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Abstract 
Objective: The purpose of this study was to determine the utility of diffusion weighted imaging (DWI) parameters 

in differentiating solid renal masses. 

Materials and methods: The performance of mono-exponential DWI-parameters combined with patient 

characteristics in differentiating oncocytomas (OCs) and renal cell carcinomas (RCCs) was evaluated. DWI-imaging 

was performed in 39 patients (7 OCs and 32 RCCs) using three b-values. Whole-tumor apparent diffusion 

coefficient (𝐴𝐷𝐶) maps and histogram parameters were calculated. The parameters were compared between 

both groups by the Mann-Whitney test. Significantly different parameters were used in a predication model. The 

diagnostic value of this model was evaluated using receiver operating characteristic (ROC) curve analyses. 

Hereafter, simulations were performed to obtain optimized b-value distributions and to compare the trust-region 

reflective (TRR) and Bayesian probability (BP) algorithms for fitting of the intravoxel incoherent motion (IVIM) and 

stretched exponential DWI-models. Optimized b-value distributions were acquired by minimizing the parameter 

estimation error. The results were verified in four healthy volunteers. This was followed by a prospective study to 

determine the role of both multi-exponential models in differentiating renal tumors. Up until now, DWI-images 

were obtained in five patients (3 clear cell RCC (ccRCC) and 2 papillary RCC (pRCC)). Again, whole-tumor DWI and 

histogram parameter analyses were performed. Additionally tumor induced changes in histogram parameters 

were analyzed.  

Results: Standard deviation and entropy of 𝐴𝐷𝐶, tumor volume, and sex, were statistically significantly different 

between OCs and RCCs (p<0.05). The area under the ROC curve was 0.93, with a maximum sensitivity and 

specificity of 86% and 84%, respectively. 

The simulations provided optimized b-value distributions containing eight b-values. In simulations and in vivo, the 

BP algorithms provided more robust parameter estimations compared to the TRR algorithm, for the IVIM model. 

In the stretched exponential model, there was no pronounced difference. 

The 75th and 95th percentile of the true tissue diffusion parameter (𝐷𝑡) and the mode of the distributed diffusion 

coefficient (𝐷𝐷𝐶) showed no overlap between ccRCC and pRCC. Furthermore, no overlap was found for several 

tumor induced histogram parameters changes: pseudodiffusion fraction (𝑓), 𝐷𝑡 , 𝐷𝐷𝐶 and the diffusion 

heterogeneity index (𝛼).  

Conclusion: Histogram analysis of DWI-parameters aid differentiation of benign and malignant renal masses. 

Addition of patient characteristics might improve this differentiation. Multi-exponential DWI-parameters can be 

robustly estimated using eight b-values. These parameters may provide a better description of tissue diffusion 

characteristics and could therefore improve differentiation of renal tumors. Lastly, tumor induced differences in 

histogram parameters may be valuable for tumor differentiation.  
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CHAPTER 1 – General Introduction 

1.1 Background 

1.1.1 Kidney tumors 
Over the past two decades, the incidence of renal masses has been increasing. This can be explained by the 
increase of incidental findings on diagnostic ultrasound, computed tomography and magnetic resonance imaging 
examinations performed for other reasons than to detect renal tumors. Small renal masses (≤4cm) account for 
almost half of the newly found renal tumors. Present-day imaging techniques are successful in identifying these 
lesions. However, reliable preoperative differentiation between malignant and benign solid renal masses remains 
challenging. 
 
Several genetic factors, the male sex and an age between the sixth and eighth decade are associated with an 
increased risk of developing malignant renal tumors. Furthermore, lifestyle factors that affect body mass index 
(BMI), hypertension and smoking are identified as risk factors.[1]  

 
Accounting for 90% of the renal malignancies, the most common malignant tumor type is renal cell carcinoma 
(RCC). RCCs are subdivided into fourteen subtypes according to the 2016 World Health Organization (WHO) renal 
tumor classification.[2] The three most frequent subtypes, comprising more than 90% of the RCCs, are clear cell 
RCC (ccRCC, 75%), papillary RCC (pRCC, 10-15%) and chromophobe RCC (chRCC, 5%). The subtypes differ in 
pathological and clinical features, including growth rate and propensity to metastasize. Furthermore, the subtypes 
show differences in prognosis, with 5-year cancer specific survival rates of 68.9%, 87.4%, and 86.7% for ccRCC, 
pRCC, and chRCC, respectively.[3]  
 
The most common benign renal tumors are angiomyolipomas (AML) and oncocytomas (OC), comprising 44% and 
35% of the resected benign solid renal masses, respectively.[4] In general, these tumors have a slow and consistent 
growth rate and do not metastasize. Therefore, active surveillance is an appropriate option for most of these 
benign tumors.[1] 
 

1.1.2 Differentiation of solid renal masses 
Due to differences in prognosis and treatment options recommended by the national comprehensive cancer 
network (NCCN), reliable preoperative differentiation between benign and malignant renal masses, as well as 
between the RCC subtypes, is important. This differentiation is impeded since benign renal tumors can have similar 
imaging features to RCC. OCs and chRCC originate from the same progenitor cell. As a consequence, histological 
tumor properties overlap, which complicates differentiation. Additionally, differentiation between OCs and ccRCC 
is considered difficult, because imaging characteristics and enhancement patterns are not fully tumor type 
specific.[5] Furthermore central scars that are seen in OCs can mimic necrosis within RCCs and a small fraction of 
RCCs contain scars.[6] AMLs can often be distinguished from other renal tumors by their fat component. However, 
5% of the AMLs contain no or only a small amount of fat, which makes it difficult to differentiate them from RCCs 
using CT and MRI. These AMLs are referred to as fat-poor AML (fpAML).[7] fpAMLs show hyperattenuation and 
hypointensity on unenhanced CT and T2-weighted MRI scans, respectively. These findings are also seen in RCCs, 
in particular in pRCCs.[8] 
 
Nowadays, renal tumors are primarily treated by (partial) nephrectomy. Recent studies show that 20% of the 
resected small renal masses are benign at histopathological analysis. Preoperative percutaneous biopsies can be 
used for differentiation of the tumor types. High sensitivities (86-100%) and specificities (98-100%) are reported 
for renal mass biopsy. However, in 22% of the cases, the biopsies are non-diagnostic as a result of sampling 
error.[9] CT and MRI provide 3D information about the lesions and therefore overcome sampling error. When 
sensitivity and specificity for tumor differentiation can be increased using these imaging techniques, a more 
accurate and non-invasive lesion characterization can be provided. Thereby, the rate of unnecessary surgery and, 
consequently, patient morbidity and costs will be reduced. 
 

1.1.3 Diffusion-weighted imaging 
Prior studies have shown that diffusion-weighted imaging (DWI) is a promising MRI technique for the evaluation 
of renal lesions.[10]–[13] DWI is performed by using additional pairs of gradients during the MRI sequence. The 
degree of diffusion weighting depends on the magnitude and duration of the gradients and the time between 
them. (Figure 1) This diffusion weighting is referred to as the 𝑏-value. Images acquired with a high 𝑏-value are very 
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sensitive to motion. As a result, most tissues will have lost their signal due to molecular motion, while restricted 
lesions will be hyperintense. When acquiring DW-images with diverse 𝑏-values, DWI-parameters can be 
calculated.  
 
Strictly speaking, diffusion can be free, hindered or restricted. Free diffusion portrays the thermally driven, 
microscopic random motion of water molecules in absence of obstacles, also referred to as Brownian motion. In 
this case, the displacement distribution follows a Gaussian distribution. In renal tissue, water molecules within the 
extracellular space interact with cell membranes and macromolecules. Therefore, diffusion of water molecules is 
hindered. When water molecules are trapped within an enclosed compartment, the diffusion distance is confined 
by the dimensions of the compartment. This is called restricted diffusion. However, in DWI literature the term 
‘restricted diffusion’ is used for a decrease in diffusion distance caused by restricted diffusion as well as hindered 
diffusion. This definition will be used in the current thesis as well.  
 
Each tissue has its characteristic cellular architecture and distribution of intra- and extracellular space and 
therefore its specific diffusion characteristics. Tumor growth induces changes in tissue structure which thus results 
in changes in diffusion parameters. In solid renal tumors, the high cellular density is believed to cause diffusion 
restriction.[12], [13] Several studies have investigated the role of DWI in renal mass characterization using a mono-
exponential model.[11], [14]–[18] This model describes the relationship between the measured signal intensity 
using a certain 𝑏-value (𝑆𝑏) and the apparent diffusion coefficient (𝐴𝐷𝐶), which reflects tissue diffusivity: 

𝑆𝑏 = 𝑆0 𝑒−𝑏⋅𝐴𝐷𝐶                     (1) 

However, 𝐴𝐷𝐶 values are influenced by the selected 𝑏-values.[18] The use of lower maximum 𝑏-values results in 
higher 𝐴𝐷𝐶 (𝐴𝐷𝐶 = 2.74 ± 0.58 mm2/s using 𝑏 = 0 and 𝑏 = 100 s/mm2 compared to 1.66 ± 0.51 mm2/s using 𝑏 = 0 
and 𝑏=1000 s/mm2 in malignant renal lesions). Furthermore, the broad range in mean 𝐴𝐷𝐶 values causes a 
significant overlap between RCC subtypes and between malignant and benign solid renal masses. Therefore, the 
𝐴𝐷𝐶 value on its own is no reliable predictor for renal malignancy. 
 

1.1.3.1 Diffusion parameter histogram analysis 
Quantification of differences in the degree of heterogeneity and histologic structure between renal tumor 
subtypes may improve discrimination of the solid renal masses.[19], [20] Information about the distribution of 
diffusion parameters can be obtained by whole-tumor histogram analysis. First-order texture metrics that can be 
derived from the histograms of diffusion parameters are, amongst others, mean, skewness, kurtosis, entropy and 
percentiles. Skewness resembles the degree of asymmetry of the distribution of values, kurtosis is the degree of  

Figure 1. Diffusion weighted images are acquired by using additional pairs of 
gradient pulses with magnitude 𝐺 and duration 𝛿. During the first pulse, protons 
are phase-encoded, depending on their spatial location. The second gradient, which 
realigns stationary spin phases, is applied after delay-time ∆. Imperfect refocusing 
occurs when water molecules diffused to another spatial location along the 
gradient field direction. This results in phase dispersion, which causes attenuation 
of the magnitude signal. Td: effective diffusion time. Adapted from “Role of 
diffusion weighted MR imaging in characterization of focal kidney and upper 
urinary tract lesions”, by ‘D. M. Sobh et al. 
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peakedness, and entropy describes the variation and unpredictability of individual values in the histogram, which 
is maximal at an uniform distribution. An overview of the histogram parameters is shown in Figure 2. 
 

1.2 Objectives 
To improve treatment decisions, it is essential is to distinguish malignant from benign renal tumors, 
preoperatively. However, because of the differences in prognosis, it is also important to discriminate the RCC 
subtypes. Thus far, it is not possible to predict the renal tumor type in a non-invasive and reliable way. Therefore, 
the main research question of this thesis is: What is the role of diffusion-weighted imaging in the differentiation 
of solid renal masses?  
To address this question, the following sub-questions were formulated: 

1. To what extent can the combination of mono-exponential diffusion-weighted imaging parameters and 
patient characteristics differentiate oncocytoma from renal cell carcinoma? 

2. What 𝑏-value distribution and fitting algorithms provide a robust calculation of multi-exponential 
diffusion-weighted imaging parameters? 

3. What is the ability of multi-exponential diffusion-weighted imaging parameters in subtyping of renal 
tumors? 
 

1.3 Thesis outline 
A general introduction on the role of DWI in differentiating solid renal masses was provided and the main objective 
was formulated. (Chapter 1) This is followed by a prospective observational study in which the performance of a 
prediction model for renal tumor benignity based on 𝐴𝐷𝐶 values, diffusion histogram parameters and patient 
characteristics was assessed. The main objective was to differentiate OC from RCC. (Chapter 2) Hereafter, the MRI 
scan protocol was optimized for multi-exponential DWI algorithms. The goal was to minimize fitting errors caused 
by 𝑏-value sampling and the applied fitting algorithm, and to obtain an adequate scan protocol, taking the scan 
duration into account. (Chapter 3) Subsequently, this protocol was used in a prospective observational study in 
which the role of intravoxel incoherent motion (IVIM) and stretched exponential parameters in differentiating 
renal tumor types was explored. The goal was to evaluate which clinical, DWI and histogram parameters are 
beneficial in a prediction model. (Chapter 4). This thesis concludes with a general discussion and conclusion. An 
outline for future research is provided. (Chapter 5) 

Entropy = 8.0 
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Figure 2. Overview of histogram parameters. Examples of a symmetrical, positively and negatively skewed distribution are 

shown in A. Examples of a normal distribution and distributions with an positive and negative kurtosis are shown in B. 

Distributions with different measures of entropy are shown in C. In D, a distribution is shown with its 5th, 10th, 25th, 75th and 

95th percentiles 
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CHAPTER 2 – Utility of a prediction model comprising diffusion-weighted 

imaging parameters and patient characteristics in differentiation of benign and 

malignant renal tumors 

2.1 Introduction 
RCC comprises 85% of all renal cancers. Accounting for 3% and 5% of all diagnosed tumors, RCC is the sixth most 
common malignancy in males and the tenth in females.[21] The majority of renal lesions suspected for RCC are 
incidental findings on imaging performed for other reasons than to detect renal tumors.[22] Contrast-enhanced 
CT and MRI are used to differentiate lesions that are suspicious for malignancy within this group of renal tumors.[1] 
With sensitivities of 79.7% and 88.1%, and specificities of 44.4% and 33.3%, respectively, these cross-sectional 
imaging techniques cannot reliably distinguish RCC from several benign renal tumors, specifically OC.[8], [23], [24] 
The inadequacy in discrimination is due to the appearance of OC as solitary, well-demarcated, hypervascular, 
contrast-enhancing renal cortical tumors on imaging, which mimic the appearance of RCC.[25] In recent studies 
regarding partial nephrectomy, up to 20% of all resected lesions suspected for RCC are shown to be benign, with 
the majority of these lesions being OC.[26] 
 
The 5-year survival rates of patients with RCC range from 9 to 81%, with a mean of 55.9%, depending on the TNM 
stage, nuclear grade and RCC subtype. Contrarily, OCs have no malignant potential and only sporadically show 
renal vein invasion, local recurrence after surgery or distant metastases. Even in case of dissemination, the 
prognosis is excellent.[27] Therefore, active surveillance is considered a proper management alternative for 
histologically proven OCs, especially in case of smaller tumors.[1], [28] Thus, invasive diagnostics, such as 
percutaneous renal biopsies, and superfluous surgery can be avoided if OCs can be noninvasively discriminated 
from RCC on imaging.  
 
By assessing the restriction of free water movement, diffusion-weighted (DW) MRI can provide information about 
changes in local tissue structure and the increased cellularity within tumors.[29] This imaging technique has been 
increasingly studied in evaluating renal tumors, over the last decade.[30] In renal tumors, 𝐴𝐷𝐶 values of manually 
selected regions of interest (ROIs) are lower for RCC compared to OC.[31] Recent studies suggest that whole tumor 
DW-MRI parameters, such as the 𝐴𝐷𝐶 value distribution within the tumor (whole-tumor 𝐴𝐷𝐶 histogram analysis), 
may improve small renal mass characterization.[19], [29], [32], [33] Apart from diffusion parameters, strong 
predictors for renal tumor malignancy are tumor size and male sex.[34] We hypothesize that a composite 
classification model that combines DWI-parameters and demographic parameters can improve discrimination 
between RCC and OC.  
 
The purpose of this research was to assess the ability to discriminate OC from RCC based on whole tumor 𝐴𝐷𝐶 
parameters and patient demographic characteristics. 
 

2.2 Materials and methods 

2.2.1 Patients 
This prospective study was compliant with Health Insurance Portability and Accountability Act, approved by our 
institutional review board. Written informed consent was obtained from each eligible patient before enrollment. 
Between October 2014 and June 2018, a total of 48 consecutive patients were included in the study at the 
Radboud university medical center. Inclusion criteria were: patients diagnosed with a renal tumor based on 
previous ultrasonography, CT or MRI examinations; at least 18 years of age; scheduled for a renal mass biopsy or 
partial or radical nephrectomy. Exclusion criteria were: contraindications for MR imaging (non-MR compatible 
metal device/foreign bodies, claustrophobia); an active renal or peri-renal infection; prior treatment for renal 
malignancies; artifacts in DWI-images impeding reliable parameter calculation; and no histopathological 
confirmation of renal tumor type. In case of presence of multiple tumors in one patient, only the largest tumor 
was used for analysis due to the expected similarity in histology of the other tumors.  
 
Patients’ renal medical history, as well as the information about diagnoses, biopsies, and surgical procedures were 
collected.(Table 1) Pre-operative chronic kidney disease (CKD) stage based on estimated glomerular filtration rate 
(eGFR) was assessed according to standard clinical practice.[35] Demographic data concerning patients’ age, sex 
and body mass index (BMI) were also collected.[34]  
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2.2.2 Imaging protocol 
MR imaging was performed within 21 days prior to surgery or biopsy using 3T MRI system (Magnetom Trio, 
Siemens, Erlangen, Germany) and a combination of a 32-channel receiver coil and phased array body surface coil. 
Patients were positioned in a feet-first supine position. The scanning protocol included breath-hold anatomical 
T2-weighted multi-slice half-Fourier-acquired single-shot turbo spin echo (HASTE) sequence in axial and coronal 
directions. DWI was performed using a respiratory triggered coronal single-shot-echo-planar imaging (SS-EPI) 
sequence with 𝑏-values of 50, 800 and 1400 s/mm2 and diffusion gradients applied in three directions. (Table 2) 
 

2.2.3 Image analysis 
DICOM images were exported to an offline work-station for processing. Respiratory motion artifacts in DW images 
with distinct 𝑏-values were minimized by semi-automatic co-registration (FireVoxel, CAI2R, New York University, 
NY) performed by one observer (IS). Registration was done separately for each kidney (with and without tumor), 
resulting in two datasets for each patient. Next, two observers blinded for clinical and histopathological 
information (IS and MA, with 1 and 3 years of experience in abdominal imaging, respectively), independently drew 
regions of interest (ROIs) on both registered DWI datasets. Both readers were supervised by a radiologist (JF, 15 
years of experience in abdominal radiology). In tumor-bearing kidneys, the ROI covered the entire tumor on all 
slices where tumor was visible, including necrotic and cystic parts. The tumor volumes were measured. The ROI 
drawn in the contralateral kidney dataset covered a part of 1-3 cm3 of renal cortex. 
 
To reduce partial volume effects, edge voxels of the tumor ROI were removed using an erosion method. The mono-
exponential DWI model (1) was fitted voxel-wise to the measured signal intensities, using a nonlinear least-squares 
method. (MATLAB R2019a, MathWorks; Natick; MA, USA). The 𝐴𝐷𝐶 values of the tumor and renal cortex were 
then used for histogram analysis. 
 
Outliers of 𝐴𝐷𝐶 values in the histogram were detected and removed according to the interquartile range (IQR) 
method, using an outlier rejection factor of 2.2, to reduce their effect on 𝐴𝐷𝐶 histogram parameters.[36] The 
following 𝐴𝐷𝐶 histogram parameters were derived: mean, mode, standard deviation (SD), 5th percentile, 10th 
percentile, 25th percentile, 75th percentile, 95th percentile, entropy, skewness, and kurtosis. (Figure 3 and 4) 
Inter-observer agreement for the tumor volume was tested for ten randomly selected cases.  
 

2.2.4 Pathological assessment 
Percutaneous renal biopsy and surgical pathology 
specimens obtained from solid tumor regions were 
fixed in formalin, embedded in paraffin and sliced 
into four-micron thick sections. H&E-stainings were 
used for pathological analysis. Histopathological 
diagnoses were made by board-certified 
pathologists, according to WHO classification on 
renal tumors.[2]  
 

2.2.5 Statistical analysis 
For descriptive analysis, median (range) and mean 
(± SD) values were calculated. Interobserver 
agreement between the tumor volumes obtained 
by the two readers was tested using an intraclass 
correlation coefficient (ICC). ICC >0.80 was 
interpreted as an excellent agreement. If the ICC 
was >0.80 the data from one observer (IS) were 
used, otherwise data of both observers were 
analyzed independently. 
 
The Mann-Whitney test was used to compare the 
𝐴𝐷𝐶 histogram parameters and patients’ age and 
BMI between both patient groups. The differences 
between the groups by patient sex were assessed 
using the Chi-square test.  

T2-weighted images Diffusion-weighted images 

Whole tumor ROI on 𝑏-value images 

• Tumor volume 

Whole tumor 𝐴𝐷𝐶 map calculation 

𝐴𝐷𝐶 values histogram analysis 

• Mean 
• Mode 
• Heterogeneity 
• 5th, 10th, 25th, 

75th and 95th 
percentiles 

• Entropy 
• Skewness 
• Kurtosis 

𝑏-value image registration 

Outlier removal 

Figure 3. Image analysis workflow. 
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To discriminate OC from RCC, a logistic regression model was created using parameters that were significantly 
different between the two tumor types. Collinearity of model parameters was tested using the variance inflation 

factor (𝑉𝐼𝐹), defined as 𝑉𝐼𝐹 =
1

1−𝑅2, where 𝑅2 is the coefficient of determination between a given predictor 

(parameter) and all other predictors. A 𝑉𝐼𝐹 > 4 was considered as presence of multicollinearity, and such 
parameters were excluded from the model.  
 
First, logistic regression analysis for predicting OC was performed using only 𝐴𝐷𝐶 histogram parameters that 
showed statistically significant differences between the two patient groups. A second model was constructed by 
adding the demographic parameters. A Receiver Operating Characteristic (ROC) curve for both regression models 
was created and the area under the curve (AUC) was calculated. The optimal sensitivity and specificity of the ROC 
were selected by maximizing the Youden’s index (J=sensitivity+specificity-1). 
 
A separate analysis was performed to evaluate intrapatient 𝐴𝐷𝐶 histogram parameter differences between the 
tumor and non-tumor renal cortical tissue. A Mann-Whitney test was used to compare the tumor-induced 
differences between the benign and malignant tumor groups. Statistically significantly different parameters were 
used for logistic regression analysis to predict benign nature. The ROC-AUC was calculated for this regression 
model. Analyses were done using Statistical Package for the Social Sciences version 25.0 (SPSS, IBM, Armonk, New 
York, USA). For all tests, a p-value ≤0.05 was considered statistically significant. 
 
 

Table 1. Patient demographics and tumor characteristics 

 Renal cell carcinoma  
(n=32 patients) 

Oncocytoma  
(n=7 patients) 

Patient age (y) 65 (38-79) 65 (28-75) 
Female 5 (16) 4 (57) 
Body mass index (kg/m2) 27.8 (22.0-36.7) 26.9 (20.7-35.2) 
Tumor volume (cm3) 262 (6-1261) 48 (3-169) 
Affected side    

Left 
Right 

16 (50.0) 
16 (50.0) 

2 (28.6) 
5 (71.4) 

Type of procedure   
 Laparoscopic partial nephrectomy 7 (21.9)  4 (57.1) 
 Open partial nephrectomy 1 (3.1) 0 
 Laparoscopic radical nephrectomy 9 (28.1) 0 
 Open radical nephrectomy 18 (46.9) 0 
 Percutaneous biopsy 0 3 (42.9) 
T-stage    
 T1 14 (43.8) 6 (85.7) 
 T2 1 (3.1) 1 (14.3) 
 T3 16 (50.0) 0 
 T4 1 (3.1) 0 
Histological subtype RCC  NA 
 Clear cell 25 (78.1)  
 Papillary 3 (9.4)  
 Chromophobe 2 (6.3)  
 Papillary clear cell 1 (3.1)  
 Mucinous tubular and spindle cell 1 (3.1)  
Nuclear grading (Fuhrman)  NA 
 I 1 (3.1)  
 II 10 (31.3)  
 III 11 (34.4)  
 IV 7 (21.9)  
 Unknown 3 (9.4)  

Data are presented as mean (range) or No. (%); NA = not applicable 
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2.3 Results 

2.3.1 Patient characteristics 
MRI and histological tumor analysis were performed in 48 patients. Data of 9 patients were excluded for the 
following reasons: severe imaging artifacts within the tumor (n=2); presurgical tumor embolization (n=1); cystic 
tumors (n=3); and absence of histologically confirmed renal tumor (n=3). The final cohort included 39 patients (9 
females, mean age 65 years (38-79)) with 39 lesions: 32 malignant RCCs (25 clear cell, 2 chromophobe, 3 papillary, 
1 clear cell papillary, and 1 mucinous tubular and spindle cell RCC), and 7 OCs. (Table 1) Interobserver agreement 
for tumor volume was excellent (ICC, 0.98). Therefore, analyses were done using the ROIs drawn by one reader 
(IS). 
 

2.3.2 Renal tumor comparison 
The mean tumor volumes for RCC are 242 cm3 (median: 132.6, range 5-1261 cm3) and for OC 48 cm3 (median: 
40.9, range 3-169 cm3). The tumor volumes (p=0.012), and the SD (p=0.008) and entropy (p=0.010) of intratumoral 

Table 2. Magnetic resonance imaging parameters 

 T2WI Axial T2WI Coronal DWI 
Imaging parameter    

TR/TE, ms 2000/92 2000/103 2800/77 
Flip angle, degrees 150 140 90 
No. of slices 30 30 35 
Slice thickness, mm 4 5 4 
Field of view, mm 450 x 450 400 x 400 380 x 309 
Matrix size 320 x 256 320 x 256 192 x 154 
Voxel size, mm x mm 1.4 x 1.8 1.3 x 1.6 2.0 x 2.5 
𝑏-values, s/mm2 NA NA 50/800/1400 

TR = repetition time; TE = echo time, T2WI = T2-weighted magnetic resonance imaging; DWI = diffusion weighted magnetic 
resonance imaging; NA = not applicable. 

Table 3. Demographic and histogram apparent diffusion coefficient parameters  

Parameter Renal Cell Carcinoma Oncocytoma p-value* 

Sex   0.0012** 

 Male, No. (%) 27 (84) 3 (43)  

 Female, No. (%) 5 (16) 4 (57)  

Age (y) 65 ± 9 65 ± 6 0.294 

BMI (kg/m2) 27.9 ± 3.6 26.9 ± 5.0 0.577 

Tumor diameter (mm) 72 ± 33 42 ± 21 0.026 

Tumor volume (cc) 242 ± 286 48 ± 59 0.021 

𝐴𝐷𝐶 histogram parameters:    

Mean  1.51 ± 0.31 1.49 ± 0.59 0.826 

Mode 1.35 ± 0.30 1.48 ± 0.59 0.428 

Inhomogeneity 0.40 ± 0.14 0.22 ± 0.09 0.006 

Skewness 0.37 ± 0.33 0.08 ± 0.42 0.088 

Kurtosis -0.04 ± 0.53 0.07 ± 0.41 0.489 

Entropy 3.16 ± 0.16 3.31 ± 0.15 0.027 

5th percentile 0.92 ± 0.29 1.13 ± 0.51 0.218 

10th percentile 1.03 ± 0.27 1.20 ± 0.52 0.258 

25th percentile 1.22 ± 0.27 1.34 ± 0.55 0.389 

75th percentile 1.78 ± 0.39 1.63 ± 0.64 0.826 

95th percentile 2.22 ± 0.48 1.89 ± 0.71 0.231 

Unless stated otherwise, values are mean ± SD. Mean, mode, SD and percentiles of apparent 
diffusion coefficient parameters are in ×10-3

 mm2/s. *Group differences were tested with the 
Mann-Whitney test, unless stated otherwise. **Group difference was tested with the chi-
square test. 
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𝐴𝐷𝐶 values were statistically significantly different between OC and RCC. The mean, mode, kurtosis, and the 
percentiles of the 𝐴𝐷𝐶-histogram were not significantly different between the two tumor types.(Table 3) No 
multicollinearity between the significant parameters was present. Therefore, three imaging-derived parameters 
(tumor volume, and SD and entropy of 𝐴𝐷𝐶 values) were used in the regression model. An ROC-AUC of 0.91 was 
obtained, providing in a maximum sensitivity and specificity of 86% and 81%, respectively.(Figure 5) 
 

2.3.3 Incremental use of patient demographics 
Analysis of demographic parameters showed sex to be statistically significantly different between patients with 
RCC and OC (p=0.018). Patient age and BMI were not significantly different between the two groups.(Table 3) No 
multicollinearity between the significant 𝐴𝐷𝐶 histogram parameters and sex was observed. The addition of 
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patient sex to the regression model from previous section resulted in ROC-AUC of 0.93.(Figure 5) The maximum 
sensitivity and specificity were 86% and 84%, respectively. 
 

2.4 Discussion 
Preoperative differentiation between benign and malignant renal tumors can prevent high rates of unnecessary 
surgery. In this work, prediction models combining histogram parameters and patient demographics were 
evaluated. The histogram analysis revealed statistically significant differences between OC and RCC in SD and 
entropy of 𝐴𝐷𝐶 values. Li et al. (2018) found statistically significant differences in the entropy of 𝐴𝐷𝐶 values 
between OC and ccRCC, pRCC and chRCC.[19] They also reported a statistically significant difference in SD between 
OC and pRCC.  
 
Studies reported that the SD of 𝐴𝐷𝐶 reflects the heterogeneity of a tumor.[37], [38] The heterogeneity originates 
from angiogenesis, increased cellularity, extravascular extracellular matrix, hemorrhage and necrosis within the 
tumor. In our study, SD was higher in RCC compared to OC which can imply that malignant tumors are more 
heterogeneous than OC.  
 
Our results show no significant difference in mean 𝐴𝐷𝐶 between OC and malignant renal tumors. This is in contrast 
to other studies, who were able to differentiate benign and malignant renal tumors based on the mean 𝐴𝐷𝐶.[11], 
[39], [40] Razek et al. used 𝑏-values 0 and 800 s/mm2 and obtained mean 𝐴𝐷𝐶 values of 2.10∙10-3 and 1.74∙10-3 
mm2/s for OC and solid renal malignancies, respectively.[39] Taouli et al. used 𝑏-values 0 and 800 s/mm2 and 
obtained mean 𝐴𝐷𝐶 values of 1.91∙10-3 and 1.54∙10-3 mm2/s for OC and solid renal malignancies, respectively.[40] 
While in this study similar results for RCC were found, we obtained considerably lower values for OC. However, 
the mean 𝐴𝐷𝐶 is susceptible to extreme values which results in a wide range for mean 𝐴𝐷𝐶 values. Furthermore, 
all of the mentioned studies show an overlap between OC and malignant renal masses. Therefore the mean 𝐴𝐷𝐶 
has limited clinical value. 
 
Guidelines state that tumor size is associated with recurrence and development of metastases [3], [41] In this 
study, there was a significant difference in tumor volume between OC and RCC. Furthermore, we found that RCCs 
are significantly more common in males, which is in concordance with literature.[21] 
 
 
 

 

 

 

 
 

 

 

 

Figure 4. Anatomical coronal T2-weighted image, showing a tumor (oncocytoma, red arrow) in the left kidney.(A). Coronal 
diffusion weighted image (b=50 mm2/s).(B) Region of interest at one of the slices is shown in red (C). Apparent diffusion 
coefficient (ADC) map of the tumor (D). ADC map of the tumor after outlier removal (based on volumetric ADC histogram) (E). 
In (B-E), color bars show ADC values in mm2/s. In F, the histogram of ADC values in this tumor is shown. ADC values of the whole 
region of interest and values after removing outliers are shown in blue and red, respectively. Furthermore, the vertical lines 
represent the mean and percentiles, used in the statistical analysis. 

F. 
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By combining imaging features (tumor volume, and SD and entropy of 𝐴𝐷𝐶), we obtained a model that provided 
a sensitivity of 86% and a specificity of 81% in predicting benign nature of renal tumors. Kim et al. (2016) reported 
sensitivities of 79.7% and 88.1% and specificities of 44.4 and 33.3% for contrast-enhanced CT and MRI.[24] This 
indicates that 𝐴𝐷𝐶 histogram analysis provides information that can improve differentiation between OC and RCC.  
Addition of sex resulted in a small increase in specificity to 84% while maintaining a sensitivity of 86%. This implies 
that patients’ demographic factors are of extra value in this differentiation, although the value is limited.  
 
Our study has several limitations. First of all, we included three patients in which only percutaneous biopsy was 
used to determine the histologic tumor classification. Percutaneous biopsies are potentially influenced by 
sampling error and are therefore less reliable compared to histologic analysis after tumor nephrectomy. All of the 
cases in which biopsy was performed were identified as OC at histopathologic analysis. Due to the small 
subpopulation, one erroneous classification can have significant consequences in 𝐴𝐷𝐶 value analysis. However, 
none of these lesions showed significant tumor growth during active surveillance. This is a characteristic that is 
often found in OC, which increases the likelihood that these tumors are truly OC. Secondly, the study population, 
and in particular the OC subpopulation, was relatively small. Further studies with larger study populations are 
required for improving the prediction model. At the moment, the model is likely to be overfit to our data. A larger 
pool of data is required for model testing and validation. In addition to decreasing the number of unnecessary 
tumor nephrectomies, an increase in RCC incorrectly being diagnosed as OCC has to be avoided by using the 
model.  
 
In the current study, the RCC subtypes were grouped. The most prevalent RCC subtypes are clear cell (80%), 
papillary (10%) and chromophobe (5%).[2] These subtypes all have their own tissue characteristics, which may 
have caused the broad ranges in parameters within the RCC group in our study. However, our patient population 
was too small for a separate analysis. Prior studies show promising results in using 𝐴𝐷𝐶 histogram parameters for 
RCC subtyping.[10], [19], [42], [43] Therefore, research in a larger population has to show whether separate 
analysis of the subtypes improves RCC subtyping, as well as differentiation of benign and malignant renal tumors. 
 

2.5 Conclusion 
The present study evaluated the use of 𝐴𝐷𝐶 histogram parameters and patient demographics for differentiation 
of solid renal masses. The SD and entropy of 𝐴𝐷𝐶 values, tumor volume and sex are promising parameters in 
differentiating OC from RCC. The classification model based on these parameters can predict the chance of OC 
with a sensitivity of 86% and a specificity 84%.

Figure 5. Receiver operator curve of results of both logistic regression models. The result of the combined imaging derived 
features (tumor volume, standard deviation, and entropy) is shown in blue. The result obtained after addition of the patient 
demographic parameter (sex) is shown in red. 
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CHAPTER 3 – Evaluation of 𝑏-value distributions and fitting algorithms in 
estimating multi-exponential diffusion-weighted imaging parameters 
3.1 Introduction 
3.1.1 Diffusion-weighted imaging models 
As confirmed by the results of the previous chapter, the use of DWI-imaging shows promising results in the 
characterization of solid renal masses. However, as in prior studies, reliable differentiation between benign and 
malignant renal masses is hampered by the wide range in DWI-parameter values, which results in overlapping 
values between tumor types. The wide range can be attributed to a poor fit of the mono-exponential model (1) to 
signal intensities acquired with low diffusion weighting. The mono-exponential model assumes that signal decay 
is only affected by one diffusion component, while randomly oriented perfusion in the microcirculation also 
induces signal loss when low 𝑏-values are used. This randomly oriented perfusion is referred to as pseudodiffusion. 
To separate diffusion from pseudodiffusion effects, Le Bihan et al. (1986) proposed the intravoxel incoherent 
motion (IVIM) model [44]: 

𝑆𝑏 = 𝑆0[(1 − 𝑓)𝑒−𝑏∙𝐷𝑡 + 𝑓 ∙ 𝑒−𝑏∙𝐷𝑝]    (2) 

This model separates the pseudodiffusion (𝐷𝑝) from the true tissue diffusion (𝐷𝑡), while 𝑓 represents the tissue 

fraction in which pseudodiffusion takes place. Prior studies have evaluated the use of this model in identifying 
pathological processes in the kidney.[15], [45]–[49] They showed that IVIM-parameters provide more accurate 
information about diffusion and are therefore superior over the 𝐴𝐷𝐶 value in differentiating renal tumors. Mainly 
𝑓 and 𝐷𝑡  are considered to be useful for renal tumor discrimination. Though, wide ranges in diffusion parameters 
still impedes usage of the parameters in clinical decision making.[48] One explanation for wide ranges is that the 
IVIM model has more degrees of freedom, compared to the mono-exponential model, and therefore robust fitting 
of the diffusion weighted data can be intricate. More 𝑏-values are required for reliable parameter calculation, 
which elongates the acquisition time. Furthermore, the assumption of Le Bihan et al. comprising the existence of 
only two sources of signal decay within a voxel has been questioned, because this assumption can impair correct 
representation of in vivo diffusion processes.[48], [50]  

Another multi-exponential model that is increasingly used in characterizing diffusion weighted data is the 
stretched exponential model. This model is described as follows:  

𝑆𝑏 = 𝑆0𝑒−(𝑏∙𝐷𝐷𝐶)𝛼
     (3) 

where 𝐷𝐷𝐶 is the distributed diffusion coefficient, which describes the diffusion rates, and 𝛼 is the diffusion 
heterogeneity index, which is related to the degree of intravoxel diffusion heterogeneity. When 𝛼 is 1, the model 
is equal to the mono-exponential model, whereas an 𝛼 close to 0 resembles a high degree of diffusion 
heterogeneity. The intravoxel inhomogeneity is believed to be higher in tumor types that show high intervoxel 
heterogeneity.  

In contrast to the IVIM-model, the stretched exponential model does not assume a number of distinct diffusion 
rates. Therefore, there is no direct association between the parameters and biophysical processes. An advantage 
of the stretched exponential model is that it has only two degrees of freedom, conceivably resulting in a more 
robust diffusion estimation compared to the IVIM-model.  

3.1.2 𝑏-value selection 
Low 𝑏-values are often used for estimation of DWI-parameters because of the high signal-to-noise ratio (SNR) of 
these images. Prior studies found that this lead so a dependency between the used 𝑏-value distribution and the 
𝐴𝐷𝐶 value, because of the pseudodiffusion contribution.[18], [51] Since multi-exponential models assume more 
than one source of signal-loss, they are likely to provide a better fit to the data. As a consequence, the dependency 
between the DWI-parameter and the 𝑏-value distribution is expected to be lower in these models. However, fitting 
these models to the data involves more degrees of freedom in parameter estimation. Therefore, acquisition of 
more 𝑏-value-images is required for reliable parameter estimations.  
 
The effect of pseudodiffusion is largest at low 𝑏-values. Since pseudodiffusion is relatively fast compared to 
diffusion, its effect on the signal intensity and therefore on DWI-parameters is minimal at higher 𝑏-values. Thus, 
to adequately describe the pseudodiffusion effect using the IVIM-model, low 𝑏-values have to be acquired 
extensively. Koh et al. (2011) stated that at least six to eight 𝑏-values have to be used in the IVIM-model.[52] 
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Utilizing more 𝑏-values reduces parameter estimation uncertainties and fitting errors. However, this involves 
longer acquisition times, which adversely affects patient comfort and costs. An optimal 𝑏-value distribution would 
minimize parameter estimation errors and uncertainties, while assuring clinically applicable scanning times. 
 
To date, only two studies have evaluated the use of the stretched exponential model in differentiating renal 
tumors.[53], [54] Both of these studies were retrospective, and therefore optimal 𝑏-value distributions for this 
model are yet to be discovered.  

3.1.3 Data fitting strategies 
To acquire DWI-parameters, the multi-exponential models have to be fitted to the signal intensities acquired with 
different 𝑏-values. Previous research regarding DWI in kidneys indicates that fitting algorithms can impact the 
parameter estimation accuracy in the IVIM model.[55] Methods used to calculate IVIM parameters include 
segmented fitting techniques and free fitting techniques using least-squares, and Bayesian probability (BP) 
algorithms.  
 
In the segmented fitting method, the IVIM parameters are estimated subsequently. First, based on the assumption 
that the signal decay at high 𝑏-values is not influenced by pseudodiffusion, 𝐷𝑡  is estimated by fitting a mono-
exponential function to signal intensities acquired using 𝑏-values above a certain cut-off. Hereafter, 𝑓 is estimated 
by extrapolating the model to 𝑏 = 0 s/mm2, and finally 𝐷𝑝 is calculated by fitting the model (with only one degree 

of freedom left) to all signal intensities. This fitting method is considered to be robust. However, there is no 
consensus about the cut-off value and estimation of IVIM-parameters is hampered when the estimation results in 
negative pseudodiffusion fractions.[47], [56] These erroneous values have to be removed, which influences whole 
tumor DWI-parameter analysis. 

Estimation of multi-exponential parameters by (constrained) free fitting is often performed using a maximum-
likelihood method with the least-squares criterion. Most commonly, the Levenberg-Marquardt (LM) or trust-
region reflective (TRR) algorithms are used. The LM algorithm estimates the IVIM parameters simultaneously by 
computing a linear approximation of the minimization function in each point. In each iteration, it searches for a 
point in which the fit error is reduced. The direction and step size are determined using a combination of the 
Gauss-Newton and steepest descent methods. The LM algorithm does not handle boundary constraints. 
Therefore, unrealistic parameter estimations can occur. The TRR algorithm is similar to the LM algorithm. 
However, in TRR, the approximation of the loss function is only trusted in a region near the current iteration. At 
each iteration, the size of the trust region is determined by how well the loss model fits to the original problem. 
When the fit results in a satisfactory error reduction, the model is a good representation of the original problem. 
In this case the trust region for the next iteration is enlarged. Only after defining the step size, the step direction 
is determined. In this way, TRR algorithms are more likely to converge to the global minimum. Furthermore, 
boundary constraints can be incorporated easily. For these reasons, the TRR algorithm is preferred over the LM 
algorithm. 

Both, LM and TRR algorithms assume that the parameters of interest are unknown but unique: there is one true 
parameter. The BP algorithm assumes that the parameters to be estimated (𝜑), as well as the data (𝐷), have a 
probability distribution: 𝑃(𝜑|𝐷). To determine the probability of 𝜑, prior knowledge about the distribution of the 
parameters, 𝑃(𝜑), is required. This is called the prior distribution. Most studies use noninformative or low-
informative priors (priors with a large variance) to prevent them from influencing the posterior probability 
excessively.[57] To estimate the posterior distribution, the prior estimation is updated using the measured data 
on the basis of approximate methods like the Markov chain Monte Carlo method. The essence of the BP algorithm 
is to maximize the posterior probability.[58] To describe the results of the Bayesian fit, marginal probability 
distributions are summarized in terms of central tendency. Prior studies used the mean or mode of the parameter 
distributions.[57], [59], [60] 

3.1.4 Diffusion weighted magnetic resonance imaging sequence 
There are three major challenges in acquiring DW-images: the intrinsically low SNR, acquisition time and data 
fidelity. Most commonly, an SS-EPI sequence is used for acquiring DW-images. To accelerate this sequence, parallel 
imaging techniques are often used. Most of these techniques, including sensitivity encoding (SENSE) and 
generalized auto-calibrating partially parallel acquisitions (GRAPPA), acquire less phase-encoding lines which leads 
to aliasing effects. These effects are then unfolded during the reconstruction process by using the encoding power 
of the radiofrequency receiver coil arrays. The geometry factor (𝑔-factor) is a measure representing how well the 
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signals can be unfolded. It expresses the spatially varying noise amplification. The acceleration factor (𝑅, number 
of lines skipped in k-space) and 𝑔-factor affect the SNR of the images according to (4).[61] 

𝑆𝑁𝑅𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 =
𝑆𝑁𝑅

𝑔√𝑅
      (4) 

In addition to the decrease in SNR, using an acceleration factor of 2 only results in a reduction in acquisition time 
of 20-30% due to the relative long phase preparation and readout durations.[62] By exciting multiple slices 
simultaneously, simultaneous multislice (SMS) techniques provide true acceleration and mitigate the SNR loss. As 
a result of the acceleration along the slice direction, the acceleration factor is determined by the size of the excited 
volume.[63] The main limitation is the ability to properly unfold the aliased slices due to the high demand on 
spatial variations in coil sensitivities, resulting in high 𝑔-factor noise. This can be improved by using the Controlled 
Aliasing In Parallel Imaging Results IN Higher Acceleration (CAIPIRINHA) technique, in which the phase of the 
individual radiofrequency pulses is alternated. Therefore, variations in coil sensitivity are utilized in both, in- and 
through-plane directions.[63] 

3.1.5 Research aim 
Precise and robust calculation of diffusion parameters remains challenging. Using an optimal set of 𝑏-values 
combined with a fitting algorithm that provides robust estimation of the parameters is believed to improve 
precision and accuracy of the DWI parameters. Therefore, the first two aims of this study were to optimize 𝑏-value 
sampling for multi-exponential analysis of DWI data and to compare fitting algorithm performances. To verify the 
results, the acquired protocol was tested by acquiring DWI MRI in healthy volunteers. Furthermore, since acquiring 
DWI images requires long acquisition times, the performance of simultaneous multislice imaging will be compared 
to the standard acquisition protocol in terms of acquisition time, image quality (SNR) and parameter estimation. 
 

3.2 Methods 
3.2.1 Simulations 
All computer simulations to optimize the DWI protocol were implemented in MATLAB (2019a, Mathworks Inc, 
Natick). First, initial 𝑏-value distributions containing three 𝑏-values were obtained for each combination of DWI-
model and fitting algorithm. All sets of three unique 𝑏-values were tested, using 𝑏-values in the range of 0 to 800 
in steps of 30 s/mm2

 and 900 to 1400 in steps of 100 s/mm2. The following diffusion parameters were used: 𝑆0 = 
900, 𝑓 = 30%, 𝐷𝑝 = 50∙10-3 mm2/s, 𝐷𝑡  = 1.2∙10-3 mm2/s, 𝐷𝐷𝐶 = 2.1∙10-3 mm2/s, and 𝛼 = 0.67.[18], [64], [65] For 

each 𝑏-value set, signal values were generated according to (1), (2) and (3). The simulated signals were Rician 
distributed using noise with a standard deviation (SD) of 0.01∙𝑆0 as described by Zhang et al. (2016).[66]  
 
Subsequently, the DWI-models were fitted to the signal intensities using the TRR and BP algorithm. Initial 
parameter estimates were: 𝑓 = 10%, 𝐷𝑝 = 10∙10-3 mm2/s, 𝐷𝑡  = 1∙10-3 mm2/s, 𝐷𝐷𝐶 = 1.0∙10-3 mm2/s, and 𝛼= 0.8. 

For each set of three 𝑏-values, the calculation and fitting of the signal was repeated 𝑁 = 1000 times. 

For each DWI-model, the set of 𝑏-values with the least overall error was now used as the starting 𝑏-value 
distribution. The initial 𝑏-value set was extended with one additional 𝑏-value in the range of 0 to 800 s/mm2 in 
steps of 10 s/mm2 and in the range of 850 to 1400 s/mm2 in steps of 50 s/mm2. Again, the overall error was 
calculated using 1000 repetitions per 𝑏-value set. The set with the smallest overall error became the new initial 𝑏-
value set. This process was repeated 22 times to obtain a 𝑏-value set of 25 𝑏-values for each DWI-model. In 

Table 4. Magnetic resonance imaging parameters 

Parameter Axial T2-weighted 
HASTE 

Coronal T2-weighted 
Turbo Spin Echo 

Clinical DWI Accelerated DWI 

No. of slices 30 35 35 35 
TR (ms) 2000 2750 2300 2100 
TE (ms) 93 104 48 51 
Flip angle (˚) 150 140 90 90 
FOV (mm x mm) 450 x 450 400 x 400 308 x 380 308 x 380 
Voxel size (mm) 1.4 x 1.4 x 4 1.3 x 1.3 x 5 2 x 2 x 4 1.5 x 1.5 x 5 
Bandwidth (Hz/Px) 781  260  1735 2440 
𝑏-values (s/mm2) NA NA 0, 60, 90, 110, 150, 

400, 800, 1400 
0, 30, 60, 110, 150, 
400, 800, 1040 

TR: repetition time, TE: echo time, NA: not applicable 
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Bayesian fitting, the estimated parameters are expressed using their posterior probability. In the current study, 
the mean and mode were used to describe the central tendency.  

To evaluate the performance of the multi-exponential models, all simulations were repeated using the mono-
exponential model. An 𝐴𝐷𝐶-value of 1.59∙10-3 s/mm2 was used for generating the DWI-signal intensities and an 
𝐴𝐷𝐶 of 1.0∙10-3 mm2/s was used as initial parameter estimate. The mono-exponential model was fitted to the data 
using the TRR algorithm. 

A summary of design parameters for the simulations can be found in Appendix A. 

3.2.2 Algorithm optimization criteria 
The performance of the fitting algorithms was assessed with respect to adequacy in parameter estimation and 
robustness. The relative fitting error (휀𝜑) between the estimated parameter at the 𝑖th repetition (𝜑𝑖) and the 

ground truth parameter (𝜑𝑡𝑟𝑢𝑒) used for generating 𝑆𝑏 was calculated using: 

휀𝜑 =
√

1

𝑁
∑ (𝜑𝑖−𝜑𝑡𝑟𝑢𝑒 )2𝑁

𝑖=1

𝜑𝑡𝑟𝑢𝑒
               (5) 

The model parameter estimation error was defined as the sum of the individual relative errors:  

휀𝑡𝑜𝑡𝑎𝑙,𝑚𝑜𝑑𝑒𝑙 =  ∑ 휀𝜑        (6) 

The robustness of fitting was evaluated by calculating the SD of each parameter over the N iterations. An optimal 
𝑏-value set results in a low parameter estimation error combined with a low SD. Therefore, a weighted sum was 
used as a measure for overall model error per 𝑏-value distribution. This was defined as: 

𝛦𝑏,𝑚𝑜𝑑𝑒𝑙 =
𝜀𝑡𝑜𝑡𝑎𝑙,𝑚𝑜𝑑𝑒𝑙

min(𝜀𝑡𝑜𝑡𝑎𝑙,𝑚𝑜𝑑𝑒𝑙)
 + 

𝑆𝐷𝑚𝑜𝑑𝑒𝑙

min ( 𝑆𝐷𝑚𝑜𝑑𝑒𝑙)
         (7) 

3.2.3 Combined 𝑏-value distribution selection 
The optimized 𝑏-value set for the combination of the IVIM and stretched exponential model was evaluated for 
both algorithms. For this, the 𝑏-values that belong to the individual optimized 𝑏-value distributions were evaluated 
in another simulation. In this simulation, all combinations of 𝑏-values from the optimized 𝑏-value distributions 
were tested. Signal values were generated in the same way as in the former simulation and both DWI-models were 
fitted to the data using the TRR and BP algorithms. Fitting errors of both algorithms were joined to one error 
measure for the combined models according to (8). The set of 𝑏-values resulting in the smallest combined error 
was used as overall optimized 𝑏-value distribution.  

𝛦𝑏,𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 =  𝛦𝑏,𝐼𝑉𝐼𝑀 + 𝛦𝑏,𝑠𝑡𝑟𝑒𝑡𝑐ℎ𝑒𝑑 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙             (8) 

 

3.2.4 Human subject validation 
To test the results obtained by the simulations, abdominal DWIs were acquired in four healthy volunteers (mean 
age, 24 years; ranging from 24 to 25). All scans were performed with a 3T MRI scanner (Magnetom prisma, Siemens 
Healthcare, Erlangen, Germany) and an 18-channel body and a spine phased-array coil. The scanning protocol 
consisted of the following sequences: an axial T2-weighted fat-suppressed HASTE in breath-hold and a coronal T2-
weighted fat-suppressed turbo spin echo in expiration. In all four volunteers, the standard renal DWI sequence 
was used with additional 𝑏-values. This sequence consists of a coronal, respiratory-triggered SS-EPI with GRAPPA 
acceleration factor 3. 𝑏-values of 0, 60, 90, 110, 140, 400, 800, and 1400 s/mm2 were used. 𝑏0-images were 
acquired with 1 repetition, while all other images were acquired with 2 repetitions. Further scan parameters are 
shown in Table 4.  
 
In two of the subjects, additional, accelerated DWI was performed. This sequence existed of a respiratory-
triggered SS-EPI sequence using blipped-CAIPIRINHA SMS imaging with an acceleration factor of 2, combined with 
a GRAPPA factor of 2 for in-plane acceleration (Siemens WIP prototype sequence no. 996C). During 𝑏-value image 
reconstruction of this DWI-sequence, motion correction was performed. This includes applying the following series 
of correction algorithms: in-plane registration, filtering, denoising and rescaling to compensate for signal loss due 
to motion. The same 𝑏-values were used as in the first DWI sequence except for b = 90 s/mm2, which was replaced 
for b = 30 s/mm2, ,and b = 1400 s/mm2, which was replaced for b = 1040 s/mm2. These adjustments were 
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performed, since signal intensities acquired with 𝑏90 deviated in the signal decay curve and 𝑏1040 was the highest 
𝑏-value that could be used in this sequence. 𝑏0 images were acquired using 1 repetition, 𝑏30 to 𝑏400 were acquired 
with 2 repetitions, and higher 𝑏-value images were acquired using 4 repetitions. For both respiratory triggered 
sequences, a liver dome scout was used and diffusion gradients were applied in three directions. 

To estimate DWI-parameters, ROIs were drawn manually covering the cortex of both kidneys in 3D, using 
FireVoxel. The T2-weighted images were used as anatomical landmark for this segmentation. In MATLAB, the TRR 
and BP algorithms were used for voxel-wise fitting of the DWI models to the signal intensities in the ROI. Start 
values for the DWI-models were the same as during simulations. Mean parameter values were calculated and 
compared between the algorithms. Furthermore, the SNRs of 𝑏 = 0 and 800 s/mm2 images, obtained with both 
DWI-sequences, were compared. The SNR was calculated using:  

𝑆𝑁𝑅 =  
𝑆0

𝜎𝑏𝑔
                (9) 

where 𝜎𝑏𝑔 is the standard deviation of signal values in the background. 𝑆0and 𝜎𝑏𝑔 were derived within the same 

ROI for both DWI sequences. 

3.3 Results 
3.3.1 Simulations 
In Table 5, optimized 𝑏-value distributions are listed for each of the diffusion weighted models and fitting 
algorithms. The values are listed in order of addition to the 𝑏-value distribution. The first three 𝑏-values were the 
initial optimal 𝑏-value set. These initial 𝑏-value sets contain two low and one high 𝑏-value for the BP algorithm, 
while this was one low and two high 𝑏-values for the TRR algorithm in both the IVIM and the stretched exponential  
model. The histograms of the 𝑏-value distributions of the models are shown in Figure 6. A higher frequency 
indicates that more 𝑏-values in that range were used to calculate the diffusion weighted parameters. In both multi-
exponential models, over 50% of the 𝑏-values are below 200 s/mm2, regardless of the algorithm that was used to 
calculate the parameters. Additionally, a few medium-high and high 𝑏-values (𝑏 >200 s/mm2) were used for model 
fitting. 
 
Parameter fitting errors and standard deviations per number of 𝑏-values added to the initial 𝑏-value sets are 
shown in Figure 7, together with their gradients. The BP algorithm, provided a more adequate fit for the IVIM 
model compared to the TRR algorithm. Parameter estimation errors were smallest when using the mode as central 
tendency measure. In the stretched exponential model, there was no clear difference between the algorithms. 
When adding five 𝑏-values to the initial set of three 𝑏-values, both algorithms show an inflection point in 
estimation error decline. Therefore, a 𝑏-value distribution with a total of eight 𝑏-values was used in human subject 
validation. Fitting errors and standard deviations per DWI-parameter can be found in Appendix B. Parameter errors 
and standard deviations for the optimized 𝑏-value distributions are provided in Table C1. 

Table 6 lists optimized 𝑏-value distributions for the combinations of the IVIM and stretched exponential models. 
The smallest parameter estimation error was obtained when the BP algorithm with mean as central tendency 
measure was used for both models. Parameter errors and standard deviations for all combinations of algorithms 
and DWI models are listed in Table C2. 

3.3.2 In vivo measurements 
None of the scans had severe artifacts that hampered diffusion parameter estimations for the renal cortex. 
Therefore, DWI parameters were calculated in eight kidneys for the standard DWI-sequence and in two for the 
accelerated sequence. The ROIs had a mean size of 23.3 cm3 (range: 17.3 – 28.0 cm3).  
 
Table 7 shows mean values, SD and ranges of diffusion parameters. Considering the multi-exponential DWI-
parameters that describe diffusion, 𝐷𝑡  shows higher means than 𝐷𝐷𝐶. Comparing these diffusion parameters with 
the 𝐴𝐷𝐶 value, 𝐷𝐷𝐶 is closer to the 𝐴𝐷𝐶.  
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Table 5. 𝑏-value distributions for all DWI-models and fitting algorithms 

 Initial 𝒃-value 
set (s/mm2) 

Added 𝒃-value sets (s/mm2) 

Intravoxel incoherent motion   
 TRR 0, 900, 1100 430, 10, 110, 20, 110, 10, 60, 0, 160, 20, 60, 130, 130, 790, 30, 

130, 0, 20, 180, 850, 590, 80 

 BP mean 0, 90, 1200 110, 140, 30, 800, 90, 110, 100, 90, 1200, 130, 100, 90, 100, 120, 
130, 140, 1400, 50, 100, 130, 10, 1000, 1400 

 BP mode 0, 90, 1400 10, 120, 10, 140, 170, 30, 20, 420, 100, 1000, 0, 50, 900, 130, 90, 
400, 30, 30, 140, 570, 20, 440 

Stretched exponential   
 TRR 0, 1000, 1300 110, 140, 1350, 160, 230, 1100, 0, 1350, 120, 0, 110, 1000, 1200, 

210, 0, 130, 1100, 1250, 80, 160, 750, 180 

 BP mean 0, 110, 1000 60, 110, 140, 120, 150, 1000, 90, 30, 190, 150, 1100, 80, 230, 110, 
140, 50, 170, 1000, 320, 240, 10, 170 

 BP mode 0, 90, 1400 90, 1300, 170, 1150, 0, 190, 100, 900, 0, 150, 1300, 120, 770, 180, 
0, 850, 0, 340, 150, 1200, 1050, 1350 

Mono-exponential   

 TRR 480, 540, 630 10, 750, 580, 0, 760, 730, 790, 1300, 40, 700, 750, 670, 620, 1050, 
1200, 50, 950, 950, 850, 630, 30, 120 

TRR: trust region reflective algorithm, BP: Bayesian probability algorithm 

Figure 6. Histograms showing the frequency of 𝑏-values used in model fitting, for the intravoxel incoherent motion (A), stretched 
exponential (B), and mono-exponential model (C).  

A.                B. 

 

 

 

 

 

 

 
 

 

 

C.            



17 
 

  

Figure 7. Total fitting errors and standard deviations per number of added 𝑏-values, for each of the 
algorithms. Top row: errors in parameter fitting, Second row: Gradient of fitting errors, Third row: Standard 
deviations of fitted parameters, Bottom row: Gradient of standard deviations. The graphs in the right 
column show data obtained with five or more 𝑏-values, and data of the TRR algorithm for the IVIM model  
are removed because of their large errors. ADC: apparent diffusion coefficient, IVIM: intravoxel incoherent 
motion, TRR: trust region reflective algorithm. 
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For the IVIM model, all parameter estimates depend on the fitting algorithm that was used. Compared to the BP 
algorithm, the TRR algorithm resulted in larger standard deviations for all parameters considering the standard 
DWI sequence, and for 𝐷𝑝 considering the accelerated DWI-sequence. For the stretched exponential model, there 

was no clear dependence between the mean and standard deviations and the fitting algorithm that was used.  

In Figure 8 parameter maps are shown for all DWI-parameters, obtained using the BP algorithm. Parameter maps 
obtained with the accelerated sequence are smoother, which can be predominantly seen in 𝑓 and 𝐷𝑝maps. This 

results in a better anatomical delineation of the renal pelvis. 

Regardless of the fitting algorithm that is used, the mean of 𝑓 is lower, and the mean of 𝐷𝑡  is higher in the 
accelerated sequence compared to the standard sequence. The differences in 𝐷𝑝 between both sequences, 

depend on the fitting algorithm that was used. Means and standard deviations of stretched exponential DWI 
parameters were similar for both DWI-sequences. 

For both sequences, the SNRs calculated in the dorsal part of the kidney were higher compared to those calculated 
in the central cross section of the kidney in the coronal plane. The SNRs in dorsal and central coronal cross-sections 
of 𝑏 = 0 s/mm2 images were 135 and 53 for the standard sequence, compared to 356 and 119 for the accelerated 
sequence. In 𝑏 = 800 s/mm2 images, the SNRs were 29 and 25 for the standard sequence, and 46 and 44 for the 
accelerated sequence, respectively. The mean acquisition times were 15:55 min. (range: 14:39 to 18:09 min.) and 
1:44 (1:54 and 1:33 min.) for the standard and accelerated sequences, respectively. 

Table 6. Optimized 𝑏-value distributions for the combination of the IVIM and stretched 
exponential models 

Model combination 𝒃-value distribution 
IVIM Stretched  

BP mean TRR 0, 90, 190, 230, 800, 1000, 1200, 1400 
BP mean BP mean 0, 60, 90, 110, 140, 400, 800, 1400 
BP mean BP mode 0, 30, 60, 90, 140, 800, 1000, 1200, 1400 
BP mode TRR 0, 30, 90, 110, 800, 1000, 1200, 1400 
BP mode BP mean 0, 90, 190, 230, 800, 100, 1200, 1400 
BP mode BP mode 0, 60, 110, 140, 230, 1000, 1200, 1400 

BP: Bayesian probability, TRR: trust-region reflective 
 

Table 7. Mean Diffusion parameters in renal cortex of healthy volunteers 

 Standard (n=4) SMS (n=2) 
 ROI mean ROI mean  

Volume ROI (cm3) 23.7 ± 3.3 (17.3-28.0) 22.5 ± 2.3 (19.2-24.1) 
𝒇 (%)   
 TRR 39.8 ± 7.8 (32.8-53.4) 22.7 ± 6.0 (16.4-28.5) 
 BP mean 26.6 ± 2.8 (22.0-29.3) 21.8 ± 5.1 (17.2-26.4) 
 BP mode 20.7 ± 5.4 (10.8-25.9) 15.7 ± 7.9 (7.7-22.6) 
𝑫𝒑 (∙10-3 mm2/s)   

 TRR 109 ± 41.9 (41.3-165.7) 92.1±29.4 (66.5-124.8) 
 BP mean 29.7 ± 2.4 (26.0-34.4) 32.8 ± 4.9 (27.2-37.0) 
 BP mode 10.0 ± 3.0 (5.5-13.2) 12.3 ± 2.8 (9.5-16.0) 
𝑫𝒕 (∙10-3 mm2/s)   
 TRR 1.34 ± 0.23 (0.94-1.51) 1.69 ± 0.06 (1.61-1.74) 
 BP mean 1.68 ± 0.06 (1.58-1.74) 1.75 ± 0.05 (1.71-1.82) 
 BP mode 1.71 ± 0.06 (1.61-1.80) 1.73 ± 0.08 (1.62-1.83) 
𝑫𝑫𝑪 (∙10-3 mm2/s)   
 TRR 2.33 ± 0.19 (1.99-2.52)  2.38 ± 0.24 (2.14-2.68) 
 BP mean 2.34 ± 0.19 (2.02-2.53) 2.39 ± 0.23 (2.16-2.68) 
 BP mode 2.31 ± 0.24 (1.98-2.51) 2.36 ± 0.23 (2.13-2.65) 
𝜶    
 TRR 0.80 ± 0.05 (0.76-0.87) 0.77 ± 0.05 (0.72-0.82) 
 BP mean 0.79 ± 0.04 (0.76-0.87) 0.76 ± 0.04 (0.72-0.81) 
 BP mode 0.80 ± 0.04 (0.76-0.85) 0.76 ± 0.05 (0.72-0.81) 
𝑨𝑫𝑪 (∙10-3 mm2/s)   
 TRR 2.14 ± 0.14 (1.88-2.29) 2.18 ± 0.19 (2.02-2.41) 
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Figure 8. Comparisons of renal multi-exponential DWI-parameter maps acquired using the standard (left column) and 
accelerated (right column) DW MRI-sequences. Voxel-wise model fitting was performed using the Bayesian probability 
algorithm for multi-exponential DWI-model parameters, with mean as central tendency measure. (A) and (B) show the b0 
images of both sequences. Parameter maps for IVIM-parameters 𝑓, 𝐷𝑝 , and 𝐷𝑡 are shown in (C/D), (E/F), and (G/H), 

respectively. Parameter maps for stretched exponential parameters DDC and α are shown in (I/JI) and (K/L), respectively. In 
(M/N), apparent diffusion coefficient parameter maps are shown.  
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3.4 Discussion 
3.4.1 Simulations 
In this study optimal 𝑏-value distributions were examined for two DWI models and two fitting algorithms. A 𝑏-

value distribution containing eight 𝑏-values was found to be optimal. The fitting algorithm was found to have an 

effect on parameter estimations in the IVIM model, with the BP algorithm providing more robust fitting compared 

to the TRR algorithm. The used fitting algorithm had less influence on parameter estimation in the stretched 

exponential model. Results from in vivo data were in agreement with the results from the simulations. 

 
The optimal 𝑏-value distributions were acquired for the IVIM and stretched exponential models using Monte-Carlo 
simulations. In the optimized 𝑏-value distributions, low 𝑏-values are sampled extensively compared to high 𝑏-
values. A proper fit was obtained with the use of only one or two high 𝑏-values (depending on the fitting algorithm). 
Using these distributions the bias in parameter estimations is small, small which means that the accuracy of the 
algorithms in parameter estimation is high. The standard deviations, which reflect a measure for precision, were 
relatively large. Therefore, the ranges in parameter values can be large. However, absolute values for standard 
deviations are small. When considering the parameters that describe tissue diffusion (𝐷𝑡  and 𝐷𝐷𝐶), errors in 
estimation are comparable when the BP fitting algorithm is used. These errors are also comparable to the 
estimation error for the 𝐴𝐷𝐶 value of the mono-exponential model. 
 
The error in parameter estimation decreases with increasing numbers of sampled 𝑏-values. Using many 𝑏-value 
images for DWI-parameter estimations, requires long acquisition times and would therefore adversely affect 
patient comfort and costs. Consequently, a trade-off has to be made between the gain in parameter estimation 
accuracy by adding an extra 𝑏-value and the increase in acquisition time. In the current study, this trade-off was 
made based on the inflection point in the parameter estimation error graphs. For the IVIM-model, as well as the 
stretched exponential model, first inflection points were found when five 𝑏-values were added to the initial 𝑏-
value sets, resulting in optimized 𝑏-value distributions containing eight 𝑏-values. This finding is in accordance to 
the study of Koh et al. (2011) who stated that six to eight 𝑏-values should be used with several signal averages to 
properly describe the signal decay using multi-exponential DWI-models.[52] 

When comparing errors in IVIM parameter estimation between the TRR and the BP algorithm, the biases are 
approximately a factor 10 smaller when the BP algorithm was used. However, the variability in the parameter 
estimates is much higher, especially the variability in 𝐷𝑡 , which is more than a factor 1000 larger when the TRR 
algorithm was used. These results are in concordance with the study of While (2017), who compared Bayesian and 
LSQ fitting in simulations for liver and breast tissue.[67] The high variability can result in wide parameter ranges in 
in vivo measurements. Therefore, the BP algorithm is more suitable for IVIM parameter estimations. 

In the BP algorithm, the biases are approximately a factor 10 smaller when the mode is used as central tendency 
measure, compared to the mean when considering the optimized 𝑏-value distribution for all IVIM parameters 
separately. This can be explained by the fact that the posterior probabilities of the parameters are skewed. 
Gustafsson et al. (2018) described that using the mode as a measure for central tendency resulted in reduces 
biases.[57] However, they also found that the variability was higher when the mode was used compared to the 
mean. The latter was not found in the performed simulations, since the variability was a factor three smaller when 
the mode was used. However, absolute differences in bias and variability between the central tendency measures 
are small. 

In the stretched exponential model, the TRR and BP algorithms provided parameter estimates with comparable 
bias and variability. These DWI-parameters therefore seem to be less dependent on the fitting algorithm that is 
used.  

3.4.2 In vivo validation 
The errors in parameter estimations, obtained using the 𝑏-value distribution optimized for the combination of the 
IVIM and stretched exponential model, were similar to the errors obtained with the model specific optimized 𝑏-
value distributions. Therefore, this 𝑏-value distribution was used for DWI-acquisition in healthy volunteers. 
 
The findings obtained in in vivo measurements are consistent with the results of the simulations. In the IVIM 
model, the parameter estimates obtained with the TRR algorithm are substantially different from those obtained 
with the BP algorithm. Standard deviations, and thus variation in parameters, are larger when the TRR algorithm 
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is used. Therefore, IVIM parameter estimation using the TRR algorithm is less suitable for describing tissue 
diffusion and ultimately differentiation of renal tumors. Prior studies have frequently used the combination of the 
DWI-model and fitting algorithm. However, most studies use tighter parameter constraints during fitting or 
remove parameter values from analysis that are believed to be outside ‘realistic’ parameter range for renal DWI 
after data fitting.[20], [68]–[70] These methods provide more robust fitting results, but might also obscure true 
tissue diffusion effects since in vivo diffusion parameters are unknown.  

The in vivo IVIM-parameters are in concordance with results of prior studies concerning healthy renal cortex.[71], 
[72]. Zhang et al. (2009) obtained slightly smaller variances in 𝑓, while variances in 𝐷𝑝 are similar and variances in 

𝐷𝑡  were larger compared to our results.[71] However, they used 27 𝑏-values during parameter fitting, which is 
expected to provide better fits. The parameter variations in the study of Notohamiprodjo et al. (2015) were similar 
for 𝑓, and larger for 𝐷𝑝 and 𝐷𝑡  compared to our results.[72] They used 10 𝑏-values, acquired along 20 diffusion 

directions and calculated the parameters using FireVoxel.  

In accordance with the results of the simulations, the TRR and BP algorithms produce similar parameter estimation 
results for the stretched exponential model. Based on simulation and in vivo results, the stretched exponential 
model is able to provide robust DWI-parameter estimations for renal cortex. To the best of our knowledge, 
stretched exponential DWI parameters in healthy kidney tissue are unknown. Although 𝐷𝐷𝐶 values are higher 
compared to 𝐷𝑡 , they have the same order of magnitude and could therefore be representative for tissue diffusion. 

In general, standard deviations of in vivo DWI-parameters are considerably larger compared to the those obtained 
with simulations. This was expected since in vivo signal decay most likely does not follow model equations exactly, 
contrarily to the simulations. It is likely that there are physiological differences in the degree of diffusion taking 
place between voxels within the renal cortex. These differences also affect parameter ranges. Additionally, 
influences of noise and motion artifacts are assumed to have a more prominent role in in vivo DWI-parameter 
estimations. We tried to account for this in the simulations by using Rician noise with SDs of 0.01∙𝑆0, resulting in 
SNRs that were lower compared to in vivo measurements. 

The main advantage of acquiring DWI-images with the accelerated sequence is a nine-fold reduction in acquisition 
time. While the parameter ranges are wider for 𝑓 and 𝐷𝑝, these were similar for all other DWI-parameters when 

comparing the results of the accelerated sequence with the standard DWI-sequence. The images obtained with 
the accelerated sequence have higher SNRs compared to those of the standard sequence. This can be caused by 
image acquisition settings, such as the parallel imaging factor, voxel size, number of repetitions and bandwidth 
per pixel. Furthermore, differences in SNR can be a result of application of correction algorithms which were 
available in Siemens’ WIP protocol. In-plane image registration, filtering and denoising compensate motion effects. 
Application of these correction algorithms resulted in parameter maps that provide a better representation of the 
renal anatomy, in particularly in the 𝐷𝑝-map. However, this did not result in smaller parameter ranges. Therefore, 

future research should show whether the wider ranges in 𝑓 and 𝐷𝑝 outweigh the decrease in acquisition time, 

taking into account the clinical usability of DWI-sequences. 

The main limitation of the validation study is the number of included volunteers. A broader study population could 
provide a more representative parameter estimation range. This has to be evaluated in further studies. 
Additionally, we only optimized the 𝑏-value distribution by means of computer simulations. A better optimization 
would require comparing numerous 𝑏-value sets using in vivo data. However, this would require impractical long 
acquisition times. Therefore, we only evaluated the optimized 𝑏-value distribution in DWI-parameter estimation 
and compared our results with the results of other studies. Additionally, we studied the influence of SMS imaging 
on the accuracy and precision of DWI-parameter estimation and acquisition times. However, the influence of other 
sequence parameters, like the echo time, should be studied for optimization of renal DWI, to provide even higher 
accuracy and precision in DWI-parameter estimation. Lastly, we only studied two fitting algorithms. These 
algorithms were evaluated since they are applied by most studies concerning IVIM model fitting. Other algorithms 
might improve robustness of fitting. Though, the long computational times of more advanced algorithms are 
detrimental for clinical use.  

3.5 Conclusion 
In conclusion, this study provides optimal 𝑏-value distributions for the IVIM and stretched exponential DWI-models 
acquired by computer simulations. This optimized distribution, containing 𝑏-values of 0, 30, 60, 110, 140, 800 and 
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1400 s/mm2, was tested in healthy volunteers. In simulations, as well as in vivo, the Bayesian probability algorithm 
provided more precise parameter estimations for the IVIM model, compared to the TRR algorithm. There were no 
evident differences between the algorithms for the stretched exponential model. Lastly, the DWI-sequence using 
SMS imaging provided a nine-fold reduction in acquisition time, while the variability in parameters reflecting tissue 
diffusion were similar to those obtained with the standard DWI-sequence. 
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CHAPTER 4 – Diagnostic utility of multi-exponential diffusion-weighted imaging 
parameters in differentiating solid renal tumors 

4.1 Introduction 
In the previous chapter we evaluated the use of multi-exponential DWI-models in describing diffusion within the 
renal cortex, using an optimized 𝑏-value distribution. In this chapter, the usefulness of IVIM and stretched 
exponential DWI-parameters in differentiating renal tumors is studied.  
 
As described earlier, nowadays, more than 60% of the RCC are detected incidentally in patients not suspected for 
renal cancer. This increase in incidence presents a challenge in diagnosis and management of renal tumors. In 
many cases, CT and MRI protocols that are used in daily clinical practice cannot accurately differentiate benign 
and malignant renal tumors. Consequently, in up to 20% of the cases benign histology is found after tumor 
nephrectomy. Additionally, RCC comprises several subtypes among which ccRCC, pRCC and chRCC are most 
prevalent. Disease prognosis varies widely between these histological subtypes. Therefore, with an aging patient 
population, discrimination between indolent and aggressive malignant renal tumors becomes more important, 
considering that treating early stage renal tumors with (partial) nephrectomy does not always improve patient 
health outcomes.[73] Furthermore, differentiation between ccRCC and other RCC subtypes is important since the 
subtypes show different sensitivities to systemic therapies.[74] Accordingly, non-invasive evaluation of solid renal 
tumors is of growing value in appropriate treatment selection.  

Tissue diffusion and perfusion are influenced by tumor growth and may therefore be useful for lesion 
characterization. DWI can provide quantitative information about these changes. Because kidneys are highly 
vascularized organs, signal decay in DWI is expected to be influenced by factors other than pure diffusion. The 
mono-exponential model cannot properly describe these factors, which results in large ranges in 𝐴𝐷𝐶 values 
within and overlap between tumor types. Therefore, reliable RCC subtyping and differentiation between benign 
and malignant renal tumors are hampered. Multi-exponential models are thought to provide an improved 
description of the signal decay and therefore provide more adequate diffusion parameters.  

At histopathology, the RCC subtypes show differences in cellularity and vascularity. For example, ccRCC tend to 
have a more heterogenous texture compared to pRCC.[75] Therefore analysis of heterogeneity in multi-
exponential DWI parameters within the lesions might be useful for tumor subtyping. Furthermore, tumor 
development is accompanied by changes in cell an tissue organization. These changes may differ between the 
tumor types. Therefore, the tumor induced changes in histogram parameters will be studied as well.   

We hypothesize that multi-exponential DWI-parameters provide narrower ranges for tissue diffusion components 
compared to the mono-exponential model, which will improve differentiation of benign and malignant renal 
masses and RCC subtyping.  

The purpose of this study was to determine if histogram analysis of IVIM and stretched exponential DWI-
parameters can be used for histologic subtyping of RCC and differentiation of benign and malignant renal masses. 

4.2 Methods 
4.2.1 Patients 
This prospective study was institutional review board approved and Health Insurance Portability and 
Accountability Act compliant. Written informed consent was obtained from all patients before enrollment. Seven 
consecutive patients were included between April 2019 and June 2019. Inclusion criteria were: patients diagnosed 
with a solid renal mass < 10 cm, suspected for RCC based on previous CT, MRI or ultrasonography examinations; 
and at least 18 years of age. Patients were excluded using the following criteria: contraindications for MRI, prior 
treatment for renal malignancies, artifacts in DW-images impeding reliable parameter calculation, and 
unconfirmed renal tumor type at histopathology. 
 

4.2.2 MR Imaging 
Pre-operative MR imaging was performed with a 3T MRI scanner (Magnetom prisma, Siemens Healthcare, 
Erlangen, Germany) and an 18-channel body phased-array coil. The scanning protocol consisted of the following 
sequences: an axial T2-weighted fat-suppressed HASTE in breath-hold and a coronal T2-weighted fat-suppressed 
turbo spin echo in expiration. For DWI, a respiratory triggered SS-EPI sequence was used in the coronal plane. The 
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following eight 𝑏-values were used: 0, 30, 60, 110, 140, 400, 800, and 1040 s/mm2. Images with 𝑏=0 to 140 s/mm2 
were acquired with two averages and higher 𝑏-values were acquired with four averages. Diffusion gradients were 
applied in three directions. Respiratory triggering was performed using a liver dome scout. Additional imaging 
parameters can be found in Table 8. During reconstruction of the trace DW-images, motion correction consisting 
of in-plane registration, filtering, denoising and rescaling was performed (Siemens WIP prototype sequence no. 
996C). The mean DWI acquisition time was 2:54 min (range: 2:15 to 3:50 min.). 
 

4.2.2 Image analysis 
Acquired images were transferred to an offline work-station for processing. Per patient, two 3-dimensional regions 
of interest (ROI) were drawn by one observer (with 1 year of experience in abdominal imaging), blinded for 
histopathological information using FireVoxel. The first ROI covered the entire tumor, while the second ROI 
covered a volume > 10 cm3 of renal cortex of the contralateral kidney. The tumor volumes were calculated using 
these ROIs.  
 
To reduce partial volume effects, edge voxels of the tumor ROI were removed using an erosion method. IVIM and 
stretched exponential models were fitted to the signal intensities within both ROIs using MATLAB. For fitting, the 
BP algorithm was used. Following voxel-wise fitting, histograms of the diffusion parameters were generated. 
Outliers of the diffusion parameters were detected and removed using the interquartile range method. The 
following histogram parameters were analyzed: mean, mode, standard deviation, entropy, skewness, kurtosis and 
5th, 10th, 25th, 75th, and 95th percentiles. Furthermore, tumor induced differences in histogram metrics between 
tumor and contralateral cortex tissue were calculated for all patients by calculating the difference in histogram 
parameters. 

4.2.3 Histologic analysis 
The partial nephrectomy specimens were fixed in formalin, processed and cut into 4 µm sections and stained with 
H&E. The slides were analyzed by board-certified pathologists, reporting the histologic tumor (sub)type, grade 
according to the WHO grading system, and presence or absence of hemorrhage, and necrosis. 
 

4.2.4 Statistical analysis 
The Mann-Whitney test was used to compare multi-exponential DWI-parameters between benign and malignant 
tumors. For pairwise comparisons between all tumor subtypes, independent-sample unequal variance 2-tailed t 
tests were performed. Tuckey’s range test was used to correct for multiple comparisons. A logistic regression 
model was created using parameters that were statistically significantly different between the groups. Collinearity 
of model parameters was tested using the 𝑉𝐼𝐹. A 𝑉𝐼𝐹 > 4 was considered as presence of multicollinearity, and 
such parameters were excluded from the model.  
 
ROC curve analyses were performed to test the ability of the diffusion parameters to differentiate the tumor 
subtypes and the AUCs were calculated. The optimal threshold was determined by evaluating the sensitivity, 
specificity and Youden index at different cutoff points. All statistical analyses were performed using SPSS (version 
25.0, IBM-SPSS, Armonk, New York, USA). For all tests, a p-value ≤ 0.05 was considered statistically significant. 

4.3 Results 
Since inclusion is still ongoing, preliminary results are provided. 

4.3.1 Patient characteristics 
Up until now, MRI was performed and histological confirmation was obtained in six patients. Data of 1 patient was 
excluded due to presence of severe susceptibility artifacts within the tumor. The cohort included five patients (3 
females, 2 males, mean age 64 years, range: 56-77) with 3 ccRCCs and 2 pRCCs. Mean tumor volumes were 37 
and 120 cm3 for ccRCC and pRCC, respectively. (Table 9) 
 

4.3.2 Subtype comparison 
In Figure 9, examples of parameter maps of multi-exponential DWI-parameters are shown. The histogram 
parameters of all tumors are listed in Table 10. Only the 75th and 95th percentile values of 𝐷𝑡  show no overlap 
between ccRCC and pRCC in both central tendency measure. When considering the mode as central tendency 
measure, the mode of 𝐷𝐷𝐶 does not overlap between the RCC subtypes. The percentiles of 𝐷𝑡  as well as the mode  
 



26 
 

 

 
  

Table 8. Magnetic resonance imaging parameters 

Parameter Axial T2-weighted 
HASTE 

Coronal T2-weighted 
Turbo Spin Echo 

DWI 

No. of slices 30 35 35 
TR (ms) 2000 2750 2100 
TE (ms) 93 104 51 
Flip angle (˚) 150 140 90 
FOV (mm x mm) 450 x 450 400 x 400 308 x 380 
Voxel size (mm) 1.4 x 1.4 x 4 1.3 x 1.3 x 5 1.5 x 1.5 x 5 
Bandwidth (Hz/Px) 781  260  2440 

A.       B. 

 

 

 

 

 

 

C.       D. 

 

 

 

 

 

 

E.       F. 

Figure 9. Parameter maps of multi-exponential DWI models of a papillary renal cell carcinoma. 

In A the 𝑏0-image is shown. Parameter maps of IVIM parameters 𝑓, 𝐷𝑝 and 𝐷𝑡 are shown in 

B, D and F, respectively. Parameter maps of stretched exponential parameters 𝛼 and 𝐷𝐷𝐶 are 

shown in C and E, respectively. 
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of 𝐷𝐷𝐶 is higher in ccRCC compared to pRCC. Other DWI-parameters demonstrate overlapping ranges. Boxplots 
of all parameters are shown in Appendix C. 
 
In Table 11 the tumor induced changes in DWI parameter are shown. Histogram parameters that showed no 
overlap between the RCC subtypes were found for 𝑓, 𝐷𝑡 , 𝐷𝐷𝐶 and 𝛼. The mean, mode and 75th and 95th 
percentiles of 𝑓 show a larger decrease for pRCC compared to ccRCC. Furthermore, the skewness in 𝑓 remained 
the same for ccRCC, while pRCC show a higher skewness, compared to contralateral cortical tissue. The kurtosis 
in 𝑓 was higher in pRCC and lower in ccRCC compared to the cortical tissue. The kurtosis in 𝐷𝑡  and 𝐷𝐷𝐶 decreased 
in pRCC, while it remained similar for ccRCC. The mode of the 𝐷𝐷𝐶 histogram decreased more in pRCC compared 
to ccRCC. Finally, the mean of 𝛼 decreased more for ccRCC than for pRCC. Boxplots of all parameter are shown in 
Appendix D. 

4.3.3 Statistical analysis 
A larger study population is required for statistical analysis. 
 

4.4 Discussion 
Reliable characterization of renal tumors is vital for appropriate treatment planning. Differentiation of benign and 
malignant tumors essential: benign tumors seldomly interfere with the patients’ life expectancy and therefore 
invasive treatment involves unnecessary surgical risks. Based on currently available data, this study cannot 
perform this analysis. However, subtyping of renal malignancies is becoming increasingly important in evaluating 
treatment options. The subtypes differ in aggressiveness and likelihood of metastasis. In an aging population, with 
an increasing number of comorbidities, alternative treatments are preferred over nephrectomies in less aggressive 
tumors. Furthermore, in advanced disease, the subtypes show different sensitivities to targeted immunotherapies.  
 
The preliminary results of this studies show overlapping ranges for ccRCC and pRCC in most of the DWI-
parameters. Histogram parameters that do not overlap between the RCC subtypes are the 75th and 95th percentiles 
of 𝐷𝑡 , and the mode of 𝐷𝐶𝐶. Prior studies showed that the mean of 𝐷𝑡  was significantly different between ccRCC 
and pRCC.[76]. However, the values of 𝐷𝑡  did overlap between both subtypes in their study as well.  

There were differences in DWI-parameters obtained by using the mean and mode as central tendency measures 
for the estimates provided by the BP-algorithm. These differences appear mainly in histogram analyses of IVIM 
parameters 𝑓 and 𝐷𝑝, but also occur in histogram parameter of 𝐷𝑡  and 𝛼. Despite these differences, there seems 

to be no real difference in tumor differentiation ability between both measures.  

 

Table 9. Patient demographics and tumor characteristics 

 ccRCC (n=3) pRCC (n=2) 

Patient age (y) 64 (61 – 65) 67 (56 – 77) 
Female 2 (66.7) 1 (50) 
Body mass index (kg/m2) 23.7 (23.3 – 24.3) 32.7 (29.6 – 35.9) 
Tumor volume (cm3) 37 (3 – 88) 120 (45 – 196) 
Affected side    

Left 
Right 

2 (66.6) 
1 (33.3) 

0 
2 (100) 

Type of procedure   
 Partial nephrectomy 1 (66.6) 2 (100) 
 Radical nephrectomy 2 (33.3) 0 
T stage   
 T1 2 (66.6) 1 (50) 
 T2 0 1 (50) 
 T3 1 (33.3) 0 
 T4 0 0 
Nuclear grading (Fuhrman)   
 I 0 0 
 II 1 (33.3) 2 (100) 
 III 2 (66.6) 0 
 IV 0 0 

Data are presented as mean (range) or No. (%); NA = not applicable. 
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The mean of the parameters that reflect tissue diffusion (𝐷𝑡  and 𝐷𝐷𝐶) were both lower in RCC compared to 
contralateral cortical renal tissue. This implies that both tumor types cause diffusion restriction. However, the 
tumor induced difference is similar for both RCC subtypes. A decrease in kurtosis of 𝐷𝑡  and 𝐷𝐷𝐶 seen as well, 
which implies that more distinct diffusion rates occur in tumor tissue compared to normal cortical renal tissue. 
The kurtosis in 𝐷𝑡  and 𝐷𝐷𝐶, as well as the mode of 𝐷𝐷𝐶, decrease more in pRCC than in ccRCC. The decrease in 
mode reflects a drop in number of high 𝐷𝐷𝐶 values, since the mean does not change considerably. 

A smaller pseudodiffusion fraction, 𝑓, is also found in tumorous tissue. The decrease is larger for pRCC than for 
ccRCC, which can be seen in the mean, mode and 75th and 95th percentiles of the histogram values of 𝑓. Thus, the 
effect of pseudodiffusion to signal decay within a voxel decreases. The kurtosis in pRCC rise as well, which implies 
that the pseudodiffusion fractions become centered around one value. However, the skewness of 𝑓 increases in 
pRCC, which means that within some of the voxels large pseudodiffusion fractions are still present.  

The preliminary results of this studies show overlapping ranges for ccRCC and pRCC in most of the DWI-
parameters. Histogram parameters that not overlap between the RCC subtypes are the 75th and 95th percentiles 
of 𝐷𝑡 , and the mode of 𝐷𝐶𝐶. Prior studies showed that the mean of 𝐷𝑡  was significantly different between ccRCC 
and pRCC.[76]. However, the values of 𝐷𝑡  did overlap between both subtypes in their study as well.  

There were differences in DWI-parameters obtained by using the mean and mode as central tendency measures 
for the estimates provided by the BP-algorithm. However, there seems to be no real difference in tumor 
differentiation ability between both measures.  

The mean of the parameters that reflect diffusion (𝐷𝑡  and 𝐷𝐷𝐶) were both lower in RCC compared to contralateral 
cortical renal tissue. This implies that both tumor types cause diffusion restriction. However, the tumor induced 
difference is similar for both RCC subtypes. A decrease in kurtosis of 𝐷𝑡  and 𝐷𝐷𝐶 seen as well, which implies that 
more distinct diffusion rates occur in tumor tissue compared to normal cortical renal tissue. The kurtosis in 𝐷𝑡  and 
𝐷𝐷𝐶, as well as the mode of 𝐷𝐷𝐶, decrease more in pRCC than in ccRCC. The decrease in mode reflects a drop in 
number of high 𝐷𝐷𝐶 values. 

A smaller perfusion fraction, 𝑓, is also found in tumorous tissue. A larger decrease is seen for pRCC than for ccRCC, 
which can be seen in the mean, mode and 75th and 95th percentiles of the histogram values of 𝑓. Thus, the effect 
of pseudodiffusion to signal decay within a voxel diminishes. The kurtosis in pRCC rise as well, which implies that 
the perfusion fractions become centered around one value. However, the skewness of 𝑓 increases in pRCC, which 
means that within some of the voxels, large perfusion fraction are still present.  

The measure for intravoxel inhomogeneity, 𝛼, could also aid differentiation between pRCC and ccRCC. Both RCC 
subtypes have lower 𝛼, and therefore a higher degree of intravoxel inhomogeneity, compared to contralateral 
cortical renal tissue. This can be explained by an increase in histological heterogeneity, cellular pleomorphism, 
presence of micro-vessels, and presence of microscopic necrotic and cystic foci. ccRCC show a larger decrease 
compared to pRCC, which represents a stronger increase in intravoxel inhomogeneity in this tumor type. 

Absolute differences in histogram parameters are small, thus a larger patient population is required to see if the 
results remain valid. Furthermore, more subtypes and benign renal tumors have to be included to evaluate the 
clinical value of the multi-exponential DWI-parameters. 

4.5 Conclusion 
Most of the multi-exponential DWI-parameters show overlapping values between pRCC and ccRCC. A larger 
patient population should show if there are any statistically significant differences between RCC subtypes. 
Furthermore, the analysis of tumor induced changes shows promising results for differentiation of the subtypes.  
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CHAPTER 5 – General conclusion, discussion and future perspectives 
 

The goal of this thesis was to evaluate the role of diffusion-weighted imaging parameters in differentiation of solid 
renal tumors. The first sub-question that was formulated was: To what extent can the combination of mono-
exponential diffusion-weighted imaging parameters and patient characteristics differentiate oncocytoma from 
renal cell carcinoma? It can be concluded that DWI analysis using mono-exponential model parameters shows 
promising results in differentiation of oncocytoma and renal cell carcinoma. While mean 𝐴𝐷𝐶 values did not aid 
this differentiation, 𝐴𝐷𝐶 histogram parameters were informative. However, the wide range in parameters 
hampers reliable differentiation and therefore the clinical value may be limited. 
 
Subsequently, the following sub-question was studied: What 𝑏-value distribution and fitting algorithms provide a 
robust calculation of multi-exponential diffusion-weighted imaging parameters? By performing computer 
simulations, optimized b-value distributions were obtained for the intravoxel incoherent motion and stretched 
exponential models. Furthermore, for the IVIM model, the Bayesian probability algorithm provided a more robust 
parameter estimation compared to the trust-region reflective algorithm. For the stretched exponential model, 
there was no pronounced difference between the algorithms. These results were confirmed by validation 
measurements in healthy volunteers. Using an accelerated DWI sequence instead of a standard DWI-sequence 
resulted in images with a higher signal-to-noise ratio and a nine-fold reduction in acquisition time. The higher 
image quality obtained in a much shorter scan time is beneficial for using DWI with multiple b-values in clinical 
practice. 
 
The results of the third chapter were used in a study to answer the following sub-question: What is the ability of 
multi-exponential diffusion-weighted imaging parameters in subtyping of renal tumors? IVIM and stretched 
exponential histogram parameters show promising results for differentiation of clear cell and papillary renal cell 
carcinoma. Furthermore, adding information about tumor-induced differences seems to be of added value for 
renal tumor differentiation. Research should be continued to show if these results are valid in a larger study 
population and to see if differentiation of other subtypes, as well as differentiation of benign and malignant renal 
tumors, can be improved by these parameters. In the current studies, first-order texture metrics, derived from 
DWI-parameter histograms were used to describe tumor heterogeneity. However, using this method, spatial 
information about the parameter values is lost. The value of higher order texture metrics that could provide this 
information should be studied.  
 
To conclude, the main research question was: What is the role of diffusion-weighted imaging in the differentiation 
of solid renal masses? The research conducted in this thesis shows that DWI has a promising role in this 
differentiation. Although further research is needed, the use of DWI can improve the differentiation of renal tumor 
types and therefore improve clinical decision making concerning treatment options in patients with renal tumors. 
Consequently, it may help reduce the number of superfluous (partial) nephrectomies.  
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Appendix A Design parameters for computer simulations 

A.1 𝑏-value distribution 
In this study, 𝑏-values were sampled in steps of 30 s/mm2 between 𝑏0 and 𝑏800, and in steps of 100 s/mm2 between 

𝑏900 and 𝑏1400 to obtain an initial 𝑏-value set of three 𝑏-values. When adding 𝑏-values to this set, 𝑏-values were 

sampled in steps of 10 s/mm2 between 𝑏0 and 𝑏800, and in steps of 50 s/mm2 between 𝑏850 and 𝑏1400. Larger step 

sizes were used in higher 𝑏-values since pseudodiffusion effects, and therefore deviations from the mono-

exponential model, appear mainly at low 𝑏-values. To describe these effects accurately, low 𝑏-values have to be 

sampled extensively. Ideally, all 𝑏-values should be sampled. However, this would require extensive computation 

time. Furthermore, the influence of smaller steps than 10 s/mm2 on the optimized 𝑏-value distribution are 

expected to be small. 

 
Furthermore, in finding the optimized b-value distribution, a set of 25 𝑏-values was obtained. This number of 𝑏-

values is not useful in clinical practice due to the long acquisition times. However, this number was used to study 

the decrease in fitting error per number of 𝑏-values. Thereby, an inflection point in decrease of error per added 

𝑏-value could be found. This inflection point shows where the decrease in error outweighs the addition of adding 

another b-value to the distribution. Based on this point, an optimized b-value distribution was obtained.  

 

A.2 Data noise 
Prior studies have shown that  the fitting errors depend on the SNR.[69] Higher SNRs provide better fitting results. 

In the current study, the influence of noise on fitting results was not studied. In simulation of signal intensities, 

Rician noise with an SD of 0.01∙𝑆0  was used. In this manner, the SNR in simulations was lower than the SNR in DWI-

images obtained in healthy volunteers. Therefore, the influence of the SNR on fitting errors in DWI-images was 

expected to be smaller than in simulations. However, systematic errors, like partial volume effects and organ 

movement, were not taken into account in the simulations. These errors influence parameter fitting errors and 

could therefor also influence optimal parameter selection. 

 

A.3 Fitting algorithms 
In the current study, two fitting algorithms were evaluated in fitting multi-exponential models to signal intensities. 

The segmented fitting method was also considered since prior studies showed that this method facilitates robust 

data fitting. In this method, 𝐷𝑡  is determined based on fitting the mono-exponential model to high b-values. This 

can be seen by the orange line in Figure A1. Subsequently, 𝑓 is determined by taking the difference between the 

measured signal intensity at 𝑆0 and the intersection of the mono-exponential fit and the y-axis (green line in Figure 

A1). Finally, 𝐷𝑝 is determined by fitting the model to the data, using the previously determined values for 𝐷𝑡  and 
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Figure A1. Segmented fitting method. 𝐷𝑡 is determined based on the slope of the signal intensities at high 𝑏-values 

(orange). Subsequently, the intercept of this slope with the y-axis is used to determine 𝑓 (green). Lastly, 𝐷𝑝 is 

determined by fitting the intravoxel incoherent motion model to the data using the determined f and 𝐷𝑝. A problem 

arises when the intersect of the slope provides a higher value than the signal intensity measured at b = 0 s/mm2, 

since this results in a negative f as can be seen in B. Now the results of the segmented fit are not clinically useful. 

A.        B. 
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𝑓. However, this method could provide erroneous measurements when the intersect of the mono-exponential 

fitting of high 𝑏-values is higher than the measured 𝑆0. This can happen due to influences of noise and systematic 

errors, as can be seen in Figure A1. Now 𝑓 is negative, which is physiologically impossible. Since this study was 

focused on voxel-wise fitting and whole-tumor volumetric DWI-parameter estimation, the segmented model was 

not further studied. 

 

A.4 Data fitting 
In the BP algorithm, lognormal priors were used. The uniform prior is less informative than the other priors and 

therefore it has a small influence on the posterior probability of the parameter estimates. However, Gustafsson 

et al. (2018) studied the influence of uniform, lognormal and reciprocal priors in estimation of IVIM 

parameters.[57]  They found that the uniform and lognormal priors provided small errors in estimations of the 

parameters, even at low SNRs. The bias in estimation of 𝑓 and 𝐷𝑡was slightly smaller when the lognormal prior 

was used compared to the uniform prior, and the estimation of 𝐷𝑝 was substantially better when using the 

lognormal prior. Therefore this prior was used in current study.  

 

 

Table A1. Overview of diffusion-weighted imaging parameters used for simulations 

 Ground truth 
parameters 

Initial parameter 
estimates 

Parameter 
constraints 

Prior distributions in 
BP 

IVIM     
 𝑓  30 10 0 ≤ 𝑓 ≤100 Uniform 
 𝐷𝑝  50 10 0 ≤ 𝐷𝑝 ≤ 1  Lognormal  

(σ=1, µ = -6) 
 𝐷𝑡  1.2 1.0 0 ≤ 𝐷𝑡 ≤ 0.1  Lognormal 

(σ=1, µ = -3.5) 
    𝐷𝑡 < 𝐷𝑝   

Stretched exponential     
 𝐷𝐷𝐶  2.1 1.0 0 ≤ 𝐷𝐷𝐶 ≤ 0.1  Lognormal 

(σ=1, µ = -3.5) 
 𝛼  0.67 0.8 0 ≤ 𝛼 ≤ 1 Uniform 

Mono-exponential     
 𝐴𝐷𝐶  1.59 1.0 0 ≤ 𝐴𝐷𝐶 ≤ 0.1  NA 

𝐷𝑝, 𝐷𝑡, 𝐷𝐷𝐶, and 𝐴𝐷𝐶 are expressed in ∙10-3 mm2/s. 𝑓 is expressed in %. NA = not applicable 
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Appendix B Parameter estimation errors 

  

Figure B1. Results of fitting of mono-exponential apparent diffusion coefficient (ADC) per added 𝑏-value. A: 
error in parameter fitting, B: Gradient of fitting error at each set of 𝑏-values, C: Standard deviation of fitted 
parameters, D: Gradient of standard deviation at each set of 𝑏-values 

A.            B. 

 

 

 

 

 

 

 

 

C.           D. 
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Figure B2 Results of fitting of intravoxel incoherent motion parameter 𝑓 per added 𝑏-value. A: error in 
parameter fitting, B: Gradient of fitting error at each set of 𝑏-values, C: Standard deviation of fitted 
parameters, D: Gradient of standard deviation at each set of 𝑏-values 

A.          B. 

 

 

 

 

 

 

 

C.       D. 
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Figure B3. Results of fitting of intravoxel incoherent motion parameter Dp per added b-value. A: error in 
parameter fitting, B: Gradient of fitting error at each set of b-values, C: Standard deviation of fitted parameters, 
D: Gradient of standard deviation at each set of b-values 

A.        B. 

 

 

 

 

 

 

C.        D. 
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Figure B4. Results of fitting of intravoxel incoherent motion parameter Dt per added b-value. A: error in 
parameter fitting, B: Gradient of fitting error at each set of b-values, C: Standard deviation of fitted 
parameters, D: Gradient of standard deviation at each set of b-values 

A.        B. 

 

 

 

 

 

 

C.           D. 
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Figure B5. Results of fitting of stretched exponential parameter DDC per added b-value for each of the 
algorithms. A: error in parameter fitting, B: Gradient of fitting error at each set of b-values, C: Standard 
deviation of fitted parameters, D: Gradient of standard deviation at each set of b-values 

A.                    B. 

 

 

 

 

 

 

 

C.      D. 
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Figure B6. Fitting results of stretched exponential parameter α per number of b-values added to the initial b-value 
set for each of the algorithms. A: error in parameter fitting, B: Gradient of fitting error at each set of b-values, C: 
Standard deviation of fitted parameters, D: Gradient of standard deviation at each set of b-values 

A.                    B. 
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A.                     B. 
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G.     H. 

Figure B7. Fitting results of all diffusion parameters (𝐷𝑡, 𝐷𝐷𝐶, and 𝐴𝐷𝐶) per number of 𝑏-values added to the initial b-
value set, for each of the algorithms. Top row: errors in parameter fitting, Second row: Gradient of fitting errors, Third 
row: Standard deviations of fitted parameters, Bottom row: Gradient of standard deviations. The graphs in the right 
column show data obtained with five or more b-values, and data of the TRR algorithm for Dt are removed because of 
their large errors. ADC: apparent diffusion coefficient, Dt: true diffusion parameter, DDC: distributed diffusion coefficient, 
TRR: trust region reflective algorithm. 
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Appendix C Parameter errors and standard deviations for combinations of multi-

exponential DWI-models 
 

Table C1. DWI parameter estimation errors of the optimized 𝑏-value distribution 

DWI model Estimation errors 
   parameter TRR BP mean BP mode 

IVIM    
 𝑓  4.6∙10-4 ± 3.9∙10-2 3.42∙10-4 ± 1.01∙10-2 2.57∙10-5 ± 2.76∙10-3 
 𝐷𝑝   4.76∙10-4 ± 9.76∙10-2 4.65∙10-4 ± 4.82∙10-3 4.55∙10-5 ± 1.50∙10-3 

 𝐷𝑡  1.11∙10-6 ± 3.04∙10-2 2.34∙10-6 ± 5.31∙10-5 2.47∙10-7 ± 1.71∙10-5 
Stretched    
 𝐷𝐷𝐶  1.31∙10-6 ± 5.24∙10-5 1.47∙10-6 ± 5.55∙10-5 1.51∙10-6 ± 5.62∙10-5 
 𝛼  3.34∙10-4 ± 1.60∙10-2 3.18∙10-4 ± 1.56∙10-2 3.60∙10-4 ± 1.67∙10-2 

Data are presented as bias ± variability. TRR: trust-region reflective, BP mean: Bayesian probability with mean 
as central tendency measure, BP mode: Bayesian probability with mode as central tendency 
 

 

  

Table C2. Parameter errors and standard deviation for all combinations DWI-models and fitting algorithms 

DWI model Fitting 
algorithm 

     

IVIM TRR TRR TRR BPmean BPmean BPmean 
Stretched TRR BPmean BPmode TRR BPmean BPmode 
Error 0.0014±0.184  0.0013±0.183 0.0013±0.184 0.0012±0.031 0.0011±0.030 0.0012±0.032 
DWI model Fitting algorithm    

IVIM BPmode BPmode BPmode    
Stretched TRR BPmean BPmode    
Error 0.0004±0.021 0.0004±0.020 0.0004±0.022    

Data are presented as bias ± variability. TRR: trust-region reflective, BP mean: Bayesian probability with mean as central 
tendency measure, BP mode: Bayesian probability with mode as central tendency 
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Appendix D Comparison of central tendency measures of the Bayesian 

probability algorithm in multi-exponential DWI-parameter histogram 

parameters 
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Appendix E Multi-exponential DWI-parameter histogram analysis of tumor 

induced differences 
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. 

E. 

Figure E1. Histogram parameters of tumor induced differences (calculated by Tumor histogram 

parameter – contralateral cortical tissue parameter). Values for IVIM parameters 𝑓, 𝐷𝑝, and 𝐷𝑡  are 

shown in (A), (B), and (C), respectively. Values for stretched exponential parameters DDC and α are 

shown in (D) and (E), respectively 

 


