
schematic overview of both the training & test phase of the prototype is displayed.

As described earlier, the ground truth resulted in a list of 10548 domains Fig-
ure 4.5. Afterwards, the ground truth domains are enriched with the 32 selected
features. This involves both invoking the OpenINTEL system to obtain the internal
features, as well as querying two public systems to obtain the contextual features.
After the data is enriched, a matrix of 10548 rows and 30 columns is present.

In the next step, several ML classifiers are trained on the enriched data. ML classi-
fiers can only handle ordinal or binary values. Therefore, the categorial values in the
ground truth need to be converted into ordinal or binary values. A technique known
as one-hot encoding is applied on the data to fulfill this need. One-hot encoding
transforms categorial data into binary data, by creating a new column for every cat-
egorial value and setting a 1 if the row contains this category, or a 0 otherwise. An

2https://www.python.org/
3hitp:/scikit-learn.org/stable/
“https://pandas.pydata.org/
Shttp://www.numpy.org/
Shttps://www.scipy.org/
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Figure 5.2: Schematical overview of the CDM test phase

list_ of_AS_numbers
[12282, 28892]
[3853]

domainname
example1.com
example2.com

Table 5.5: Before one-hot encoding

example transformation is shown in Table 5.5 and Table 5.6

In this example, the list in the 1ist_of AS numbers column is transformed into
multiple columns containing only binary information. All categorial features are
transformed in this way, except for the 1ist_of ipv4_addresses column. Since there
are 232 possible IPv4 addresses, performing one-hot encoding on this column would
result in the same amount columns. This is undesirable, since each newly added
column increases the memory usage during execution. Therefore, a more efficient
way of using IPv4 addresses as features is proposed in the paper by Chiba et al. [35].
Following their transformation based on ’octets’, this resulted in 1024 extra columns
instead of the possible 232 columns. After the transformations, the matrix consists of
10548 rows and 6106 columns.

For efficiency purposes, a technique called feature selection is often applied to a
enriched dataset. During feature selection, features that are not used in the clas-

domainname

AS_number_3853

AS_number_12282

AS_number_28892

example1.com

0

1

1

example2.com

1

0

0

Table 5.6: After one-hot encoding
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sification process are ommitted. In this research, feature selection is performed by
training a DecisionTreeClassifiers with unlimited max_depth on the entire dataset and
extracting the features that are used. Under the hood, the DecisionTreeClassifier
tries to minimize the uncertainty based on the Gini impurity of the features. The Gini
impurity is based on the probability that a domain is labeled incorrectly based on a
certain feature. A high Gini value corresponds to a feature that is significant in the
classification process; lower Gini values do not significantly contribute in the deci-
sion making process. By default, sklearn’s DecisionTreeClassifier constructs a tree
and keeps adding new leafs to the tree until it reaches a point where it realizes that
adding extra leafs is no longer beneficial to the classification process. By construct-
ing such a tree and extracting the features that were used in the tree, not-significant
features can be filtered out. Because a DecisionTreeClassifier is initialized with a
random starting point, the selected features differ per execution round. On average,
the total amount of features is reduced from 6106 to around 650, which greatly im-
proves performance. This means that on average, the 650 selected features have
the same significance in the classification process as the full set of 6106 features.

5.4 Prototype validation

According to the approach described in Section 4.2, the prototype is first validated
in a model of its intended context by applying k-fold cross validation. The value of
k can be arbitarily chosen, however several sources show that a value of £ = 10 is
often chosen as a default value’ 8,

An average of the scores form the 10 iterations is calculated and shown in Ta-
ble 5.7. These were the first results and no classifier satisfies the requirements; a
minimum precicion rate of 90% and a maximum FP rate of 5%. Our requirements
state that if no classifier meets the requirements, the classifier with the lowest FP
rate should be chosen. In this case, this was the GaussianNB classifier with a FP
rate of 6%.

5.5 Real world validation

By retrieving all newly added domains of today, yesterday and the day before yes-
terday, a list of newly added domains can be obtained from OpenINTEL. The reason
that the day before yesterday is included is to make sure that if a measurement error

"https://magoosh.com/data-science/k-fold-cross-validation/
8https://machinelearningmastery.com/k-fold-cross-validation/
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Classifier FP rate % | Accuracy % | Precision %
DecisionTreeClassifier 22 78 77
RandomForestClassifier 17 80 81
AdaBoostClassifier 18 80 80
KNeighborsClassifier 26 76 74
GaussianNB 6 51 54
BernoulliNB 26 73 73
MLPClassifier 31 67 69
SGDClassifier 76 48 48
GradientBoostingClassifier 23 81 77
ExtraTreesClassifier 20 81 79

Table 5.7: Classifiers and their scores

occured in OpenINTEL (and thus, one measurements for a certain domain is miss-
ing), it is not immediately considered a 'newly added domain’. The newly added
domains were then enriched with features listed in Table 5.1, Table 5.3, Table 5.4
and Table 5.2. Afterwards, one-hot encoding was applied on the enriched data.
However, the one-hot encoded newly added domains cannot be fed directly into the
trained GaussianNB because of two reasons:

1) Categorial values present in the test data but not present in the training data are
not known to the classifier.

2) Categorial values present in the training data but not present in the test data is
missing.

The solution that has been chosen is to first iterate over the test data columns and
remove the columns that are not present in the training data. Aftewards, when it-
erating over the training data columns, the columns that are not yet present in the
test data are added and filled with zeroes. Finally, the prototype as described in
Figure 5.2 was deployed in a real-world setting.

All newly added .com domains of 26-01-2019 were retrieved. This resulted in
a list of 112.647 newly added domains. Subsequently, the trained GaussianNB
classifier was used to predict the labels of each the new domains. Since the process
of retrieving the WHOIS and CT log features is lengthy, the first 10.000 domains were
used as a sample for the total set of 112.647 newly added domains.

Out of the total 10.000 domains, this resulted in 75 domains predicted as com-
bosquat, and 9925 as not-combosquat. Now that the predicted labels are available,
new 'actual’ labels need to be calculated as well in order to calculate the confusion
matrix. Since these domains were not part of the ground truth, the code that is
shown in is shown in Appendix B.2 was used to calculate the actual labels. After-
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wards, every predicted domain had a ’predicted’ label as well as an ’actual’ label
assigned. These two values could then be used to create the confusion matrix, as
shown in Table 5.8.

Prediction outcome

cs b
, | TP FN
— cs
g 3 0 15
g S
b’ FP TN
75 9910
Total 75 9925

Table 5.8: Confusion matrix for the real-world validation

Based on the confusion matrix, the precision, FP rate and the accuracy can
be calculated as explained in Subsection 4.2.3; these scores indicate how well the
prediction on the new unseen data performed:

0
0+ 75
= 0%

Precision =

75
75+ 9910
= 0.75%

FPrate =

0+ 9910
0+ 15+ 75+ 9910
= 99.1%

Accuracy =

5.6 Discussion

Results indicated that the detection of new combosquat domains was not sufficient.
As shown in the previous section, out of the 10.000 new .com domain names, 75
domain names were flagged as combosquatting domains. At first, the frequency of
the detected domains is in line with distribution in the ground truth. 75 out of 10.000
means that 0.75% was flagged as combosquat. In the ground truth 285.327 domains
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Domain name
sevenoakscommhomes.com
mybackyardrelaxation.com
smarthomegadgetguru.com
anthonyandmikayla.com
silvercloudinvestments.com
retroelectromotors.com
mizikmalemusic.com

Table 5.9: Selection of domain names that were falsely labeled as combosquat
(False Positives)

were used as combosquat domains on a total dataset of 137M . com domains; here
285327

they make up T37000000 * 100 = 0.2% of the total domains.

The FP rate and accuracy scores seem pretty satisfying at first. However, the Gaus-
sianNB classifier was unable to detect even one of the 75 actual combosquats in
the 10.000 newly added domains. The precision score is therefore 0%, which is
obviously not sufficient. When looking more in detail into the trained GaussianNB

classifier, it becomes clear why this happened.

A selection of the domain names falsely flagged as combosquat is shown in Ta-
ble 5.9. On the other hand, Table 5.10 shows the combosquat domains that were
missed by the classifier. Since the GaussianNB classifier is trained based on the
features selected by the DecisionTreeClassifier shown in Figure 5.3. the tree can be
used to explain the results. For convenience, the max_depth has been set to 3, since
this provides insight in the features with the highest Gini impurity value. The most
significant feature is domainname_characters, which represents the total length of
the domainname. This means that the prediction is greatly based on this feature.
Furthermore, it can be observed that the DNS features are not as important as the
lexical features; features like percentage_Ims_of total and number_of minus_chars
are present, while only one DNS feature is present (response_name_matches). This
means that combosquat domains cannot easily be fingerprinted by distinct DNS
entries. The last observation is that the classifier seems unable to distinguish trade-
marks from regular words. When looking at Table 5.9 and Table 5.10, the classifier
did not learn that ‘'samsung’ is a trademark and ’backyard’ is not.
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Domain name
samsungblockchaincore.com
facebookdekatsuyaku.com
linkedinclassroom.com
shopifywebsitedesignerbuilder.com
godaddyholdings.com
ihategodaddy.com
mywalmartcoupons.com

Table 5.10: Selection of domain names that were falsely labeled as not-combosquat
(False Negatives)

domainname_characters < 10.5
gini=0.5
samples = 10544
value = [5270, 5274]
class = combosquat

True False

response_name_matches < 6.5
gini = 0.323
samples = 3826
value = [3051, 775]
class = normal

percentage_Ims_of_total < 52.5
gini = 0.442
samples = 6718
value = [2219, 4499]
class = combosquat

domainname_characters < 7.5 number_of_minus_chars < 0.5 number_of_minus_chars < 0.5 number_of_minus_chars < 0.5
gini = 0.475 gini = 0.154 gini = 0.398 gini = 0.469
samples = 1494 samples = 2332 samples = 5644 samples = 1074
value = [915, 579] value = [2136, 196] value = [1549, 4095] value = [670, 404]
class = normal class = normal class = combosquat class = normal

. VAN RN N

gini = 0.498 gini = 0.121 gini = 0.497 gini = 0.453 gini = 0.192 gini = 0.432 gini = 0.447
samples = 975 samples = 2237 samples = 95 samples = 3946 samples = 1698 samples = 887 samples = 187
value = [2092, 145] value = [183, 1515] value = [63, 124]
class = narmal class = combosquat class = combosguat

gini = 0.204
samples = 519
value = [459, 60] value = [456, 519] value = [44, 51] value = [1366, 2580] value = [607, 280]
class = combosquat

class = normal

class = combosquat class = combosguat class = normal

Figure 5.3: Decision tree of depth 3
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Chapter 6

Domain lifecycle analysis & feature
feature selection

This chapter will display and discuss the results of subquestions CTD2 and CTD3 in
respectively Section 6.1 and Section 6.2.

6.1 Defining the killchain phases

According to the approach described in Section 4.3, the filtering was performed.
13693 blacklisted domains were available to be analyzed. In this stage a list of 106
trademarks was used and using a simple grouping function, the trademarks that
were targeted most frequently could be analyzed. The top 10 of targeted trademarks
is shown in Table 6.1.

Rank | Trademark | Number of domains
1 Apple 8751
2 Paypal 1241
3 Microsoft 711
4 Netflix 592
5 Facebook 372
6 Amazon 323
7 Instagram 265
8 Google 213
9 Whatsapp 166

10 Wellsfargo 115

Table 6.1: Top 10 most targeted trademarks

The full list of trademarks and the corresponding frequencies is displayed in Sec-
tion D.2. It can be observed that 'Apple’ takes up the majority of malicious com-
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bosquat domains; as much as 8751 out of the 13693 domains. Following was 'Pay-
pal’ with 1241 hits. The top 5 is completed with 'Microsoft’, ’Netflix’ and 'Facebook’,
respectively with 711, 592 and 372 combosquat domains. Next, OpenINTEL was
used to add more context to the domains. The next filtering process was applied,
leaving 12115 domains for the analysis. These domains were then used to calculate
four metrics: the total days of a domain in OpenINTEL, the days of a domain in
OpenINTEL before it got blacklisted, the amount of domains that were still present
in OpenINTEL after being removed from a blacklist and finally, the amount of days
the domains was present in OpenINTEL after being blacklisted.

The first graph that could be created was the total days of a domain in OpenIN-
TEL, as seen in Figure 6.1.

Number of domains

200 300 400 500 600 700 800 900 1000 1100 1200 1300
Total days in OpenINTEL

Figure 6.1: The total number of days a combosquat domain is present in OpenlIN-
TEL, with the y-axis in logarithmic scale.

When calculating and plotting the total days before a domain is detected two
large peaks could be observed; the first peak lies at 2 days and the second peak
lies at 372 days. These peaks are shown in Figure 6.2. The graph that shows all
data can be found in Appendix D.1.
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Figure 6.2: A graph showing the first and second peak from the graph showed in
Appendix D.1
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Figure 6.3: The number of days a domain is present in OpenINTEL after being de-
tected, with the y-axis in logarithmic scale.

Next, it was calculated how many domains were still present in OpenINTEI after
being removed from a blacklist. 86.7% of the domains were not present anymore,
and 13.3% were still present in OpenINTEL after being removed from a blacklist. In
this case, the reputation of the domain has improved in such a way that it got re-
moved from the blacklist. Finally, Figure 6.3 shows the amount of days a domain is
present in OpenINTEL after being detected.



52 CHAPTER 6. DOMAIN LIFECYCLE ANALYSIS & FEATURE FEATURE SELECTION

Given the fact that most malicious combosquat domains are only active and de-
tected after a few days, in order to define the killchain phases the domains needed
to be measured more frequently. Since the historical DNS data was not suitable for
this purpose, a additional small dataset consisting of active HTTP data was created
using the Certstream' library which provide a real-time feed of newly signed SSL
certificates.Since combosquat domains are used for phishing purposes, and phish-
ing websites more frequently use SSL certificates to fake their legitimacy to users, it
is expected that also SSL certificates for combosquat domains could be observed.
A few combosquat domains were actively queried for their HTTP response during
their lifecycle and the observations are summarized in Figure 6.4. This lifecycle
sometimes only covered a few hours instead of a few days, which made it impossi-
ble for OpenINTEL to detect even the DNS changes. Note that this (extra) dataset
was primarily used for exploring the possible stages the short-living domain could
reside in. Although no conclusions can be based on this small dataset, future work
could focus on the detection of malicious short-living combosquat domains primarily
based on HTTP data.

6.1.1 Discussion

As a basis for the discussion, the domain lifecycle diagram provided by the ICANN?
is provided in Figure 6.5.

i Nam is available for re-registration <44
4 Redemption possible E =]
Renewal and transfer possible « t t

Registered
(1-10 year term)

Available Grace Period

(0-45 days)

Drop Catch Activity

Pre-Drop Alternatives M
~<fsssssmnlll>- Domain Tasting Activity i e

Figure 6.5: ICANN Domain lifecycle diagram

First, all the graphs that were created during the analysis are discussed.
Figure 6.1 shows three interesting peaks. The first peak (around 0-7 days) are short-
living domains; domains that are being registered and disappear within a few days.

'https://certstream.calidog.io
2Internet Corporation for Assigned Names and Numbers
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Index of /
Name Last modified Size Description
cgi-bin 2019-01-01 16:46
pages-secure.com-ver.> 2017-11-14 03:58
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Figure 6.4: Screenshots of a short-living malicious combosquat domain
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The second (small) peak is around 365, which correlated to a registration period
of 1 year. However, the third peak lies around 405 days. This could be explained
by summing the registration period (365 days) and the Auto-Renew Grace Period
offered by a lot of registrars (40 days). In this Auto-Renew Grace Period, the do-
mains is put 'on hold’ to give the registrant some extra time to decide on continuing
the registration or not, while the domain remains present in the zone file (see Fig-
ure 6.5. This means that no indication of an attackers’ incentive to reuse or 'clean’ a
malicious domain can be seen; it seems that they just register combosquat domains
in bulk and let them expire.

Figure 6.2 shows the two peaks in the total amount of days before domains are de-
tected. It is interesting to see that the majority of detected domains are detected
within ten days. Contrary to what Kintis et al. reported, the findings suggest that
these types of domains are quickly blacklisted, often within necten days instead of
the long-living domains reported by Kintis et. al. Figure 6.2b shows that the peak
lies at 2 days. The second peak lies around 372. This peak has a similar shape as
the peak around 2, however it has moved 370 days up front. This could be explained
as a one-year registration period of 365 days + five additional days. It is assumed
that these five days correspond to the Add-Grace Period (see Figure 6.5) of the reg-
istrar; within five days after registering a domain, the registration may be reversed
by the registrar which in turn receives a full refund of the registry. After the reg-
istration is reversed, the domain becomes immediately available for re-registration.
An explanation could be that the registration is reversed after five days, someone
else registers that particular domain and it lives for another 365 days. Then, after
370 days, the domain expires and is drop-catched by a malicious registrant. This
malicious registrant then uses the domain for malicious purposes, after which it gets
blacklisted after an average 2 days.

Next are the amount of domains that are still present in OpenINTEL after being
removed from a blacklist. A majority of 86.7% of the domains is not present in Open-
INTEL after it has been removed from a blacklist, again indicating that there is no
(economic) incentive for attackers to reuse the abused domains.

Lastly, Figure 6.3 shows the amount of days domains are alive after being black-
listed. This graph can be explained by taking Figure 6.1 and extracting the 2 days
taken from Figure 6.2b in Figure 6.2. Therefore, this graph confirms the correlation
between the different graphs.

Figure 6.4 shows the four phases that were frequently observed when actively ob-
taining HTTP information about short-living combosquat domains. Figure Figure 6.4a
shows the domain being registered and parked; domains are not actively misused
in this stage. Figure 6.4b shows the first signs of activity; a webserver is set-up and
a folder containing malicious content is uploaded. Usually after this stage, it does
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not take long before Figure 6.4c can be observed; the combosquat domains is up
& running and its intentions are malicious. Finally, after some time the domain gets
blacklisted / blocked / banned and the domain resolves to an error page, as shown
in Figure 6.4d. Note that in this example, the domains is used for a phishing page,
while several other types of abuse can also be present. Since users need to be di-
rected to the phishing page, it is publicly promoted via email and/or the World Wide
Web which possibly results in the fast detection.

Considering all of the above, OpenINTEL is not able to detect the really short-living
combosquat domains (with a lifecycle of a few hours). Active HTTP would be needed
for this purpose, which is unfortunately unavailable in this research. However, when
examining Figure 6.2, some domains manage to remain undetected from a few days
to a few hundred days. OpenINTEL is suitable to detect changes in DNS records
related to a domain turning malicious (for example a change in A, AAAA or MX records).

The killchain is used to define the different stages a combosquat domain can re-
side in. Based on the discussed figures and lifecycle phases, Table 6.2 was created.
This table shows the first killchain stages in relation to combosquat domains, and
whether it is possible to detect the transitions between killchain phases using either
OpenINTEL or active HTTP measurements.

Detection with

Killchain phase Combosquat appliance OpenINTEL | HTTP
Reconnaissance Attacker checks free domains False False
Weaponization Attacker registers a combosquat domain True False
Delivery Attakcker configures malicious webserver True* True
Exploitation Attacker directs users to domain False False
Installation & later User interacting with malicious page False True

Table 6.2: Killchain phases in combosquat perspective

The asterisk means that this is True when a change in DNS records is present.
Usually, when registering a domain the registrar sets the DNS records to the reg-
istrar's defaults. Therefore, when an attacker for example changes the A or AAAA
records to point to the malicious webserver, this can be observed in OpenINTEL.
However, if the DNS records point to the malicious webserver from the start, Open-
INTEL is not able to detect this change. Furthermore, if this change is made within
one day after registration, OpenINTEL is not able to detect this because it only mea-
sures once per day.
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6.2 Feature selection

ip4_encode_69 < 0.5
gini = 0.5

samples = 1126
value = [563, 563]
class = normal

as_number_18779 < 0.5
gini = 0.389
samples = 759
value = [558, 201]
class = normal

Figure 6.6: Decision tree with the selected features

The ground truth has been created in the manner described in Section 4.4.M was
defined as the day the domain first appeared on a blacklist, C' as the day the change
to the malicious DNS records was observed and B was the day before that change.
The domains and the corresponding features from OpenINTEL were stored. For
every domain, all dataframes were concatenated in chronological order. A hash was
calculated over all dataframes and thus, over all features. First, the hash of day
M — 1 checked against the hash of M. If the hashed would differ, M — 1 would be
labeled as B. If the hashed matched, the iteration would continue until a day M —n
would arise where the hash was not maching. The maximum value of n was set
to 100 to increase the performance of the process; this means that a change in the
DNS records had to be present in the 100 days before domain got blacklisted, which
covers the first peak displayed in Figure 6.2 (a).
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This resulted in a total of 5282 rows containing ’benign’ and 'malicious’ rows. This
meant that 2641 domains were present that had the same features on C' and M, and
where the features of both B and M were available. This means that out of the 12115
domains, in 9474 cases no change was observed in the last 100 days, the features
of C'and M did not match, or the features of day B were not available.

The 5282 rows were then one-hot encoded, resulting in a ground truth dataframe
with 5282 rows and 1533 columns. A DecisionTreeClassifier was then trained on
the ground truth in the same way as described in Section 5.3. On average, this
resulted in a decrease of columns from 1533 to 356. Finally, in Figure 6.6 the actual
DecisionTreeClassifier that was used for the feature selection is shown.

6.2.1 Discussion

The top features outlined in Figure 6.6 are almost all based on the IP-addresses
and AS numbers that correspond to the domains. The most significant features is
ipv_encode_69, and the second-most significant features are as_number_18779 and
ipv4_encode_822. This means that no unique signature is observed for combosquat
domains turning malicious except for a change in the IP address or AS range. This
means that attackers change their DNS entries in order to point the domains to
certain malicious IP addresses and AS ranges.
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Chapter 7

Detection model design & validation

In this chapter, the results regarding the main research question are described. In
Section 7.1 the model is designed and validated. Section 7.2 describes how the
model was placed in the intended context and how the implementation was evalu-
ated. Section 7.2 discusses the final outcomes of the combosquat detection model.

7.1 Treatment design and validation

The ground truth that was designed while answering CTD3 can again be used. This
ground truth was used to extract the features as described in Figure 4.8.
A total of 10 classifiers were selected based on their usage in related work. For each
of the 10 classifier, 10-fold cross validation was performed on the training i.e ground
truth data. After training and validating the classifiers, the average scores of the 10
classifiers can be found in Table 7.1

Since the RandomForestClassifier has the highest precision and the lowest FP
rate, this classifier is picked to be used in the real-world implementation.

7.2 Treatment implementation and evaluation

The trained RandomForestClassifier was used to detect malicious combosquat do-
mains. The approach as described in Figure 4.3 was applied on the total set of
combosquat domains on 30-07-2017. This date was chosen because it is in the
middle of the total timespan of the dataset.

All combosquat domains on the date were extracted from OpenINTEL, resulting in
a list of 173189 combosquat domains. For every domain in this list, the features
were retrieved, one-hot encoding was applied and the columns of this test set were
shaped to the training columns that were used by the trained RandomForestClassi-
fier.

59



60 CHAPTER 7. DETECTION MODEL DESIGN & VALIDATION

Classifier FP rate % | Accuracy % | Precision %
DecisionTreeClassifier 24 70 72
RandomForestClassifier 22 70 73
AdaBoostClassifier 25 70 71
KNeighborsClassifier 25 68 70
GaussianNB 83 52 51
BernoulliNB 37 65 64
MLPClassifier 47 61 62
SGDClassifier 60 46 46
GradientBoostingClassifier 23 67 70
ExtraTreesClassifier 24 70 73

Table 7.1: Classifiers and their scores

After the predictions were made, the actual labels were also calculated for every
domain and consecutively a confusion matrix was constructed.

Prediction outcome

m b

, | TP FN
— m
S o 2227 5719
= 3
< S

b’ FP TN

30422 134810

Total 32649 140529

Table 7.2: Confusion matrix for the real-world validation

Based on the confusion matrix, the precision, FP rate and the accuracy can be
calculated as explained in Subsection 4.2.3:
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Procision — 2227
SO = S T 1 30422
— 6.8%
30422
FPrate —
"= 30422 + 134810
— 18.41%
9997 + 134810
Accuracy =

2227 + 5719 + 30422 + 134810
= 79.13%

The scores are insufficient to be used for efficient detection of combosquat do-
mains turning malicious. The Precision score is too low to be of practical use, as
well as the high FP rate.
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Chapter 8

Conclusion

The chapter provides answers for the research questions that were formulated in
Section 2.4. In Section 8.1 the conclusions from the subquestion are listed, and the
main research question is anwered. Finally, in Section 8.2 the recommendations for
future work are discussed.

8.1 Conclusion

Based on the literature study there was a hypothesis that, with enough data in the
form of active DNS measurements, a generic combosquat detection model could be
designed that was able to warn customers in an early stage. To test the hypothesis,
a research question was defined, that was further divided into multiple subquestions:
How to develop an active combosquatting detection model that meets the require-
ments set in Section 2.3, so that businesses can be warned in an earlier stage within
a threat intelligence platform?

The first sub question was about investigating whether a generic model was pos-
sible for the detection of combosquat domains using active DNS measurements.
The first observation was that the key feature is domainname characters, thus the
total length of the domainname. Since the addition of words to a trademarks often re-
sults in a lengthy domain name, the classifier was mainly trained on this one feature.
While this holds for combosquat domains, this also holds for other general purpose
domain names, such as smarthomegadgetguru.com, not an unique domain name in
itself. The second observation was that lexical features (based on the domain name
itself) were more important than features selected from DNS data. Combosquat-
ting domains do not significantly differ from benign domains and/or other malicous
domains in a distinctive manner regarding the selected DNS features. The third ob-
servation was that based on the data & selected features, no clear distinction could
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be made between a regular word and a trademark. Apple illustrates this problem
clearly; it is both a well-known trademark, but also a regular word frequently used
in domain names. These trademarks make it difficult for an automated approach to
distinguish domains where Apple is used as a trademark and where not.

Through the observations it can be concluded that it is extremely difficult to con-
struct a generic model for detecting combosquat domains without a predefined list
of trademarks.

To answer the second subquestion, a temporal analysis was performed on the

combined OpenINTEL & blacklist data. This resulted into new insights regarding
combosquat domain usage by malicious users and the (economic) incentives be-
hind it. These findings were then translated into actions that malicious users could
perform in the separate killchain stages.
A combosquat domain can reside in all of the killchain phases, however the first
five phases (Reconnaissance, Weaponization, Delivery, Exploitation and Installa-
tion) are most useful for detection purposes. Detection based on DNS data is un-
der certain circumstances possible between the Weaponization & Delivery phase.
Short-living domains are more difficult to detect with OpenINTEL because of the
measurement frequency of one time per day; domains that are registered, turn ma-
licious and are abandoned within a day remain undetected in this way. Detection of
combosquat domains turning malicious based on OpenINTEL data should therefore
be focused on domains living longer than 1 day. If one would want to detect also
the short-living domains, other data sources such as active HTTP measurements
should be added. Combosquat domains in the Weaponization phase are consid-
ered benign, while domains in the Delivery phase are considered malicious.

The last subquestion is answered by looking at the features selected in Sec-
tion 6.2. These features were related to the IP-addresses and AS numbers of the
domain. So based on changes in the IP-addresses and AS numbers of a domain, a
benign combosquat domain turning malicious can be identified.

The results show that the detection of combosquat domains turning malicious
based on active DNS measurements is not sufficient, when considering acceptable
scores for the False Positive rate(5%) and the precision(90%). The False Positive rate
of 18.41% is too high to be of practical use, similar to the low precision rate of 6.8%.
Therefore, the first observation is that based on only active DNS measurements and
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given the features that were used, it is not possible to detect when a combosquat
domain transforms from an ’inactive’ state to an ’active’ state. The second obser-
vation is that when looking at the features that define a legitimate domain turning
malicious, is that no unique indicator of change can be observed. As can be seen
in the decision tree in Figure 6.6, the most relevant features consist of IP-addresses
and AS numbers. This method of detection has been widely researched and is also
actively being used in practice; IP-addresses and AS numbers are getting rated and
blacklisted regularly. Thus, the classifier that uses IP-addresses and AS numbers is
not considered 'new’ and it matches the current detection methods.

8.2 Future work & recommendations

One of the main conclusions is that the detection of combosquat domains turning
malicious is not sufficient when it is only based on active DNS measurements. This
obviously does not mean that this is not possible at all. By using & combining other
data sources, for example HTTP data, detection may be possible. Although a lot of
research is also done in this field, it has not been applied to combosquat domains
specifically.

It should also be noted that registrars at this point are not succeeding in declining
combosquat registrations. One the one hand, it is because this is very hard to do,
as this research shows. Another aspect is that it is against the nature of a registrant
selling domain names is their core business and generates revenue. Limiting the
numer of registrations implies less revenue. Although currently there is legislation
in place to prevent combosquatting abuse, it is obviously not enforced properly. An
option might be to make the domain registration procedure more restricted by law;
registrars may ask for more information about the registrants in order to verify the
actual identity, such as passport numbers, legal entity numbers and more. Since
every registrar is only responsible for a selection of TLD’s, this may even be different
per country.

To conclude, the detection results from this thesis can be used for future work, as
an effective way of detecting combosquat domains is strongly desired.
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Appendix A

Generic model data

A.1 Manual trademark selection

n=107

soundcloud dropbox nbcsports nordstrom premierleague twitch alipay mailchimp
skype aliexpress paypal siemens dailymail googleplus indiatimes tomshardware nor-
ton theguardian netflix quora playstation yandex ieee pinterest airbnb huffingtonpost
flickr salesforce bankofamerica pastebin instagram tripadvisor foxnews wikipedia
github nvidia apple americanexpress youtube fox-it twitter stackoverflow dailymo-
tion office365 facebook spotify usatoday snapchat microsoftonline hewlett steam-
powered duckduckgo homedepot hdfcbank thestartmagazine slideshare walmart
bloomberg epicgames samsung amazonaws autodesk packard nytimes godaddy
alibaba mediafire expedia wordpress linkedin breitbart amazon tumblr marktplaats
fujitsu elsevier filehippo ladbible google wellsfargo reddit nokia mozilla symantec
mcafee microsoft shopify whatsapp avast utwente gamepedia verizon cloudfront
4shared adobe stackexchange gitlab leagueoflegends lenovo wetransfer wiktionary

A.2 Frequent combosquatting words

Taken from the paper by Kintis et al. [7]

car universal square villa cheap marketing search porno account print office content
vacation official listen wire hot shipping worldwide county services pilgrim net free
videos san shop plus sex business fuck health group maps online delivery apps
phone channel play princess watch kindle support post home com wireless mobile
island theme freight inn news foundation posting president vote yeah archive service
photography gift glass store photos club south sale express trump tube life jobs
energy mortgage mike file sucks world elect center ground galaxy views live update
user xxx campaign garden stores time cards deals page media zine university blog
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hotel trust login family movies movie buy just card head best line video stop lay gay
land love google real music chill themes beach cars estate followers porn school
city paris download games prices credit hotels mail bank price property tex truth
new phones canada chemical movie photo converter investment

A.3 Public blacklists

This table shows the blacklists that were used when answering CTD1.

Source

http://www.abuse.ch/

http://www.malwaredomains.com/
http://www.malwaredomains.com/
http://dns-bh.sagadc.org/
https://isc.sans.edu/suspicious_domains
http://www.urlvir.com/exporthosts/
http://www.nothink.org/blacklist/blacklist malware dns.ixt.
http://www.joewein.net/dl/bl/dom-Dbl.txt.




Appendix B

Python code snippets

This appendix holds several code snippets, used in the thesis. They can be used
to clarify the methodology and to see what was actually calculated. Note that the
imports are not shown, as well as code that is not useful to show, e.g. code that
loads and saves DataFrames, trademarks, words and more.

B.1 OpenINTEL queries

SELECT
lower (query_name) AS domainname,
count(case response_type when A’ then 1 else null end) AS number_of_A_records,
count(case response_type when 'AAAA’ then 1 else null end) AS number_of_AAAA_records
count(case response_type when 'NS’ then 1 else null end) AS number_of _NS_records,
count(case response_type when 'MX’ then 1 else null end) AS number_of_MX_records,
count(case response_type when 'SOA’ then 1 else null end) AS number_of_SOA_records,
count(case response_type when 'CNAME’ then 1 else null end) AS number_of CNAME _recor
count(case response_type when 'DNSKEY’ then 1 else null end) AS number_of DNSKEY _rec
count(case response_type when 'TXT’' then 1 else null end) AS number_of_TXT_records,
count(ip4_address) AS number_of_ipv4_addresses,
concat(”[”, group_concat(ip4_address), ”]”) AS ipv4_addresses,
count(case query_name when response_name then 1 else null end) AS response_name_matc
max(country) as country,

ax(‘as‘) as as_number,
avg(soa refresh) AS soa_refresh,
avg(soa_retry) AS soa_retry,
avg(soa_minimum) AS soa_minimum
FROM openintel.com_warehouse_parquet
WHERE year = [current_year] AND month = [current_month] AND day = [current_day]
AND lower (query_name) NOT LIKE ’123—nonexistant—dnsjedi —456.%’
AND lower (query_name) NOT LIKE ’‘www.%’
AND regexp_like (lower(query_name), [manual_trademarks_regex])
AND regexp_like (lower(query_name), [frequent_.combosquat_-words_regex])
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GROUP BY lower (query_name)

B.2 Validation of real-world domains

Every domain has a predicted value True or False, provided by the trained classi-
fier. The code below calculates the actual value for the domain. In the end, every
domain has a predicted and actual boolean, which are then used to construct the
confusion matrix.

LA

Function for validating whether the predicted domains are actual combosquat domains or n
Consists of a few simple checks.

R

def is_.combosquat(domainname):
contains_trademark = alexaregex.search(domainname)

# Check for constraint 1) and 2)
if contains_trademark:
trademark = contains_trademark.group(0)
# Rule out typosquatting, so a levenshtein distance of 1. This (
# partially) checks constraint 5)
if distance.levenshtein(trademark, domainname) == 1:
return False

segmented_domainname = wordsegment.segment(domainname)

# Segmented_domainname contains a list of segments here. Now,
# check for constraint 3)
is_standalone_word = False

for segment in segmented_domainname:
if alexaregex.fullmatch (segment):
is_standalone_word = True
break

if is_standalone_word:
# Now we only have to check whether the two IP’s are not
# in the same range and the AS numbers do not match.
# This checks constraint 4)
return not ip_and_as_match (trademark, domainname):

# If it’s not a standalone word, dismiss it. E.g.
# ’applejuice.com’ should not be included.
else:
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return False

# If no trademark is present in the domainname, dismiss it already
else:
return False

E]

For a given trademark_domain (e.g. amazon) and new_domainname (amazon—-secure—login),
this function checks whether the AS numbers match and the IP of the new_domainname
is in the /16 range of the IPv4 of the trademark_domain
def ip_and_as_match (trademark_.domain, new_domainname):

originaldomain_as = domains_with_features.loc[domains_with_features[ ’domainname’

== trademark_domain + ’.com.’][ ’as_number’].values[0]
originaldomain_ips = domains_with_features.loc[domains_with_features [ ’domainname
== trademark_domain + ’.com.’][ ’ipv4_addresses’].values
domainname_as = new_domains.loc[new_domains[ domainname’]
== new_domainname + ’.com.’][ 'as_.number’].values[0]
domainname_ips = new.domains.loc[new_domains[ 'domainname’]
== new_domainname + ’.com.’][ 'ipv4_addresses’].values

ip_-in_original_range = False
as_numbers_match = originaldomain_as == domainname_as

for originaldomain_ip in originaldomain_ips:
network = ip_network(originaldomain_ip + "/16”, strict=False)
for domainname_ip in domainname_ips:
if ip.address(domainname.ip) in network:
# Here, the IP of the domain is in the original range
ip_-in_original_range = True

return ip_in_original_range and as_numbers_match

B.3 Running the prototype, training & test phase

No backup for today available, creating new one..

Today is: 2019-01-27 12:44:15.613630:

So, the ground truth is based on 2019-01-25 12:44:15.613631
Performing Kerberos authentication for OpenINTEL ...

found keytab: /home/jjansen/oi_jjansen.keytab

0K

Querying OpenINTEL for combosquatting domains
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Got query response, now writing to csv...

Written new info to combosquatdomains_2512019.csv

Data transferred from voordeur!

Importing abuse.ch [Elapsed Time: 0:00:01] |########as#s###| (Time: 0:00:01)
Importing hosts-file.net [Elapsed Time: 0:00:17] |##########| (Time: 0:00:17)
Importing nothink.org [Elapsed Time: 0:00:00] |#############| (Time: 0:00:00)
Importing malwaredomainlist delisted [Elapsed Time: 0:00:00] || (Time: 0:00:00)
Importing malwaredomainlist blacklist [Elapsed Time: 0:00:00] [#| (Time: 0:00:00)
Importing malwaredomains immortal [Elapsed Time: 0:00:00] [|#| (Time: 0:00:00)
Importing malwaredomains default [Elapsed Time: 0:00:00] |[##| (Time: 0:00:00)
Importing joewein [Elapsed Time: 0:00:00] |#########a##sa##t#| (Time: 0:00:00)
Importing isc_sans_edu 1/3 [Elapsed Time: 0:00:00] |########| (Time: 0:00:00)
Importing isc_sans_edu 2/3 [Elapsed Time: 0:00:00] |########| (Time: 0:00:00)
Importing isc_sans_edu 3/3 [Elapsed Time: 0:00:00] |########| (Time: 0:00:00)
Importing urlvir.com [Elapsed Time: 0:00:00] |##############| (Time: 0:00:00)

Out of the 285327 domains, a total of 5274 is present on passive blacklists!

Adding 2637 Alexa & Random malicious domains
Done

Starting adding lexical features..

Done

Start adding contextual features..

Done

Applying one hot encoding..

Done

(10548, 6106)
is_combosquatting

5274

5274

Name: is_combosquatting, dtype: int64

Datagram shape:

False

True

Shape before features selection:
(10548, 6106)

Shape after feature selection:
(10548, 676)

Selected features:

Index([’number_of_a_records’,

’number_of_aaaa_records’,

’number_of_ns_records’,
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’number_of_mx_records’,

’number_of_ipv4_addresses’,

’soa_retry’, ’soa_minimum’,

’ip4_encode_9957,
’ip4_encode_1006",

’number_of_txt_records’,

’response_name_matches’, ’soa_refresh’,

’ip4_encode_998°, ’ip4_encode_999’, ’ip4_encode_1005’,

’ip4_encode_1008,

’ip4_encode_1009,

’ip4_encode_1011’, ’ip4_encode_1012’, ’ip4_encode_1017’],

dtype=’object’, length=676)

S S A
DecisionTreeClassifier
ittt S S S S S S S S S S S S A S R

Average FP rate: 22

Average precision: 77 %

Average accuracy: 78 Y%

Raw FP:
Raw TP:
Raw TN:
Raw FN:

118
421
408
106

S A S
RandomForestClassifier
it S S S S S S S S S S A S R

Average FP rate: 17

Average precision: 81 %

Average accuracy: 80 Y%

Raw FP:
Raw TP:
Raw TN:
Raw FN:

92

424
434
102

S S
AdaBoostClassifier
it S S A S S S S S S A S R
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Average FP rate: 18
Average precision: 80 %
Average accuracy: 80 %
Raw FP: 101

Raw TP: 434

Raw TN: 425

Raw FN: 92

HHBHH
KNeighborsClassifier
S S S S S S s S S s e

Average FP rate: 26 ¥
Average precision: 74 %
Average accuracy: 76 Y%
Raw FP: 144

Raw TP: 432

Raw TN: 382

Raw FN: 95

it S S A S
GaussianNB
it S S S S S S S S S A S

Average FP rate: 6
Average precision: 54 %
Average accuracy: 51 %
Raw FP: 34

Raw TP: 54

Raw TN: 492

Raw FN: 472

#H#tH#H R HH SRS TS R R T
BernoulliNB
#itH S S S S S
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Average FP rate: 26 ¥
Average precision: 73 %
Average accuracy: 73 Y%
Raw FP: 141

Raw TP: 392

Raw TN: 385

Raw FN: 135

S S
MLPClassifier
it S S S S S S S S S S R R

Average FP rate: 31 %
Average precision: 69 %
Average accuracy: 67 Y%
Raw FP: 166

Raw TP: 357

Raw TN: 360

Raw FN: 170

H#Hit## S H A H R S R S S S S S
SGDClassifier
H##HFHH R B H RS RS HHBH ARG RS RSB HBH B RS HE RS R H BB RS RS RS RS

Average FP rate: 76 ¥
Average precision: 48
Average accuracy: 48 Y%
Raw FP: 406

Raw TP: 393

Raw TN: 120

Raw FN: 133

R
GradientBoostingClassifier
S S S S
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Average FP rate: 23
Average precision: 77 %
Average accuracy: 81 %
Raw FP: 126

Raw TP: 459

Raw TN: 400

Raw FN: 68

it S S S S
ExtraTreesClassifier
it S S S S S S S S S S S

Average FP rate: 20 %
Average precision: 79 %
Average accuracy: 81 Y%
Raw FP: 109

Raw TP: 446

Raw TN: 417

Raw FN: 81

Added all classifiers with a FP rate lower than 10 percent and a precision higher than

Starting the Combosquat Detection Model testing phase!
Loading new domains backup..

Done

Only processing first 1000 entries

Enriching new domains with lexical features

Start Alexa filtering

Done

Starting adding lexical features..

Done

Start adding contextual features

Done with the WHOIS requests, now heading to the CT Log features
Done with the contextual features

Applying one hot encoding..

Shape before one-hot encoding: (10000, 31)

Done

Removing columns not present in training columns..
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Adding dummy test columns for missing training columns..
Done

Total new domains: 10000

75 combosquat domains found using GaussianlNB

Done

Starting the Combosquat Detection Model valdation phase!

Validation complete!

TP: O
FP: 75
TN: 9910

FN: 15



82

APPENDIX B. PYTHON CODE SNIPPETS




Appendix C

Scraped blacklists

This table shows the blacklists that were included in the scraped blacklists, starting
from 2016-07-08 and ending at 2019-01-11.

Source

http://www.malwaredomainlist.com/hostslist/hosts.txt

http://www.malwaredomainlist.com/hostslist/delisted.txt

http://mirror1.malwaredomains.com/files/justdomains

http://www.joewein.net/dl/bl/dom-bl.txt

http://malc0de.com/bl/ZONES

https://zeustracker.abuse.ch/blocklist.php?download=domainblocklist

https://ransomwaretracker.abuse.ch/downloads/RW_DOMBL.txt

https://hosts-file.net/hphosts-partial.txt

https://palevotracker.abuse.ch/blocklists.php?download=domainblocklist (until 06-12-2016)

https://feodotracker.abuse.ch/blocklist/?download=domainblocklist

http://www.networksec.org/grabbho/block.txt

https://openphish.com/feed.txt

https://www.threatcrowd.org/feeds/domains.txt

https://urlhaus.abuse.ch/downloads/text/

http://osint.bambenekconsulting.com/feeds/c2-dommasterlist.txt

http://vxvault.net/URL _List.php

On a daily basis, the blacklists were fetched and stored in the following format:

domainname | source | date

This resulted in a total of 870 files (8.3GB). Since the total days between the
first and last date is 907 days, 37 days were missing due to switching to an other
machine and/or temporary measurement failures. Out of the 870 files, 3 files turned
out corrupt, leaving a total of 867 files to work with.
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Appendix D

Trademark distribution

D.1 Total days before blacklisted

Number of domains

600
Days in OpenINTEL before detected (0-1411 days)

Figure D.1: The total number of days a combosquat domain is is present in Open-
INTEL before being listed on a blacklist, with the y-axis in logarithmic

scale.

D.2 Trademark frequency
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