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Management Summary

This research takes place in collaboration with Sensata Technologies. Sensata Technologies is one of the
world’s leader suppliers in terms of sensing, control, power management, and electrical protection
solutions. The highest revenue industry in which Sensata competes is the automotive industry. This
research is carried out at the initiative of two capacity managers from Sensata’s automotive departments
and focuses on the departments’ strategic capacity planning.

Problem Description

This research starts with the aim of redesigning their current strategic capacity planning model. This need
arose due to their forecasts showing a rapid increase in demand! over the upcoming years. Besides the
increase in the actual number of units, a demand increase generates an increase in number of equipment
and types of products. Considering the high investment incurred by purchasing new equipment, the
company wants to postpone such an investment for as long as possible. Another reason for initiating this
research consists in the simplicity of their current model. The managers use an Excel model from which
they exclude a variety of relevant factors. Moreover, the factors they do take into account are assigned
with average values. Given all these simplifications the model is not capable of reflecting aspects such as
performance differences between individual machines of the same type and is hence not able to reflect
the real-life situation in an accurate manner.

Objective

We aim to redesign Sensata’s strategic capacity planning model. First, we want to reflect the differences
between individual products or machines, hence disaggregating the average values. Next, we want to
model the real-life situation in a more accurate manner by including relevant factors such as: machine
capabilities?, machine releases® and Overall Equipment Effectiveness components®. The outcome of our
research represents a proof of concept of a strategic capacity planning model.

Approach

We start by analyzing the current situation of the two departments. During this analysis we take a close
look at their current model and aim to better understand their manufacturing processes. Together with
the capacity managers we decide on the additional factors which we should consider to reflect the real-
life situation in a more accurate manner. Further on, we identify the main actions the managers can
perform to cope with the increase in demand. The actions refer to: building inventory in prior months,
releasing existing machines or purchasing new equipment. Since each action has an associated cost, our
aim is to reduce the total costs across a certain planning horizon.

1 The number of units of each individual product the company has to produce in a certain period of time

2 Given the multitude of sensors the company manufactures, not all the equipment is physically capable of producing each single product. These capabilities reflect
which sensors can each machine process.

3 Similar to the capabilities, the machine releases also reflect whether a machine is allowed to process a certain product. Unlike the machine capabilities, the
releases are not related to the machine’s specifications but to Sensata’s customers. According to the capacity managers, in the automotive industry only machines
and raw materials approved by the customer can be used in the manufacturing of each product. To obtain the customer’s approval the company produces sample
sensors, using a sequence of machines selected by their manufacturing facilities, which are sent to and tested by each customer to ensure their quality. If the quality
reaches the desired standards, the customer allows Sensata to further produce his sensors, however, by using only the exact equipment used for building the
samples. Hence, through this approval the customer releases the machines.

4 Metric of the efficiency and effectiveness of a process which can be divided into three different components: Availability, Quality and Performance



We develop a heuristic to show how the managers can cope with the increase in demand by incurring one
or more of the three actions. The heuristic starts by creating an initial schedule® which we then aim to
improve through local search optimization. Next, if the capacity does not suffice, the model attempts to
build inventory in prior months. In a similar manner, if the demand is still not covered after inventory
buildup we attempt to release existing machines. As a last resort the heuristic decides in favor of
purchasing a new machine. We approach the releasing of either existing or newly purchased equipment
through local search metaheuristics. To choose the best local search algorithm we compare between
Simulated Annealing and Tabu Search.

To benchmark the results of our heuristic, we formulate a mixed integer linear programming model. In this
model we focus on reducing the total costs incurred for a given planning horizon. We use the CPLEX solver
to solve this model.

Conclusions and Recommendations

For each of the three optimization steps we perform a comparison between Simulated Annealing and Tabu
Search. Starting with the optimization of the initial schedule we compare them in terms of monthly overall
loading® and computational efforts. Although the former outperforms the latter in terms of running times
and, sometimes in terms of the objective function value, our final choice is Tabu Search. We base our
choice on two reasons. First, Tabu Search outperforms Simulated Annealing in 13 out of 24 months.
Second, Simulated Annealing is not able to improve the monthly overall loading for a total of 9 months,
while Tabu Search finds an improvement in 22 out of 24 months.

Next, for releasing existing machines we also choose in favor of Tabu Search. Yet again, Simulated
Annealing outperforms our choice in terms of computational efforts, however, given the random selection
process of Simulated Annealing, Tabu Search is always better at releasing the preferred machines for each
product. By preferred machines we refer to the machines having smaller processing times. Considering
the third optimization stage, we yet again choose in detriment of Simulated Annealing. We base this choice
on the objective function values we obtain from each algorithm.

Inthe end we provide the company with recommendations regarding the implementation of our algorithm
as Sensata’s new strategic capacity planning model. A major part of these recommendations relate to the
improvement of their input data. Finally, we introduce our recommendations in terms of future work and
the limitations of this research. Such limitations refer to our algorithm representing a proof of concept and
not a fully functional tool combined with the fact that the company can include more factors to reflect the
real-life situation even further.

5 Allocation of products to machines showing the number of units of each product which should be processed by each machine

6 Percentage of the total available capacity which is used for production on a monthly basis
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Chapter 1 Introduction

Capacity management is of critical importance for any company given that limitations in terms of capacity
or resource availability can represent a major bottleneck. When considering capacity planning from a
production point of view, restrictions in the number of equipment available or poor planning techniques
can result in delaying orders’ completion. Therefore, an appropriate planning for the assignment of
products to machines is required. In this research, we develop an optimization algorithm for the strategic
capacity planning for two of Sensata’s automotive departments.

This first chapter explains the context of our project. Section 1.1 covers general details about the
company’s background. In the end of the section we give a small overview of the departments’ current
situation. Section 1.2 covers our research plan, while in Section 1.3 we provide an outline of this report.

1.1 Company Introduction

Sensata Technologies is one of the world’s leading suppliers in matters such as: sensing, electrical
protection, control, and power management solutions. The company is an early innovator in terms of
electrical protection and mission-critical sensors. Hence, they design their products with the goal of
improving the safety, efficiency and comfort of their customers.

The company started in 1916, under the name of “General Plate Company”, by providing gold plates for
the jewelry industry. In 1931 they merged with Spencer Thermostat while in 1959 they merged with Texas
Instruments. In 2006 they were bought by Bain Capital and, from that moment onwards, continued under
the name of Sensata Technologies. Currently Sensata owns 12 other brand names and ships around 1
billion products per year.

At the moment the company has manufacturing facilities and business plants in North and South America,
Europe and Asia. Figure 1 shows an overview of Sensata’s manufacturing facilities and business sites, while
Figure 2 displays their revenue percentages over the three big regions.
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Figure 1 Sensata’s manufacturing facilities and business sites



The industries in which they compete vary from industries
such as aerospace, automotive, construction, or energy, to
fields such as agriculture and medical industry. Their sensors
can be found in commercial jets, large boats, automobiles,
construction vehicles, but also in people’s homes. At the
moment, the biggest percentage revenue of the company
comes from the automotive industry, as we display in Figure
37,

In Sensata, the departments are divided based on the
technology handled by each of them. This research takes
place in collaboration with two of the departments
specialized in the automotive industry, precisely the MEMS
Figure 3 Highest Revenue Percentages per (Micro-Electro- Mechanical Systems) and MSG (Metal String
Application
Gages) departments.

The MEMS department focuses on low pressure sensors, but also on other various intake and exhaust
components. For this specific group the production plants are located in Malaysia and China, while the
MSG group handles manufacturing in Bulgaria as well.

The production sites are organized by using the farm concept. This is based on the existence of multiple
processes (each process with a certain number of machines) and on different types of sensors having
different paths through the production plant. Due to their similarities we associate the farm concept with
the job-shop concept. Since no universal flow applicable for all products exists, the complexity in assigning
products to machines is rather high, compared to, for example, traditional flow shops.

At the moment, the managers handle the strategic capacity planning through an Excel model. According
to the company, due to its simplicity, this model does not consider a variety of factors they deem to be
important. For example, regarding the farm concept, approximately 20 different routes are considered in
their model, although more actually exist. Averages are used for similar routes, rather than creating a
different category for each route. Various other differences are currently not considered individually, but
used as average values in the model.

Although the capacity managers wish to add incorporate additional factors, the Excel model is close to its
maximum computational limits, making it very complicated for any modification to be implemented.

1.2 Research Plan

In this section we describe the plan for this research. Section 1.2.1 states the motivation and the objective
of this research while in Section 1.2.2 we describe the problem encountered by the company. Section 1.2.3
contains our research questions and Section 1.2.4 connects the research approach to the framework of
activities we introduce in Section 1.2.3. Section 1.2.5 mentions the limitations of this research by
describing the project scope.

7 HVAC - Heating, ventilation, and air conditioning



1.2.1 Research Motivation and Objective

Considering the MEMS department, the demand forecasts show that the request for their sensors is going
to double in approximately one and a half years. The longer horizon forecasts show that in the next four
years the demand will continue to grow rapidly. Given these forecasts, the company needs to be
adequately prepared to handle this growth. Therefore, it becomes crucial to know precisely how much
and when they need to order new equipment.

Considering that the model Sensata currently uses for capacity planning is very simplistic and makes use
of a variety of averages, the reasons for initiating this assignment start with the aim of redesigning this
model. Hence, the desired output for the project is a new model for the strategic capacity planning of the
two automotive departments. A new model represents a way of predicting the future requirements, in
terms of equipment, in a more adequate and precise manner.

At the moment their model simply checks whether the demand fits the available capacity. However, for
the outcome of this research we are looking for an algorithm that also considers the allocation of tasks to
machines. We wish to implement an optimization technique so that the new algorithm can predict the
loading percentage of a machine in a more accurate manner. By loading percentage of a machine, we refer
to the ratio between the time needed to produce the forecasted demand and the available time.

1.2.2 Problem Description

As we state in Section 1.2.1, the company’s marketing department has predicted a very rapid increase in
demand for the next few years. Because of what they call a steep ramp-up curve was forecasted for their
demand, the capacity managers state that they have to add new production equipment each quarter.

The automotive industry is based on the just-in-time concept, which the company explains as having to
deliver the components requested just before they are needed in the manufacturing line of their
customers. The need to deliver in time arises from the fact that, if some components are not available, the
production of the specific car will be stopped (it is either too costly or nearly impossible to continue
producing a car in spite of lacking few components). Hence, if a late delivery occurs, the company has to
pay fines for each day past the deadline.

Considering the increase in demand that the company is facing and the strict deadlines they have to meet
to produce all the demand, it becomes more and more important to know the precise moment when new
equipment is required. Moreover, knowing that ordering new equipment involves long lead times (around
1.5 years), the expansions need to be planned accurately and in advance.

It is obvious how ordering a new machine too late can affect the chances of meeting the demand
requirements in time. However, ordering additional equipment too early is not a feasible option either.
The managers state that because of Sensata’s nature of a stock market listed company, postponing
investments for as long as possible is the most desired option.

From the company’s perspective, one of their biggest challenges is to accurately determine the amount of
additional equipment needed, accompanied by the times when the orders need to be placed. Hence, this
becomes one of the main focuses of this research.



Based on the details we obtain from the company, we describe the problem bundle in the diagram from
Figure 4. The capacity managers believe that their current model can function according to expectations
in a stable/static environment. By stable/static environment we refer to a constant level of demand, which
also implies a constant amount of equipment and unique products. If both the equipment and the unique
products are kept to a constant amount, this leads to a constant level of process flows. By process flow we
refer to the route a product takes through the production facility, precisely the combination of machines
needed for its manufacturing.

Since the demand has greatly increased in the past couple of years, we cannot consider this environment
static. Thus, the combination of the very simplistic model and the nature of the environment leads to
inefficiencies/ non-reliable results in the current model. An example of such unreliable results is
highlighting certain machines/process as overloaded without this being actually the case.

Considering the upcoming years, the demand forecasts show an even bigger increase. This implies that an
increase in the number of equipment, unique products and process flow will follow. As a consequence,
the current environment will become less stable and will further accentuate the inefficiencies already
present in the model.

When analysing the context in more
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fact that in the automotive industry
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machine release is necessary. Through Figure 4 Problem Bundle

machine release, we mean that, although

not allowed before, a new product — machine combination can now be used. By releasing new equipment,
a certain product can now be manufactured on an increased number of machines, without the need of
further investment in additional equipment. A quality testing procedure is required for the customer to
approve this release; this procedure takes around 3 months.

A
A\

The customer releases are not taken into consideration in the current model, although the capacity
managers believe that being aware of the available capacity that can be used for a certain product through
the release of machines can avoid further additional investment.



1.2.3 Research (sub) questions

We define the research questions having in mind the concepts of action and knowledge problems, and
trying to follow the timeline of activities we set for this assighnment. We base the division of the research
guestions on the stages illustrated in Figure 5.

1. Analysis of
the existing

situation IV. Determine V. Comparison V.
lll. Redesign information between the Recommendations
Current Model regarding new existing and for
equipment the new model Implementation
Il. Literature
Research

Figure 5 Framework of the assignment

I.  Analysis of the existing situation

The first step of this research is to better understand the existing situation, precisely to analyse the existing
capacity planning model. Next, we look into the additional factors that have the potential of bringing an
improvement. For this stage we define the first two research questions.

The new model should be used to determine information about the amounts of new equipment required
and the times when the orders have to be placed. However, before reaching this stage, research needs to
be done on the most efficient way to do this. The third question serves this purpose. We answer these
guestions in Chapter 2.

1. How is the capacity planning currently handled within the MEMS department?
a. What data and factors are currently included in the model?
b. What simplifications are being used in the model?
2. What factors are currently excluded from the model?
a. Which one of these factors does the company consider crucial for the new model?
3. What factors/data need to be considered for determining the number of machines the company
has to order and the time the orders need to be placed in order to keep up with the upcoming
increase of demand?

1. Literature Research

Our next step is to conduct a literature review. The most relevant concepts we consider for this assignment
are: capacity planning, production planning and resource allocation. Therefore, the goal of this stage is to
find models related to such tasks. We cover these aspects in Chapter 3. We choose the following research
guestions for this stage:

4. What models are covered in literature that could serve as a basis for redesigning Sensata’s capacity
planning algorithm?

5. What optimization techniques can be used as a basis for the strategical decisions regarding
capacity planning?



lll.  Redesign Current Model

During the first three stages we show in Figure 5 we collect the information we need for designing a new
model. Therefore, in this stage we focus on this new model and answer the sixth research question.

Instead of buying new equipment every time the demand of a certain product increases, the company has
the option of releasing other machines. According to the company, they prefer to not always order new
machines because of the high investment required. For this purpose, we define the seventh research
qguestion. Chapter 4 covers the methods used for redesigning the existing model, while Chapter 5, where
we introduce our results, covers the answer for question 7.

6. How can the existing algorithm used for planning the machine loading be redesigned?
7. What machines can be released for a certain product to avoid ordering a too high amount of new
equipment every time the demand is increased?

Iv. Determine information regarding new equipment

In the end, after performing research, designing a new model and also checking what machine releases
are possible, we answer question 8 in Chapter 5.

8. How many machines does the company need to order and when should these orders be placed to
properly handle the upcoming increase in demand?

V.  Comparison between the existing and the new model

Once we redesign Sensata’s capacity planning model, we need to perform a comparison between the old
and the new model. First, we look into the criteria for checking the differences between the two, especially
in terms of results. Further on, we check these differences and the results obtained from both models. For
this stage we define the following research questions:

9. What are the criteria on which we compare the 2 models?

10. What are the differences between Sensata’s model and its redesigned version?

11. What results are obtained from the new model and how accurate are these results compared to
the outputs of Sensata’s model?

VL. Recommendations for Implementation

As we describe in Section 1.2.6, one of the limitations of this assignment is the fact that providing the
company with a piece of software ready to use right away is not feasible. Therefore, the outcome of this
research represents a proof of concept for an optimization algorithm to serve their purposes. Since the
actual implementation is not part of our scope, Chapter 6 gives a list of recommendations on how to
approach the implementation. Hence, the contents of this chapter include the answers to the following
question:

12. What steps/guidelines should Sensata follow for the complete implementation of the new
algorithm?



1.2.4 Research Approach

This research consists of multiple stages as we illustrate in Figure 5. The first three stages of the project
involve performing research. This research refers both to Sensata’s case, covered by the first two research
guestions, and to a literature research. Through this literature review we aim to find models that can be
used for allocating and scheduling products to machines. In this way, we address the strategic decision of
how much new equipment is needed and when do the orders need to be placed, in a more accurate
manner. The information collection techniques for these first stages vary from literature research and
analysing the current Excel algorithm to interviews with the capacity managers of the MEMS and MSG
departments.

Once we complete the research part, in stage 4, we aim to redesign the current model by making use of
the information we previously gathered. The answer for the sixth research question represent the
methods through which we design a new capacity planning model.

In order to determine the total number of new equipment needed and the time when the orders should
be placed, when redesigning this model, we consider releasing both existing and new machines to certain
products, and aim to answer the seventh research question at this point.

The fourth stage represents determining the details (quantity, time) regarding additional equipment and
hence answering question 8. Next, in the fifth stage, we perform a comparison between the new model
and the initial one. The final stage of the project involves introducing recommendations both for the future
research and strictly for the implementation of the algorithm within the company.

1.2.5 Project Scope

Based on the details we present so far, this assighment covers a great variety of factors to consider and
issues to become aware of and aim to solve. This being the case, one of the limitations of this research is
the fact that the outcome of this project does not consist in a finished capacity planning tool.

The ideal result that we can obtain is creating a proof of concept, in the form of an algorithm, which takes
into consideration the important aspects we discover during this research. Due to the big amount of data
available, we decide to test the model on a smaller subset of the existing data. We base the comparison
between the existing and the new model on the results obtained from both models while using the same
data subset.

1.3 Outline of the Report

We organize the remainder of this research as follows. In Chapter 2, we describe the current situation by
giving more details about the production process, the capacity planning model and issues Sensata is
currently facing. We identify the factors that the capacity managers consider crucial for the new model.
We explain the literature available on our topics of interest and give an overview of the available models
that could fit our purpose in Chapter 3. Chapter 4 presents the way in which we construct the new model
while in Chapter 5 we describe our experimental design and results. Chapter 6 highlights the conclusions
and recommendations of this research.



Chapter 2 Analysis of the Current Situation

This chapter focuses on describing the current situation the two departments are dealing with. Section 2.1
contains a process and system description, which includes various details about the production plants, the
sensors produced, and the machines used for manufacturing. Further on, Section 2.2 first describes the
existing capacity model in detail, followed by an overview of issues we encounter in this model. These
issues refer to the simplifications the managers’ use in their model and the results that follow. Section 2.3
gives a list of factors that the capacity managers believe should be considered for the redesigned model.

2.1 Process and System Description

When it comes to the automotive industry, Sensata produces custom-made sensors used in various parts
of a car. These parts vary from the engine, air conditioning and transmission to parts such as the exhaust
system and tires. According to the company, more than 50 sensors produced by Sensata can be used in an
automobile.

Considering the MEMS group, they handle the production of around 500 different sensors, which are
divided in 20 different categories. The sensors produced by this department are mainly pressure sensors,
custom-made based on their clients’ requirements. For the year of 2017, the forecasts showed that the
MEMS group should produce 13 million sensors. The demand shows a rapid growth, 30 million being the
prediction for 2019. This trend continues over the next couple of years, being forecasted to reach 54
million in 2022.

Considering that the sensors are custom made, no two sensors are identical, so a high level of variation
between the sensors can be found. The sensors are divided based on their output: either analogue or
digital, based on the type of connector required, etc.

As mentioned in Chapter 1, the MEMS group manufactures their sensors in two productions plants located
in China and Malaysia. Both facilities are designed based on what the company refers to as the “farm
concept”. This implies that no traditional production lines are present in these manufacturing sites. For
each device, a combination of various individual machines/processes is required, hence, not all sensors
follow the same processing flow. One could state that each sensor has its own routing through the
manufacturing facility; some products skip a processing step, while others have additional steps required
by the customers. After a machine processes a device, the device is loaded on a trolley and transported to
a waiting area. The product remains there until it can move on to the next processing step.

Besides the multiple stages and processes through which the sensors must go, for each processing step
there are also multiple machines available. Each device must go through only one machine per process;
however there are also differences between the machines within the same process. They consist in
differences in machine performance, the equipment varying in age and generation.

We associate the farm concept with a job shop. Just as in a job shop, the individual machines are grouped
based on their functionality and different products follow different routings within the facility. We
illustrate this concept in Figure 6.
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Figure 6 Farm Concept - Job Shop Concept

As we state above, each device has to go
through multiple stages, precisely 3
stages referred to as front-end,
calibration, and back-end. Apart from
calibration, the other two stages are
composed of multiple processing steps. In
the front-end there are roughly 5
different steps, while in the back-end
there are around 10. The variation is
increased here even more, since, for
example, there are several types of back-
end. This means that depending on the
type of sensor produced only some of the
steps are necessary.

Figures 7 and 8 display an example of such a sensor, however as we mention before, almost each sensor
differs from the others. Figure 7 shows the parts of the sensor assembled in the front end, also referred
to as the clean room. For this sensor the basic idea is that on the top two components an adhesive pattern
is applied and then they are pressed down on the black plastic carrier. To harden the adhesive, the sub-
assembly is oven cured, and, in the end, this sub-assembly is being visually inspected. Figure 9 shows these

steps in more detail &

Figure 7 Part of a sensor assembled
in the front end (cleanroom) of the
production process

8 SEA — Sense Element Assembly
9 PCB — Printed Circuit Board

Figure 8 Part of a sensor assembled
in the back-end of the production
process
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Once the part from Figure 7 is assembled in the front end, the next stage it goes through is calibration. The
calibration stage consists of only one processing step; therefore each device will only go through one single
machine. Once the calibration part is done, the component arrives in the back-end of the production
process.

Figure 8 shows the back-end assembly for the same device as in Figure 7. Figure 10 shows the steps this
device undergoes in the back-end stage of the production process.’ 1! The part we previously display in
Figure 7 is now shown in Figure 8, the fourth level from the top. This part of the sensor is fixed in the casing
(sixth level) with adhesive layers. Further on, the top and the bottom cover are also attached with
adhesive. Oven curing is performed with the same purpose as before. Besides the visual test, in this case
a leak test is also performed by applying pressure on the sensor and a function test is done to ensure the
proper functioning of the final device. Details about the product are engraved on one of the covers.

Figure 11 shows an overview of the manufacturing facility in Malaysia.

10 EMA — Electronic Module Assembly
11 RTV — Room Temperature Vulcanization
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Figure 11 Manufacturing Plant - Malaysia

In the bolded rectangle, we find both calibrators and equipment belonging to the various production lines.
Considering the calibrators, Figure 11 displays differences in size between the green one and the rest.
These differences represent technical differences, between different generations of equipment.
Considering the production lines, we see total of 8 lines in the bolded area. These lines vary in the type of
equipment they contain and in the type of sensors they produce. Again, just by looking at the diagram in
Figure 11, we notice the differences in size between the lines. The first four lines are the oldest ones. Each
production line contains a variety of machines used for manufacturing and one or two ovens. The ovens
are used for stabilizing the adhesive layers applied on the sensors. Looking at the other four lines, the size
reduction is the result of a new machine design. Most of the processing steps performed by the individual
machines from the oldest lines were combined by Sensata’s engineers in one single machine.

The difference in size between the newer four lines, lines 5-8 from Figure 11, comes from the addition of
different types of equipment in each of them. The old lines and the newly designed machine perform the
basic tasks to manufacture a device, however if the client desires the addition of a certain element, new
equipment is required.

According to the company supervisor, they try to keep the arrangement of machines to resemble a line
for simplicity and better organization. However, the processing flows through the facility are based on
what we describe above as the farm concept or the job shop concept.

2.2 Planning and control description

As we mention in Chapter 1, the current planning of the machine loading is performed with the help of a
very simplistic Excel model. The managers refer to this model as a high-level capacity planning in which
they simply check whether the forecasted demand can fit the available capacity. We associate this with
the strategic level of capacity planning, which we describe in the upcoming chapter.
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The inputs used in the Excel model are the demands forecasted for each of the 20 sensors types. For the
equipment of the 3 production stages (front-end, calibration and back-end) parameters such as CT (Cycle
Time) and OEE (Overall Equipment Performance) are set. The cycle time refers to the time it takes for a
machine to process a certain device, while the overall equipment effectiveness is used to evaluate how
effective each resource is being utilized. The algorithm is then used to calculate the loading for each
process in a month.

We describe this algorithm in more detail in Section 2.2.1. We provide an overview of the issues in Section
2.2.2 and a list of relevant factors, excluded at the moment, in Section 2.2.3.

2.2.1 Algorithm Description

In order to answer our first research question (“How is the capacity planning currently handled within the
MEMS department?”), this section contains a more detailed description of the current model. We describe
the contents of the most relevant Excel sheets. For each sheet, we mention the data contents and, where
applicable, the formulas used for various calculations. For some of the sheets we provide various figures
to better visualize their contents. These figures do not show the actual sheets, and the numbers they
display represent random values we choose. Moreover, we do not show these sheets in their full size, so
more products, processing flows and time periods (months, years) exist in the actual model.

Model Description
1. Demand Sheet

Figure 12 shows the contents of the monthly demand sheet. The most important elements are a list of all
product IDs together with their demand for each month of the upcoming 5 years.

Year 2018

Month January February March April May
Already on the Volume Sheet? ProductlD
Yes 1 600 400
Yes 2 300 200 500
Yes 3 500 1000 600
No 4 200 400 1300 800
MNo 5 600 9S00 700

Figure 12 Monthly Demand Sheet

The capacity manager obtains this information from the marketing department of the company. This
demand data can be split in the following 2 categories:

e approved orders: the orders for which contracts have already been arranged with the customers
and for which they know for sure that they need to produce the requested volume

e unapproved orders: for these orders the bidding on winning the contract is ongoing between
Sensata and its competitors, therefore the capacity manager does not know for sure whether or
not they will have to accommodate such volumes. For each bidding, a winning probability is set by
the marketing department.

According to the capacity manager there are two ways of dealing with this uncertainty. The first one is to
multiply the volume of each unapproved order with its probability and consider the resulting amount as
the volume that they need to produce. The second option is to set all the probabilities to 100%, therefore
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consider the unapproved orders as approved and accommodate the full volumes of each such order in
their model. The capacity manager chooses to apply the second option. The reasoning behind this is that
he prefers to have enough equipment to produce more than needed rather than have shortages if more
orders are accepted. Moreover, another reason for choosing the second option is related to his past
experience. He state that in general more orders are approved than rejected.

The yearly demand is calculated for each sensor by adding up the monthly demand per product ID. Except
the demand for each individual product, this sheet contains one more demand row which is used to include
the production of samples in the monthly planning. A product ID, chosen by the capacity manager is
associated, with these samples. As we describe before, for any new product or any change in the
production process the company performs a testing procedure, creating sample sensors, which are then
checked by their customer. To not overlook the production of such sensors the capacity manager includes
a constant demand value for monthly samples.

A simple check is performed here to see if any new products have been added to the list. This check
involves comparing the new list of product IDs with the old one available in the “Volume” sheet (see
“Already on the Volume Sheet?” column). Whenever a new product is found (“No” appears on the first
column), it’s ID, demand and the process flow needed for its manufacturing are manually added to the
“Volume” sheet.

2. Volume Sheet

Figure 13 shows the template of the volume sheet. The sheet shows to which process flow each product
belongs. A process flow is defined as the route (combination of machines) a product follows through the
manufacturing facility. The products are considered over the rows and the flows over the columns and, at
first, a value of 1 is assigned to the correct product-route combination. As we mention in Chapter 1, around
20 different routes, the mostly used ones, are considered in the current model. For the sensors having a
different route, the capacity manager select the most similar one from the 20 available flows.

Year 2018
Month January February
Processing Flow Make Site Processing Flow Make Site Processing Flow
ProductiD 1 2 3 China Malaysia 1 2 3 China Malaysia 1 2 3
1 0 1 0 1 0 200 1 0 600
2 0 0 1 0 1 300 0 1
3 1 0 0 0 1 500 0 1 1000
4 0 1 0 1 0 200 1 0 400
5 0 0 1 0 1 600 0 1 900
Total
China 0 400 0 0 1000 0
Malaysia 500 0 900 1000 0 900

Figure 13 Volume Sheet

The same sheet provides information about the location where each device is currently being produced.
The locations available are the two production sites from China and Malaysia. Just as before, the capacity
manager assigns a value of 1 to the correct product — facility combination.

Further on, for each month of the upcoming 5 years the total volume (bottom values under “Total”) that
needs to be produced by a certain processing flow is being calculated. This is done by assigning each
sensor’s demand to its corresponding processing flow and summing up the values over each flow.
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Another sum, which we do not include in Figure 13, shows the total amount to be produced in each of the
2 manufacturing sites.

3. Cycle Time and Overall Equipment Effectiveness Sheet

The different types of equipment used in the 3 stages (calibration, front end and back-end) of the
manufacturing process are considered here. For each equipment type the CT (Cycle Time) and OEE (Overall
Equipment Effectiveness) values are given. These values represent an average of the individual values for
each machine belonging to an equipment type.

In some cases, the capacity manager considers differences in equipment performance, but not within the
machines of the same equipment type. Such differences arise from certain products requiring different
settings, which leads to considerable differences within equipment performance. For example, the
calibration stage differs between sensors. Therefore, three equipment sub-types are used to highlight this
difference and for each of them the CT and OEE values are given. The OEE value takes into consideration
aspects related to both the machines themselves and the products that need to be manufactured on each
machine. Such aspects are: yield loss, which is dependent on the product-machine combination,
maintenance and downtime which are strictly related to the machine itself. No division between machine
and product related factors are available.

Additional information such as the total output per day that can be produced using one equipment type
and the output that can be produced by a single machine are also shown. Figure 14 shows the contents of
this sheet. We consider only one equipment type, the calibrators.

Year 2018 019 w 018 019
Current Measures Monthlanuary February March .. January FebruaryMarch... - JanuaryFebruaryMarch .. January FebruaryMarch ..
General EquipmentType CT OEE  Output per day (all machines)Output per day (1 machine) a a 0F 0FF
| 7 26000 5200 7 1 1 2 15 15 W 70k % 0% 0% 7ok
Calibration 2 7 T8 43000 900 71 1 b3 b 62 o T8% 8% 7h o Teh 8%
3 T 28000 4000 W u u L ¢ o T TR TSR Tk Toh

s |

Figure 14 Cycle Time and Overall Equipment Effectiveness Sheet

4. Equipment Quantity Sheet

In this sheet the capacity manager uses the same template as in the previous one. Figure 15 illustrates the
equipment quantity sheet. Instead of the CT per month of each year, we see the quantity of each
equipment type. In this same sheet we also notice the increase in the number of machines over time. For
example, the number of calibrators available is predicted to increase from 6, in 2018, to 10 by the
beginning of 2020. The capacity managers manually increases these amounts if an equipment type seems
overloaded.
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The company keeps a 15% buffer to be able to cope with unexpected production, so the capacity manager
considers a machine type to be overloaded when the loading percentage (calculated by using the monthly
loading formula from below) is above 85%. However, from the management’s point of view, if a request
for additional equipment is placed at 85%, it normally gets denied. Such a request usually gets approved
when the loading is forecasted to reach 100%.

Year 2018 2019

Current Measures MonthJanuaryFebruaryMarch ... January February March.., Process Flow

General EquipmentType CT  OEE  Output per day (all machines)Output per day (1 maching)  Quantity Quantity 2
1 1 1k 26000 2200 ] 5 3 ] b B

Calibration 1 7 1% 43000 9600 5 5 3 b b 7
] 7% 28000 4000 1 7 17 7 7 8

Figure 15 Equipment Quantity Sheet

—_ 3 e e
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In this same sheet, the equipment types are assigned to the process flows. The equipment types are listed
over the rows and the process flows over the columns and a value of 1 is given to the routes the equipment
belongs to.

5. Equipment Loading Quantity Sheet

In this sheet the total volume that needs to be produced in a month is calculated for each equipment type.
This is achieved by summing up the monthly demand forecasted for the process flow to which a specific
equipment type belongs. These calculations are also performed for all the months of the current year and
a couple of upcoming years.

6. Equipment Loading Percentage Sheet

This sheet is the one mostly used in deciding the quantity and the right time of ordering additional
machines. It contains the monthly loading percentages, which are calculated by using the following
formula:

Equipment Load (Quantity)

Monthly Loading % =
onthly Loading % Monthly Capacity

The equipment load (quantity) represents the volume (total number of units) that each equipment type
needs to produce. All the values in this formula are considered per equipment type.

2.2.2 Summary of issues

Considering the first research question, the second point listed was: “What simplifications are being used
in the model?”. In this section we offer details about these simplifications. Furthermore, we give a short
overview of the results/consequences obtained by using this model.

As we state in Chapter 1, the managers make use of various simplifications to keep the size of the current
capacity planning model under control. This is due to the current need of being able to manually control
and update the model. This need is a result of the lack of an optimization algorithm.

By simplifications we mainly refer to the averages used in the model instead of the actual values. Other
simplifications consist of not using any of the factors we introduce in Section 2.3.
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Part of the simplifications we find, when analysing the Excel model, are introduced in the following list:

the sensors are grouped into 22 types and any other individual difference between the 500 sensors
is ignored.

for each processing step the differences between machines are not individually stated, the model
only using the average performance of all the machines from a process. In this way, all the
machines belonging to a processing step are, in fact, considered as one.

the multitude of routings present through the manufacturing facility is also simplified by only
considering the most common ones (approximately 20 different routes).

Apart from these simplifications, the current capacity planning model does not consider a variety of
factors. At first, these factors were not included because the demand was not so high, so a simple check
of whether it fits in the available capacity was enough from the company’s perspective. However,
considering the demand increase they are currently experiencing, this model becomes more and more
limited, since no algorithm or optimization technique is actually included. Furthermore, at the moment,
more factors are not added also because of Excel’s limitations. The model’s computational speed has
already become an impediment, so adding more conditions will just decrease it further on.

To highlight the results obtained by making use of simplifications in the current model, we mention some
of the issues encountered by the MEMS department. These issues are:

because the machine performance is considered as an average of all machines from the same
process, some machines with lower performance are expected to produce more than they can,
while others are scheduled to produce less than they actually could

because the process flows of the sensors are not individually considered, for some processes the
model states that the machines are overloaded when that it is not the case. Furthermore, at times,
there are more sensors using the same processing step than the model takes into consideration,
so in reality the process is overloaded while the model does not show that

by not considering possible machine releases in the current model, the company is guided to order
additional equipment, although it might not be needed.

2.3 Factors

This section gives an overview of the factors the managers exclude from the current model, as an answer
for the second research question (“What factors are currently excluded from the model?”).

Location Accessibility: At the moment, the Excel model contains information regarding the current
manufacturing location of a device. However, considering the example of the MEMS department,
some of the sensors can only be produced in China, some in Malaysia and only a few flexible ones
can be produced in both places. The capacity manager believes that it is important to track where
each product can be manufactured since this information could facilitate the exchange of products
from one facility to another. By this we mean that if the capacity does no suffice at one of the
plants and a device is allowed to be produced in multiple locations, the model could plan ahead
to switch the production from one site to another.

Customer Releases: According to the company supervisor, in the automotive industry only
machines and raw materials approved by the customer can be used to manufacture the products
requested.
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In order to gain the customer’s approval, samples of the sensors are built, and they undergo an
extensive lab testing lasting approximately 3 months. Once the customer has given his approval
no change can be made to the manufacturing process without the customer’s consent and another
round of lab testing. For example, no other machine can be used for this device and not even
changing the location of the machine through the production facility is permitted.

Correct Machine Performances: The performance of the individual machines is averaged into one
value per equipment type. It is possible for machines to belong to the same process and have
different performance levels, due to age and machine generation. However, the problem becomes
more complicated when the difference in performance levels are so high that a 100% difference
is found. At times this is the case when the latest machine generation has a new design which
leads to double the output of the older ones. Hence, the capacity managers wish to have more
accurate values highlighting the differences between machines.

Machine Capabilities: Different machines can produce different types of sensors. Some of the
equipment can produce only analogue sensors, while other can only produce digital. According to
the capacity manager of the MEMS departmen most of the volume that needs to be produced
consist of digital sensors, however the company also owns a considerable amount of equipment
to manufacture analogue sensors. The company wants to include this differentiation in the new
model to have a better overview of capacity limitations.

Tooling Set Availability: To be able to manufacture a product on a certain machine, tooling sets
are required to attach the sensors. The availability of these tooling sets is limited, but no details
about this are included in the current model.

Machine Lead Time: The process of ordering additional equipment and testing the sample
products can last approximately 1.5 years.

The steps a department has to go through to obtain the needed capital start with providing
internal justification for the new investment. This stage lasts around 3 months and once the order
is placed the department must wait for 1 year, which is the lead time from the equipment supplier.
Once the equipment is in their manufacturing sites the process of getting the customers’ approval
takes approximately 3 more months. Based on the very long lead time the department has to plan
their orders very accurately, by not only considering their need of additional equipment, but also
trying to postpone an investment by as much as possible.
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Chapter 3 Literature Review

We summarize Sensata’s problem as not having a proper capacity planning algorithm. The current model
does notinclude a variety of factors and does not use any optimization techniques. We describe the factors
that are important for Sensata’s managers in Chapter 2, and in this chapter, we focus on our literature
review.

The general terms we discuss in this chapter relate to the main concepts we mention in Chapter 1. Such
concepts include capacity planning, machine loading and allocation of resources.

Section 3.1 gives a detailed classification of manufacturing systems. Section 3.2 contains details regarding
capacity planning and its relevance while Section 3.3 and 3.4 describe various models related to capacity
planning. Section 3.5 focuses on the machine loading problem and Section 3.6 focuses on scheduling
problems. In Sections 3.7 and 3.8 we describe Simulated Annealing and Tabu Search individually, while in
Section 3.9 we discuss a comparison between them. In the last section we further describe the concept of
Overall Equipment Effectiveness.

3.1 Classification of manufacturing systems

In our literature research we encounter various articles with applications strictly focused on certain types
of manufacturing systems. In this section we aim to associate Sensata’s case with the most suitable types
of manufacturing systems. Given the various terms we encounter in literature, we search for details
regarding each term and the category to which it belongs. The terms we most often find in papers are:
discrete manufacturing, single machine problem, flow shop, job shop and make - to - stock manufacturing
system. We enlist the most relevant categories below.

Classification based on volume and flexibility (Caramia & DellOlmo, 2006):

e Continuous production: involves product processing without interruption and makes use of a
clearly defined sequence of steps through which each product has to pass (Shah, 2016). According
to Chatterjee (2012) the definition of continuous manufacturing, from an engineering point of
view, implies the simultaneous material charging and discharging from the processing stages.
Examples of its applications vary from the pharmaceutical industry to the processing of food and
natural gas (Chaudhary, Pazhayattil, & Spes, 2017).

e Mass production: is used for the manufacturing of similar products for which the production
process is standardized. This method is used when the desired output represents large volumes of
such products. Due to the level of standardization required for this type of manufacturing system,
mass production is also referred to (repetitive) flow production (Kenton, 2018).

e Batch manufacturing: refers to the simultaneous production of multiple units. The products are
grouped in batches and are moved from one stage to another. Furthermore, all the units in one
batch are simultaneously processed in each of the stages.

e Project manufacturing: implies the manufacturing of one-of-a-kind products which require a very
complex production process, therefore being thought of as a whole project (Shah, 2016).

o Discrete manufacturing: unlike mass production, it handles the manufacturing of noticeably
different units and unlike continuous production, each processing stage can be individually
performed at different times. The automobile industry is one example of discrete manufacturing
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(Shah, 2016) and the application we are interested in; therefore, we enlist a further division of this
category below.

According to Caramia and Dell’Olmo (2006), discrete manufacturing can be further divided in the following
sub-categories:

Single machine: in this model only one machine performing all manufacturing stages is available.
The decomposition into separate operations is therefore not necessary.

Identical processors: also referred to as the “parallel machines” model by Maccarthy and Liu
(1993), implies the usage of a certain number of identical machines and the fact each job can only
be processed by a single machine.

Flow shop: different machines are available for this manufacturing system, the common aspect of
all products being the sequence of processing stages. As MacCarthy and Liu (1993) state: “each
job has an identical flow pattern”.

Job shop: as we previously explained in Chapter 2, a job shop contains different machines, and,
unlike a flow shop, each product manufactured can have a different processing flow.

Fixed position shop: in a fixed position shop the product is not the one moving from one
processing stage to another, but the processing stages are being performed around the units.

Another classification we are interested in, due to its various mentions in literature, is the one based on
operational objectives as McCarthy (1995) presents it. Similar categories were mentioned as production
control systems by Shah (2016). These categories are:

Make - to - stock: This type of systems involves manufacturing units ahead of time, based on very
accurate demand forecasts. The production is therefore planned based on what is believed to sell
in the future and the units manufactured are stored in inventory. Once an order is received, this
order will be fulfilled from the units available in inventory.

Make - to - order: For this type of system, every product is manufactured after a customer order
was received and based on each customer’s requirements. Therefore, such units are custom-made
and increase the variety existent in such a production facility.

3.1.2 Sensata’s Case

Taking into consideration all the categories and details we provide above, we first classify Sensata’ case as
a discrete manufacturing system. Their devices are noticeably different since they are designed based on
the client’s requirements. From the sub-categories we define for the discrete manufacturing we believe
that our case fits in the job shop category, as we previously explain in Chapter 2.

Regarding the last classification we describe, we believe that the make - to - order production system is
the one that most accurately fits Sensata’s case. Once a customer order is approved they start the actual
production of units.
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3.2 Capacity Planning

This section introduces the concept of capacity planning. We further discuss three different levels of
capacity planning in Sections 3.2.2, 3.3.3 and 3.2.4. Section 3.2.5 relates Sensata’s case to what we believe
is the most appropriate level.

Martinez-Costa et al. (2014) state that one of the definitions for the capacity of a production system relates
to “the volume of products that it can generate in a given period”. However, the authors claim that the
volume of products manufactured by a production system is highly dependent on the product-mix. Hence,
they define the capacity of a production system as “the availability of various types of production
resources” rather than the volume it can manufacture in a certain period of time.

Capacity planning represents an important aspect for any company, considering that inadequate
management of capacity can affect the performance and financial prospects of any business (Bloomenthal,
2019). As mentioned in the review paper by Martinez-Costa et al. (2014) “in the long term, capacity
planning supports strategic business plans of new process technology and new products”.

Considering manufacturing companies, Zijm and Buitenhek (1996) state that capacity planning is
important because the available capacity (resources) of a company can restrict its production capabilities
in terms of volume (Zijm & Buitenhek, 1996). The automotive industry represents one of the most relevant
manufacturing industries, since almost no other industry has such a high economic relevance (Volling,
Matzke, Grunewald, & Spengler, 2013) .

From the literature review, we can distinguish 3 different levels for capacity planning: strategic, tactical,
and operational. These are the same as the ones found for operations management and they should be
clearly noticeable within any organization.

3.2.2 Strategic Level

From a general point of view, the strategic planning is the way through which a company defines the
strategy/direction it must choose in order to continue growing and stay ahead of competitors. These plans
are related to the business as a whole and do not consider individual parts/departments. Decisions
considered at this level refer to the market they compete in, the level of investment they can afford for
the future and collaborations they can set up to achieve their goals. The time horizon considered by
strategic planning is long term, normally varying between 3 to 5 years (Riskope, 2014). According to
Martinez-Costa et al. (2014), strategic planning is concerned with “changes in the facilities along the long
and medium term, typically several years”.

In the review paper of Martinez-Costa et al. (2014), the authors enlist various decisions related to strategic
capacity planning. Few examples of such decisions relate to capacity size, allocation, inventory,
backlogging, workforce and financial planning.

3.2.3 Tactical Level
Unlike for the strategic level, the time horizon for which tactical plans are being developed is medium-

term, typically one year. At this level, managers decide the tasks for each part of an organization and aim
to align these tasks to ensure a proper fit with the strategic goals (Riskope, 2014).
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The important actions for this level refer to order acceptance and due date quotation for each accepted
order. Furthermore, managers dealing with the midterm planning should also be responsible for checking
the loading of the available resources. This action is useful to determine the feasibility of the plan
whenever a new order has been accepted.

3.2.4 Operational Level

The operational planning shows in which way are the tactical decisions going to be carried out. Operational
decisions are considered on the short term, sometimes being considered on a daily basis (Riskope, 2014).
Thus, the job scheduling, day-to-day planning and resource allocation (equipment, employees, and
materials), fall under the operational capacity planning (Kant, 2014).

3.2.5 Sensata’s Case

As we previously mention in Chapter 1, the goal of this research consists in redesigning the strategic
capacity planning model currently used within Sensata. We fit this model into the strategic level because
of the very high-level of detail considered by the capacity managers. Furthermore, the decisions resulting
from this model are the amount of new equipment that needs to be ordered, and the time when the
orders need to be placed. Considering that these decisions are related to expansion and investment, we
associate them with the decisions previously described for the strategic level.

3.3 Capacity Planning Models

This section introduces literature algorithms focused on the concept of capacity planning. At this point we
are interested in the types of objective functions and constraints, related to capacity planning, available in
literature.

The first model we consider is based on the one developed by Chen and Fan (2015). They aim to solve a
capacity allocation problem in a make-to-order environment with limited resources. This research was
developed as a case study for a factory handling semiconductor packaging and testing. The manufacturing
system is composed of different production lines, each divided in three production stages. For each stage
multiple machines are available in each production line. Each product has to go through all the three
production stages and no constraints regarding the allocation of products to machines are imposed. Each
machine is able to produce any type of product.

The main decisions composing their problem refer to resource migration and capacity allocation. Resource
migration is defined as machines or tools being re-allocated between production lines. In order to solve
this capacity allocation problem, the authors chose maximizing the net profits as the objective function.
In this case the net profits were calculated based on the following formula:

Net Profits = Revenue — Production Cost — Migration Cost

To model their problem, the authors formulate a two-stage stochastic programming model with various
types of constraints. The five types of constraints we are mostly interested in are:

e (Capacity constraints: in this case they limit the workload to the total available resource limits. The
workload is defined as the amount to be produced (for one product type) multiplied by the time
(work hours) that specific product type needs to use the resource for.

21



e Material constraints: are defined in a similar manner to the capacity constraints, being strictly
related to the (raw) materials rather than the machines or workforce available.

e Production capability constraints: mention whether or not a certain product is allowed to use a
certain resource.

e Demand fulfilment constraints: show that the demand/volumes forecasted to be sold should equal
the amount produced for each product type.

e Service level constraints: sets the ratio between volume produced and customer demand equal to
the customer service level.

Considering the results of this algorithm, besides the maximum value of the net profit, the number of units
produced for each customer in each time period is one important overview.

In the article of Siddharth et al. (2011) the authors describe a model in which aspects of scheduling and
order acceptance are being used. The research takes place at the request of a gear manufacturing
company from the US. The manufacturing system under consideration resembles a job shop in which
recirculation is allowed. Recirculation is defined as jobs being allowed to be processed by the same
resource multiple times. Each job, in this case customer order, is composed of multiple operations for
which precedence constraints are present. Furthermore, for each operation the processing times are
known and for each job a fixed deadline, sale price and process route are given.

The authors aim to develop a model for deciding whether an incoming order should be accepted and if
accepted, when its processing should be planned. They define a mixed-integer linear programming model
having as objective function the maximization of the overall net profit. The net profit is defined as the
difference between revenue and manufacturing costs.

Since data such as due dates and precedence constraints between operations are taken into consideration,
we tend to associate this research with a scheduling problem. The most relevant constraints from this
model are:

e (Capacity constraints: make sure that the available capacity, in hours, of a resource is not exceed
in any period of time. Such constraints can also include overtime when allowed by the problem
description.

e Resource allocation constraints: make sure that the total hours of a resource allocated for
producing any operations equals the operation’s processing time.

e Shift duration constraints: the processing of each job should be less than the duration of a shift, in
this case 8 hours, in any time period.

e Precedence constraints: processing of operation o is not allowed to start before the completion of
operation o-1.

e Order Feasibility: before accepting any order, check whether the completion time of its last
operation exceeds the job’s due date. If so, it is impossible for the job to be completed in time.

In their results, the authors show that the computation time of the model increases drastically with the
increase in the number of operations and therefore the number of jobs. They state that for an instance of
5 jobs and 8 operations, CPLEX could not achieve the optimal value even after 16 hours. Furthermore, not

22



only the running time increases with the increase in the number of operations, but also the deviation from
optimal results, referred to as optimality gap.

Kim and Kim, (2001) define an extended linear programming model based on what they refer to as the
“traditional production planning model”. They define a new version of this model because, according to
them, the classical model uses capacity constraints that might not reflect the actual production behaviour
in an accurate manner.

The classical linear programming model they refer to is the model of Byrne and Bakir (1999), which aims
to minimize the sum of various costs while considering capacity and inventory constraints. The
modifications brought to this model by Kim and Kim (2001) start by redefining one of its decision variables.
Instead of using the amount of product i which was produced in period t as a decision variable, the authors
change it to the amount of product i which needs to start in period t. Further on they introduce a new
parameter referred to as the “effective loading ratio”. This parameter represents the proportion of the
amount of product i that needs to start in period t which is part of the workload assigned to machine k in
that same period. By introducing this parameter, they are able to define a formula computing the total
workload per machine per period of time.

Another parameter they introduce is the “effective utilization” per machine per period of time. This
parameter is defined as the “proportion of the total capacity of the machine available to process the start
guantities during the period”. This parameter is used to calculate the adjusted capacity of each machine
in each period. The adjusted capacity equals the effective utilization multiplied by the capacity of each
machine in each period.

The authors claim that their version of the model represents a more realistic vision of the production
process. Furthermore, they combine this linear programming model with a simulation algorithm. By using
such a combination, they obtain a production plan as output of the LP model and check it through the
simulation model. If the values obtained for the quantities to be produced in every period are similar, then
the model stops. Otherwise, they re-run the linear programming model with the values for the effective
loading ratio and utilization obtained from the simulation model.

3.4 Aggregate Production Planning

Weinstein and Chung (1999) introduce an evaluation model of maintenance policies. Their approach starts
with producing aggregate production plans by using a linear programming (LP) model. Next, a master
production schedule is used to minimize the deviations between a selected goal and the aggregate plans.
In the last step they use rough-cut capacity planning to determine the loading requirements per work
centre. Rough-cut capacity planning techniques are used to help the managers in creating “a trade-off
between the expected delivery performance and the expected costs of exploiting flexibility by using
nonregular capacity” (Hans, Herroelen, Leus, & Wullink, 2007). Besides, the authors also state that during
the order acceptance stage, RCCP techniques can be useful for weighing the consequences each decision
can have on the production stage.

We are mainly interested in the models they develop for the first two stages, therefore we do not describe
the third stage further on.
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The first phase, namely the aggregate planning model is performed with the aim of minimizing certain
costs by considering capacity and, in their case, maintenance restrictions. Weinstein and Chung (1999)
state that “the aggregate production planning model described in this article uses a mixed-integer linear
programming (LP) formulation to determine the aggregate policies for the rate of production, inventory,
regular and overtime workforce, and workforce smoothing activities.”

The aggregation starts with grouping the end products in product families and considering the product
families in the actual LP model. Furthermore, the authors make two assumptions for simplicity. First, the
resources (equipment) function at maximum efficiency, therefore no idle time is considered. Moreover,
no yield loss is present either. The second assumption relates to raw materials and states that all raw
materials are available whenever needed, therefore no time waste can result from lacking components.

The first set of constraints they consider for this model are the capacity constraints, which state that the
regular working time and the overtime available is enough to complete all production. The list of
constraints continues with an inventory balance equation and a similar work balance restriction. The last
constraint states that the amount of overtime required for one period should not exceed a certain
percentage of the regular working time from that period.

In the second phase, the master production scheduling, the authors formulate another LP model. This
stage disaggregates the aggregated plan obtained in the first stage. Disaggregation results in specific
timing and sizing requirements for each product individually. The output of this stage is a master
production schedule that does not violate capacity constraints.

The objective function remains focused on minimizing a sum of various types of costs. The constraints in
this case are:

e Inventory balance equation: similar to the inventory constraints we previously describe. The
difference is that, in this research, backordering demand is a possibility. Therefore, the inventory
balance equation also takes into consideration the number of backorders associated with each
type of product.

e  Workforce capacity: limits the total labour capacity to the summation between standard working
hours and overtime. Such constraint can be formulated for individual manufacturing facilities or
for all the facilities together.

e Overtime capacity: limits the number of hours which can be used in overtime to the value specified
in the previous step of the model, the aggregate plan.

e Production volume: ensures that the summation of the quantities that need to be produced in
each disaggregated period of time is equivalent to the total value stated in the aggregated plan.
They compute the value stated in the aggregate plan for each product family, therefore the
summation of the disaggregated information is also computed accordingly.

e |nventory volume: similar to the production volume restriction, this restriction relates the
disaggregated inventory values to the aggregated total.

Another research performed in a make-to-order environment is the research of Neureuther et al. (2004).
This paper introduces a three-tiered hierarchical production plan designed for a make-to-order steel
fabrication site. The production facility contains 14 machines used to produce thousands of different
items.
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The first stage of the hierarchical production model consists of a linear programming model the authors
use to obtain an aggregate production plan. The aggregation takes place at item level, the thousands of
items being grouped in 12 product archetypes. The inputs they use at this stage are monthly aggregated
demand forecasts.

The objective function used is related to the minimization of relevant costs. Similar to the ones Weinstein
and Chung (1999) introduce the constraints for this model are: inventory balance equations and capacity
constraints. However, this time, the capacity constraints are divide in multiple types:

e Facility Storage Limit: size of the products under production plus the ones in inventory should not
exceed the available capacity of the entire plant.

e (Capacity of Equipment: limit the number of items produced to the total available monthly limit.

e Capacity of Workforce: similar to the one related to equipment, such constraint ensures that the
limit of total hours available, both regular and in overtime, is not exceeded.

The output from this stage, the aggregated plan, together with the monthly forecasts for each individual
product are inputs for the second stage. According to Neureuther et al (2004), “the key to any
disaggregation model is to ensure that the production quantities determined in this model agree with
those dictated by the aggregate model”. The second stage is a non-linear model that assigns each product
to an available process plan. Its objective function aims to minimize the total set-up costs. The most
relevant constraint is the one disaggregating the information from the first stage. It does so by ensuring
that the number of units to be produced for each product group (sum of the number of units to be
produced for each individual product belonging to that product group) does not exceed the value from
the aggregate plan. The output they obtain from this stage is a weekly disaggregated production plan.

The third stage represents a master production schedule for which the processing of the 12 product types
is sequenced on machines available in the factory. For each week they create such a schedule with the aim
of minimizing the makespan. They solve the scheduling algorithm in C++ through enumeration. One of the
reasons for them choosing enumeration is that even though there is a big number of possible
combinations, the computers available could easily handle the task. Moreover, they state that
enumeration makes it possible to identify the worst combination.

The authors claim that their model can be applied to any make-to-order manufacturing system, no matter
the number of products or types of processes present in the factory. They state that the most important
factor for this model is the proper determination of the archetypes in which all the individual products are
grouped.
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3.5 Machine Loading Problem

In this section we provide information about the machine loading problem. We describe this problem
because we believe it has certain common characteristics with Sensata’s case.

As stated by Stecke (1983), the main production problems are: part type selection problem, machine
grouping problem, production ratio problem, resource allocation problem, and loading problem. The one
we focus on in this section is the loading problem, which Stecke (1983) defines as follows: “Allocate the
operations and required tools of the selected part types among the machine groups subject to
technological and capacity constraints”.

Grieco et al. (2001) provides similar definitions for both the loading concept and the loading problem.
Singh, Singh, and Khan (2015) give another definition which states that the loading problem refers to
“tooling individual/group of machine(s) to collectively accomplish all manufacturing operations
concurrently for all part type in a batch”.

As Singh et al. (2015) state a solution to the loading problem should output the processing flow for each
job. In this case, by processing flow we refer to the sequence of machines a certain job has to follow.
Furthermore, the output should include the tooling associated with each machine. The restrictions of such
a problem are related to capacity constraints and technological constraints, such as individual machine
capabilities.

Taking into consideration the factors and conditions we describe in Chapter 2 as being important for the
new version of the capacity model, the machine loading problem is similar in terms of capacity restrictions
and machines’ capabilities. Furthermore, we associate the machine loading problem with a sequencing of
jobs model.

3.6 Scheduling Problems

We start this section by defining the scheduling concept. Further on, Sections 3.6.1 describes the basic
concepts behind scheduling problems.

Scheduling is considered to be one of the difficult tasks in industry. According to Mckay et al. (1998) there
are several reasons behind its difficulty. The first reason the authors state in this paper refers to the non-
static behaviour of set-up and processing times (which we refer to as cycle time). The authors mention
that differences can appear even between the same unit being processed on the same piece of equipment
and making use of the same human resources.

The second reason refers to allowing pre-emption and changing the schedules when an urgent task needs
to be prioritized as other factors which increase the scheduling complexity. Furthermore, another aspect
they state is the miscommunication between top management and the production managers. The authors
refer to cases such as senior managers accepting customer orders without consulting with the production
managers regarding the available resource/capabilities.
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3.6.1 Job Shop Scheduling Problem

According to the literature, the job shop scheduling problem is one of the most important and difficult to
solve combinatorial optimization problem. This problem is classified as an NP-hard problem and various
articles mention various attempts of solving it being available in literature (Calis & Bulkan, 2013).

The same authors describe the context of the job shop scheduling problem as consisting of two finite sets,
one of jobs and another one of machines. Each job consists of multiple operations and needs to be
processed by certain machines, according to its processing flow. Each machine has the capability of
processing a single operation at a time. Normally the goal is to assign a sequence of operations to each
machine which minimizes a certain criterion (Pham & Klinkert, 2008). The criterion we found as the one
most mentioned in papers refers to the minimization of the makespan. By makespan, the majority of
articles refer to the maximum value of the completion times of all operations (Dell'Amico & Trubian, 1993).

For a more complex context explanation, we find various assumptions and restrictions regarding this
problem in literature. Based on Dell’Amico and Trubian (1993), the assumptions for the traditional job
shop model are:

e processing times (which we refer to as cycle times) are known and fixed
e all jobs are available for processing in the beginning of the time bucket considered

Furthermore, the most common assumption, which we encounter in the majority of articles, is related to
pre-emption and states that no pre-emption is allowed. By pre-emption we refer to the “temporary
interruption of a task with the intention to resume this task later” (Techopedia, n.d.).

The constraints we find in literature are divided in 2 categories. The first one refers to the machines
capabilities of only processing one job at a time, therefore they are non-interference restrictions as Manne
(1960) describes. The second category Manne (1960) mentions are precedence relations between
operations of the same job, referred to as sequencing restrictions.

3.6.1.2 Job Shop Scheduling Techniques

Due to the multitude of techniques available for approaching the job shop scheduling technique we decide
to make a comparison to better review them. The factors we mainly focus on refer to the size of the
instances for which each method can be used and the respective computational time. Moreover, we are
searching for an algorithm with low computational time that given our problem size, can achieve a decent
solution in a low time frame. We do not necessarily focus in finding a method that can reach the optimal
solution because from on our research we conclude that these methods require both high computer
capabilities and computational time.

In Table 1 we present various techniques available in literature for solving the job shop scheduling
problem. We base the information presented in this table on the paper of Morshed, Meeran and Jain
(2017).

27



Optimization Procedures

Name

Description

Remarks

Mathematical formulations

The most well know method for this case is using mixed integer
linear programming. The review paper states that for obtaining
good results, a relaxation of the problem is required (Lagrangian
relaxation).

The authors call such methods “inadequate” for solving job
shop scheduling problems. Even by applying the Lagrangian
relaxation the procedures seem to require high
computational effort and the results present large
deviations from the optimal value.

Branch and bound

This method represents the best one out of the enumerative
procedures. This method is based on the dynamic construction of
a solution space resembling a tree structure. The method starts
with the root node (the highest location in the tree) and ends
once all the solutions have been analyzed. This implies that the
algorithm has reached the lowest node in the tree and has
fathomed the worst solutions.

According to this review paper the most common way of
solving a job shop scheduling problem through branch and
bound is to decompose the set of operations into one
machine problems. The algorithm solves each of these
instances and chooses the bottleneck machine as a bound
for the next iteration.

The articles reviewed in this paper shows that even the
method considered to be the best for branch and bound
requires high computing time and cannot be used for
solving large instances.

Approximation Procedures

Name

Description

Remarks

Priority dispatch rules

For this algorithm, every iteration the operations to be scheduled
are assigned a priority weight and the operation with highest
priority is selected for scheduling. The weights are assigned based
on a certain criterion, such as: shortest or longest processing
times. This method is an approximation method since it involves
choosing one operation to add to the already existent sequence,
instead of evaluating all possible combinations as an enumerative
method would do.

Beam search represents a middle ground between
approximation and enumerative methods, where couple of
solutions are analyzed every iteration, as opposed to just one or
all.

The authors state that algorithms making use of a single rule
based on which to prioritize the operations have limited
capabilities. Therefore, various extensions showing
different levels of priority classes used by the same method
have emerged.

Although we could consider such a technique for our case,
the article mentions that such techniques are “more
suitable as an initial solution technique rather than being
considered as a complete system”

Bottleneck based heuristics

The Shifting Bottleneck Procedure is the most well-known
method from this category. It is similar to branch and bound in
terms of decomposing the whole problem into one machine
instances and solving each individual one iteratively. In this
model each such instance is ranked based on its result and later

Just as for branch and bound, the best algorithm from this
category designed by Balas and Vazacopoulos requires high
computing efforts.
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on compared to the others. The chosen one for every iteration is
the bottleneck machine, the one having the largest value. The
chosen machine is then included in the existent schedule and the
other problems are again solved in the next iteration.

Local Search & Meta-heuristics

Name

Description

Remarks

Simulated Annealing

Represents a search method having its roots in the physical
concept of annealing (“heating a material above its
recrystallization temperature, maintain a suitable temperature
for a suitable amount of time and then cooling”). This method is
based on creating a neighborhood structure, by for example
swapping two consecutive job. The result obtained from this
swap is computed and compared to the best-known value until
that point. If the new result is better than the best value, then the
new result becomes the best value. The innovative aspect of
Simulated Annealing is that with a certain probability it also
accepts neighborhood structures with worse results, to avoid
getting stuck in a locally optimum point. This probability
decreases, so towards the end the method avoids accepting
worse solutions.

The trickiest part when it comes to Simulated Annealing is
defining the right neighborhood structure. Furthermore,
the authors of the review paper state that in order to reach
good solutions, excessive computational times are required
for this method as well.

Tabu Search

It is a search procedure which stores part of the search history in
its memory. A number of most recent solutions are stored in what
is called a tabu list, which is used to avoid repeating or similar
solutions. Just as Simulated Annealing it also uses a
neighborhood structure and the most recent moves are marked
as forbidden and stored in the tabu list.

Each solution from the tabu list receives an aspiration criterion,
which allows it to be selected as feasible if it reaches a certain
level of quality.

Just as for Simulated Annealing, one of the biggest
challenges when it comes to this method is defining an
appropriate neighborhood structure.

The conclusion given by the review paper when it comes to
Tabu Search is that is outputs the best results out of all
techniques and is able to so with decent computational
efforts.

Table 1 Job Shop Scheduling Techniques
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3.7 Simulated Annealing

Simulated Annealing represents an optimization method originating from the metallurgic industry. A
material undergoing the annealing process is first heated until its fusion point. Once it is liquefied, its
temperature is gradually reduced until it is brought back to a solid state. This method was first proposed
in 1983 and the authors state that this process starts by melting the system in question, followed by slowly
reducing its temperature until it freezes and therefore no further change can be performed (Kirkpatrick,
Gelatt, & Vecchi, 1983).

Starting from an initial solution, in each iteration, Simulated Annealing creates a new solution from the
neighborhood of the current one. If the change in the objective function improves the current solution
value then the transition from the current solution to the neighboring one is accepted with a probability
of 1. In a minimization problem, accepting a solution with a smaller objective function than the current
one refers to performing a downhill move. However, to prevent getting stuck in local minimum, Simulated
Annealing also accepts uphill with a certain probability. An uphill move represent an increase in the current

,_
objective function. The acceptance probability of uphill moves is calculated from the exp(— ST—S) formula
k

(Park & Kim, 1998). In this formula S’ represents the objective function of the neighboring solution while
S represents the objective function of the current solution. Next T represent the temperature at iteration
k. At the beginning, the model will accept almost all transitions, uphill or downhill. However, as the
temperature decreases, the acceptance probability for uphill moves decreases as well. Hence, towards the
end, the model will only accept improving solutions which in the case of a minimization problem are the
downbhill transitions.

3.8 Tabu Search

Tabu Search represents an optimization procedure used for solving combinatorial optimization problems.

According to Glover (1986) its applications vary from graph theory to solving mixed integer programming
models. This method resembles a hill-climbing heuristic which improves the solution unidirectional up to
a local optimum. The limitation of a hill-climbing heuristic is that the local optimum found by the algorithm
might not coincide with the best solution available, the global optimum. Because this heuristic only accepts
solutions improving the objective function, once no improvement is available the method stops, leaving
part of the solution space unexplored. To overcome this limitation, Tabu Search guides the search past the
local optimum.

In a similar manner as Simulated Annealing, starting from an initial solution Tabu Search generates a list
of neighbor solution of the current one. A neighboring solution is generated from the current solution by
performing a single move. Once a solution is accepted, the move leading from the current solution to its
accepted neighbor is stored in a tabu list. This list has the role of preventing the algorithm from moving
back to previously explored areas. Once a move was added in the tabu list it is considered forbidden.
However, the moves in the tabu list do not necessarily remain forbidden until the end of the algorithm. A
move only remains forbidden for a number of iterations equal to the tabu tenure. The tabu tenure is
defined as “the time, measured in terms of iterations that must elapse for a node to be removed from the
tabu list” (Rolland, Schilling, & Current, 1997).
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Besides waiting for a number of iterations equal to the tabu tenure, one can also overwrite the tabu status
of a certain move. This can be done by using an aspiration criteria which determines whether a move can
be performed although being in the tabu list. According to Rolland, Schilling and Current (1997) the most
common aspiration criteria is overwriting the tabu status of a move if by performing it the value of the
objective function is better than the best known solution.

3.9 Simulated Annealing versus Tabu Search

In the paper of Morshed, Meeran and Jain (2017), Tabu Search is presented as being able to achieve the
best results. However, since our problem does not entirely match the job shop scheduling problem we
perform a literature research comparing the two algorithms for different problems.

St-Hilaire and Liu (2011) compare the performance of the two metaheuristics, Tabu Search and Simulated
Annealing, for the network topology planning problem. According to the authors, this problem is classified
as NP-hard. Besides the two metaheuristics, they also includes the performance of a genetic algorithm in
the comparison. They compares the results of the three heuristics with the results they obtain when using
CPLEX for a total of 42 different problem sizes. Furthermore, for each problem size three instances are
randomly generated.

Their results show that Tabu Search is the best algorithm in terms of finding the optimal solutions. Tabu
Search is able to find the optimal solution in 57 out of 126 problems. Simulated Annealing found the
optimal solution in 9 cases while the genetic algorithm could only find an optimal solution for 2 of the
problems. In terms of running time Tabu Search and the genetic algorithm show a similar performance,
while Simulated Annealing requires much higher execution time.

Another research comparing the performance of Simulated Annealing and Tabu Search is the research of
Paul (2010). The author compares the two algorithms when solving a quadratic assignment problem, an
NP-hard combinatorial optimization problem. His conclusions show that Simulated Annealing can achieve
the lowest value for the objective function in 5 out of 6 cases, while Tabu Search can only do so for 3
instances. Furthermore, he also states that that Simulated Annealing can be better for some instances
while Tabu Search can be better for others.

Semba and Mujuni (2019) reach similar conclusions. In this research the authors perform a comparison
between the 2 metaheuristics and an Ant Colony Optimization algorithm with or without time restrictions.
The problem they consider in this research is the school bus routing problem. In the time restricted case
the algorithms are allowed to run for a maximum of 1000s. Considering time restrictions, Tabu Search
seems to perform worst out of the 3 algorithms while the Ant Colony Optimization algorithm outperforms
Simulated Annealing after 300s. However, when no time restrictions are set Tabu Search performs best
for 2 out of 3 problems, while Simulated Annealing performs best for the third one.

Based on the findings of these research papers we conclude that each of the two metaheuristics have a
good performance for a variety of problems. Furthermore, in terms of which metaheuristic is best we are
inclined to believe that it is highly dependent on the problem to solve.
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3.10 Overall Equipment Effectiveness

In this section we present a short description of the OEE components. As we introduce in Chapter 2, OEE
is one of the factors currently considered by Sensata. Overall Equipment Effectiveness represents a
measure of the efficiency and effectiveness of a process. This measure is usually defined through the
following formula:

Number of good units * Processing Time
OEE =

Total Time Planned for Production

By good units we refer to the ones that meet the quality standards and do not require any sort of rework.
The processing time used in this formula is the theoretical minimum amount of time required to
manufacture a single unit. Although this formula represents an accurate way of calculating the OEE of a
process, it does not give any further details related to the three OEE components. These components are:
availability, performance and quality. Each of the three component highlights a certain kind of loss.
Availability considers any expected or unexpected event that prevents the system from producing.
Performance is related to the various aspects that can prevent a system from operating at its optimal
speed, while quality relates to the yield loss. The yield loss refers to the amount of parts which do not
meet the quality requirements. This category also includes any part that requires rework. (Calculate OEE -
Definitions, formulas and examples | OEE, n.d.)
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Chapter 4 Model Description

This chapter introduces the heuristic we design to fit Sensata’s manufacturing process and the mixed
integer linear programming model we use to benchmark our heuristic’s results. Section 4.1 provides a
detailed description of the problem statement and further details on the decisions covered by our model.
Next, in Section 4.2 we introduce the mixed integer linear programming model designed to match our
problem description. Furthermore, the same section also contains details regarding the model size and
the solver we use. Section 4.3 describes the heuristic we design for solving the strategic capacity planning
issues Sensata is currently facing. In the same manner as in Section 4.2, in Section 4.3 we also describe the
heuristic’s components and the software we use. Finally, in Section 4.4 we state the conclusions of this
chapter.

4.1 Problem Description

We start this section by providing a recapitulation of the project’s goal. Furthermore we introduce the
possible decisions the capacity managers can take in order to keep up with the continuous increase in
demand and a detailed description of the existent guidelines regarding the actual production.

The desired output for the project is a new model for the strategic capacity planning within Sensata. The
outcome we are looking for is an algorithm that performs a high-level allocation of tasks to machines, by
taking into consideration all the restrictions available. We wish to use optimization techniques, so that the
new algorithm can predict the loading percentage of a machine in a more accurate manner.

As we mention in Chapter 2, when describing the current situation, the company has to meet a monthly
demand for each product. These values fluctuate depending on their customers’ requests. Apart from
having to produce the demand of each product, the capacity managers also need to consider the yield
loss. As we describe in Chapter 3, we associate the yield loss with the quality component from OEE.

Each sensor produced by Sensata goes through three main stages referred to as: front end (cleanroom),
calibration and back end. In the front and back end stages, each sensor goes through multiple processing
steps (is being processed by multiple machines), while for the calibration only one processing step
(machine) is needed for each sensor. Although having to go through the same main stages, when it comes
to the processing steps, each sensor can have its own routing. This routing is defined as the sequence of
machines required for the production of each sensor. Considering these product-machine combinations
two different guidelines have to be considered:

o whether a machine has the physical capability of producing a certain sensor (for example: there
are some machines used strictly for either analogue or digital sensors);

e whether a machine is released by the customer to produce his sensors. (A customer release
represents the customer’s approval of having a certain set of machines used in the production of
his sensors. To obtain this approval, Sensata produces sample sensors that are further tested by
the customer themselves).

Another aspect we mention in Chapter 2 is the difference in performance between the machines. Such
differences mainly appear due to different generations of the same machine. This being the case, the
processing time, referred to as cycle time, of the same product on different machines can have different
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values. Because of these differences a certain allocation of products to machines can result in insufficient
capacity to meet the whole demand, while another allocation can highlight leftover capacity available.

Another OEE component that is relevant for our problem is the availability. Besides differences in cycle
time, having various machine generations can lead to differences in the maintenance levels required. Such
aspects are part of the OEE and are covered by the availability component. The availability values are used
to reflect the percentage of the total capacity during which a machine is actually used for production.

Regarding the capacity aspect, three values have to be taken into consideration. The first one is the
number of working days in each month. Sensata’s manufacturing facilities have a schedule of 7 working
days a week, excluding national holidays. Since their manufacturing facilities are located in various
countries (the MEMS department has facilities in Malaysia and China, while the MSG department also
produces in Bulgaria), the number of national holidays in a month varies. Hence, so does the number of
working days in a month.

The second value to look at is the number of hours available for production in a day. Normally, the
manufacturing facility functions 24 hours a day, however approximately 1.5 hours are used for breaks and
shift changes.

The last relevant value in terms of capacity is referred to as the buffer level. We compare this buffer with
the safety stock concept, however without having any physical stock. This buffer represents a percentage
of the total monthly capacity that should not be used and is introduced so that the company can deal with
sudden fluctuations in demand. Although the capacity managers would like to keep the buffer level set to
15%, this is not always possible due to differences in opinion between them and the higher management.
Therefore, in some of the months this threshold is exceeded and the capacity managers consider the
process as overloaded.

In Section 4.2 we show how we include all the guidelines we mention above in the mixed integer linear
programming model, while in Section 4.3 we show the same for the heuristic we design.

4.1.1 Decisions Considered

In order to help Sensata cope with the increase in demand, the capacity managers have three different
decisions available. These decisions are referred to as: building inventory, releasing existing machines and
ordering a new machine. Each decision is associated with one of the following costs:

e costs of holding one unit in inventory

e costs of releasing an existing machine for one product: releasing an existing machine for a certain
sensor implies building sample units on that machine and testing them to make sure they meet
the specifications (the sample validation costs are usually 20.000-30.000€)

e costs of buying a new piece of equipment: Apart from the costs of the equipment itself (buying a
new calibrator will cost 1million €) when a new machine is purchased, the releasing costs are also
implied since this machine has to be released for production.

Besides the costs, another difference between releasing an existing machine and purchasing a new one is
the lead time incurred for each of the two actions. As we mention in Chapter 2, releasing an existing
machine has a lead time of approximately 3 months, while ordering a new machine has a lead time of
approximately 15 months, excluding the 3 months required for releasing it.
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4.2 Mathematical Model

Based on the literature review, the guidelines we introduce in Section 4.1, and the three main decisions
available for the capacity managers, we build a mixed integer linear programming model for strategic
capacity planning. This model is able to create a capacity planning overview and highlight which decision(s)
should be chosen in which month.

The project’s scope involves creating a proof of concept for a strategic capacity planning algorithm to be
used by Sensata’s capacity managers. We decide to create this proof of concept in the form of a heuristic,
which we describe in Section 4.3. To benchmark the results we obtain from our heuristic we decide to set
up this mixed integer linear programming model and use a commercially available optimization software
to solve it to optimality.

In this section we provide a detailed explanation of the components of this model, followed by details
regarding its size and the solver we use.

4.2.1 Model Description

The MILP serves as validation for the heuristic we design. This model highlights which actions should the
capacity managers consider during a certain planning horizon. The actions available refer to the three
decisions: building inventory, releasing existing machines and purchasing a new piece of equipment, which
the company can take to cope with their forecasted increase in demand. Each of these actions has an
associated cost therefore whenever one action is chosen, its cost is added to the total cost. The model’s
objective is to minimize the total spend for the chosen planning horizon.

By aiming to minimize the total spend, the model actually tries to prevent any kind of investment that is
not needed. Moreover, since ordering a new machine can require a big investment for the company, the
model tries to postpone such an investment by first trying to build inventory or release the existing
machines.

The model’s objective is subjected to various restrictions, which vary from meeting the demand of each
product and not exceeding the capacity of any machine to restrictions stating the machines on which each
product is allowed to run. Regarding the decisions variables, unless they require binary values, we allow
most of them to be continuous.

4.2.2 Modelling Choices

Before starting to describe the mathematical model, we discuss the motivation behind some choices we
make when designing the mixed integer linear programming model.

The number of decision variables of a model has a direct effect on the computational difficulty of an integer
programming model. Later in this section we further discuss about the number of decision variables, and
offer an example showing the exact values. Furthermore, considering that the goal of the project is related
to the strategic level of planning, we do not consider constraints modelling aspects such as precedence
relationships between products on the same machine or the machines required for the manufacturing of
one product to be relevant. Based on these arguments, we make the decision of solving the MILP model
for each machine type at once.
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Once the samples are approved by the customers and the mass production process starts, Sensata has to
produce different volumes of these sensors for a couple of years. For some customers they have to deliver
monthly or weekly volumes, while for others they can be requested to deliver 2-3 times a week or even
on a daily basis. Because these times can vary from customer to customer, the capacity managers in charge
of the high-level overview, take into consideration the monthly demand for each sensor. In this model we
choose to do the same, after having various interviews and being explained about these delivery requests,
the moment when the real data becomes available (replacing the forecasts) and the fluctuations in
demand which, although not allowed, can still occur on very short term.

The last modelling choice we address is the existence of so called “dummy” machines in our model. These
machines represent the machines that can be added by the model, whenever a new machine has to be
purchased. For these machines we duplicate the inputs: cycle times, availability and capabilities, of some
of the existing machines and set all their releases equal to 0 (before being purchased they should not be
released for any of the products). Another aspect we find out during the interviews is that Sensata
normally uses the same supplier for the same machine type and that they do not have multiple options of
the same equipment to pick from. This being the case, we make all the “dummy” machines identical.

4.2.2 Sets and Indices

We define the following sets in our model. The first set, |, contains the list of all sensors under production
starting from month 1 to month T. The second set, K, contains the list of all machines, belonging to the
machine type for which we solve the model. Just as for products, the list contains all the machines existing
in the manufacturing facility from month 1 to month T. However, besides these machines, set K also
contains the “dummy” machines we previously mention. The last set, M, contains all the months belonging
to the planning horizon (e.g. if the input data is available for 2 years then the months will take values from
1to 24).

e | =Products: {1,..i...,1}
e K =Machines: {1,..k...,K}
e M =Months{1,..t..., T}

4.2.3 Parameters

Below, we list all the parameters we choose for our model. These parameters serve as inputs for the mixed
integer linear programming model. We define these parameters considering the data relevant for the
company. The only parameter we define strictly for modelling purposes is the “big-M” which facilitates
the formulation of the so called “big-M constraints”.

Costs:

Considering that the company’s goal is to postpone a big investment, such as ordering a new machine, for
as long as it is feasible, we define all three cost components as time dependent. The following holds for all
three cost components: performing any action in month t is more expensive than performing the same
action in month t+1. At the moment, we consider the costs for keeping an item in inventory in month t,
regardless of the product, to be equal. The same applies for releasing a machine in month t, no matter for
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which product. Moreover, purchasing a new machine has the same costs, regardless of which machine is

chosen from the fictive machines we create.

InventoryCost(t): inventory costs associated with month t
ReleasingCost(t): releasing costs associated with month t
OrderingCost(t): ordering costs associated with month t

Products:

D(i,t): demand of product i in month t

Initialinventory(i): initial inventory of product i. We define this parameter to represent the
inventory that exists for each product before running the model.

TotalDemand(i,t) : total demand of product i in month t. This parameter represents the sum of
the demand for product i over a certain number of months. We use this parameters to reflect the
shelf life of a product and therefore to set a limit on the inventory allowed for producti. The shelf
life of a product represents the period of time, following its manufacturing moment, during which
a product can be kept as inventory and remain within its approved product specifications.
Example: If the TotalDemand(i,t) is the sum of demands for the next year, then the inventory value
in each month is not allowed to be more than that. This being the case, no units produced in month
t will stay under inventory for more than one year.

Machines:

InitialExistingMachines(k)=
1,if machine k is available at the start of the planning horizon
{ 0, otherwise
This parameter shows which machines exist in the manufacturing facility at the beginning of the

planning horizon or have been ordered by the company and their delivery is expected in a certain
month. If index k refers to one of the machines that is in the manufacturing facility or already
ordered this parameter has a value of 1. If index k refers to one of the fictive machines then this
parameter has a value of 0.

AvailabilityOEE(k,t): availability (OEE component) of machine k in month t. A value is given for all
the machines, whether they exist in the manufacturing facility or not. When a new machine is
purchased, its availability is taken into consideration for capacity calculations. In some cases, some
machines have already been ordered and are known to become ready for production in a certain
month. Until month t when they are ready, we set their availability to 0, therefore preventing any
products to be allocated on such a machine.

Capacity:

HoursAvailable: number of hours available for production in each day. This parameter represents
a constant value for all days in all months.

Days(t): number of days available for production in month t.

Buffer: constant value that we use to model the spare capacity which, in Sensata’s case, is kept to
cope with fluctuations in demand. This parameter gets values between 0 and 1. Normally the
capacity managers aim to have a 15% buffer on capacity.
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Product-Machine:

Others:

CT(i,k,t): cycle time for product i on machine k in month t. This value represents the processing
time of machine k for product i in month t. This value is also time dependent because the company
performs improvements on their equipment to decrease the processing times, therefore, the
processing time might not be the same in all months.

1, machine k is capable of processing product i
0, otherwise

This parameter is used to show which machine has the physical capability of producing a sensor.
This parameter is not time dependent because the physical capabilities of machine cannot be
modified (it cannot start processing a product that it could not process before).
1, machine k is released for product i

0, otherwise
In a similar manner as the initial existing machines parameter, this parameter shows the releases

already decided by the company at the beginning of month t. The difference between the two
parameters is the fact that these initial machine releases also depend on the month index. We
consider the month index here because releases could have already been planned to occur in a
certain month t, before running the model.

Quality(i,k): quality (OEE Component associated with yield loss) for product i on machine k. We
use this value to determine how many more units of product i should be produced to compensate
for the yield loss. Same as the availability parameter, we set a value for all the machines, whether
they are available or not.

MachineCapabilities(i,k) = {

InitialMachineReleases(i,k,t) = {

bigM: as we previously mention, we define this parameter to be able to model “big-M”
constraints. This parameter has a constant value. In order to ensure the proper function of the
model, its value should be at least equal to the maximum demand of a product found across the
entire planning horizon.

4.2.4 Decision Variables

In this section we introduce the decision variables of our MILP model. They represent the output of our
model and can be divided into main decision variables and auxiliary ones. We define the auxiliary variables
to facilitate the modelling of our constraints.

Three of our main decision variables relate to the three available decisions: building inventory, releasing
existing machines and ordering a new machine. The fourth one is showing the allocation of products to
machines, together with the associated volumes.

InventoryLevel(i,t): variable showing how many units (if any) are kept as inventory for each
product in each month t. We use this variable to allow the possibility of, for example, producing
part of the demand of month 2 in month 1 and keeping it as inventory.
1,if machine k gets released for product i in month t

0, otherwise
We define this variable to keep track of the machine releases (if any) occurring every month.

New Release (i,k,t) = {
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1,if machine k is becoming available in month t
0, otherwise
We define this variable to keep track of the new machines purchased (if any) every month.
Units Produced (ik,t): this decision variable shows the number of units of product | being
produced by machine k in month t.

NewMachine(k,t) = {

The auxiliary decision variables are:

Totallnventory(t): variable that we use to calculate the total number of units, for all the products,

kept in inventory in month t.

1,if machine k is released to process product i in month t
0, otherwise

this variable to update the releases for each product - machine combination in each month t.

TotalMachinesReleased(t): variable that serves for calculating the total number of new releases

(if any) in each month t.

ExistingReleases(i,k,t) = { We use

1,if machine k is available in month t
0, otherwise
This variable helps to update the status for each machine k in each month t.

ExistingMachines(k,t) = {

TotalMachinesOrdered(t): variable that we use to calculate the total number of machines ordered
in each month t.

4.2.5 Objective Function

The objective function for our model is to minimize the costs incurred by performing any of the three
possible actions: building inventory, releasing existing machines and ordering new machines, summed
over the entire planning horizon.

MINIMIZE

T

t=1

Z(Inventory Costs(t) * Totallnventory(t) + ReleasingCost(t) * TotalMachinesReleased(t)

+ OrderingCost(t) * TotalMachinesOrdered(t))

4.2.6 Constraints

1.

Inventory Balance Constraints: we set these constraints to ensure that the demand of each
product will be met in time, whether this demand is produced in month t or prior to month t. Since
the units produced in the months prior to month t can also be used for month t, in a similar
manner, units produced in month t can be used in month t and in the upcoming months.
We include the quality component of OEE in these constraints in order to make sure that the
company produces enough units to both cover the full demand and make up for the yield loss.

a. Montht=1

InventoryLevel(i, 1) = Initiallnventory(i) + YX_, UnitsProduced(i, k, 1) *
QualityOEE(i,k) — D(t,1),Vi €I
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b. Month t>1

InventoryLevel(i,t)

K
= InventoryLevel(i,t — 1) + Z UnitsProduced(i, k,t) * QualityOEE (i, k)
k=1
—-D(,t),Viel,Lt >1

Defining the variable Totallnventory(t):
I

Totallnventory(t) = Z InventoryLevel(i,t),Vt € M
i=1
Shelf Life Constraint: this constraint limits the amount of inventory the company can hold for each
product i to the shelf life of the each product. We consider this shelf life to be 12 months.

InventoryLevel(i,t) < TotalDemand(i,t),Yi€Il,t e M

Releasing Constraintl: this constraint ensures that the model can only release machines that are
capable of processing a product i (such machines should have the machine capabilities parameter
equal to 1).

NewReleases(i, k,t) < bigM * MachineCapabilities(i,k),Vi € I,k € K,t e M
Releasing Constraint2: this constraints limits the machines the model can release in each month
only to the machines that are not already released in that month. This applies for each product |
and releasing a machine only becomes available from month 4.

a. Montht<=3
NewReleases(i, k,t) < 1 — InitialMachineReleases(i,k),Vi€l,k € K,1 <t <3
b. Months t>3

NewReleases(i, k,t) <1 — ExistingReleases(i,k,t —1),Vie€l,k € K,t > 3

6. Updating the Existing Releases variable:

ExistingReleases(i, k,t) = InitialMachineReleases(i, k) +

a. Month t<=3

ExistingReleases(i, k,t)
= InitialMachineReleases(i, k) + NewReleases(i, k, 1)
+ NewReleases(i, k,2) + NewReleases(i,k,3),VieLkeK,1<t<3

b. Months t>3

NewReleases(i,k,t),Vi€lk

t
=1

T

eEK,t>3
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7. Production Constraintl: this constraint helps to make sure that the production of product i is only
allowed on machines released for that product. This applies for every month t.

UnitsProduced(i, k,t) < bigM = ExistingReleases(i,k,t),YVi €,k € K,t e M

8. Defining the variable TotalMachineReleased(t):
I

K
TotalMachineReleased(t) = z z NewReleases(i, k,t),Viel,k e K,t e M
i=1 k=1

9. Purchasing Constraint 1: this constraint helps to make sure that the model can only purchase
machines that are not already in the manufacturing facility. This applies for every month t.

a. Month t<=15
NewMachines(k,t) = 0,Vk € K,1 <t <15
b. Months t>15
NewMachines(k,t) < 1 — ExistingMachines(k,t — 1),Vk € K,t > 15

10. Updating the Existing Machines variable:

a. Month t<=15

ExistingMachines(k,t) = InitialExistingMachines(k) + NewMachines(k,1),Vk € K, 1
<t<15

b. Monthst>15

ExistingMachines(k,t)
= InitialExistingMachines(k) + NewMachines(k,t) + NewMachines(k,t — 1)
+ ...+ NewMachines(k,1),Yk € K,t > 15

11. Production Constraints2: this constraint ensures that the production of product i is only allowed
on machines that exist in the manufacturing facility. This applies for every month t.

UnitsProduced(i, k,t) < bigM = ExistingMachines(k,t),Vi €,k € K,t e M

12. Defining the variable TotalMachinesOrdered(t):
K

TotalMachinesOrdered(t) = NewMachines(k,t),Vt € M
k=1

13. Capacity constraints: through this constraint we make sure that the capacity of each individual
machine is not exceeded. The total capacity of each machine is equal to the product between the
hours available for production in a day, converted to seconds, the number of days available for
production and the availability component of OEE of the corresponding machine. From this value,
the aim is to keep a certain percentage as buffer, hence the multiplication with (1-Buffer). This
applies for every month t.
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I

Z UnitsProduced(i, k,t) = CT(i,k,t)

i=1

< (1 — Buffer) * AvailabilityOEE (k,t) * DaysAvailable(t) * HoursAvailable
*3600,Viel,keK,teM

14. Range Constraints:

UnitsProduced(i, k,t) = 0O,Viel,keK,teM
InventoryLevel(i,t) = 0,Viel,t e M
Totallnventory(t) = 0,Vt € M

NewReleases(i,k,t) € {0,1},VielLke K,teM
ExistingReleases(i, k,t) € {0,1},VieLke K,teM
TotalMachinesReleased(t) > 0,Vt € M
ExistingMachines(k,t) € {0,1},VkEK,teM
NewMachines(k,t) € {0,1},VkeK,teM
TotalMachinesOrdered(t) = 0,Vt E M

Although ILP models are very often used for formulating real-life situations, they are also much harder to
solve than LP models. The LP-relaxation of an IP is defined as the LP resulting when ignoring the integrality
constraints of an IP. From the feasible region of the LP-relaxation, the feasible solution set for the IP is
restricted to those solutions in which some or all of the decision variables take integer values. Therefore,
the set of all feasible solutions of the IP model represents a subset of the set of feasible solutions of the
corresponding LP-relaxation. (Winston & Goldberg, 2004)

Considering that the feasible region for an IP model is contained in the feasible region of its corresponding
LP-relaxation, the optimal objective value of the relaxation is at least as good as the one of the IP. Since
having continuous variables results in a less constrained model which might lead to better solutions, we
decide that besides the variables which are bound to have binary values we allow all the other variables
to be continuous. (Winston & Goldberg, 2004)

4.2.8 Model Size

As we previously mention, we run the MILP model for one machine type at once. The planning horizon
varies in our tests from 1 to 2 years. During this time the model decides on the right values of the decision
variables for every single month. To illustrate the number of decision variables and constraints composing
our model we consider the following data as our input:

260 products running on 9 different calibrators for a AINNS ER.EE'dmeF”E'E'mS

] . . Math.Pragram s MinCosts
period of 24 months. Besides the 9 calibrators we add 6 # Constraints - 482017
more as “dummy” machines which can become #Variables 288217 (94320 integer)
available starting from month 16. Considering these # Monzeros 2352143
numbers, the progress tab from AIMMS shows the total Model Type - MIP

. . . Direction - minimize

number of variables and constraints we use in the
model. Figure 16 displays this overview. Figure 16 Model Size - AIMMS
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To demonstrate how such numbers are obtained, we perform the calculations considering the decision
variables. In Table 2 we display each main group of decision variables together with their indices and the
number of individual variables belonging to each group. In this table, T represents the number of months
in the planning horizon, in our case 24, | represents the total number of products, 260, and K represents
the total number of machines, 15.

Group of variables Formula Number of individual variables
Number Of Units(t,i,k) TxI*K 260 * 15 * 24 = 93600
Inventory Level(t,i) T =1 260 * 24 = 6240

New Releases(t,i,k) TxI*K 260 * 15 * 24 = 93600

New Machines(t,k) T+K 15 * 24 =360

Total 193800

Table 2 Number of variables for the MILP model — 24 months

Besides the main groups of decision variables, we create auxiliary ones which we use for updating, for
example, the possible releases in every month or calculating values such as the total number of releases
taking place in month t. We calculate the individual number of decision variables from these groups in a
similar manner to the one in Table 2 and the total, in this case, is: 94417. Therefore, the total number of
decision variables from our example is 288517, as we display in the overview from Figure 16.

4.2.9 Software and Solver

We use the solver provided in the AIMMS Developer version 4.65 from 2017 to solve our model. This
developer represents an extended series of embedded solvers such as  CPLEX,
CONOPT, GUROBI and Knitro. While, CONOPT and Knitro are highly focused on solving large-scale
nonlinear programming models, CPLEX and Gurobi are capable of handling both linear and mixed integer
programming models. From the four solvers we mention, the solver we use for our model is CPLEX (version
12.9). Considering our model formulation, the default solver automatically chosen by AIMMS is MIP which
refers to a Mixed-Integer Linear Programming model.

4.3 Heuristic

As we previously mention, we decide to create a heuristic as a proof of concept for the goal of our project.
We create this heuristic to be able to solve Sensata’s capacity issues in a similar fashion as the mixed
integer linear programming we introduce in Section 4.2. We design it to follow the same objective and
restrictions as in the MILP model. The choices we make, while designing this heuristic are based both on
the literature study we conduct, and on the results we obtain from various tests. We introduce these tests
in Chapter 5. In this section we provide a detailed description of the entire heuristic.
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4.3.1 Model Description

The capacity planning heuristic we design follows the same basic idea introduced for our MILP model. The
capacity managers have three different decisions to pick from in order to deal with the demand
fluctuations and their goal is to postpone any kind of investment for as long as possible.

Our heuristic tries to achieve this by starting with an initial monthly schedule and applying different
methods to ensure a feasible capacity fit. We compare two local search algorithms in an attempt of
optimizing the initial schedule.

In our case, the initial schedule refers to an allocation of products to machines for each month of the
planning horizon. For this schedule we assign the monthly demand of each product to one or more
machines while respecting all the constraints relevant at this point. The constraints we consider here are
the ones stating that a product is not allowed to run on a machine which is not released, the capacity
restrictions for each machine and the demand restrictions for each product. Since it is possible to not have
enough capacity in one month to cover the entire demand, we allocate the amounts which do not fit to
an infinite capacity machine. We create this infinite capacity machine in order to keep track of the volumes
that could not fit on the existing machines.

Once the algorithm creates an initial schedule we use a local search metaheuristic with the goal of
decreasing the overall loading across all existing machines. Whether or not the capacity is sufficient in
month t, we perform this optimization step in an attempt of freeing some capacity in case inventory build-
up turns out to be needed in future steps. If the algorithm assign products on the infinite capacity machine
in month t, once we obtain a new schedule as a result of the local search algorithm we perform a check to
see if more volume can now fit in the existing machines.

In case the loading on the infinite capacity machine is still above 0, we move on to our next step, trying to
decrease this loading by building inventory. We only apply this step starting from the second month of the
planning horizon since we cannot create any inventory before month 1. In this step we simply check if we
can allocate any of the volumes currently assigned on the infinite capacity machine to any machine in the
prior months. The capacity constraints and the ones stating that a product is not allowed to run on a
machine which is not released still hold, followed by the shelf life constraint. This means that we only try
to build inventory for a maximum of 12 months prior to month t.

If the loading on the infinite capacity machine is still greater than 0, we perform the next step, trying to
release existing machines. At this point there are two reasons for which products might still be assigned
on the infinite capacity machine. The first one is the fact that capacity might not be enough to handle the
entire demand, while the second one points to the fact that a new product might have been introduced in
month t, and no machine releases were arranged for this product. No matter the reason, for this step we
perform another local search algorithm in an attempt to decrease the loading from the infinite capacity
machine even further.

For the releasing step we make sure that we consider the constraint stating that a machine which does
not have the physical capability of producing a certain product cannot be released for that product.
Furthermore, we also consider the lead time of performing such a release, therefore this step only
becomes available starting from month 4.

44



As a last resort, if the current capacity turns out to be insufficient, we add another machine. Just as for the
MILP, we create some “dummy” machines which the model can make available when needed. In this step
we perform one last local search algorithm to check for which products, currently assigned on the infinite
capacity machine, should we release the newly bought piece of equipment. We take into account all the
constraints related to new machines and also the lead time associated with ordering a new machine. This
step becomes available starting from month 16.

4.3.2 Description of Individual Steps

Obtaining an Initial Schedule

We create the following five different ways of obtaining the initial schedule:

1. Assign the products to machines in increasing value of their IDs.

2. Sortthe products on decreasing demand value: in this case we assign the product with the highest
demand first. This schedule involves no sorting for the machines.

3. Sort the machines on increasing cycle time values: in this case we assign the first product on the
machine with the best cycle time. If this machine is also having the best cycle time for another
product, we also assign the second product here, without violating capacity restrictions. So, if the
whole volume of this product does not fit, we assign the units that do fit on this machine and the
rest we assign on the second best machine. This schedule involves no sorting for the products.

4. Sorting the products on decreasing demand value and sorting the machines on increasing cycle
time value: this case represents a combination of cases 2 and 3. For this case, we assign the
product with the highest demand on its preferred machine (machine with the smallest cycle time).

5. Sortthe products on increasing number of releases: for this case we count the number of machines
released for each product and we start by assigning the product(s) with least releases.

Since some products might require enough volume to cover the capacity of an entire machine, we prefer
to first find space for such big volumes and leave the smaller volumes at the end. Hence, we sort the
products on decreasing demand values. We believe that if machines are not completely full when we try
to decrease the loading from the infinite capacity machine, it might be easier to find space for a smaller
volume than for a larger one. We associate this rule with the Longest Processing Time rule, which is used
for finding the minimum makespan of a schedule. By assigning the products with longer processing times
first, it makes sure that at the end of the schedule no job with a very large processing time has to be
assigned.

When sorting the machines on increasing cycle time, we aim to fit the products on their preferred machine
(smallest cycle time) if capacity allows. The combination we choose for case 4 is an attempt of assigning
the most important products, which in this case are the ones with higher demand values, to the machines
with lower cycle times with the aim of decreasing the loading across all the machines.

For the last case, we choose to sort the products in increasing number of releases in an attempt to
minimize the number of releases later on. We test each of the 5 cases for multiple months with different
input data and we show the results in Chapter 5.
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In Figure 17 we show the logic behind creating an initial schedule, taking case number 4 into consideration.

demand value

v

Select the first product from the
list

v

Sort machines on increasing |

| Sort products in decreasing |

cycle time value

Select the first machine from
the list

Is this machine released for this |~
product?

Move to the

3 Assign to this machine as many
next machine

units as it can fit (if any)

Is there more volume to be

assigned for this product?
Move to the Is there another machine left on
next product the list?

Assign the new leftover amount Move to the
to the infinite capacity machine next machine

Figure 17 Steps taken for creating an initial schedule

We start by trying to assign the full demand of each product on their preferred machine, if capacity allows.
If the full demand fits we move to the next product, otherwise we allocate as much volume as possible to
the first preferred machine and then move to the next machine. If, for example, one product can only be
produced by a single machine then we try to assign as much volume as we can fit to that machine and
allocate its remaining volume on the infinite capacity machine. The outcome of this step represents a
production overview showing to which machines, including infinite capacity machine, do we allocate which
products, together with the corresponding volumes.

Optimization of the Initial Schedule

Once we have an initial schedule we try to optimize the total loading across the existing machines, whether
or not some products are allocated to the infinite capacity machine. We do this optimization through a
local search algorithm. Through our literature research we conclude that the two best such algorithms are
Simulated Annealing and Tabu Search. As we state in Chapter 3, some authors believe Simulated Annealing
to be better, while others believe Tabu Search outperforms the former both in terms of the solution and
the running time. Furthermore, the authors claim that the answer regarding which algorithm performs
best depends on the problem itself.

Therefore, we decide to implement both local search algorithms and compare the results. We implement
both algorithms using a swap neighborhood structure, in which two products assigned on two different
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machines change places. Moreover, in both cases the objective is to minimize the total loading across the
existing machines. If we manage to obtain a better schedule then we try to reduce the loading on the
infinite capacity machine (if any) by checking if we can now fit more units on the existing machines.

Building Inventory

The steps incurred for building inventory are similar to the ones we discuss for creating the initial schedule.
We display the exact steps in Figure 18. Once we explore all the options for one month, the algorithm
moves to the next month (if any). We allow the algorithm to explore only a total of 12 months prior to
current month t.

Sort the products (still on the
infinite capacity machine), on
increasing volume value

A4
Select the first product from the
list

v

| Go to month t-1 |

> Sort machines on increasing
—- cycle time value

| Select the first machine from
the list

Is this machine released for this| ™
product?

Move to the
next machine

Assign to this machine as many
units as it can fit (if any)

v

Is there more volume to be
assigned for this product?

Is there another machine left on

| Move to the next product

| the list?
Assign the new leftover Move to the
amount to the infinite next machine

capacity machine

'

i Move to the next product

Figure 18 Steps taken for building inventory in prior months
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Releasing Existing Machines

If the capacity of the existing machines turns out to be insufficient after trying to build inventory or if new
products have been added and they are not yet released for production, the algorithm reaches this stage.
Also, as we mention before, this stage can only occur starting from month 4.

In order to find the best combination between a product and a machine to release, we again test with
both Simulated Annealing and Tabu Search. Since we aim to keep the number of releases to a minimum,
we pick a neighborhood structure which releases one machine at a time for a single product. This structure
resembles the 1-flip neighborhood in which a binary variable changes value. In both cases, the objective
function is a combination between minimizing the loading from the infinite capacity machine and the
existing machines and keeping the number of releases to a minimum. Considering the combination
between the loading of the infinite capacity machine and the existing machines, we include the former
since the goal is to try and reduce the loading of the ICM through releases. Regarding the loading on the
existing machines, we choose to add it as part of the objective function so that the algorithm attempts to
allocate products on their preferred machines. If we do not include this loading as part of the objective
function then all the solutions in which a certain amount can be assigned on couple of different machines
would have the same objective function value. This would occur since all these solutions would decrease
the loading on the infinite capacity machine by the exact same amount.

Apart from the loading, we also want to ensure that the algorithm does not perform any unnecessary
releases. Without such a check, the algorithm would be free to release all the capable machines for each
of the products from the infinite capacity machine.

Ordering a New Machine

As a last resort the algorithm decides in favour of one or more new machines, depending on the number
of units still allocated on the infinite capacity machine. Once it takes this action, this machine needs to be
released for any of the products that it has to produce. Since it might be the case that we need more than
one machine, we implement another local search algorithm to decide on the best products to allocate on
each new machine. Just as before, we implement both Simulated Annealing and Tabu Search, having as
objective minimizing the loading of the ICM. In the case of Simulated Annealing, one product for which the
new machine should be released is randomly selected at once, while for Tabu Search a list of candidate
solutions showing the products available for selection with the corresponding objective functions is
generated for every iteration.

4.4 Conclusion

In this chapter we describe how we combine the knowledge we obtain through the literature research we
introduce in Chapter 3 to create one MILP model, and a heuristic algorithm to serve for solving the strategic
capacity planning problems which Sensata is currently facing. We design both the MILP model and the
heuristic to run for one machine type at once, considering that precedence relationships are not in our
main interest and the number of variables and constraints increases as the number of months in the
planning horizon increases.
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Through these models, we provide the answer for our sixth research question: “How can the existing
algorithm used for planning the machine loading be redesigned?”. Furthermore, we use these models to
obtain the results we require for some of our next research questions.

Chapter 5: Computational Experiments

In this chapter, we present the results of our research. We start by describing the experimental setup of
our tests in Section 5.1. Next, in Section 5.2 we highlight the actions we take for the verification of the
MILP model. Moreover, for validation purposes, we provide a comparison between the outcomes of our
MILP model and Sensata’s current model. In Section 5.3 we show the results we obtain when
experimenting with different methods of generating an initial solution required by the local search
algorithms.

As we previously mention, for our heuristic we decide to use different local search algorithms to perform
the following actions: optimize the initial schedule in terms of total machine loading, check if releasing the
existing machines can improve the total loading, and check the best products for which a newly ordered
machine should be released. As a result of our literature research, for each of the three actions we decide
to perform a comparison between Simulated Annealing and Tabu Search. In Section 5.4 we highlight the
outcomes from each local search method and conclude on the best algorithm for each step. Sections 5.5
presents the results we obtain when running both the MILP model and the full version of our heuristic.

5.1 Experimental Design

As we explain in Chapter 4, both the MILP model and the heuristic we design are meant to be used for one
machine type at once. For our tests, we choose to focus on the calibrators since they represent one of the
current bottlenecks in Sensata’s manufacturing process. Although both the MEMS and MSG departments
have production facilities in more than one country, we decide to focus on the calibrators available for
MEMS in Malaysia. Table 3 shows more details with regard to the data set we use for our initial tests.

Length of planning horizon
Number of products
Number of existing machines
Number of fictive machines
Demand

Cycle Times

Machine Capabilities
Machine Releases
Availability OEE

Quality OEE

Buffer

Working Days

Working Hours Per Day

Lead Time Releases
Lead Time Ordering a New Machine

12/24 months

260

9

6

Sensata’s demand forecast

cycle times currently used in their model
all set to 1

either O or 1

all setto 0.75

all set to 1

0

Number of working days in each month (currently used in their model)
22.5

3 months
15 months

Table 3 Characteristic of the initial data set
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Most of the data is provided by the capacity manager of the MEMS department. The demand values we
use are based on the company’s demand forecasts. These values are available on a monthly basis for all
products. The cycle times we choose for the initial data set represent the average values the company is
currently using in their capacity planning model. Similarly, the number of working days in a month are the
values currently used in their planning.

For some of the factors we fill in the missing data. An example of such missing data are the values for the
physical capabilities of a machine. Since no flexibility matrix, showing the machine capabilities, is available,
we decide to set them all to 1. In this case each machine is capable of producing any of the sensors. Another
example of missing data refers to the OEE components. Until now Sensata only used a single value to
reflect both components. We decide to set the availability component to the current value used by the
company and set the other component to 1. Thus, the values we use for these parameters are 0.75 and 1.
Further on, a parameter that we set to 0 is the buffer on capacity the company aims to have.

When selecting the values for the missing parameters we aim to minimize their impact on our results. In
this manner, we try to keep our initial data set as close as possible to the one used in Sensata’s current
model.

Another factor which is not included in the company’s model is related to the machine releases. Hence,
such a flexibility matrix is not available. However, when checking the list of cycle times, we notice that for
some product-machine combinations no values are available. According to the capacity manager, if no
cycle time is found for a product-machine combination, that machine is therefore not released to produce
that sensor. This being the case, we set the machine releases to either 0 or 1 by checking if a cycle time
value is available for each product-machine combination.

For the initial tests, in order to
. Test: Validation of both the
validate our MILP model, we Data: initial data set Mixed-Integer Linear
Programming Mo_del and the
compare its results with the ones ERinsTe
from Sensata’s current model. Once l

Data Modifications:
we allow all machines to be
released for all the sensors
-we randomly select the
cycle times from the interval
[6, 14] values

Test: creating and optimizing
the initial schedule

we run the initial tests, we make
various adjustments to the initial
data set, depending on the type of
test we wish to perform. Figure 19
shows the modifications we make v

. Data Modifications:
to fit each of our tests.

we do not allow any
machine to be released for
10 products
- we increase the demand
of all products

Test: releasing existing
machines for products
assigned on the ICM

v
Data Modifications:
-we reduce the monthly
number of existing machines
to either 4 or 5

Depending on the test, we choose
to perform the modifications from
Figure 19 to strictly focus on one
aspect at once. Since we compare

Test: releasing a new machine
for products assigned on the
ICM

Figure 19 Input data sets used for each test

different local search algorithms for

three stages, we adjust the initial data set to serve as inputs for each individual stage. First, for creating
and optimizing the initial schedule we set the releases of all machines to 1, regardless of the product. At
this stage we are interested in knowing which of the two metaheuristics performs best when simply trying
to reduce the total loading of an initial schedule. Hence, by setting all releases to 1 we allow the algorithm
to strictly focus on minimizing the overall loading, given the demand of each product and the processing
times associated with each product machine combination. A second modification we make for this test
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refers to the processing times. As we mention when describing the initial data set, the cycle times of each
product across all machines have the same value. In order for both metaheuristics to improve the initial
schedule we need more variation within the cycle times. Therefore, we decide to vary these values. We
choose the [6, 14] interval by checking for the minimum and maximum values from the company’s data.

Next, in order to test the metaheuristics for releasing existing machines, we make two modifications to
the inputs we use when optimizing the initial schedule. We choose to adjust this data set, rather than the
initial one, because we believe that variation within cycle times is important for this step as well. During
this stage we not only aim to release existing machines to fit the products allocated on the infinite capacity
machine (ICM), but we also wish to assign these products where the lowest processing time is, if capacity
allows. We provide more details regarding the objective function we choose for this stage in Figure 20.

The first modification we perform for this test is to remove the machine releases for a total of 10 products.
We select the first 10 products, with demand greater than 0, which we find in the first month. Although
all these products have demand in the first month of the planning horizon, we notice that they do not have
a positive demand across the entire horizon. Therefore, the number of releases we expect the algorithm
to perform will not always be equal to minimum 10. We perform two different tests for this stage. For the
first test we only use the first modification, while for the second one, we apply a combination of both. The
second modification refers to increasing the demand of each individual product. We do this to model the
situation when the capacity does not suffice to fit the volumes of all products assigned on the ICM and
force the metaheuristics to select the best products to relocate.

In the last stage we allow the algorithm to order a new machine. Once a newly purchased machine
becomes available for production the company needs to select the best products for which this machine
can be released. Hence, this stage is related to releasing the newly available machine in an attempt of
reducing the loading of the ICM as much as possible. For this test we decrease the number of existing
machines to either 4 or 5 and analyse the results after the algorithm decides in favour of ordering a new
machine.

Besides different data sets, depending Tost:

on the stage we also ConSIder validation & MILP = Heuristic
4 comparison
different objective functions and sets
of constraints. We choose this Objective Function: Minimize
Total Costs
approach in order to focus only on one All Constraints
aspect at a time. For example, when
optimizing for the releases of the &
. . . Y 9 A
eXIStIng machines we do not consider Objective Function: Minimize Objective Function: Minimize Objective Function: Minimize
constraints related to buildi ng the monthly loading monthly ICM and regular monthly ICM and regular
All Constraints except the ones machines loading machines loading
inve ntory or pu rchas|ng a machlne In related to: All Constraints except the ones All Constraints except the ones
- Inventory refated to: related to:
i i i - Releases . - Invento

Figure 20 we provide an overview of Wiyl o e A Releasing Existing Machines
the objective functions and constraints Test: optimizing the initial Test: releasing existing Test: releasing a new machine

. . . schedule machines for products for products assigned on the
which we consider in each of the assigned on the ICM IcM

stages of our heuristic. Figure 20 Objective functions and constraints considered for each test
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5.2 Verification and Validation

According to Sargent (n.d.) model verification is defined as ensuring that a model is “transformed from
one form into another, asintended, with sufficient accuracy”. Furthermore, the authors state that in model
verification, one checks the accuracy with which a model formulation is transformed into an executable
program. Regarding model validation, Sargent (n.d.) mentions that it involves building the correct model
associated with the real-life situation. Moreover, as validation, one should ensure that the programmed
model reaches a satisfactory level of accuracy.

In both verification and validation, model testing can highlight any errors existing in the model. As stated
in Sargent (n.d.), “some tests are devised to evaluate the behavioural accuracy (i.e., validity) of the model,
and some tests are intended to judge the accuracy of model transformation from one form into another
(verification)”.

In our case, when formulating the MILP model, we try to reflect the real-life situation as accurately as
possible. We start with identifying the factors already present in the Sensata’s current capacity planning
model, and, as a next step we check the ones that were excluded in favor of simplicity. The aspects that
they could not consider in their planning model vary from machine capabilities and releases to different
OEE components. We address all these factors in Chapter 2.

For the objective of our model we analyse the main decisions the capacity managers can make. These
decisions refer to building inventory, releasing existing machines or ordering a new machine. Since each
decision has an associated cost, ordering a new machine being the most expensive, the goal for the
company is to postpone a big investment for as long as possible. Hence, the objective we define for our
MILP model refers to cost minimization.

In order to validate the mixed-integer linear programming model, we use the initial data set which we
describe in Section 5.1. We base this data set on the same inputs used in the company’s model. We run
the MILP model for a planning horizon of 24 months and compare the overall loading percentage in each
month t. The formula we use for calculating the overall loading percentage is:

I >k NumberOfUnits(i, k, t) * CycleTime(i, k, t)
Total available capacity in month t

* 100%,

where i and k refer to the products and machines sets.

In order to compare the overall loading percentages, we calculate the averages, per month, of the loadings
for each individual machine. We display the individual loadings in Figure A.1 from Appendix A. Figure 21
displays these averages, while Figure 22 displays the results from Sensata’s current capacity planning
model
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Figure 21 Monthly Loading Figure 22 Monthly Loading
Percentages per Machine type - Percentages per Machine type — 24
24 months - AIMMS months — Sensata’s Model

In Figure 21, the cells highlighted in orange show the months in which our model builds inventory in order
to cope with the increase in demand. The cells highlighted in red from Figure 22 show the months in which
the overall loading exceeds 100%. Since the managers do not include any capacity restrictions in this
model, these percentages can exceed 100% if the process is completely overloaded. The two cells
highlighted in blue show the months in which machines 8 and 9 become ready for production.

Comparing the percentages from the two figures we can see that in the months in which our model does
not build inventory, the values are very similar. We notice bigger differences when the model decides to
produce ahead and keep items in inventory. This is a result of including capacity constraints based on
which loading is not allowed to exceed 100%, no matter the demand. Considering the cost differences
between each month (any action is cheaper in month t than in month t-1), the results show that inventory
is being produced right before it is needed. For example, since in month 5 there is a capacity shortage, our
results show inventory build-up in the prior month. For the exact number of units kept in inventory in each
of the months, we include more details in Appendix A.

Another action that our model takes is to allow certain machine releases. After checking the reasons
behind these machine releases, we conclude that in the input data there was no machine released for a
total of 7 products. We present the outputs related to these releases in Appendix A.

Overall, by checking the results from Figures 21 and 22 and analysing aspects such as: why did the model
decide for inventory build-up in a certain month and why were certain releases performed, we believe
that the MILP model reflects the real situation in an accurate manner.
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5.3 Initial Schedules

Considering that a local search algorithm starts from a feasible initial solution and, in our case, searches in
its neighborhood for possible swaps to perform, we decide to test various methods for obtaining such a
solution. In our case, an initial solution represents a schedule (allocation of products to machines) which
does not violate any of the constraints applicable for this step. These constraints relate to demand,
capacity and machine releases.

As we previously mention in Chapter 4, we implement the following 5 alternatives for generating an initial
solution:

1. Assign the products to machines in increasing value of their IDs.

2. Sortthe products on decreasing demand value: in this case we assign the product with the highest
demand first. This schedule involves no sorting for the machines.

3. Sort the machines on increasing cycle time values: in this case we assign the first product on the
machine with the best cycle time. If this machine is also having the best cycle time for another
product, we also assign that other product here, without violating capacity restrictions. If the
entire volume of this product does not fit, we assign the units that do fit on this machine and the
rest we assign on the second best machine. This schedule involves no sorting for the products.

4. Sorting the products on decreasing demand value and sorting the machines on increasing cycle
time value: this case represents a combination of cases 2 and 3. For this case, we assign the
product with the highest demand on its preferred machine (machine with the smallest cycle time).

5. Sortthe products onincreasing number of releases: for this case we count the number of machines
released for each product and we start by assigning the product(s) with least releases.

To decide which of the 5 options performs best we generate a monthly initial schedule for a planning
horizon of 24 months. We previously describe the data set we use in this test in Section 5.1.

We compare the results of the 5 options with the overall loading percentage we obtain after solving the
MILP model. At this step, we choose the overall loading percentage as the comparison factor. By
generating an initial schedule and optimizing it through local search we aim to fit as much of the demand
as possible within the existing machines. Next, we want to reduce the overall loading to fit the volumes
assigned on the ICM, if any, or facilitate inventory build-up, if needed. To ensure a proper comparison
between the results obtained from AIMMS and our options for generating an initial schedule, we design
another MILP model, which focuses on minimizing the loading. This model, although similar to one in
Chapter 4, only contains the constraints relevant for this step. We show the entire formulation of this
model in Appendix B and display the results in Appendix C. In Figure 23 we show the average loading across
the entire planning horizon for the optimal allocation and the five methods for generating an initial
schedule. Furthermore we also look at the average difference and average relative difference when
comparing each of the schedules with the optimal allocation. We calculate the average differences by
subtracting the optimal overall loading percentage from the results associated with each schedule. To
calculate the relative differences, we divide the individual differences between the results of schedule and
the optimal value by our reference value, the optimal overall loading percentage.
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Figure 23 Comparison between the two best schedules

In Figure 23 we notice which schedules lead to best results. Sorting the machines based on cycle time and
sorting based on both demand and cycle time leads to an average relative difference of 1.9% and 1.5%
respectively. Considering the number of units allocated on the ICM, the same two schedules lead to the
best results. In Appendix C we show the monthly number of units assigned on the ICM, for each schedule,
and the percentage they represent from the monthly volume. When sorting based on cycle times and both
on cycles times and demand the average percentage of units assigned on the ICM is 0. This means that no
units are allocated on the ICM during the entire planning horizon. Considering the other 3 schedules the
percentages showing the number of units, considered from the total volume across the 24 months,
assigned on the ICM are 4.9 (No Sorting), 4.6 (Sorting Demand) and 2.1 (Sorting Releases).

Because each of the two best methods finds better results in exactly 12 out of the 24 months we perform
a more detailed comparison between the two. We calculate the average difference between the two,
followed by maximum and minimum difference. We display these results in Figure 24.

Best Schedule Average Difference  Maximum Difference  Minimum Difference
Sorting Cycle Times 0.647 2.511 0.036
Sorting Both 1.285 3.448 0.176

Figure 24 Best two schedules - Average, Maximum and Minimum difference

From this comparison, we notice that when sorting based on cycle times leads to better results all the
three differences are lower than when sorting both based on demand and cycle times. Based on the
aforementioned results we reach the conclusion that when the former performs better, the latter is closer
to these values than when the opposite occurs. So, at this point, we state that the best method for
generating the initial schedule is to first sort the products on decreasing demand and then, for each
product, sort the machines on increasing cycle times. In the next section we show which of the local search
algorithms can better improve our best initial schedule.

5.4 Local Search Algorithms

As we previously state, from the literature review we introduce in Chapter 3, we conclude that Simulated
Annealing and Tabu Search are the two algorithms best matching our problem statement. Furthermore,
also through the literature research we find out that the opinions on which algorithm performs best are
quite divided and that some authors even state it is highly dependent on the problem at hand. Hence, we
decide to test which algorithm fits best for each of our three different goals: optimizing the initial schedule,
releasing existing machines and releasing a newly purchased machine.

The behaviour of each of the two metaheuristics we compare depends on the values of certain
parameters. For each algorithm we perform various tests, for which we introduce the results in our
Appendix D, F and H, to choose the right parameters.
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First, considering Simulated Annealing, four parameters are relevant for defining an appropriate cooling
schedule. As we describe in the literature review the algorithm starts with a high initial temperature and
slowly reduces it until a stopping criterion is achieved. The initial temperature for a Simulated Annealing
algorithm should be set to a value large enough to make the acceptance probability as close to 1 as
possible. The idea of having an acceptance probability close to 1 is to ensure that, in the beginning, the
algorithm accepts almost all transitions. Hence, to choose an appropriate value for the starting
temperature we calculate the ratio between the accepted and proposed number of transitions at the start
of the algorithm. In general, we choose the value of the starting temperature for which the acceptance
probability turns out to be close or above 0.95.

Regarding the stopping criterion for a Simulated Annealing algorithm, the two most common ones are:
letting the temperature gradually decrease until it reaches a very small value or stopping when no
improvements are found for a certain number of consecutive iterations/temperature values. We use the
first one for our experiments, hence for all Simulated Annealing algorithms we set the stopping
temperature to 0.5.

The next relevant parameter for a Simulated Annealing algorithm is the Markov chain length. This
parameter shows the number of iterations that are performed at each temperature level. From literature
we find that the Markov chain length should be proportional to the number of neighbouring solutions that
can be generated from a given current solution. In every iteration our Tabu Search algorithm creates a list
of all the possible candidates, hence the neighbouring solutions that can be reached from the current
state. We start our experimentation by setting the length of the Markov chain equal to the number of
candidates and, depending on the results, we double it. Furthermore, we also test the feasibility of smaller
values. The last parameter we require for defining a cooling schedule is the decreasing factor. We choose
the appropriate values for this parameter by varying its values and comparing the results in terms of
objective function values and running times.

Regarding the second metaheuristic we use in our research, there are two parameters for us to consider.
These parameters are the maximum number of iterations and the length of the tabu list. According to
Osman (1993) appropriate estimates for the two parameters depend on the problem characteristics. We
check multiple papers presenting different guidelines for choosing the right values for these two
parameters.

In the paper of Romero-Conrado et al. (2019), the tabu tenure is set to represent a certain percentage
(25%, 50% 75%) from the number of iterations. Schweiger and Sahamie (2013) state that if the length of
the tabu list is too small then the algorithm will be cycling around a local optimum solution, while, if the
length is too high possible solutions can be excluded, hence limiting the solution space. Furthermore they
mention that if the length of the tabu list becomes equal to the number of iterations then no further
improvement can be achieved and the value of the objective function stagnates. To select the right value
for the tabu list length they keep the number of iterations constant and analyse the solution in term of
objective function values for different lengths of the tabu list.

We follow a similar approach as Schweiger and Sahamie (2013). We start by setting the number of
iterations in a similar manner as the length of the Markov chain, proportional to the number of candidate
solutions. Next, we vary the length of the tabu size to represent a certain percentage from the number of
iterations.
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In this section we show the results, in terms of objective function and running time, we obtain when using
the six algorithms. Moreover, in Appendix D, F and H we show how we select the right parameters for each
algorithm.

5.4.1 Optimizing the Initial Schedule

Once we create an initial schedule, the next step in our heuristic has the goal of minimizing the total
loading of the existing machines. To check if any of the two local search algorithms can improve our best
initial schedule, we run both models using the inputs we describe in Section 5.1. We display the parameters
we choose for each method in Figure 25, while Figure 26 shows a comparison between the results.

Simulated Annealing Tabu Search
Starting Temperature (TO) 300 Number Of Iterations 2500
Stopping Temperatiure (T1) 0.5 Tabu List Length 750
Decreasing Factor () 0.97
Length of Markov Chain (L) 5000

Figure 25 Chosen parameters

AINMMS Simulated Annealing Tabu Searct

68,381 69,062 69,0585
0.6581 0.714
0.950 0.935

Figure 26 Overview of Simulated Annealing and Tabu Search in comparison with the optimal values

We calculate the average differences by subtracting the overall loading percentage of the initial schedule
from the results we obtain from the metaheuristics. For the relative differences we divide the individual
differences between the results of the metaheuristics and the initial schedule loading by our reference
value, the overall loading of the initial schedule.

As we notice in Figure 26 the average difference when using Simulated Annealing is closer to the optimal
schedule and the difference between the two metaheuristics is of 0.033%. In Appendix E we display the
overall loading percentages on a monthly basis. We compare the results both in terms of which algorithm
manages to improve the initial schedule the most and in terms of the difference from the optimal objective
function value. In Appendix E we see that in two months no algorithm manages to obtain a product-
machine allocation that results in a smaller overall loading. However, when comparing the other months
we conclude that in 13 out of the 24 months Tabu Search improves the initial schedule more than
Simulated Annealing. Considering the months in which the algorithms cannot improve the initial schedule,
we see that Tabu Search does not find a better allocation for only 2 months, while for Simulated Annealing
there are 9 months in which the initial schedule is not improved at all.

Although Tabu Search finds a better solution for a higher number of months, when checking the average
improvement over the 24 months we notice a higher value for Simulated Annealing. We notice a similar
behaviour in terms of the maximum improvement across the 24 months. Hence, at this point, we conclude
that although Simulated Annealing does not find the best solution as often as Tabu Search, in some of the
months where improvements are found the reduction in objective function value is much greater than the
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one of Tabu Search. For example, in month 21 Tabu Search can only improve the overall loading by a total
of 0.1 % while Simulated Annealing performs a reduction of 1.2%.

Both algorithms start from the best initial schedule we choose in Section 5.3. Considering the number of
units assigned on the ICM, given that we find a 0% of the total volume assigned on the ICM in the best
initial schedule, the same remains true after running the local search algorithms.

Given the results, we conclude that for finding as many improved solutions as possible one should choose
Tabu Search. However, if reducing the overall loading is critical one should cross check the results of Tabu
Search by also running the Simulated Annealing algorithm.

To compare the running times, in seconds, of the local search methods
we calculate the average, maximum, and minimum running time over 24
months. We show these results in the last three rows of Figure 27. Based
on these results we state that, on average, Simulated Annealing
outperforms Tabu Search in terms of execution time, even though the
maximum value for running times of Simulated Annealing is 446 seconds
greater than the one of Tabu Search.

S whonQ

Even though the average difference between the execution times of the
two algorithms is 246 seconds we still choose Tabu Search, given the
more months in which it finds improved solutions. However since such
a difference in running times might appear for each month in the
planning horizon, depending on the length of this horizon, we might
incline in favour of Simulated Annealing in order to reduce the total
running time.

Figure 27 Monthly Running times —
Simulated Annealing, Tabu Search

5.4.2 Releasing Existing Machines

After optimizing the initial schedule, and building inventory if needed, we reach the next optimization step
in our heuristic. At this step we address our following research question: “What machines can be released

for a certain product to avoid ordering a too high amount of new equipment every time the demand is
increased?”.

Our heuristic performs this step if the loading on the infinite capacity machine is greater than 0, meaning
some volumes were previously allocated there. In this step the algorithm checks if any of the existing
machines can be released for the products allocated on the ICM. Thus, at this point, our aim is to decrease

the loading of the infinite capacity machine by allocating more volumes within the existing machines, if
possible.

Even though we try to reduce the loading of the infinite capacity machine, we cannot neglect the overall
loading of the existing machines. If the objective function of the local search method would strictly refer
to the minimization of the ICM loading, allocating certain volumes to any of the existing machines would
lead to the same improvement in our objective function. However, if we try to allocate the volumes to the
machines with smaller cycle time, we also keep the overall loading of the existing machines under control.
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We consider both loadings to be equally important, therefore, we combine the two into one objective
function focused on minimizing the sum of both loadings.

To ensure that no decrease in the ICM loading creates a higher increase in the other loading, we set the
cycle times on the ICM to have a higher value than the maximum cycle time on the existing machines.

To prevent the algorithm from releasing all machines for all products assigned on the ICM we perform a
single release at a time, followed by refreshing the initial schedule to calculate the new objective function.
If all the volume of a product from the ICM gets assigned within the regular machines, the algorithm will
not perform another release for that product.

For this test we consider a planning horizon of 12 months. Regarding the input data, we previously describe
it in Section 5.1. Just as before, in Figure 28 we display the parameters we choose for each local search
method. In Appendix F we discuss how we choose these parameters.

Simulated Annealing Tabu Search
Starting Temperature (TO) 20 Number Of Iterations 10
Stopping Temperatiure (T1) 0.5 Tabu List Length 3
Decreasing Factor (c) 0.1
Length of Markov Chain (L) 17

Figure 28 Local Search Parameters — Releasing existing machines

In Figure 29 we display the results of the two metaheuristics compared to the initial schedule we obtain
when the releases are cancelled. We perform this comparison to check which algorithm manages to
improve this schedule the most, by releasing the preferred machines for the products allocated on the
ICM. Figure 30 displays similar results, however, this time we compare the result with the best initial
schedule we choose in Section 5.3. Because the only modification we make in this data set is cancelling
the machine releases for 10 products we expect the algorithms to be able to return results similar to the
ones from this schedule.

Current Initial Schedule Simulated Annealing Tabu Search
Average Loading 75.810 67.5949 65.203
Average Difference -7.861 -10.607
Average Relative Difference -10.355 -14.103

Figure 29 Overview of Simulated Annealing and Tabu Search in comparison with the current initial schedule

Target Initial Schedule  Simulated Annealing Tabu Search
Average Loading 653,241 67,549 65,203
Average Difference 2.708 -0.038
Average Relative Difference 4.329 -0.053

Figure 30 Overview of Simulated Annealing and Tabu Search in comparison with the target initial schedule
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We calculate the average differences by subtracting the overall loading percentage of the two initial
schedules from the results we obtain from the metaheuristics. For the relative differences we divide the
individual differences between the results of the metaheuristics and the two initial schedules by our
reference values, the overall loading from the initial schedules. As we show in Figure 29, Tabu Search is
the one best decreasing the initial overall loading. In Figure 29 we notice negative values for both
differences. When analysing the monthly loading percentages we notice that for a total of 6 months Tabu
Search manages to obtain results improving the target initial schedule.

As we show in Appendix G Tabu Search finds better results for all the 12 months. Besides, in some months
the results we obtain from Tabu Search are improving the loading of the target initial schedule, hence
making them even closer to the optimal values. The reason behind the poor performance of Simulated
Annealing is based on its random generation of moves. When performing either local search heuristic for
releasing existing machines, a product — machine combination has its releasing value flipped from 0 to 1.
Once the algorithm updates this release, it generates the initial schedule again. As the monthly loadings
from Appendix G show there is plenty of capacity available in each month. Hence, once the algorithm
refreshes the initial schedule the product for which an existing machine was released will be allocated
within existing machines and removed from the ICM. One of the main differences between the two
metaheuristics is that while Tabu Search generates a list of candidates and aims to select the best one,
Simulated Annealing generates a move based on the random selection of an existing machine. This being
the case, Tabu Search will always aim to fit each product on its preferred machine (in terms of cycle times)
while Simulated Annealing will fit it on a randomly selected machine.

Regarding the number of units remaining on the ICM, when using our chosen parameters the loading of
the ICM is 0 in all 12 months.

Besides the overall loading resulting from this step, we also check the number of releases the algorithms
decide to perform for each of the 12 months. In Figure 31 we display the number of releases that the two
metaheuristics perform. As we previously mention in Section 5.1, for this test we cancel the machine
releases associated with the first 10 products with positive demand in month 1. Because these products
do not have a positive demand across the entire planning horizon and since the algorithm only releases a
machine if the demand is positive, we expect the monthly number of releases to vary. Moreover, we
expect the number of monthly releases to be equal to the minimum number of products having positive
demand in each of the 12 months.

1 2 3 4 5 s 8 9 10 11 12
d = 0 10 8 &8 8 8 7 5 6 6O ] 7 7
10 8 8 9 8 7 5 6 6 6 7 7
10 8 & 8 8 7 5 6 6 5] 7 7

Figure 31 Monthly Number of Releases — Simulated Annealing, Tabu Search

The only month in which the number of releases is different than the number of products with positive
demand is month 4, when Simulated Annealing performs one more release than Tabu Search. The number
of releases is highly related to the total costs, since for each release, depending on the month, a certain
cost is incurred. Hence, considering the total costs, in month 4 the outputs of Tabu Search result into a
lower cost that the company has to cover.

In terms of running times, we perform a similar analysis to the one we introduce in the previous section.
This time, the average running times are: 1.4 seconds for Simulated Annealing and 44.3 seconds for Tabu
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Search. Even though, Simulated Annealing seems to outperform Tabu Search in terms of running times,
we decide in favour of Tabu Search given the differences in loading.

Given that, in this test, the existing machines have enough leftover capacity to fit the products allocated
on the ICM, we want to check the results if the contrary occurs. Hence, we perform a similar test in which
we increase the demand of each product by a constant amount with the aim of increasing the overall
loading. We present the results, in terms of loading, number of releases and running times, in Appendix
G.

5.4.3 Releasing a New Machine

In this section we address the following research question: “How many machines does the company need
to order and when should these orders be placed to properly handle the upcoming increase in demand?”

We only include a new machine if, after performing all the previous steps, the loading on the ICM is still
above 0. When we do add a new machine, the algorithm selects the first fictive machine, and starts
considering it as ready for production. Just as for the MILP model, all the fictive machines are identical in
terms of capabilities, cycle times and OEE components. Moreover, no releases are set for any of the fictive
machines.

Since we design identical fictive machines, we no dot require any optimization to be able to select the best
one to purchase. However, because no releases are set for these machines, we again use local search
algorithms to pick the best products for which one or each (if more machines have to be purchased)
machine should be released.

As we state in the beginning of this chapter, we again perform a comparison between Simulated Annealing
and Tabu Search. At this point in the model, we include all the constraints we introduce in the formulation
of our MILP model.

Regarding the input data, we previously describe it in Section 5.1. Instead of the 7, 8 or 9 machines
available in each month, we only use 5. We consider the other machines as fictive and check how many
machines the company has to purchase to fit the entire demand. We perform this test for a period of 12
months. Figure 32 shows the parameters we select for each local search algorithm.

Annealing Tabu Search

'y |

LA

]
]

O I

Figure 32 Local Search Parameters — Releasing a new machine

As we display in Appendix I, in three of the twelve months (4,6,8) the overall loading resulting after
generating the initial schedule, turns out to be below 100%. Hence, we do not attempt to order a new
machine in these months. Considering the other months, we notice that in all of them Tabu Search reaches
a loading value better than or at least equal to the one from Simulated Annealing. Moreover, in months 5,
9, 10 and 11 Tabu Search outperforms Simulated Annealing by a minimum percentage of 0.7 and a
maximum of 11.
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In terms of running times we notice a big difference between the two algorithms, the difference between
the two maximum values being of 999.2 seconds (16.65 minutes). In order to test multiple configurations
and provide a hint of the robustness of our model we repeat the same test when only 4 machines are
available. Just as before, we allow the algorithm to order one new machine and introduce the results in
Appendix I.

For this step, we decide to, yet again, decide in favor of Tabu Search. We make this decision considering
the 11.029% we find in one of the months and we believe this option to be used as a last resort. As we
previously state, ordering a new machine will only be used if all the other steps are not capable of reducing
the loading of the ICM to 0. However, if running times are more relevant we advise for selecting Simulated
Annealing as an alternative. We introduce more recommendations in Chapter 6.

5.5 Heuristic vs MILP Model

In this section, we analyse the results of our heuristic and compare them with the optimal ones that we
obtain from solving our MILP model. Furthermore, we also show Sensata’s results when using the same
input data.

We perform this final test using the initial data set we describe in Section 5.1. This set contains the data
currently used in Sensata’s capacity planning model. We aim to obtain a product — machine allocation for
a total of 260 products and 9 machines. Furthermore, we run this test for a planning horizon of 24 months.

We define the criteria on which we perform the comparison between our results to address the following
research question: “What are the criteria on which we compare the 2 models?”. Even though the objective
function we choose for the MILP model aims to minimize the total incurred costs, we first compare the
two models when attempting to minimize the overall monthly loading. We set up the three different types
of costs associated with the three decisions available for capacity managers, in order to reflect the
preferred order for these decisions. We attempt to minimize the total cost in the MILP model to ensure
that it selects the decisions in this preferred order. If we try to minimize the total loading, the model will
have the liberty of, for example, purchasing as many machines as possible (maximum number of machines
it could purchase is equal to the number of fictive machines we decide to use in our inputs). Hence, we
choose to compare the two in terms of overall loading, since our main interest lies in ensuring that Sensata
has enough capacity to meet their increasing demand.

Figure 33 shows the overall loading we obtain from the MILP model and the heuristic, plus the loading
from Sensata’s current model. Because we do not notice a difference in terms of cycles times between
existing machines (each product requires an equal amount of processing time on all the machines) we do
not use include the optimization of the initial schedule.
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Figure 33 Overall Loading Percentages — MILP, Heuristics, Sensata’s Model

By highlighting certain cells, we display the months in which either the MILP model or the heuristic builds
units for inventory. As we highlight in the second column, opposite to the MILP model, our heuristic builds
inventory in the majority of months. When closely analysing the product — machine allocation, we notice
that for items having machines released in the prior months the algorithms builds the associated amounts
as inventory in those previous months. For example, consider that product p is a new product introduced
by the company. This means that no machines are released to handle its manufacturing. Furthermore,
assume that this product start having demand planned from month 4 onwards. Our algorithm will release
one or more machines, depending on how high the demand is, to cover the newly added item. This release
will occur in month 4. Next, in month 5, the first decision our algorithm attempts to make is building
inventory. Because, for month 5, product p still has its volume assigned on the ICM the algorithm builds
the associated number of units as inventory in month 4. This happens because we do not revisit the
decision we priorly take. In our recommendations section we further address this issue.

Considering the overall loading for month 5, we notice that the values are above 100%. This happens
because the capacity of the entire machine type is fully booked. When the capacity is fully booked and
there are couple of products for which existing machines should be released, our algorithm is not able to
proceed with the releases since none of the existing machines can fit these volumes. Hence, in this case,
two products remain assigned on the infinite capacity machine.

When looking at the average values from the three models we notice that the values are very close to each
other. Although the average value we obtain from the heuristic seem to be the best, we do not fully agree
with this. A reason behind this is the fact that when comparing the demand summed up across all products
in the entire planning horizon, we find a difference of approximately 598 units. The input data we use for
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our heuristic is 598 units short compared to the one used for the MILP model. This occurs because we
priorly round these values for simplicity.

To validate the results we obtain from building inventory, we only allow the algorithm to build inventory
and analyse the months in which it does so. Figure 34 shows the monthly inventory levels for the entire
planning horizon.

Monthly Inventory
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Figure 34 Monthly Inventory Levels - Heuristic - 24 months

This time we notice that the heuristic builds inventory in fewer months than
before. While the MILP model decides for building inventory in 7 out of 24
months, our heuristic does so in only 6. We notice the same pattern of building
inventory in months prior to having an overloaded process (above 100% in
Sensata’s model). However, because we do not allow any machine releases,
some products stay allocated on the infinite capacity machine, and less
inventory is being built. We observe that some products are still allocated on
the ICM through the percentages above 100 which we can see in Figure 35.
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Considering the total costs, we obtain different results. First, since when
allowed to perform releases, the heuristics decides on building more inventory
than the MILP model, the costs suffer an increase. Regarding the number of
releases, for each of the 7 products for which no machine is released, both
models require a single release. Finally, since none of them decides for
purchasing a new machine, these costs are not incurred. Based on these e 35 overall Loading
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Chapter 6 Conclusions and Recommendations

In this chapter we conclude our research and provide recommendations both in terms of implementation
of our final deliverable and in terms of future work that could improve our results. The first section
discusses our concluding remarks related to the steps performed during this research and the outcomes
we obtained. Next, in Section 6.2 we state the recommendations we deem important for implementing
our algorithm as the new capacity planning model for the MEMS and MSG departments. Section 6.3
provides our suggestions related to the future work or research that can be done to further ensure the
feasibility of our heuristic. Finally, in Section 6.4 we introduce the limitations of our research.

6.1 Conclusions

As we state throughout this research, our main goal is to develop a new strategic capacity planning model
for two of Sensata’s automotive departments. The need for such a model arose due to the simplicity of
their current model and the limitations imposed by Excel. To structure our research, we define multiple
research questions, which we previously introduce in Chapter 1. Throughout this research, we provide the
answers for these questions and we conclude by summarizing the most relevant remarks here.

To achieve our goal, first we perform a detailed analysis of the current situation, specifically, the current
capacity planning model used by the two departments. Through this analysis we identify the factors
considered in their model, the simplifications incurred by the capacity managers and the relevant factors
which were excluded due to such simplifications. In terms of existing factors, we identify the following:
demand, capacity related aspects (number of working days, number of hours available for production,
buffer and OEE), and processing times.

Considering the simplifications incurred by the capacity managers, these vary from using average values
for parameters such as processing times and OEE to excluding relevant factors such as machine capabilities
or releases. As a result of using averages for processing times and OEE, their model is not capable of
reflecting the differences between multiple machines of the same type. Such an example is the difference
on processing times, for the same product, present between two machines of two different generations.

Moreover, when analyzing the current situation, we also investigate what decisions can the capacity
managers make in order to keep up with the constant increase in demand. As we state on multiple
occasions, the three main decisions refer to building inventory, releasing existing machines or purchasing
a new machine.

Besides obtaining a better understanding of the current situation, we perform a literature study focused
on two main aspects. On one hand, we focus on defining a linear programming model to match Sensata’s
manufacturing process, hence looking into various types of objective functions and constraints. As a result,
we formulate the mixed-integer linear programming model we previously describe in Chapter 4 and use it
for benchmarking the results we obtain from our heuristic. On the other hand, we look into the best
algorithms, known in literature, which can be used for designing such a heuristic. We choose to have this
heuristic serve as the main deliverable of this research and the basis of a capacity planning tool that
Sensata can use in the future. As a result of the literature review, we perform comparisons between
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Simulated Annealing and Tabu Search for three different stages of our heuristic. These stages refer to
optimizing the initial schedule, selecting the best machines to release for the products assigned on our
ICM, and selecting the best products from this ICM for which a newly arriving machine should be released.

To ensure that the MILP model reflects the real-life situation of Sensata’s manufacturing process, we use
the inputs from their current model in our testing. Because aspects such as building inventory or releasing
existing machines are not considered in the company’s model, we could only compare the two models in
terms of the monthly overall loading.

When building our heuristic, we pick an iterative approach where we implement one step at a time. At
each of the three optimization stages, we perform a comparison between two different local search
algorithms. We select the parameters for each local search algorithm by combining the guidelines available
in literature and the experimentation with different values. Based on the results, our final choices in terms
of optimization methods are performing Tabu Search for all the three optimization stages.

In this research we create a heuristic to replace the current strategic capacity model used within
Sensata’s automotive departments. We compare the results with the optimal values, which we obtain by
defining a MILP formulation matching their manufacturing environment.

Our method distinguishes itself from the ones we encounter during our literature research due to the
approach we choose. Most of the models for strategic capacity planning rely on (MI)LP models modelling
the constraints of the various manufacturing environment. Some authors choose a combination of such
models and simulation techniques, while others combine it with combinatorial optimization techniques,
such as Branch and Price. Given the resemblance of Sensata’s manufacturing process with a job shop, we
opt for local search algorithms, such as Simulated Annealing and Tabu Search, in the design of our
heuristic. According to our literature study, these methods are the best at solving scheduling models in a
job shop manufacturing system.

Besides our approach, another difference comes from the factors we decide to consider in our model.
Most of the strategic capacity planning models strictly consider aspects such as inventory build-up,
capacity requirements and the number of resources required for production. In our research we choose
to extend on the general models we encounter in literature and include additional constraints related to,
for example, machine capabilities and releases, OEE components and lead times for the three main
actions available to the capacity managers. We do this in the attempt of reflecting the real-life situation,
as accurately as possible, in our model.

Considering the applicability of our algorithm, we believe that it can be adjusted to fit similar
manufacturing systems in the make-to-order environment.
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6.2 Recommendations for Implementation

In this section we present our recommendations for ensuring a smooth implementation of our heuristic
as the new strategic capacity planning model for the two automotive departments. We start by suggesting
various improvements in terms of the input data. Next, we address multiple recommendations in terms of
code optimization and thresholds that the company needs to set to ensure an accurate reflection of the
real-life situation. In the end, we draw attention to the various guidelines, regarding local search
parameters, which the managers should be aware of when using our algorithm.

Input Data

In their current model, the capacity managers are using average values for parameters such as processing
times and OEE. This approach fails to reflect the differences between individual machines of the same
type. Furthermore, as we describe throughout this research, the company can reflect the real-life situation
in a more accurate manner by considering parameters such as machine capabilities and releases. Hence,
we suggest the following:

e processing times: For newer generation machines, the company makes use of automatic data
collection. We suggest implementing automatic data collection also for the older machines, if
possible. Once this data is available, the company can create a matrix showing the real value of
processing times for each product — machine combination.

e OEE components: at the moment, the company is using a single value to compensate for the effect
of this parameter. This value serves as the availability component. We suggest the separation of
this value into quality, reflecting the yield loss, and availability, reflecting the percentage of time
each machine is up for production. We suggest this separation since the availability parameter is
strictly dependent on the machines themselves, while, the yield loss also depends on the products
manufactured.

e machine capabilities and releases: because these factors were not included in their current model,
no matrix showing, for example, which machines are released or capable to produce which
product, is available. We recommend the managers to obtain such information from the
manufacturing facility or create such overview if none is already available.

Cost related thresholds

Each of the three main decisions available for the capacity managers has an associated cost. In the MILP
model we aim to minimize the total cost incurred for the planning horizon. This is done by inspecting all
the available combinations, and searching for the combination which results in the minimum value of
these costs. However, in our heuristic we do not examine all these possible combinations. Instead, our
algorithm decides to use one of the three actions if any volume is allocated on the infinite capacity
machine. The algorithm choses these actions in a certain order, from the least to the most expensive one,
which means the algorithm will first try to reduce the loading on the ICM by building inventory. If the
loading on the ICM is still above 0 the algorithm tries to perform releases within existing machines, and,
as a last option the algorithm decides that a new machine is needed.

In our heuristic we do not include any predefined limits for the number of units that can be held in
inventory or for the number of machines that can be released. However, in the MILP model the solver
decides, for example, at which point is more profitable to release existing machines instead of building
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inventory. This being the case, we recommend the implementation of two thresholds reflecting the
number of units to be kept in inventory and the number of existing machines to release. Such limits should
be set considering certain cost thresholds that each step should not exceed.

Code Optimization

First, since the goal of this research was to provide a proof of concept of a working strategic capacity
planning algorithm and due to time limitations, we could not provide the company with a fully optimized
capacity planning tool. We recommend further optimization of the code, which in our opinion has the
potential of further reducing the running time. For example, one can keep track of the fully loaded
machines on a monthly basis. This becomes useful when the algorithm generates the initial schedule or
attempts to build inventory. By keeping track of the fully loaded machines one avoids checking whether a
machine has any available capacity every time a product needs to be assigned.

Guidelines in terms of local search parameters

e Optimization of the initial schedule: based on some discussions we had with the capacity
managers, we reach the conclusion that sometimes they might be interested in performing a quick
capacity check to ensure they can fit additional last-minute demand. At this point, they are not
interested in a result as close to optimal as possible. Hence, we suggest adjusting the parameters
to provide the managers with an output in less time than if a better result is desired. In this way,
quicker running times are preferred in detriment of the objective function value. However, if, for
example, they are looking into the possibility of postponing the purchasing of a new machine by
one month, then they should strive to have a better objective function value in detriment of
running times.

e Releasing existing machines: the number of iterations for Tabu Search should be set either to the
total number of releases they want to allow in each month or to the total number of products for
which no machine is released. The first option applies for the case when the entire demand of
some products did not fit within existing released machines. The second applies in case new
products are added in the demand forecasts. When new products are added, no machines are
released for these products, hence the capacity managers can just use our algorithm to determine
the best machines to release.

Given the results we describe in Chapter 5 we recommend the company to proceed with the
implementation of our Delphi algorithm. We do not recommend the purchasing of AIMMS, or any similar
commercially available software, unless the optimal results are desired. The most important reason for
which we choose in favor of Delphi is the flexibility our algorithm offers. We program various procedures,
which the managers can use either sequentially or separate. Using the procedures sequentially means
running all the steps of the algorithm to provide a full overview of the decisions they can make. However,
our algorithm offers the freedom of performing quick checks for different purposes. For example, if the
managers are aware of leftover capacity in a certain month, but they wish to check an approximate amount
they can simply generate an initial schedule. Considering that the results of the initial schedules are already
close to the optimal ones, this quick check is capable of providing a reliable overview.

In the case of new products being added to the production list, no machine releases being in place and
knowing from previous results that the available capacity will suffice, the managers can generate an initial
schedule and only run the releasing existing machines optimization step. Such flexibility is hard to obtain
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when using AIMMS, since that involves removing certain constraints and, at times, adjust the objective
function.

6.3 Future Work

In this section we mention our recommendations for the future work which can be done either if an
improvement or further validation of the model is desired. First, we refer to the future work concerning
our local search algorithms. Next we mention recommendations related to the revision of the decisions
the algorithm priorly takes. In the end we draw attention to the analysis the company should perform if
they later decide in favour of buying AIMMS followed by describing certain extensions which they can
implement by further disaggregating their input data.

e Local Search algorithms:

o for the local search algorithms related to the optimization of the initial schedule, we
recommend experimenting with different neighboring structures. For this stage, we
believe that the solution space can be searched more extensively. We suggest using a
neighborhood structure that allows changing the number of products assigned on a
machine. For example, one could try swapping the volumes of 2 products assigned on one
machine with 1 product assigned on another machine. However, since we are not aware
of how easy it can be to find 3 such products, we recommend combining the one we
mention above with our neighboring structure (swap one with one). At this point the
algorithm can make use of a random number generator based on which it can decide what
kind of swap to perform in each iteration.

o if the company wishes to bring the results even closer to the optimal values, then we
suggest performing more experimentation with the parameters associated with each
method. However, the company should be aware of the fact that if better results are
desired this can lead to a substantial increase in terms of running times.

e Revision of previous decisions: as we state when describing our heuristic in Chapter 4, we choose

to build our algorithm by using a hierarchical/iterative approach. We implement one step at a time
and test each step separately. Only after ensuring the well-functioning of each individual step we
start by testing combinations of two stages and end with testing all the stages together. Because
of this approach, the decisions that the algorithm makes at the first steps are not revisited at later
stages. For example, when deciding to build a certain number of units as inventory, the algorithm
does not revisit this decision if it needs to check for releasing existing machines. When releasing
existing machines, we flip the release value for one product - machine combination, and refresh
the initial schedule. However, when refreshing the initial schedule, the demand of the products
for which we build inventory is lowered by the number of units kept as inventory.
To check if lower costs can be attained, we recommend that once a new decision must be made,
the previous ones should be revisited. To achieve this, one has to refresh the algorithm for every
new decision (applicable just for releasing existing machines and newly purchased ones). For
example, if the loading of the ICM is above 0, in month t, after inventory build-up, all the inventory
built for month t should be cancelled. Next, one should run the optimization method for releasing
existing machines and if the loading of the ICM could not be reduced to 0 then one should try
building inventory again.

69



e AIMMS: if the company decides for purchasing an AIMMS license, then we recommend
performing a sensitivity analysis regarding the cost parameters. Due to time limitations we could
not perform a detailed analysis ourselves, however we do see differences in results when the ratio
between the three costs varies.

e Extensions: the MILP model we design, can be extended to also consider differences in costs when

performing the same actions. For example, releasing an older generation machine can either be
less or more expensive than releasing a newer one.
Besides implementing differences in the cost parameters, one could also do the same in terms of
the two lead times. Depending on the product — machine combination, performing a release in
month t can require different lead times. Based on our discussion with the capacity managers, we
believe that this extension would reflect the real-life situation in a more accurate manner.

6.4 Limitations

In this section, we describe the limitations of our research. First, our goal is to show the company how
their model can be redesigned. Hence, developing a fully functional capacity planning tool is out of our
scope. In our experiments we focus on fine-tuning the local search parameters and picking the best
method for each stage. We choose to test our algorithm with the data from one of their bottleneck
machine types (calibrators). However, we do not perform an extensive testing covering all the machine
types existing in both automotive departments.

Furthermore, we program our algorithm in Delphi to run for one machine type at once. This means that,
with the code in its current state, the company is not able to simply input their data concerning all
machines types and obtain a result covering their entire manufacturing process. Therefore, to overcome
this limitation, we suggest them to further optimize our code to accommodate all machine types at once.

Another important limitation of our research is that we do not fully model the real-life situation. Within
our recommendations we mention elements such as variable costs and lead times which can be added to
better reflect the real-life situation. However, because we develop a strategic capacity planning model a
variety of aspects such as maintenance, precedence relationships or set-up times are not included.
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Appendix A: Validating the MILP model in comparison with Sensata’s
model

In here we provide more details regarding the comparison between our MILP model and Sensata’s capacity
planning model. As we mention in Chapter 5, we perform this comparison by using the initial data set we
describe in Section 5.1.

Figure A.1 shows the monthly loading percentages of each individual machine. Figure A.2 shows the
inventory levels of each month, which we obtain as an output of the MILP model. Next, Figure A.3 shows
the number of machine releases the model chooses to perform in each month.

% Level @
L

=6
m 1 2 3 B 5 6 7 8 9
t

B1 | 8886820694 56.47901235 100 100 65.82968254 86.52813051 100

B3 1060 100 100 40.59544160 6226323520 100 100
3 100 100 47.61393867 90.86851454 100 71.13181999 92.87048984
B 88.10942167 64.25483028 100 100 100 100 4293720165
5 100 100 100 100 100 100 100
6 4537577633 100 100 100 100 100 30.42083185
T 100 78.16922135 100 100 87.12005583 100 100
8 69.95620826 49.12758946 20.56906735 100 90.94842971 24.35446936 100 92.07230321
9 100 100 84.25688847 68.31393911 100 92.84400824 100 100
10| 2290880343 7372147343 100 100 8455326119 75.19612924 87.21559923 100 100
11| 91.99887611 70.23321933 78.13148681  9.284854526 100 100 100 100 44.19084067
12| 2541170349 33.66868575 79.01605850 100 6063510364 73.01777177 100 13.05269117 100
13 100 100 100 50.50059647 100 100 100 100 100
14 100 100 100 100 100 91.19189938 100 100 100
15 100 100 100 8562207932 100 100 100 100 100
16 100 100 100 100 100 100 100 100 100
17 100 100 100 100 100 100 100 100 100
18 100 100 100 100 100 100 100 100 100
19 100 100 100 100 100 100 100 100 100
20 100 100 100 98.27867462 100 90.45442296 62.48417464 100 100
21 100 100 100 100 100 100 100 100 100
22 100 100 100 100 100 100 100 100 100
2 100 100 100 94.26249619 100 100 100 100 100
24 | 3014597040 100 100 100 100 100 100 100 100

Figure A.1 Monthly loading percentages of each individual machine

In Figure A.1 we display the loading percentages per machine, in each of the 24 months, we obtain as
output of the MILP model. In the first 7 months, only 7 machines are available, therefore no units are
allocated on machines 8 and 9. These machines are the ones the company has already ordered and are
expected to arrive. As we display in this figure machine 8 can be used starting from month 8, while machine
9 becomes available in month 10.
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The algorithm performs machine releases to facilitate the production of 7 sensors for nth  Product
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which no machine releases are available. Figure A.4 shows the product indices 4 26
associated with each release, while in Figure A.5 we display the demand associated B 38
with products 213 and 216. Moreover, in Figure A.6 we show the initial releases of . 39
all machines. In here we can notice that no machines are released for products 213 12 30
and 216. Hence, since machines are released for products 213 and 216 right when 13 213

=
=

their demand became greater than 0, we can conclude that the model will only
perform a certain action when needed or if it leads to smaller total costs.
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Figure A.4 Product IDs
with zero machine
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Appendix B: LP formulation — Initial Schedule

MINIMIZE

T

Z Inventory Costs(t) * Totallnventory(t) + ReleasingCost(t) * TotalMachinesReleased(t)
t=1
+ OrderingCost(t) * TotalMachinesOrdered(t)

subjected to:

1. YX_, UnitsProduced(i, k,t) * QualityOEE(i,k) = D(i,t),Vi€,t E M

2. UnitsProduced(i, k,t) < bigM * InitialMachineReleases(i, k,t),Yi €,k € K,t e M

3. Y, UnitsProduced(i, k,t) = CT(i,k,t) < (1 — Buffer) * AvailabilityOEE (k,t) *
DaysAvailable(t) * HoursAvailable « 3600,Vi € Lk € K,t e M

4. UnitsProduced(i,k,t) = O,Viel,keK,teM
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Appendix C:Initial Schedules Comparison

As we describe in Section 5.3 we compare 5 different ways of generating the initial schedule. In Figure C.1
we display the optimal monthly overall loading and the loadings associated with each of the 5 schedules.
We obtain the optimal loading by solving the model we introduce in Appendix B and use its results to
select the best schedule.

Through the highlighted cells in Figure C.1 we want to show which schedule is closest to the results of the
LP model. For three of the options (no sorting, sorting on decreasing demand and sorting on the number
of releases) the results are much worse than the optimal solution we display in column 2. However, for
the other two options (sorting on increasing cycle times and sorting both on demand and cycle times), the
results are very close to the optimal values. Besides the monthly loading, we also compare the schedules
in terms of the number of units allocated on the ICM and the percentage these units represent from the
monthly volumes. We display these results in Figures C.2 and C.3.
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Month Total Volume No Sorting Sorting Demand  Sorting Cycle Times  Sorting Both  Sorting Releases

1 1158464 5655 365 o o o

2z 1115900 o 24300 o o o

3 1334737 o 50870 o o o

4 1168322 o o o o 40

5 1532014 221480 207775 o o 122907
& 1176632 526 o o o 1421
7 1291102 181539 22300 o o 1315
- 1120045 o o o o 1937
2 1461636 114132 o o o 2608
10 1437851 o o o o 15195
11 1427521 o o o o 15131
iz 1208720 o o o o 20544
13 1650463 10781 163684 o o 33681
14 1605147 258839 85550 o o 34317
15 16825872 32028 20842 o o 34317
16 1776955 133035 o o o 34317
iz 1804044 154449 172715 o o 34317
18 1847956 125634 262308 o o 82232
i9 1813421 259110 282420 o o 104682
20 1554702 o o o o 43317
21 1784223 128050 243702 o o 43317
22 1861374 238082 309855 o o 169553
23 1520962 27171 67872 o o 41517
24 1711010 o o o o 41517

Figure C.2 Number of units assigned on the ICM in each of the 5 initial schedules

Mok No Sortimg  Sorting Demand  Sorting Cpcle Times Sorting Both  Sorting Releases

1 0488 0.0z2 o o o
2z o 2178 o o o
3 o 3.811 o o o
4 o o o o 0003
5 14391 13.501 o o 7. 8986
& o045 o o o 0.121
7 14.061 1727 o o 0102
& o o o o 0173
9 7808 o o o 0657
10 o o o o 1.057
11 o o o o 1.060
1z o o o o 1.733
13 0.653 8917 o o 2041
14 16.126 5.330 o o 2 138
15 1.895 1.233 o o 2.031
16 FA8F o o o 1931
17 8.561 2574 o o 1902
18 6. 792 14.573 o o 4.5991
12 14.288 15574 o o 5.773
20 o o o o 2. 786
21 11100 13.659 o o 2425
22 12791 16.647 o o 8,109
23 1492 3727 o o 2280
24 o o o o 2436
Average 4916 4. 645 o o 2. 197

Figure C.3 Percentage of the monthly volume assigned on the ICM in each of the5 initial schedules
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From these figures, we notice that for the two schedules performing best in terms of monthly loading, the
number of units allocated on the ICM is 0. Considering the other schedules, the average percentage of
volume allocated on the ICM varies between 4.9% and 2.1%.

Since two of the schedules, sorting based on cycle times and sorting on both cycle times and demand,
perform best in exactly 12 out of 24 months, we create a more detailed comparison between them. Figure
C.4 shows this comparison.

haonth AIMMS g Siorting Sorting Demand  Sorting Cycle Tines  Sorting Bot
1 65.169 100475 555854 55.374
2 0.659 820 854 72.313
3 55 834 51 500 a0
4 58.400 83105 5
5 B2 714 117958 115 849 B3.719
5 53843 100.042 5o 218 64176
7 75544 76822
2 50.631 S0.985
) 71.305 72.851 F2.950
[P} 52. 778 53.034 63.316
11 57104 58202 57661
12 48205 50,979 45.350
13 70950 71610 74,121
14 78,552 FH.389 F7.E61
i5 55.171 66.063 55.009
is 71984 74.420 72658
7 75.893 FLF1E 7B.&637
18 51 541 7O.950
15 76015 75538
20 559616 55.735
21 FH.030 F7.BEF
22 823.514 B0.959
23 72822 735854
24 &66.062 65.885
Avenoge 100.6594 50754 55445 5431

Figure C.4 Best two schedules — Difference from optimal

In columns 4 and 6 we display the differences between the results from the two schedules and the optimal
values. Again, we use the highlighting to show which method performs best on a monthly basis.
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Appendix D:Local Search Parameters for Optimizing the Initial Schedule

In this section we show the results on which we base our choices for the local search parameters. This
section focuses on the Simulated Annealing and Tabu Search algorithms for optimizing the initial schedule.

Appendix D.1: Simulated Annealing

In here we show how we select the four parameters for Simulated Annealing. These parameters refer to
the initial and final temperature, the cooling factor and the Markov chain length.

We start by selecting the Markov chain length. This value has to be proportional to the number of
neighboring solutions, which can be generated from a given current solution. As we mention in Chapter 5,
we check the number of candidates from tabu search in order to find our initial value for the Markov chain
length. Next, to check the difference in terms of objective function value (monthly overall loading) and
running times we also run tests with double this value. Hence, the 2 values we use for this parameter are
5000 and 10000.

Next, we select the initial temperature. We select this temperature such that the acceptance ratio at the

beginning of the algorithm is close to 1. We calculate the acceptance ratio from the following formula:
Number of Accepted Transitions

———. We display the results when using both values for the Markov chain length
Number of Proposed Transitions

in Figures D.1 and D.2.

Starting Temperature AT PT Ratio Starting Temperature AT PT Ratio
50 4048 5000 0.8096 50 8002 10000 0.8003
80 4325 5000 0.865 &0 8686 10000 0.8686
100 4427 5000 0.8854 100 8860 10000 0.886
150 4667 5000 0.9334 150 9287 10000 0.9287
200 4725 5000 0.945 200 5432 10000 0.9432
300 4835 5000 0.967 300 9629 10000 0.9629
400 4839 5000 09678 400 5752 10000 0.59752
600 4913 5000 0.9826 600 5851 10000 0.9851
800 4941 5000 0.9882 200 5872 10000 0.5872
1000 4944 5000 0.9888 1000 5885 10000 0.5885
1200 4953 5000 0.9906 1200 99232 10000 0.9923
Figure D.1 Acceptance probability for different starting Figure D.2 Acceptance probability for different starting
temperatures and a Markov chain length of 5000 temperatures and a Markov chain length of 10000

We notice that, in both cases, starting from an initial temperature of 150 the acceptance probability is
greater than 0.9. We choose 300 as the value of our starting temperature since, in both cases, the
acceptance probability was greater than 0.95. Furthermore, knowing that the final temperature has to
have a really small value we decide to set it at 0.5.

Next, we select the cooling factor. We do this by experimenting with multiple values and checking the
results in terms of objective function value and computational efforts. We vary the cooling factor while
keeping all the other factors constant. Moreover, we perform two tests, one for each Markov chain length.
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In Figure D.3 we show the results when the Markov chain length is 5000. For each value of alpha we run
the algorithm 5 times and display the average values for both monthly loadings and running times.

T0 T1 Alpha L Loading Initial Schedule  Looding 54  Optimal Lleading  Running Time (1 month) (s} Runing Time {1 month) {min)
300 0.5 01 5000 74121 74120 70.960 8081 0.135
300 0.5 0.2 5000 74121 74120 70.960 10.169 0.169
300 0.5 0.3 5000 74121 74120 70.960 13.300 0222
300 0.5 0.4 5000 74121 73.202 70.960 15.641 0.261
300 0.5 0.5 5000 74121 73.598 70.960 22.791 0.380
300 0.5 0.6 5000 74121 74120 70.960 29.157 0486
300 0.5 0.7 5000 74121 74120 70.960 37.900 0.632
300 0.5 0.8 5000 74121 74120 70.960 66569 1109
300 0.5 0.85 5000 74121 73.594 70.960 88.525 1475
300 0.5 0. 5000 74121 74120 70.960 2 2101
300 0.5 0.95 5000 74121 72.018 70.960 4.342
300 0.5 0.97 5000 74121 71491 70.960 7525
300 0.5 0.99 5000 74121 71584 70.960 22.061

Figure D.3 Overall loading and running times for different cooling factors (Starting Temperature 300, Stopping Temperature
0.5, Length of Markov Chain 5000)

We notice that we obtain the minimum value for the objective function for an alpha equal to 0.97. In
Figures D.4 and D.5 we show how the objective function values and the running times change with
different values of alpha.

Objective Function Value (L=5000)

74.5
74
73.5
73
72.5
72
71.5

71
0 0.2 0.4 0.6 0.8 1 1.2

Figure D.4 Objective function values for different cooling factors (Starting Temperature 300, Stopping
Temperature0.5, Length of Markov Chain 5000)
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Figure D.5 Running time values for different cooling factors (Starting Temperature 300, Stopping
Temperature 0.5, Length of Markov Chain 5000)

Considering the objective function value, we see that we obtain better results when alpha is greater or
equal to 0.95. Furthermore, we also notice that on an interval from 0.1 to 0.8, excluding alpha being equal
to 0.4 and 0.5, we can find no difference in terms of the monthly overall loading.

In terms of computational efforts, we see that the overall pattern of the running times shows an
exponential increase. However, we also see that on an interval from 0.1 to 0.7, the running times display
a very small increase and that starting from an alpha of 0.8 the values start increasing, reaching a total of
22 minutes when alpha equals 0.99. These values show the running times for a single month in our model
and we have to consider that the company wants to run our model for a planning horizon of multiple years.

In Figures D.6, D.7, and D.8 we display the same results for a Markov chain length of 10000.

T0 71 Alpha L Loading Initial Schedule Loading SA Optimal Loading Running Time (1 month) (s) Runing Time (1 month) {min)
300 0.5 0.1 10000 74.121 74.120 70.960 15.262 0.254
300 0.5 0.2 10000 74.121 74.120 70.960 19.622 0.327
300 0.5 0.3 10000 74.121 73.319 70.960 27.610 0.460
300 0.5 0.4 10000 74.121 73.613 70.960 32.081 0.535
300 0.5 0.5 10000 74.121 73.084 70.960 46.284 0.771
300 0.5 0.6 10000 74.121 73.598 70.960 62.444 1.041
300 0.5 0.7 10000 74.121 73.597 70.960 84.378 1.406
300 0.5 0.8 10000 74.121 72.54 70.960 139.169 2.319
300 0.5 0.85 10000 74.121 72.684 70.960 185.466 3.091
300 0.5 0.9 10000 74.121 72.018 70.960 277.850 4.631
300 0.5 0.95 10000 74.121 72.015 70.960 543.159 9.053
300 0.5 0.97 10000 74.121 71.484 70.960 919.137 15.319
300 0.5 0.99 10000 74.121 71.580 70.960 2781.973 46.366

Figure D.6 Overall loading and running times for different cooling factors (Starting Temperature 300, Stopping Temperature
0.5, Length of Markov Chain 10000)
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Objective Function Value (L=10000)
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Figure D.7 Objective function values for different cooling factors (Starting Temperature 300,
Stopping Temperature 0.5, Length of Markov Chain 10000)

Running Times (s) (L=10000)
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Figure D.8 Running time values for different cooling factors (Starting Temperature 300, Stopping
Temperature 0.5, Length of Markov Chain 10000)
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For a Markov chain length of 10000 we find an improvement 0f 0.007% in terms of monthly overall loading.
In this case, the same value of alpha, 0.97, brings the best results. Although, when using these values for

our parameters, the algorithm can find an even better solution the difference in running times between
the two is of 7.794 minutes.

In an attempt of reducing the running times we experiment with some other values for the Markov chain
length. The following three figures display the results when using 2500, 1250 and 625 as our Markov chain
length. Furthermore for the last two tests we set alpha to 0.99. In figure D.9 we display the values as
averages of 5 runs, while in figures D.10 and D.11 we display the values of each individual run.

10 Tl Alpha L Loading Initial Schedule  Loading A Optimal Loading Running Time (1month) (s) Runing Time (1month) (min)
300 0.5 0.95 2500 73.594 70.960 133.353
300 0.5 0.9 2500 72,542 70.960 230,24
300 0.5 0.99 2500 71.588 70.960 745.594

Figure D.9 Overall loading and running times for different cooling factors (Starting Temperature 300, Stopping
Temperature 0.5, Lenath of Markov Chain 2500)

10 11 Alpha L Loading Initial Schedule  Loading SA  Optimal Lo Time (1 month) (s) Runing Time (1 month) (min)
300 0.5 0.99 1250 74.121 74.120 70.960 350.578 5.843
300 0.5 0.99 1250 74.121 71.485 70.960 356.922 5.949
300 05 0.99 1250 74121 71.515 70.960 377.375 6.290
300 05 0.99 1250 74121 71.487 70.960 345.937 5.766
300 0.5 0.99 1250 74121 71.491 70.960 344.016 5.734

Figure D.10 Overall loading and running times for a=0.99 (Starting Temperature 300, Stopping Temperature 0.5, Length of
Markov Chain 1250)

0 T Alpha L Optimal Loading  Running Time (1 month) (s)  Runing Time (1 month) (min)
300 05 0.99 625 70.960 177.031 2.951
300 05 0.99 625 70.960 176.281 2.938
300 0.5 0.99 625 70.960 185.812 3.097
300 05 0.99 625 70.960 182.438 3.041
300 0.5 0.99 625 70.960 183.719 3.062

Figure D.11 Overall loading and running times for a=0.99 (Starting Temperature 300, Stopping Temperature 0.5, Length of
Markov Chain 625)

From Figure D.11 we notice that the only configuration which could find an objective function value close
to the previous values is for alpha 0.99. We also find similar values for a Markov chain length of 1250 or
625. However, such values do not appear in all five runs. When selecting our parameters for this algorithm
we look for the values which lead to good results for all five runs.

Appendix D.2: Tabu Search
In this section we show how we select the two parameters for Tabu search. These parameters are: the
number of iterations and the tabu list length. We use different values for the number of iterations and, in

each test, we keep this value constant and vary the tabu list length. We vary the tabu list length starting
from a value of 5 till we reach the value we use for the number of iterations. We aim to find an interval for
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the tabu list length, chosen as percentage from the total number of iterations, in which the objective
function value results in the best solution.

In Figure D.12 we show the results when setting the number of iterations to 100.

jth Percentage from Iterations Load

360
70.560

70.960

100 30 74.121 70.960
100 40 74,121 70.560
100 50 74,121 70.560
100 60 74.121 70.960
100 70 74,121 70.960
100 80 70.560

100 90 50.0 70.960

70.960

0
100 100 100.0

Figure D.12 Overall loading and running times for different lengths of the tabu list (100 iterations)

The best values, in terms of monthly overall loading, occur when the tabu list length varies from 30% to
80% of the total number of iterations. However, since, for this test, the difference in objective function
values is very small, we are not able to draw relevant conclusions. In Figure D.13 we show how the
objective function values varies for different values of the tabu list length. We see that, excluding the tabu
list length of 5, the values are very similar.

Objective Function Value 100 lterations

73.898
73.896
73.894
73.892
73.890
73.888
73.886

73.884
0 20 40 60 80 100 120

Figure D.13 Objective function values for different lengths of the tabu list (100 iterations)
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Next, in Figures D.14 and D.15 we show the same results when using 300 as the number of iterations.

Iterations Tabu List Length Percentage from iterations Loading Initial Schedule Loading TS Optimal Loading Running Time (1 month) (s) Running Time (1 month) (min)
200 5 17 74.121 73.836 70.560 150.172 2.503
200 10 2.2 74.121 73.887 70.560 120.406 2.007
300 20 6.7 74.121 73.887 70.560 125.141 2.086
300 30 10.0 74.121 73.886 70.560 119.25 1988
200 40 13.3 74.121 73.886 70.560 121.468 2.024
300 50 16.7 74.121 73.886 70.560 116.36 1939
200 60 20.0 74.121 73.886 70.560 132,953 2.216
300 70 23.3 74.121 73.886 70.560 128.453 2141
300 20 26.7 74.121 73.885 70.960 127.594 2127
300 90 30.0 74.121 73.886 70.560 127.688 2128
300 100 33.3 74.121 73.885 70.960 124.609 2.077
200 110 26.7 74.121 73.886 70.560 128.75 2.146
300 120 40.0 74.121 73.886 70.560 119.157 1.986
200 120 43.3 74.121 73.886 70.560 125,407 2.050
300 150 50.0 74.121 73.886 70.560 130.735 2179
200 170 56.7 74.121 73.887 70.560 135.953 2.266
200 200 66.7 74.121 73.887 70.560 146.14 2436
200 230 76.7 74.121 73.887 70.560 118.562 1.976
300 250 83.3 74.121 73.886 70.560 117.328 1.955
300 270 90.0 74.121 73.886 70.560 131.016 2.184
200 200 100.0 74.121 73.887 70.560 139,187 2.320

Figure D.14 Overall loading and running times for different lengths of the tabu list (300 iterations)

Objective Function Value (300 Iterations)
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Figure D.15 Objective function values for different lengths of the tabu list (300 iterations)

We obtain similar results, small variation in terms of objective function values, for 300 iterations. However,
because in this case the best 2 values we find are for tabu list length equal to 26.7% and 33.3% of the
number of iterations, we decide to continue our tests by varying the tabu list length on an interval from
20% to 35%, 40% or 45%.

In Figure D.16 we show our results when using 1000 iterations and a tabu list length varying from 20% to
40%. No difference in terms of monthly overall loading is present.

iterations Tabu List Length Percentage from Iterations Loading Initial Schedule Loading TS Optimal Loading Running Time {1 month) (s} Running Time (1 month) (min)
1000 200 20 74,121 73.887 70.960 397.266 6.621
1000 250 25 74,121 73.887 70.960 385.875 6.598
1000 300 30 74,121 73.887 70.960 450,203 7.503
1000 350 35 74,121 73.887 70.960 375.219 6.254
1000 400 40 74,121 73.887 70.960 351,484 6.525

Figure D.16 Overall loading and running times for different lengths of the tabu list (1000 iterations)

Next, we increase the number of iterations to 2500, 5000 and 10000 and vary the tabu list length
accordingly.
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Iterations Tabu List Length Percentage from Iterations Loading Initial Schedule Loading TS Optimal Loading Running Time (1month) (s) Running Time (1 month) (min)

2500 500 20 74,121 73.850 70.560 554,578 15.510
2500 625 25 74.121 73.887 70.960 957.188 15.953
2500 750 30 74.121 71.822 70.960 813.125 13.552
2500 873 35 74,121 73.851 70.560 528,797 15.480
2500 1000 40 74.121 73.883 70.960 995.954 16.599
2500 1125 45 74,121 73.886 70.960 906.532 15.109

Figure D.17 Overall loading and running times for different lengths of the tabu list (2500 iterations)

iterations Tabu List Length Percentage from iterations Loading Initial Schedule Loading TS Optimal Loading Running Time {1 month) (s) Running Time {1 month) (min)
5000 1000 20 74.121 71.821 70.960 1811.851 30.1582
5000 1250 25 74.121 73.890 70.960 1995.218 33.2536
5000 1500 30 74.121 71.827 70.960 1632.062 27,2010
5000 1750 35 74.121 71.830 70.960 1520.359 25,3393
5000 2000 40 74.121 73.896 70.960 1964.125 32,7354
5000 2250 45 74.121 73.892 70.960 2053.757 34.2200

Figure D.18 Overall loading and running times for different lengths of the tabu list (5000 iterations)

Iterations Tabu List Length Percentage from Iterations Loading initial Schedule Loading TS Optimal Loading Running Time (1 month) (s} Running Time (1 month) (min)
10000 2000 20 74,121 71.824 70.960 3957.558 65.959
10000 3000 30 74.121 71.828 70.960 3939.743 65.662
10000 3500 33 74,121 71.8239 70.960 3459.26 57.634

Figure D.19 Overall loading and running times for different lengths of the tabu list (10000 iterations)

The best value for the objective function value we find is 71.821 and it occurs when running 5000 iterations
with a tabu list length of 1000. We obtain a similar monthly loading when using 2500 iterations and 750
as tabu list length.

In Figure D.20 we show the average running times for different number of iterations. Unlike Simulated
Annealing, Tabu Search shows a linear increase in terms of computational efforts.

Average Running Time (s)

4000
3500
3000
2500
2000
1500
1000

500

0 2000 4000 6000 8000 10000 12000

Figure D.20 Average running time values for different number of iterations
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Appendix E:Additional Results - Optimizing the Initial Schedule

As we state in Section 5.4.1 we compare the results we obtain when using either Simulated Annealing or
Tabu Search in terms of monthly loading. We first compare these results with the loading of the initial
schedule in order to determine the level of improvement that each local search method could bring. Next,
we compare the results with the optimal values.

Manth Initigl Schedule  Simulgted Annealing Difference{SA-init) Tobu Search Difference|init-T5)
1 - 55.374 0.000 55.374 0.000
2 71543 -0.770 71834 -0.680
k] &7. 0.000 57.450 0.000
4 58 -0.288 584409 0.277
5 23, 0.000 83.477 -0.240
& 54 0.000 541 -0.019
7 7 78 0417 78 0.385
2 50.883 0. 0.291 50.685 -0.297
) 72pdn 72 0.570 -0.719
10 £3.5314 &3. 0.000 -0.0658
11 57.859 -0.329 0.075
12 48 389 0.227 -0.301
13 74,120 -2.629 -2.302
14 FF.ESD -0.245 -0.205
15 55.008 .77 -0.356
15 72857 0.000 -0.228
17 7B.635 0.039 -0.148
18 7o.p4n 0.000 -0.027
9 7B.635 -0.257 -0.718
20 58,7534 58,7534 0.000 -0.358
21 F7.B55 76.619 -1.247 -0.15
22 B0.058 FR.o51 -1.007 -0.751
23 73.353 73.32 0.033 0045
24 55.885 55.885 0.000 -0.004
Nagximum Differsnce 0.000 0.000
Averoge Differsnce -0.382 -0.348
Minimum Differsnce -2.529 -2.302

Figure E.1 Monthly overall loading — Comparison between SA and TS related to their initial solution

Just as before, in columns 4 and 6 we display the differences (in terms of overall loading) between the
initial schedule and the outputs of the local search algorithms.

El



|

AIMME Simulzted Annegling  Difference{SA-Optimal]  Tobu Seorch  Difference|T5-Optimal]

1 55.159 55.374 0.208 55.374 0.205
2 70559 71.543 EE s 0.975
3 56,834 57.450 0.525 57.450 0.525
4 58.400 58.438 EEEN sz 0.049

5 82714 83.717 1003 #3477

5 53.843 54.175 0.332 54.155

7 75544 76.404 SN s

g 50,551 50,582 0.051 50,585

9 71.308 72.279 0.973 72.279

10 52.778 53.524 0.535 53,245

11 s7.404 57.330 D s

12 48,505 49,152 0.355 49,088

13 70950 71.481 71818

14 75.052 77.515 77,554

15 §5.171 55,381 55,742

15 71.984 72.857 0574 72,429

17 75503 78507 1703 7R.4EF

18 78.458 75,949 1.401 79.922

19 75.282 75.379 1097 75.918

20 59,221 50,734 0.513 50375
21 75.580 75.519 _ 77.707 2127
22 70321 75,951 80217 0.895

23 72.142 73.329 1158 73.317 _

24 55,207 55.885 0.588 55,881
Maximum Difference 1.703 2,127
Averoge Difference 0.681 0.714
Minimum Differsnce 0.038 0.049

Figure E.2 Monthly overall loading — Comparison between SA, TS related to the optimal values
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Appendix F:Local Search Parameters for Releasing Existing Machines

In this section we show the results on which we base our choices for local search parameters. This section
focuses on the Simulated Annealing and Tabu Search algorithms for releasing existing machines.

Appendix F.1: Simulated Annealing

In a similar manner to the one we describe in Appendix D, we select the parameters for this Simulated
Annealing algorithm. This time, we set the Markov chain length to a high number and stop the algorithm
when no more products are assigned on the ICM. Varying the starting temperature, we check how many
transitions does is actually propose and the resulting acceptance probability. We pick a starting
temperature of 20. Figure F.1 shows these results.

Starting Temperature Accepted Transitions Proposed Transitions Ratio
1 15 16 0.938

5 13 14 0.529

10 14 15 0.933

15 14 15 0.933

20 18 19 0.547

25 15 16 0.538

30 15 16 0.938

40 13 14 0.529

50 20 21 0.952

Figure F.1 Acceptance probability for different starting temperatures

Given the results, we set the initial temperature to 20. Moreover, we keep the final temperature to its
previous value of 0.5.

From the number of proposed transitions in Figure F.1, we check the minimum, maximum, and average
values and use them as three different Markov chain lengths to experiment with. We show the results we
obtain when using these three values and an alpha of 0.1 in Figures F.2, F.3, and F.4. In each Figure we
display the values we obtain when running the algorithm five times with the same settings. Knowing our
input data, we know that the model has to release machines for ten products, hence, we started our tests
by setting the cooling factor to 0.1. Given that when using 0.1 for the cooling factor, the model manages
to release machines for all ten products we did not vary its values further.

TO T1 Alpha | itial Schedule Loading SA Optimal Loading  Running Time (1 month) (s)  Runing Time (1 month) {min)
20 0.5 0.1 17 65.374 68.561 65.169 2.344 0.039
20 0.5 0.1 17 65.374 69.064 65.169 2.859 0.048
20 0.5 0.1 17 65.374 67.895 65.169 2.141 0.036
20 0.5 0.1 17 65.374 67.878 65.169 1.984 0.033
20 0.5 0.1 17 65.374 67.934 65.169 1.984 0.033

Figure F.2 Overall loading and running times for a=0.1 (Starting Temperature 20, Stopping Temperature 0.5, Length of
Markov Chain 17)
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T0 T1 Alpha L Loading Initial Schedule Loading SA Optimal Loading  Running Time (1 month)} (s) Runing Time (1 month) {min)
20 05 01 14 65.374 68.970 65.169 2.812 0.047
20 05 01 14 65.374 68.962 65.169 2.703 0.045
20 05 01 14 65.374 66.286 65.169 2.297 0.038
20 0.5 0.1 14 65.374 70.313 65.169 2.797 0.047
20 0.5 0.1 14 65.374 68.341 65.169 3.094 0.052

Figure F.3 Overall loading and running times for a=0.1 (Starting Temperature 20, Stopping Temperature 0.5, Length of
Markov Chain 14)

TO T1 Alpha L Lloading Initial Schedule Loading SA  Optimal Loading Running Time (1 month) (s)  Runing Time (1 month) (min)
20 1 01 21 65.374 69.310 65.169 1.594 0.027
20 1 01 21 65.374 67.241 65.169 2.250 0.038
20 1 01 21 65.374 68.505 65.169 2.421 0.040
20 1 01 21 65.374 68.705 65.169 1.844 0.031
20 1 01 21 65.374 69.359 65.169 2.329 0.039

Figure F.4 Overall loading and running times for a=0.1 (Starting Temperature 20, Stopping Temperature 0.5, Length of
Markov Chain 15)

In the previous test there is enough available capacity within existing machines to fit the volumes of all
products allocated on the infinite capacity machine. To further analyse the behaviour of the local search
algorithms, we adjust our input data to increase the loading of the existing machines. We do this by
increasing the demand of each product by a constant value. By increasing the loading of the existing
machines, we expect the model to not be able to fit the number of units associated with all the products
assigned on the ICM. Furthermore, when performing a new release to fit one of these products, some of
the products previously assigned within existing machines might be reallocated to the ICM. At that point,
the model is allowed to pick the best release to perform from an increased list of neighbours. We use the
same values for the starting and end temperature, and the length of Markov chain, and we vary the cooling
factor. In Figure F.5 we display the overall loading we obtain when counting the number of units assigned
on the ICM. We calculate this loading through the following formula:

Loading Existing Machines + Loading ICM

Available Capacity

Figure F.6 shows the loading when we exclude the volumes allocated on the ICM. In both figures we display
the running times associated with each cooling factor. Just as before, the values we display in both figures
represent the averages from the 5 repetitions we perform for each cooling factor.
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T0 T1 Alpha L Loading Initial Schedule Loading SA Running Time {1 month) (s) Running Time {1 month} (min}
20 0.5 01 17 114.349 111,242 10,328 0.172
20 0.5 0.2 17 114,349 110.573 17410 0.250
20 0.5 0.3 17 114,349 111.162 22.234 0.371
20 0.5 0.4 17 114,349 110.040 31.240 0.521
20 0.5 0.5 17 114,348 110.040 38.656 0.644
20 05 06 17 114.349 109.238 42,825 0.714
20 05 07 17 114,349 109.974 60,910 1.015
20 05 08 17 114.349 110.232 109.722 1.829
20 0.5 093 17 114,349 105.332 2180.331 36.339

Figure F.5 Overall loading (both existing machines and ICM) and running times for different cooling factors (Starting
Temperature 20, Stopping Temperature 0.5, Length of Markov Chain 17)

T0 T1 Alpha L Loading Initial Schedule Loading SA Running Time {1 month) (s} Running Time {1 month) (min)
20 0.5 0.1 17 93.957 100 10.328 0.172
20 0.5 0.2 17 83,8957 100 17410 0.250
20 05 0.3 17 93.957 100 22,234 0.371
20 0.5 0.4 17 93.957 100 31.240 0.521
20 0.5 0.5 17 83,8957 100 38.656 0.644
20 05 06 17 53.957 100 42,825 0.714
20 0.5 0.7 17 93.957 100 60.910 1.015
20 0.5 0.8 17 83,8957 100 109.722 1.829
20 05 09 17 53.957 100 217.508 3.632
20 05 0959 17 93.957 100 2180.331 36.339

Figure F.6 Overall loading (existing machines) and running times for different cooling factors (Starting Temperature 20, Stopping
Temperature 0.5, Length of Markov Chain 17)

As we notice in Figure F.5, when using a cooling factor of 0.9 we obtain the best results in terms of loading.
In Figure F.6 we see that in all cases the existing machines are fully loaded, which means that the algorithm
performs as many releases as possible until no further units can fit. Unlike the previous test, this time the
results show a positive loading on the ICM. Therefore, for a clearer overview, in Figure F.7 we display the
number of units allocated on both the existing machines and the ICM. Using a cooling factor of 0.9 results
in the smallest number of units assigned on the ICM.
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TO T1 Alpha L Volume 5 (Existing Machines) Volume SA (Existing Machines] Volume IS (ICM)  Volume 5A (ICM)
20 0.5 0.1 17 1603058 1663527 121406 66937
20 0.5 0.2 17 1609058 1665137 121406 65327
20 0.5 0.3 17 1609058 1664009 121406 66455
20 0.5 0.4 17 1609058 1670689 121406 58775
20 0.5 05 17 1609058 16706590 121406 55774
20 0.5 06 17 1605058 1675463 121406 55001
20 0.z 07 17 1603058 1671083 121406 59381
20 0.5 08 17 16039058 1669546 121406 60918
20 0.5 099 17 1609058 1674506 121406 55558

Figure F.7 Number of units (both existing machines and ICM) for different cooling factors (Starting Temperature 20, Stopping
Temperature 0.5, Length of Markov Chain 17)

Appendix F.2:Tabu Search

Knowing that the algorithm needs to release machines for ten products, we only vary the number of
iterations between 5 and 20 and keep the tabu list length to a constant value. Since the capacity allows it,
we expect the algorithm to perform a machine release for one product in each iteration. Hence, we expect
the number of iterations it needs to release machines for all products allocated on the ICM to be 10. As
we expect, the algorithm requires ten iterations to reduce the loading from the ICM to 0.

Number Of lterations Tabu List Length Loading Initial Schedule Loading TS Optimal loading Running Time (1 month) (s) Running Time (1 month) (min)
5 5 65.374 66.125 65.169 54.25 0.904
7 5 65.374 65.460 65.169 65.735 1.096
10 5 65.374 65.374 65.169 69.609 1.160
15 5 65.374 65.374 65.169 69.657 1.161
20 5 65.374 65.374 65.169 62.938 1.049

Figure F.8 Overall loading and running times for different number of iterations (tabu list length 5)

Given that the capacity allows to fit all the products, without having to decide which product(s) should fit
to lead to a better objective function, we believe that the value of the tabu list length should have no
impact for this particular case. We keep the number of iterations constant to a value of 10 and vary the
tabu list length from 1 to 10 to check if any change occur in terms of monthly overall loading. As we expect,
the monthly overall loadings are equal for all ten different values of the tabu list length.

lterations Tabu List Length Percentage from Iterations  Loading Initial Schedule Running Time (1 month} {s)  Running Time {1 month) {min)
10 1 10 72.265 1204
10 2 20 69.375 1156
10 3 30 69.797 1163
10 4 40 68.75 1146
10 5 50 69.609 1.160
10 & 60 69.266 1154
10 7 70 70.969 1183
10 8 &0 69.407 1157
10 9 50 70.125 1169
10 10 100 69.516 1159

Figure F.9 Overall loading and running times for different lengths of the tabu list (10 iterations)
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Just as for Simulated Annealing, we check the results after increasing the demand of each product. We
start by using the same number of iterations and analyze the results when varying the length of the tabu
list. We display the loadings when considering both the existing machines and the ICM, and only the
existing machines in Figures F.10 and F.11. Next, in Figure F.12 we display the number of units assigned on
both the existing machines and the ICM.

Iterations Tabu List Length Percentage from Iterations Loading Initial Schedule Loading TS Running Time (1 month) (s) Running Time (1 month) (min)
10 1 10 114.349 105.598 113.032 1.884
10 2 20 114.349 105.598 106.969 1.783
10 3 30 114.349 105.598 122,203 2.037
10 4 40 114.349 105.598 113.579 1.853
10 5 50 114.349 105.598 120.953 2.016
10 6 60 114.349 105.598 141.703 2.362
10 7 70 114.349 105.598 123,125 2.052
10 8 80 114.349 105.598 118.594 1.977
10 9 30 114.349 105.598 101.922 1.659
10 10 100 114.349 105.598 114,312 1.505

Figure F.10 Overall loading (both existing machines and ICM) and running times for different lengths of the tabu list (10

iterations)
lterations  Tabu List Length  Percentage from lterations Loading Initial Schedule  Looding TS  Running Time (1 month) (s} Running Time {1 month) {min}

10 1 10 93.957 100 113.032 1.854
10 2 20 93.957 100 106.969 1.78

10 3 30 93.957 100 122203 2037
10 4 40 93.957 100 113.579 1.893
10 5 50 93.957 100 120953 2.016
10 & &0 93.957 100 141.703 2.362
10 7 70 93.957 100 123.125 2.052
10 8 &0 93.957 100 118594 1.977
10 9 90 93.957 100 101.922 1.699
10 10 100 93.957 100 114312 1.905

Figure F.11 Overall loading (existing machines) and running times for different lengths of the tabu list (10 iterations)

Tabu List Length  Percel 0 s hines) Volume T5 (Existil lachines) lume TS5 (ICM}
1 10 9058 16971 33326
2 20 1609058 1697138 121406 33326
3 30 1609058 1697138 121406 33326
4 40 1609058 1697138 121406 33326
5 50 1602058 1697138 121406 33326
& &0 1609058 1697138 121406 33326
7 0 1609058 1697138 121406 33326
8 80 1609058 1697138 121406 33326
9 a0 1609058 1697138 121406 33326
10 100 1609058 1697138 121406 33326

Figure F.12 Number of units (both existing machines and ICM) for different lengths of the tabu list (10 iterations)
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We notice that no matter the tabu list length the results in terms of loading and number of units are the
same. Furthermore, we also notice that, just as Simulated Annealing, the algorithm manages to fully load
the existing machines. To check if we can find a better set of products to assign on the ICM we increase
the number of iterations to 30 and 50 and repeat the same test. We display the results in the following
figures.

iterations Tabu List Length  Percentage from Iterations Loading Initial Schedule (Current) Running Time {1 month) {5) Running Time {1 month) (min)
30 3 10 114.349 155828 2597
30 & 20 114.349 144 188 2403
30 9 30 114.349 166.610 2777
30 12 40 114.349 163.813 2730
30 15 50 114.349 587
30 18 60 114.349 2634
30 21 70 114.349 2503
30 24 &0 114.349 2383
30 27 20 114.349 2376
30 30 100 114.349 2.363

Figure F.13 Overall loading (both existing machines and ICM) and running times for different lengths of the tabu list (30

iterations)

Iterations Tabu List Length  Percentage from Iterations Loading Initial Schedule (Current) loading TS Running Time (1 month) (5} Running Time (1 month) (min}
30 3 1 93.957 160 2.597
30 & 20 93.957 160 2,403
30 9 30 93.8957 160 2777
30 12 40 893.857 160 2.730
30 15 50 93.957 160 155235 2587
30 18 &0 893.857 160 155.046 2634
30 21 70 93.8957 160 150.187 2503
30 24 80 93.857 100 143579 2393
30 27 50 93.857 100 142 578 2376
30 30 100 93.957 100 141.750 2.363

Figure F.14 Overall loading (existing machines) and running times for different lengths of the tabu list (30 iterations)

tergtions  Tobu List Length  Percentoge from Iterotions Volume Initial Schedwl isting hachines] Vaolume T5 (Existing Mochines) volume Initiol Schedule {Ic) Velume T5 {Tow)
30 3 19 1505058 1597138 33325
30 & 20 1505058 1597138 33325
30 8 30 1509058 1597138 33325
30 12 40 1509058 1597138 33325
30 5 50 1605058 1597138 33325
30 iz &0 1605058 1597138 33325
30 21 70 1605058 1597138 33325
30 24 o) 1602058 1597138 33325
30 27 ag 1602058 1597138 33325
30 30 100 1600058 1597138 33325

Figure F.15 Number of units (both existing machines and ICM) for different lengths of the tabu list (30 iterations)
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Iterations  Tabu List Length  Percentaoge from lterations Loading Initial Schedule (Current)  Loading TS Running Time {1 month) {s)  Running Time (1 month) (min)
50 5 10 114349 105.598 139.782 2330
10 20 114349 105.598 140.938 2349
15 30 114.349 105.598 140.408 2.340
20 40 114 349 10 8
25 50 114349 1 8 141093
50 30 &0 114.349 8 141.703 2.362
50 35 70 114 349 10 8 142344 2372
50 40 &0 114343 105.5398 140.766 2346
50 45 7] 114349 105.598 1409584 2.350
50 50 100 114 349 10 120.938 2016

Figure F.16 Overall loading (both existing machines and ICM) and running times for different lengths of the tabu list (50

iterations)
lterations  Tabu List Length  Percentage from Iterations Leading initial Schedule (Current)  Loading TS Running Time (I month) {s)  Running Time {1 month) (min)

50 5 i0 93. 100 139.782 2.330
50 10 20 93. 100 140.938
5 15 30 93. 160 140 408
20 440 93. 160 140.250
50 25 50 3 100 141.093
50 30 &0 100 141.703
50 35 70 100 142 344
50 40 80 160 140.766
50 45 L] 160 140 554
0 50 100 100 120.938

Figure F.17 Overall loading (existing machines) and running times for different lengths of the tabu list (50 iterations)

Iterations Tabu List Length  Percentage from lterations Volume Initial Schedule (Existing Machines} Volume T5 (Existing Machines} Volume Inii
50 5 10 03058 1697138
50 10 20 1609058 1697138
50 15 30 1609058 1697138
50 20 40 1602058 1697138
50 25 50 1609058 1697138
50 30 &0 1609058 1697138
50 35 70 1609058 1697138
50 40 80 1609058 1697138
50 45 80 1609058 1697138
50 50 100 1603058 1697138

Figure F.18 Number of units (both existing machines and ICM) times for different lengths of the tabu list (50 iterations)

By increasing the number of iterations we do not notice any change in the results. The algorithm always
fully loads the machines and, based on the loadings and volumes we observe, we can conclude that the
products it chooses are always the same or they have equal volumes allocated on the ICM and equal cycle
times on existing machines.

F7



Appendix G:Additional Results — Releasing Existing Machines

As we mention in Section 5.4.2, we compare the monthly loading we obtain from both local search
algorithms with the current and target initial schedule. The current initial schedule shows the loading,
including the ICM, we obtain when generating the initial schedule for this test. The target initial schedule
shows the loading values we obtain before cancelling the machine releases of the 10 products. Hence, by
comparing the results with the current initial schedule we see which algorithm is able to improve it the
most. By comparing the results with the target initial schedule we aim to observe if the metaheuristic can
reach similar results by only performing machine releases. In Figures G.1 and G.2 we show these
comparisons.

Month Current Initial Schedule Simulated Annealing Difference(SA - Init) Tabu Search Difference(Ts - Init)
1 76,689 67.776 -8.912 65,374 -11.214
2 82,887 74.891 -7.9596 72,313 -10.573
3 79.817 71,074 -8.743 67,460 -12.357
4 71,241 62,778 -8.463 58.726 -12.515
5 95.614 85.210 -10.304 83.533 -12.081
7] 73.395 67.829 -5.566 64,167 -9.228
7 §9.137 78.815 -10.322 76.504 -12.633
& 60,769 54.410 -6.359 50,9583 -9.786
9 82,732 74,171 -8.561 73.068 -9.663
10 72.505 66.956 -5.549 63.314 -9.191
11 66.831 558.834 -6.998 57.731 -9.101
12 58.102 51.543 -6.559 48,262 -8.840
Maximum Difference -5.549 -8.840
Average Difference -7.861 -10.607
Minimum Difference -10.322 -12.633

Figure G.1 Monthly overall loading — Comparison between SA, TS related to the current initial solution

Month Target initial Schedule Simulated Annealing  Difference(SA - Init) Tabu Search Difference(TS5 - Init)

1 65.374 67.776 2.402 65.374 0.000

2 72,313 74.851 2.578 72,313 0.000

3 67.460 71.074 3.614 67460 0.000

4 58.726 62.778 4.052 58.726 0.000

=] £3.719 85,310 1.591 £3.533 -0.186

6 64,176 67.829 3.653 64,167 -0.010

7 76.822 78.815 1.593 76.504 -0.318

8 50.985 54.410 3.426 50.983 -0.001

3 72.950 74,171 1.221 73.069 0.120

10 63.316 66.956 3.640 63.314 -0.001

11 57.661 59.834 2.173 57.731 0.070

12 49,350 51.543 2.152 49,262 -0.128
Maximum Difference 4.052 0.120
Average Difference 2.708 -0.038
Minimum Difference 1.221 -0.318

Figure G.2 Monthly overall loading — Comparison between SA, TS related to the target solution
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In Figure G.3 we display a comparison of the running times incurred by the two local search algorithms.

1

Wwofa s Oy obn s b

T
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12
M ox
Average
Min

1.578
1.719
1.672
2,14
3,157
1.641
2.609
0.343
1.329
1.172
0.109
0.516
3,157
1.499
0.109

Month Simulated Annealing

Tabu Search

4047
47156
32,672
38.766
117,281
43.053
69.562
9.985
28547
32,765
5.86
12,875
117281
44,384
2,86

Figure G.3 Running times — Comparison between SA and TS

Next, we show a similar comparison of the two algorithms when we increase the demand of each product
to further load the existing machines. In Figure G.4 we compare the results when considering the loading
of both existing machines and ICM, while in Figure G.5 we show the results related only to the existing
machines. Furthermore, in Figure G.6 we show the number of units allocated on both the existing

machines and the ICM.

Month Initial Schedule

1 114,349
2 129.287
3 113.944
4 106.440
5 157.731
6 109.193
7 138.330
& 89.238
3 114,482
10 99,933
11 92,291
12 £3.255

Maximum Difference

Average Difference

Minimum Difference

107.970
127.937
111.775
96.876
152.556
102.819
135.851
80.976
111.376
52,981
85.085
75.593

Simulated Annealing  Difference (Init- SA) Tabu Search Difference {Init- TS)

6.380
1.350
2,169
5.564
5175
6.374
2,479
8,262
3.106
6.952
7206
7.661
5.564
5.556
1,350

105.5575393
127.1658662
100. 7467789

52,1951166
1523781711
55,.79553204
135.6691358
77.52540466
108.1516958
89.42274479
£1.92722451
72.89978357

14.245
8,633
2,121

Figure G.4 Monthly overall loading (both existing machines and ICM) — Comparison between SA, TS related to the initial solution

— Increased demand
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Month Initial Schedule Simulated Annealing Tabu Search
1 93.857 100 100
2 100 100 100
3 892,546 100
- 54,749 96.876
5 100 100
6 591.646 100
ry 100 100
8 F0.482 £0.5976
g 895,710 100

10 £3.209 92,851
11 75.559 £5.085
12 66, 729 75,593

Figure G.5 Monthly overall loading (existing machines) — Comparison between SA and TS and the initial solution —
Increased demand

In Figure G.4 we notice that Tabu Search decreases the overall monthly loading the most in all 12 months.
Moreover, in Figure G.5, we see that both algorithms lead to the same results in 4 months, while for the
rest, Tabu Search results in a smaller loading. When checking the number of units assigned on the ICM
after running the two metaheuristics, we notice that in 7 out of 12 months Tabu Search results in less such
volumes. Given that, in some cases, Tabu Search manages to fit more volumes while also resulting into a
smaller loading, we conclude that it is able to release machines with lower cycle times than Simulated
Annealing. We expect such results, given that we notice a similar behavior in our previous test. At that
point, both algorithms manage to decrease the loading of the ICM to 0, but Tabu Search manages to
release machines with lower cycle times and lead to a smaller loading of the existing machines.

Although Tabu Search leads to fewer units assigned on the ICM in 7 months, in the 5 months when
Simulated Annealing outperforms Tabu Search, no units are left on the ICM. Hence, we conclude that the
lower loading, for Tabu Search, we display in Figure G.5 in months 4, 8, 10, 11, and 12 is a consequence of
having fewer units allocated on the existing machines. Given that the existing machines are not fully loaded
in these months, we believe that running Tabu Search with an increased number of iterations can lead to
results at least as good as the ones of Simulated Annealing.

Month  Volume IS (Existing Machines) Volume SA (Existing Machines) Volume TS (Existing Machines) Volume IS (ICM) Volume SA {ICM) Volume TS {ICM)
1 1609058 1683015 1697138 416647
2 1525996 1533457 1537720 386487
3 1765700 1825126 1501463 455335
4 1601959 1740322 1738122 196402
5 1755036 1786948 1788043 672077 324066
6 1640436 1731243 1746432 335136 17383
7 1634901 1649660 1650745 504479 213442
8 1555313 1652045 1689845 222372
k] 1501405 1953525 1576250 536528
10 1881840 2003851 2007651 636842
11 18622395 1955521 1557321 517887
12 1645151 1780720 1778520 253831

Figure G.6 Number of units (both existing machines and ICM) — Comparison between SA, TS and the initial solution — Increased
demand
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To summarize the results, in terms of loading, in Figure G.7 we show an overview with the average loading,
average difference and average relative difference.

Initial Schedule Simulated Annealing Tabu Search
Average Loading 112373 106.816 103.540
Average Difference 5.556 8.833
Average Relative Difference 5.363 8.495

Figure G.7 Overview of the differences between SA and TS when compared with the initial schedule

In a similar manner as before, we show the running times of both metaheuristics in Figure G.8.

Month Simulated Annealing Tabu Search
1 206.266 £8.891
2 552,297 189,25
3 348.75 104.078
- 4,281 80,766
5 1226,922 612,828
6 345,351 129,937
7 455,235 245,328
8 1.031 35.235
3 281.062 95,532
10 1.422 45,359
11 0.485 18.0%4
12 0.656 17,715
Max 1226.922 612,828
Average 289,233 1359.751
Min 0.485 17.719

Figure G.8 Running times — Comparison between SA and TS
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Appendix H:Local Search Parameters for Releasing a New Machine

In this section we show the results on which we base our choices for local search parameters. This section
focuses on the Simulated Annealing and Tabu Search algorithms for releasing a new machine.

Appendix H.1: Simulated Annealing

First, we consider the case when 5 machines are initially available and we allow the algorithm to order a
new one. We start by setting the Markov chain length to 50. Keeping this value constant, we vary the
starting temperature. In Figure H.1 we display the acceptance probability values for different starting
temperatures.

Starting Temperature Accepted Transitions Proposed Transitions Ratio
1 48 50 0.96
5 48 50 0.96

10 48 50 0.56
20 48 50 0.96
30 48 50 0.96
40 48 50 0.96
50 48 50 0.96
60 48 50 0.96
g0 48 50 0.96
100 48 50 0.96

Figure H.1 Acceptance probability for different starting temperatures — 5 machines

At this point, our algorithm selects products currently assigned on the ICM for which it should release the
newly added machine. Hence, no matter what product the algorithm picks, most of the transitions will be
accepted. As we see in Figure H.1, the acceptance probability is constant no matter what the initial
temperature is. For our next steps we pick an initial temperature of 20. Moreover, we keep the final
temperature to its previous value of 0.5.

In Figure H.2 we display the monthly overall loadings and the running times for different values of the
cooling factor.
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0.5 0.2
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0.5 0.6
0.5 0.7
0.5 0.8
0.5 0.3
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Loading Initial Schedule Loading SA Running Time {1 month) (s) Runing Time {1 month) (min) Running Time {12 months) (min)
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14.421
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18.625
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0.220
0.232
0.309
0.274
0.257
0.240
0.279
0.310
0.319

2.641
2.781
3.706
3.294
3.081
2.884
3.353
3.725
3.831

Figure H.2 Overall loading and running times different cooling factors (Starting Temperature 20, Stopping Temperature 0.5,
Length of Markov Chain 50) — 5 machines

We notice that no matter the value of the cooling factor the monthly overall loading is the same. This being
the case, we change the Markov chain length to check if we can obtain better results. Figures H.3 and H.4

show the results for a Markov chain length of 10 and 100.
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Figure H.3 Overall loading and running times different cooling factors (Starting Temperature 20, Stopping Temperature
0.5, Length of Markov Chain 10) — 5 machines
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Figure H.4 Overall loading and running times different cooling factors (Starting Temperature 20, Stopping Temperature

0.5, Length of Markov Chain 100) — 5 machines

In Figure H.3 we see that even when using a Markov chain length of 10 we can obtain the same monthly
overall loading for a cooling factor greater or equal to 0.4. Considering the Markov chain length of 100
(Figure H.4), we find the same monthly overall loading no matter the value of the cooling factor.

Next, we decrease the number of available machines to 4 and, just as before, we allow the algorithm to
order a single machine. In Figure H.5 we compare the results when considering the loading of both existing
machines and ICM, while in Figure H.6 we show the results related only to the existing machines.
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Furthermore, In Figure H.7 we show the number of units allocated on both the existing machines and the

ICM.
T0 T1 Alpha L Loading Initial Schedule Loading SA  Running Time {1 month) (s} Running Time {1 month) (min)
0 05 01 50 222,471 133.979 56.085 0.935
0 05 02 50 222,471 133,172 63.694 1.062
0 05 03 50 222,471 133.554 92,563 1.543
0 05 05 50 222,471 132.901 173.887 2.858
0 05 06 50 222,471 132.901 224,381 3.740
0 05 07 50 222,471 132,901 383.050 6.384
0 05 08 50 222,471 132,901 541,800 5.030
1 05 09 50 222,471 132,901 1098.331 18.306

Figure H.5 Overall loading (both existing machines and ICM) and running times different cooling factors (Starting Temperature

10, Stopping Temperature 0.5, Length of Markov Chain 50) — 4 machines

To T1 Alpha L Loading Initial Schedule Loading SA Running Time (1 month) (s) Running Time {1 month} {(min)
10 o5 01 50 100 100 56.085 0.535
0 05 02 50 100 100 63.654 1.062
10 05 03 50 100 100 52,563 1.543
10 0.5 04 50 100 100 141.984 2,366
10 05 05 50 100 100 173.887 2,858
0 0.5 06 50 100 100 224,381 3.740
10 o5 07 50 100 100 383.030 6.384
10 05 08 50 100 100 541.800 5.030
0 05 0% 50 100 100 1058.331 18.306

Figure H.6 Overall loading (existing machines) and running times different cooling factors (Starting Temperature 10, Stopping

Temperature 0.5, Length of Markov Chain 50) — 4 machines

T0 71 Alpha L Volume IS{Existing Machines) Volume SA (Existing Machines) Volume IS {ICM) Volume SA {ICM)
10 0.5 0.1 50 741817 1013966.8 416647 144437.2
10 0.5 0.2 50 741817 101739%.6 416647 141064.4
10 0.5 0.3 50 741817 1015776 416647 142688
10 0.5 0.5 50 741817 1018551 416647 135913
10 0.5 0.6 50 741817 1018551 416647 135913
10 0.5 0.7 50 741817 1018551 416647 135913
10 0.5 0.8 50 741817 1018551 416647 135913
10 0.5 0.9 50 741817 1018551 416647 135913

Figure H.7 Number of units (both existing machines and ICM) for different cooling factors (Starting Temperature 10, Stopping

Temperature 0.5, Lenath of Markov Chain 50) — 4 machines
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Appendix H.2: Tabu Search

For this algorithm we start by varying the number of iterations from 5 to 70. For this test we keep the tabu
list length constant. We display the result in Figure H.8

Number Of Iterations  Tobu List Length  Looding Initiol Schedwle  Loading TS Running Time (1 month) (s) Running Time (1 month) (min} Running Time (12 months) (min)
5 5 124 361 S7.820 126.969 2,116 25.394
10 5 124361 5.050 1995 3.325 39.900
20 5 124 361 592.364 317.0d6 5284 63.409
30 5 124 361 914323 417 86 6964 83.572
50 5 124.361 90.857 475.266 7.921 85.053
70 5 124 361 90.857 451.75 7.529 90.350

Figure H.8 Overall loading and running times for different number of iterations (tabu list length 5) — 5 machines

We observe that when performing 50 iterations, or more, the algorithm finds the same monthly overall
loading as the one from Simulated Annealing. Hence, we select 50 as the number of iterations. Next, we
vary the tabu list length from 1 to the chosen number of iterations and show the results in Figure H.9. Just
as in the case of releasing existing machines, we notice no effect of the tabu list length.

Iterations Tabu List Length Loading Initial Schedule Running Time (1 month) (s} Running Time {1 month} {min)  Running Time {12 months)} (min}

1 124361
5 124361

50 10 124361

50 20 124361

50 30 124361 479419

50 40 124361 436.547

50 50 124361 358.734

Figure H.9 Overall loading and running times for different lengths of the tabu list (50 iterations) — 5 machines

Next, considering the case when only 4 machines are available, we start by varying the number of
iterations. This time, we keep the length of the tabu list constant to 30% of the number of iterations. In
Figure H.10 shows the results when considering the loading of both existing machines and ICM, while in
Figure H.11 we show the results related only to the existing machines. Furthermore, In Figure H.12 we
show the number of units allocated on both the existing machines and the ICM.

Number Of iterations Tabu List Length Percentage from Iterations Loading Initial Schedule (Current) Loading TS Running Time (1 month) (s) Running Time (1 month) (min)
10 3 30 222,422 132,901 417.078 6.951
30 9 30 222,422 132,901 1267.281 21,121
50 15 30 222,422 132.501 2000.047 33.334
70 21 30 222,422 132.901 2798.265 46.654
20 27 30 222,422 132.501 2805.203 63.420
100 30 30 222,422 132.501 4047.047 67.451

Figure H.10 Overall loading (both existing machines and ICM) and running times for different number of iterations (Tabu list
length set to 30% of the number of iterations) — 4 machines

Number Of iterations Tabu List Length Percentage from iterations Loading Initial Schedule {Current) Loading Tabu Search Running Time (1 month) (s} Running Time {1 month} (min)
10 3 30 100.0 100.0 417.078 6.951
30 9 30 100.0 100.0 1267.281 21.121
50 15 30 100.0 100.0 2000.047 33.334
70 21 30 100.0 100.0 2793.265 46.654
90 27 30 100.0 100.0 3805.203 63.420
100 30 30 100.0 100.0 4047.047 67.451

Figure H.11 Overall loading (existing machines) and running times for different number of iterations (Tabu list length set to 30%
of the number of iterations) — 4 machines
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Number Of Iterations Tabu List Length Percentage from Iterations Volume IS (Existing Machines) Volume TS (Existing Machines) Volume IS (ICM) Volume TS {ICM)
10 3 30 741817 1018551 416647 139913
30 ] 30 741817 1018551 416647 135513
50 15 30 741817 1018551 416647 139913
70 21 30 741817 1018551 416647 139913
90 27 30 741817 1018551 416647 139913
100 30 30 741817 1018551 416647 135513

Figure H.12 Number of units (both existing machines and ICM) for different number of iterations (Tabu list length set to 30% of
the number of iterations) — 4 machines

From the previous figure we see that the results do not change when running more iterations. Hence, to
test for different tabu list lengths we decide to run a total of 10 iterations. Figure H.13 shows the results
when considering the loading of both existing machines and ICM, while in Figure H.14 we show the results
related only to the existing machines. Furthermore, In Figure H.15 we show the number of units allocated
on both the existing machines and the ICM.

il Tabu List Length  Percent o ng TS  Running Time (1 month) (s} Running Time {1 month} (min}
10 1 0 132901 3

10 2 20 132,901 335.062

10 3 30 132.901 323.672

10 4 0 132901 332484

10 5 0 132901 321.937

10 & 0 132901 362.031

10 7 () 132,901 350.375

10 8 0 132,901 357141

10 9 20 222422 132901 314.688

10 10 100 222422 132901 306.609 5.110

Figure H.13 Overall loading (both existing machines and ICM) and running times for different lengths of the tabu list (10
iterations) — 4 machines

Tabuw List Length  Percent om Lo ch {Current) Loading TS  Running Time (I month} (s} Running Time (1 month} (min}
1 o 100.0 100.0 343
2 20 100.0 100.0 335.062
3 30 100.0 100.0 323.672
4 40 100.0 100.0 332.4584
5 50 100.0 100.0 321937
& &0 100.0 100.0 362.031
7 70 100.0 100.0 350.375
8 80 100.0 100.0 357141
9 80 100.0 100.0 314.688
10 100 100.0 100.0 306.609 5.110

Figure H.14 Overall loading (existing machines) and running times for different lengths of the tabu list (10 iterations) — 4

machines
Number of lterations  Tobw List Length  Percent Jfrom lterations Volume IS (Existimg Machines} Velume TS(Existing Machines)} Velume IS (ICM)}  Volume TS (ICM)
10 1 10 741817 1018551 416647 139913
10 2 20 741817 1018551 416647 139913
10 3 30 741817 1018551 416647 139913
10 4 40 741817 1018551 416647 139913
10 5 50 741817 1018551 416647 139913
10 & &0 741817 1018551 416647 139913
10 7 70 741817 1018551 416647 139913
10 8 80 741817 1018551 416647 139913
10 L] 20 741817 1018551 416647 139913
10 10 100 741817 1018551 416647 139913

Figure H.15 Number of units (both existing machines and ICM) for different lengths of the tabu list (10 iterations) — 4 machines

Given the results, we can conclude that, for this test, 10 iterations are enough to fully load the existing
machines, and that changing the length of the tabu list does not lead to different results.
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Appendix l:Additional Results — Releasing a New Machine

In Figure 1.1 we display the monthly loading of both the exiting machines and the ICM. For the initial
schedule we calculate this loading by only considering 5 machines available, while for the results of SA and
TS we consider 6. Next, in Figure .2 we display the running times of both metaheuristics.

Month Initial Schedule  Simulated Annealing  Difference (Init - 34)  Tabu Search  Difference (Init - TS)

1 124 361 80.857 33.504 80.857 33.504

2 125.166 89.386 38.779 89.386 38.779

3 121 741 83.095 28.646 83.095 28.646

4 89.003 89.003 0.000 89.003 0.000

5 165.520 120511 45.008 114991

& 87.076 97.076 0.000 87.076 0.000

7 154 502 102703 52.099 102.703 52.099

8 86.232 95.232 0.000 86.232 0.000

9 168.723 119.260 49.462 117811

10 178.212 132932 45 280 121903

11 153.906 103.338 50.568 102.629

12 111 504 B6.636 24 868 86.636 24 868
Maximum Difference 52,099 56.308
Average Difference 30.684 32.243
Minimum Difference 0.000 0.000

Figure 1.1 Monthly overall loading (both existing machines and ICM) — Comparison between SA, TS related
to the initial solution —5 machines

Month  Simulated Annealing  Tabu Search
1 15.188 402.313
2 4.875 86.547
3 10.937 276.156
il - -
5 43.625 1042.906
5} - -
7 3.485 60.094
8 - -
L) 3.89 89.328
10 3.625 94.813
11 3.797 56.75
12 1.5 22.922
Max 43.625 1042.906
Average 10.102 236.870
Min 1.500 22922

Figure 1.2 Running times — Comparison between SA and TS —
5 machines



Next, we show the same results for the test in which we only have 4 machines available. Figure 1.3 shows
the results when considering the loading of both existing machines and ICM, while in Figure 1.4 we show
the results related only to the existing machines. Furthermore, In Figure 1.5 we show the number of units
allocated on both the existing machines and the ICM.

Month Initial Schedule  Simuiated Annealing Difference (Init-54) Tabu Search Difference(Init-T5)
0 222471 132901 89.570 132.901 89.570
1 222345 142 636 79.708 142636 79.708
2 220.891 144 440 76.451 144 440 76.451
3 153.8582 80.527 63.355 107.35 46 523
4 290.741 195625 85116 195.625 895116
5 195114 121402 73.712 127.238 67.876
& 248 289 168.372 79.917 168.372 79.917
7 161.007 94 648 66.359 113584 47.123
8 252271 168.300 83.972 164.065 88.206
9 287.196 192 643 84553 192643 94553
10 242081 160.750 81.331 160.750 81.331
11 169.638 105.509 £4.129 115323 51316
Maximum Differece 85.116 95.116
Average Difference 79.014 74808
Minimum Difference 63.355 46.523

Figure 1.3 Monthly overall loading (both existing machines and ICM) — Comparison between SA, TS related to the initial solution —
4 machines

Month Initial Schedule Simulated Annealing Tabu Search
0 100 100 100
1 100 100 100
2 100 100 100
3 100 90.527 90.199
4 100 100 100
5 100 100 96.109
6 100 100 100
7 100 94.648 89.948
b 100 100 100
9 100 100 100
10 100 100 100
11 100 100 091.457

Figure 1.4 Monthly overall loading (existing machines) — Comparison between SA, TS and the
initial solution — 4 machines

From Figure |.3 we notice that in 7 out of 12 months both algorithms reach the same results. However, in
the other 5 months, Simulated Annealing outperforms Tabu Search in most of the cases. In these months
we notice that the loading, considering both existing machines and the ICM, is lower for Simulated
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Annealing, which means that it manages to reduce the loading of the ICM more than Tabu Search. As a
consequence it also manages to load the existing machines more than TS. This is exactly what we observe
in Figure 1.4 where we see a higher loading for SA. Furthermore, the results we show in Figure I.5, the
volumes assigned on both existing machines and ICM on a monthly basis, show that Simulated Annealing
manages to fit more units within existing machines. Despite these results, we believe that Tabu Search is
limited by the number of iterations we use and that increasing this value, when needed, has the potential
to lead to results at least as good as the ones of Simulated Annealing.
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Figure 1.5 Number of units (both existing machines and ICM) — Comparison between SA, TS and the initial solution — 4 machines

To summarize the results, in terms of loading, in Figure 1.6 we show an overview with the average loading,
average difference and average relative difference.

Average Loading
Average Difference

Average Relativ Difference

Initial Schedufe
222,161

Simulated Annealing Tabu Search

143.14
79.014
36.116

147,353
74,808
33.470

Figure 1.6 Overview of the differences between SA and TS when compared with the initial schedule



In Figure 1.7 we provide an overview of the running times incurred by each algorithm.

Month  Simulated Annealing Tabu Search

0 114.547 298.203

1 55.141 133.781

2 64.859 235.172

3 7.875 27.859

4 110.765 481.969

5 91.828 407.000

6 75.344 186.875
7 14.516 8.407

8 4.282 105.859

9 170.031 555.718
10 13.969 17.235

11 69.437 299.016

Max 170.031 555.718

Average 74.048 254.832
Min 4.282 8.407

Figure 1.7 Running times — Comparison between SA and TS



Appendix J: Flowchart — Entire Heuristic

Extensions multiple facilities by just setting machine releases to the good values.

Ist>157?

Ist>37?

Ist>17?

| Generate an initial schedule

v

| Optimize the initial schedule

'

Is the loading of the ICM >0

Go to the next
month

Build inventory in prior
month(s)

Go to the next
month

v

Is the loading of the ICM >0

Go to the next
month

YES | NO |
\ \
Release Existing Go to the next
Machines month

v

Is the loading of the ICM >0

Go to the next
month

Make a new machine
available

Go to the next
month

Figure J.1 Flowchart showing the steps of the entire heuristic
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