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Abstract

In this master thesis we present an approach to automatically classify aviation safety reports
by applying supervised machine learning. Our proposed model is able to classify 7 different
types of safety reports according to a taxonomy hierarchy of more than 800 labels using a
dataset with 19 815 reports which is highly imbalanced. The reports comprise numerical,
categorical and text fields that are written in english and dutch languages. Such reports are
manually categorized by safety analysts in a multi-label setting. The reports are later aggre-
gated according to such taxonomies and reported in dashboards that are used to monitor
the safety of the organization and to identify emerging safety issues. Our model trains one
classifier per each type of report using a LightGBM base classifier in a binary relevance
setting, achieving a final macroaveraged F0.5 score of 50.22%. Additionally, we study the
impact of using different text representation techniques in the problem of classifying aviation
safety reports, concluding that term frequency (TF) and term frequency inverse document
frequency (TF-IDF) are the best methods for our setting. We also address the imbalanced
learning problem by using SMOTE oversampling, improving our classifier performance by
41%. Furthermore, we evaluate the impact of using hierarchical classification in our classi-
fier with results suggesting that it does not improve the performance for our task.

Finally, we run an experiment to measure the reliability of the manual classification pro-
cess that is carried out by the analysts using Krippendoff’s mvα. We also present some
suggestions to improve such process.
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Chapter 1

Introduction

With approximately 35 000 employees and moving more than 32 million passengers, KLM
is one of the leading airlines in Europe. Safety is of vital importance in the aviation industry
and it is managed at KLM by the Integrated Safety Management System (ISMS). One of the
processes in the ISMS is to collect and analyze safety reports. The reports are reviewed by
analysts and categorized with one or more labels that are called taxonomies. Such reports
are aggregated according to such taxonomies and reported in dashboards that are used
to monitor the safety of the organization and to identify emerging safety issues. Today,
the taxonomy classification is done manually and it is the desire of the management that
such categorization is performed automatically because it is expected that the number of
received reports is going to increase in the following year. Additionally, the management has
also expressed concerns about the consistency of the report categorization. There is an
impression that the categorization process varies significantly. This means that one report
that is categorized today with certain labels would get a slightly different categorization if it is
categorized again in one month. Such situation can negatively affect the trust that is given to
the aggregated information that is used to monitor the safety of the organization. Therefore,
there is a need to check the categorization process and to measure the trust in the data.

This master thesis presents our approach to automatically classify the safety reports by
applying supervised machine learning. In the same way, the development of this research
delivers important insights about the categorization process and how can it be improved.
Firstly, exploratory data analysis (EDA) is used to understand the dataset and to devise the
machine learning techniques that can be applied. Secondly, a quick baseline with a logistic
regression classifier and a multi-label decision tree is established to serve as a starting point
for the automatic classification. Such baseline is used to identify the pre-processing steps
that need to be applied to the dataset and to identify the machine learning techniques that
will be evaluated. Then, a set of experiments is designed to collect results that support the
answers to our research questions. Next, the results of our experiments are analyzed and
conclusions are derived.
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1.1 Problem Statement

The main goal of this research is to automatically classify the different safety reports ac-
cording to the defined taxonomy. Each taxonomy is a set of labels organized as a hierarchy.
There are 7 different types of reports. Each report can be categorized with one or more
labels from different taxonomies. The taxonomies that can be applied to each type of report
have been established by the company. Due to the business requirements, it is not nec-
essary to focus on the zero-shot learning problem, meaning that it is not important to have
good performance on labels with a few examples.

The secondary goal is to examine the current data generation process, to measure its
reliability and to issue recommendations to improve it.

The main problem can be posed as a multi-label classification task, where N is the
number of instances in the dataset S. Having xi to be one example and X the set of all
examples, yi is the ordered tuple of labels associated to one example and Y the set of all
tuples containing labels. yi represents one single label and L is the number of unique labels
in Y. More formally:

S = {(xi,yi)|1 ≤ i ≤ N,xi ⊆ X,yi ⊆ Y}

L = |Y|

yi = (y1, y2, ..., yL), yi ∈ {0, 1}

A single taxonomy ti = (vi, ei) is a tree that is considered a rooted directed acyclic graph
(DAG) with root ρ by definition [1] [2]. All the taxonomies comprise the set T of such graphs:

T = {(v1, e1) , (v2, e2) , ..., (vK, eK) |vi \ {ρi} ∩ vj \ {ρj} , i 6= j}

vi = {y1,y2, ...,yi|yi ⊆ Y}

ei = {(yi,yj)|yi ⊆ Y,yj ⊆ Y, i 6= j}

After inspecting the taxonomies used to classify the aviation safety reports, we observed
that the mentioned taxonomies exhibit the following properties:

• A single label yi only belongs to one taxonomy, meaning that each taxonomy is a
complete independent tree.

• The root of each taxonomy ρ is not considered a label and it is excluded from our
analysis because it can be derived from the report type.

A summary of notation is displayed in Appendix A.1.
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1.2 Research Questions

The proposed approach is to apply supervised machine learning to automatically classify
the reports. In order to solve it, we will address the following research questions:

• RQ1: What are the influencing factors on the accuracy of applying supervised machine
learning to classify aviation safety reports automatically? As influencing factors we
investigate feature representation and classification model types. More concretely, we
want to evaluate what is the impact of using word embeddings over TF-IDF?, what
is the impact of using different multi-label learning models? and does hierarchical
classification perform better than flat classification?

• RQ2: How can we measure the reliability of the report classification process that is
performed by human analysts? With this question we aim to discover the metric that
is more suitable for measuring such reliability.

1.3 Outline

This thesis is structured as follows: Chapter 2 introduces the background and Chapter 3 il-
lustrates the related work. Chapter 4 presents the dataset and the exploratory data analysis.
Chapter 5 describes the research methods used. In Chapter 6 we detail the different exper-
iments that were performed. The results of such experiments are displayed and discussed
in Chapter 7. Finally, this thesis concludes in Chapter 8.
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Chapter 2

Background

In the following sections we introduce some background concepts. Section 2.1 describes
Operational Risk Management. Section 2.2 provides a brief introduction to machine learn-
ing, while Section 2.3 introduces text classification. Section 2.4 presents multi-label clas-
sification. Section 2.5 focuses on text representation and inter-annotator agreement is ex-
plained in Section 2.6. Section 2.7 introduces imbalanced learning. The metrics that will be
used in this thesis are presented in Section 2.8.

2.1 Operational Risk Management

Operational Risk Management (ORM) is a key component of every Safety Management Sys-
tem implemented in any aviation organization. The main objective for ORM is “to make sure
that all risks remain at an acceptable level” [3]. Many methodologies for ORM contemplate
some kind of hazard identification where collecting and analyzing safety data is at the core of
the process. Such data typically includes flight data events, safety reports, safety surveys,
audit results and other type of data that are stored in a safety database. “The database
should be routinely analysed in order to detect any adverse trends and to monitor the ef-
fectiveness of earlier risk reduction actions. This analysis may lead to the identification of
a potential Safety Issue which needs to be formally risk assessed to determine the level of
risk and to design appropriate risk reduction measures” [3].

The data stored in the safety database are further enriched using descriptors or keywords
in order to expedite reporting and trend analysis. According to the International Civil Avia-
tion Organization Safety Management Manual, “Safety data should ideally be categorized
using taxonomies and supporting definitions so that the data can be captured and stored
using meaningful terms ... Taxonomies enable analysis and facilitate information sharing
and exchange” [4]. The descriptors or taxonomies are applied with the primary objective of
identifying any safety issues that affect the current operation.

A practical requirement that has been established is that the method for applying tax-
onomies should be easy to use and not create an unreasonable workload [3]. Given the
fact that large airlines may have to process several hundred safety reports per month, good
tools and automation are critical success elements in Safety Management Systems. This

5



6 CHAPTER 2. BACKGROUND

last requirement can be accomplished by employing different machine learning techniques
to apply the taxonomies in an automated manner.

2.2 Machine Learning

Machine learning can be defined “as a set of methods that can automatically detect pat-
terns in data, and then use the uncovered patterns to predict future data, or to perform other
kinds of decision making under uncertainty” [5]. Machine learning pretends to create models
that learn such patterns without manually hard-coding the patterns. Many daily tasks that
humans perform can be automated using it. Machine learning powered systems can trans-
late text and speech, perform spam detection, detect faces in pictures, detect fraudulent
transactions and predict passenger flow in an airline, just to name a few examples.

The methods used in machine learning are generally categorized in two broad groups:
supervised learning and unsupervised learning. In supervised machine learning, “the avail-
able data includes information about the correct way to classify at least some of the data” [6],
in other words, the data contains examples and “each example is also associated with a la-
bel or target” [7]. In unsupervised learning, the examples in the dataset contain no targets
or labels and the algorithms are used to “learn useful properties of the structure of this
dataset” [7].

2.3 Text Classification

Text classification or categorization is “the activity of labeling natural language texts with
thematic categories from a predefined set” [8]. Such texts include documents, forms, books,
social media messages and more. Labeling refers to the process of annotating each doc-
ument with the categories [9]. Text classification can be performed manually by a human
or automatically using machine learning. The latter approach has been effective, reaching
“an accuracy comparable to that achieved by human experts, and a considerable savings in
terms of expert labor power, since no intervention from either knowledge engineers or do-
main experts is needed for the construction of the classifier or for its porting to a different set
of categories” [8]. Automated text classification is covered by the field of supervised learn-
ing, although unsupervised techniques could be used to improve the classification accuracy.
Please refer to [8] for an introduction to text classification using machine learning. [10] pro-
vide an extensive survey on different approaches to perform automatic text classification.
Given that the safety reports mainly comprise text, the methods and techniques in the area
of text classification are crucial to fulfill our objective of classifying automatically such re-
ports. As one report can be labeled with one or more taxonomies, it is necessary to explore
multi-label classification models.
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2.4 Multi-label Classification

Most of the machine learning classification techniques that can be applied to the text cat-
egorization problem are developed to assign a single label from a set of categories to the
document. This means that the categories are mutually exclusive and this is called multi-
class classification. In contrast, assigning multiple classes that are not mutually exclusive is
called multi-label, any-of or multi-value classification [9].

According to [11], the assumptions for this multi-label problem settings are:

1. The set of labels is predefined, meaningful and human-interpretable (albeit by an ex-
pert), and all relevant to the problem domain.

2. The number of possible labels is limited in scope, such that they are human-browsable,
and typically not greater than the number of attributes.

3. Each training example is associated with a number of labels from the label set.

4. The number of attributes representing training examples may vary, but there is no need
to consider extreme cases of many thousands of attributes since attribute-reduction
strategies can be employed in these cases.

5. The number of training examples may be large - a multi-label classifier may have to
deal with potentially hundreds of thousands of examples.

Additionally, [12] expands the multi-label settings with the following:

6. Labels may be correlated.

7. Data may be unbalanced.

Multi-label learning methods are categorized in three groups: problem transformation, al-
gorithm adaptation and ensemble methods. The problem transformation approach converts
or decomposes the multi-label problem in one or several single-label (multi-class) problems
that can be solved using classical machine learning algorithms. The algorithm adaptation
method consists of modifying or creating new machine learning algorithms to learn from
multi-label data. Ensemble methods combine these two approaches or use traditional en-
semble methods like bagging. Refer to [12] and [13] for an introduction and comparison of
methods for multi-label learning.

One problem transformation method that is worth mentioning is called Binary Relevance
(BR) which consists in training one base classifier per each label. The base classifier can
use logistic regression, support vector machines or any other binary classifier. BR is a
straightforward method to implement that gives a good baseline for multi-label learning. The
main disadvantage is that training one classifier per label is not efficient and it can become
prohibitive in problems with a lot of labels.

[13] evaluated several multi-label methods and concluded that the best performing meth-
ods across all tasks are RF-PCT and HOMER [14], followed by BR (Binary Relevance) and
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CC (Classifier chains) [11], using SVM and decision trees as base classifiers. [15] propose
the multi-label informed feature selection framework (MIFS), that performs feature selec-
tion in multi-label data, exploiting label correlations to select discriminative features across
multiple labels. [16] introduce extreme learning machine for multi-label classification (ELM-
ML). ELM-ML outpeformed other evaluated methods in most of the experiments in terms of
prediction and test time. [17] propose the canonical-correlated autoencoder (C2AE) which
is a deep learning approach that outpeforms other models. Unfortunately, C2AE is only
evaluated in one text dataset and the authors do not provide a performance reference for
this single dataset. [18] propose GroPLE, a method that uses a group preserving label em-
bedding strategy to transform the labels to a low-dimensional label space while retaining
some properties of the original group. This approach performs better than other evaluated
methods in most of the experiments.

The methods mentioned in the previous paragraph could serve as a starting point for
this thesis. However, the main disadvantage detected in the analyzed literature is that most
multi-label methods proposed are tested on datasets with small label cardinality, while our
problem deals with 800 labels approximately. One popular dataset with a label cardinality
similar to our problem is the Delicious dataset [14], hence methods that perform well in such
dataset will be prioritized.

2.5 Text Representation

Most of the machine learning models receive matrices with numbers as input. An active
area of research is how to transform the given text into a suitable input for the machine
learning models. “A traditional method for representing documents is called Bag of Words
(BOW). This representation technique only includes information about the terms and their
corresponding frequencies in a document independent of their locations in the sentence or
document” [10]. Other traditional approaches are n-grams, TF and TF-IDF. Please refer
to [19] for an introduction to such techniques. Modern approaches are word2vec [20], GloVe
[21], fastText [22], ELMo [23] and BERT [24]. BERT is the current state of the art model for
text representation. For the scope of this project, it is really important to find a good text
representation that maximizes the predictive capacity of the developed classification model.

2.6 Inter-annotator Agreement

The safety data mentioned in Section 2.1 are classified according to the defined taxonomies
by event analysts that are also called coders or annotators. Such analysts are humans and it
is expected to find some variability in their judgments due to different causes like experience,
training and personal circumstances. Therefore, inter-annotator agreement is measured with
the objective of assessing the reliability of the annotations given by the annotators.

According to Krippendorff “reliability is the degree to which members of a designated
community agree on the readings, interpretations, responses to, or uses of given texts or
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data” [25]. Such definition is given in the field of content analysis, where researchers analyze
different media (books, newspapers, TV, radio, articles, photographs, etc) with the objective
of drawing some conclusions. In this context, the researchers demonstrate the trustwor-
thiness of their data and the reproducibility of their experiments by providing a measure of
reliability. In other words, “it represents the extent to which the data collected in the study
are correct representations of the variables measured” [26]. Such definitions are applicable
to our task because the taxonomies are applied with the primary objective of identifying any
safety issues that affect the current airline operation.

There are several coefficients to measure the inter-annotator agreement. The most
used coefficients are percentage agreement; Cohen’s κ; Bennett, Alpert, and Goldstein’s
S; Scott’s π and Krippendorff’s α [27]. Most of such proposed scores are defined for binary
or multi-class settings but not for multi-label experiments. Some extensions to such methods
have been proposed to support multi-label tasks. We will use Krippendorff’s α because it
has been proved that Cohen’s κ tends to overestimate the agreement. Scott’s π is similar
to Krippendorff’s α, and the most notable difference is that the latter corrects for small sam-
ple sizes [25]. Additionally, Krippendorff’s α can be used in multi-label settings. It is also
applicable to any number of annotators in contrast to the majority of agreement scores that
are only applicable to two annotators. Furthermore, it is chance-corrected, meaning that it
will discount the agreement that is achieved just by chance. Moreover, it can be applied to
several type of variables (nominal, ordinal, interval, etc) and to any sample size. Finally, it
can be applied to data with missing values. This choice is aligned with the suggestions given
in [27].

Krippendorff’s α assume that different annotators produce similar distributions in their
annotator scheme, while Cohen’s κ calculate the distributions among the coders that pro-
duced the reliability data. As we will see in future chapters, the dataset was produced by
different analysts that were changing across time, confirming that for our case Krippendorff’s
α is a more suitable metric.

Krippendorff’s α is defined as “the degree to which independent observers, using the cat-
egories of a population of phenomena, respond identically to each individual phenomenon”.
In order to calculate the mentioned agreement, we will use the multi-valued mvα for nominal
data as proposed in [28]:

mvα = 1− mvDo

mvDe

Where mvDo is the observed disagreement for multi-value(multi-label) and mvDe is the
expected disagreement for multi-value data.

It is worth noting that it has been demonstrated “that agreement coefficients are poor
predictors of machine-learning success” [27]. However, an acceptable level of agreement
among the analysts is needed as a starting point to assure that the dataset is reliable and
that there is some consistency in the labels that are used to train the machine learning
algorithm.
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2.7 Imbalanced Learning

The performance of most machine learning algorithms can be seriously affected by datasets
that contain labels or classes with examples that are not evenly distributed. It is common to
find datasets including a class with hundreds of examples and another class with less than
ten of them. In some cases, the classes with the most examples will get good predicting
performance while the minority classes will get poor performance. Depending on the use
case, this poor performance in the minority classes could be ignored, but other cases require
the underrepresented classes to perform well.

Researchers have proposed different techniques to address this issue. One way to deal
with such problem consists of assigning weights or costs to the examples. Some machine
learning classification techniques can be extended to re-weight their predictions in order to
counter the data imbalance. Popular machine learning implementations of logistic regres-
sion, decision trees, support vector machines, random forest, between others, support the
mentioned weighting technique. Another popular method is under-sampling the majority
class. This includes randomly selecting examples until a desired ratio between the majority
and minority class is achieved. Other techniques include using clustering or nearest neigh-
bors to select the subsample [29]. The last method to improve the imbalanced learning
problem is to perform over-sampling of the minority class. This could be done either by re-
sampling the data with replacement or to generate synthetic data from the minority class by
the use of some technique [30].

2.8 Metrics

In the following section, several metrics are presented. Firstly, classical machine learning
evaluation measures are defined to allow easy comparison with other models. Then, metrics
that are used to characterize the dataset are described.

True positives (TP) are the number of examples correctly predicted as having a given
label.

False positives (FP) are the number of examples incorrectly predicted as having a given
label.

False negatives (FN) are the number of examples incorrectly predicted as not having a
given label.

Precision (P) is the fraction of correctly predicted labels over all the predicted labels.

Precision =
TP

TP + FP

Recall (R) is the fraction of correctly predicted labels over the labels that were supposed
to be predicted.

Recall =
TP

TP + FN
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F Measure (Fβ) is a “single measure that trades off precision versus recall” [9]:

Fβ =
(β2 + 1)PR

β2P +R

In this thesis, we will use Fβ=1 also known as F1 that balances both precision and recall.
Due to business needs, it is the desire of the management to emphasize precision, therefore,
Fβ=0.5 (F0.5) will be used as our primary metric.

Macroaveraging computes a simple average over the labels by evaluating the metric
locally for each category and then globally by averaging over the results of the different
categories [8] [9].

Microaveraging aggregates the TP, FP and FN results together across all classes and
then computes the global metric.

Microaveraging is driven by the performance of the classes with more examples, mean-
while macroaveraging gives equal importance to each class, making it suitable to evaluate
the overall model performance in presence of imbalanced datasets.

Label average (LAvg) is the average number of labels per example:

LAvg(S) =
1

N

N∑
i=1

|yi|

Label density (LDen) is the label average divided by the number of labels:

LDen(S) =
1

N

N∑
i=1

|yi|
L

=
LAvg(S)

L
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Chapter 3

Related Work

This section describes the related work. We analyze the work that has been done to classify
aviation safety reports automatically. Furthermore, we describe state of the art research that
can be applied to answer our research questions.

Different Natural Language Processing (NLP) techniques are applied in [31] to create an
aviation safety report threshold-based classifier using correlations between the labels and
the extracted linguistic features. The authors identify some linguistic characteristics that are
specific to the aviation domain:

• There are many acronyms are used and they need to be grouped or expanded. For
example, “A/C” could be expanded into “aircraft” and “TO” means “take-off”.

• Some terms that appear in the reports are considered conceptually equivalent, for
example “bad weather” and “poor weather”.

This research is different from [31] in the way that more sophisticated NLP and machine
learning techniques are used to classify the safety reports. Some of the authors’ ideas about
the linguistic processing of the reports are worth considering for this work.

[32] apply NLP and machine learning techniques to classify aviation safety reports and
to suggest emerging patterns that can be incorporated to improve the taxonomy used. They
develop a tool for report retrieval as well. Furthermore, the authors offer an introduction to
the overall process of safety reporting in the aviation industry.

The main difference from [32] is that this research aims to classify 7 different types of
reports with different types of fields, while the authors focus in one type of report using only
a text field. Additionally, the taxonomy trees used are limited to a maximum height of 2 with
37 labels, while our height is up to 4 and more than 800 labels. To solve the multi-label
classification problem they used BR with SVM as base classifier, therefore, 37 different clas-
sifiers were trained. The authors have specifically refrained from applying machine learning
techniques to a problem with such a big number of categories like ours.

13
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3.1 Extreme Multi-label Classification

Extreme multi-label classification or learning is a challenging problem that tries to classify
documents in multi-label settings with thousands or millions of labels. This problem differs
from [11] assumptions as follows:

1. The number of possible labels are not limited in scope anymore, they are not human-
browsable and they could be greater than the number of attributes.

2. There are many labels that have no examples or just a few examples associated.

Having such a big label space, BR methods that train one classifier per each label can be
computationally expensive and prediction time could be high as each classifier needs to be
evaluated. Therefore, most approaches used to solve the extreme multi-label classification
are either based on trees or on embeddings [33] and BR is not even considered. Embed-
ding methods transform the labels by creating a mapping to a low-dimensional space. A
classifier is trained on such low-dimensional space, which should perform better due to the
compressed space. After the prediction task, the results need to be mapped back to the
original label space. Embedding methods primarily focus on improving the compression or
mapping by preserving different properties from the original label space. Tree methods try
to learn a hierarchy from the data. Such hierarchy is exploited to gradually reduce the label
space as the tree is traversed, improving prediction time and having comparable accuracy.

A tree based method called FastXML is proposed in [33]. FastXML learns an ensemble
of trees, creating a hierarchy over the feature space. It performs significantly better than
multi-label random forests (MLRF) and LPSR. Additionally, it scales efficiently in problems
with millions of labels. The authors evaluated FastXML in medium and large datasets. An
embedding based method is used in SLEEC which learns “a small ensemble of local dis-
tance preserving embeddings which can accurately predict infrequently occurring (tail) la-
bels” [34]. SLEEC outperforms FastXML in most of the experiments run by the authors. [35]
propose DiSMEC that outperforms FastXML and SLEEC in most of the experiments. [36]
build on top of FastXML two new methods called PfastXML and PfastreXML. Both outper-
form FastXML and SLEEC by a large margin. It is important to note that DiSMEC, PfastXML
and PfastreXML were not evaluated in a dataset with a label cardinality similar to our problem
such as Delicious [14]. DXML is proposed in [37], establishing a deep learning architecture
with graph embeddings. The embeddings consist of modeling the label dependencies with
a graph. DXML outperforms SLEEC and FastXML in most of the experiments. However,
FastXML performs better in the Delicious dataset. XML-CNN is presented in [38] proposing
a simple deep learning architecture that outperforms FastXML and SLEEC in most of the
experiments. The experiments do not include a dataset with a label cardinality similar to
our problem. Even though extreme multi-label classification methods are optimized for prob-
lems with thousands or millions of labels, some of them seem to perform reasonably well
on datasets with hundreds of labels, like the one used in this research. Consequently, it is
worth considering some of these methods for our evaluations.



3.2. HIERARCHICAL TEXT CLASSIFICATION 15

3.2 Hierarchical Text Classification

Hierarchical text classification is a specific case of text classification where the labels are
organized in a hierarchical structure, in the same way that the taxonomies for safety reports
are organized. A simple approach for this problem is to ignore the hierarchical structure
of the labels, flattening them and using a multi-label classifier. Other approaches try to
exploit the hierarchy, decomposing the classification problem into a small sets of problems
[39]. Basic approaches to solve this problem are presented in [39] and [40]. [41] propose
a byte level n-grams and a hierarchical classification approach using kNN and SVM. The
authors define the approach local classifier per parent node (LCPN). This method is similar
to the one in [40]. A deep learning model called hierarchically regularized deep graph-CNN
(HR-DGCNN) is proposed in [42]. Such approach outperforms XML-CNN. As hierarchical
datasets are scarce, HR-DGCNN is only evaluated in two datasets, none of them with a
label cardinality similar to our problem.
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Chapter 4

Dataset

The dataset used for this research contains 19 815 samples. Each sample represents a
filled report that has been categorized with one or more labels. There are 7 different types of
reports that share some fields, but most of the fields are unique for each type of report. The
fields contain text written using natural language in english and dutch. There are also date,
numerical and categorical fields. The dataset contains 196 fields in total and it comprises
reports from July 2016 to February 2019. The layout of one of such report types is shown in
Figure 4.1.

There are 859 unique labels. Such labels are clustered in 13 different taxonomies as
shown in Table 4.1.

Such taxonomies represent an entire hierarchy of labels, meaning that each taxonomy
is a tree-like structure. The max height of a tree is 4, but most of them are 3. Here are some
examples of such hierarchies:

G. External

G.3 External factors

G.3.1 Drone

G.3.2 Kite

G.3.3 Laser

G.3.4 Volcanic ash

H. Flight

H.13 Wildlife strike

H.13.1 Birdstrike - Miscellaneous

H.13.2 Multiple Birdstrike

H.13.3 Single Birdstrike

H.13.4 Wildlife strike

Each label has 44.99 examples on average (LAvg) with a standard deviation of 93.53.
The label density (LDen) is 0.0524. There are 72 labels with only one example. Figure 4.2

17
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Figure 4.1: Excerpt from one of the seven types of reports.
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Table 4.1: The different taxonomies in the dataset with the number of reports that have been
categorized with labels belonging to that taxonomy.

Taxonomy Frequency

A. Cargo 403
B. Consequences 3126
C. Environmental Safety - (Possible) Consequences 642
D. Environmental Safety - Causes 215
E. Environmental Safety - Event types 218
F. Environmental Safety - Processes 235
G. External 1262
H. Flight 4477
I. Ground 3671
J. Inflight 3970
K. Occupational Safety Causes 7161
L. Occupational Safety Impacts 2101
M. Technical 1244

Table 4.2: The different report types in the dataset with the number of reports per each type.

Report Type Frequency

ASR - Air Safety Report 8461
CIR - Cargo Incident Report 386
ENV - Environmental Safety Report 635
GHR - Ground Handling Safety Report 3004
OSR - Accident with Injury 2598
OSR - Dangerous situations (without injury) 3462
VSR - Voluntary Safety Report 1269

displays the histogram for the labels. It can be observed that such histogram is similar to a
power-law distribution, a typical characteristic for multi-label problems.

Table 4.2 displays the different report types along with its report frequency. The air
safety reports (ASR) account for almost half of the examples, followed by occupational safety
reports for dangerous situation (OSR without injury).

Figure 4.3 depicts the histogram of the number of taxonomies assigned to a report. It
can be seen that almost eight thousand reports have been labeled with one taxonomy and
around six thousand have been labeled with two taxonomies. This means that near 73% of
the reports have been classified with one to two taxonomies. On average, each report has
2.02 taxonomies assigned with a standard deviation of 1.17.

Finally, Table 4.3 contains a summary of the dataset properties. The mentioned fea-
tures correspond to the different fields that a report contains. For example, the field “Event
Date/Time” in Figure 4.1 is one date feature, while “Title” and “Description/Beschrijving” are
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Figure 4.2: Label distribution. The x-axis contains the labels and the y-axis depicts the
report frequency. The data are ranked by report frequency.

text features. In the same way, “Location” and “Location type/Soort locatie” are categorical
features. The property “Other features” comprises database identifiers and report numbers
which are not useful to predict the report label.
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Figure 4.3: Taxonomy count histogram. The x-axis contains the number of taxonomies as-
signed and the y-axis shows the report frequency.

Table 4.3: Dataset summary. LAvg is the average number of labels per example and LDen
is the label average per number of labels. Both are calculated according to the
formulas in Section 2.8.

Property Value

N. samples 19 815
Date features 4
Numeric features 32
Text features 17
Categorical features 138
Other features 5
Total Fields / Features 196
N. labels 859
Taxonomies 13
LAvg 44.99 ± 93.53
LDen 0.0524
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Chapter 5

Methodology

The main approach used in this research is to set up a quick baseline using a classical
machine learning model. Setting up this quick baseline will help us to build a basic pipeline
to transform the given dataset into the features that will be used to train our model. This
baseline will help us to learn more about the dataset and to uncover some possible problems
and mistakes in the code that trains and evaluates the different experiments.

After setting the baseline, the data were inspected to identify the features that could be
cleaned and pre-processed. After identifying a possible feature, code was written to clean or
pre-process such data and then its impact was assessed by running the same pipeline and
comparing the metrics (macro F1 and macro F0.5). This was executed in an iterative manner,
evaluating just one step at a time and incorporating the learnings gradually into our process.
Beyond the well-known pre-processing steps that are commonly used by machine learning
practicioners like lowercasing, stemming and removing accents, some domain specific steps
were applied with the help of domain experts.

As there are several machine learning techniques that could be used to solve our prob-
lem, the procedure described above was used to probe more advanced machine learning
approaches and some parameters in order to identify the most promising candidates for the
experiments of this research, thus reducing our search space. Figure 5.1 depicts a diagram
of the described approach.

This step deemed important because the following insights were identified:

• The long-tail in our taxonomy distribution is problematic. The taxonomies with very

Figure 5.1: Diagram displaying the main approach used in this research. The “Change”
feedback loop means that we change a pre-preprocessing step or classifier at a
time according to the results of the previous iteration.

23
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few examples represent a zero-shot learning problem that it is not important for the
business objective as the company is interested in predicting frequent taxonomies
correctly instead of predicting rare ones that are used for infrequent events. Therefore,
labels with less than 20 examples were discarded.

• The data imbalance is problematic as well. The fact that the taxonomy distribution
resembles a power-law is giving us a taxonomy with almost 800 examples while hav-
ing tens of taxonomies only with 20 examples (after the cutoff value). A quick test on
our baseline helped to identify that using the synthetic minority over-sampling tech-
nique(SMOTE) [30] worked way better than any other imbalanced learning techniques
for multi-labeled data.

• In the text preprocessing aspect, using word unigrams delivered equal or better results
than using bigrams, or char n-grams(n = 3, 4, 5).

• The high dimensionality of the post-processed features affected the performance of the
classifiers. Different dimensionality reduction techniques were tested. Principal com-
ponent analysis, latent semantic analysis, χ2 based feature selection and recursive
feature elimination resulted in little improvement to our task.

• A very promising gradient boosting decision tree was identified: LightGBM [43]. The
preliminary results demonstrated that it was performing better than other candidates
like RandomForest and classifiers based in neural networks.

After analyzing these insights, a feature pipeline was established and a group of experi-
ments was designed to answer the proposed research questions.
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Experimental Setup

In this section we present the different experiments that we carry out in order to generate
data that will support the answers to our request sections.

6.1 Baseline

In order to quantify the improvements achieved in this thesis, a baseline was established
using two fast and popular models. Our first step is to pre-process the dataset as follows:

• The fields containing “yes/no/NA” were normalized, because some of them contained
“yes” and “no” while others had “on” and “off”. Invalid values were imputed as “NA”
because some examples contained random text1 in such fields.

• The categorical fields were lowercased.

• English stop words were removed from text fields using the stop words list in [44].

• The text fields were tokenized using the regular expression “\b\w\w+\b”.

• The text fields were encoded using TF-IDF.

• The categorical fields were one-hot encoded.

• The numerical and date fields were excluded as they didn’t improve the baseline per-
formance.

After the pre-processing, a first model was trained using the BR method with logistic
regression (LR) as base classifier. The second model is a decision tree classifier in a multi-
label setting (MLDT). The implementation provided by [44] version 0.20.2 was used with the
default parameters: l2 regularization, tolerance 1−4 and liblinear solver for LR; gini criterion,
the minimum samples required to split an internal node is 2 and the minimum number of
samples required to be a leaf node is 1 for MLDT.

1Some report fields containing unrelated text information were reused by the system administrator to store
the values for some categorical fields, resulting in some samples containing invalid values for the categorical
fields.

25
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6.2 Pre-processing

For all the experiments described in the following sections we built a feature pipeline that is
composed as follows:

• Remove the labels that have less than 20 examples.

• The fields containing “yes/no/NA” were normalized, because some of them contained
“yes” and “no” while others had “on” and “off”. Invalid values were imputed as “NA”
because some examples contained random text2 in such fields.

• Some domain specific field pre-processing was applied. This included using special
tokens in the form “<token-type>” to replace unique identifiers for baggage, runways,
aircraft, written forms, unit load devices (ULD) and flights. The dates were also re-
placed for a special token “<date>”.

• The categorical fields were lowercased.

• All the text fields were concatenated together.

• All the accented characters were converted to their unaccented counterparts.

• Tokenize text fields using the regular expression “(?u)<?\b\w\w+\b>?”. Such regular
expression preserved the special tokens that replaced the identifiers and dates.

• Stemming with the Lancaster algorithm [45] was applied to the text fields.

• The categorical fields were one-hot encoded.

• The numerical and date fields were excluded as they didn’t improve the baseline per-
formance.

• We only use the ten thousand most frequent text tokens.

6.3 Multi-label Classification

The machine learning techniques for our experiment were selected as follows: logistic re-
gression (LR), LightGBM (LGBM) [43], multi-label decision tree (MLDT), support vector ma-
chines (SVM), Classifier Chain (CC) [46], FastXML [33], PfastXML, PfastReXML [36] and
DiSMEC [35]. They were selected because they presented good results in research papers
when applied to problems similar to ours. They were also selected because they provided
an implementation for scikit-learn [44] or their provided implementations were relatively easy
to adapt to scikit-learn’s pipeline. The objective of this experiment is to identify the multi-
label techniques that can be applied in the upcoming experiments. The outcome of this

2Some report fields containing unrelated text information were reused by the system administrator to store
the values for some categorical fields, resulting in some samples containing invalid values for the categorical
fields.
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experiment is to use BR and CC with LGBM, SVM, DT and LR. The other techniques were
discarded.

6.4 Text Representation

For evaluating the text representation techniques, term frequency (TF), term frequency in-
verse document frequency (TF-IDF), W2Vec and FastText were selected. For W2Vec we
used a pre-trained model that was trained using the Google News dataset as described
in [47]. For FastText a pre-trained model that was trained on the Common Crawl with sub-
word information [48] was used. Both pre-trained models have a dimension of 300 and are
available publicly 3. Having such dimensions to represent a single word or token implies that
even a short text will have a highly dimensional representation. This high dimensionality pro-
duces a problem to our current compute capability. Additionally, applying this technique to
texts will yield a different dimension per example and most of the machine learning models
require a fixed dimension input. A possible solution is to have a fixed document length that
requires longer documents to be truncated and shorter documents to be padded with zeros
or any other value. This solution has the disadvantage that it still has a high dimensionality
when documents tend to be long. A more plausible solution is to sum or average the resulting
vectors by document. Such approach has the downside that some information is lost in the
process but the dimensionality is reduced dramatically. For this same reason and because
we do not have enough computational resources, state of the art techniques like ELMo and
BERT were not considered. The mentioned representation techniques were evaluated using
the following experiment: we train the four selected classifiers (LGBM, SVM, DT and LR) in
a binary relevance setting with each of the text representation techniques, so we simulate
an end-to-end evaluation and the performance of the models is compared. The classifier
chain was not used because their predictions cannot be made in parallel, meaning that the
evaluations would have taken too much time to complete. The outcome of this experiment
is to select TF and TF-IDF as text representation techniques. They not only perform better
than embeddings in this case, but have a much smaller memory footprint, because it is not
needed to load the pre-trained weights.

6.5 Imbalanced Learning

After deciding the text representation, it was necessary to determine if oversampling our
dataset with SMOTE can improve the performance of the classifiers. Therefore, we trained
the four selected classifiers (LGBM, SVM, DT and LR) in a binary relevance setting with
SMOTE and compared them against their imbalanced counterparts. This was done for both
TF and TF-IDF text representation techniques. It was a big surprise to discover that the
performance of LGBM improves dramatically by using SMOTE, while it affects negatively
the performance of the decision trees.

3https://code.google.com/archive/p/word2vec/ and https://fasttext.cc/docs/en/english-vectors.html
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6.6 Hierarchical Classification

To assess the performance of hierarchical classification over flat classification, we compare
a classifier without any information about the label hierarchy against a hierarchy of classifiers
based on the ideas from [40]. In this case, we leverage the fact that our labels are divided
in different trees. We train a multi-label classifier to choose which trees should be applied
to the report and we train a multi-label classifier per each tree that will give us the leaf
labels. At prediction time, we run a taxonomy classifier on the example to get which of the
thirteen taxonomies the example belongs to. Then, for each of such predicted taxonomies,
we retrieve its respective trained leaf node classifier and run the example through it. The
final prediction is the concatenation of the individual predictions emitted by the leaf node
classifiers. The name for this classifier is local classifier per taxonomy and leaves (LCTL).
Consequently, we select the best performing techniques in our previous experiments and
use them as base classifiers for the LCTL approach. Then we proceed compare them
against the results of such classifiers in a flat setting. The results of this experiment show
that using LCTL results in a slight performance improvement against their flat counterparts.

6.7 Classifier Per Report Type

The high feature dimensionality represents a big problem for all the evaluated machine learn-
ing models, even after keeping only the top ten thousand text tokens. With the objective of
further reducing such dimensionality, we assume that the data for each type of report are
independent. This is further supported by the fact that each report type has a lot of unique
fields. Furthermore, some fields may be shared by several reports but they contain informa-
tion with totally different distributions because each report aims to gather different types of
information. This could lead to the case where certain classifier learns some pattern for one
type of report that is immediately “unlearned” due to the patterns found in another type of
report. Following these assumptions, we can train one model per each report type. While
such assumptions might not be completely true, training one model per report reduces the
amount of features each model has to focus on and effectively increases the model perfor-
mance.

To evaluate the impact of training a model per report type, we compare this approach
with the results of the experiments described before. This means that we train the per report
model in both flat and LCTL settings with different base classifiers.

Finally, the results of these experiments lead to our proposed model: Train one classifier
per report type using SMOTE, TF-IDF, binary relevance (BR) and LGBM. Such classifier
outperforms any other technique at least by 3%.
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6.8 Technical Evaluation

All the experiments are performed using 5-fold cross validation with iterative stratification
for multi-label data [49]. For each experiment we calculate the precision, recall, F1 and
F0.5 metrics, aggregating them using microaveraging and macroaveraging as explained in
Section 2.8. The parameters used to train all the models are detailed in Appendix A.2.

6.9 Human Evaluation

The expressed concerns about the process of categorizing the reports by the human an-
alysts derived in the secondary goal of this research. The development of the first goal
to apply machine learning to automatically classify the safety reports confirmed such con-
cerns: the trained models for taxonomies with a considerable amount of examples were not
performing as expected.

In order to diagnose such problem, the misclassified examples were examined. It was
discovered that labels are partially missing from some examples. To a lesser extent, it was
also discovered that some labels were incorrectly assigned. Such discoveries led us to
examine the current categorization process which is described in the next paragraph.

The analysts specialize in one, two or three types of reports. This means that some do-
main knowledge is required to analyze each type of report. The analysts come from different
backgrounds. Some of them are full-time analysts while others work part-time. In certain
cases, temporary analysts will categorize some reports. A single report will be categorized
by just one analyst and saved into the database. Once a report has been labeled, the label-
ing outcome won’t be checked again by another analyst. This situation has a few exceptions
such as an analyst reviewing a report for historical reasons and then “fixing” the labels after
considering that something is not right. It is important to consider that the categorization is
done among other tasks that need to be performed in the analysis of the same report, which
means that the analyst’s attention and expertise is not only focused on categorizing reports.
Additionally, we have identified that it is not completely clear when certain labels should be
applied. During the training process that the analysts go through, they are handed some
documentation about the taxonomies and how to apply certain labels, however, such docu-
mentation is not extensive. Even though some label names are self-descriptive, this could
be not enough and a clear description should be provided. Furthermore, the big taxonomy
poses a problem because it is not feasible for the analyst to go through the entire list of
possible labels to annotate the report with the exact labels as pointed out by [36]. Given
this fact, we cannot consider our current dataset as the golden ground truth for our machine
learning effort, meaning that there exists the possibility that a prediction is marked as a false
positive while it is a true positive.

We strongly believe that some of the theories of content analysis [25] can be used to
measure and improve the report categorization process. Consequently, we arrange an ex-
periment to measure the reliability of the process using Krippendorff’s multi-valued α for
nominal data (mvα) as exposed in Section 2.6. Such experiment will help us to set a starting



30 CHAPTER 6. EXPERIMENTAL SETUP

point to solve the problems exposed above.
The experiment was carried out with 5 analysts that participated voluntarily. Each analyst

was asked to review up to 50 real reports according to the report types that they categorize
in their day to day work. If an analyst normally categorizes more than one report type, the
50 reports will contain a proportional amount of each report type. This proportion is calcu-
lated over the report type distribution in our dataset, which means, that stratified sampling
was employed instead of sampling them uniformly. To make things clear, if two analysts
specialize on the ASR type, each analyst will label the same 50 ASR reports. For the case
of those categorizing GHR, CIR and ENV types; each analyst will need to classify the same
37 GHR, 5 CIR, and 8 ENV reports. The number of 50 reports was agreed with the analysts
according to their workload.

A web application was created in order to gather the data for this experiment. The
user interface was designed to be the most similar to the application they normally use to
categorize the reports. An screenshot of such user interface is displayed in Appendix A.3.
It was decided to create such application because we wanted the analysts to use a single
interface to read and categorize the reports. Additionally, as the reports for this experiment
were real, the web application allowed us to hide the labels for the reports that were already
classified, therefore preventing bias. The results were collected anonymously, so we cannot
trace back the answers to a particular analyst.

The outcome of the experiment is the data to calculate the current inter-annotator agree-
ment and to suggest some improvements in the categorization process. After implementing
the mentioned suggestions, the experiment can be carried out again to determine if the sug-
gestions resulted in any improvement to the process. It is out of the scope of this research
to implement and measure the impact of such suggestions.



Chapter 7

Results & Discussion

The results of all the experiments that were executed during this project are presented in the
following subsections.

The following abbreviations are used in the tables: binary relevance (BR), logistic regres-
sion (LR), LightGBM (LGBM), decision tree (DT), multi-label decision tree (MLDT), support
vector machines (SVM) and Classifier Chain (CC). Binary relevance and classifier chain are
methods that require a base classifier, therefore, we announce the respective method fol-
lowed by the base classifier used. For example, BR LR means that the method used is
binary relevance with a logistic regression base classifier.

Even though we report diverse metrics for our experiments, we are looking to optimize
the macro F0.5 measure. We chose the macro average because we have an unbalanced
dataset with almost a power-law distribution. Macroaveraging gives equal importance to
each class, making it suitable to evaluate the overall model in our case. The F0.5 metric was
chosen by business needs (see Section 2.8).

7.1 Baseline Evaluation

Table 7.1 displays the results obtained using a 5-fold cross validation.

Table 7.1: Baseline results
BRLR MLDT

Macro precision 0.4194 0.3215
Macro recall 0.1634 0.2746
Macro F1 0.2120 0.2862
Macro F0.5 0.2773 0.3020
Micro precision 0.8115 0.4742
Micro recall 0.3421 0.4214
Micro F1 0.4813 0.4462
Micro F0.5 0.6367 0.4626
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7.2 Machine Learning Models Evaluation

In this section we present the results of using different machine learning models to solve
this specific problem. Such results are displayed in table 7.2. The evaluated models are
compared using both term frequency (TF) and term frequency inverse document frequency
(TF-IDF). The multi-label model classifier chain using logistic regression or SVM as base
classifier performed best, followed by binary relevance with logistic regression or SVM as
base classifiers as well. These four best models have in common that they all use term
frequency as text representation features. The extreme multi-label techniques with TF have
the best recall and an acceptable performance in the rest of the metrics. These results
suggest that our problem of report classification still lies in the area of classic multi-label
classification. Even though the number of labels L is greater than eight hundred, it is feasible
to train BR in less than an hour using multiple cores in a regular laptop computer, and thus
extreme multi-label classification is not needed.

Unfortunately, CC is a method that is slower than BR. Although its complexity is almost
the same as BR if L is small [46], this is not the case. Additionally, the predictions for classifier
chain models cannot be parallelized, imposing a big performance penalty. Therefore, it is
not possible to always evaluate it in further experiments.

7.3 Text Representation Evaluation

In this section we present the impact of using recent word embeddings over TF-IDF for
this particular problem that involves multi-label learning and hierarchical classes. Word2Vec
(W2Vec) and FastText embeddings are aggregated using sum and average (mean) methods.
The experiment results are listed in Table 7.3.

It is clear that TF and TF-IDF outperform the other methods. For the embeddings case,
summing always performs better than averaging. FastText sum ranks 4th place, meaning
that is the best performer for the embeddings. It is important to note that the fact that we are
averaging or summing such embeddings can seriously affect their performance because we
inevitably lose some information in the aggregation process. However, not aggregating them
derives in a even higher feature dimensionality, becoming prohibitive for our research.

7.4 Imbalanced Learning Evaluation

In this section we present the impact of using the SMOTE [30] over sampling technique.
We evaluate the four base classifiers in a binary relevance setting with both TF and TF-IDF.
We only oversample the classes with less than 200 examples. In these results, we can see
that LGBM’s performance is improved dramatically by the use of SMOTE and BR. Logistic
regression perceives a good performance improvement combining SMOTE with TF-IDF. For
the case of SVM, there is a slightly decrease in performance. The perfomance of DT is
decreased by the use of SMOTE. From this experiment we conclude that SMOTE should be
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Table 7.2: Machine Learning models experiment results. The results are macro and micro
averaged.

Model Ma Pre. Ma Rec. Ma F1 Ma F0.5 Mi Pre. Mi Rec. Mi F1 Mi F0.5

Binary Relevance

TF BR LGBM 0.3604 0.3015 0.2735 0.3039 0.3308 0.4491 0.3809 0.3492
TF BR SVM 0.4457 0.3464 0.3759 0.4079 0.5609 0.4822 0.5186 0.5431
TF BR DT 0.3542 0.3059 0.3193 0.3355 0.5037 0.4423 0.4710 0.4901
TF BR LR 0.4905 0.2929 0.3492 0.4102 0.6639 0.4393 0.5287 0.6023
TF-IDF BR LGBM 0.3378 0.2832 0.2482 0.2782 0.2723 0.4299 0.3333 0.2938
TF-IDF BR SVM 0.4673 0.2854 0.3334 0.3886 0.6178 0.4547 0.5238 0.5764
TF-IDF BR DT 0.3344 0.3069 0.3125 0.3225 0.4722 0.4418 0.4565 0.4658
TF-IDF BR LR 0.3603 0.1456 0.1884 0.2441 0.7844 0.3081 0.4424 0.5992

Extreme multi-label

TF FastXML 0.3617 0.4056 0.3480 0.3433 0.4011 0.6140 0.4852 0.4310
TF PfastXML 0.3532 0.4035 0.3445 0.3383 0.4010 0.6140 0.4852 0.4309
TF PfastReXML 0.3603 0.4075 0.3495 0.3441 0.4024 0.6160 0.4868 0.4323
TF DiSMEC 0.3634 0.4057 0.3478 0.3438 0.4013 0.6144 0.4855 0.4312
TF-IDF FastXML 0.2909 0.3459 0.2843 0.2768 0.3770 0.5772 0.4561 0.4051
TF-IDF PfastXML 0.2869 0.3449 0.2836 0.2754 0.3760 0.5756 0.4549 0.4040
TF-IDF PfastReXML 0.2949 0.3456 0.2858 0.2792 0.3766 0.5765 0.4555 0.4046
TF-IDF DiSMEC 0.2946 0.3470 0.2855 0.2788 0.3760 0.5756 0.4548 0.4040

Multi-label decision tree

TF MLDT 0.3041 0.2674 0.2769 0.2895 0.4595 0.4176 0.4375 0.4504
TF-IDF MLDT 0.3006 0.2702 0.2768 0.2875 0.4538 0.4151 0.4335 0.4454

Classifier Chain

TF-IDF CC LGBM 0.3340 0.2877 0.2494 0.2787 0.2696 0.4292 0.3312 0.2913
TF-IDF CC SVM 0.4634 0.2846 0.3317 0.3864 0.6120 0.4509 0.5193 0.5712
TF-IDF CC DT 0.3326 0.3078 0.3118 0.3209 0.4683 0.4420 0.4547 0.4628
TF-IDF CC LR 0.3647 0.1431 0.1862 0.2439 0.7759 0.2943 0.4267 0.5845
TF CC LGBM 0.3571 0.2990 0.2708 0.3008 0.3244 0.4462 0.3756 0.3431
TF CC SVM 0.4503 0.3459 0.3778 0.4112 0.5671 0.4824 0.5213 0.5478
TF CC DT 0.3479 0.3005 0.3129 0.3290 0.5001 0.4391 0.4676 0.4866
TF CC LR 0.4975 0.2887 0.3477 0.4120 0.6690 0.4330 0.5257 0.6032
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Table 7.3: Text representation experiment results. The results are macro and micro aver-
aged.

Model Ma Pre. Ma Rec. Ma F1 Ma F0.5 Mi Pre. Mi Rec. Mi F1 Mi F0.5

Term Frequency

TF BR LGBM 0.3604 0.3015 0.2735 0.3039 0.3308 0.4491 0.3809 0.3492
TF BR SVM 0.4457 0.3464 0.3759 0.4079 0.5609 0.4822 0.5186 0.5431
TF BR DT 0.3542 0.3059 0.3193 0.3355 0.5037 0.4423 0.4710 0.4901
TF BR LR 0.4905 0.2929 0.3492 0.4102 0.6639 0.4393 0.5287 0.6023

Term Frequency Inverse Document Frequency

TF-IDF BR LGBM 0.3378 0.2832 0.2482 0.2782 0.2723 0.4299 0.3333 0.2938
TF-IDF BR SVM 0.4673 0.2854 0.3334 0.3886 0.6178 0.4547 0.5238 0.5764
TF-IDF BR DT 0.3344 0.3069 0.3125 0.3225 0.4722 0.4418 0.4565 0.4658
TF-IDF BR LR 0.3603 0.1456 0.1884 0.2441 0.7844 0.3081 0.4424 0.5992

Word2Vec

W2Vec mean BR LGBM 0.3061 0.1821 0.1847 0.2237 0.3032 0.3189 0.3108 0.3062
W2Vec mean BR SVM 0.3020 0.2398 0.2547 0.2748 0.4480 0.4101 0.4282 0.4398
W2Vec mean BR DT 0.1949 0.1773 0.1810 0.1873 0.3349 0.3066 0.3201 0.3288
W2Vec mean BR LR 0.2944 0.1179 0.1531 0.1990 0.7400 0.2591 0.3838 0.5396
W2Vec sum BR LGBM 0.2960 0.1738 0.1773 0.2156 0.3109 0.3100 0.3102 0.3105
W2Vec sum BR SVM 0.2979 0.3320 0.3035 0.2972 0.3745 0.4534 0.4101 0.3879
W2Vec sum BR DT 0.1957 0.1749 0.1796 0.1868 0.3323 0.3014 0.3160 0.3256
W2Vec sum BR LR 0.3692 0.3045 0.3235 0.3448 0.4874 0.4294 0.4565 0.4745

FastText

FastText mean BR LGBM 0.3023 0.1721 0.1759 0.2157 0.2971 0.3009 0.2989 0.2978
FastText mean BR SVM 0.2352 0.2109 0.2134 0.2222 0.3505 0.3637 0.3570 0.3531
FastText mean BR DT 0.1902 0.1713 0.1758 0.1825 0.3231 0.2957 0.3087 0.3172
FastText mean BR LR 0.2747 0.1088 0.1416 0.1845 0.7084 0.2266 0.3433 0.4969
FastText sum BR LGBM 0.2966 0.1695 0.1721 0.2105 0.2967 0.2983 0.2974 0.2969
FastText sum BR SVM 0.3576 0.3255 0.3302 0.3421 0.4562 0.4591 0.4576 0.4567
FastText sum BR DT 0.1928 0.1709 0.1762 0.1838 0.3284 0.2973 0.3121 0.3217
FastText sum BR LR 0.4282 0.2630 0.3108 0.3618 0.5947 0.4034 0.4807 0.5431
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used in conjunction with LGBM and LR, both in a BR setting. On the other hand, DT has
had a consistent poor performance so far, therefore we decide to discard it.

7.5 Hierarchical Classification Evaluation

The results of the experiment to assess the impact of hierarchical classification over flat clas-
sification are displayed in Table 7.5. We evaluate LGBM, SVM and LR with TF and TF-IDF
in a local classifier per taxonomy and leaves (LCTL) mode. Then, we proceed to compare
them to their flat counterparts. We run each possible combination in binary relevance and
classifier chain multi-label settings. LGBM and LR in a binary relevance setting are evalu-
ated using SMOTE oversampling because those are the only models that benefit from that
technique. It can be seen that LCTL brings a slight improvement in the performance of most
of the classifiers.

7.6 Classifier Per Type of Report Results

To test our hypothesis that training one independent classifier per report type performs better
than training one classifier for the entire dataset, we used this proposed technique with the
best combinations that resulted from previous experiments. The results are presented on
Table 7.6.From the table is clear that the combination of TF-IDF, SMOTE, BR and LGBM per
report type outperforms any other model that has been evaluated in this research. It can
also be concluded that training one classifier per each report type brings moderate to big
performance improvements for the evaluated models. On the other hand, using LCTL does
not perform that well. We hypothesize that training per report type divides the search space
well enough, meaning that the additional partitioning brought by LCTL is of little help.

7.7 Inter-annotator Agreement

The inter-annotator agreement measure mvα is 57.45%. The 5 analysts labeled in total
160 out of 250 reports. Unfortunately, the holiday season coincided with our experiment,
preventing the analysts to label the entire selected sample for this experiment. Between
the 160 labeled reports, 34 were comparable, meaning that at least two analysts labeled
the same 34 reports, which is a requirement for the metric. The agreement results were
calculated using the open source software1 provided by the mvα authors [28].

The result of mvα = 57.45% is difficult to interpret. [25] recommends that conclusions
should not be made about data with less than 66.7%. However, the authors “recommend
such levels with considerable hesitation. The choice of reliability standards should always
be related to the validity requirements imposed on the research results, specifically to the
costs of drawing wrong conclusions”. The authors also mention guidelines that have been

1https://github.com/rcraggs/mvna
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Table 7.4: Results of performing SMOTE oversampling. The results are macro and micro
averaged.

Model Ma Pre. Ma Rec. Ma F1 Ma F0.5 Mi Pre. Mi Rec. Mi F1 Mi F0.5

TF BR LGBM 0.3604 0.3015 0.2735 0.3039 0.3308 0.4491 0.3809 0.3492
TF SMOTE LGBM 0.5059 0.3327 0.3767 0.4289 0.7160 0.4720 0.5689 0.6488
TF CC LGBM 0.3571 0.2990 0.2708 0.3008 0.3244 0.4462 0.3756 0.3431
TF SMOTE CC LGBM 0.3388 0.2967 0.2624 0.2889 0.3134 0.4444 0.3674 0.3329

TF BR SVM 0.4457 0.3464 0.3759 0.4079 0.5609 0.4822 0.5186 0.5431
TF SMOTE BR SVM 0.4439 0.3436 0.3731 0.4053 0.5603 0.4817 0.5180 0.5426
TF CC SVM 0.4503 0.3459 0.3778 0.4112 0.5671 0.4824 0.5213 0.5478
TF SMOTE CC SVM 0.4509 0.3473 0.3789 0.4121 0.5674 0.4809 0.5206 0.5477

TF BR DT 0.3542 0.3059 0.3193 0.3355 0.5037 0.4423 0.4710 0.4901
TF SMOTE BR DT 0.2815 0.3434 0.3011 0.2875 0.3770 0.4679 0.4175 0.3922
TF CC DT 0.3479 0.3005 0.3129 0.3290 0.5001 0.4391 0.4676 0.4866
TF SMOTE CC DT 0.3494 0.3026 0.3153 0.3311 0.4981 0.4367 0.4653 0.4844

TF BR LR 0.4905 0.2929 0.3492 0.4102 0.6639 0.4393 0.5287 0.6023
TF SMOTE LR 0.4225 0.4469 0.4226 0.4190 0.5320 0.5368 0.5343 0.5329
TF CC LR 0.4975 0.2887 0.3477 0.4120 0.6690 0.4330 0.5257 0.6032
TF SMOTE CC LR 0.4913 0.2882 0.3457 0.4083 0.6633 0.4318 0.5231 0.5990

TF-IDF BR LGBM 0.3378 0.2832 0.2482 0.2782 0.2723 0.4299 0.3333 0.2938
TF-IDF SMOTE BR LGBM 0.4860 0.3602 0.3921 0.4314 0.6795 0.4879 0.5680 0.6300
TF-IDF CC LGBM 0.3340 0.2877 0.2494 0.2787 0.2696 0.4292 0.3312 0.2913
TF-IDF SMOTE CC LGBM 0.3339 0.2907 0.2506 0.2785 0.2652 0.4294 0.3278 0.2871

TF-IDF BR SVM 0.4673 0.2854 0.3334 0.3886 0.6178 0.4547 0.5238 0.5764
TF-IDF SMOTE BR SVM 0.4624 0.2766 0.3258 0.3823 0.6214 0.4488 0.5212 0.5770
TF-IDF CC SVM 0.4634 0.2846 0.3317 0.3864 0.6120 0.4509 0.5193 0.5712
TF-IDF SMOTE CC SVM 0.4547 0.2824 0.3282 0.3806 0.6115 0.4518 0.5197 0.5711

TF-IDF BR DT 0.3344 0.3069 0.3125 0.3225 0.4722 0.4418 0.4565 0.4658
TF-IDF SMOTE BR DT 0.2758 0.3627 0.3043 0.2850 0.3502 0.4767 0.4038 0.3699
TF-IDF CC DT 0.3326 0.3078 0.3118 0.3209 0.4683 0.4420 0.4547 0.4628
TF-IDF SMOTE CC DT 0.3353 0.3078 0.3132 0.3231 0.4714 0.4432 0.4569 0.4654

TF-IDF BR LR 0.3603 0.1456 0.1884 0.2441 0.7844 0.3081 0.4424 0.5992
TF-IDF SMOTE BR LR 0.3765 0.3978 0.3674 0.3656 0.4860 0.4821 0.4840 0.4852
TF-IDF CC LR 0.3647 0.1431 0.1862 0.2439 0.7759 0.2943 0.4267 0.5845
TF-IDF SMOTE CC LR 0.3609 0.1424 0.1858 0.2431 0.7754 0.2950 0.4273 0.5848
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Table 7.5: Hierarchical classification experiment results. Hierarchical models are under-
lined. The results are macro and micro averaged.

Model Ma Pre. Ma Rec. Ma F1 Ma F0.5 Mi Pre. Mi Rec. Mi F1 Mi F0.5

TF SMOTE BR LGBM 0.5059 0.3327 0.3767 0.4289 0.7160 0.4720 0.5689 0.6488
TF LCTL SMOTE BR LGBM 0.5116 0.3331 0.3784 0.4319 0.7111 0.4877 0.5785 0.6514
TF LCTL CC LGBM 0.4898 0.2746 0.3220 0.3845 0.7155 0.4557 0.5568 0.6422

TF BR SVM 0.4457 0.3464 0.3759 0.4079 0.5609 0.4822 0.5186 0.5431
TF LCTL BR SVM 0.5094 0.2982 0.3498 0.4119 0.6913 0.4786 0.5656 0.6349
TF LCTL CC SVM 0.4997 0.3032 0.3530 0.4122 0.6751 0.4845 0.5642 0.6259

TF SMOTE BR LR 0.4225 0.4469 0.4226 0.4190 0.5320 0.5368 0.5343 0.5329
TF LCTL SMOTE BR LR 0.4608 0.3643 0.3870 0.4183 0.6259 0.5067 0.5600 0.5977
TF LCTL CC LR 0.4416 0.2091 0.2571 0.3205 0.7575 0.4078 0.5302 0.6466

TF-IDF SMOTE BR LGBM 0.4860 0.3602 0.3921 0.4314 0.6795 0.4879 0.5680 0.6300
TF-IDF LCTL SMOTE BR LGBM 0.5195 0.3362 0.3823 0.4373 0.7124 0.4916 0.5817 0.6536
TF-IDF LCTL CC LGBM 0.4923 0.2748 0.3229 0.3855 0.7185 0.4567 0.5584 0.6446

TF-IDF BR SVM 0.4673 0.2854 0.3334 0.3886 0.6178 0.4547 0.5238 0.5764
TF-IDF LCTL BR SVM 0.5045 0.2970 0.3481 0.4094 0.6897 0.4775 0.5643 0.6334
TF-IDF LCTL CC SVM 0.5031 0.3039 0.3546 0.4143 0.6762 0.4831 0.5635 0.6261

TF-IDF SMOTE BR LR 0.3765 0.3978 0.3674 0.3656 0.4860 0.4821 0.4840 0.4852
TF-IDF LCTL SMOTE BR LR 0.4590 0.3637 0.3850 0.4156 0.6223 0.5042 0.5571 0.5944
TF-IDF LCTL CC LR 0.4492 0.2072 0.2565 0.3223 0.7566 0.4051 0.5277 0.6447

Table 7.6: Results of training one classifier per report type. The results are macro and micro
averaged.

Model Ma Pre. Ma Rec. Ma F1 Ma F0.5 Mi Pre. Mi Rec. Mi F1 Mi F0.5

TF-IDF SMOTE BR LGBM 0.5717 0.4136 0.4541 0.5022 0.7400 0.5450 0.6277 0.6906
TF-IDF LCTL SMOTE BR LGBM 0.5674 0.4189 0.4558 0.5015 0.7139 0.5420 0.6162 0.6713
TF SMOTE BR LR 0.4987 0.4782 0.4770 0.4860 0.6131 0.5870 0.5997 0.6076
TF LCTL SMOTE BR LR 0.5011 0.4718 0.4740 0.4854 0.6095 0.5699 0.5891 0.6012
TF-IDF CC SVM 0.4973 0.3336 0.3797 0.4304 0.6464 0.5023 0.5653 0.6113
TF-IDF LCTL CC SVM 0.4672 0.3524 0.3827 0.4190 0.5835 0.5009 0.5390 0.5649
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proposed for Cohen’s κ, which can be applicable to Krippendorff’s α. For this reason, we
believe that we can use the interpretations for Cohen’s κ proposed by [26] to interpret the

mvα calculated in this research. The paper proposes that a value between 40% and 59% is
considered a weak agreement.

7.8 Comparison to Related Work

Researchers in [31] apply Natural Language Processing (NLP) techniques to create an avi-
ation safety report threshold-based classifier using correlations between the labels and the
extracted linguistic features. These correlations are weighted by document length and the
final classification is decided by a set of thresholds and manual rules. In contrast, our re-
search performs the classification based on learning the rules automatically from data, with-
out any manual rules. Unfortunately, the authors do not provide any metrics to compare our
approaches.

[32] apply NLP and binary relevance with support vector machines (BR SVM) to classify
aviation safety reports automatically. They report a microaverage F1 of 79.15% in their best
model. Our best model reports a F1 of 62.77%. Our problem is considered harder because
this research aims to classify 7 different types of reports with different types of fields, while
the authors focus in one type of report using only a text field. Additionally, their taxonomy
consists of 37 labels, while ours is comprised by more than 800 labels. This high amount of
labels represents the main challenge of our research. Finally, [32] have 7 times more data
and they do have a better pre-processing strategy with 637 hand-written rules to pre-process
the data, which we think can improve the accuracy performance of the classifier.
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Conclusion

8.1 Conclusion

Based on the experimental results, it can be concluded that classical multi-label machine
learning techniques can be applied successfully to the problem of automatic safety reports
classification.

The answer to RQ1 is stated as follows: the accuracy of applying machine learning to
classify aviation safety reports automatically is influenced mainly by training one classifier
per each type of report and the use of classical multi-label categorization techniques.

The baseline that was established with logistic regression is improved by 81% employing
our proposed configuration that trains a LGBM classifier in a binary relevance setting per
each type of report while using a TF-IDF text representation with SMOTE oversampling.
This configuration achieves a macroaveraged F0.5 score of 50.22%. Our results suggest
that using aggregated embeddings does not bring any benefits to our classification task.

TF and TF-IDF clearly outperform the embeddings when tested in downstream tasks for
the report classification. Additionally, TF and TF-IDF are less computationally expensive to
train and to evaluate the models.

Using a simple multi-label learning model like binary relevance has the best impact in the
performance of the classification task. In our specific case, the performance gain surpasses
the fact that it is computationally more expensive when compared to extreme multi-label
models. Additionally, it is still feasible to train binary relevance models in commodity hard-
ware given our current dataset.

The use of SMOTE oversampling improves the performance of LGBM when used in
combination with binary relevance by 41%. The performance of logistic regression is also
improved to a lesser extent. SVM and classifier chain (CC) do not perceive any benefit by
the use of SMOTE.

Using hierarchical classification with LCTL slightly improves the performance of most
classifiers. However, our results suggest that the performance is decreased when a LCTL
classifier is trained per each report type.

Training one classifier per report type offers a substantial improvement in classification
performance. We believe that this method decreases the feature dimensionality and sparsity

39
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dramatically. Additionally we assume that the data for each type of report are independent.
Such assumptions proved to be valid as the classification performance was improved by the
application of this strategy.

With respect to the RQ2, the report classification process reliability should be measured
using Krippendorff’s mvα. Our reliability study showed a mvα of 57.45%, which can be
interpreted as a weak agreement. Therefore, the labeling process needs to be improved. We
recommend to the organization to aim to improve the metric to a 66.7% which is considered
a moderate agreement.

8.2 Limitations

There are important limitations to this research. In the text representation evaluation, we
aggregate Word2Vec and FastText embeddings using sum or average (see Section 6.4),
possibly affecting their representational capacity. This decision was made in order to keep
the computation feasible with our current infrastructure. We do not claim that this is the best
approach. There are other ways to limit the high dimensionality that such techniques bring,
like truncating the text up to a certain length. Furthermore, we were not able to evaluate state
of the art techniques like ELMo and BERT due to their high demand of GPU resources.

In the same way, the fact that we merge all the report text fields is seen as a limitation.
This decision was made again to keep the experiment within the boundaries of our current
infrastructure.

In the hierarchical classification experiment we exclusively evaluate LCTL, which uses
only two levels of the hierarchy. Although the results are promising, it is needed to further
evaluate the impact of exploiting the full hierarchy and the use of more advanced approaches
for hierarchical classification.

We assume the report types to be independent, which represents a limitation because
some reports share fields. Therefore, discovering the correlations between the report types
and their fields could bring better insights about how to further improve the classification
performance.

An additional limitation of this research is that we do not use propensity scored metrics.
We argue in Section 6.9 that we do not consider our dataset as the “gold” ground truth
because every example may have missing labels. Therefore, we can erroneously treat a
correct prediction as a false positive. Using propensity scored metrics addresses this limita-
tion, as they provide unbiased estimates of the metric computed on the “gold” ground truth.
See [36] for a further explanation about this rationale.

We are not considering the languages that appear in our dataset. English stop words
and stemming are used even though dutch language is present in some fields. The problem
is not easy to address because both languages are occasionally combined in a single report.
This means that the content of one text field might be written in english while another field
in the same report could be in dutch. In like manner, for the same field, it is possible to find
the english content in one report and dutch in the next report. A possible solution will be to
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use automatic translation in such cases.
Our final limitation is that the sample for the inter-annotator agreement experiment is

small. Our sample size is not the ideal for such studies, especially in the face of such a big
taxonomy. However, our analysts’ time was limited during the period when the experiment
was carried out.

8.3 Recommendations for the Company

The main recommendation for the company is to use our proposed model to classify the
safety reports automatically. The model should be implemented as a software component
integrated in the enterprise information systems. Such integration is realized as a pipeline
that extracts the reports from the safety database, applies the suggested pre-processing
and classifies the reports in an online manner. It is also suggested to implement a similar
pipeline for re-training the model periodically, as hundreds of new reports arrive each month
and every machine learning model benefits of more data.

In order to improve data quality and reliability, the following recommendations are issued,
based on [25]. Each descriptor of any of the taxonomies must be clearly detailed by the
means of including a description and clear instructions about when should it be applied.
Additionally, it is suggested to list the minimum knowledge that an analyst requires to be
able to analyze each type of safety report. Furthermore, a standard training program for
each new analyst could be deployed in order to improve the consistency of the classification.

Reliability tests can be run periodically between the analysts and discrepancies should
be analyzed and reconciled so the organization discovers what kind of cases need to be
included in the coding procedure or manual and what parts can be improved. It is suggested
to use Krippendorff’s mvα to measure such reliability. After updating the coding procedure, a
reliability test can be performed again to verify that an improvement has been made. Based
on [25] and [26], we recommend that the organization should aim to have at least 66.7%
in agreement. It is worth noting that this reliability measures the reliability of the annotation
procedure, which is independent of the actual annotators used. This will guarantee that
even when the annotators are changed, the quality of the annotation won’t be reduced if the
annotation procedure is followed.

If the annotators or analysts find themselves discussing how to a apply a particular tax-
onomy or consulting each other an unanticipated problem, those are signs that the coding
instructions need to be updated and improved. It could also mean that a re-training of the
analysts is needed.

8.4 Future Work

The presented research can be extended in many ways. The first is to use a classifier based
on deep learning. We have proposed a good starting point to classify aviation safety reports
using classical machine learning techniques. The results of this research can be used as a
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baseline to benchmark the improvements achieved by the use of deep learning. However,
the use of deep learning requires a considerable amount of data, so these efforts might have
to wait until more data are available. Transfer learning could be a viable option to try while
more data arrives. One remaining question is what deep learning architecture improves our
current results? because most of the current deep learning approaches focus only on small
texts, while our problem comprises larger texts and other types of features.

Another direction for future work is to measure the impact of state of the art text repre-
sentation techniques like ELMo, BERT and Transformer XL. Such representations are more
likely to be used in conjunction with deep learning approaches. BERT also offers a classifier
that could be tested, but it would require some modifications as it is intended for multi-class
problems and not for multi-label.

A second question that remains open is how to address the different languages that are
present in the text? As presented in Chapter 4, the text fields can contain either english
or dutch languages. Such question represents a challenge because the same report could
have one field in english and another field in dutch. Furthermore, the same field could be
written in english in one report and written in dutch in the next report.

Our work can also extended to classify the aviation safety reports using a different set
of categories. As an example, our proposed model can be trained to classify the reports
according to risk categories. It can also be trained to determine if the report needs to be
forwarded to any aviation authority.
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Appendix A

Appendix

A.1 Summary of Notation

The following table contains a summary of the notation used in this master thesis:

Table A.1.

Table A.1: Table of Notation
S The entire dataset
X The set of all examples
xi Single example
Y The set of all labels
yi The set of labels associated to one example
yi A single label
L Number of labels
N Number of instances in S

K Number of taxonomies
T The set of taxonomies
ti A single taxonomy tree
vi The set of vertices for a single taxonomy
ei The set of directed edges for a single taxonomy
ρi The root node of the taxonomy ti

A.2 Parameters

In this section, we provide the parameters that were used to train all the machine learning
models used in the experiments.

49
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Table A.2: Parameters used to train the logistic regression classifier.

Parameter Value

Regularization l2
Tolerance 1−4

Optimizer liblinear

Table A.3: Parameters used to train the multi-label decision tree classifier.
Parameter Value

Criterion gini
Minimum samples required to split an internal node 2
Minimum number of samples required to be a leaf node 1

Table A.4: Parameters used to train the support vector machine classifier.

Parameter Value

Regularization l2
Tolerance 1−4

Loss Squared hinge
Max iterations 1000
Penalty C 1.0

Table A.5: Parameters used to train the LGBM classifier.
Parameter Value

Boosting type GBDT
Maximum tree leaves for base learners 31
Boosting learning rate 0.1
Number of estimators 100
Minimum split gain 0
Minimum child weight 1−3

Minimum child samples 20
Maximum number of bins 255
Number of iterations 100
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Table A.6: Parameters used to train the FastXML, PfastXML, PfastReXML and DiSMEC
classifiers.

Parameter Value

Number of trees 1
Maximum tree leaves 10
Maximum labels per leaf 20
Alpha 1−4

Epochs 2
Loss log
Sparse multiple 25
Gamma 30
Blend 0.8
Leaf eps 1−5

Auto weight 25

A.3 Human Evaluation Interface

Figure A.1 displays the user interface for the web application that was developed for the
agreement experiment. In the left side the taxonomies are presented as a browsable tree.
The right side displays the report contents. The interface is designed to be similar to the
interface that is used by the analysts in their daily work.
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Figure A.1: This is the user interface that the analyst used to label the reports for the agree-
ment experiment. The contents of the report have been deleted to prevent in-
formation leakage and ensure the privacy of the reporter.
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