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Management Summary 
 
This research takes place in collaboration with Sensata Technologies. Sensata Technologies is one of the 

world’s leader suppliers in terms of sensing, control, power management, and electrical protection 

solutions. The highest revenue industry in which Sensata competes is the automotive industry. This 

research is carried out at the initiative of two capacity managers from Sensata’s automotive departments 

and focuses on the departments’ strategic capacity planning.  

Problem Description 

This research starts with the aim of redesigning their current strategic capacity planning model. This need 

arose due to their forecasts showing a rapid increase in demand1 over the upcoming years. Besides the 

increase in the actual number of units, a demand increase generates an increase in number of equipment 

and types of products. Considering the high investment incurred by purchasing new equipment, the 

company wants to postpone such an investment for as long as possible. Another reason for initiating this 

research consists in the simplicity of their current model. The managers use an Excel model from which 

they exclude a variety of relevant factors. Moreover, the factors they do take into account are assigned 

with average values. Given all these simplifications the model is not capable of reflecting aspects such as 

performance differences between individual machines of the same type and is hence not able to reflect 

the real-life situation in an accurate manner.  

Objective 

We aim to redesign Sensata’s strategic capacity planning model. First, we want to reflect the differences 

between individual products or machines, hence disaggregating the average values. Next, we want to 

model the real-life situation in a more accurate manner by including relevant factors such as: machine 

capabilities2, machine releases3 and Overall Equipment Effectiveness components4. The outcome of our 

research represents a proof of concept of a strategic capacity planning model. 

Approach 

We start by analyzing the current situation of the two departments. During this analysis we take a close 
look at their current model and aim to better understand their manufacturing processes. Together with 
the capacity managers we decide on the additional factors which we should consider to reflect the real-
life situation in a more accurate manner. Further on, we identify the main actions the managers can 
perform to cope with the increase in demand. The actions refer to: building inventory in prior months, 
releasing existing machines or purchasing new equipment. Since each action has an associated cost, our 
aim is to reduce the total costs across a certain planning horizon. 

                                                           
1 The number of units of each individual product the company has to produce in a certain period of time 
2 Given the multitude of sensors the company manufactures, not all the equipment is physically capable of producing each single product. These capabilities reflect 

which sensors can each machine process.   
3 Similar to the capabilities, the machine releases also reflect whether a machine is allowed to process a certain product. Unlike the machine capabilities, the 

releases are not related to the machine’s specifications but to Sensata’s customers. According to the capacity managers, in the automotive industry only machines 
and raw materials approved by the customer can be used in the manufacturing of each product. To obtain the customer’s approval the company produces sample 
sensors, using a sequence of machines selected by their manufacturing facilities, which are sent to and tested by each customer to ensure their quality. If the quality 
reaches the desired standards, the customer allows Sensata to further produce his sensors, however, by using only the exact equipment used for building the 
samples. Hence, through this approval the customer releases the machines.  
4 Metric of the efficiency and effectiveness of a process which can be divided into three different components: Availability, Quality and Performance 



iv 
 

We develop a heuristic to show how the managers can cope with the increase in demand by incurring one 
or more of the three actions. The heuristic starts by creating an initial schedule5 which we then aim to 
improve through local search optimization. Next, if the capacity does not suffice, the model attempts to 
build inventory in prior months. In a similar manner, if the demand is still not covered after inventory 
buildup we attempt to release existing machines. As a last resort the heuristic decides in favor of 
purchasing a new machine. We approach the releasing of either existing or newly purchased equipment 
through local search metaheuristics. To choose the best local search algorithm we compare between 
Simulated Annealing and Tabu Search.  
 
To benchmark the results of our heuristic, we formulate a mixed integer linear programming model. In this 

model we focus on reducing the total costs incurred for a given planning horizon. We use the CPLEX solver 

to solve this model. 

Conclusions and Recommendations  

For each of the three optimization steps we perform a comparison between Simulated Annealing and Tabu 

Search. Starting with the optimization of the initial schedule we compare them in terms of monthly overall 

loading6 and computational efforts. Although the former outperforms the latter in terms of running times 

and, sometimes in terms of the objective function value, our final choice is Tabu Search. We base our 

choice on two reasons. First, Tabu Search outperforms Simulated Annealing in 13 out of 24 months. 

Second, Simulated Annealing is not able to improve the monthly overall loading for a total of 9 months, 

while Tabu Search finds an improvement in 22 out of 24 months. 

Next, for releasing existing machines we also choose in favor of Tabu Search. Yet again, Simulated 

Annealing outperforms our choice in terms of computational efforts, however, given the random selection 

process of Simulated Annealing, Tabu Search is always better at releasing the preferred machines for each 

product. By preferred machines we refer to the machines having smaller processing times. Considering 

the third optimization stage, we yet again choose in detriment of Simulated Annealing. We base this choice 

on the objective function values we obtain from each algorithm.  

In the end we provide the company with recommendations regarding the implementation of our algorithm 

as Sensata’s new strategic capacity planning model. A major part of these recommendations relate to the 

improvement of their input data. Finally, we introduce our recommendations in terms of future work and 

the limitations of this research. Such limitations refer to our algorithm representing a proof of concept and 

not a fully functional tool combined with the fact that the company can include more factors to reflect the 

real-life situation even further. 

 

 

 

 

 

                                                           
5 Allocation of products to machines showing the number of units of each product which should be processed by each machine 
6 Percentage of the total available capacity which is used for production on a monthly basis 
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Chapter 1 Introduction  
 
Capacity management is of critical importance for any company given that limitations in terms of capacity 

or resource availability can represent a major bottleneck. When considering capacity planning from a 

production point of view, restrictions in the number of equipment available or poor planning techniques 

can result in delaying orders’ completion. Therefore, an appropriate planning for the assignment of 

products to machines is required. In this research, we develop an optimization algorithm for the strategic 

capacity planning for two of Sensata’s automotive departments. 

This first chapter explains the context of our project. Section 1.1 covers general details about the 

company’s background. In the end of the section we give a small overview of the departments’ current 

situation. Section 1.2 covers our research plan, while in Section 1.3 we provide an outline of this report. 

1.1 Company Introduction 
 
Sensata Technologies is one of the world’s leading suppliers in matters such as: sensing, electrical 

protection, control, and power management solutions. The company is an early innovator in terms of 

electrical protection and mission-critical sensors. Hence, they design their products with the goal of 

improving the safety, efficiency and comfort of their customers.  

The company started in 1916, under the name of “General Plate Company”, by providing gold plates for 

the jewelry industry. In 1931 they merged with Spencer Thermostat while in 1959 they merged with Texas 

Instruments. In 2006 they were bought by Bain Capital and, from that moment onwards, continued under 

the name of Sensata Technologies. Currently Sensata owns 12 other brand names and ships around 1 

billion products per year.  

At the moment the company has manufacturing facilities and business plants in North and South America, 

Europe and Asia. Figure 1 shows an overview of Sensata’s manufacturing facilities and business sites, while 

Figure 2 displays their revenue percentages over the three big regions. 

 

 

Figure 2 Highest Revenue 
Percentages per Region 

Figure 1 Sensata’s manufacturing facilities and business sites 
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The industries in which they compete vary from industries 

such as aerospace, automotive, construction, or energy, to 

fields such as agriculture and medical industry. Their sensors 

can be found in commercial jets, large boats, automobiles, 

construction vehicles, but also in people’s homes. At the 

moment, the biggest percentage revenue of the company 

comes from the automotive industry, as we display in Figure 

37.  

In Sensata, the departments are divided based on the 

technology handled by each of them. This research takes 

place in collaboration with two of the departments 

specialized in the automotive industry, precisely the MEMS 

(Micro-Electro- Mechanical Systems) and MSG (Metal String 

Gages) departments.  

The MEMS department focuses on low pressure sensors, but also on other various intake and exhaust 

components. For this specific group the production plants are located in Malaysia and China, while the 

MSG group handles manufacturing in Bulgaria as well. 

The production sites are organized by using the farm concept. This is based on the existence of multiple 

processes (each process with a certain number of machines) and on different types of sensors having 

different paths through the production plant. Due to their similarities we associate the farm concept with 

the job-shop concept. Since no universal flow applicable for all products exists, the complexity in assigning 

products to machines is rather high, compared to, for example, traditional flow shops.  

At the moment, the managers handle the strategic capacity planning through an Excel model. According 

to the company, due to its simplicity, this model does not consider a variety of factors they deem to be 

important. For example, regarding the farm concept, approximately 20 different routes are considered in 

their model, although more actually exist. Averages are used for similar routes, rather than creating a 

different category for each route. Various other differences are currently not considered individually, but 

used as average values in the model. 

Although the capacity managers wish to add incorporate additional factors, the Excel model is close to its 

maximum computational limits, making it very complicated for any modification to be implemented.  

1.2 Research Plan 
 
In this section we describe the plan for this research. Section 1.2.1 states the motivation and the objective 

of this research while in Section 1.2.2 we describe the problem encountered by the company. Section 1.2.3 

contains our research questions and Section 1.2.4 connects the research approach to the framework of 

activities we introduce in Section 1.2.3. Section 1.2.5 mentions the limitations of this research by 

describing the project scope. 

 

                                                           
7 HVAC - Heating, ventilation, and air conditioning 

Figure 3 Highest Revenue Percentages per 
Application 
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1.2.1 Research Motivation and Objective 
 
Considering the MEMS department, the demand forecasts show that the request for their sensors is going 

to double in approximately one and a half years. The longer horizon forecasts show that in the next four 

years the demand will continue to grow rapidly. Given these forecasts, the company needs to be 

adequately prepared to handle this growth. Therefore, it becomes crucial to know precisely how much 

and when they need to order new equipment.  

Considering that the model Sensata currently uses for capacity planning is very simplistic and makes use 

of a variety of averages, the reasons for initiating this assignment start with the aim of redesigning this 

model. Hence, the desired output for the project is a new model for the strategic capacity planning of the 

two automotive departments. A new model represents a way of predicting the future requirements, in 

terms of equipment, in a more adequate and precise manner.   

At the moment their model simply checks whether the demand fits the available capacity. However, for 

the outcome of this research we are looking for an algorithm that also considers the allocation of tasks to 

machines. We wish to implement an optimization technique so that the new algorithm can predict the 

loading percentage of a machine in a more accurate manner. By loading percentage of a machine, we refer 

to the ratio between the time needed to produce the forecasted demand and the available time. 

1.2.2 Problem Description 
 
As we state in Section 1.2.1, the company’s marketing department has predicted a very rapid increase in 

demand for the next few years. Because of what they call a steep ramp-up curve was forecasted for their 

demand, the capacity managers state that they have to add new production equipment each quarter. 

The automotive industry is based on the just-in-time concept, which the company explains as having to 

deliver the components requested just before they are needed in the manufacturing line of their 

customers. The need to deliver in time arises from the fact that, if some components are not available, the 

production of the specific car will be stopped (it is either too costly or nearly impossible to continue 

producing a car in spite of lacking few components). Hence, if a late delivery occurs, the company has to 

pay fines for each day past the deadline.  

Considering the increase in demand that the company is facing and the strict deadlines they have to meet 

to produce all the demand, it becomes more and more important to know the precise moment when new 

equipment is required. Moreover, knowing that ordering new equipment involves long lead times (around 

1.5 years), the expansions need to be planned accurately and in advance.  

It is obvious how ordering a new machine too late can affect the chances of meeting the demand 

requirements in time. However, ordering additional equipment too early is not a feasible option either. 

The managers state that because of Sensata’s nature of a stock market listed company, postponing 

investments for as long as possible is the most desired option.  

From the company’s perspective, one of their biggest challenges is to accurately determine the amount of 

additional equipment needed, accompanied by the times when the orders need to be placed. Hence, this 

becomes one of the main focuses of this research.  
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Based on the details we obtain from the company, we describe the problem bundle in the diagram from 

Figure 4. The capacity managers believe that their current model can function according to expectations 

in a stable/static environment. By stable/static environment we refer to a constant level of demand, which 

also implies a constant amount of equipment and unique products. If both the equipment and the unique 

products are kept to a constant amount, this leads to a constant level of process flows. By process flow we 

refer to the route a product takes through the production facility, precisely the combination of machines 

needed for its manufacturing.   

Since the demand has greatly increased in the past couple of years, we cannot consider this environment 

static. Thus, the combination of the very simplistic model and the nature of the environment leads to 

inefficiencies/ non-reliable results in the current model. An example of such unreliable results is 

highlighting certain machines/process as overloaded without this being actually the case. 

Considering the upcoming years, the demand forecasts show an even bigger increase. This implies that an 

increase in the number of equipment, unique products and process flow will follow. As a consequence, 

the current environment will become less stable and will further accentuate the inefficiencies already 

present in the model.  

When analysing the context in more 

detail, some of the simplifications that 

lead to unreliable results are: only using 

the average machine performance per 

process and considering fewer routes 

than sensors actually take through the 

production plant.  

Another such example is based on the 

fact that in the automotive industry 

customer approval is required for any 

product – machine combination. A device 

can only be produced on the machines 

already approved by the customer. If the 

company wishes to produce a certain 

product on a new machine, a so-called 

machine release is necessary. Through 

machine release, we mean that, although 

not allowed before, a new product – machine combination can now be used. By releasing new equipment, 

a certain product can now be manufactured on an increased number of machines, without the need of 

further investment in additional equipment. A quality testing procedure is required for the customer to 

approve this release; this procedure takes around 3 months.  

The customer releases are not taken into consideration in the current model, although the capacity 

managers believe that being aware of the available capacity that can be used for a certain product through 

the release of machines can avoid further additional investment.  

  

Figure 4 Problem Bundle 
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1.2.3 Research (sub) questions 
 
We define the research questions having in mind the concepts of action and knowledge problems, and 

trying to follow the timeline of activities we set for this assignment. We base the division of the research 

questions on the stages illustrated in Figure 5.  

I. Analysis of the existing situation 

The first step of this research is to better understand the existing situation, precisely to analyse the existing 

capacity planning model. Next, we look into the additional factors that have the potential of bringing an 

improvement. For this stage we define the first two research questions. 

The new model should be used to determine information about the amounts of new equipment required 

and the times when the orders have to be placed. However, before reaching this stage, research needs to 

be done on the most efficient way to do this. The third question serves this purpose. We answer these 

questions in Chapter 2. 

1. How is the capacity planning currently handled within the MEMS department? 

a. What data and factors are currently included in the model? 

b. What simplifications are being used in the model? 

2. What factors are currently excluded from the model? 

a. Which one of these factors does the company consider crucial for the new model? 

3. What factors/data need to be considered for determining the number of machines the company 

has to order and the time the orders need to be placed in order to keep up with the upcoming 

increase of demand? 

 

II. Literature Research 

Our next step is to conduct a literature review. The most relevant concepts we consider for this assignment 

are: capacity planning, production planning and resource allocation. Therefore, the goal of this stage is to 

find models related to such tasks. We cover these aspects in Chapter 3. We choose the following research 

questions for this stage: 

4. What models are covered in literature that could serve as a basis for redesigning Sensata’s capacity 

planning algorithm? 

5. What optimization techniques can be used as a basis for the strategical decisions regarding 

capacity planning? 

 

 

Figure 5 Framework of the assignment 
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III. Redesign Current Model 

During the first three stages we show in Figure 5 we collect the information we need for designing a new 

model. Therefore, in this stage we focus on this new model and answer the sixth research question.  

Instead of buying new equipment every time the demand of a certain product increases, the company has 

the option of releasing other machines. According to the company, they prefer to not always order new 

machines because of the high investment required. For this purpose, we define the seventh research 

question. Chapter 4 covers the methods used for redesigning the existing model, while Chapter 5, where 

we introduce our results, covers the answer for question 7. 

6. How can the existing algorithm used for planning the machine loading be redesigned? 

7. What machines can be released for a certain product to avoid ordering a too high amount of new 

equipment every time the demand is increased? 

 

IV. Determine information regarding new equipment 

In the end, after performing research, designing a new model and also checking what machine releases 

are possible, we answer question 8 in Chapter 5. 

8. How many machines does the company need to order and when should these orders be placed to 

properly handle the upcoming increase in demand? 

 

V. Comparison between the existing and the new model 

Once we redesign Sensata’s capacity planning model, we need to perform a comparison between the old 

and the new model. First, we look into the criteria for checking the differences between the two, especially 

in terms of results. Further on, we check these differences and the results obtained from both models. For 

this stage we define the following research questions: 

9. What are the criteria on which we compare the 2 models? 

10. What are the differences between Sensata’s model and its redesigned version? 

11. What results are obtained from the new model and how accurate are these results compared to 

the outputs of Sensata’s model? 

 

VI. Recommendations for Implementation 

As we describe in Section 1.2.6, one of the limitations of this assignment is the fact that providing the 

company with a piece of software ready to use right away is not feasible. Therefore, the outcome of this 

research represents a proof of concept for an optimization algorithm to serve their purposes. Since the 

actual implementation is not part of our scope, Chapter 6 gives a list of recommendations on how to 

approach the implementation. Hence, the contents of this chapter include the answers to the following 

question: 

12. What steps/guidelines should Sensata follow for the complete implementation of the new 

algorithm? 
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1.2.4 Research Approach  
 
This research consists of multiple stages as we illustrate in Figure 5. The first three stages of the project 

involve performing research. This research refers both to Sensata’s case, covered by the first two research 

questions, and to a literature research. Through this literature review we aim to find models that can be 

used for allocating and scheduling products to machines. In this way, we address the strategic decision of 

how much new equipment is needed and when do the orders need to be placed, in a more accurate 

manner. The information collection techniques for these first stages vary from literature research and 

analysing the current Excel algorithm to interviews with the capacity managers of the MEMS and MSG 

departments. 

Once we complete the research part, in stage 4, we aim to redesign the current model by making use of 

the information we previously gathered. The answer for the sixth research question represent the 

methods through which we design a new capacity planning model. 

In order to determine the total number of new equipment needed and the time when the orders should 

be placed, when redesigning this model, we consider releasing both existing and new machines to certain 

products, and aim to answer the seventh research question at this point. 

The fourth stage represents determining the details (quantity, time) regarding additional equipment and 

hence answering question 8. Next, in the fifth stage, we perform a comparison between the new model 

and the initial one. The final stage of the project involves introducing recommendations both for the future 

research and strictly for the implementation of the algorithm within the company. 

1.2.5 Project Scope 
 
Based on the details we present so far, this assignment covers a great variety of factors to consider and 

issues to become aware of and aim to solve. This being the case, one of the limitations of this research is 

the fact that the outcome of this project does not consist in a finished capacity planning tool. 

The ideal result that we can obtain is creating a proof of concept, in the form of an algorithm, which takes 

into consideration the important aspects we discover during this research. Due to the big amount of data 

available, we decide to test the model on a smaller subset of the existing data. We base the comparison 

between the existing and the new model on the results obtained from both models while using the same 

data subset.  

1.3 Outline of the Report 
 
We organize the remainder of this research as follows. In Chapter 2, we describe the current situation by 

giving more details about the production process, the capacity planning model and issues Sensata is 

currently facing. We identify the factors that the capacity managers consider crucial for the new model. 

We explain the literature available on our topics of interest and give an overview of the available models 

that could fit our purpose in Chapter 3. Chapter 4 presents the way in which we construct the new model 

while in Chapter 5 we describe our experimental design and results. Chapter 6 highlights the conclusions 

and recommendations of this research. 
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Chapter 2 Analysis of the Current Situation 
 
This chapter focuses on describing the current situation the two departments are dealing with. Section 2.1 

contains a process and system description, which includes various details about the production plants, the 

sensors produced, and the machines used for manufacturing. Further on, Section 2.2 first describes the 

existing capacity model in detail, followed by an overview of issues we encounter in this model. These 

issues refer to the simplifications the managers’ use in their model and the results that follow. Section 2.3 

gives a list of factors that the capacity managers believe should be considered for the redesigned model.  

2.1 Process and System Description 
 
When it comes to the automotive industry, Sensata produces custom-made sensors used in various parts 

of a car. These parts vary from the engine, air conditioning and transmission to parts such as the exhaust 

system and tires. According to the company, more than 50 sensors produced by Sensata can be used in an 

automobile.  

Considering the MEMS group, they handle the production of around 500 different sensors, which are 

divided in 20 different categories. The sensors produced by this department are mainly pressure sensors, 

custom-made based on their clients’ requirements. For the year of 2017, the forecasts showed that the 

MEMS group should produce 13 million sensors. The demand shows a rapid growth, 30 million being the 

prediction for 2019. This trend continues over the next couple of years, being forecasted to reach 54 

million in 2022. 

Considering that the sensors are custom made, no two sensors are identical, so a high level of variation 

between the sensors can be found. The sensors are divided based on their output: either analogue or 

digital, based on the type of connector required, etc.  

As mentioned in Chapter 1, the MEMS group manufactures their sensors in two productions plants located 

in China and Malaysia. Both facilities are designed based on what the company refers to as the “farm 

concept”.  This implies that no traditional production lines are present in these manufacturing sites. For 

each device, a combination of various individual machines/processes is required, hence, not all sensors 

follow the same processing flow. One could state that each sensor has its own routing through the 

manufacturing facility; some products skip a processing step, while others have additional steps required 

by the customers. After a machine processes a device, the device is loaded on a trolley and transported to 

a waiting area. The product remains there until it can move on to the next processing step.  

Besides the multiple stages and processes through which the sensors must go, for each processing step 

there are also multiple machines available. Each device must go through only one machine per process; 

however there are also differences between the machines within the same process. They consist in 

differences in machine performance, the equipment varying in age and generation. 

We associate the farm concept with a job shop. Just as in a job shop, the individual machines are grouped 

based on their functionality and different products follow different routings within the facility. We 

illustrate this concept in Figure 6.  
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As we state above, each device has to go 

through multiple stages, precisely 3 

stages referred to as front-end, 

calibration, and back-end. Apart from 

calibration, the other two stages are 

composed of multiple processing steps. In 

the front-end there are roughly 5 

different steps, while in the back-end 

there are around 10. The variation is 

increased here even more, since, for 

example, there are several types of back-

end. This means that depending on the 

type of sensor produced only some of the 

steps are necessary.  

Figures 7 and 8 display an example of such a sensor, however as we mention before, almost each sensor 

differs from the others. Figure 7 shows the parts of the sensor assembled in the front end, also referred 

to as the clean room. For this sensor the basic idea is that on the top two components an adhesive pattern 

is applied and then they are pressed down on the black plastic carrier. To harden the adhesive, the sub-

assembly is oven cured, and, in the end, this sub-assembly is being visually inspected. Figure 9 shows these 

steps in more detail.89 

                                                           
8 SEA – Sense Element Assembly 
9 PCB – Printed Circuit Board 

  

Figure 6 Farm Concept - Job Shop Concept 

Figure 8 Part of a sensor assembled 
in the back-end of the production 

process 

Figure 7 Part of a sensor assembled 
in the front end (cleanroom) of the 

production process 
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Once the part from Figure 7 is assembled in the front end, the next stage it goes through is calibration. The 

calibration stage consists of only one processing step; therefore each device will only go through one single 

machine. Once the calibration part is done, the component arrives in the back-end of the production 

process.  

Figure 8 shows the back-end assembly for the same device as in Figure 7. Figure 10 shows the steps this 

device undergoes in the back-end stage of the production process.10 11 The part we previously display in 

Figure 7 is now shown in Figure 8, the fourth level from the top. This part of the sensor is fixed in the casing 

(sixth level) with adhesive layers. Further on, the top and the bottom cover are also attached with 

adhesive. Oven curing is performed with the same purpose as before. Besides the visual test, in this case 

a leak test is also performed by applying pressure on the sensor and a function test is done to ensure the 

proper functioning of the final device. Details about the product are engraved on one of the covers. 

Figure 11 shows an overview of the manufacturing facility in Malaysia.  

                                                           
10 EMA – Electronic Module Assembly 
11 RTV – Room Temperature Vulcanization 

Figure 10 Steps that the sub-assembly from Figure 4 undergoes in 
the back-end of the production process 

Figure 9 Steps that the sub-assembly from 
Figure 2 undergoes in the front end 

(cleanroom) of the production process 
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The front end of the production 

process is located in the left of 

the plant and referred to as the 

clean room. This bolded 

rectangle represents the initial 

location of the back-end of the 

production process. This is the 

area where the production lines 

were firstly located and as the 

need for new equipment 

increased, additional machines 

were placed in what we refer to 

as “Back End 2”. We highlight the 

calibrators as the beige 

rectangles on the sides of the 

bolded rectangle. 

 

In the bolded rectangle, we find both calibrators and equipment belonging to the various production lines. 

Considering the calibrators, Figure 11 displays differences in size between the green one and the rest. 

These differences represent technical differences, between different generations of equipment. 

Considering the production lines, we see total of 8 lines in the bolded area. These lines vary in the type of 

equipment they contain and in the type of sensors they produce. Again, just by looking at the diagram in 

Figure 11, we notice the differences in size between the lines. The first four lines are the oldest ones. Each 

production line contains a variety of machines used for manufacturing and one or two ovens. The ovens 

are used for stabilizing the adhesive layers applied on the sensors. Looking at the other four lines, the size 

reduction is the result of a new machine design. Most of the processing steps performed by the individual 

machines from the oldest lines were combined by Sensata’s engineers in one single machine.  

The difference in size between the newer four lines, lines 5-8 from Figure 11, comes from the addition of 

different types of equipment in each of them. The old lines and the newly designed machine perform the 

basic tasks to manufacture a device, however if the client desires the addition of a certain element, new 

equipment is required.  

According to the company supervisor, they try to keep the arrangement of machines to resemble a line 

for simplicity and better organization. However, the processing flows through the facility are based on 

what we describe above as the farm concept or the job shop concept.  

2.2 Planning and control description 
 
As we mention in Chapter 1, the current planning of the machine loading is performed with the help of a 

very simplistic Excel model. The managers refer to this model as a high-level capacity planning in which 

they simply check whether the forecasted demand can fit the available capacity. We associate this with 

the strategic level of capacity planning, which we describe in the upcoming chapter. 

Figure 11 Manufacturing Plant - Malaysia 
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The inputs used in the Excel model are the demands forecasted for each of the 20 sensors types. For the 

equipment of the 3 production stages (front-end, calibration and back-end) parameters such as CT (Cycle 

Time) and OEE (Overall Equipment Performance) are set. The cycle time refers to the time it takes for a 

machine to process a certain device, while the overall equipment effectiveness is used to evaluate how 

effective each resource is being utilized. The algorithm is then used to calculate the loading for each 

process in a month.  

We describe this algorithm in more detail in Section 2.2.1. We provide an overview of the issues in Section 

2.2.2 and a list of relevant factors, excluded at the moment, in Section 2.2.3. 

2.2.1 Algorithm Description 
 
In order to answer our first research question (“How is the capacity planning currently handled within the 

MEMS department?”), this section contains a more detailed description of the current model. We describe 

the contents of the most relevant Excel sheets. For each sheet, we mention the data contents and, where 

applicable, the formulas used for various calculations. For some of the sheets we provide various figures 

to better visualize their contents. These figures do not show the actual sheets, and the numbers they 

display represent random values we choose. Moreover, we do not show these sheets in their full size, so 

more products, processing flows and time periods (months, years) exist in the actual model. 

Model Description 

1. Demand Sheet 

Figure 12 shows the contents of the monthly demand sheet. The most important elements are a list of all 

product IDs together with their demand for each month of the upcoming 5 years.  

The capacity manager obtains this information from the marketing department of the company. This 

demand data can be split in the following 2 categories: 

 approved orders: the orders for which contracts have already been arranged with the customers 

and for which they know for sure that they need to produce the requested volume 

 unapproved orders: for these orders the bidding on winning the contract is ongoing between 

Sensata and its competitors, therefore the capacity manager does not know for sure whether or 

not they will have to accommodate such volumes. For each bidding, a winning probability is set by 

the marketing department.  

According to the capacity manager there are two ways of dealing with this uncertainty. The first one is to 

multiply the volume of each unapproved order with its probability and consider the resulting amount as 

the volume that they need to produce. The second option is to set all the probabilities to 100%, therefore 

Figure 12 Monthly Demand Sheet 
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consider the unapproved orders as approved and accommodate the full volumes of each such order in 

their model. The capacity manager chooses to apply the second option. The reasoning behind this is that 

he prefers to have enough equipment to produce more than needed rather than have shortages if more 

orders are accepted. Moreover, another reason for choosing the second option is related to his past 

experience. He state that in general more orders are approved than rejected.  

The yearly demand is calculated for each sensor by adding up the monthly demand per product ID. Except 

the demand for each individual product, this sheet contains one more demand row which is used to include 

the production of samples in the monthly planning. A product ID, chosen by the capacity manager is 

associated, with these samples. As we describe before, for any new product or any change in the 

production process the company performs a testing procedure, creating sample sensors, which are then 

checked by their customer. To not overlook the production of such sensors the capacity manager includes 

a constant demand value for monthly samples.  

A simple check is performed here to see if any new products have been added to the list. This check 

involves comparing the new list of product IDs with the old one available in the “Volume” sheet (see 

“Already on the Volume Sheet?” column). Whenever a new product is found (“No” appears on the first 

column), it’s ID, demand and the process flow needed for its manufacturing are manually added to the 

“Volume” sheet. 

2. Volume Sheet 

Figure 13 shows the template of the volume sheet. The sheet shows to which process flow each product 

belongs. A process flow is defined as the route (combination of machines) a product follows through the 

manufacturing facility. The products are considered over the rows and the flows over the columns and, at 

first, a value of 1 is assigned to the correct product-route combination. As we mention in Chapter 1, around 

20 different routes, the mostly used ones, are considered in the current model. For the sensors having a 

different route, the capacity manager select the most similar one from the 20 available flows.  

The same sheet provides information about the location where each device is currently being produced. 

The locations available are the two production sites from China and Malaysia. Just as before, the capacity 

manager assigns a value of 1 to the correct product – facility combination. 

Further on, for each month of the upcoming 5 years the total volume (bottom values under “Total”) that 

needs to be produced by a certain processing flow is being calculated. This is done by assigning each 

sensor’s demand to its corresponding processing flow and summing up the values over each flow.  

Figure 13 Volume Sheet 
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Another sum, which we do not include in Figure 13, shows the total amount to be produced in each of the 

2 manufacturing sites.  

3. Cycle Time and Overall Equipment Effectiveness Sheet 
 
The different types of equipment used in the 3 stages (calibration, front end and back-end) of the 

manufacturing process are considered here. For each equipment type the CT (Cycle Time) and OEE (Overall 

Equipment Effectiveness) values are given. These values represent an average of the individual values for 

each machine belonging to an equipment type.  

In some cases, the capacity manager considers differences in equipment performance, but not within the 

machines of the same equipment type. Such differences arise from certain products requiring different 

settings, which leads to considerable differences within equipment performance. For example, the 

calibration stage differs between sensors. Therefore, three equipment sub-types are used to highlight this 

difference and for each of them the CT and OEE values are given. The OEE value takes into consideration 

aspects related to both the machines themselves and the products that need to be manufactured on each 

machine. Such aspects are: yield loss, which is dependent on the product-machine combination, 

maintenance and downtime which are strictly related to the machine itself. No division between machine 

and product related factors are available. 

Additional information such as the total output per day that can be produced using one equipment type 

and the output that can be produced by a single machine are also shown. Figure 14 shows the contents of 

this sheet. We consider only one equipment type, the calibrators. 

4. Equipment Quantity Sheet 

In this sheet the capacity manager uses the same template as in the previous one. Figure 15 illustrates the 

equipment quantity sheet. Instead of the CT per month of each year, we see the quantity of each 

equipment type. In this same sheet we also notice the increase in the number of machines over time. For 

example, the number of calibrators available is predicted to increase from 6, in 2018, to 10 by the 

beginning of 2020. The capacity managers manually increases these amounts if an equipment type seems 

overloaded.  

Figure 14 Cycle Time and Overall Equipment Effectiveness Sheet 
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The company keeps a 15% buffer to be able to cope with unexpected production, so the capacity manager 

considers a machine type to be overloaded when the loading percentage (calculated by using the monthly 

loading formula from below) is above 85%. However, from the management’s point of view, if a request 

for additional equipment is placed at 85%, it normally gets denied. Such a request usually gets approved 

when the loading is forecasted to reach 100%. 

In this same sheet, the equipment types are assigned to the process flows. The equipment types are listed 

over the rows and the process flows over the columns and a value of 1 is given to the routes the equipment 

belongs to. 

5. Equipment Loading Quantity Sheet 

In this sheet the total volume that needs to be produced in a month is calculated for each equipment type. 

This is achieved by summing up the monthly demand forecasted for the process flow to which a specific 

equipment type belongs. These calculations are also performed for all the months of the current year and 

a couple of upcoming years. 

6. Equipment Loading Percentage Sheet 

This sheet is the one mostly used in deciding the quantity and the right time of ordering additional 

machines. It contains the monthly loading percentages, which are calculated by using the following 

formula:  

𝑀𝑜𝑛𝑡ℎ𝑙𝑦 𝐿𝑜𝑎𝑑𝑖𝑛𝑔 % =
𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 𝐿𝑜𝑎𝑑 (𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦)

𝑀𝑜𝑛𝑡ℎ𝑙𝑦 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦
 

The equipment load (quantity) represents the volume (total number of units) that each equipment type 

needs to produce. All the values in this formula are considered per equipment type.  

2.2.2 Summary of issues 
 
Considering the first research question, the second point listed was: “What simplifications are being used 

in the model?”. In this section we offer details about these simplifications. Furthermore, we give a short 

overview of the results/consequences obtained by using this model.  

As we state in Chapter 1, the managers make use of various simplifications to keep the size of the current 

capacity planning model under control.  This is due to the current need of being able to manually control 

and update the model. This need is a result of the lack of an optimization algorithm. 

By simplifications we mainly refer to the averages used in the model instead of the actual values. Other 

simplifications consist of not using any of the factors we introduce in Section 2.3. 

Figure 15 Equipment Quantity Sheet 
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Part of the simplifications we find, when analysing the Excel model, are introduced in the following list:  

 the sensors are grouped into 22 types and any other individual difference between the 500 sensors 

is ignored. 

 for each processing step the differences between machines are not individually stated, the model 

only using the average performance of all the machines from a process. In this way, all the 

machines belonging to a processing step are, in fact, considered as one. 

 the multitude of routings present through the manufacturing facility is also simplified by only 

considering the most common ones (approximately 20 different routes). 

Apart from these simplifications, the current capacity planning model does not consider a variety of 

factors. At first, these factors were not included because the demand was not so high, so a simple check 

of whether it fits in the available capacity was enough from the company’s perspective. However, 

considering the demand increase they are currently experiencing, this model becomes more and more 

limited, since no algorithm or optimization technique is actually included. Furthermore, at the moment, 

more factors are not added also because of Excel’s limitations. The model’s computational speed has 

already become an impediment, so adding more conditions will just decrease it further on.  

To highlight the results obtained by making use of simplifications in the current model, we mention some 

of the issues encountered by the MEMS department. These issues are: 

 because the machine performance is considered as an average of all machines from the same 

process, some machines with lower performance are expected to produce more than they can, 

while others are scheduled to produce less than they actually could 

 because the process flows of the sensors are not individually considered, for some processes the 

model states that the machines are overloaded when that it is not the case. Furthermore, at times, 

there are more sensors using the same processing step than the model takes into consideration, 

so in reality the process is overloaded while the model does not show that 

 by not considering possible machine releases in the current model, the company is guided to order 

additional equipment, although it might not be needed.  

2.3 Factors 
 
This section gives an overview of the factors the managers exclude from the current model, as an answer 

for the second research question (“What factors are currently excluded from the model?”).  

 Location Accessibility: At the moment, the Excel model contains information regarding the current 

manufacturing location of a device. However, considering the example of the MEMS department, 

some of the sensors can only be produced in China, some in Malaysia and only a few flexible ones 

can be produced in both places. The capacity manager believes that it is important to track where 

each product can be manufactured since this information could facilitate the exchange of products 

from one facility to another. By this we mean that if the capacity does no suffice at one of the 

plants and a device is allowed to be produced in multiple locations, the model could plan ahead 

to switch the production from one site to another.  

 Customer Releases: According to the company supervisor, in the automotive industry only 

machines and raw materials approved by the customer can be used to manufacture the products 

requested. 
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In order to gain the customer’s approval, samples of the sensors are built, and they undergo an 

extensive lab testing lasting approximately 3 months. Once the customer has given his approval 

no change can be made to the manufacturing process without the customer’s consent and another 

round of lab testing. For example, no other machine can be used for this device and not even 

changing the location of the machine through the production facility is permitted.  

 Correct Machine Performances: The performance of the individual machines is averaged into one 

value per equipment type. It is possible for machines to belong to the same process and have 

different performance levels, due to age and machine generation. However, the problem becomes 

more complicated when the difference in performance levels are so high that a 100% difference 

is found. At times this is the case when the latest machine generation has a new design which 

leads to double the output of the older ones. Hence, the capacity managers wish to have more 

accurate values highlighting the differences between machines.  

 Machine Capabilities: Different machines can produce different types of sensors. Some of the 

equipment can produce only analogue sensors, while other can only produce digital. According to 

the capacity manager of the MEMS departmen most of the volume that needs to be produced 

consist of digital sensors, however the company also owns a considerable amount of equipment 

to manufacture analogue sensors. The company wants to include this differentiation in the new 

model to have a better overview of capacity limitations.  

 Tooling Set Availability: To be able to manufacture a product on a certain machine, tooling sets 

are required to attach the sensors. The availability of these tooling sets is limited, but no details 

about this are included in the current model.  

 Machine Lead Time: The process of ordering additional equipment and testing the sample 

products can last approximately 1.5 years.  

The steps a department has to go through to obtain the needed capital start with providing 

internal justification for the new investment. This stage lasts around 3 months and once the order 

is placed the department must wait for 1 year, which is the lead time from the equipment supplier. 

Once the equipment is in their manufacturing sites the process of getting the customers’ approval 

takes approximately 3 more months. Based on the very long lead time the department has to plan 

their orders very accurately, by not only considering their need of additional equipment, but also 

trying to postpone an investment by as much as possible.   
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Chapter 3 Literature Review 
 
We summarize Sensata’s problem as not having a proper capacity planning algorithm. The current model 

does not include a variety of factors and does not use any optimization techniques. We describe the factors 

that are important for Sensata’s managers in Chapter 2, and in this chapter, we focus on our literature 

review. 

The general terms we discuss in this chapter relate to the main concepts we mention in Chapter 1. Such 

concepts include capacity planning, machine loading and allocation of resources.  

Section 3.1 gives a detailed classification of manufacturing systems. Section 3.2 contains details regarding 

capacity planning and its relevance while Section 3.3 and 3.4 describe various models related to capacity 

planning. Section 3.5 focuses on the machine loading problem and Section 3.6 focuses on scheduling 

problems. In Sections 3.7 and 3.8 we describe Simulated Annealing and Tabu Search individually, while in 

Section 3.9 we discuss a comparison between them. In the last section we further describe the concept of 

Overall Equipment Effectiveness.  

3.1 Classification of manufacturing systems 
 
In our literature research we encounter various articles with applications strictly focused on certain types 

of manufacturing systems. In this section we aim to associate Sensata’s case with the most suitable types 

of manufacturing systems. Given the various terms we encounter in literature, we search for details 

regarding each term and the category to which it belongs. The terms we most often find in papers are: 

discrete manufacturing, single machine problem, flow shop, job shop and make - to - stock manufacturing 

system. We enlist the most relevant categories below.  

Classification based on volume and flexibility (Caramia & DellOlmo, 2006): 

 

 Continuous production: involves product processing without interruption and makes use of a 

clearly defined sequence of steps through which each product has to pass (Shah, 2016). According 

to Chatterjee (2012) the definition of continuous manufacturing, from an engineering point of 

view, implies the simultaneous material charging and discharging from the processing stages. 

Examples of its applications vary from the pharmaceutical industry to the processing of food and 

natural gas (Chaudhary, Pazhayattil, & Spes, 2017). 

 Mass production: is used for the manufacturing of similar products for which the production 

process is standardized. This method is used when the desired output represents large volumes of 

such products. Due to the level of standardization required for this type of manufacturing system, 

mass production is also referred to (repetitive) flow production (Kenton, 2018). 

 Batch manufacturing: refers to the simultaneous production of multiple units. The products are 

grouped in batches and are moved from one stage to another. Furthermore, all the units in one 

batch are simultaneously processed in each of the stages.  

 Project manufacturing: implies the manufacturing of one-of-a-kind products which require a very 

complex production process, therefore being thought of as a whole project (Shah, 2016). 

 Discrete manufacturing: unlike mass production, it handles the manufacturing of noticeably 

different units and unlike continuous production, each processing stage can be individually 

performed at different times. The automobile industry is one example of discrete manufacturing 
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(Shah, 2016) and the application we are interested in; therefore, we enlist a further division of this 

category below. 

 

According to Caramia and Dell’Olmo (2006), discrete manufacturing can be further divided in the following 

sub-categories:  

 Single machine: in this model only one machine performing all manufacturing stages is available. 

The decomposition into separate operations is therefore not necessary. 

 Identical processors: also referred to as the “parallel machines” model by Maccarthy and Liu 

(1993), implies the usage of a certain number of identical machines and the fact each job can only 

be processed by a single machine.  

 Flow shop: different machines are available for this manufacturing system, the common aspect of 

all products being the sequence of processing stages. As MacCarthy and Liu (1993) state: “each 

job has an identical flow pattern”.  

 Job shop: as we previously explained in Chapter 2, a job shop contains different machines, and, 

unlike a flow shop, each product manufactured can have a different processing flow. 

 Fixed position shop: in a fixed position shop the product is not the one moving from one 

processing stage to another, but the processing stages are being performed around the units.  

 

Another classification we are interested in, due to its various mentions in literature, is the one based on 

operational objectives as McCarthy (1995) presents it. Similar categories were mentioned as production 

control systems by Shah (2016). These categories are:  

 Make - to - stock: This type of systems involves manufacturing units ahead of time, based on very 

accurate demand forecasts. The production is therefore planned based on what is believed to sell 

in the future and the units manufactured are stored in inventory. Once an order is received, this 

order will be fulfilled from the units available in inventory.  

 Make - to - order: For this type of system, every product is manufactured after a customer order 

was received and based on each customer’s requirements. Therefore, such units are custom-made 

and increase the variety existent in such a production facility. 

3.1.2 Sensata’s Case 
 
Taking into consideration all the categories and details we provide above, we first classify Sensata’ case as 

a discrete manufacturing system. Their devices are noticeably different since they are designed based on 

the client’s requirements. From the sub-categories we define for the discrete manufacturing we believe 

that our case fits in the job shop category, as we previously explain in Chapter 2.  

Regarding the last classification we describe, we believe that the make - to - order production system is 

the one that most accurately fits Sensata’s case. Once a customer order is approved they start the actual 

production of units.  
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3.2 Capacity Planning  
 
This section introduces the concept of capacity planning. We further discuss three different levels of 
capacity planning in Sections 3.2.2, 3.3.3 and 3.2.4. Section 3.2.5 relates Sensata’s case to what we believe 
is the most appropriate level.  

 
Martinez-Costa et al. (2014) state that one of the definitions for the capacity of a production system relates 

to “the volume of products that it can generate in a given period”. However, the authors claim that the 

volume of products manufactured by a production system is highly dependent on the product-mix. Hence, 

they define the capacity of a production system as “the availability of various types of production 

resources” rather than the volume it can manufacture in a certain period of time.  

Capacity planning represents an important aspect for any company, considering that inadequate 

management of capacity can affect the performance and financial prospects of any business (Bloomenthal, 

2019). As mentioned in the review paper by Martinez-Costa et al. (2014) “in the long term, capacity 

planning supports strategic business plans of new process technology and new products”.  

Considering manufacturing companies, Zijm and Buitenhek (1996) state that capacity planning is 

important because the available capacity (resources) of a company can restrict its production capabilities 

in terms of volume (Zijm & Buitenhek, 1996). The automotive industry represents one of the most relevant 

manufacturing industries, since almost no other industry has such a high economic relevance (Volling, 

Matzke, Grunewald, & Spengler, 2013) .  

From the literature review, we can distinguish 3 different levels for capacity planning: strategic, tactical, 

and operational. These are the same as the ones found for operations management and they should be 

clearly noticeable within any organization. 

3.2.2 Strategic Level 
 
From a general point of view, the strategic planning is the way through which a company defines the 

strategy/direction it must choose in order to continue growing and stay ahead of competitors. These plans 

are related to the business as a whole and do not consider individual parts/departments. Decisions 

considered at this level refer to the market they compete in, the level of investment they can afford for 

the future and collaborations they can set up to achieve their goals.  The time horizon considered by 

strategic planning is long term, normally varying between 3 to 5 years (Riskope, 2014). According to 

Martinez-Costa et al. (2014), strategic planning is concerned with “changes in the facilities along the long 

and medium term, typically several years”.  

In the review paper of Martínez-Costa et al. (2014), the authors enlist various decisions related to strategic 

capacity planning. Few examples of such decisions relate to capacity size, allocation, inventory, 

backlogging, workforce and financial planning.  

3.2.3 Tactical Level 
 
Unlike for the strategic level, the time horizon for which tactical plans are being developed is medium-

term, typically one year. At this level, managers decide the tasks for each part of an organization and aim 

to align these tasks to ensure a proper fit with the strategic goals (Riskope, 2014). 
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The important actions for this level refer to order acceptance and due date quotation for each accepted 

order. Furthermore, managers dealing with the midterm planning should also be responsible for checking 

the loading of the available resources. This action is useful to determine the feasibility of the plan 

whenever a new order has been accepted.  

3.2.4 Operational Level 
 
The operational planning shows in which way are the tactical decisions going to be carried out. Operational 

decisions are considered on the short term, sometimes being considered on a daily basis (Riskope, 2014). 

Thus, the job scheduling, day-to-day planning and resource allocation (equipment, employees, and 

materials), fall under the operational capacity planning (Kant, 2014). 

3.2.5 Sensata’s Case 
 
As we previously mention in Chapter 1, the goal of this research consists in redesigning the strategic 

capacity planning model currently used within Sensata. We fit this model into the strategic level because 

of the very high-level of detail considered by the capacity managers. Furthermore, the decisions resulting 

from this model are the amount of new equipment that needs to be ordered, and the time when the 

orders need to be placed. Considering that these decisions are related to expansion and investment, we 

associate them with the decisions previously described for the strategic level. 

3.3 Capacity Planning Models 
 
This section introduces literature algorithms focused on the concept of capacity planning. At this point we 

are interested in the types of objective functions and constraints, related to capacity planning, available in 

literature.  

The first model we consider is based on the one developed by Chen and Fan (2015). They aim to solve a 

capacity allocation problem in a make-to-order environment with limited resources. This research was 

developed as a case study for a factory handling semiconductor packaging and testing. The manufacturing 

system is composed of different production lines, each divided in three production stages. For each stage 

multiple machines are available in each production line. Each product has to go through all the three 

production stages and no constraints regarding the allocation of products to machines are imposed. Each 

machine is able to produce any type of product.  

The main decisions composing their problem refer to resource migration and capacity allocation. Resource 

migration is defined as machines or tools being re-allocated between production lines. In order to solve 

this capacity allocation problem, the authors chose maximizing the net profits as the objective function. 

In this case the net profits were calculated based on the following formula: 

𝑁𝑒𝑡 𝑃𝑟𝑜𝑓𝑖𝑡𝑠 = 𝑅𝑒𝑣𝑒𝑛𝑢𝑒 − 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 − 𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 

To model their problem, the authors formulate a two-stage stochastic programming model with various 

types of constraints. The five types of constraints we are mostly interested in are: 

 Capacity constraints: in this case they limit the workload to the total available resource limits. The 

workload is defined as the amount to be produced (for one product type) multiplied by the time 

(work hours) that specific product type needs to use the resource for.  
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 Material constraints: are defined in a similar manner to the capacity constraints, being strictly 

related to the (raw) materials rather than the machines or workforce available. 

 Production capability constraints: mention whether or not a certain product is allowed to use a 

certain resource.  

 Demand fulfilment constraints: show that the demand/volumes forecasted to be sold should equal 

the amount produced for each product type.  

 Service level constraints: sets the ratio between volume produced and customer demand equal to 

the customer service level.  

 

Considering the results of this algorithm, besides the maximum value of the net profit, the number of units 

produced for each customer in each time period is one important overview.  

 

In the article of Siddharth et al. (2011) the authors describe a model in which aspects of scheduling and 

order acceptance are being used. The research takes place at the request of a gear manufacturing 

company from the US. The manufacturing system under consideration resembles a job shop in which 

recirculation is allowed.  Recirculation is defined as jobs being allowed to be processed by the same 

resource multiple times. Each job, in this case customer order, is composed of multiple operations for 

which precedence constraints are present. Furthermore, for each operation the processing times are 

known and for each job a fixed deadline, sale price and process route are given.  

 

The authors aim to develop a model for deciding whether an incoming order should be accepted and if 

accepted, when its processing should be planned. They define a mixed-integer linear programming model 

having as objective function the maximization of the overall net profit. The net profit is defined as the 

difference between revenue and manufacturing costs.  

 

Since data such as due dates and precedence constraints between operations are taken into consideration, 

we tend to associate this research with a scheduling problem. The most relevant constraints from this 

model are: 

 Capacity constraints: make sure that the available capacity, in hours, of a resource is not exceed 

in any period of time. Such constraints can also include overtime when allowed by the problem 

description. 

 Resource allocation constraints: make sure that the total hours of a resource allocated for 

producing any operations equals the operation’s processing time. 

 Shift duration constraints: the processing of each job should be less than the duration of a shift, in 

this case 8 hours, in any time period. 

 Precedence constraints: processing of operation o is not allowed to start before the completion of 

operation o-1. 

 Order Feasibility: before accepting any order, check whether the completion time of its last 

operation exceeds the job’s due date. If so, it is impossible for the job to be completed in time. 

In their results, the authors show that the computation time of the model increases drastically with the 

increase in the number of operations and therefore the number of jobs. They state that for an instance of 

5 jobs and 8 operations, CPLEX could not achieve the optimal value even after 16 hours. Furthermore, not 
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only the running time increases with the increase in the number of operations, but also the deviation from 

optimal results, referred to as optimality gap.  

 

Kim and Kim, (2001) define an extended linear programming model based on what they refer to as the 

“traditional production planning model”. They define a new version of this model because, according to 

them, the classical model uses capacity constraints that might not reflect the actual production behaviour 

in an accurate manner.  

The classical linear programming model they refer to is the model of Byrne and Bakir (1999), which aims 

to minimize the sum of various costs while considering capacity and inventory constraints. The 

modifications brought to this model by Kim and Kim (2001) start by redefining one of its decision variables. 

Instead of using the amount of product i which was produced in period t as a decision variable, the authors 

change it to the amount of product i which needs to start in period t. Further on they introduce a new 

parameter referred to as the “effective loading ratio”. This parameter represents the proportion of the 

amount of product i that needs to start in period t which is part of the workload assigned to machine k in 

that same period. By introducing this parameter, they are able to define a formula computing the total 

workload per machine per period of time.  

Another parameter they introduce is the “effective utilization” per machine per period of time. This 

parameter is defined as the “proportion of the total capacity of the machine available to process the start 

quantities during the period”. This parameter is used to calculate the adjusted capacity of each machine 

in each period. The adjusted capacity equals the effective utilization multiplied by the capacity of each 

machine in each period.  

The authors claim that their version of the model represents a more realistic vision of the production 

process. Furthermore, they combine this linear programming model with a simulation algorithm. By using 

such a combination, they obtain a production plan as output of the LP model and check it through the 

simulation model. If the values obtained for the quantities to be produced in every period are similar, then 

the model stops. Otherwise, they re-run the linear programming model with the values for the effective 

loading ratio and utilization obtained from the simulation model. 

3.4 Aggregate Production Planning 
 
Weinstein and Chung (1999) introduce an evaluation model of maintenance policies. Their approach starts 

with producing aggregate production plans by using a linear programming (LP) model. Next, a master 

production schedule is used to minimize the deviations between a selected goal and the aggregate plans. 

In the last step they use rough-cut capacity planning to determine the loading requirements per work 

centre. Rough-cut capacity planning techniques are used to help the managers in creating “a trade-off 

between the expected delivery performance and the expected costs of exploiting flexibility by using 

nonregular capacity” (Hans, Herroelen, Leus, & Wullink, 2007). Besides, the authors also state that during 

the order acceptance stage, RCCP techniques can be useful for weighing the consequences each decision 

can have on the production stage. 

We are mainly interested in the models they develop for the first two stages, therefore we do not describe 

the third stage further on. 
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The first phase, namely the aggregate planning model is performed with the aim of minimizing certain 

costs by considering capacity and, in their case, maintenance restrictions. Weinstein and Chung (1999) 

state that “the aggregate production planning model described in this article uses a mixed-integer linear 

programming (LP) formulation to determine the aggregate policies for the rate of production, inventory, 

regular and overtime workforce, and workforce smoothing activities.”  

The aggregation starts with grouping the end products in product families and considering the product 

families in the actual LP model. Furthermore, the authors make two assumptions for simplicity. First, the 

resources (equipment) function at maximum efficiency, therefore no idle time is considered. Moreover, 

no yield loss is present either. The second assumption relates to raw materials and states that all raw 

materials are available whenever needed, therefore no time waste can result from lacking components. 

The first set of constraints they consider for this model are the capacity constraints, which state that the 

regular working time and the overtime available is enough to complete all production. The list of 

constraints continues with an inventory balance equation and a similar work balance restriction. The last 

constraint states that the amount of overtime required for one period should not exceed a certain 

percentage of the regular working time from that period. 

In the second phase, the master production scheduling, the authors formulate another LP model. This 

stage disaggregates the aggregated plan obtained in the first stage. Disaggregation results in specific 

timing and sizing requirements for each product individually. The output of this stage is a master 

production schedule that does not violate capacity constraints.  

The objective function remains focused on minimizing a sum of various types of costs. The constraints in 

this case are: 

  Inventory balance equation: similar to the inventory constraints we previously describe. The 

difference is that, in this research, backordering demand is a possibility. Therefore, the inventory 

balance equation also takes into consideration the number of backorders associated with each 

type of product.   

 Workforce capacity: limits the total labour capacity to the summation between standard working 

hours and overtime. Such constraint can be formulated for individual manufacturing facilities or 

for all the facilities together. 

 Overtime capacity: limits the number of hours which can be used in overtime to the value specified 

in the previous step of the model, the aggregate plan. 

 Production volume: ensures that the summation of the quantities that need to be produced in 

each disaggregated period of time is equivalent to the total value stated in the aggregated plan. 

They compute the value stated in the aggregate plan for each product family, therefore the 

summation of the disaggregated information is also computed accordingly.   

 Inventory volume: similar to the production volume restriction, this restriction relates the 

disaggregated inventory values to the aggregated total. 

 

Another research performed in a make-to-order environment is the research of Neureuther et al. (2004). 

This paper introduces a three-tiered hierarchical production plan designed for a make-to-order steel 

fabrication site. The production facility contains 14 machines used to produce thousands of different 

items.  
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The first stage of the hierarchical production model consists of a linear programming model the authors 

use to obtain an aggregate production plan. The aggregation takes place at item level, the thousands of 

items being grouped in 12 product archetypes. The inputs they use at this stage are monthly aggregated 

demand forecasts.  

The objective function used is related to the minimization of relevant costs. Similar to the ones Weinstein 

and Chung (1999) introduce the constraints for this model are: inventory balance equations and capacity 

constraints. However, this time, the capacity constraints are divide in multiple types: 

 Facility Storage Limit: size of the products under production plus the ones in inventory should not 

exceed the available capacity of the entire plant. 

 Capacity of Equipment: limit the number of items produced to the total available monthly limit. 

 Capacity of Workforce: similar to the one related to equipment, such constraint ensures that the 

limit of total hours available, both regular and in overtime, is not exceeded. 

The output from this stage, the aggregated plan, together with the monthly forecasts for each individual 

product are inputs for the second stage. According to Neureuther et al (2004), “the key to any 

disaggregation model is to ensure that the production quantities determined in this model agree with 

those dictated by the aggregate model”. The second stage is a non-linear model that assigns each product 

to an available process plan. Its objective function aims to minimize the total set-up costs. The most 

relevant constraint is the one disaggregating the information from the first stage. It does so by ensuring 

that the number of units to be produced for each product group (sum of the number of units to be 

produced for each individual product belonging to that product group) does not exceed the value from 

the aggregate plan. The output they obtain from this stage is a weekly disaggregated production plan. 

The third stage represents a master production schedule for which the processing of the 12 product types 

is sequenced on machines available in the factory. For each week they create such a schedule with the aim 

of minimizing the makespan. They solve the scheduling algorithm in C++ through enumeration. One of the 

reasons for them choosing enumeration is that even though there is a big number of possible 

combinations, the computers available could easily handle the task. Moreover, they state that 

enumeration makes it possible to identify the worst combination. 

The authors claim that their model can be applied to any make-to-order manufacturing system, no matter 

the number of products or types of processes present in the factory. They state that the most important 

factor for this model is the proper determination of the archetypes in which all the individual products are 

grouped.  
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3.5 Machine Loading Problem 
 
In this section we provide information about the machine loading problem. We describe this problem 
because we believe it has certain common characteristics with Sensata’s case. 
 
As stated by Stecke (1983), the main production problems are: part type selection problem, machine 

grouping problem, production ratio problem, resource allocation problem, and loading problem. The one 

we focus on in this section is the loading problem, which  Stecke (1983) defines as follows: “Allocate the 

operations and required tools of the selected part types among the machine groups subject to 

technological and capacity constraints”.  

Grieco et al. (2001) provides similar definitions for both the loading concept and the loading problem. 

Singh, Singh, and Khan (2015) give another definition which states that the loading problem refers to 

“tooling individual/group of machine(s) to collectively accomplish all manufacturing operations 

concurrently for all part type in a batch”. 

As Singh et al. (2015) state a solution to the loading problem should output the processing flow for each 

job. In this case, by processing flow we refer to the sequence of machines a certain job has to follow. 

Furthermore, the output should include the tooling associated with each machine. The restrictions of such 

a problem are related to capacity constraints and technological constraints, such as individual machine 

capabilities.  

Taking into consideration the factors and conditions we describe in Chapter 2 as being important for the 

new version of the capacity model, the machine loading problem is similar in terms of capacity restrictions 

and machines’ capabilities. Furthermore, we associate the machine loading problem with a sequencing of 

jobs model.  

3.6 Scheduling Problems 
 
We start this section by defining the scheduling concept. Further on, Sections 3.6.1 describes the basic 

concepts behind scheduling problems.   

Scheduling is considered to be one of the difficult tasks in industry. According to Mckay et al. (1998) there 

are several reasons behind its difficulty. The first reason the authors state in this paper refers to the non-

static behaviour of set-up and processing times (which we refer to as cycle time). The authors mention 

that differences can appear even between the same unit being processed on the same piece of equipment 

and making use of the same human resources.  

The second reason refers to allowing pre-emption and changing the schedules when an urgent task needs 

to be prioritized as other factors which increase the scheduling complexity. Furthermore, another aspect 

they state is the miscommunication between top management and the production managers. The authors 

refer to cases such as senior managers accepting customer orders without consulting with the production 

managers regarding the available resource/capabilities. 
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3.6.1 Job Shop Scheduling Problem 
 
According to the literature, the job shop scheduling problem is one of the most important and difficult to 

solve combinatorial optimization problem. This problem is classified as an NP-hard problem and various 

articles mention various attempts of solving it being available in literature (Çaliş & Bulkan, 2013).  

The same authors describe the context of the job shop scheduling problem as consisting of two finite sets, 

one of jobs and another one of machines. Each job consists of multiple operations and needs to be 

processed by certain machines, according to its processing flow. Each machine has the capability of 

processing a single operation at a time. Normally the goal is to assign a sequence of operations to each 

machine which minimizes a certain criterion (Pham & Klinkert, 2008). The criterion we found as the one 

most mentioned in papers refers to the minimization of the makespan. By makespan, the majority of 

articles refer to the maximum value of the completion times of all operations (Dell'Amico & Trubian, 1993).  

For a more complex context explanation, we find various assumptions and restrictions regarding this 

problem in literature. Based on Dell’Amico and Trubian (1993), the assumptions for the traditional job 

shop model are: 

 processing times (which we refer to as cycle times) are known and fixed 

 all jobs are available for processing in the beginning of the time bucket considered 

 

Furthermore, the most common assumption, which we encounter in the majority of articles, is related to 

pre-emption and states that no pre-emption is allowed. By pre-emption we refer to the “temporary 

interruption of a task with the intention to resume this task later” (Techopedia, n.d.). 

The constraints we find in literature are divided in 2 categories. The first one refers to the machines 

capabilities of only processing one job at a time, therefore they are non-interference restrictions as Manne 

(1960) describes. The second category Manne (1960) mentions are precedence relations between 

operations of the same job, referred to as sequencing restrictions.  

3.6.1.2 Job Shop Scheduling Techniques 

 
Due to the multitude of techniques available for approaching the job shop scheduling technique we decide 

to make a comparison to better review them. The factors we mainly focus on refer to the size of the 

instances for which each method can be used and the respective computational time. Moreover, we are 

searching for an algorithm with low computational time that given our problem size, can achieve a decent 

solution in a low time frame. We do not necessarily focus in finding a method that can reach the optimal 

solution because from on our research we conclude that these methods require both high computer 

capabilities and computational time. 

In Table 1 we present various techniques available in literature for solving the job shop scheduling 

problem. We base the information presented in this table on the paper of Morshed, Meeran and Jain 

(2017).  
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Optimization Procedures 

Name Description Remarks 

Mathematical formulations 

The most well know method for this case is using mixed integer 
linear programming. The review paper states that for obtaining 
good results, a relaxation of the problem is required (Lagrangian 
relaxation). 

The authors call such methods “inadequate” for solving job 
shop scheduling problems. Even by applying the Lagrangian 
relaxation the procedures seem to require high 
computational effort and the results present large 
deviations from the optimal value. 

Branch and bound 

This method represents the best one out of the enumerative 
procedures. This method is based on the dynamic construction of 
a solution space resembling a tree structure. The method starts 
with the root node (the highest location in the tree) and ends 
once all the solutions have been analyzed. This implies that the 
algorithm has reached the lowest node in the tree and has 
fathomed the worst solutions. 

According to this review paper the most common way of 
solving a job shop scheduling problem through branch and 
bound is to decompose the set of operations into one 
machine problems. The algorithm solves each of these 
instances and chooses the bottleneck machine as a bound 
for the next iteration. 
The articles reviewed in this paper shows that even the 
method considered to be the best for branch and bound 
requires high computing time and cannot be used for 
solving large instances. 

Approximation Procedures 

Name Description Remarks 

Priority dispatch rules 

For this algorithm, every iteration the operations to be scheduled 
are assigned a priority weight and the operation with highest 
priority is selected for scheduling. The weights are assigned based 
on a certain criterion, such as: shortest or longest processing 
times. This method is an approximation method since it involves 
choosing one operation to add to the already existent sequence, 
instead of evaluating all possible combinations as an enumerative 
method would do. 
Beam search represents a middle ground between 
approximation and enumerative methods, where couple of 
solutions are analyzed every iteration, as opposed to just one or 
all.  

The authors state that algorithms making use of a single rule 
based on which to prioritize the operations have limited 
capabilities. Therefore, various extensions showing 
different levels of priority classes used by the same method 
have emerged.  
Although we could consider such a technique for our case, 
the article mentions that such techniques are “more 
suitable as an initial solution technique rather than being 
considered as a complete system” 

Bottleneck based heuristics 

The Shifting Bottleneck Procedure is the most well-known 
method from this category. It is similar to branch and bound in 
terms of decomposing the whole problem into one machine 
instances and solving each individual one iteratively. In this 
model each such instance is ranked based on its result and later 

Just as for branch and bound, the best algorithm from this 
category designed by Balas and Vazacopoulos requires high 
computing efforts. 
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on compared to the others. The chosen one for every iteration is 
the bottleneck machine, the one having the largest value. The 
chosen machine is then included in the existent schedule and the 
other problems are again solved in the next iteration.  

Local Search & Meta-heuristics 

Name Description Remarks 

Simulated Annealing 

Represents a search method having its roots in the physical 
concept of annealing (“heating a material above its 
recrystallization temperature, maintain a suitable temperature 
for a suitable amount of time and then cooling”). This method is 
based on creating a neighborhood structure, by for example 
swapping two consecutive job. The result obtained from this 
swap is computed and compared to the best-known value until 
that point. If the new result is better than the best value, then the 
new result becomes the best value. The innovative aspect of 
Simulated Annealing is that with a certain probability it also 
accepts neighborhood structures with worse results, to avoid 
getting stuck in a locally optimum point. This probability 
decreases, so towards the end the method avoids accepting 
worse solutions.  

The trickiest part when it comes to Simulated Annealing is 
defining the right neighborhood structure. Furthermore, 
the authors of the review paper state that in order to reach 
good solutions, excessive computational times are required 
for this method as well.  

Tabu Search 

It is a search procedure which stores part of the search history in 
its memory. A number of most recent solutions are stored in what 
is called a tabu list, which is used to avoid repeating or similar 
solutions. Just as Simulated Annealing it also uses a 
neighborhood structure and the most recent moves are marked 
as forbidden and stored in the tabu list.  
Each solution from the tabu list receives an aspiration criterion, 
which allows it to be selected as feasible if it reaches a certain 
level of quality.  
 

Just as for Simulated Annealing, one of the biggest 
challenges when it comes to this method is defining an 
appropriate neighborhood structure.  
 
The conclusion given by the review paper when it comes to 
Tabu Search is that is outputs the best results out of all 
techniques and is able to so with decent computational 
efforts. 

Table 1 Job Shop Scheduling Techniques 
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3.7 Simulated Annealing 
 
Simulated Annealing represents an optimization method originating from the metallurgic industry. A 

material undergoing the annealing process is first heated until its fusion point. Once it is liquefied, its 

temperature is gradually reduced until it is brought back to a solid state. This method was first proposed 

in 1983 and the authors state that this process starts by melting the system in question, followed by slowly 

reducing its temperature until it freezes and therefore no further change can be performed (Kirkpatrick, 

Gelatt, & Vecchi, 1983). 

Starting from an initial solution, in each iteration, Simulated Annealing creates a new solution from the 

neighborhood of the current one. If the change in the objective function improves the current solution 

value then the transition from the current solution to the neighboring one is accepted with a probability 

of 1. In a minimization problem, accepting a solution with a smaller objective function than the current 

one refers to performing a downhill move. However, to prevent getting stuck in local minimum, Simulated 

Annealing also accepts uphill with a certain probability. An uphill move represent an increase in the current 

objective function. The acceptance probability of uphill moves is calculated from the exp (−
𝑆′−𝑆

𝑇𝑘
) formula 

(Park & Kim, 1998). In this formula S’ represents the objective function of the neighboring solution while 

S represents the objective function of the current solution. Next Tk represent the temperature at iteration 

k. At the beginning, the model will accept almost all transitions, uphill or downhill. However, as the 

temperature decreases, the acceptance probability for uphill moves decreases as well. Hence, towards the 

end, the model will only accept improving solutions which in the case of a minimization problem are the 

downhill transitions. 

3.8 Tabu Search 
 
Tabu Search represents an optimization procedure used for solving combinatorial optimization problems. 

According to Glover (1986) its applications vary from graph theory to solving mixed integer programming 

models. This method resembles a hill-climbing heuristic which improves the solution unidirectional up to 

a local optimum. The limitation of a hill-climbing heuristic is that the local optimum found by the algorithm 

might not coincide with the best solution available, the global optimum. Because this heuristic only accepts 

solutions improving the objective function, once no improvement is available the method stops, leaving 

part of the solution space unexplored. To overcome this limitation, Tabu Search guides the search past the 

local optimum.  

In a similar manner as Simulated Annealing, starting from an initial solution Tabu Search generates a list 

of neighbor solution of the current one. A neighboring solution is generated from the current solution by 

performing a single move. Once a solution is accepted, the move leading from the current solution to its 

accepted neighbor is stored in a tabu list. This list has the role of preventing the algorithm from moving 

back to previously explored areas. Once a move was added in the tabu list it is considered forbidden. 

However, the moves in the tabu list do not necessarily remain forbidden until the end of the algorithm. A 

move only remains forbidden for a number of iterations equal to the tabu tenure. The tabu tenure is 

defined as “the time, measured in terms of iterations that must elapse for a node to be removed from the 

tabu list” (Rolland, Schilling, & Current, 1997). 
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Besides waiting for a number of iterations equal to the tabu tenure, one can also overwrite the tabu status 

of a certain move. This can be done by using an aspiration criteria which determines whether a move can 

be performed although being in the tabu list. According to Rolland, Schilling and Current (1997) the most 

common aspiration criteria is overwriting the tabu status of a move if by performing it the value of the 

objective function is better than the best known solution. 

3.9 Simulated Annealing versus Tabu Search    
 
In the paper of Morshed, Meeran and Jain (2017), Tabu Search is presented as being able to achieve the 

best results. However, since our problem does not entirely match the job shop scheduling problem we 

perform a literature research comparing the two algorithms for different problems.  

St-Hilaire and Liu (2011) compare the performance of the two metaheuristics, Tabu Search and Simulated 

Annealing, for the network topology planning problem. According to the authors, this problem is classified 

as NP-hard. Besides the two metaheuristics, they also includes the performance of a genetic algorithm in 

the comparison. They compares the results of the three heuristics with the results they obtain when using 

CPLEX for a total of 42 different problem sizes. Furthermore, for each problem size three instances are 

randomly generated. 

Their results show that Tabu Search is the best algorithm in terms of finding the optimal solutions. Tabu 

Search is able to find the optimal solution in 57 out of 126 problems. Simulated Annealing found the 

optimal solution in 9 cases while the genetic algorithm could only find an optimal solution for 2 of the 

problems. In terms of running time Tabu Search and the genetic algorithm show a similar performance, 

while Simulated Annealing requires much higher execution time. 

Another research comparing the performance of Simulated Annealing and Tabu Search is the research of 

Paul (2010). The author compares the two algorithms when solving a quadratic assignment problem, an 

NP-hard combinatorial optimization problem. His conclusions show that Simulated Annealing can achieve 

the lowest value for the objective function in 5 out of 6 cases, while Tabu Search can only do so for 3 

instances. Furthermore, he also states that that Simulated Annealing can be better for some instances 

while Tabu Search can be better for others. 

Semba and Mujuni (2019) reach similar conclusions. In this research the authors perform a comparison 

between the 2 metaheuristics and an Ant Colony Optimization algorithm with or without time restrictions. 

The problem they consider in this research is the school bus routing problem. In the time restricted case 

the algorithms are allowed to run for a maximum of 1000s. Considering time restrictions, Tabu Search 

seems to perform worst out of the 3 algorithms while the Ant Colony Optimization algorithm outperforms 

Simulated Annealing after 300s. However, when no time restrictions are set Tabu Search performs best 

for 2 out of 3 problems, while Simulated Annealing performs best for the third one. 

Based on the findings of these research papers we conclude that each of the two metaheuristics have a 

good performance for a variety of problems. Furthermore, in terms of which metaheuristic is best we are 

inclined to believe that it is highly dependent on the problem to solve. 
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3.10 Overall Equipment Effectiveness 
 
In this section we present a short description of the OEE components. As we introduce in Chapter 2, OEE 

is one of the factors currently considered by Sensata. Overall Equipment Effectiveness represents a 

measure of the efficiency and effectiveness of a process. This measure is usually defined through the 

following formula: 

𝑂𝐸𝐸 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑜𝑜𝑑 𝑢𝑛𝑖𝑡𝑠 ∗ 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑇𝑖𝑚𝑒

𝑇𝑜𝑡𝑎𝑙 𝑇𝑖𝑚𝑒 𝑃𝑙𝑎𝑛𝑛𝑒𝑑 𝑓𝑜𝑟 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛
 

By good units we refer to the ones that meet the quality standards and do not require any sort of rework. 

The processing time used in this formula is the theoretical minimum amount of time required to 

manufacture a single unit. Although this formula represents an accurate way of calculating the OEE of a 

process, it does not give any further details related to the three OEE components. These components are: 

availability, performance and quality. Each of the three component highlights a certain kind of loss. 

Availability considers any expected or unexpected event that prevents the system from producing. 

Performance is related to the various aspects that can prevent a system from operating at its optimal 

speed, while quality relates to the yield loss. The yield loss refers to the amount of parts which do not 

meet the quality requirements. This category also includes any part that requires rework. (Calculate OEE - 

Definitions, formulas and examples | OEE, n.d.) 
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Chapter 4 Model Description 
 
This chapter introduces the heuristic we design to fit Sensata’s manufacturing process and the mixed 

integer linear programming model we use to benchmark our heuristic’s results. Section 4.1 provides a 

detailed description of the problem statement and further details on the decisions covered by our model. 

Next, in Section 4.2 we introduce the mixed integer linear programming model designed to match our 

problem description. Furthermore, the same section also contains details regarding the model size and 

the solver we use. Section 4.3 describes the heuristic we design for solving the strategic capacity planning 

issues Sensata is currently facing. In the same manner as in Section 4.2, in Section 4.3 we also describe the 

heuristic’s components and the software we use. Finally, in Section 4.4 we state the conclusions of this 

chapter. 

4.1 Problem Description 
 
We start this section by providing a recapitulation of the project’s goal. Furthermore we introduce the 

possible decisions the capacity managers can take in order to keep up with the continuous increase in 

demand and a detailed description of the existent guidelines regarding the actual production. 

The desired output for the project is a new model for the strategic capacity planning within Sensata. The 

outcome we are looking for is an algorithm that performs a high-level allocation of tasks to machines, by 

taking into consideration all the restrictions available. We wish to use optimization techniques, so that the 

new algorithm can predict the loading percentage of a machine in a more accurate manner.  

As we mention in Chapter 2, when describing the current situation, the company has to meet a monthly 

demand for each product. These values fluctuate depending on their customers’ requests. Apart from 

having to produce the demand of each product, the capacity managers also need to consider the yield 

loss. As we describe in Chapter 3, we associate the yield loss with the quality component from OEE.  

Each sensor produced by Sensata goes through three main stages referred to as: front end (cleanroom), 

calibration and back end. In the front and back end stages, each sensor goes through multiple processing 

steps (is being processed by multiple machines), while for the calibration only one processing step 

(machine) is needed for each sensor. Although having to go through the same main stages, when it comes 

to the processing steps, each sensor can have its own routing. This routing is defined as the sequence of 

machines required for the production of each sensor. Considering these product-machine combinations 

two different guidelines have to be considered: 

 whether a machine has the physical capability of producing a certain sensor (for example: there 

are some machines used strictly for either analogue or digital sensors); 

 whether a machine is released by the customer to produce his sensors. (A customer release 

represents the customer’s approval of having a certain set of machines used in the production of 

his sensors. To obtain this approval, Sensata produces sample sensors that are further tested by 

the customer themselves). 

Another aspect we mention in Chapter 2 is the difference in performance between the machines. Such 

differences mainly appear due to different generations of the same machine. This being the case, the 

processing time, referred to as cycle time, of the same product on different machines can have different 
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values. Because of these differences a certain allocation of products to machines can result in insufficient 

capacity to meet the whole demand, while another allocation can highlight leftover capacity available. 

Another OEE component that is relevant for our problem is the availability. Besides differences in cycle 

time, having various machine generations can lead to differences in the maintenance levels required. Such 

aspects are part of the OEE and are covered by the availability component. The availability values are used 

to reflect the percentage of the total capacity during which a machine is actually used for production. 

Regarding the capacity aspect, three values have to be taken into consideration. The first one is the 

number of working days in each month. Sensata’s manufacturing facilities have a schedule of 7 working 

days a week, excluding national holidays. Since their manufacturing facilities are located in various 

countries (the MEMS department has facilities in Malaysia and China, while the MSG department also 

produces in Bulgaria), the number of national holidays in a month varies. Hence, so does the number of 

working days in a month.  

The second value to look at is the number of hours available for production in a day. Normally, the 

manufacturing facility functions 24 hours a day, however approximately 1.5 hours are used for breaks and 

shift changes.  

The last relevant value in terms of capacity is referred to as the buffer level. We compare this buffer with 

the safety stock concept, however without having any physical stock. This buffer represents a percentage 

of the total monthly capacity that should not be used and is introduced so that the company can deal with 

sudden fluctuations in demand. Although the capacity managers would like to keep the buffer level set to 

15%, this is not always possible due to differences in opinion between them and the higher management. 

Therefore, in some of the months this threshold is exceeded and the capacity managers consider the 

process as overloaded.  

In Section 4.2 we show how we include all the guidelines we mention above in the mixed integer linear 

programming model, while in Section 4.3 we show the same for the heuristic we design.  

4.1.1 Decisions Considered 
 
In order to help Sensata cope with the increase in demand, the capacity managers have three different 

decisions available. These decisions are referred to as: building inventory, releasing existing machines and 

ordering a new machine. Each decision is associated with one of the following costs:  

 costs of holding one unit in inventory 

 costs of releasing an existing machine for one product: releasing an existing machine for a certain 

sensor implies building sample units on that machine and testing them to make sure they meet 

the specifications (the sample validation costs are usually 20.000-30.000€) 

 costs of buying a new piece of equipment: Apart from the costs of the equipment itself (buying a 

new calibrator will cost 1million €) when a new machine is purchased, the releasing costs are also 

implied since this machine has to be released for production.  

Besides the costs, another difference between releasing an existing machine and purchasing a new one is 

the lead time incurred for each of the two actions. As we mention in Chapter 2, releasing an existing 

machine has a lead time of approximately 3 months, while ordering a new machine has a lead time of 

approximately 15 months, excluding the 3 months required for releasing it. 
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4.2 Mathematical Model 
 
Based on the literature review, the guidelines we introduce in Section 4.1, and the three main decisions 

available for the capacity managers, we build a mixed integer linear programming model for strategic 

capacity planning. This model is able to create a capacity planning overview and highlight which decision(s) 

should be chosen in which month. 

The project’s scope involves creating a proof of concept for a strategic capacity planning algorithm to be 

used by Sensata’s capacity managers. We decide to create this proof of concept in the form of a heuristic, 

which we describe in Section 4.3. To benchmark the results we obtain from our heuristic we decide to set 

up this mixed integer linear programming model and use a commercially available optimization software 

to solve it to optimality. 

In this section we provide a detailed explanation of the components of this model, followed by details 

regarding its size and the solver we use. 

4.2.1 Model Description 
 
The MILP serves as validation for the heuristic we design. This model highlights which actions should the 

capacity managers consider during a certain planning horizon. The actions available refer to the three 

decisions: building inventory, releasing existing machines and purchasing a new piece of equipment, which 

the company can take to cope with their forecasted increase in demand. Each of these actions has an 

associated cost therefore whenever one action is chosen, its cost is added to the total cost. The model’s 

objective is to minimize the total spend for the chosen planning horizon. 

By aiming to minimize the total spend, the model actually tries to prevent any kind of investment that is 

not needed. Moreover, since ordering a new machine can require a big investment for the company, the 

model tries to postpone such an investment by first trying to build inventory or release the existing 

machines.  

The model’s objective is subjected to various restrictions, which vary from meeting the demand of each 

product and not exceeding the capacity of any machine to restrictions stating the machines on which each 

product is allowed to run. Regarding the decisions variables, unless they require binary values, we allow 

most of them to be continuous.  

4.2.2 Modelling Choices 
 
Before starting to describe the mathematical model, we discuss the motivation behind some choices we 

make when designing the mixed integer linear programming model.  

The number of decision variables of a model has a direct effect on the computational difficulty of an integer 

programming model. Later in this section we further discuss about the number of decision variables, and 

offer an example showing the exact values. Furthermore, considering that the goal of the project is related 

to the strategic level of planning, we do not consider constraints modelling aspects such as precedence 

relationships between products on the same machine or the machines required for the manufacturing of 

one product to be relevant. Based on these arguments, we make the decision of solving the MILP model 

for each machine type at once.  
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Once the samples are approved by the customers and the mass production process starts, Sensata has to 

produce different volumes of these sensors for a couple of years. For some customers they have to deliver 

monthly or weekly volumes, while for others they can be requested to deliver 2-3 times a week or even 

on a daily basis. Because these times can vary from customer to customer, the capacity managers in charge 

of the high-level overview, take into consideration the monthly demand for each sensor. In this model we 

choose to do the same, after having various interviews and being explained about these delivery requests, 

the moment when the real data becomes available (replacing the forecasts) and the fluctuations in 

demand which, although not allowed, can still occur on very short term.  

The last modelling choice we address is the existence of so called “dummy” machines in our model. These 

machines represent the machines that can be added by the model, whenever a new machine has to be 

purchased. For these machines we duplicate the inputs: cycle times, availability and capabilities, of some 

of the existing machines and set all their releases equal to 0 (before being purchased they should not be 

released for any of the products). Another aspect we find out during the interviews is that Sensata 

normally uses the same supplier for the same machine type and that they do not have multiple options of 

the same equipment to pick from. This being the case, we make all the “dummy” machines identical. 

4.2.2 Sets and Indices 
 
We define the following sets in our model. The first set, I, contains the list of all sensors under production 

starting from month 1 to month T. The second set, K, contains the list of all machines, belonging to the 

machine type for which we solve the model. Just as for products, the list contains all the machines existing 

in the manufacturing facility from month 1 to month T. However, besides these machines, set K also 

contains the “dummy” machines we previously mention. The last set, M, contains all the months belonging 

to the planning horizon (e.g. if the input data is available for 2 years then the months will take values from 

1 to 24). 

 I = Products:  {1,..i…,I} 

 K = Machines: {1,..k…,K} 

 M = Months {1,..t…,T} 

4.2.3 Parameters 
 
Below, we list all the parameters we choose for our model. These parameters serve as inputs for the mixed 

integer linear programming model. We define these parameters considering the data relevant for the 

company. The only parameter we define strictly for modelling purposes is the “big-M” which facilitates 

the formulation of the so called “big-M constraints”.  

 
Costs: 

Considering that the company’s goal is to postpone a big investment, such as ordering a new machine, for 

as long as it is feasible, we define all three cost components as time dependent. The following holds for all 

three cost components: performing any action in month t is more expensive than performing the same 

action in month t+1. At the moment, we consider the costs for keeping an item in inventory in month t, 

regardless of the product, to be equal. The same applies for releasing a machine in month t, no matter for 
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which product. Moreover, purchasing a new machine has the same costs, regardless of which machine is 

chosen from the fictive machines we create.  

 InventoryCost(t):  inventory costs associated with month t 

 ReleasingCost(t): releasing costs associated with month t 

 OrderingCost(t): ordering costs associated with month t 

Products: 

 D(i,t): demand of product i in month t 

 InitialInventory(i): initial inventory of product i. We define this parameter to represent the 

inventory that exists for each product before running the model. 

 TotalDemand(i,t) : total demand of product i in month t.  This parameter represents the sum of 

the demand for product i over a certain number of months. We use this parameters to reflect the 

shelf life of a product and therefore to set a limit on the inventory allowed for product i.  The shelf 

life of a product represents the period of time, following its manufacturing moment, during which 

a product can be kept as inventory and remain within its approved product specifications.  

Example: If the TotalDemand(i,t) is the sum of demands for the next year, then the inventory value 

in each month is not allowed to be more than that. This being the case, no units produced in month 

t will stay under inventory for more than one year. 

Machines: 

 InitialExistingMachines(k)= 

{
1, 𝑖𝑓 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑘 𝑖𝑠 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑎𝑡 𝑡ℎ𝑒 𝑠𝑡𝑎𝑟𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑙𝑎𝑛𝑛𝑖𝑛𝑔 ℎ𝑜𝑟𝑖𝑧𝑜𝑛

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

This parameter shows which machines exist in the manufacturing facility at the beginning of the 

planning horizon or have been ordered by the company and their delivery is expected in a certain 

month. If index k refers to one of the machines that is in the manufacturing facility or already 

ordered this parameter has a value of 1. If index k refers to one of the fictive machines then this 

parameter has a value of 0.  

 AvailabilityOEE(k,t): availability (OEE component) of machine k in month t. A value is given for all 

the machines, whether they exist in the manufacturing facility or not. When a new machine is 

purchased, its availability is taken into consideration for capacity calculations. In some cases, some 

machines have already been ordered and are known to become ready for production in a certain 

month. Until month t when they are ready, we set their availability to 0, therefore preventing any 

products to be allocated on such a machine. 

Capacity: 

 HoursAvailable: number of hours available for production in each day. This parameter represents 

a constant value for all days in all months.  

 Days(t): number of days available for production in month t. 

 Buffer: constant value that we use to model the spare capacity which, in Sensata’s case, is kept to 

cope with fluctuations in demand. This parameter gets values between 0 and 1. Normally the 

capacity managers aim to have a 15% buffer on capacity. 
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Product-Machine: 

 CT(i,k,t): cycle time for product i on machine k in month t. This value represents the processing 

time of machine k for product i in month t. This value is also time dependent because the company 

performs improvements on their equipment to decrease the processing times, therefore, the 

processing time might not be the same in all months. 

 

 MachineCapabilities(i,k) = {
1, 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑘 𝑖𝑠 𝑐𝑎𝑝𝑎𝑏𝑙𝑒 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑖

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

This parameter is used to show which machine has the physical capability of producing a sensor. 

This parameter is not time dependent because the physical capabilities of machine cannot be 

modified (it cannot start processing a product that it could not process before). 

 InitialMachineReleases(i,k,t) = {
1, 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑘 𝑖𝑠 𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑 𝑓𝑜𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑖

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

In a similar manner as the initial existing machines parameter, this parameter shows the releases 

already decided by the company at the beginning of month t. The difference between the two 

parameters is the fact that these initial machine releases also depend on the month index. We 

consider the month index here because releases could have already been planned to occur in a 

certain month t, before running the model.  

 Quality(i,k): quality (OEE Component associated with yield loss) for product i on machine k. We 

use this value to determine how many more units of product i should be produced to compensate 

for the yield loss. Same as the availability parameter, we set a value for all the machines, whether 

they are available or not.  

Others: 

 bigM: as we previously mention, we define this parameter to be able to model “big-M” 

constraints. This parameter has a constant value. In order to ensure the proper function of the 

model, its value should be at least equal to the maximum demand of a product found across the 

entire planning horizon.  

4.2.4 Decision Variables 
 
In this section we introduce the decision variables of our MILP model. They represent the output of our 

model and can be divided into main decision variables and auxiliary ones. We define the auxiliary variables 

to facilitate the modelling of our constraints.  

Three of our main decision variables relate to the three available decisions: building inventory, releasing 

existing machines and ordering a new machine. The fourth one is showing the allocation of products to 

machines, together with the associated volumes.  

 InventoryLevel(i,t): variable showing how many units (if any) are kept as inventory for each 

product in each month t. We use this variable to allow the possibility of, for example, producing 

part of the demand of month 2 in month 1 and keeping it as inventory. 

 New Release (i,k,t) = {
1, 𝑖𝑓 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑘 𝑔𝑒𝑡𝑠 𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑 𝑓𝑜𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑖 𝑖𝑛 𝑚𝑜𝑛𝑡ℎ 𝑡

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

We define this variable to keep track of the machine releases (if any) occurring every month.  
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 NewMachine(k,t) = {
1, 𝑖𝑓 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑘 𝑖𝑠 𝑏𝑒𝑐𝑜𝑚𝑖𝑛𝑔 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑖𝑛 𝑚𝑜𝑛𝑡ℎ 𝑡

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

We define this variable to keep track of the new machines purchased (if any) every month.  

 Units Produced (i,k,t): this decision variable shows the number of units of product I being 

produced by machine k in month t.  

 

The auxiliary decision variables are: 

 TotalInventory(t): variable that we use to calculate the total number of units, for all the products, 

kept in inventory in month t. 

 ExistingReleases(i,k,t) = {
1, 𝑖𝑓 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑘 𝑖𝑠 𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑 𝑡𝑜 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑖 𝑖𝑛 𝑚𝑜𝑛𝑡ℎ 𝑡

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 We use 

this variable to update the releases for each product - machine combination in each month t. 

 TotalMachinesReleased(t): variable that serves for calculating the total number of new releases 

(if any) in each month t. 

 ExistingMachines(k,t) = {
1, 𝑖𝑓 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑘 𝑖𝑠 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑖𝑛 𝑚𝑜𝑛𝑡ℎ 𝑡

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

This variable helps to update the status for each machine k in each month t. 

 TotalMachinesOrdered(t): variable that we use to calculate the total number of machines ordered 

in each month t. 

4.2.5 Objective Function 
 
The objective function for our model is to minimize the costs incurred by performing any of the three 

possible actions: building inventory, releasing existing machines and ordering new machines, summed 

over the entire planning horizon.  

MINIMIZE  

∑(𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝐶𝑜𝑠𝑡𝑠(𝑡) ∗ 𝑇𝑜𝑡𝑎𝑙𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦(𝑡) +  𝑅𝑒𝑙𝑒𝑎𝑠𝑖𝑛𝑔𝐶𝑜𝑠𝑡(𝑡) ∗ 𝑇𝑜𝑡𝑎𝑙𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝑠𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑑(𝑡)

𝑇

𝑡=1

+ 𝑂𝑟𝑑𝑒𝑟𝑖𝑛𝑔𝐶𝑜𝑠𝑡(𝑡) ∗ 𝑇𝑜𝑡𝑎𝑙𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝑠𝑂𝑟𝑑𝑒𝑟𝑒𝑑(𝑡))  

4.2.6 Constraints 
 

1. Inventory Balance Constraints: we set these constraints to ensure that the demand of each 

product will be met in time, whether this demand is produced in month t or prior to month t. Since 

the units produced in the months prior to month t can also be used for month t, in a similar 

manner, units produced in month t can be used in month t and in the upcoming months.  

We include the quality component of OEE in these constraints in order to make sure that the 

company produces enough units to both cover the full demand and make up for the yield loss. 

a. Month t=1 

𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝐿𝑒𝑣𝑒𝑙(𝑖, 1) = 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦(𝑖) + ∑ 𝑈𝑛𝑖𝑡𝑠𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑑(𝑖, 𝑘, 1) ∗𝐾
𝑘=1

𝑄𝑢𝑎𝑙𝑖𝑡𝑦𝑂𝐸𝐸(𝑖, 𝑘) − 𝐷(𝑡, 1), ∀ 𝑖 ∈ 𝐼  
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b. Month t>1 

     𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝐿𝑒𝑣𝑒𝑙(𝑖, 𝑡)

= 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝐿𝑒𝑣𝑒𝑙(𝑖, 𝑡 − 1) + ∑ 𝑈𝑛𝑖𝑡𝑠𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑑(𝑖, 𝑘, 𝑡) ∗ 𝑄𝑢𝑎𝑙𝑖𝑡𝑦𝑂𝐸𝐸(𝑖, 𝑘)

𝐾

𝑘=1

− 𝐷(𝑖, 𝑡), ∀ 𝑖 ∈ 𝐼, 𝑡 > 1   

 
2. Defining the variable TotalInventory(t):  

𝑇𝑜𝑡𝑎𝑙𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦(𝑡) =  ∑ 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝐿𝑒𝑣𝑒𝑙(𝑖, 𝑡), ∀ 𝑡 ∈ 𝑀 

𝐼

𝑖=1

 

3. Shelf Life Constraint: this constraint limits the amount of inventory the company can hold for each 

product i to the shelf life of the each product. We consider this shelf life to be 12 months. 

𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝐿𝑒𝑣𝑒𝑙(𝑖, 𝑡) ≤ 𝑇𝑜𝑡𝑎𝑙𝐷𝑒𝑚𝑎𝑛𝑑(𝑖, 𝑡), ∀ 𝑖 ∈ 𝐼, 𝑡 ∈ 𝑀  

4. Releasing Constraint1: this constraint ensures that the model can only release machines that are 

capable of processing a product i (such machines should have the machine capabilities parameter 

equal to 1). 

𝑁𝑒𝑤𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑠(𝑖, 𝑘, 𝑡) ≤ 𝑏𝑖𝑔𝑀 ∗ 𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝐶𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠(𝑖, 𝑘), ∀ 𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑀  

5. Releasing Constraint2: this constraints limits the machines the model can release in each month 

only to the machines that are not already released in that month. This applies for each product I 

and releasing a machine only becomes available from month 4. 

 

a. Month t<=3 

𝑁𝑒𝑤𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑠(𝑖, 𝑘, 𝑡) ≤ 1 − 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑠(𝑖, 𝑘), ∀ 𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾, 1 ≤ 𝑡 ≤ 3  

b. Months t>3 

𝑁𝑒𝑤𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑠(𝑖, 𝑘, 𝑡) ≤ 1 − 𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑠(𝑖, 𝑘, 𝑡 − 1), ∀ 𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾, 𝑡 > 3 

6. Updating the Existing Releases variable:  

 

a. Month t<=3 

𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑠(𝑖, 𝑘, 𝑡)

= 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑠(𝑖, 𝑘) + 𝑁𝑒𝑤𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑠(𝑖, 𝑘, 1)

+ 𝑁𝑒𝑤𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑠(𝑖, 𝑘, 2) + 𝑁𝑒𝑤𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑠(𝑖, 𝑘, 3), ∀ 𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾, 1 ≤ 𝑡 ≤ 3 

b. Months t>3 

𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑠(𝑖, 𝑘, 𝑡) = 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑠(𝑖, 𝑘) + ∑ 𝑁𝑒𝑤𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑠(𝑖, 𝑘, 𝑡)

𝑡

𝜋=1

, ∀ 𝑖 ∈ 𝐼, 𝑘

∈ 𝐾, 𝑡 > 3
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7. Production Constraint1: this constraint helps to make sure that the production of product i is only 

allowed on machines released for that product. This applies for every month t. 

𝑈𝑛𝑖𝑡𝑠𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑑(𝑖, 𝑘, 𝑡) ≤ 𝑏𝑖𝑔𝑀 ∗  𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑠(𝑖, 𝑘, 𝑡), ∀ 𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑀 

8. Defining the variable TotalMachineReleased(t): 

𝑇𝑜𝑡𝑎𝑙𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑑(𝑡) =  ∑ ∑ 𝑁𝑒𝑤𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑠(𝑖, 𝑘, 𝑡)

𝐾

𝑘=1

𝐼

𝑖=1

, ∀ 𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑀 

 

9. Purchasing Constraint 1: this constraint helps to make sure that the model can only purchase 

machines that are not already in the manufacturing facility. This applies for every month t.  

 

a. Month t<=15 

𝑁𝑒𝑤𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝑠(𝑘, 𝑡) = 0, ∀𝑘 ∈ 𝐾, 1 ≤ 𝑡 ≤ 15 

b. Months t>15 

𝑁𝑒𝑤𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝑠(𝑘, 𝑡) ≤ 1 − 𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝑠(𝑘, 𝑡 − 1), ∀𝑘 ∈ 𝐾, 𝑡 > 15 

10. Updating the Existing Machines variable: 

 

a. Month t<=15 

𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝑠(𝑘, 𝑡) = 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝑠(𝑘) + 𝑁𝑒𝑤𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝑠(𝑘, 1), ∀𝑘 ∈ 𝐾, 1

≤ 𝑡 ≤ 15 

b. Months t>15 

𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝑠(𝑘, 𝑡)

= 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝑠(𝑘) + 𝑁𝑒𝑤𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝑠(𝑘, 𝑡) + 𝑁𝑒𝑤𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝑠(𝑘, 𝑡 − 1)

+ … + 𝑁𝑒𝑤𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝑠(𝑘, 1), ∀𝑘 ∈ 𝐾, 𝑡 > 15 

11. Production Constraints2: this constraint ensures that the production of product i is only allowed 

on machines that exist in the manufacturing facility. This applies for every month t. 

𝑈𝑛𝑖𝑡𝑠𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑑(𝑖, 𝑘, 𝑡) ≤ 𝑏𝑖𝑔𝑀 ∗ 𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝑠(𝑘, 𝑡), ∀ 𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑀 

12. Defining the variable TotalMachinesOrdered(t): 

𝑇𝑜𝑡𝑎𝑙𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝑠𝑂𝑟𝑑𝑒𝑟𝑒𝑑(𝑡) =  ∑ 𝑁𝑒𝑤𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝑠(𝑘, 𝑡), ∀ 𝑡 ∈ 𝑀

𝐾

𝑘=1

 

 

13. Capacity constraints: through this constraint we make sure that the capacity of each individual 

machine is not exceeded. The total capacity of each machine is equal to the product between the 

hours available for production in a day, converted to seconds, the number of days available for 

production and the availability component of OEE of the corresponding machine. From this value, 

the aim is to keep a certain percentage as buffer, hence the multiplication with (1-Buffer). This 

applies for every month t. 
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∑ 𝑈𝑛𝑖𝑡𝑠𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑑(𝑖, 𝑘, 𝑡) ∗ 𝐶𝑇(𝑖, 𝑘, 𝑡)

𝐼

𝑖=1

≤ (1 − 𝐵𝑢𝑓𝑓𝑒𝑟) ∗ 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑂𝐸𝐸(𝑘, 𝑡) ∗ 𝐷𝑎𝑦𝑠𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒(𝑡) ∗ 𝐻𝑜𝑢𝑟𝑠𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒

∗ 3600, ∀ 𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑀 

14. Range Constraints: 

 

 𝑈𝑛𝑖𝑡𝑠𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑑(𝑖, 𝑘, 𝑡)  ≥  0, ∀ 𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑀 

 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝐿𝑒𝑣𝑒𝑙(𝑖, 𝑡) ≥ 0, ∀ 𝑖 ∈ 𝐼, 𝑡 ∈ 𝑀 

 𝑇𝑜𝑡𝑎𝑙𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦(𝑡) ≥ 0, ∀ 𝑡 ∈ 𝑀 

 𝑁𝑒𝑤𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑠(𝑖, 𝑘, 𝑡) ∈  {0,1}, ∀ 𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑀 

 𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑠(𝑖, 𝑘, 𝑡) ∈  {0,1}, ∀ 𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑀 

 𝑇𝑜𝑡𝑎𝑙𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝑠𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑑(𝑡) ≥ 0, ∀ 𝑡 ∈ 𝑀 

 𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝑠(𝑘, 𝑡) ∈  {0,1}, ∀ 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑀 

 𝑁𝑒𝑤𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝑠(𝑘, 𝑡) ∈  {0,1}, ∀ 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑀 

 𝑇𝑜𝑡𝑎𝑙𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝑠𝑂𝑟𝑑𝑒𝑟𝑒𝑑(𝑡) ≥ 0, ∀ 𝑡 ∈ 𝑀 

Although ILP models are very often used for formulating real-life situations, they are also much harder to 

solve than LP models. The LP-relaxation of an IP is defined as the LP resulting when ignoring the integrality 

constraints of an IP. From the feasible region of the LP-relaxation, the feasible solution set for the IP is 

restricted to those solutions in which some or all of the decision variables take integer values. Therefore, 

the set of all feasible solutions of the IP model represents a subset of the set of feasible solutions of the 

corresponding LP-relaxation. (Winston & Goldberg, 2004) 

Considering that the feasible region for an IP model is contained in the feasible region of its corresponding 

LP-relaxation, the optimal objective value of the relaxation is at least as good as the one of the IP. Since 

having continuous variables results in a less constrained model which might lead to better solutions, we 

decide that besides the variables which are bound to have binary values we allow all the other variables 

to be continuous. (Winston & Goldberg, 2004) 

4.2.8 Model Size 
 
As we previously mention, we run the MILP model for one machine type at once. The planning horizon 

varies in our tests from 1 to 2 years. During this time the model decides on the right values of the decision 

variables for every single month. To illustrate the number of decision variables and constraints composing 

our model we consider the following data as our input: 

260 products running on 9 different calibrators for a 

period of 24 months. Besides the 9 calibrators we add 6 

more as “dummy” machines which can become 

available starting from month 16. Considering these 

numbers, the progress tab from AIMMS shows the total 

number of variables and constraints we use in the 

model. Figure 16 displays this overview. 

 

Figure 16 Model Size - AIMMS 
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To demonstrate how such numbers are obtained, we perform the calculations considering the decision 

variables. In Table 2 we display each main group of decision variables together with their indices and the 

number of individual variables belonging to each group. In this table, T represents the number of months 

in the planning horizon, in our case 24, I represents the total number of products, 260, and K represents 

the total number of machines, 15. 

Group of variables Formula Number of individual variables 

Number Of Units(t,i,k) 𝑇 ∗ 𝐼 ∗ 𝐾 260 * 15 * 24 = 93600 

Inventory Level(t,i) 𝑇 ∗ 𝐼 260 * 24 = 6240 

New Releases(t,i,k) 𝑇 ∗ 𝐼 ∗ 𝐾 260 * 15 * 24 = 93600 

New Machines(t,k) 𝑇 ∗ 𝐾 15 * 24 = 360 

Total  193800 
Table 2 Number of variables for the MILP model – 24 months 

Besides the main groups of decision variables, we create auxiliary ones which we use for updating, for 

example, the possible releases in every month or calculating values such as the total number of releases 

taking place in month t. We calculate the individual number of decision variables from these groups in a 

similar manner to the one in Table 2 and the total, in this case, is: 94417. Therefore, the total number of 

decision variables from our example is 288517, as we display in the overview from Figure 16. 

4.2.9 Software and Solver 
 
We use the solver provided in the AIMMS Developer version 4.65 from 2017 to solve our model. This 

developer represents an extended series of embedded solvers such as CPLEX, 

CONOPT, GUROBI and Knitro. While, CONOPT and Knitro are highly focused on solving large-scale 

nonlinear programming models, CPLEX and Gurobi are capable of handling both linear and mixed integer 

programming models. From the four solvers we mention, the solver we use for our model is CPLEX (version 

12.9). Considering our model formulation, the default solver automatically chosen by AIMMS is MIP which 

refers to a Mixed-Integer Linear Programming model. 

4.3 Heuristic 
 
As we previously mention, we decide to create a heuristic as a proof of concept for the goal of our project. 

We create this heuristic to be able to solve Sensata’s capacity issues in a similar fashion as the mixed 

integer linear programming we introduce in Section 4.2. We design it to follow the same objective and 

restrictions as in the MILP model. The choices we make, while designing this heuristic are based both on 

the literature study we conduct, and on the results we obtain from various tests. We introduce these tests 

in Chapter 5. In this section we provide a detailed description of the entire heuristic.  

 

 

 

 

https://aimms.com/english/developers/resources/solvers/conopt
https://aimms.com/english/developers/resources/solvers/gurobi
https://aimms.com/english/developers/resources/solvers/knitro
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4.3.1 Model Description 
 
The capacity planning heuristic we design follows the same basic idea introduced for our MILP model. The 

capacity managers have three different decisions to pick from in order to deal with the demand 

fluctuations and their goal is to postpone any kind of investment for as long as possible.  

Our heuristic tries to achieve this by starting with an initial monthly schedule and applying different 

methods to ensure a feasible capacity fit. We compare two local search algorithms in an attempt of 

optimizing the initial schedule. 

In our case, the initial schedule refers to an allocation of products to machines for each month of the 

planning horizon. For this schedule we assign the monthly demand of each product to one or more 

machines while respecting all the constraints relevant at this point. The constraints we consider here are 

the ones stating that a product is not allowed to run on a machine which is not released, the capacity 

restrictions for each machine and the demand restrictions for each product. Since it is possible to not have 

enough capacity in one month to cover the entire demand, we allocate the amounts which do not fit to 

an infinite capacity machine. We create this infinite capacity machine in order to keep track of the volumes 

that could not fit on the existing machines.  

Once the algorithm creates an initial schedule we use a local search metaheuristic with the goal of 

decreasing the overall loading across all existing machines. Whether or not the capacity is sufficient in 

month t, we perform this optimization step in an attempt of freeing some capacity in case inventory build-

up turns out to be needed in future steps. If the algorithm assign products on the infinite capacity machine 

in month t, once we obtain a new schedule as a result of the local search algorithm we perform a check to 

see if more volume can now fit in the existing machines.  

In case the loading on the infinite capacity machine is still above 0, we move on to our next step, trying to 

decrease this loading by building inventory. We only apply this step starting from the second month of the 

planning horizon since we cannot create any inventory before month 1. In this step we simply check if we 

can allocate any of the volumes currently assigned on the infinite capacity machine to any machine in the 

prior months. The capacity constraints and the ones stating that a product is not allowed to run on a 

machine which is not released still hold, followed by the shelf life constraint. This means that we only try 

to build inventory for a maximum of 12 months prior to month t. 

If the loading on the infinite capacity machine is still greater than 0, we perform the next step, trying to 

release existing machines. At this point there are two reasons for which products might still be assigned 

on the infinite capacity machine. The first one is the fact that capacity might not be enough to handle the 

entire demand, while the second one points to the fact that a new product might have been introduced in 

month t, and no machine releases were arranged for this product. No matter the reason, for this step we 

perform another local search algorithm in an attempt to decrease the loading from the infinite capacity 

machine even further.  

For the releasing step we make sure that we consider the constraint stating that a machine which does 

not have the physical capability of producing a certain product cannot be released for that product. 

Furthermore, we also consider the lead time of performing such a release, therefore this step only 

becomes available starting from month 4. 
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As a last resort, if the current capacity turns out to be insufficient, we add another machine. Just as for the 

MILP, we create some “dummy” machines which the model can make available when needed. In this step 

we perform one last local search algorithm to check for which products, currently assigned on the infinite 

capacity machine, should we release the newly bought piece of equipment. We take into account all the 

constraints related to new machines and also the lead time associated with ordering a new machine. This 

step becomes available starting from month 16.  

4.3.2 Description of Individual Steps 
 

Obtaining an Initial Schedule 
 
We create the following five different ways of obtaining the initial schedule: 

1. Assign the products to machines in increasing value of their IDs. 

2. Sort the products on decreasing demand value: in this case we assign the product with the highest 

demand first. This schedule involves no sorting for the machines. 

3. Sort the machines on increasing cycle time values: in this case we assign the first product on the 

machine with the best cycle time. If this machine is also having the best cycle time for another 

product, we also assign the second product here, without violating capacity restrictions. So, if the 

whole volume of this product does not fit, we assign the units that do fit on this machine and the 

rest we assign on the second best machine. This schedule involves no sorting for the products. 

4. Sorting the products on decreasing demand value and sorting the machines on increasing cycle 

time value: this case represents a combination of cases 2 and 3. For this case, we assign the 

product with the highest demand on its preferred machine (machine with the smallest cycle time). 

5. Sort the products on increasing number of releases: for this case we count the number of machines 

released for each product and we start by assigning the product(s) with least releases.  

Since some products might require enough volume to cover the capacity of an entire machine, we prefer 

to first find space for such big volumes and leave the smaller volumes at the end. Hence, we sort the 

products on decreasing demand values. We believe that if machines are not completely full when we try 

to decrease the loading from the infinite capacity machine, it might be easier to find space for a smaller 

volume than for a larger one. We associate this rule with the Longest Processing Time rule, which is used 

for finding the minimum makespan of a schedule. By assigning the products with longer processing times 

first, it makes sure that at the end of the schedule no job with a very large processing time has to be 

assigned. 

When sorting the machines on increasing cycle time, we aim to fit the products on their preferred machine 

(smallest cycle time) if capacity allows. The combination we choose for case 4 is an attempt of assigning 

the most important products, which in this case are the ones with higher demand values, to the machines 

with lower cycle times with the aim of decreasing the loading across all the machines. 

For the last case, we choose to sort the products in increasing number of releases in an attempt to 

minimize the number of releases later on. We test each of the 5 cases for multiple months with different 

input data and we show the results in Chapter 5.  
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In Figure 17 we show the logic behind creating an initial schedule, taking case number 4 into consideration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We start by trying to assign the full demand of each product on their preferred machine, if capacity allows. 

If the full demand fits we move to the next product, otherwise we allocate as much volume as possible to 

the first preferred machine and then move to the next machine. If, for example, one product can only be 

produced by a single machine then we try to assign as much volume as we can fit to that machine and 

allocate its remaining volume on the infinite capacity machine. The outcome of this step represents a 

production overview showing to which machines, including infinite capacity machine, do we allocate which 

products, together with the corresponding volumes.  

Optimization of the Initial Schedule 
 
Once we have an initial schedule we try to optimize the total loading across the existing machines, whether 

or not some products are allocated to the infinite capacity machine. We do this optimization through a 

local search algorithm. Through our literature research we conclude that the two best such algorithms are 

Simulated Annealing and Tabu Search. As we state in Chapter 3, some authors believe Simulated Annealing 

to be better, while others believe Tabu Search outperforms the former both in terms of the solution and 

the running time. Furthermore, the authors claim that the answer regarding which algorithm performs 

best depends on the problem itself.  

Therefore, we decide to implement both local search algorithms and compare the results. We implement 

both algorithms using a swap neighborhood structure, in which two products assigned on two different 

Figure 17 Steps taken for creating an initial schedule 
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machines change places. Moreover, in both cases the objective is to minimize the total loading across the 

existing machines. If we manage to obtain a better schedule then we try to reduce the loading on the 

infinite capacity machine (if any) by checking if we can now fit more units on the existing machines. 

Building Inventory 
 
The steps incurred for building inventory are similar to the ones we discuss for creating the initial schedule. 

We display the exact steps in Figure 18. Once we explore all the options for one month, the algorithm 

moves to the next month (if any). We allow the algorithm to explore only a total of 12 months prior to 

current month t.  

Figure 18 Steps taken for building inventory in prior months 
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Releasing Existing Machines 
 
If the capacity of the existing machines turns out to be insufficient after trying to build inventory or if new 

products have been added and they are not yet released for production, the algorithm reaches this stage. 

Also, as we mention before, this stage can only occur starting from month 4.  

In order to find the best combination between a product and a machine to release, we again test with 

both Simulated Annealing and Tabu Search. Since we aim to keep the number of releases to a minimum, 

we pick a neighborhood structure which releases one machine at a time for a single product. This structure 

resembles the 1-flip neighborhood in which a binary variable changes value. In both cases, the objective 

function is a combination between minimizing the loading from the infinite capacity machine and the 

existing machines and keeping the number of releases to a minimum. Considering the combination 

between the loading of the infinite capacity machine and the existing machines, we include the former 

since the goal is to try and reduce the loading of the ICM through releases. Regarding the loading on the 

existing machines, we choose to add it as part of the objective function so that the algorithm attempts to 

allocate products on their preferred machines. If we do not include this loading as part of the objective 

function then all the solutions in which a certain amount can be assigned on couple of different machines 

would have the same objective function value. This would occur since all these solutions would decrease 

the loading on the infinite capacity machine by the exact same amount.  

Apart from the loading, we also want to ensure that the algorithm does not perform any unnecessary 

releases. Without such a check, the algorithm would be free to release all the capable machines for each 

of the products from the infinite capacity machine. 

Ordering a New Machine 
 
As a last resort the algorithm decides in favour of one or more new machines, depending on the number 

of units still allocated on the infinite capacity machine. Once it takes this action, this machine needs to be 

released for any of the products that it has to produce. Since it might be the case that we need more than 

one machine, we implement another local search algorithm to decide on the best products to allocate on 

each new machine. Just as before, we implement both Simulated Annealing and Tabu Search, having as 

objective minimizing the loading of the ICM. In the case of Simulated Annealing, one product for which the 

new machine should be released is randomly selected at once, while for Tabu Search a list of candidate 

solutions showing the products available for selection with the corresponding objective functions is 

generated for every iteration.  

4.4 Conclusion 
 
In this chapter we describe how we combine the knowledge we obtain through the literature research we 

introduce in Chapter 3 to create one MILP model, and a heuristic algorithm to serve for solving the strategic 

capacity planning problems which Sensata is currently facing. We design both the MILP model and the 

heuristic to run for one machine type at once, considering that precedence relationships are not in our 

main interest and the number of variables and constraints increases as the number of months in the 

planning horizon increases.  
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Through these models, we provide the answer for our sixth research question: “How can the existing 

algorithm used for planning the machine loading be redesigned?”. Furthermore, we use these models to 

obtain the results we require for some of our next research questions. 

Chapter 5: Computational Experiments 
 
In this chapter, we present the results of our research. We start by describing the experimental setup of 

our tests in Section 5.1. Next, in Section 5.2 we highlight the actions we take for the verification of the 

MILP model. Moreover, for validation purposes, we provide a comparison between the outcomes of our 

MILP model and Sensata’s current model. In Section 5.3 we show the results we obtain when 

experimenting with different methods of generating an initial solution required by the local search 

algorithms.  

As we previously mention, for our heuristic we decide to use different local search algorithms to perform 

the following actions: optimize the initial schedule in terms of total machine loading, check if releasing the 

existing machines can improve the total loading, and check the best products for which a newly ordered 

machine should be released. As a result of our literature research, for each of the three actions we decide 

to perform a comparison between Simulated Annealing and Tabu Search. In Section 5.4 we highlight the 

outcomes from each local search method and conclude on the best algorithm for each step. Sections 5.5 

presents the results we obtain when running both the MILP model and the full version of our heuristic.  

5.1 Experimental Design 
 
As we explain in Chapter 4, both the MILP model and the heuristic we design are meant to be used for one 

machine type at once. For our tests, we choose to focus on the calibrators since they represent one of the 

current bottlenecks in Sensata’s manufacturing process. Although both the MEMS and MSG departments 

have production facilities in more than one country, we decide to focus on the calibrators available for 

MEMS in Malaysia. Table 3 shows more details with regard to the data set we use for our initial tests.  

Length of planning horizon 12/24 months 

Number of products 260 

Number of existing machines 9 

Number of fictive machines 6 

Demand Sensata’s demand forecast 

Cycle Times cycle times currently used in their model 

Machine Capabilities all set to 1 

Machine Releases either 0 or 1 

Availability OEE all set to 0.75 

Quality OEE all set to 1 

Buffer 0 

Working Days Number of working days in each month (currently used in their model) 

Working Hours Per Day 22.5 

Lead Time Releases 3 months 
Lead Time Ordering a New Machine 15 months 

Table 3 Characteristic of the initial data set 
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Most of the data is provided by the capacity manager of the MEMS department. The demand values we 

use are based on the company’s demand forecasts. These values are available on a monthly basis for all 

products. The cycle times we choose for the initial data set represent the average values the company is 

currently using in their capacity planning model. Similarly, the number of working days in a month are the 

values currently used in their planning. 

For some of the factors we fill in the missing data. An example of such missing data are the values for the 

physical capabilities of a machine. Since no flexibility matrix, showing the machine capabilities, is available, 

we decide to set them all to 1. In this case each machine is capable of producing any of the sensors. Another 

example of missing data refers to the OEE components. Until now Sensata only used a single value to 

reflect both components. We decide to set the availability component to the current value used by the 

company and set the other component to 1. Thus, the values we use for these parameters are 0.75 and 1. 

Further on, a parameter that we set to 0 is the buffer on capacity the company aims to have.  

When selecting the values for the missing parameters we aim to minimize their impact on our results. In 

this manner, we try to keep our initial data set as close as possible to the one used in Sensata’s current 

model. 

Another factor which is not included in the company’s model is related to the machine releases. Hence, 

such a flexibility matrix is not available. However, when checking the list of cycle times, we notice that for 

some product-machine combinations no values are available. According to the capacity manager, if no 

cycle time is found for a product-machine combination, that machine is therefore not released to produce 

that sensor. This being the case, we set the machine releases to either 0 or 1 by checking if a cycle time 

value is available for each product-machine combination.  

For the initial tests, in order to 

validate our MILP model, we 

compare its results with the ones 

from Sensata’s current model. Once 

we run the initial tests, we make 

various adjustments to the initial 

data set, depending on the type of 

test we wish to perform. Figure 19 

shows the modifications we make 

to fit each of our tests. 

Depending on the test, we choose 

to perform the modifications from 

Figure 19 to strictly focus on one 

aspect at once. Since we compare 

different local search algorithms for 

three stages, we adjust the initial data set to serve as inputs for each individual stage. First, for creating 

and optimizing the initial schedule we set the releases of all machines to 1, regardless of the product. At 

this stage we are interested in knowing which of the two metaheuristics performs best when simply trying 

to reduce the total loading of an initial schedule. Hence, by setting all releases to 1 we allow the algorithm 

to strictly focus on minimizing the overall loading, given the demand of each product and the processing 

times associated with each product machine combination. A second modification we make for this test 

Figure 19 Input data sets used for each test 
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refers to the processing times. As we mention when describing the initial data set, the cycle times of each 

product across all machines have the same value. In order for both metaheuristics to improve the initial 

schedule we need more variation within the cycle times. Therefore, we decide to vary these values. We 

choose the [6, 14] interval by checking for the minimum and maximum values from the company’s data. 

Next, in order to test the metaheuristics for releasing existing machines, we make two modifications to 

the inputs we use when optimizing the initial schedule. We choose to adjust this data set, rather than the 

initial one, because we believe that variation within cycle times is important for this step as well. During 

this stage we not only aim to release existing machines to fit the products allocated on the infinite capacity 

machine (ICM), but we also wish to assign these products where the lowest processing time is, if capacity 

allows. We provide more details regarding the objective function we choose for this stage in Figure 20.  

The first modification we perform for this test is to remove the machine releases for a total of 10 products. 

We select the first 10 products, with demand greater than 0, which we find in the first month. Although 

all these products have demand in the first month of the planning horizon, we notice that they do not have 

a positive demand across the entire horizon. Therefore, the number of releases we expect the algorithm 

to perform will not always be equal to minimum 10. We perform two different tests for this stage. For the 

first test we only use the first modification, while for the second one, we apply a combination of both. The 

second modification refers to increasing the demand of each individual product. We do this to model the 

situation when the capacity does not suffice to fit the volumes of all products assigned on the ICM and 

force the metaheuristics to select the best products to relocate. 

In the last stage we allow the algorithm to order a new machine. Once a newly purchased machine 

becomes available for production the company needs to select the best products for which this machine 

can be released. Hence, this stage is related to releasing the newly available machine in an attempt of 

reducing the loading of the ICM as much as possible. For this test we decrease the number of existing 

machines to either 4 or 5 and analyse the results after the algorithm decides in favour of ordering a new 

machine. 

Besides different data sets, depending 

on the stage, we also consider 

different objective functions and sets 

of constraints. We choose this 

approach in order to focus only on one 

aspect at a time. For example, when 

optimizing for the releases of the 

existing machines we do not consider 

constraints related to building 

inventory or purchasing a machine. In 

Figure 20 we provide an overview of 

the objective functions and constraints 

which we consider in each of the 

stages of our heuristic.  

  

Figure 20 Objective functions and constraints considered for each test 
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5.2 Verification and Validation 
 
According to Sargent (n.d.) model verification is defined as ensuring that a model is “transformed from 

one form into another, as intended, with sufficient accuracy”. Furthermore, the authors state that in model 

verification, one checks the accuracy with which a model formulation is transformed into an executable 

program. Regarding model validation, Sargent (n.d.) mentions that it involves building the correct model 

associated with the real-life situation. Moreover, as validation, one should ensure that the programmed 

model reaches a satisfactory level of accuracy.  

In both verification and validation, model testing can highlight any errors existing in the model. As stated 

in Sargent (n.d.), “some tests are devised to evaluate the behavioural accuracy (i.e., validity) of the model, 

and some tests are intended to judge the accuracy of model transformation from one form into another 

(verification)”.  

In our case, when formulating the MILP model, we try to reflect the real-life situation as accurately as 

possible. We start with identifying the factors already present in the Sensata’s current capacity planning 

model, and, as a next step we check the ones that were excluded in favor of simplicity. The aspects that 

they could not consider in their planning model vary from machine capabilities and releases to different 

OEE components. We address all these factors in Chapter 2.  

For the objective of our model we analyse the main decisions the capacity managers can make. These 

decisions refer to building inventory, releasing existing machines or ordering a new machine. Since each 

decision has an associated cost, ordering a new machine being the most expensive, the goal for the 

company is to postpone a big investment for as long as possible. Hence, the objective we define for our 

MILP model refers to cost minimization. 

In order to validate the mixed-integer linear programming model, we use the initial data set which we 

describe in Section 5.1. We base this data set on the same inputs used in the company’s model. We run 

the MILP model for a planning horizon of 24 months and compare the overall loading percentage in each 

month t. The formula we use for calculating the overall loading percentage is: 

∑ ∑ 𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑈𝑛𝑖𝑡𝑠(𝑖, 𝑘, 𝑡) ∗ 𝐶𝑦𝑐𝑙𝑒𝑇𝑖𝑚𝑒(𝑖, 𝑘, 𝑡)𝐾
𝑘=1

𝐼
𝑖=1

𝑇𝑜𝑡𝑎𝑙 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑖𝑛 𝑚𝑜𝑛𝑡ℎ 𝑡
∗ 100%, 

where i and k refer to the products and machines sets.  

In order to compare the overall loading percentages, we calculate the averages, per month, of the loadings 

for each individual machine. We display the individual loadings in Figure A.1 from Appendix A. Figure 21 

displays these averages, while Figure 22 displays the results from Sensata’s current capacity planning 

model 
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In Figure 21, the cells highlighted in orange show the months in which our model builds inventory in order 

to cope with the increase in demand. The cells highlighted in red from Figure 22 show the months in which 

the overall loading exceeds 100%. Since the managers do not include any capacity restrictions in this 

model, these percentages can exceed 100% if the process is completely overloaded. The two cells 

highlighted in blue show the months in which machines 8 and 9 become ready for production.  

Comparing the percentages from the two figures we can see that in the months in which our model does 

not build inventory, the values are very similar. We notice bigger differences when the model decides to 

produce ahead and keep items in inventory. This is a result of including capacity constraints based on 

which loading is not allowed to exceed 100%, no matter the demand. Considering the cost differences 

between each month (any action is cheaper in month t than in month t-1), the results show that inventory 

is being produced right before it is needed. For example, since in month 5 there is a capacity shortage, our 

results show inventory build-up in the prior month. For the exact number of units kept in inventory in each 

of the months, we include more details in Appendix A.  

Another action that our model takes is to allow certain machine releases. After checking the reasons 

behind these machine releases, we conclude that in the input data there was no machine released for a 

total of 7 products. We present the outputs related to these releases in Appendix A.  

Overall, by checking the results from Figures 21 and 22 and analysing aspects such as: why did the model 

decide for inventory build-up in a certain month and why were certain releases performed, we believe 

that the MILP model reflects the real situation in an accurate manner.  

 

Figure 22 Monthly Loading 
Percentages per Machine type – 24 

months – Sensata’s Model 

Figure 21 Monthly Loading 

Percentages per Machine type – 

24 months - AIMMS  
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5.3 Initial Schedules 
 
Considering that a local search algorithm starts from a feasible initial solution and, in our case, searches in 

its neighborhood for possible swaps to perform, we decide to test various methods for obtaining such a 

solution. In our case, an initial solution represents a schedule (allocation of products to machines) which 

does not violate any of the constraints applicable for this step. These constraints relate to demand, 

capacity and machine releases.   

As we previously mention in Chapter 4, we implement the following 5 alternatives for generating an initial 

solution:  

1. Assign the products to machines in increasing value of their IDs. 

2. Sort the products on decreasing demand value: in this case we assign the product with the highest 

demand first. This schedule involves no sorting for the machines. 

3. Sort the machines on increasing cycle time values: in this case we assign the first product on the 

machine with the best cycle time. If this machine is also having the best cycle time for another 

product, we also assign that other product here, without violating capacity restrictions. If the 

entire volume of this product does not fit, we assign the units that do fit on this machine and the 

rest we assign on the second best machine. This schedule involves no sorting for the products. 

4. Sorting the products on decreasing demand value and sorting the machines on increasing cycle 

time value: this case represents a combination of cases 2 and 3. For this case, we assign the 

product with the highest demand on its preferred machine (machine with the smallest cycle time). 

5. Sort the products on increasing number of releases: for this case we count the number of machines 

released for each product and we start by assigning the product(s) with least releases.  

To decide which of the 5 options performs best we generate a monthly initial schedule for a planning 

horizon of 24 months. We previously describe the data set we use in this test in Section 5.1.  

We compare the results of the 5 options with the overall loading percentage we obtain after solving the 

MILP model. At this step, we choose the overall loading percentage as the comparison factor.  By 

generating an initial schedule and optimizing it through local search we aim to fit as much of the demand 

as possible within the existing machines. Next, we want to reduce the overall loading to fit the volumes 

assigned on the ICM, if any, or facilitate inventory build-up, if needed. To ensure a proper comparison 

between the results obtained from AIMMS and our options for generating an initial schedule, we design 

another MILP model, which focuses on minimizing the loading. This model, although similar to one in 

Chapter 4, only contains the constraints relevant for this step. We show the entire formulation of this 

model in Appendix B and display the results in Appendix C. In Figure 23 we show the average loading across 

the entire planning horizon for the optimal allocation and the five methods for generating an initial 

schedule. Furthermore we also look at the average difference and average relative difference when 

comparing each of the schedules with the optimal allocation. We calculate the average differences by 

subtracting the optimal overall loading percentage from the results associated with each schedule. To 

calculate the relative differences, we divide the individual differences between the results of schedule and 

the optimal value by our reference value, the optimal overall loading percentage. 
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In Figure 23 we notice which schedules lead to best results. Sorting the machines based on cycle time and 

sorting based on both demand and cycle time leads to an average relative difference of 1.9% and 1.5% 

respectively. Considering the number of units allocated on the ICM, the same two schedules lead to the 

best results. In Appendix C we show the monthly number of units assigned on the ICM, for each schedule, 

and the percentage they represent from the monthly volume. When sorting based on cycle times and both 

on cycles times and demand the average percentage of units assigned on the ICM is 0. This means that no 

units are allocated on the ICM during the entire planning horizon. Considering the other 3 schedules the 

percentages showing the number of units, considered from the total volume across the 24 months, 

assigned on the ICM are 4.9 (No Sorting), 4.6 (Sorting Demand) and 2.1 (Sorting Releases). 

Because each of the two best methods finds better results in exactly 12 out of the 24 months we perform 

a more detailed comparison between the two. We calculate the average difference between the two, 

followed by maximum and minimum difference. We display these results in Figure 24. 

From this comparison, we notice that when sorting based on cycle times leads to better results all the 

three differences are lower than when sorting both based on demand and cycle times. Based on the 

aforementioned results we reach the conclusion that when the former performs better, the latter is closer 

to these values than when the opposite occurs. So, at this point, we state that the best method for 

generating the initial schedule is to first sort the products on decreasing demand and then, for each 

product, sort the machines on increasing cycle times. In the next section we show which of the local search 

algorithms can better improve our best initial schedule.  

5.4 Local Search Algorithms 
 
As we previously state, from the literature review we introduce in Chapter 3, we conclude that Simulated 

Annealing and Tabu Search are the two algorithms best matching our problem statement. Furthermore, 

also through the literature research we find out that the opinions on which algorithm performs best are 

quite divided and that some authors even state it is highly dependent on the problem at hand. Hence, we 

decide to test which algorithm fits best for each of our three different goals: optimizing the initial schedule, 

releasing existing machines and releasing a newly purchased machine.  

The behaviour of each of the two metaheuristics we compare depends on the values of certain 

parameters. For each algorithm we perform various tests, for which we introduce the results in our 

Appendix D, F and H, to choose the right parameters.  

Figure 23 Comparison between the two best schedules 

Figure 24 Best two schedules – Average, Maximum and Minimum difference 
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First, considering Simulated Annealing, four parameters are relevant for defining an appropriate cooling 

schedule. As we describe in the literature review the algorithm starts with a high initial temperature and 

slowly reduces it until a stopping criterion is achieved. The initial temperature for a Simulated Annealing 

algorithm should be set to a value large enough to make the acceptance probability as close to 1 as 

possible. The idea of having an acceptance probability close to 1 is to ensure that, in the beginning, the 

algorithm accepts almost all transitions. Hence, to choose an appropriate value for the starting 

temperature we calculate the ratio between the accepted and proposed number of transitions at the start 

of the algorithm.  In general, we choose the value of the starting temperature for which the acceptance 

probability turns out to be close or above 0.95.  

Regarding the stopping criterion for a Simulated Annealing algorithm, the two most common ones are: 

letting the temperature gradually decrease until it reaches a very small value or stopping when no 

improvements are found for a certain number of consecutive iterations/temperature values. We use the 

first one for our experiments, hence for all Simulated Annealing algorithms we set the stopping 

temperature to 0.5. 

The next relevant parameter for a Simulated Annealing algorithm is the Markov chain length. This 

parameter shows the number of iterations that are performed at each temperature level. From literature 

we find that the Markov chain length should be proportional to the number of neighbouring solutions that 

can be generated from a given current solution. In every iteration our Tabu Search algorithm creates a list 

of all the possible candidates, hence the neighbouring solutions that can be reached from the current 

state. We start our experimentation by setting the length of the Markov chain equal to the number of 

candidates and, depending on the results, we double it. Furthermore, we also test the feasibility of smaller 

values. The last parameter we require for defining a cooling schedule is the decreasing factor. We choose 

the appropriate values for this parameter by varying its values and comparing the results in terms of 

objective function values and running times. 

Regarding the second metaheuristic we use in our research, there are two parameters for us to consider. 

These parameters are the maximum number of iterations and the length of the tabu list. According to 

Osman (1993) appropriate estimates for the two parameters depend on the problem characteristics. We 

check multiple papers presenting different guidelines for choosing the right values for these two 

parameters. 

In the paper of Romero-Conrado et al. (2019), the tabu tenure is set to represent a certain percentage 

(25%, 50% 75%) from the number of iterations. Schweiger and Sahamie (2013) state that if the length of 

the tabu list is too small then the algorithm will be cycling around a local optimum solution, while, if the 

length is too high possible solutions can be excluded, hence limiting the solution space. Furthermore they 

mention that if the length of the tabu list becomes equal to the number of iterations then no further 

improvement can be achieved and the value of the objective function stagnates. To select the right value 

for the tabu list length they keep the number of iterations constant and analyse the solution in term of 

objective function values for different lengths of the tabu list. 

We follow a similar approach as Schweiger and Sahamie (2013). We start by setting the number of 

iterations in a similar manner as the length of the Markov chain, proportional to the number of candidate 

solutions. Next, we vary the length of the tabu size to represent a certain percentage from the number of 

iterations. 
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In this section we show the results, in terms of objective function and running time, we obtain when using 
the six algorithms. Moreover, in Appendix D, F and H we show how we select the right parameters for each 
algorithm. 

5.4.1 Optimizing the Initial Schedule 
 
Once we create an initial schedule, the next step in our heuristic has the goal of minimizing the total 

loading of the existing machines. To check if any of the two local search algorithms can improve our best 

initial schedule, we run both models using the inputs we describe in Section 5.1. We display the parameters 

we choose for each method in Figure 25, while Figure 26 shows a comparison between the results. 

 

 
We calculate the average differences by subtracting the overall loading percentage of the initial schedule 

from the results we obtain from the metaheuristics. For the relative differences we divide the individual 

differences between the results of the metaheuristics and the initial schedule loading by our reference 

value, the overall loading of the initial schedule. 

As we notice in Figure 26 the average difference when using Simulated Annealing is closer to the optimal 

schedule and the difference between the two metaheuristics is of 0.033%. In Appendix E we display the 

overall loading percentages on a monthly basis. We compare the results both in terms of which algorithm 

manages to improve the initial schedule the most and in terms of the difference from the optimal objective 

function value. In Appendix E we see that in two months no algorithm manages to obtain a product-

machine allocation that results in a smaller overall loading. However, when comparing the other months 

we conclude that in 13 out of the 24 months Tabu Search improves the initial schedule more than 

Simulated Annealing. Considering the months in which the algorithms cannot improve the initial schedule, 

we see that Tabu Search does not find a better allocation for only 2 months, while for Simulated Annealing 

there are 9 months in which the initial schedule is not improved at all.  

Although Tabu Search finds a better solution for a higher number of months, when checking the average 

improvement over the 24 months we notice a higher value for Simulated Annealing. We notice a similar 

behaviour in terms of the maximum improvement across the 24 months. Hence, at this point, we conclude 

that although Simulated Annealing does not find the best solution as often as Tabu Search, in some of the 

months where improvements are found the reduction in objective function value is much greater than the 

Figure 25 Chosen parameters 

Figure 26 Overview of Simulated Annealing and Tabu Search in comparison with the optimal values 
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one of Tabu Search. For example, in month 21 Tabu Search can only improve the overall loading by a total 

of 0.1 % while Simulated Annealing performs a reduction of 1.2%. 

Both algorithms start from the best initial schedule we choose in Section 5.3. Considering the number of 

units assigned on the ICM, given that we find a 0% of the total volume assigned on the ICM in the best 

initial schedule, the same remains true after running the local search algorithms. 

Given the results, we conclude that for finding as many improved solutions as possible one should choose 

Tabu Search. However, if reducing the overall loading is critical one should cross check the results of Tabu 

Search by also running the Simulated Annealing algorithm. 

To compare the running times, in seconds, of the local search methods 
we calculate the average, maximum, and minimum running time  over 24 
months. We show these results in the last three rows of Figure 27. Based 
on these results we state that, on average, Simulated Annealing 
outperforms Tabu Search in terms of execution time, even though the 
maximum value for running times of Simulated Annealing is 446 seconds 
greater than the one of Tabu Search.  
 
Even though the average difference between the execution times of the 

two algorithms is 246 seconds we still choose Tabu Search, given the 

more months in which it finds improved solutions. However since such 

a difference in running times might appear for each month in the 

planning horizon, depending on the length of this horizon, we might 

incline in favour of Simulated Annealing in order to reduce the total 

running time. 

 
 

 

5.4.2 Releasing Existing Machines 
 
After optimizing the initial schedule, and building inventory if needed, we reach the next optimization step 

in our heuristic. At this step we address our following research question: “What machines can be released 

for a certain product to avoid ordering a too high amount of new equipment every time the demand is 

increased?“.  

Our heuristic performs this step if the loading on the infinite capacity machine is greater than 0, meaning 

some volumes were previously allocated there. In this step the algorithm checks if any of the existing 

machines can be released for the products allocated on the ICM. Thus, at this point, our aim is to decrease 

the loading of the infinite capacity machine by allocating more volumes within the existing machines, if 

possible.  

Even though we try to reduce the loading of the infinite capacity machine, we cannot neglect the overall 

loading of the existing machines. If the objective function of the local search method would strictly refer 

to the minimization of the ICM loading, allocating certain volumes to any of the existing machines would 

lead to the same improvement in our objective function. However, if we try to allocate the volumes to the 

machines with smaller cycle time, we also keep the overall loading of the existing machines under control. 

Figure 27 Monthly Running times – 
Simulated Annealing, Tabu Search 
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We consider both loadings to be equally important, therefore, we combine the two into one objective 

function focused on minimizing the sum of both loadings. 

To ensure that no decrease in the ICM loading creates a higher increase in the other loading, we set the 

cycle times on the ICM to have a higher value than the maximum cycle time on the existing machines.   

To prevent the algorithm from releasing all machines for all products assigned on the ICM we perform a 

single release at a time, followed by refreshing the initial schedule to calculate the new objective function. 

If all the volume of a product from the ICM gets assigned within the regular machines, the algorithm will 

not perform another release for that product. 

For this test we consider a planning horizon of 12 months. Regarding the input data, we previously describe 

it in Section 5.1. Just as before, in Figure 28 we display the parameters we choose for each local search 

method. In Appendix F we discuss how we choose these parameters. 

 

 

 

In Figure 29 we display the results of the two metaheuristics compared to the initial schedule we obtain 

when the releases are cancelled. We perform this comparison to check which algorithm manages to 

improve this schedule the most, by releasing the preferred machines for the products allocated on the 

ICM. Figure 30 displays similar results, however, this time we compare the result with the best initial 

schedule we choose in Section 5.3. Because the only modification we make in this data set is cancelling 

the machine releases for 10 products we expect the algorithms to be able to return results similar to the 

ones from this schedule. 

 

 
 

Figure 28 Local Search Parameters – Releasing existing machines 

Figure 29 Overview of Simulated Annealing and Tabu Search in comparison with the current initial schedule 

Figure 30 Overview of Simulated Annealing and Tabu Search in comparison with the target initial schedule 
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We calculate the average differences by subtracting the overall loading percentage of the two initial 

schedules from the results we obtain from the metaheuristics. For the relative differences we divide the 

individual differences between the results of the metaheuristics and the two initial schedules by our 

reference values, the overall loading from the initial schedules. As we show in Figure 29, Tabu Search is 

the one best decreasing the initial overall loading. In Figure 29 we notice negative values for both 

differences. When analysing the monthly loading percentages we notice that for a total of 6 months Tabu 

Search manages to obtain results improving the target initial schedule.  

As we show in Appendix G Tabu Search finds better results for all the 12 months. Besides, in some months 

the results we obtain from Tabu Search are improving the loading of the target initial schedule, hence 

making them even closer to the optimal values. The reason behind the poor performance of Simulated 

Annealing is based on its random generation of moves. When performing either local search heuristic for 

releasing existing machines, a product – machine combination has its releasing value flipped from 0 to 1. 

Once the algorithm updates this release, it generates the initial schedule again. As the monthly loadings 

from Appendix G show there is plenty of capacity available in each month. Hence, once the algorithm 

refreshes the initial schedule the product for which an existing machine was released will be allocated 

within existing machines and removed from the ICM. One of the main differences between the two 

metaheuristics is that while Tabu Search generates a list of candidates and aims to select the best one, 

Simulated Annealing generates a move based on the random selection of an existing machine. This being 

the case, Tabu Search will always aim to fit each product on its preferred machine (in terms of cycle times) 

while Simulated Annealing will fit it on a randomly selected machine.  

Regarding the number of units remaining on the ICM, when using our chosen parameters the loading of 

the ICM is 0 in all 12 months. 

Besides the overall loading resulting from this step, we also check the number of releases the algorithms 

decide to perform for each of the 12 months. In Figure 31 we display the number of releases that the two 

metaheuristics perform. As we previously mention in Section 5.1, for this test we cancel the machine 

releases associated with the first 10 products with positive demand in month 1. Because these products 

do not have a positive demand across the entire planning horizon and since the algorithm only releases a 

machine if the demand is positive, we expect the monthly number of releases to vary. Moreover, we 

expect the number of monthly releases to be equal to the minimum number of products having positive 

demand in each of the 12 months.  

 

 

The only month in which the number of releases is different than the number of products with positive 

demand is month 4, when Simulated Annealing performs one more release than Tabu Search. The number 

of releases is highly related to the total costs, since for each release, depending on the month, a certain 

cost is incurred. Hence, considering the total costs, in month 4 the outputs of Tabu Search result into a 

lower cost that the company has to cover.  

In terms of running times, we perform a similar analysis to the one we introduce in the previous section. 

This time, the average running times are: 1.4 seconds for Simulated Annealing and 44.3 seconds for Tabu 

Figure 31 Monthly Number of Releases – Simulated Annealing, Tabu Search 
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Search. Even though, Simulated Annealing seems to outperform Tabu Search in terms of running times, 

we decide in favour of Tabu Search given the differences in loading.  

Given that, in this test, the existing machines have enough leftover capacity to fit the products allocated 

on the ICM, we want to check the results if the contrary occurs. Hence, we perform a similar test in which 

we increase the demand of each product by a constant amount with the aim of increasing the overall 

loading. We present the results, in terms of loading, number of releases and running times, in Appendix 

G. 

5.4.3 Releasing a New Machine 
 
In this section we address the following research question: “How many machines does the company need 

to order and when should these orders be placed to properly handle the upcoming increase in demand?” 

We only include a new machine if, after performing all the previous steps, the loading on the ICM is still 

above 0. When we do add a new machine, the algorithm selects the first fictive machine, and starts 

considering it as ready for production. Just as for the MILP model, all the fictive machines are identical in 

terms of capabilities, cycle times and OEE components. Moreover, no releases are set for any of the fictive 

machines. 

Since we design identical fictive machines, we no dot require any optimization to be able to select the best 

one to purchase. However, because no releases are set for these machines, we again use local search 

algorithms to pick the best products for which one or each (if more machines have to be purchased) 

machine should be released. 

As we state in the beginning of this chapter, we again perform a comparison between Simulated Annealing 

and Tabu Search. At this point in the model, we include all the constraints we introduce in the formulation 

of our MILP model.  

Regarding the input data, we previously describe it in Section 5.1. Instead of the 7, 8 or 9 machines 

available in each month, we only use 5. We consider the other machines as fictive and check how many 

machines the company has to purchase to fit the entire demand. We perform this test for a period of 12 

months. Figure 32 shows the parameters we select for each local search algorithm. 

As we display in Appendix I, in three of the twelve months (4,6,8) the overall loading resulting after 

generating the initial schedule, turns out to be below 100%. Hence, we do not attempt to order a new 

machine in these months. Considering the other months, we notice that in all of them Tabu Search reaches 

a loading value better than or at least equal to the one from Simulated Annealing. Moreover, in months 5, 

9, 10 and 11 Tabu Search outperforms Simulated Annealing by a minimum percentage of 0.7 and a 

maximum of 11.  

Figure 32 Local Search Parameters – Releasing a new machine 
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In terms of running times we notice a big difference between the two algorithms, the difference between 

the two maximum values being of 999.2 seconds (16.65 minutes). In order to test multiple configurations 

and provide a hint of the robustness of our model we repeat the same test when only 4 machines are 

available. Just as before, we allow the algorithm to order one new machine and introduce the results in 

Appendix I.  

For this step, we decide to, yet again, decide in favor of Tabu Search. We make this decision considering 

the 11.029% we find in one of the months and we believe this option to be used as a last resort. As we 

previously state, ordering a new machine will only be used if all the other steps are not capable of reducing 

the loading of the ICM to 0. However, if running times are more relevant we advise for selecting Simulated 

Annealing as an alternative. We introduce more recommendations in Chapter 6. 

5.5 Heuristic vs MILP Model 
 
In this section, we analyse the results of our heuristic and compare them with the optimal ones that we 

obtain from solving our MILP model. Furthermore, we also show Sensata’s results when using the same 

input data. 

We perform this final test using the initial data set we describe in Section 5.1. This set contains the data 

currently used in Sensata’s capacity planning model. We aim to obtain a product – machine allocation for 

a total of 260 products and 9 machines. Furthermore, we run this test for a planning horizon of 24 months.  

We define the criteria on which we perform the comparison between our results to address the following 

research question: “What are the criteria on which we compare the 2 models?”. Even though the objective 

function we choose for the MILP model aims to minimize the total incurred costs, we first compare the 

two models when attempting to minimize the overall monthly loading. We set up the three different types 

of costs associated with the three decisions available for capacity managers, in order to reflect the 

preferred order for these decisions. We attempt to minimize the total cost in the MILP model to ensure 

that it selects the decisions in this preferred order. If we try to minimize the total loading, the model will 

have the liberty of, for example, purchasing as many machines as possible (maximum number of machines 

it could purchase is equal to the number of fictive machines we decide to use in our inputs). Hence, we 

choose to compare the two in terms of overall loading, since our main interest lies in ensuring that Sensata 

has enough capacity to meet their increasing demand. 

Figure 33 shows the overall loading we obtain from the MILP model and the heuristic, plus the loading 

from Sensata’s current model. Because we do not notice a difference in terms of cycles times between 

existing machines (each product requires an equal amount of processing time on all the machines) we do 

not use include the optimization of the initial schedule. 
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By highlighting certain cells, we display the months in which either the MILP model or the heuristic builds 

units for inventory. As we highlight in the second column, opposite to the MILP model, our heuristic builds 

inventory in the majority of months. When closely analysing the product – machine allocation, we notice 

that for items having machines released in the prior months the algorithms builds the associated amounts 

as inventory in those previous months. For example, consider that product p is a new product introduced 

by the company. This means that no machines are released to handle its manufacturing. Furthermore, 

assume that this product start having demand planned from month 4 onwards. Our algorithm will release 

one or more machines, depending on how high the demand is, to cover the newly added item. This release 

will occur in month 4. Next, in month 5, the first decision our algorithm attempts to make is building 

inventory. Because, for month 5, product p still has its volume assigned on the ICM the algorithm builds 

the associated number of units as inventory in month 4. This happens because we do not revisit the 

decision we priorly take. In our recommendations section we further address this issue. 

Considering the overall loading for month 5, we notice that the values are above 100%. This happens 

because the capacity of the entire machine type is fully booked. When the capacity is fully booked and 

there are couple of products for which existing machines should be released, our algorithm is not able to 

proceed with the releases since none of the existing machines can fit these volumes. Hence, in this case, 

two products remain assigned on the infinite capacity machine. 

When looking at the average values from the three models we notice that the values are very close to each 

other. Although the average value we obtain from the heuristic seem to be the best, we do not fully agree 

with this. A reason behind this is the fact that when comparing the demand summed up across all products 

in the entire planning horizon, we find a difference of approximately 598 units. The input data we use for 

Figure 33 Overall Loading Percentages – MILP, Heuristics, Sensata’s Model 
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our heuristic is 598 units short compared to the one used for the MILP model. This occurs because we 

priorly round these values for simplicity.  

To validate the results we obtain from building inventory, we only allow the algorithm to build inventory 

and analyse the months in which it does so. Figure 34 shows the monthly inventory levels for the entire 

planning horizon. 

 

 

 

 

 

 

 

 

This time we notice that the heuristic builds inventory in fewer months than 

before. While the MILP model decides for building inventory in 7 out of 24 

months, our heuristic does so in only 6. We notice the same pattern of building 

inventory in months prior to having an overloaded process (above 100% in 

Sensata’s model). However, because we do not allow any machine releases, 

some products stay allocated on the infinite capacity machine, and less 

inventory is being built. We observe that some products are still allocated on 

the ICM through the percentages above 100 which we can see in Figure 35. 

Considering the total costs, we obtain different results. First, since when 

allowed to perform releases, the heuristics decides on building more inventory 

than the MILP model, the costs suffer an increase. Regarding the number of 

releases, for each of the 7 products for which no machine is released, both 

models require a single release. Finally, since none of them decides for 

purchasing a new machine, these costs are not incurred. Based on these 

results, we conclude that the MILP model performs better in terms of costs 

and that the difference comes from the number of units built as inventory. 
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Chapter 6 Conclusions and Recommendations 
 
In this chapter we conclude our research and provide recommendations both in terms of implementation 

of our final deliverable and in terms of future work that could improve our results. The first section 

discusses our concluding remarks related to the steps performed during this research and the outcomes 

we obtained. Next, in Section 6.2 we state the recommendations we deem important for implementing 

our algorithm as the new capacity planning model for the MEMS and MSG departments. Section 6.3 

provides our suggestions related to the future work or research that can be done to further ensure the 

feasibility of our heuristic. Finally, in Section 6.4 we introduce the limitations of our research. 

6.1 Conclusions 
 
As we state throughout this research, our main goal is to develop a new strategic capacity planning model 

for two of Sensata’s automotive departments. The need for such a model arose due to the simplicity of 

their current model and the limitations imposed by Excel. To structure our research, we define multiple 

research questions, which we previously introduce in Chapter 1. Throughout this research, we provide the 

answers for these questions and we conclude by summarizing the most relevant remarks here. 

To achieve our goal, first we perform a detailed analysis of the current situation, specifically, the current 

capacity planning model used by the two departments. Through this analysis we identify the factors 

considered in their model, the simplifications incurred by the capacity managers and the relevant factors 

which were excluded due to such simplifications. In terms of existing factors, we identify the following: 

demand, capacity related aspects (number of working days, number of hours available for production, 

buffer and OEE), and processing times.  

Considering the simplifications incurred by the capacity managers, these vary from using average values 

for parameters such as processing times and OEE to excluding relevant factors such as machine capabilities 

or releases. As a result of using averages for processing times and OEE, their model is not capable of 

reflecting the differences between multiple machines of the same type. Such an example is the difference 

on processing times, for the same product, present between two machines of two different generations. 

Moreover, when analyzing the current situation, we also investigate what decisions can the capacity 

managers make in order to keep up with the constant increase in demand. As we state on multiple 

occasions, the three main decisions refer to building inventory, releasing existing machines or purchasing 

a new machine. 

Besides obtaining a better understanding of the current situation, we perform a literature study focused 

on two main aspects. On one hand, we focus on defining a linear programming model to match Sensata’s 

manufacturing process, hence looking into various types of objective functions and constraints. As a result, 

we formulate the mixed-integer linear programming model we previously describe in Chapter 4 and use it 

for benchmarking the results we obtain from our heuristic. On the other hand, we look into the best 

algorithms, known in literature, which can be used for designing such a heuristic. We choose to have this 

heuristic serve as the main deliverable of this research and the basis of a capacity planning tool that 

Sensata can use in the future. As a result of the literature review, we perform comparisons between 
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Simulated Annealing and Tabu Search for three different stages of our heuristic. These stages refer to 

optimizing the initial schedule, selecting the best machines to release for the products assigned on our 

ICM, and selecting the best products from this ICM for which a newly arriving machine should be released. 

To ensure that the MILP model reflects the real-life situation of Sensata’s manufacturing process, we use 

the inputs from their current model in our testing. Because aspects such as building inventory or releasing 

existing machines are not considered in the company’s model, we could only compare the two models in 

terms of the monthly overall loading.  

When building our heuristic, we pick an iterative approach where we implement one step at a time. At 

each of the three optimization stages, we perform a comparison between two different local search 

algorithms. We select the parameters for each local search algorithm by combining the guidelines available 

in literature and the experimentation with different values. Based on the results, our final choices in terms 

of optimization methods are performing Tabu Search for all the three optimization stages.   

In this research we create a heuristic to replace the current strategic capacity model used within 

Sensata’s automotive departments. We compare the results with the optimal values, which we obtain by 

defining a MILP formulation matching their manufacturing environment. 

Our method distinguishes itself from the ones we encounter during our literature research due to the 

approach we choose. Most of the models for strategic capacity planning rely on (MI)LP models modelling 

the constraints of the various manufacturing environment. Some authors choose a combination of such 

models and simulation techniques, while others combine it with combinatorial optimization techniques, 

such as Branch and Price. Given the resemblance of Sensata’s manufacturing process with a job shop, we 

opt for local search algorithms, such as Simulated Annealing and Tabu Search, in the design of our 

heuristic. According to our literature study, these methods are the best at solving scheduling models in a 

job shop manufacturing system. 

Besides our approach, another difference comes from the factors we decide to consider in our model. 

Most of the strategic capacity planning models strictly consider aspects such as inventory build-up, 

capacity requirements and the number of resources required for production. In our research we choose 

to extend on the general models we encounter in literature and include additional constraints related to, 

for example, machine capabilities and releases, OEE components and lead times for the three main 

actions available to the capacity managers. We do this in the attempt of reflecting the real-life situation, 

as accurately as possible, in our model.  

Considering the applicability of our algorithm, we believe that it can be adjusted to fit similar 

manufacturing systems in the make-to-order environment.  
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6.2 Recommendations for Implementation 
 
In this section we present our recommendations for ensuring a smooth implementation of our heuristic 

as the new strategic capacity planning model for the two automotive departments. We start by suggesting 

various improvements in terms of the input data. Next, we address multiple recommendations in terms of 

code optimization and thresholds that the company needs to set to ensure an accurate reflection of the 

real-life situation. In the end, we draw attention to the various guidelines, regarding local search 

parameters, which the managers should be aware of when using our algorithm.  

Input Data 

In their current model, the capacity managers are using average values for parameters such as processing 

times and OEE. This approach fails to reflect the differences between individual machines of the same 

type. Furthermore, as we describe throughout this research, the company can reflect the real-life situation 

in a more accurate manner by considering parameters such as machine capabilities and releases. Hence, 

we suggest the following: 

 processing times: For newer generation machines, the company makes use of automatic data 

collection. We suggest implementing automatic data collection also for the older machines, if 

possible. Once this data is available, the company can create a matrix showing the real value of 

processing times for each product – machine combination. 

 OEE components: at the moment, the company is using a single value to compensate for the effect 

of this parameter. This value serves as the availability component. We suggest the separation of 

this value into quality, reflecting the yield loss, and availability, reflecting the percentage of time 

each machine is up for production. We suggest this separation since the availability parameter is 

strictly dependent on the machines themselves, while, the yield loss also depends on the products 

manufactured. 

 machine capabilities and releases: because these factors were not included in their current model, 

no matrix showing, for example, which machines are released or capable to produce which 

product, is available. We recommend the managers to obtain such information from the 

manufacturing facility or create such overview if none is already available. 

Cost related thresholds 

Each of the three main decisions available for the capacity managers has an associated cost. In the MILP 

model we aim to minimize the total cost incurred for the planning horizon. This is done by inspecting all 

the available combinations, and searching for the combination which results in the minimum value of 

these costs. However, in our heuristic we do not examine all these possible combinations. Instead, our 

algorithm decides to use one of the three actions if any volume is allocated on the infinite capacity 

machine. The algorithm choses these actions in a certain order, from the least to the most expensive one, 

which means the algorithm will first try to reduce the loading on the ICM by building inventory. If the 

loading on the ICM is still above 0 the algorithm tries to perform releases within existing machines, and, 

as a last option the algorithm decides that a new machine is needed. 

In our heuristic we do not include any predefined limits for the number of units that can be held in 

inventory or for the number of machines that can be released. However, in the MILP model the solver 

decides, for example, at which point is more profitable to release existing machines instead of building 
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inventory. This being the case, we recommend the implementation of two thresholds reflecting the 

number of units to be kept in inventory and the number of existing machines to release. Such limits should 

be set considering certain cost thresholds that each step should not exceed. 

Code Optimization 

First, since the goal of this research was to provide a proof of concept of a working strategic capacity 

planning algorithm and due to time limitations, we could not provide the company with a fully optimized 

capacity planning tool. We recommend further optimization of the code, which in our opinion has the 

potential of further reducing the running time. For example, one can keep track of the fully loaded 

machines on a monthly basis. This becomes useful when the algorithm generates the initial schedule or 

attempts to build inventory. By keeping track of the fully loaded machines one avoids checking whether a 

machine has any available capacity every time a product needs to be assigned.  

Guidelines in terms of local search parameters 

 Optimization of the initial schedule: based on some discussions we had with the capacity 

managers, we reach the conclusion that sometimes they might be interested in performing a quick 

capacity check to ensure they can fit additional last-minute demand. At this point, they are not 

interested in a result as close to optimal as possible. Hence, we suggest adjusting the parameters 

to provide the managers with an output in less time than if a better result is desired. In this way, 

quicker running times are preferred in detriment of the objective function value. However, if, for 

example, they are looking into the possibility of postponing the purchasing of a new machine by 

one month, then they should strive to have a better objective function value in detriment of 

running times. 

 Releasing existing machines: the number of iterations for Tabu Search should be set either to the 

total number of releases they want to allow in each month or to the total number of products for 

which no machine is released. The first option applies for the case when the entire demand of 

some products did not fit within existing released machines. The second applies in case new 

products are added in the demand forecasts. When new products are added, no machines are 

released for these products, hence the capacity managers can just use our algorithm to determine 

the best machines to release.  

Given the results we describe in Chapter 5 we recommend the company to proceed with the 

implementation of our Delphi algorithm. We do not recommend the purchasing of AIMMS, or any similar 

commercially available software, unless the optimal results are desired. The most important reason for 

which we choose in favor of Delphi is the flexibility our algorithm offers. We program various procedures, 

which the managers can use either sequentially or separate. Using the procedures sequentially means 

running all the steps of the algorithm to provide a full overview of the decisions they can make. However, 

our algorithm offers the freedom of performing quick checks for different purposes. For example, if the 

managers are aware of leftover capacity in a certain month, but they wish to check an approximate amount 

they can simply generate an initial schedule. Considering that the results of the initial schedules are already 

close to the optimal ones, this quick check is capable of providing a reliable overview. 

In the case of new products being added to the production list, no machine releases being in place and 

knowing from previous results that the available capacity will suffice, the managers can generate an initial 

schedule and only run the releasing existing machines optimization step. Such flexibility is hard to obtain 
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when using AIMMS, since that involves removing certain constraints and, at times, adjust the objective 

function.  

6.3 Future Work 
 
In this section we mention our recommendations for the future work which can be done either if an 

improvement or further validation of the model is desired. First, we refer to the future work concerning 

our local search algorithms. Next we mention recommendations related to the revision of the decisions 

the algorithm priorly takes. In the end we draw attention to the analysis the company should perform if 

they later decide in favour of buying AIMMS followed by describing certain extensions which they can 

implement by further disaggregating their input data. 

 Local Search algorithms: 

o for the local search algorithms related to the optimization of the initial schedule, we 

recommend experimenting with different neighboring structures. For this stage, we 

believe that the solution space can be searched more extensively. We suggest using a 

neighborhood structure that allows changing the number of products assigned on a 

machine. For example, one could try swapping the volumes of 2 products assigned on one 

machine with 1 product assigned on another machine. However, since we are not aware 

of how easy it can be to find 3 such products, we recommend combining the one we 

mention above with our neighboring structure (swap one with one). At this point the 

algorithm can make use of a random number generator based on which it can decide what 

kind of swap to perform in each iteration.   

o if the company wishes to bring the results even closer to the optimal values, then we 

suggest performing more experimentation with the parameters associated with each 

method. However, the company should be aware of the fact that if better results are 

desired this can lead to a substantial increase in terms of running times. 

 Revision of previous decisions: as we state when describing our heuristic in Chapter 4, we choose 

to build our algorithm by using a hierarchical/iterative approach. We implement one step at a time 

and test each step separately. Only after ensuring the well-functioning of each individual step we 

start by testing combinations of two stages and end with testing all the stages together. Because 

of this approach, the decisions that the algorithm makes at the first steps are not revisited at later 

stages. For example, when deciding to build a certain number of units as inventory, the algorithm 

does not revisit this decision if it needs to check for releasing existing machines. When releasing 

existing machines, we flip the release value for one product - machine combination, and refresh 

the initial schedule. However, when refreshing the initial schedule, the demand of the products 

for which we build inventory is lowered by the number of units kept as inventory.  

To check if lower costs can be attained, we recommend that once a new decision must be made, 

the previous ones should be revisited. To achieve this, one has to refresh the algorithm for every 

new decision (applicable just for releasing existing machines and newly purchased ones). For 

example, if the loading of the ICM is above 0, in month t, after inventory build-up, all the inventory 

built for month t should be cancelled. Next, one should run the optimization method for releasing 

existing machines and if the loading of the ICM could not be reduced to 0 then one should try 

building inventory again. 
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 AIMMS: if the company decides for purchasing an AIMMS license, then we recommend 

performing a sensitivity analysis regarding the cost parameters. Due to time limitations we could 

not perform a detailed analysis ourselves, however we do see differences in results when the ratio 

between the three costs varies. 

 Extensions: the MILP model we design, can be extended to also consider differences in costs when 

performing the same actions. For example, releasing an older generation machine can either be 

less or more expensive than releasing a newer one.  

Besides implementing differences in the cost parameters, one could also do the same in terms of 

the two lead times. Depending on the product – machine combination, performing a release in 

month t can require different lead times. Based on our discussion with the capacity managers, we 

believe that this extension would reflect the real-life situation in a more accurate manner. 

6.4 Limitations 
 
In this section, we describe the limitations of our research. First, our goal is to show the company how 

their model can be redesigned. Hence, developing a fully functional capacity planning tool is out of our 

scope. In our experiments we focus on fine-tuning the local search parameters and picking the best 

method for each stage. We choose to test our algorithm with the data from one of their bottleneck 

machine types (calibrators). However, we do not perform an extensive testing covering all the machine 

types existing in both automotive departments.  

Furthermore, we program our algorithm in Delphi to run for one machine type at once. This means that, 

with the code in its current state, the company is not able to simply input their data concerning all 

machines types and obtain a result covering their entire manufacturing process. Therefore, to overcome 

this limitation, we suggest them to further optimize our code to accommodate all machine types at once. 

Another important limitation of our research is that we do not fully model the real-life situation. Within 

our recommendations we mention elements such as variable costs and lead times which can be added to 

better reflect the real-life situation. However, because we develop a strategic capacity planning model a 

variety of aspects such as maintenance, precedence relationships or set-up times are not included.  
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 Validating the MILP model in comparison with Sensata’s 

model 
 
In here we provide more details regarding the comparison between our MILP model and Sensata’s capacity 

planning model. As we mention in Chapter 5, we perform this comparison by using the initial data set we 

describe in Section 5.1. 

Figure A.1 shows the monthly loading percentages of each individual machine. Figure A.2 shows the 

inventory levels of each month, which we obtain as an output of the MILP model. Next, Figure A.3 shows 

the number of machine releases the model chooses to perform in each month. 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Figure A.1 we display the loading percentages per machine, in each of the 24 months, we obtain as 

output of the MILP model. In the first 7 months, only 7 machines are available, therefore no units are 

allocated on machines 8 and 9. These machines are the ones the company has already ordered and are 

expected to arrive. As we display in this figure machine 8 can be used starting from month 8, while machine 

9 becomes available in month 10.  

 

 

Figure A.1 Monthly loading percentages of each individual machine 
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The algorithm performs machine releases to facilitate the production of 7 sensors for 

which no machine releases are available. Figure A.4 shows the product indices 

associated with each release, while in Figure A.5 we display the demand associated 

with products 213 and 216. Moreover, in Figure A.6 we show the initial releases of 

all machines. In here we can notice that no machines are released for products 213 

and 216. Hence, since machines are released for products 213 and 216 right when 

their demand became greater than 0, we can conclude that the model will only 

perform a certain action when needed or if it leads to smaller total costs.  

Figure A.2 Total number of units kept in inventory in 
each of the 24 months 

Figure A.3 Number of releases performed in 
each of the 24 months 

Figure A.4 Product IDs 
with zero machine 

releases 
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Figure A.5 Demand for 
products 213 and 216 

Figure A.6 Initial machine releases for products 213 and 216 
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 LP formulation – Initial Schedule 
 

MINIMIZE  

∑ 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝐶𝑜𝑠𝑡𝑠(𝑡) ∗ 𝑇𝑜𝑡𝑎𝑙𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦(𝑡) +  𝑅𝑒𝑙𝑒𝑎𝑠𝑖𝑛𝑔𝐶𝑜𝑠𝑡(𝑡) ∗ 𝑇𝑜𝑡𝑎𝑙𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝑠𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑑(𝑡)

𝑇

𝑡=1

+ 𝑂𝑟𝑑𝑒𝑟𝑖𝑛𝑔𝐶𝑜𝑠𝑡(𝑡) ∗ 𝑇𝑜𝑡𝑎𝑙𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝑠𝑂𝑟𝑑𝑒𝑟𝑒𝑑(𝑡)  

subjected to: 

1. ∑ 𝑈𝑛𝑖𝑡𝑠𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑑(𝑖, 𝑘, 𝑡) ∗ 𝑄𝑢𝑎𝑙𝑖𝑡𝑦𝑂𝐸𝐸(𝑖, 𝑘)𝐾
𝑘=1 =  𝐷(𝑖, 𝑡), ∀ 𝑖 ∈ 𝐼, 𝑡 ∈ 𝑀   

 

2. 𝑈𝑛𝑖𝑡𝑠𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑑(𝑖, 𝑘, 𝑡) ≤ 𝑏𝑖𝑔𝑀 ∗ 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑠(𝑖, 𝑘, 𝑡), ∀ 𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑀 

 

3. ∑ 𝑈𝑛𝑖𝑡𝑠𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑑(𝑖, 𝑘, 𝑡) ∗ 𝐶𝑇(𝑖, 𝑘, 𝑡)𝐼
𝑖=1 ≤ (1 − 𝐵𝑢𝑓𝑓𝑒𝑟) ∗ 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑂𝐸𝐸(𝑘, 𝑡) ∗

𝐷𝑎𝑦𝑠𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒(𝑡) ∗ 𝐻𝑜𝑢𝑟𝑠𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 ∗ 3600, ∀ 𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑀 

 
4. 𝑈𝑛𝑖𝑡𝑠𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑑(𝑖, 𝑘, 𝑡)  ≥  0, ∀ 𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑀 
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Initial Schedules Comparison 
 

As we describe in Section 5.3 we compare 5 different ways of generating the initial schedule. In Figure C.1 

we display the optimal monthly overall loading and the loadings associated with each of the 5 schedules. 

We obtain the optimal loading by solving the model we introduce in Appendix B and use its results to 

select the best schedule.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Through the highlighted cells in Figure C.1 we want to show which schedule is closest to the results of the 

LP model. For three of the options (no sorting, sorting on decreasing demand and sorting on the number 

of releases) the results are much worse than the optimal solution we display in column 2. However, for 

the other two options (sorting on increasing cycle times and sorting both on demand and cycle times), the 

results are very close to the optimal values. Besides the monthly loading, we also compare the schedules 

in terms of the number of units allocated on the ICM and the percentage these units represent from the 

monthly volumes. We display these results in Figures C.2 and C.3. 

 

 

 

 

 

 

Figure C.1 Monthly overall loading obtained from AIMMS and the 5 initial schedules 
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Figure C.2 Number of units assigned on the ICM in each of the 5 initial schedules 

Figure C.3 Percentage of the monthly volume assigned on the ICM in each of the5 initial schedules 
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From these figures, we notice that for the two schedules performing best in terms of monthly loading, the 

number of units allocated on the ICM is 0. Considering the other schedules, the average percentage of 

volume allocated on the ICM varies between 4.9% and 2.1%.  

Since two of the schedules, sorting based on cycle times and sorting on both cycle times and demand, 

perform best in exactly 12 out of 24 months, we create a more detailed comparison between them. Figure 

C.4 shows this comparison. 

 

 

 

  

 

 

 

 

 

 

 

 

 

In columns 4 and 6 we display the differences between the results from the two schedules and the optimal 

values. Again, we use the highlighting to show which method performs best on a monthly basis.  

 

 

 

 

 

 

Figure C.4 Best two schedules – Difference from optimal 
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Local Search Parameters for Optimizing the Initial Schedule 
 

In this section we show the results on which we base our choices for the local search parameters. This 

section focuses on the Simulated Annealing and Tabu Search algorithms for optimizing the initial schedule.  

 Simulated Annealing 
 
In here we show how we select the four parameters for Simulated Annealing. These parameters refer to 

the initial and final temperature, the cooling factor and the Markov chain length. 

We start by selecting the Markov chain length. This value has to be proportional to the number of 

neighboring solutions, which can be generated from a given current solution. As we mention in Chapter 5, 

we check the number of candidates from tabu search in order to find our initial value for the Markov chain 

length. Next, to check the difference in terms of objective function value (monthly overall loading) and 

running times we also run tests with double this value. Hence, the 2 values we use for this parameter are 

5000 and 10000. 

Next, we select the initial temperature. We select this temperature such that the acceptance ratio at the 

beginning of the algorithm is close to 1. We calculate the acceptance ratio from the following formula: 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝑐𝑐𝑒𝑝𝑡𝑒𝑑 𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠
. We display the results when using both values for the Markov chain length 

in Figures D.1 and D.2. 

 

 

We notice that, in both cases, starting from an initial temperature of 150 the acceptance probability is 

greater than 0.9. We choose 300 as the value of our starting temperature since, in both cases, the 

acceptance probability was greater than 0.95. Furthermore, knowing that the final temperature has to 

have a really small value we decide to set it at 0.5. 

Next, we select the cooling factor. We do this by experimenting with multiple values and checking the 

results in terms of objective function value and computational efforts. We vary the cooling factor while 

keeping all the other factors constant. Moreover, we perform two tests, one for each Markov chain length. 

Figure D.1 Acceptance probability for different starting 
temperatures and a Markov chain length of 5000 

Figure D.2 Acceptance probability for different starting 
temperatures and a Markov chain length of 10000 
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In Figure D.3 we show the results when the Markov chain length is 5000. For each value of alpha we run 

the algorithm 5 times and display the average values for both monthly loadings and running times. 

 

We notice that we obtain the minimum value for the objective function for an alpha equal to 0.97. In 

Figures D.4 and D.5 we show how the objective function values and the running times change with 

different values of alpha. 

 

 
 
 
 

 

 

 

 

 

 

 

 

  

Figure D.3 Overall loading and running times for different cooling factors (Starting Temperature 300, Stopping Temperature 
0.5, Length of Markov Chain 5000) 
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Figure D.4 Objective function values for different cooling factors (Starting Temperature 300, Stopping 
Temperature0.5, Length of Markov Chain 5000) 
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Considering the objective function value, we see that we obtain better results when alpha is greater or 

equal to 0.95. Furthermore, we also notice that on an interval from 0.1 to 0.8 , excluding alpha being equal 

to 0.4 and 0.5, we can find no difference in terms of the monthly overall loading.  

In terms of computational efforts, we see that the overall pattern of the running times shows an 

exponential increase. However, we also see that on an interval from 0.1 to 0.7, the running times display 

a very small increase and that starting from an alpha of 0.8 the values start increasing, reaching a total of 

22 minutes when alpha equals 0.99. These values show the running times for a single month in our model 

and we have to consider that the company wants to run our model for a planning horizon of multiple years.  

In Figures D.6, D.7, and D.8 we display the same results for a Markov chain length of 10000. 
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Figure D.5 Running time values for different cooling factors (Starting Temperature 300, Stopping 
Temperature 0.5, Length of Markov Chain 5000) 

Figure D.6 Overall loading and running times for different cooling factors (Starting Temperature 300, Stopping Temperature 
0.5, Length of Markov Chain 10000) 
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Figure D.7 Objective function values for different cooling factors (Starting Temperature 300, 
Stopping Temperature 0.5, Length of Markov Chain 10000) 
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Figure D.8 Running time values for different cooling factors (Starting Temperature 300, Stopping 
Temperature 0.5, Length of Markov Chain 10000) 
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For a Markov chain length of 10000 we find an improvement 0f 0.007% in terms of monthly overall loading. 

In this case, the same value of alpha, 0.97, brings the best results. Although, when using these values for 

our parameters, the algorithm can find an even better solution the difference in running times between 

the two is of 7.794 minutes.  

In an attempt of reducing the running times we experiment with some other values for the Markov chain 

length. The following three figures display the results when using 2500, 1250 and 625 as our Markov chain 

length. Furthermore for the last two tests we set alpha to 0.99. In figure D.9 we display the values as 

averages of 5 runs, while in figures D.10 and D.11 we display the values of each individual run. 

From Figure D.11 we notice that the only configuration which could find an objective function value close 

to the previous values is for alpha 0.99. We also find similar values for a Markov chain length of 1250 or 

625. However, such values do not appear in all five runs. When selecting our parameters for this algorithm 

we look for the values which lead to good results for all five runs.  

 Tabu Search 
 
In this section we show how we select the two parameters for Tabu search. These parameters are: the 

number of iterations and the tabu list length. We use different values for the number of iterations and, in 

each test, we keep this value constant and vary the tabu list length. We vary the tabu list length starting 

from a value of 5 till we reach the value we use for the number of iterations. We aim to find an interval for 

 

 

 

Figure D.9 Overall loading and running times for different cooling factors (Starting Temperature 300, Stopping 
Temperature 0.5, Length of Markov Chain 2500) 

Figure D.10 Overall loading and running times for α=0.99 (Starting Temperature 300, Stopping Temperature 0.5, Length of 
Markov Chain 1250) 

Figure D.11 Overall loading and running times for α=0.99 (Starting Temperature 300, Stopping Temperature 0.5, Length of 
Markov Chain 625) 
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the tabu list length, chosen as percentage from the total number of iterations, in which the objective 

function value results in the best solution.  

In Figure D.12 we show the results when setting the number of iterations to 100.   

The best values, in terms of monthly overall loading, occur when the tabu list length varies from 30% to 

80% of the total number of iterations. However, since, for this test, the difference in objective function 

values is very small, we are not able to draw relevant conclusions. In Figure D.13 we show how the 

objective function values varies for different values of the tabu list length. We see that, excluding the tabu 

list length of 5, the values are very similar.  

 

 

 

 

 

 

 

 

 

 

  

Figure D.12 Overall loading and running times for different lengths of the tabu list (100 iterations) 
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Figure D.13 Objective function values for different lengths of the tabu list (100 iterations) 
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Next, in Figures D.14 and D.15 we show the same results when using 300 as the number of iterations. 

 

 

 

 

 

 

 

 

 

 

 

We obtain similar results, small variation in terms of objective function values, for 300 iterations. However, 

because in this case the best 2 values we find are for tabu list length equal to 26.7% and 33.3% of the 

number of iterations, we decide to continue our tests by varying the tabu list length on an interval from 

20% to 35%, 40% or 45%.  

In Figure D.16 we show our results when using 1000 iterations and a tabu list length varying from 20% to 

40%. No difference in terms of monthly overall loading is present. 

Next, we increase the number of iterations to 2500, 5000 and 10000 and vary the tabu list length 

accordingly.  

Figure D.14 Overall loading and running times for different lengths of the tabu list (300 iterations) 
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Figure D.15 Objective function values for different lengths of the tabu list (300 iterations) 

Figure D.16 Overall loading and running times for different lengths of the tabu list (1000 iterations) 
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The best value for the objective function value we find is 71.821 and it occurs when running 5000 iterations 

with a tabu list length of 1000. We obtain a similar monthly loading when using 2500 iterations and 750 

as tabu list length. 

In Figure D.20 we show the average running times for different number of iterations. Unlike Simulated 

Annealing, Tabu Search shows a linear increase in terms of computational efforts. 
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Figure D.20 Average running time values for different number of iterations 

Figure D.17 Overall loading and running times for different lengths of the tabu list (2500 iterations) 

Figure D.18 Overall loading and running times for different lengths of the tabu list (5000 iterations) 

Figure D.19 Overall loading and running times for different lengths of the tabu list (10000 iterations) 
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Additional Results - Optimizing the Initial Schedule 
 
As we state in Section 5.4.1 we compare the results we obtain when using either Simulated Annealing or 

Tabu Search in terms of monthly loading. We first compare these results with the loading of the initial 

schedule in order to determine the level of improvement that each local search method could bring. Next, 

we compare the results with the optimal values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Just as before, in columns 4 and 6 we display the differences (in terms of overall loading) between the 

initial schedule and the outputs of the local search algorithms. 

 

 

 

Figure E.1 Monthly overall loading – Comparison between SA and TS related to their initial solution 
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Figure E.2 Monthly overall loading – Comparison between SA, TS related to the optimal values 
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Local Search Parameters for Releasing Existing Machines 
 
In this section we show the results on which we base our choices for local search parameters. This section 

focuses on the Simulated Annealing and Tabu Search algorithms for releasing existing machines. 

 Simulated Annealing 
 
In a similar manner to the one we describe in Appendix D, we select the parameters for this Simulated 

Annealing algorithm. This time, we set the Markov chain length to a high number and stop the algorithm 

when no more products are assigned on the ICM. Varying the starting temperature, we check how many 

transitions does is actually propose and the resulting acceptance probability. We pick a starting 

temperature of 20. Figure F.1 shows these results. 

 

 

 

 

 

 

 

 

Given the results, we set the initial temperature to 20. Moreover, we keep the final temperature to its 

previous value of 0.5. 

From the number of proposed transitions in Figure F.1, we check the minimum, maximum, and average 

values and use them as three different Markov chain lengths to experiment with. We show the results we 

obtain when using these three values and an alpha of 0.1 in Figures F.2, F.3, and F.4. In each Figure we 

display the values we obtain when running the algorithm five times with the same settings. Knowing our 

input data, we know that the model has to release machines for ten products, hence, we started our tests 

by setting the cooling factor to 0.1. Given that when using 0.1 for the cooling factor, the model manages 

to release machines for all ten products we did not vary its values further. 

 

 

Figure F.1 Acceptance probability for different starting temperatures 

Figure F.2 Overall loading and running times for α=0.1 (Starting Temperature 20, Stopping Temperature 0.5, Length of 
Markov Chain 17) 
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In the previous test there is enough available capacity within existing machines to fit the volumes of all 

products allocated on the infinite capacity machine. To further analyse the behaviour of the local search 

algorithms, we adjust our input data to increase the loading of the existing machines. We do this by 

increasing the demand of each product by a constant value. By increasing the loading of the existing 

machines, we expect the model to not be able to fit the number of units associated with all the products 

assigned on the ICM. Furthermore, when performing a new release to fit one of these products, some of 

the products previously assigned within existing machines might be reallocated to the ICM. At that point, 

the model is allowed to pick the best release to perform from an increased list of neighbours. We use the 

same values for the starting and end temperature, and the length of Markov chain, and we vary the cooling 

factor. In Figure F.5 we display the overall loading we obtain when counting the number of units assigned 

on the ICM. We calculate this loading through the following formula: 

𝐿𝑜𝑎𝑑𝑖𝑛𝑔 𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝑠 + 𝐿𝑜𝑎𝑑𝑖𝑛𝑔 𝐼𝐶𝑀

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦
 

Figure F.6 shows the loading when we exclude the volumes allocated on the ICM. In both figures we display 

the running times associated with each cooling factor. Just as before, the values we display in both figures 

represent the averages from the 5 repetitions we perform for each cooling factor. 

  

Figure F.3 Overall loading and running times for α=0.1 (Starting Temperature 20, Stopping Temperature 0.5, Length of 
Markov Chain 14) 

Figure F.4 Overall loading and running times for α=0.1 (Starting Temperature 20, Stopping Temperature 0.5, Length of 
Markov Chain 15) 
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As we notice in Figure F.5, when using a cooling factor of 0.9 we obtain the best results in terms of loading. 
In Figure F.6 we see that in all cases the existing machines are fully loaded, which means that the algorithm 
performs as many releases as possible until no further units can fit. Unlike the previous test, this time the 
results show a positive loading on the ICM. Therefore, for a clearer overview, in Figure F.7 we display the 
number of units allocated on both the existing machines and the ICM. Using a cooling factor of 0.9 results 
in the smallest number of units assigned on the ICM. 
  

 

 

Figure F.5 Overall loading (both existing machines and ICM) and running times for different cooling factors (Starting 
Temperature 20, Stopping Temperature 0.5, Length of Markov Chain 17) 

Figure F.6 Overall loading (existing machines) and running times for different cooling factors (Starting Temperature 20, Stopping 
Temperature 0.5, Length of Markov Chain 17) 
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Tabu Search 
 
Knowing that the algorithm needs to release machines for ten products, we only vary the number of 

iterations between 5 and 20 and keep the tabu list length to a constant value. Since the capacity allows it, 

we expect the algorithm to perform a machine release for one product in each iteration. Hence, we expect 

the number of iterations it needs to release machines for all products allocated on the ICM to be 10. As 

we expect, the algorithm requires ten iterations to reduce the loading from the ICM to 0.  

Given that the capacity allows to fit all the products, without having to decide which product(s) should fit 

to lead to a better objective function, we believe that the value of the tabu list length should have no 

impact for this particular case. We keep the number of iterations constant to a value of 10 and vary the 

tabu list length from 1 to 10 to check if any change occur in terms of monthly overall loading. As we expect, 

the monthly overall loadings are equal for all ten different values of the tabu list length. 

Figure F.7 Number of units (both existing machines and ICM) for different cooling factors (Starting Temperature 20, Stopping 
Temperature 0.5, Length of Markov Chain 17) 

Figure F.8 Overall loading and running times for different number of iterations (tabu list length 5) 

Figure F.9 Overall loading and running times for different lengths of the tabu list (10 iterations) 
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Just as for Simulated Annealing, we check the results after increasing the demand of each product. We 

start by using the same number of iterations and analyze the results when varying the length of the tabu 

list. We display the loadings when considering both the existing machines and the ICM, and only the 

existing machines in Figures F.10 and F.11. Next, in Figure F.12 we display the number of units assigned on 

both the existing machines and the ICM. 

 

 

 
 

 

 
  

Figure F.10  Overall loading (both existing machines and ICM) and running times for different lengths of the tabu list (10 
iterations) 

Figure F.11 Overall loading (existing machines) and running times for different lengths of the tabu list (10 iterations) 

Figure F.12 Number of units (both existing machines and ICM) for different lengths of the tabu list (10 iterations) 
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We notice that no matter the tabu list length the results in terms of loading and number of units are the 
same. Furthermore, we also notice that, just as Simulated Annealing, the algorithm manages to fully load 
the existing machines. To check if we can find a better set of products to assign on the ICM we increase 
the number of iterations to 30 and 50 and repeat the same test. We display the results in the following 
figures. 
 

 

 

 

 
 

Figure F.13 Overall loading (both existing machines and ICM) and running times for different lengths of the tabu list (30 
iterations) 

Figure F.15 Number of units (both existing machines and ICM) for different lengths of the tabu list (30 iterations) 

Figure F.14 Overall loading (existing machines) and running times for different lengths of the tabu list (30 iterations) 
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By increasing the number of iterations we do not notice any change in the results. The algorithm always 

fully loads the machines and, based on the loadings and volumes we observe, we can conclude that the 

products it chooses are always the same or they have equal volumes allocated on the ICM and equal cycle 

times on existing machines.  

 

 

Figure F.16 Overall loading (both existing machines and ICM) and running times for different lengths of the tabu list (50 
iterations) 

Figure F.17 Overall loading (existing machines) and running times for different lengths of the tabu list (50 iterations) 

Figure F.18 Number of units (both existing machines and ICM) times for different lengths of the tabu list (50 iterations) 
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Additional Results – Releasing Existing Machines 
 
As we mention in Section 5.4.2, we compare the monthly loading we obtain from both local search 

algorithms with the current and target initial schedule. The current initial schedule shows the loading, 

including the ICM, we obtain when generating the initial schedule for this test. The target initial schedule 

shows the loading values we obtain before cancelling the machine releases of the 10 products. Hence, by 

comparing the results with the current initial schedule we see which algorithm is able to improve it the 

most. By comparing the results with the target initial schedule we aim to observe if the metaheuristic can 

reach similar results by only performing machine releases. In Figures G.1 and G.2 we show these 

comparisons. 

  

 

 

Figure G.1 Monthly overall loading – Comparison between SA, TS related to the current initial solution 

Figure G.2 Monthly overall loading – Comparison between SA, TS related to the target solution 



 

G2 
 

In Figure G.3 we display a comparison of the running times incurred by the two local search algorithms.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Next, we show a similar comparison of the two algorithms when we increase the demand of each product 

to further load the existing machines. In Figure G.4 we compare the results when considering the loading 

of both existing machines and ICM, while in Figure G.5 we show the results related only to the existing 

machines. Furthermore, in Figure G.6 we show the number of units allocated on both the existing 

machines and the ICM. 

  

Figure G.3 Running times – Comparison between SA and TS 

Figure G.4 Monthly overall loading (both existing machines and ICM) – Comparison between SA, TS related to the initial solution 
– Increased demand 
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In Figure G.4 we notice that Tabu Search decreases the overall monthly loading the most in all 12 months. 

Moreover, in Figure G.5, we see that both algorithms lead to the same results in 4 months, while for the 

rest, Tabu Search results in a smaller loading. When checking the number of units assigned on the ICM 

after running the two metaheuristics, we notice that in 7 out of 12 months Tabu Search results in less such 

volumes. Given that, in some cases, Tabu Search manages to fit more volumes while also resulting into a 

smaller loading, we conclude that it is able to release machines with lower cycle times than Simulated 

Annealing. We expect such results, given that we notice a similar behavior in our previous test. At that 

point, both algorithms manage to decrease the loading of the ICM to 0, but Tabu Search manages to 

release machines with lower cycle times and lead to a smaller loading of the existing machines. 

Although Tabu Search leads to fewer units assigned on the ICM in 7 months, in the 5 months when 

Simulated Annealing outperforms Tabu Search, no units are left on the ICM. Hence, we conclude that the 

lower loading, for Tabu Search, we display in Figure G.5 in months 4, 8, 10, 11, and 12 is a consequence of 

having fewer units allocated on the existing machines. Given that the existing machines are not fully loaded 

in these months, we believe that running Tabu Search with an increased number of iterations can lead to 

results at least as good as the ones of Simulated Annealing. 

Figure G.5 Monthly overall loading (existing machines) – Comparison between SA and TS and the initial solution – 
Increased demand 

Figure G.6 Number of units (both existing machines and ICM) – Comparison between SA, TS and the initial solution – Increased 
demand 
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To summarize the results, in terms of loading, in Figure G.7 we show an overview with the average loading, 

average difference and average relative difference.  

 

 

 

 

In a similar manner as before, we show the running times of both metaheuristics in Figure G.8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure G.7 Overview of the differences between SA and TS when compared with the initial schedule 

Figure G.8 Running times – Comparison between SA and TS 
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Local Search Parameters for Releasing a New Machine 
 
In this section we show the results on which we base our choices for local search parameters. This section 

focuses on the Simulated Annealing and Tabu Search algorithms for releasing a new machine.  

 Simulated Annealing 
 
First, we consider the case when 5 machines are initially available and we allow the algorithm to order a 

new one. We start by setting the Markov chain length to 50. Keeping this value constant, we vary the 

starting temperature. In Figure H.1 we display the acceptance probability values for different starting 

temperatures.  

 

 

 

 

 

 

 

 

 

At this point, our algorithm selects products currently assigned on the ICM for which it should release the 

newly added machine. Hence, no matter what product the algorithm picks, most of the transitions will be 

accepted.  As we see in Figure H.1, the acceptance probability is constant no matter what the initial 

temperature is. For our next steps we pick an initial temperature of 20. Moreover, we keep the final 

temperature to its previous value of 0.5. 

In Figure H.2 we display the monthly overall loadings and the running times for different values of the 

cooling factor. 

  

Figure H.1 Acceptance probability for different starting temperatures – 5 machines 
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We notice that no matter the value of the cooling factor the monthly overall loading is the same. This being 

the case, we change the Markov chain length to check if we can obtain better results. Figures H.3 and H.4 

show the results for a Markov chain length of 10 and 100. 

 

 
In Figure H.3 we see that even when using a Markov chain length of 10 we can obtain the same monthly 

overall loading for a cooling factor greater or equal to 0.4. Considering the Markov chain length of 100 

(Figure H.4), we find the same monthly overall loading no matter the value of the cooling factor. 

Next, we decrease the number of available machines to 4 and, just as before, we allow the algorithm to 

order a single machine. In Figure H.5 we compare the results when considering the loading of both existing 

machines and ICM, while in Figure H.6 we show the results related only to the existing machines. 

 

Figure H.2 Overall loading and running times different cooling factors (Starting Temperature 20, Stopping Temperature 0.5, 
Length of Markov Chain 50) – 5 machines 

Figure H.3 Overall loading and running times different cooling factors (Starting Temperature 20, Stopping Temperature 
0.5, Length of Markov Chain 10) – 5 machines 

Figure H.4 Overall loading and running times different cooling factors (Starting Temperature 20, Stopping Temperature 
0.5, Length of Markov Chain 100) – 5 machines 
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Furthermore, In Figure H.7 we show the number of units allocated on both the existing machines and the 

ICM.  

 

 

 

 

  

Figure H.6 Overall loading (existing machines)   and running times different cooling factors (Starting Temperature 10, Stopping 
Temperature 0.5, Length of Markov Chain 50) – 4 machines 

Figure H.5 Overall loading (both existing machines and ICM)   and running times different cooling factors (Starting Temperature 
10, Stopping Temperature 0.5, Length of Markov Chain 50) – 4 machines 

Figure H.7 Number of units (both existing machines and ICM) for different cooling factors (Starting Temperature 10, Stopping 
Temperature 0.5, Length of Markov Chain 50) – 4 machines 
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 Tabu Search 
 
For this algorithm we start by varying the number of iterations from 5 to 70. For this test we keep the tabu 

list length constant. We display the result in Figure H.8  

 
We observe that when performing 50 iterations, or more, the algorithm finds the same monthly overall 

loading as the one from Simulated Annealing. Hence, we select 50 as the number of iterations. Next, we 

vary the tabu list length from 1 to the chosen number of iterations and show the results in Figure H.9. Just 

as in the case of releasing existing machines, we notice no effect of the tabu list length. 

Next, considering the case when only 4 machines are available, we start by varying the number of 

iterations. This time, we keep the length of the tabu list constant to 30% of the number of iterations. In 

Figure H.10 shows the results when considering the loading of both existing machines and ICM, while in 

Figure H.11 we show the results related only to the existing machines. Furthermore, In Figure H.12 we 

show the number of units allocated on both the existing machines and the ICM.  

 
 

Figure H.8 Overall loading and running times for different number of iterations (tabu list length 5) – 5 machines 

Figure H.9 Overall loading and running times for different lengths of the tabu list (50 iterations) – 5 machines 

Figure H.10 Overall loading (both existing machines and ICM) and running times for different number of iterations (Tabu list 
length set to 30% of the number of iterations) – 4 machines 

Figure H.11 Overall loading (existing machines) and running times for different number of iterations (Tabu list length set to 30% 
of the number of iterations) – 4 machines 
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From the previous figure we see that the results do not change when running more iterations. Hence, to 
test for different tabu list lengths we decide to run a total of 10 iterations. Figure H.13 shows the results 
when considering the loading of both existing machines and ICM, while in Figure H.14 we show the results 
related only to the existing machines. Furthermore, In Figure H.15 we show the number of units allocated 
on both the existing machines and the ICM. 

Given the results, we can conclude that, for this test, 10 iterations are enough to fully load the existing 

machines, and that changing the length of the tabu list does not lead to different results. 

 

 

 

Figure H.12 Number of units (both existing machines and ICM) for different number of iterations (Tabu list length set to 30% of 
the number of iterations) – 4 machines 

Figure H.13 Overall loading (both existing machines and ICM) and running times for different lengths of the tabu list (10 
iterations) – 4 machines 

Figure H.15 Number of units (both existing machines and ICM) for different lengths of the tabu list (10 iterations) – 4 machines 

Figure H.14 Overall loading (existing machines) and running times for different lengths of the tabu list (10 iterations) – 4 
machines 
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Additional Results – Releasing a New Machine 
 
In Figure I.1 we display the monthly loading of both the exiting machines and the ICM. For the initial 

schedule we calculate this loading by only considering 5 machines available, while for the results of SA and 

TS we consider 6. Next, in Figure I.2 we display the running times of both metaheuristics.  

 

 

 

 

 

Figure I.1 Monthly overall loading (both existing machines and ICM) – Comparison between SA, TS related 
to the initial solution – 5 machines 

Figure I.2 Running times – Comparison between SA and TS – 
5 machines 
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Next, we show the same results for the test in which we only have 4 machines available. Figure I.3 shows 

the results when considering the loading of both existing machines and ICM, while in Figure I.4 we show 

the results related only to the existing machines. Furthermore, In Figure I.5 we show the number of units 

allocated on both the existing machines and the ICM.   

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

From Figure I.3 we notice that in 7 out of 12 months both algorithms reach the same results. However, in 

the other 5 months, Simulated Annealing outperforms Tabu Search in most of the cases. In these months 

we notice that the loading, considering both existing machines and the ICM, is lower for Simulated 

Figure I.3 Monthly overall loading (both existing machines and ICM) – Comparison between SA, TS related to the initial solution – 
4 machines 

Figure I.4 Monthly overall loading (existing machines) – Comparison between SA, TS and the 
initial solution – 4 machines 
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Annealing, which means that it manages to reduce the loading of the ICM more than Tabu Search. As a 

consequence it also manages to load the existing machines more than TS. This is exactly what we observe 

in Figure I.4 where we see a higher loading for SA. Furthermore, the results we show in Figure I.5, the 

volumes assigned on both existing machines and ICM on a monthly basis, show that Simulated Annealing 

manages to fit more units within existing machines. Despite these results, we believe that Tabu Search is 

limited by the number of iterations we use and that increasing this value, when needed, has the potential 

to lead to results at least as good as the ones of Simulated Annealing. 

To summarize the results, in terms of loading, in Figure I.6 we show an overview with the average loading, 

average difference and average relative difference.  

 

 

 

 

  

Figure I.5 Number of units (both existing machines and ICM) – Comparison between SA, TS and the initial solution – 4 machines 

Figure I.6 Overview of the differences between SA and TS when compared with the initial schedule 
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In Figure I.7 we provide an overview of the running times incurred by each algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure I.7 Running times – Comparison between SA and TS 
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 Flowchart – Entire Heuristic 
 

Extensions multiple facilities by just setting machine releases to the good values. 

Figure J.1 Flowchart showing the steps of the entire heuristic 

 


