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SUMMARY  
 

The use of machine learning (ML) in medical imaging is rapidly increasing. Its ability of mapping the 

relationship between a defined input and output through learning by examples makes ML useful for a 

wide range of applications in radiology and nuclear medicine. As multiple parameters can be 

integrated into a single outcome, it particularly has great potential to enhance diagnosis and prognosis 

to facilitate patient management. In this thesis, we focus on the use of  support vector machines 

(SVMs) to detect Parkinson’s disease (PD), myocardial ischemia and major adverse cardiac events 

(MACE).  

 

In the first study, we aimed to develop and validate a linear SVM classifier to discriminate PD from 

non-PD based on I-123 FP-CIT SPECT striatal uptake ratios, age and gender. Its generalizability was 

assessed using previously unseen datasets from two centers using comparable acquisition and image 

processing methods, thereby comparing prediction performances of the derived model between sites. 

Expert nuclear medicine physicians scored I-123 FP-CIT SPECT scans of both datasets as either PD 

or non-PD after which their prediction performance was compared to that of the SVM model to assess 

its clinical value. We found that comparable prediction performances were obtained between sites with 

classification accuracies of 95.0% for the dataset from the same center the model was developed and 

82.5% for the other. The performances found were similar to that of nuclear medicine physicians who 

achieved accuracies of 95.0% and 81.3%, respectively. Using the derived SVM, accurate 

discrimination of PD from non-PD can be achieved that is equivalent to standard visual assessment by 

expert nuclear medicine physicians. Furthermore, we can assume that the model is generalizable 

towards centers using comparable acquisition and image processing methods. Hence, implementation 

of this SVM model as diagnostic aid in clinical practice is encouraged. 

 

In the second study, two Gaussian SVM classifiers were developed to identify patients with 

myocardial ischemia and patients at risk of MACE. The derived models were subsequently validated 

using a previously unseen dataset. Input features included various clinical parameters and coronary 

artery calcium  score (CAC) for both models and for the MACE model, left ventricular ejection 

fraction and myocardial perfusion imaging (MPI) SPECT scan outcome were added. The ischemia 

model was further evaluated by comparing its prediction performance to that of absent CAC indicative 

of the absence of ischemia. Validation of the ischemia model led to a sensitivity and specificity of 

89.7% and 31.8%, respectively. A comparable prediction performance was found for predicting 

ischemia using absent CAC, obtaining a sensitivity of 84.1% and specificity of 37.1%. We observed 

that the MACE model was not generalizable towards previously unseen data as specificity decreased 

substantially from 16.5% to 3.1%. The higher amount of input features needed to predict ischemia in 

comparison to standalone CAC scoring and the low specificity of the MACE model impede clinical 

implementation of these models. Further evaluation of both models is therefore needed to be able to  

provide a more individualized risk assessment of ischemia and MACE using ML. 
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CHAPTER 1  

General introduction 

Clinical specialists are currently facing a rapid increase of biomedical data, including increasing 

numbers and complexity of medical images.[1–4] Interpretation of these images to detect, characterize 

and monitor diseases is merely done by visual assessment that is time-consuming and prone to 

subjectivity. This can lead to interpretation errors and overlooking of findings that can have a 

significant clinical impact on patient management and outcome.[5, 6] Advanced image analysis can 

help to enhance consistency of image interpretation independent of reader experience.[7] In particular, 

machine learning (ML) is increasingly used in radiology and nuclear medicine to handle the 

heterogenous and multidimensional nature of medical images and decipher its clinical meaning.[8–10]  

ML is a subfield of artificial intelligence that refers to algorithms that learn from data without being 

explicitly programmed.[11] These algorithms aim at finding and recognizing patterns in (medical) 

data, thereby computing which features are important in a particular classification or regression 

problem. By learning from training data, the algorithm optimizes its parameters to improve its 

performance. The eventually developed model can then be applied to unseen data to generate a 

prediction of interest.[9, 12] Patterns in data are recognized and captured in order to discriminate data 

for applications ranging from disease classification and risk stratification to image processing as 

segmentation and quantification.[13–16] The emerge of deep learning further encourages a more 

widespread use of ML in medical imaging. [6, 17] Whereas ML involves the design of handcrafted 

features that requires expert knowledge, DL can automatically discover representations of input data 

for a specific task as part of its search process.[11, 18] 

ML is mainly used in anatomical computed tomography (CT) and magnetic resonance (MR) images, 

though its application in molecular imaging has high potential to perform automated quantitative 

analysis for functional imaging. As we aim to represent and visualize biological processes underlying 

physiologic and pathologic changes in molecular imaging, key pathophysiologic processes can be 

potentially discriminated by summarizing high-dimensional data into a single outcome parameter.[8] 

ML-based image interpretation is a promising technique to aid in clinical decision making and to 

increase speed, accuracy and reproducibility of interpretation, thereby overcoming undesired variation 

including inter-observer variability.[19–21] Furthermore, integrating imaging data together with 

clinical factors using ML has the potential to enable more accurate diagnosis and assessment of 

individual patient outcome.[1, 5, 6, 22] 

 

CLINICAL BACKGROUND 

Parkinson’s disease 

Parkinson’s disease (PD) is the second most common neurodegenerative disorder worldwide. 

Approximately 1% of the population above 60 years is known to have PD, increasing to 5% of the 

population above 85 years.[23, 24] PD causes considerable disability and reduction of quality of life 

and imposes a significant economic and social burden that is expected to continue to increase with the 

ageing of the population.[25–27] The disease is characterized by the pathophysiologic loss of 

dopaminergic neurons in the substantia nigra (SN) due to widespread intracellular protein (α-

synuclein) accumulation, resulting in striatal dopamine deficiency. As dopamine plays a key role in 

the control of actions and goal-directed behavior, a consequent impairment of motor function will be 

developed.[28, 29] Typically, patients experience motor manifestations after 50-60% of neurons in the 
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SN are lost. Cardinal signs include bradykinesia, rest tremor and rigidity.[23, 30, 31] As the disease 

progresses, motor symptoms worsen, previously unilateral signs become bilateral and additional signs 

as cognitive impairment, behavioral changes and symptoms related to autonomic nervous system 

failure become evident.[29, 31]  

 

The cause of PD remains unknown and validated biomarkers to detect and monitor the disease are 

currently lacking.[29, 32] Hence, diagnosis of PD is a clinical diagnostic decision, mainly based on 

symptoms and clinical findings as presence of cardinal signs and non-motor features, gradual 

symptom progression and response to pharmacological dopamine substitution (levodopa) 

treatment.[29, 33] Diagnostic accuracy is still suboptimal and varies considerably according to disease 

duration, reaching an accuracy of approximately 84% in a specialist setting.[32, 34] Particularly in 

early stages of PD, accurate diagnosis is key to accommodate proper patient management.[35, 36] 

Visualizing neuroanatomical features with MR imaging and functional signatures by means of 

dopamine transporter (DAT) imaging with single photon emission computer tomography (SPECT) can 

provide improvements in diagnostic accuracy. [31, 37] MR imaging helps to rule out secondary causes 

of parkinsonism as multisystem atrophy, but the morphological alterations are usually detectable at 

advanced stages and this technique is limited to use for identifying the dopaminergic deficits that are 

characteristic in PD.[38–40] As an early response to decreased synaptic dopamine concentration, 

DATs are known to be downregulated in PD which can be evaluated by visualizing the uptake of 

dopaminergic tracers. In Europe, I-123 N-ω-fluoropropyl 2β-carbomethoxy-3β-(4-iodophenyl) 

nortropane (FP-CIT) is the most widely used tracer for DAT imaging that is approved for clinical use 

by the Food and Drug Administration.[36, 41] Using this technique, the loss of dopaminergic neurons 

in the SN can already be detected in early stages of PD by DAT imaging as the uptake of 

dopaminergic tracers reflects the integrity of these neurons.[36, 42] Unfortunately, parkinsonian 

syndromes beyond PD and their overlap in clinical, pathological and imaging features are increasingly 

recognized.[32, 43] Hence, correct identification of PD still poses a considerable challenge for 

clinicians in which ML has the potential to help. 

 

Coronary artery disease 

Coronary artery disease (CAD) is the most common cause of death in both men and women, 

accounting for approximately 20% of all deaths in Europe.[44] CAD comprises a reduction of blood 

flow to the myocardium, often due to atherosclerosis, that involves narrowing of the arteries caused by 

the build-up of plaque. Consequently, there is an imbalance between myocardial oxygen supply and 

demand which often manifests as angina pectoris.[45–47] If CAD is left untreated, progression of the 

disease can lead to myocardial infarction, heart failure and eventually sudden cardiac death.[48, 49] 

Early detection and accurate diagnosis of CAD is therefore essential for patient management, thereby 

avoiding unnecessary invasive and non-invasive tests and treatments.[47, 50] Anatomical and 

functional imaging of the myocardium and coronary arteries is pivotal in the evaluation of patients 

suspected for CAD as these techniques can provide information about the location, extent and 

functional severity of the lesion. 

 

The definitive diagnosis of significant CAD is commonly made during coronary angiography (CAG), 

but ideally reserved for patients likely to require revascularization due to its invasive nature.[51, 52] 

Non-invasive techniques including coronary computer tomography angiography (CCTA) and 

myocardial perfusion imaging (MPI) are widely used prior to invasive CAG for evaluating CAD.  

Cardiac CT allows the detection of stenosis and assessment of the total atherosclerotic burden, while 

MPI with SPECT or positron emission tomography (PET) can evaluate the presence of and extent of 

perfusion defects in rest and stress conditions. Both have significant prognostic value and aid in the 
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identification of patients that might benefit from invasive interventions besides medical treatment, 

including percutaneous coronary intervention and coronary artery bypass grafting.[53–55]  

 

Particularly, the presence and extent of myocardial ischemia is a key factor in the management of 

CAD.[56] This can be detected by MPI, thereby evaluating the uptake of radioactive tracers into the 

myocardium at rest and stress. In ischemic areas, the decreased blood flow results in a reduction in 

myocardial uptake that can be observed on SPECT and PET scans.[51] As coronary atherosclerosis is 

often accompanied with calcium deposits, assessment of the coronary calcified plaque burden can be 

used to stratify the risk of CAD.[57, 58] This is commonly done by measuring the coronary artery 

calcium (CAC) score with non-contrast CT. Using the Agatston scoring methodology, the volume of 

calcium in all coronary arteries and density of each calcified plaque is taken into account to provide a 

single score that reflects the atherosclerotic burden.[51, 59] The combination of imaging results with 

clinical factors and demographic features has the potential to refine current identification of patients at 

risk.[60, 61] Using advanced ML algorithms, a more individual risk stratification approach can be 

developed that facilitates decision making and help in the overall management of patients with known 

or suspected CAD. 

 

TECHNICAL BACKGROUND 

Machine learning 

ML refers to algorithms that are able to automatically model the relationship between a given input 

and output. These algorithms are programmed to learn from observations to make statistical inferences 

that are used to generate predictions for novel input values.[62, 63] Three main types of machine 

learning are distinguished; supervised learning, unsupervised learning and reinforcement learning. In 

supervised learning, a training set of examples with target labels or responses is provided that is used 

to train the model. The aim of these models is to assign an input vector to a discrete category or to 

predict a continuous variable, having either a classification or regression task, respectively.[64, 65] In 

unsupervised learning, the algorithm receives an unlabeled set of data inputs and tries to find 

similarities in the input data for clustering and dimensionality reduction purposes.[63, 66] 

Reinforcement learning comprises learning from experience coupled with the principle of reward and 

punishment. The algorithm is provided feedback on its decisions until a proper solution is found for a 

specific task.[63, 67] 

 

In this thesis, we focus on the use of supervised learning in binary classification problems. In this case, 

the training dataset comprises input vectors {x1, … , xn} with corresponding output values {y1, … , yn} 

where yi ∈ {0,1}. In the training phase, the algorithm learns from these examples to tune parameters or 

weights of the model such that the rate of misclassification decreases. Eventually, a function y(x) is 

determined after which the ability of categorizing previously unseen examples, known as 

generalization, is assessed.[64, 65] For this, a labelled test set is used to compare predicted output with 

the label in order to determine how well the algorithm has learned.[62] The generalizability of a model 

is dependent on how a model is fitted to the training dataset. An inaccurate model is not matching the 

data well due to either the incapability of capturing the underlying function (bias) or to sensitivity to 

noise in the data (variance). This can lead to either underfitting, comprising a high bias that leads to a 

large error in both training and test set or to overfitting, where a large variance is seen resulting in a 

poor fit for novel data in the test set as illustrated in Figure 1.  
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Figure 1: Binary classification problem in which open and solid circles have to be discriminated. A reasonable separation 

line (black curve) is illustrated as well as decision boundaries in case of underfitting (gray diagonal line) and overfitting 

(dashed curve). The overfit is caused by an outlier (arrow) which would result in the misclassification of a novel point 

(orange circle).[68] 

 

Model complexity, comprising model type, number of inputs and number of parameters, is known to 

influence bias and variance. Therefore, proper model selection is needed, thereby choosing the right 

parameters for the model so that it generalizes as well as possible.[62] To evaluate multiple models 

and parameter values, without the need for additional test sets, a cross-validation (CV) can be 

performed. Most used approaches include the k-fold CV and leave-one-out CV. In case of k-fold CV, 

the data is split into k groups of approximately the same size. Then, the algorithm is run k times using 

(k-1) groups for training and the remaining group as validation set. One example in which k = 5 is 

illustrated in Figure 2. Leave-one-out CV is a special case of k-fold CV where the number of groups 

equals the number of examples. At each fold, exactly one example is left out to be tested by the model 

trained with the other examples. In general, higher values of k are more prone to overfitting.[69–71]  

Multiple algorithms can be used to solve binary classification problems, including algorithms 

comprising Bayesian models, decision trees, logistic models, support vector machine (SVM) models 

and artificial neural networks.[62, 64] Usually, SVMs and neural networks tend to perform better 

when dealing with multiple features as these algorithms have the ability to handle high-dimensional 

data.[72, 73] SVM is thereby considered to be easier to use and is known for its good generalization 

performance.[73, 74] Therefore, we focus on the use of SVM to solve classification problems that are 

encountered in nuclear medicine. Further details of other ML algorithms will not be explained as these 

lie beyond the scope of this thesis. 
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Figure 2: Principle of model evaluation using 5-fold cross-validation and a hold-out test set. The data is split into a training 

and test group after which the training dataset is divided into five groups. For each fold, one group is used to test the model 

(red) trained with the remaining groups (blue). The test set (orange) is then used to evaluate generalization of the derived 

model.  

 

Support vector machines 

Support vector machines (SVMs) were developed by Vapnik et al. and are widely used in solving 

classification and regression problems. In the binary classification problem, the goal of SVMs is to 

find a decision boundary, or hyperplane, between two classes of data. We can define many possible 

solutions for this, but SVM searches for the most optimal hyperplane that is able to separate training 

data with minimal errors and that maximizes the margin between the vectors closest to the hyperplane 

as illustrated in Figure 3. Only a small amount of the training data is used to construct this hyperplane, 

the so-called support vectors, which are the points that are the most prone to misclassification. For 

novel data points, the SVM model can state whether they lie on one side of the hyperplane or the 

other.[64, 75, 76] 

We can distinguish both hard margin and soft margin SVMs. For the hard margin, all points are 

enforced out of the margin and a model that allows zero errors is fitted to the data. This can lead to 

overfitting when data contains outliers and is not completely separable. For classes that cannot be 

perfectly separated, some misclassification is required to be able to construct a hyperplane that is 

generalizable towards previously unseen data. This can be achieved by using a soft margin, thereby 

introducing a regularization parameter that controls the trade-off between maximizing the margin and 

minimizing the error.[64, 77] 

SVM is a linear classifier, though nonlinear models can be obtained by transforming the input data 

using kernels. The so-called kernel trick gives the ability to generate non-linear decision boundaries, 

thereby making SVM applicable for both linearly and non-linearly separable data.[78] A kernel results 

in the projection of the data into a higher dimensional feature space after which the data is separated 

by a linear function. This linear function in the feature space corresponds to a non-linear decision 

boundary in the original input space. The most commonly used kernels are the linear, polynomial, 

sigmoid and Gaussian kernel and choosing the most appropriate kernel highly depends on the problem 

at hand. Apart from the regularization parameter, the decision boundary and thus the performance of 

the model is dependent on the kernel and its adjustable parameters (e.g. degree of polynomial kernel 

and width of a Gaussian kernel).[62, 72, 77] The effect of increasing values of these hyperparameters 

on the decision boundary is adequately explained and illustrated by Ben-Hur et al. [72] Appropriate 

values of the parameters are found by experimenting with different values, commonly performed in a 
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systematic manner by grid-search. The grid points are generally chosen on a logarithmic scale and for 

each combination of parameters, classifier accuracy is determined.[72]  

 

Figure 3: (a) Possible decision boundaries for the binary classification problem. (b) Hyperplane with maximum margins 

between classes.[79] 

 

AIM AND OUTLINE OF THE THESIS 

In the studies presented in this thesis, we focus on the use of ML to (1) refine the interpretation of I-

123 FP-CIT SPECT scans and (2) to improve patient selection for MPI SPECT and risk assessment of 

major adverse cardiac events (MACE).  

In Chapter 2, we developed and evaluated the prediction performance of a SVM classifier to detect 

Parkinson’s disease using semi-quantitative results of I-123 FP-CIT SPECT scans combined with 

demographic features. A two-center study was conducted to assess generalizability of the developed 

classifier towards centers using the same acquisition and image processing methods. The clinical value 

of the model was further assessed by comparing its performance to that of expert nuclear medicine 

physicians. In Chapter 3, we first focus on the development and validation of a SVM classifier that 

discriminates patients with an abnormal SPECT MPI scan from patients with a normal scan. The 

model integrates readily available demographic and clinical parameters which were previously 

collected for a large cohort of patients. Its prediction performance was compared to that of absent 

coronary artery calcification as determined by coronary CT which is currently used for SPECT MPI 

patient selection. A subset of these patients who were followed up after SPECT MPI and for whom 

patient outcome was recorded were used to build and validate a SVM model to predict whether MACE 

is likely to occur or not. Future perspectives, clinical implications and recommendations for further 

research comprising ML-based applications are discussed in Chapter 4.  
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CHAPTER 2  

Development, validation and clinical value of machine 
learning-based interpretation of I-123 FP-CIT scans to 
detect Parkinson’s disease: a two-center study 

 
 

ABSTRACT 

Aim: Our aim was to develop and validate a machine learning (ML)-based approach for interpretation 

of I-123 FP-CIT SPECT scans to discriminate Parkinson’s disease (PD) from non-PD and determine 

its generalizability and clinical value in two centers.  

Methods: We retrospectively included 210 consecutive patients that underwent I-123 FP-CIT SPECT 

imaging (Discovery D670; GE Healthcare) and had a clinically confirmed diagnosis. Linear support 

vector machine (SVM) was used to build a classification model to discriminate PD from non-PD 

based on I-123-FP-CIT striatal uptake ratios, age and gender of 90 patients. The model was validated 

on previously unseen data from the same site where the model was developed (n=40) and from a 

different site that utilizes comparable acquisition and image processing methods (n=80). Prediction 

performance was assessed and compared to that of expert nuclear medicine physicians who scored the 

I-123 FP-CIT scans as either PD or non-PD. 

Results: Testing the derived SVM model on the previously unseen dataset from the same site resulted 

in an accuracy of 95.0%, sensitivity of 96.0% and specificity of 93.3%. This was identical to the 

classification accuracy of nuclear medicine physicians (p > 0.99) who interpreted both I-123 FP-CIT 

images and striatal uptake ratios. The model was generalizable towards the other center as a similar 

prediction performance was found (p>0.10) with an accuracy of 82.5%, sensitivity of 88.5% and 

specificity of 71.4%. This was comparable to that of nuclear medicine physicians who achieved an 

accuracy, sensitivity and specificity of 81.3%, 84.6 and 88.5% (p>0.5), respectively. 

Conclusion: ML-based interpretation of I-123-FP-CIT scans results in accurate discrimination of PD 

from non-PD similar to standard visual assessment in both sites, indicating that the derived SVM 

model is generalizable towards centers using comparable acquisition and image processing methods. 

Hence, implementation of this SVM model as diagnostic aid in clinical practice is encouraged.  

 

INTRODUCTION 

Single positron emission computer tomography (SPECT) with I-123 N-ω-fluoropropyl 2β-

carbomethoxy-3β-(4-iodophenyl)nortropane (FP-CIT) allows for visualization of striatal dopamine 

deficiency due to the loss of dopaminergic neurons which is characteristic of PD.[39, 80] This imaging 

technique aids in the diagnostic process as it enhances diagnostic confidence, especially in patients 

with clinically uncertain parkinsonian syndromes.[81, 82] Re-evaluation of diagnosis is evident in up 

to 35% of these patients and changes in management and treatment are induced in approximately 

70%.[81, 83] Current guidelines recommend the combination of visual assessment and semi-

quantitative analysis for adequate interpretation of I-123 FP-CIT scans.[42, 84] Semi-quantitative 

analysis comprises the assessment of radiopharmaceutical-specific uptake in regions of interest 

(striatum, caudate nucleus and putamen) and non-specific uptake in reference areas as the occipital 

lobe.[85] The addition of semi-quantification to visual assessment offers an increase in reader 

confidence and provides superior diagnostic accuracy when compared to standalone visual 

assessment.[86, 87] However, no universal cutoff values are available to determine whether semi-
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quantitative results are normal or abnormal as acquisition, reconstruction and quantification methods 

are known to influence these striatal uptake ratios.[88, 89]  

Currently, a trend is seen towards machine learning-based approaches for automated classification of 

I-123 FP-CIT scans to improve interpretation.[90, 91] These approaches have the potential to be 

exploited as diagnostic aid to nuclear medicine physicians, thereby improving interpretation of these 

scans and overcoming the limitations of semi-quantitative analysis.[91, 92] Yet usage of developed 

models across centers is limited as focus is given to generalization beyond a training dataset and not to 

generalization to different sites.[93] The aim of this study is therefore to develop and validate a 

machine-learning based approach for interpretation of I-123 FP-CIT scans to detect PD for a single set 

of acquisition and image processing parameters and to determine its generalizability and clinical value 

in two centers. Furthermore, we wanted to determine whether the classifier can be used among 

different technologists by calculating the reproducibility of SVM output among assessed input values. 

METHODS 

Study population 

We retrospectively included a consecutive cohort of 210 patients with clinically confirmed diagnosis 

that underwent I-123 FP-CIT SPECT imaging between 2014 and 2018 in two medical centers in the 

Netherlands (Isala hospital, Zwolle and Treant Zorggroep, Scheper hospital, Emmen). Patients’ 

diagnoses were assessed by the attending neurologist according to standard diagnostic criteria.[37] 

Clinical and demographic data including diagnosis, gender and age at the time of SPECT acquisition 

were retrieved from patients’ medical records and patients were labelled as either having PD or a 

diagnosis other than PD (non-PD). By means of stratified random sampling, the Isala data was split 

into a group of 90 patients for model development (further referred by group A) and a group of 40 

patients for validation (further referred by group B). Data of Scheper hospital (n=80, further referred 

by group C) was used to assess generalizability of the model and both group B and C were used in the 

clinical evaluation. 

Image acquisition and reconstruction 

Patients were instructed to discontinue medication interfering with I-123 FP-CIT binding to dopamine 

transporters prior to scanning. SPECT studies were carried out according to standard clinical 

procedure using a dual-head gamma camera (Group A+B: Discovery D670, GE Healthcare; Group C: 

Infinia Hawkeye, GE Healthcare) equipped with a low energy, high resolution collimator. Three to six 

hours before SPECT acquisition, patients were intravenously administered 185 MBq of I-123 FP-CIT. 

For SPECT data acquisition, a 10% energy window centered on the photopeak of I-123 at 159 keV 

was used. A total of 64 projections over a circular 360° orbit (rotational radius of approximately 13 

cm) were acquired on a 128x128 matrix (1.23-1.28 acquisition zoom, 3.45-3.59 mm pixel size) with 

an overall scanning time of 32 minutes (30 s per projection).  

Image reconstruction was performed by filtered back projection using a Butterworth pre-filter (cut-off 

0.65 cycles/cm, order 10) and uniform Chang attenuation correction (coefficient 0.11 cm
-1

). 

Attenuation correction was based on a variable ellipsoid map that followed the contour of the head, 

manually defined using thresholding. Images were reformatted into slices in axial, coronal and 

transversal planes (3.45-3.59 mm slice thickness) and axial slices were reoriented along the 

acanthomeatal line. 
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Semi-quantitative analysis 

Semi-quantitative analysis was performed using a functional imaging workstation (Xeleris version 4.0; 

GE Healthcare) to assess specific I-123 FP-CIT binding in the striatum and striatal subregions 

including both right and left caudate nucleus and putamen. Non-specific binding was assessed using 

the occipital cortex as reference region. Five pre-defined fixed regions of interest (ROIs) were 

manually positioned over caudate nucleus, putamen and occipital cortex on three consecutive slices 

that were selected best representative of the activity and shape of the striatum. An example of a non-

PD and PD patient with correct positioning of all predefined regions is shown in Figure 1. Mean 

counts within the ROIs were determined after which specific binding ratios (SBRs) were obtained 

according to the formula: 

𝑆𝐵𝑅 =  
𝑠𝑡𝑟𝑖𝑎𝑡𝑎𝑙 𝑅𝑂𝐼 − 𝑜𝑐𝑐𝑖𝑝𝑖𝑡𝑎𝑙 𝑐𝑜𝑟𝑡𝑒𝑥

𝑜𝑐𝑐𝑖𝑝𝑖𝑡𝑎𝑙 𝑐𝑜𝑟𝑡𝑒𝑥
    (1) 

SBRs for both left and right striatum, caudate nucleus and putamen were assessed, resulting in six 

different ratios: StrR , StrL , CaudR , CaudL,  PutR and PutL. Furthermore, a putamen/caudate index was 

calculated by dividing the mean counts within the putamen by the mean counts within the caudate 

nucleus, thereby obtaining ratios PutR/CaudR and PutL/CaudL.  

                  
 

Figure 1: Representative slice of a I-123 FP CIT scan of a non-PD (A) and PD (B) patient with predefined regions 

for semi-quantitative analysis, including regions for the left and right caudate nuclei (Cau-L and Cau-R) and 

putamen (Put-R and Put-L) and the occipital cortex (Occ).  

 

SVM classifier development and validation 

SVM was used as a classification method to discriminate PD from non-PD based on input features that 

included I-123 FP-CIT striatal uptake ratios, age and gender. Prior to training and testing procedures, 

ratios and age were normalized such that the mean value was 0 and standard deviation was 1. All 

procedures were performed using Matlab software (MATLAB and Statistics and Machine learning 

Toolbox Release 2018b, the Mathworks Inc.). 

The model was built upon ratios assessed by one technologists. Group A was used to build a 

linear SVM and to perform hyperparameter optimization. A grid search was conducted, thereby 

A B 
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evaluating regularization parameter values of 2
-6

, 2
-5

, 2
-4

, …, 2
8
. For each value, a stratified, 10-times 

repeated 10-fold cross-validation was performed after which the mean F1-score was determined.  The 

F1-score is defined as: 

𝐹1 =   2 ∙  
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒 ∙ 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒 + 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
   (2) 

The value providing the highest mean F1-score was used to derive the final model. This model was 

further validated by testing group B and C, assessing both predicted class and the probability that test 

data belongs to PD. For the latter, an inbuilt function for converting SVM scores to probabilities based 

on logistic regression was used.[94] Given the probabilities, the validation dataset was divided into 

four categories (<20%, 20-50%, 50-80%, >80% chance of PD). Furthermore, prediction performance 

was determined by assessing accuracy, F1-score, sensitivity and specificity. 

Clinical value 

For group B and C, performance of the derived model was compared to that of expert nuclear 

medicine physicians. Whether and to what extent I-123 FP-CIT images and ratios were typical or 

characteristic for PD was assessed by two nuclear medicine physicians according to a 4-point scale. 

This scale consisted of the following categories: unlikely, not probable, probable and certain PD and 

comprised an expected chance of PD of <20%, 20-50%, 50-80% and >80%, respectively. Images were 

scored visually, taking into account the magnitude and homogeneity of I-123 FP-CIT distribution, 

striatal shape and symmetry, definition of striatal borders and the amount of background activity. 

Images were firstly scored without ratios after which ratios were presented to the nuclear medicine 

physician and a second score was obtained. In case of disagreement, overread from a third nuclear 

medicine physician was performed. Images were presented in random order and all readers were 

blinded to patient characteristics and clinical information except age and gender. 

Reproducibility of SVM output 

Image reconstruction and semi-quantitative analysis were carried out by one technologist (further 

referred as observer 1) for all patients. For group B, the reconstruction method as well as assessment 

of I-123 FP-CIT uptake ratios were repeated by observer 1 and conducted by a different technologist 

(further referred as observer 2). The SVM classifier was tested using the semi-quantitative analysis 

results assessed by both observer 1 and 2 after which predicted classes, probabilities and 

corresponding categories were collected.  

Statistical analysis 

Statistical analysis was performed using R Studio software (RStudio: Integrated Development for R. 

Version 1.1.442; RStudio, Inc.). To assess differences between group B and C in age, ratios and 

gender, the Mann-Whitney U-test or χ²-test were performed. Accuracies, sensitivities and specificities 

of the classifier for group A, B and C were compared using the χ²-test. To determine the 

reproducibility of the SVM output, the degree of absolute agreement was evaluated by determining the 

intraclass correlation coefficient (ICC) with corresponding 95%-confidence interval (CI). Prediction 

performance and scores between observers were compared by a McNemar’s test and  χ²-test, 

respectively. McNemar’s test was was also used to compare prediction performance of the SVM 

model, standalone visual assessment and the combination of visual assessment and ratio interpretation. 

Differences in frequencies of scores comprising the chance of PD, either determined by the model or 

scored by nuclear medicine physicians, were assessed using a χ²-test. A significance level at 0.05 was 

used and Bonferroni correction was applied when necessary. 
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Table 1: Patient characteristics including age, male, SBRs and putamen/caudate index per center for PD patients. The p-values are given for either the χ²-test or Mann-Whitney  

U-test. 

  

 Group A 

(n=58) 

Group B 

(n=25) 

Group C 

(n=52) 

p-value 

A vs. B 

p-value 

A vs. C 

  

age 68 (61-74) 67 (60-74) 73 (60-78) 0.7 0.2   

male 56.9% 68.0% 69.2% 0.5 0.3   

str. L 2.54 (2.28-2.90) 2.73 (2.41-3.08) 2.67 (2.36-2.95) 0.12 0.2   

str. R 2.52 (2.35-2.71) 2.61 (2.49-2.87) 2.61 (2.34-3.11) 0.14 0.16   

caud. L 3.14 (2.74-3.48) 3.16 (2.95-3.67) 3.32 (2.86-3.68) 0.2 0.16   

caud. R 3.07 (2.81-3.29) 3.16 (2.90-3.52) 3.10 (2.81-3.80) 0.2 0.3   

put. L 2.04 (1.85-2.37) 2.21 (1.93-2.59) 2.04 (1.82-2.45) 0.09 0.9   

put. R 2.05 (1.90-2.25) 2.15 (1.98-2.30) 2.12 (1.82-2.42) 0.3 0.5   

put/caud. L 0.67 (0.62-0.74) 0.66 (0.60-0.77) 0.66 (0.57-0.73) 0.8 0.3   

put/caud. R 0.69 (0.65-0.76) 0.67 (0.63-0.73) 0.68 (0.62-0.75) 0.3 0.5   

Data are presented as median (interquartile range) or percentage; str, striatum; caud, caudate nucleus; put, putamen; L, left;  R, right 

 

 
Table 2: Patient characteristics including age, male, SBRs and putamen/caudate index per center for non-PD patients. The p-values are given for either the χ²-test or Mann-Whitney 

U-test. 

  

 Group A 

(n=32) 

Group B 

(n=15) 

Group C 

(n=28) 

p-value 

A vs. B 

p-value 

A vs. C 

  

age 69 (60-78) 71 (66-77) 74 (69-78) 0.7 0.16   

male 37.5% 40% 57.1% >0.99 0.2   

str. L 3.87 (3.44-4.36) 3.76 (3.46-4.07) 3.64 (3.23-4.00) 0.5 0.08   

str. R 3.84 (3.31-4.24) 3.78 (3.44-4.01) 3.60 (3.20-3.83) 0.6 0.13   

caud. L 4.31 (3.80-4.95) 3.94 (3.57-4.43) 4.08 (3.73-4.47) 0.2 0.3   

caud. R 4.07 (3.49-4.64) 4.08 (3.50-4.27) 4.04 (3.63-4.32) 0.6 0.3   

put. L 3.60 (3.13-4.13) 3.44 (3.13-4.01) 3.27 (2.58-4.32) 0.8 0.014   

put. R 3.55 (3.07-3.56) 3.51 (3.25-3.75) 3.16 (2.96-3.45) 0.8 0.030   

put/caud. L 0.83 (0.78-0.89) 0.88 (0.83-0.94) 0.76 (0.70-0.82) 0.10 0.002   

put/caud. R 0.87 (0.80-0.90) 0.88 (0.79-0.92) 0.80 (0.73-0.85) 0.7 0.014   

Data are presented as median (interquartile range) or percentage; str, striatum; caud, caudate nucleus; put, putamen; L, left;  R, right 
 

 



RESULTS 

Patient characteristics 

Patient characteristics and different ratios for all PD and non-PD patients are summarized in 

Table 1 and Table 2, respectively. For PD patients, all variables were comparable between the 

training dataset and validation datasets from both Isala (p > 0.09) and Scheper hospital (p > 0.16). 

Likewise, characteristics and ratios of non-PD patients in group B were similar to group A  

(p > 0.2). No significant differences  were found between non-PD patients in group A and C, 

except for the PutL/CaudL index which was significantly lower in group C after Bonferroni 

correction was applied (p = 0.002). 

SVM classifier development and validation 

A regularization parameter value of 2
-4

 was selected to derive the final model, providing a F1-

score of 0.956 ± 0.002 as determined by the 10-times repeated, stratified 10-fold cross-validation. 

A corresponding accuracy of 94.3% ± 0.2% was found for this value. Validation of the derived 

model lead to accuracies of 95.0% and 82.5% for group B and C, respectively. Prediction 

performance variables for all groups are shown in Table 3. Prediction performance of the model 

for group A was comparable to group B (p > 0.9) and C (p > 0.10). Comparing prediction 

performance between group B and C, a similar accuracy (p = 0.3), sensitivity (p = 0.5)  and 

specificity (p = 0.2) were found.   

 

Clinical value 

Using the combination of visual assessment and ratio interpretation, nuclear medicine physicians 

were able to discriminate PD from non-PD with an accuracy of 95% and 81.3% for group B and 

C, respectively. For both groups, the presentation of ratios besides I-123 FP-CIT images to the 

physician did not provide an increase in accuracy (p > 0.5), sensitivity (p > 0.99) or specificity  

(p > 0.99). Additionally, scored chances of PD as assessed by the physician using only visual 

assessment was comparable to the chances of PD scored using the combination of visual 

assessment and ratio interpretation (p > 0.2). Prediction performances and scored chances of PD 

of both physicians and the derived SVM model for the two centers are illustrated in Figure 2 and 

3, respectively.  

Comparing the prediction performance of the SVM model with that of nuclear medicine 

physicians, equivalent accuracies (p > 0.4), sensitivities (p > 0.3) and specificities (p > 0.99) were 

found in both groups. In group B, the SVM showed an increase in the confidence of diagnosis, 

i.e. higher number of scores 1 (<20% chance of PD) and 4 (>80% chance of PD) were found 

when compared to visual assessment (p = 0.035). However, this was not observed in group C  

(p = 0.8). Furthermore, no difference in the frequencies of the scored chance of PD was found 

Table 3: Prediction performance of the derived SVM model for all groups.     

  Group A* Group B Group C    

Accuracy (%)  94.3 ± 0.2 95.0 82.5    

F1-score  0.956 ± 0.002 0.960 0.849    

Sensitivity (%)  96.4 ± 0.003 96.0 88.5    

Specificity (%)  90.6 ± 0.000 93.3 71.4    

*mean values ± SD determined by a 10-times repeated, stratified 10-fold cross-validation   
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between the SVM model and physicians using the combination of visual assessment and ratio 

interpretation for both sites (p > 0.8).  

 

 

  

Figure 2: Prediction performance of visual and semiquantitative interpretation by nuclear medicine physicians and 

interpretation by the SVM model for the validation set of (A) Isala hospital and (B) Scheper hospital. No significant 

differences were observed between prediction performance variables of the SVM model and nuclear medicine 

physicians (p > 0.25). 

 

Reproducibility of SVM output 

The intra-reproducibility of the SVM output was excellent as predicted classes between repeated 

measures for group A were identical (p > 0.99) with an ICC of 0.98 (95%-CI: 0.96-0.99) for 

assessed probabilities. Additionally, corresponding scores comprising the chance of PD were 

comparable (p = 0.6). Using the ratios assessed by observer 2 as input to the SVM classifier, a 

comparable accuracy of 90% (p = 0.5), sensitivity of 92% (p > 0.99) and specificity of 86.7%  

(p > 0.99) was found in comparison to the performance determined using ratios assessed by 

observer 1 (accuracy, sensitivity and specificity of 95.0%, 96.0% and 93.3%, respectively). A 

total of two patients (5.0%) that were correctly classified by the SVM model using ratios assessed 

by observer 1 were misclassified by the model using ratios assessed by observer 2. The inter-

reproducibility of the SVM output was excellent, obtaining an ICC of 0.98 (95%-CI: 0.93-0.98) 

for assessed probabilities and similar corresponding scores comprising the chance of PD  

(p = 0.97). 
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Figure 3: Frequencies in the scored chance of PD as determined by nuclear medicine physicians and the SVM model for the 

validation set of (A) Isala hospital and (B) Scheper hospital.  

 

DISCUSSION 

In this study, we derived a SVM model to discriminate PD from non-PD using uptake ratios, age 

and gender as input features that was able to determine whether input was characteristic for PD 

with high accuracy. Subsequent validation of the model using patients from the same center 

showed that a comparable prediction performance was obtained, indicating that the model is 

generalizable towards previously unseen data. Moreover, a similar prediction performance was 

found when the model was applied on data acquired in a different center with comparable 

acquisition and image processing methods. For both sites, performance was equivalent to that of 

nuclear medicine physicians who classified patients using standalone visual assessment of I-123 

FP-CIT images and visual assessment combined with interpretation of semi-quantitative analysis 

results.  

The high classification accuracy for the cross-validation found in this study is in line with several 

other studies that developed linear SVM models to evaluate SBRs derived from I-123 FP-CIT 

images. Palumbo et al. found an accuracy of 94.2% in a 5-fold cross-validation using 90 patients 

with SBRs and age as input features for discriminating PD from non-PD.[95] Prashanth et al. 

showed that their model was able to correctly discriminate healthy controls from early PD in 

92.3% of cases (n=548) in a 10-fold cross-validation using only SBRs.[96] More recently, Taylor 

et al. compared different ML algorithms with a range of semi-quantification methods and showed 

that ML generated equal or higher mean accuracies than standalone semi-quantitative analysis, 

irrespective of the method used. Performing a 10-times repeated 10-fold cross-validation, they 

obtained a mean accuracy of 95% (n=657) and 89% (n=304) for their linear SVM models that 

were able to discriminate healthy controls from PD and Parkinsonian from non-Parkinsonian 
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patients, respectively.[91] Though high accuracies were found, none of these studies performed a 

subsequent validation using previously unseen data, nor did they assess whether derived models 

were valid across centers.  

 

The prediction performance found for the so-called internal validation, usually performed via 

cross-validation, is not a guarantee for good generalizability as derived models usually perform 

better on the dataset used for training. Especially in small datasets, a decrease in prediction 

performance is often seen when the model is tested using an independent dataset. This can be due 

to overfitting, the lack of representative data used to train the model or the use of different 

imaging and processing protocols.[97–101] The similar prediction performance found of the 

derived model for both group B and C in comparison to group A indicate that overfitting did not 

occur. Acquisition, reconstruction and quantification methods are known to influence striatal 

uptake ratios irrespective of the presence of a neurodegenerative disease.[88, 102] Since a 

difference in the PutL/CaudL index was found between only non-PD patients in group A and C, 

we can assume that the slight decrease in performance for group C in comparison to group B is 

due to a difference in patient population. Usage of the derived SVM model in different centers 

requires the use of comparable acquisition and image processing methods to ensure that findings 

are due to pathology and not due to variability in specifics used for acquisition, reconstruction 

and quantification. Furthermore, each center has to perform a pilot study to investigate how well 

the classifier can be generalized to one’s own dataset and ideally, its performance is put into 

perspective by comparing it with that of nuclear medicine physicians.  

 

This study has several limitations. First, a relatively small number of patients was used for 

training purposes that is not necessarily representative of all neurodegenerative and non-

degenerative diseases that are evaluated using I-123 FP-CIT SPECT imaging. Other degenerative 

conditions that also show reduced tracer uptake are prone to be misclassified by the derived SVM 

model as I-123 FP-CIT SPECT imaging cannot reliably discriminate between neurodegenerative 

parkinsonian disorders.[103] Likewise, PD patients with scans without evidence for dopaminergic 

deficit (SWEDD) will presumably be incorrectly classified as non-PD. An increase in the number 

of other neurodegenerative diseases in group C could explain the lower median values of the 

ratios of non-PD patients in group A in comparison to group C and thus lower performance of the 

derived model as these patients are prone to misclassification. A larger patient population is 

needed to be able to identify neurodegenerative subtypes and SWEDD patients based on I-123 

FP-CIT ratios, thereby deriving multiple SVM models as shown by Nicastro et al.[104] Second, 

information beyond the uptake ratios combined with gender and age was not considered for input 

data. As PD is a clinical diagnosis, the addition of parameters comprising the severity and 

progression of a patient’s disease could have allowed better discrimination between PD and non-

PD. This would require consistent assessment of patients suspected for PD, thereby using clinical 

rating scales such as the Movement Disorder Society Unified Parkinson’s Disease Rating Scale 

and Hoehn and Yahr scale.[105, 106] Furthermore, imaging features extracted from I-123 FP-CIT 

SPECT scans that comprise striatal shape have shown discriminative power in the identification 

of PD patients.[107–109] The addition of these features could have provided higher classification 

accuracies, but requires the development and validation of quantification methods to extract these 

features. In contrast to this, the current parameters used as input features are routinely collected in 
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clinical practice and therefore easily available. Third, different ML approaches including deep 

learning were not evaluated in discriminating PD from non-PD. Though these approaches could 

have been superior in performance to that of linear SVM, the derived model is relatively simple 

and transparent and can be easily exported and used in clinical practice. Finally, one needs to be 

aware that the derived model requires a consistent way of acquiring the different ratios in order to 

work properly. Automated approaches could overcome the variability associated with approaches 

that require manual steps. Nonetheless, the intra- and inter-reproducibility of the SVM output 

were excellent for the semi-quantitative method used.  

The derived SVM model is an objective classification approach for identifying PD patients that 

has similar prediction performance as that of standard visual interpretation by expert nuclear 

medicine physicians. It can therefore facilitate clinical decision-making and diagnosis when used 

in clinical practice. Taylor et al. evaluated the impact of the addition of SVM-based interpretation 

of I-123 FP-CIT scans on clinical reporting. They found that consistency between reporters 

improved and that the model gave added confidence in terms of diagnostic confidence 

scores.[110] We can therefore assume that usage of our model in clinical practice can lead to less 

interpretation variation and more confident diagnosis of PD.  

 

CONCLUSION 

Development of a linear SVM model to interpret semi-quantitative analysis results from I-123 

FP-CIT images allows high-accuracy detection of PD with similar classification accuracy as that 

of expert nuclear medicine physicians. The model is able to discriminate PD from non-PD and is 

feasible in centers using the same acquisition and image processing methods. The results of this 

study show that the use of the derived SVM model has great potential to be used in the diagnostic 

process of PD, thereby encouraging implementation of this SVM model in clinical practice.  



CHAPTER 3  

Development and validation of a machine learning-
based approach for detection of myocardial ischemia 
and risk assessment of major adverse cardiac events 

ABSTRACT 

Aim: Refined assessment of patients at risk of coronary artery disease (CAD) using machine 

learning (ML) can provide a more individualized risk stratification approach to reduce the need 

for additional testing and to facilitate patient management. Our aim was to develop and validate a 

ML-based approach to detect myocardial ischemia and major adverse cardiac events (MACE).  

Methods: We retrospectively included 6151 patients that underwent myocardial perfusion 

imaging (MPI) with SPECT. For a subset (n=2292), follow-up was available and patient outcome 

was reported. The total group was used to develop and validate a support vector machine (SVM) 

classifier with Gaussian kernel to discriminate patients with normal SPECT MPI scan from 

patients with abnormal scan. Another Gaussian SVM classifier to predict whether MACE occurs 

was built and evaluated using the subset. Both groups were divided into a training and validation 

dataset. Input features included various clinical parameters and coronary artery calcium (CAC) 

score for both models and for the MACE model, left ventricular ejection fraction (LVEF) and 

scan outcome were added. The validation sets were tested and used to assess the prediction 

performance of the derived models. The first model was further evaluated by comparing its 

performance to that of absent CAC indicative for normal MPI scan.  

Results: Validation of the ischemia model led to a sensitivity, specificity, PPV, NPV of 89.7%, 

31.8%, 29.0% and 90.8%, respectively. This was comparable to the performance of CAC scoring 

for predicting normal or abnormal scan (p>0.14). The MACE model was not generalizable 

beyond the training dataset as the specificity decreased from 16.5% to 3.1% (p<0.001) when 

using the validation dataset.  

Conclusion: ML-based integration of clinical parameters and CAC score has comparable 

prediction performance as that of standalone CAC score for predicting myocardial ischemia. 

Further evaluation is needed for the MACE model to accurately assess whether patients are at risk 

of MACE. 

INTRODUCTION 

Myocardial perfusion imaging (MPI) with single photon emission computed tomography 

(SPECT) allows non-invasive evaluation of CAD. This widely available technique is used to 

identify and quantify the presence and extent of perfusion defects indicative of ischemia. SPECT 

MPI has a high prognostic value and is therefore important for risk stratification to optimize 

patient outcome.[47, 111, 112] It is recommended in individuals at intermediate risk of 

obstructive CAD.[47] The pre-test probability of CAD is often assessed by using the Diamond 

and Forrester classification, only requiring age, gender and symptom typicality to estimate the 

risk.[113] However, this classification is known to overestimate the prevalence of obstructive 
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CAD, thereby unnecessarily increasing the need for noninvasive or invasive testing while 

decreasing the yield of these tests.[114, 115]  

More recently, the relationship between CAC and frequency of subsequent cardiac events has 

been well established which can be used to improve the selection of patients for MPI procedures 

and the assessment of overall patient risk. [116, 117] The addition of clinical risk factors and 

demographic features to the CAC-score have the potential to provide a more individualized risk 

assessment which may result in even better patient management and outcomes.[60] Machine 

learning is able to integrate all these different variables and has the potential to identify patients 

with myocardial ischemia or at risk of MACE. Hence, our aim was to develop and validate a 

machine learning-based approach to (1) integrate readily available clinical and functional 

parameters together with CAC score for better patient selection for SPECT MPI and (2) combine 

clinical and functional parameters with CAC score and SPECT outcome to predict MACE. 

 

METHODS 

Study population 

We retrospectively included a total of 6151 patients who were suspected for CAD and underwent 

clinically indicated stress MPI with SPECT/CT with simultaneous assessment of coronary artery 

calcification CAC from January 2009 to March 2019. Multiple demographic and clinical features 

were available and derived from the medical records, including gender, age, weight and height. 

Furthermore, CAD risk factors, current medication use, blood pressure (BP), heart rate, level of 

creatinine in the blood and presence of left bundle branch block (LBBB) were collected. Patients 

did not have a known history of CAD, had no missing demographic or clinical features and CAC 

score and LVEF were available. All patients provided written informed consent for the use of 

their data for research purposes. 

 

Patient preparation and image acquisition 

Patients were instructed to refrain from caffeine or other methylxanthine-containing products for 

at least 24 hours prior to stress examination. Dipyridamole was discontinued for 48 hours before 

the test. Pharmacologic stress was induced by intravenous administration of adenosine (140 

µg/kg/min for 6 minutes) or dobutamine (starting from 10 µg/kg/min, increased along 3-minute 

intervals to a maximum of 50 µg/kg/min until 85% of the predicted maximum heart rate was 

reached). At peak stress, 370 MBq (500 MBq for patients with a body weight >100 kg) Tc-99m 

tetrofosmin was injected intravenously. In case of abnormal stress perfusion, additional rest 

SPECT was performed on the same day using 740 MBq (1000 MBq for patient with a body 

weight >100 kg) Tc-99m tetrofosmin. Stress and rest imaging were performed 45-60 minutes 

after tracer injection and all patients underwent imaging in supine position with arms placed 

above their head. The time delay between stress and rest studies was >3 hours. 

Patient scanned before May 2010 (n = 306) underwent imaging using a conventional dual-

detector gamma camera (Ventri; GE Healthcare) equipped with a low energy, high resolution 

collimator. Images were acquired using a 20% symmetric window at 140 keV and 64x64 matrix 

and an elliptic orbit with step-and-shoot acquisition at 6° intervals over a 180° arc (45° anterior 

oblique to 45° left posterior oblique with 30 steps). Acquisition time was 12 minutes for the stress 
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images and 15 minutes for the rest images. Scans after May 2010 (n = 5845) were acquired using 

a cadmium zinc telluride (CZT)-based SPECT/CT camera (Discovery NM/CT 570c; GE 

Healthcare) equipped with 19 pinhole detectors each containing 32x32 pixelated (2.46x2.46 mm) 

CZT elements. Acquisition time was 5 minutes for the stress images and 4 minutes for the rest 

images. 

Gated SPECT analysis was used to determine left ventricular volumes and ejection fraction and to 

assess motion wall abnormalities. After both the stress and rest imaging, an unenhanced low-dose 

CT scan during breath-hold was performed to provide an attenuation map of the chest for 

attenuation correction (LightSpeed VCT XT; GE Healthcare). The following scanning parameters 

were used: 5.0 mm slice thickness, 800 ms rotation time, pitch of 1.0, collimation 64x0.625 mm, 

tube voltage of 120 kV, tube current of 20 mA and an irradiation body length of 24.4 cm. Next, 

an unenhanced electrocardiographically-gated CT scan was obtained to calculate the CAC score. 

The CAC scan was triggered at 75% of the R-R interval by using a 2.5 mm slice thickness, gantry 

rotation time of 330 ms, tube voltage of 120 kV and a tube current of 125-250 mA, depending on 

patients’ size.  

Emission images and attenuation map data were processed with a dedicated reconstruction 

algorithm (Myovation; GE Healthcare) and displayed in the traditional short, long and horizontal 

axes. Along with this, 17-segments MPI bull’s eye images were created that represented the 

percentage tracer uptake in the 17 myocardial segments with segmental uptake values normalized 

to the highest pixel value.[118] Post-processing of CAC-scans was performed using dedicated 

software (SmartScore, Advantage Windows 4.4, GE Healthcare) to calculate CAC score using 

standard Agatston criteria.[119] 

 

SPECT MPI analysis and follow-up 

Perfusion deficits on SPECT MPI scans were identified by expert nuclear physicians who 

interpreted the images and semi-quantitative results. The presence and size of irreversible and 

ischemic defects were reported together with the size of the defect (small, moderate, large). Based 

on these findings, patients were labelled as having an abnormal SPECT MPI scan or a normal 

scan. 

For a subset of all included patients (n = 2292), a median follow-up of 36 months (range: 1-117 

months) was available. The follow-up length was determined by assessing the interval between 

the examination date and the date of final consultation. Patient outcome including 

revascularization (both percutaneous coronary intervention and coronary bypass grafting), non-

fatal myocardial infarction and cardiac death were previously assessed by reviewing patients’ 

records, performing telephone interviews with the patients or by contacting patients’ general 

practitioners. Based on this, patients were labelled as either having a positive outcome (patients in 

which MACE occurred) or negative outcome.  

 

SVM development and validation  

For both models, SVM with a Gaussian kernel was used as classification method. Continuous 

data were normalized such that the mean value was 0 and standard deviation was 1. All 
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procedures were performed using Matlab software (MATLAB and Statistics and Machine 

learning Toolbox Release 2018b, the Mathworks Inc.). 

Ischemia model: the total population of 6151 patients was randomly divided into a training (n = 

5540) and validation dataset (n = 611), thereby ensuring that the ratio of patients with abnormal 

and normal scans was comparable in both groups. Input features included age, gender, weight, 

height, CAD risk factors (current smoking, type II diabetes mellitus (DM), dyslipidemia and 

positive family history of CAD in first-degree relatives), medication use and type of medication 

(aspirin or clopidrogel, beta blockers, calcium channel blockers and statin), upper and lower BP, 

creatinine level, presence of LBBB and CAC score. The training group was used to build the 

SVM classifier and to perform hyperparameter optimization. A coarse grid search was performed, 

thereby evaluating regularization parameter and gamma values of 2
-25

, 2
-15

, 2
-10

, …, 2
25

 after 

which a finer grid search was conducted to evaluate regularization parameter values of 2
-10

, 2
-9

, 2
-

8
 …, 2

10
 and gamma values of 2

15
, 2

16
, 2

17
 …, 2

25
. For each combination, a stratified 10-fold 

cross-validation was conducted after which sensitivity and specificity were determined. The 

combination of values that provided a sensitivity >90% and the highest specificity was selected to 

derive the final model.  

MACE model: the subset of 2292 patients was randomly divided into a training (n = 1830) and 

validation dataset (n = 462), thereby ensuring that the ratio of patients with positive and negative 

outcome was equivalent in both groups. Input features included the features of the ischemia 

model aforementioned together with LVEF and SPECT MPI outcome (presence of irreversible 

defect and presence and size of ischemic defect). The training group was used to build the SVM 

classifier and to perform hyperparameter optimization. A coarse grid search was performed to 

select appropriate values of the regularization parameter and gamma that provided a sensitivity of 

95%., thereby evaluating values between 2
-25

 and 2
25

. Eventually, a finer grid search was 

conducted to evaluate regularization parameter values of 2
-6

, 2
-5

, 2
-4

 …, 2
9
 and gamma values of 

2
19

, 2
20

, 2
21

 and 2
22

. For each combination, a stratified 10-fold cross-validation was conducted 

after which sensitivity and specificity were determined. The combination of values that provided 

a sensitivity >95% and the highest specificity was selected to derive the final model.  

Both models were tested using the validation sets, thereby assessing predicted classes for each 

patient. Prediction performance was determined by calculating sensitivity, specificity, positive 

predictive value (PPV) and negative predictive value (NPV). Besides that, the area under the 

curve (AUC) of the derived model was assessed for the validation set.   

 

Ischemia model vs. CAC 

The prediction performance of the ischemia model was compared to that of CAC scoring alone. 

For the validation set, patients with a CAC score of zero were predicted as having a normal 

SPECT MPI scan and scores  1 as having an abnormal scan. Sensitivity, specificity, PPV and 

NPV were assessed for this method and compared to that of the SVM model. 

 



Table 1: Baseline characteristics and scan outcomes of all patients who underwent clinically indicated SPECT MPI. Values are given for separate training and validation datasets 

used for the ischemia model and MACE model.  

Characteristic 

 

training 

(n = 5540) 

Ischemia model 

validation  

(n = 611) 

 

p-value 

 (χ2 / t-test) 

 

training 

(n=1830) 

MACE model 

validation 

(n=462) 

 

p-value 

(χ2 / t-test) 

Age (years) 61.7 ± 11.4 62.1 ± 11.7 0.40 60.8 ± 11.7 61.0 ± 11.2 0.74 

Male gender  44.0% 41.7% 0.31 42.7% 47.4% 0.08 

Body weight (kg) 81.6 ± 15.7 82.2 ± 15.4 0.34 81.9 ± 16.0 82.2 ± 14.6 0.77 

Height (cm) 172.7 ± 9.7 172.3 ± 9.5 0.35 172.3 ± 9.8 172.3 ± 9.8 0.94 

Current smoking 14.1% 12.9% 0.45 14.7% 14.9% 0.96 

Hypertension 56.6% 61.2% 0.032 60.4% 58.0% 0.37 

DM type II  12.7% 10.8% 0.21 12.1% 15.8% 0.043 

Dyslipidemia 38.4% 37.8% 0.80 40.9% 40.9% >0.99 

Family history  55.0% 51.4% 0.10 53.5% 56.5% 0.27 

Medication use 83.8% 86.8% 0.07 83.4% 83.8% 0.92 

LBBB 3.2% 2.5% 0.38 3.4% 3.5% >0.99 

Systolic BP 138.8 ± 20.7 140.0 ± 21.3 0.20 139.8 ± 21.0 137.9 ± 20.2 0.08 

Diastolic BP 84.6 ± 12.2 84.9 ± 12.5 0.53 84.8 ± 12.6 83.6 ± 12.8 0.07 

Heart rate 71.1 ± 12.4 71.1 ± 13.1 0.94 71.1 ± 12.4 70.6 ± 12.0 0.42 

Creatinine level 80.6 ± 38.1 79.4 ± 17.8 0.15 77.2 ± 28.0 76.2 ± 17.3 0.30 

CAC 297 ± 676 336 ± 701 0.19 273 ± 612 354 ± 703 0.023 

LEVF 62.0 ± 9.4 62.0 ± 9.6 0.90 62.2 ± 9.2 62.1 ± 10.6 0.97 

Normal MPI scan  76.5% 76.3% 0.95 75.1% 71.9% 0.17 

MACE - - - 6.7% 6.9% 0.96 

LBBB, left bundle branch block; BP, blood pressure; CAC, coronary artery calcification; LVEF, left ventricular ejection fraction; MPI, myocardial perfusion imaging; MACE, 

major adverse cardiac risk events. Values are presented as mean ± SD or percentages. 

 



Statistical analysis 

Statistical analysis was performed using R Studio software (RStudio: Integrated Development for 

R. Version 1.1.442; RStudio, Inc.). To assess differences in patient characteristics between 

training and validation datasets, the t-test or χ²-test were performed. A χ²-test was also used to 

compare prediction performances of the derived models between the training and validation 

groups. Differences in sensitivities and specificities of the ischemia model and CAC scoring were 

evaluated using the McNemar’s test and differences in PPV and NPV were assessed using a 

weighted generalized score statistic.[120] For all statistical tests, a significance level at 0.05 was 

used. 

 
RESULTS 

The baseline characteristics and clinical parameters of all included patients are summarized in 

Table 1. For both models, the majority of all parameters was comparable between the training and 

validation set. The validation set used for the ischemia model contained a higher number of 

patients with hypertension  than the training set (p = 0.032). Besides that, we observed that more 

patients with DM type II were present in the validation  set of the MACE model (p = 0.043) and 

that CAC scores were significantly higher in this group in comparison to the training group  

(p = 0.023). 

Model development and validation 

For the 10-fold cross-validation, the derived ischemia model (regularization parameter of 2
-7

 and 

gamma value of 2
17

) had a sensitivity of 91.5% and specificity of 27.5% with PPV and NPV of 

28.0% and 91.3%, respectively. The model showed goodg generalization towards unseen data as 

all prediction performance parameters assessed for the validation dataset were comparable to that 

found for the training set (p > 0.06) as seen in Table 2. The derived model lead to an AUC of 0.71 

for the validation set.  For the derived MACE model (regularization parameter of 2
3
 and gamma 

value of 2
20

), a 10-fold cross-validation resulted in a sensitivity, specificity, PPV and NPV of 

95.9%, 16.5%, 7.6% and 98.3%, respectively. Testing the model using the validation dataset, a 

substantial decrease in specificity (specificity = 3.3%, p < 0.001) was found in comparison to the 

training set. The other parameters were comparable (p > 0.6) between training and validation 

datasets as shown in Table 2. For the MACE model, an AUC of 0.77 was found for the validation 

set.  

Table 2: Prediction performance of the ischemia and MACE models for both training and validation set. 

  Ischemia   MACE  

Parameter 

 

Training 

 

Validation 

 

p-value 

(χ2-test) 

Training 

 

Validation 

 

p-value 

(χ2-test) 

Sensitivity 91.5% 89.7% 0.6 95.9% 96.8% >0.99 

Specificity 27.5% 31.8% 0.06 16.5% 3.3% <0.001 

PPV 28.0% 29.0% 0.7 7.6% 6.7% 0.6 

NPV 91.3% 90.8% 0.95 98.3% 93.3% 0.7 

PPV, positive predictive value; NPV, negative predictive value 
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Ischemia model vs. CAC 

Prediction performance of the ischemia model and CAC scoring using the validation dataset is 

shown in Figure 1. For the ischemia model, a sensitivity, specificity, PPV and NPV of 89.7%, 

31.8%, 29.0% and 90.8% was obtained, respectively. Using a CAC-score of zero as indicative for 

normal SPECT, a comparable sensitivity of 84.1% (p = 0.14), specificity of 37.1% (p = 0.17), 

PPV of 29.4% (p = 0.7) and NPV of 88.3% (p = 0.3) was found. 

 
Figure 1:  Prediction performance of the SVM model and CAC score to discriminate patients with an 

abnormal SPECT MPI scan from patients with a normal scan. 
 

 

DISCUSSION 

In this study, we developed two SVM models that integrated readily available clinical parameters 

with imaging outcomes to provide a more individualized risk assessment of myocardial ischemia 

and MACE. The derived ischemia model showed good generalization towards previously unseen 

data, in contrast to the MACE model for which a considerable increase in false positives was 

observed for the validation dataset. ML-based integration of clinical parameters and CAC score 

had comparable prediction performance as that of standalone CAC score for predicting whether 

abnormalities are present on SPECT MPI scans.  

To our knowledge, no other studies have assessed the ability of machine learning to integrate 

clinical parameters and CAC score to predict the presence of ischemia on MPI SPECT and 

subsequently compared the prediction performance of the derived model to that of standalone 

CAC scoring. Juarez et al. evaluated the feasibility and performance of ML in identifying patients 

with (1) ischemia and (2) elevated risk of MACE as determined by Nitrogen-13 ammonia 

positron emission tomography (PET) imaging. Using only accessible clinical and functional 

parameters as input, they evaluated a boosted ensemble ML algorithm in a stratified 10-fold 

cross-validation and reached an AUC of 0.72 and 0.71, respectively. Testing the model on a 

previously unseen dataset resulted in an AUC of 0.75 for both models. The derived models 

showed superior performance to that of readily available models that are recommended in the 
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European Society of Cardiology guidelines.[121] The AUCs found in this study are comparable 

to the AUC of 0.72 and 0.77 found in our study for the prediction of ischemia and occurrence of 

MACE, respectively. Juarez et al. used the myocardial flow reserve (MFR) for labelling purposes, 

whereas we used nuclear medicine physician’s interpretation of both images and semi-

quantitative data to determine whether ischemia was present and follow-up results to assess 

whether MACE occurred. MFR is known for its incremental diagnostic value in detecting CAD 

when used as an adjunct to PET MPI and its significant prognostic value in predicting 

MACE.[122–126] Although our approach is time-consuming, it is a more accurate resemblance 

of how ischemia is detected in clinical practice and it uses true events for labelling purposes of 

the MACE model. In this way, models can be built that capture a more realistic relationship 

between the input and output, thereby resulting in better prediction performances. As PET is 

superior to SPECT in the detection of ischemia[127–129], the use of PET data could yield even 

better prediction performances if further input features are kept comparable. 

Several other studies have evaluated the use of machine learning to predict MACE using both 

clinical parameters and quantitative SPECT MPI image features. Alonso et al. derived a SVM 

model to predict cardiac death that reached an AUC of 0.83.[130] Arsanjani et al. used a boosted 

ensemble ML algorithm to predict revascularization events and achieved an AUC of 0.81, which 

was found comparable and superior to experienced expert readers and better than standalone 

measures of perfusion derived from SPECT MPI.[131] Likewise, Betancur et al. found an AUC 

of 0.81 for a boosted ensemble ML model to predict MACE that was superior to existing visual 

and automated perfusion assessment.[132] Though a comparable AUC of 0.77 was found in this 

study, comparison is difficult as each study defined its own input and output parameters and none 

of the aforementioned studies performed a validation using previously unseen data. All three 

studies showed that (semi-)quantitative MPI data substantially contributed to the model, 

indicating that the addition of these parameters could potentially enhance the performance of the 

current MACE model. This is in line with previous findings that semi-quantitative parameters 

including summed stress score, summed rest score and summed difference score objectively 

reflect the extent and severity of perfusion defects, thereby complementing conventional image 

interpretation and having prognostic value in the prediction of MACE.[118, 133–135] 

For both models, we aimed for a high sensitivity that apparently required a high gamma value as 

observed when performing the grid search. High gamma values can indicate a degree of 

overfitting.[72, 136] The MACE model is thereby more prone to overfitting as the training dataset 

contained a relative small proportion of positive examples (patients in which MACE occurred) in 

comparison to the ischemia model. This can explain why we observe a good generalizability for 

the ischemia model, whereas we see a substantial decrease in specificity of the MACE model for 

the validation set. It is not certain whether this decrease is due to the selected gamma value as not 

all patient characteristics were comparable between the training and validation sets. We observed 

that the validation set contained a higher amount of patients with DM type II and that the mean 

CAC score was higher. DM type II is associated with faster CAD progression and is therefore an 

independent predictor of adverse outcomes.[137–139] Likewise, an increase in the occurrence of 

MACE is observed with increasing CAC scores.[116, 140, 141] It is possible that there was an 

insufficient amount of patients with these characteristics in the training set to learn from that 



25 
 

subsequently lead to an increase in the false positive rate. Further subanalyses are therefore 

needed in order to determine whether the derived model is suitable for patients with DM type II 

and higher CAC scores or that retraining is needed. 

We found that a ML-based approach for predicting whether abnormalities are present on SPECT 

MPI is comparable to standalone CAC scoring in which a score of zero is indicative for a normal 

scan. For clinical use, the latter would be preferred as assessing a single parameter is less time-

consuming. The addition of demographic and clinical parameters was expected to further increase 

the ability to accurately predict abnormal SPECT MPI, but this was not observed in this study. 

Though input features were selected based on expert opinion, not all the features may contribute 

to the prediction of ischemia. Liu et al. found that a model using only a few predictors 

outperformed a whole set of variables in predicting MACE[142], indicating the need of selecting 

an appropriate combination of input features that provides the highest prediction performance. 

Multiple methods can be used for this purpose.[143, 144] Juarez et al. determined the information 

gain of a set of predictor variables for myocardial ischemia and excluded those that documented 

no gain.[121] Several of these excluded features, including BMI, sex and smoking, are used as 

input features in our derived SVM model, suggesting that the current combination of features 

provide a suboptimal prediction performance. Therefore, future work should focus on feature 

selection methods to assess whether used input features impede prediction performance. In this 

way, a model can be derived that is expected to demonstrate the added value of clinical 

parameters besides CAC scoring, thereby potentially providing a more individualized risk 

stratification. 

This study has several limitations. First, the patient population used for the development and 

validation of the ML models is rather large, but data was assessed from one center and follow-up 

was not extensive for every patient. It is not known how well the derived model will perform in 

different centers and patient populations, nor whether the derived model will be suitable for 

future patient populations. Second, the MACE model was not compared to current recommended 

risk scores due to its poor generalizability and therefore, the clinical value of this model was not 

assessed. Finally, SVM is one of many ML algorithms that is able to map the relationship 

between a defined input and output. Different ML approaches including deep learning were not 

evaluated in predicting ischemia and MACE, but could yield better prediction performances. The 

use of ML has the potential to provide an automated risk estimate that combines multiple 

variables to identify patients with ischemia or at risk of MACE, though further research of the 

current derived SVM models is needed before clinical implementation can be considered. Further 

refinement of the models could provide a more accurate assessment of patients that require 

noninvasive SPECT or more invasive evaluation and treatment. 
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CONCLUSION 

ML-based integration of clinical parameters and CAC score has comparable prediction 

performance as that of standalone CAC score for predicting whether abnormalities will be present 

on SPECT MPI. Therefore, further evaluation is needed to determine the discriminative power of 

these clinical features in predicting myocardial ischemia. The derived SVM model for risk 

assessment of MACE can predict the occurrence of MACE with high sensitivity, but a significant 

reduction in the number of false positives is needed before implementation in clinical practice can 

be considered. 
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CHAPTER 4  

Recommendations and future perspectives 

 
The studies presented in this thesis show that the use of machine learning (ML) can integrate 

multiple variables to make individualized predictions for diagnosis and prognosis purposes. 

Although not all developed support vector machine models presented in this thesis currently have 

the potential to be clinically implemented, the studies show that ML is applicable in different 

fields. It is therefore plausible that ML also has impact in applications beyond the detection of 

Parkinson’s disease, myocardial ischemia and major adverse cardiac events. These not only 

include individualized models based on information extracted from nuclear images and patient’s 

medical health records to facilitate patient management, but potential applications lie also in the 

field of image reconstruction and processing as de-noising, segmentation and registration.[145, 

146] Though the use of ML seems promising, ML tools have limitations and several aspects have 

to be taken into account considering the development, validation and clinical implementation 

process.  

 

The availability of data is one of the main challenges in the development of ML models, since a 

large amount of training data with sufficient quality is required to provide reliable results.[147] 

Careful labelling is needed as inaccuracies will limit prediction performance of the model. 

Therefore, the involvement of experts is often required as well as substantial amounts of time and 

effort to ensure data accurately reflects clinical reality.[13, 148] Data sharing between multiple 

institutions could give access to a large number of proven cases that can be used for both 

development and validation, but methods for quality control of shared data and images and 

support for data transfer and storage without impeding data privacy are yet to be developed. 

Regarding the generalizability of ML models, criteria should be established that define in what 

patient population and under which circumstances a derived model is valid.[149] One example 

comprises the image acquisition and reconstruction settings as these are known to influence 

features extracted from images, thereby impeding generalizability across centers. Further 

standardization of these settings can potentially facilitate a more wide-spread use of ML.[13, 150] 

 

Advances in the field of natural language processing (NLP) and radiomics would further facilitate 

the development of ML-based applications. NLP systems are able to generate structured 

information from unstructured free text as found in electronic medical records, thereby enabling 

automatic identification and extraction of clinical information.[151, 152] Radiomics involves the 

high-throughput extraction of quantitative imaging features that characterize a particular regions 

of interest (ROI), thereby capturing information related to pathophysiology. These features are 

hand-crafted and comprise different aspects of a segmented ROI including intensity, shape and 

texture.[150, 153] Both NLP and radiomics techniques have the potential to provide input 

parameters that can be easily obtained once established methods are available. Regarding medical 

images, the use of deep learning can overcome the need for defining and selecting features as 

well as the segmentation step that is required to extract the features of a ROI. 154] In deep 

learning, the algorithm can automatically and adaptively learn feature representation from raw 



 
 
28 

data by summarizing and transforming clusters of pixels in the image.[5, 148, 155] It has 

therefore the potential to play a key role in the discovery of new imaging biomarkers that allows 

us to identify and monitor diseases.[146]  

 

Considering the implementation of ML models in clinical practice, interpretability and 

explainability of a model is essential for its acceptance and usability in the clinical setting. This 

comprises the ability to provide an understanding of input parameters, model parameters, the 

algorithm used and the reasons behind a model’s prediction results.[156, 157] The latter is 

increasingly addressed through the assessment of the most relevant features and data and model 

visualization using visualization techniques such as nomograms and salient maps. Understanding 

in how predictions are generated by the model results in a gain of trust of its users and it allows 

the possibility to correct errors.[158, 159] 

 

From a regulatory perspective, ML models need to be certified before large-scale deployment to 

ensure safe use of these tools in clinical practice.[148] The Food and Drug Administration and 

medical devices certification systems are likely to play a key role in approving ML applications, 

but rules about datasets, transparency and verification procedures are currently lacking.[160] 

Existing laws regarding regulated medical devices are difficult to apply to ML algorithms as the 

models will evolve over time when more data is processed and learned from. Periodic testing over 

specific time intervals could potentially ensure that prediction performance is improving 

consistently and will not decline.[5] Other issues may arise from the use of patient data for 

training purposes and questions regarding liability.[5, 149, 160] This calls for the need to further 

develop existing regulatory frameworks to establish an appropriate regulation of ML-based 

applications in healthcare. 

 

Integration of ML tools in clinical practice will likely evolve the role of radiologists and nuclear 

medicine physician. It is plausible that the physician will contribute to the training and refinement 

of ML models as they can add expert knowledge and experience to the tools they will then use. 

Therefore, a basic understanding of the methods and concepts of ML should be part of their 

training.[145] As ML models are restricted to one well-defined task, it is assumed that ML will 

take over tasks that are more routine and standardized, while assisting the physician in tasks that 

require more context.[13] For each application, the optimal clinical workflow has to be identified 

and the effect of use of models in real-life clinical situations has to be assessed. An integrated ML 

component in the clinical setting is thought to improve quality of care by reducing human error, 

increasing diagnostic certainty, supporting workload management and facilitating personalized 

medicine.[6, 7, 148, 149] 
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APPENDIX A  

SVM model development and characteristics for 
detection of Parkinson’s Disease 

For the development of a machine learning (ML) model, several steps have to be taken to derive a 

proper working model. First, a specific regression or classification problem has to be defined that 

ML is going to address. Subsequently, output and input parameters can be selected as well as a 

suitable algorithm. After data collection, the data is split into a training and validation dataset 

after which the data is preprocessed.  A method has to be selected to perform hyperparameter 

optimization, thereby defining an evaluation measure in order to select the most suitable 

hyperparameter values. Finally, a set of prediction performance parameters have to be selected 

and assessed to obtain an estimate of the derived model’s performance. Aforementioned aspects 

are separately addressed for the development of a ML-based approach for interpretation of I-123 

FP-CIT SPECT scans to detect Parkinson’s disease (PD).  

 

Algorithm and feature selection 

The aim of our study was to discriminate PD from diagnoses other than PD (non-PD) based on I-

123 FP-CIT SPECT scans, thereby defining a binary classification problem. The output parameter 

comprised the clinical diagnosis retrieved from a patient’s medical record: an output value of 1 

was given to PD patients, while non-PD patient had an output value of 0. Input parameters 

included I-123 FP-CIT striatal uptake ratios that are routinely assessed in clinical practice. 

Furthermore, we added age and gender as these are known to influence the ratios.[161, 162] 

Support vector machine (SVM) was selected as ML algorithm as this algorithm is known for its 

good generalizability properties.[64, 75] Based on visual plots of the ratios for both PD and non-

PD patients, the groups were assumed to be linearly separable and a linear kernel was therefore 

chosen.   

 

Data split and preprocessing steps 
After all data was collected, 70% was used to create the training dataset and the remaining 30% 

formed the validation dataset. We ensured that both groups contained an equivalent amount of PD 

and non-PD patients. To ensure each feature is treated with equal importance by the SVM model, 

all input features, except for gender, were normalized according to: 

 

𝑧 =
𝑥𝑖−𝜇

𝜎
  (1) 

 

Using the mean (μ) and standard deviation (σ) of the training dataset, the z-score (z) can be 

returned of a particular feature of one patient (xi). Mean and standard deviation for each feature of 

the training dataset are found in Table 1. Gender was converted into two input features, ‘male’ and 

‘female’. Input feature ‘male’ had a value of 1 and ‘female’ a value of 0 when the patient was male 

(vice versa for a female patient). Furthermore, features of all patients were provided to the model in 

one specific order.  
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str, striatum; caud, caudate nucleus; put, putamen; L, left; R, right 
 

Hyperparameter optimization 
A linear SVM model comprises one hyperparameter, the regularization term C, of which an 

appropriate value had to be selected. Therefore, a grid search was performed on a logarithmic 

scale, thereby evaluating values of 2
-6

, 2
-5

, …, 2
7
. For each value, a stratified, 10-fold cross-

validation was conducted that was repeated 10 times. That is, the training dataset was partitioned 

into 10 folds with in each fold a similar class distribution to that in the training dataset. By 

repeating the cross-validation multiple times, thereby having different random partitions of the 

training dataset into the 10 folds, an estimation of the true performance of the model can be 

derived. As classification accuracy in unbalanced datasets tends to undervalue how well a model 

is able to correctly classify unseen examples, the mean F1-score was used as evaluation measure 

as this measure balances precision and recall. The value providing the highest F1-score was 

eventually selected to be used in the final derivation of the model. Mean and standard deviation 

of the F1-score for each value of C in the grid search is illustrated in Figure 1.  

 

 
Figure 1: Mean F1-score and standard deviation for all values of C conducted in the grid search, assessed by 

performing a stratified, 10-times repeated 10-fold cross-validation. 
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Table 1: Mean and SD of all continuous features of the training data and final model weights for 

all features 

 

 Mean ± SD Weight  

male - -0.013  

female -  0.013  

age 67.0 ± 10.9 -0.268  

str. L 3.10 ± 0.90 -0.162  

str. R 3.02 ± 0.83 -0.227  

caud. L 3.58 ± 0.93 -0.055  

caud. R 3.47 ± 0.84  0.146  

put. L 2.67 ±0.92 -0.234  

put. R 2.63 ± 0.87 -0.287  

put/caud. L 0.74 ± 0.11 -0.454  

put/caud. R 0.75 ± 0.11 -0.372  
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Final model parameters and predictions 
The eventual model was derived using a regularization parameter of 2

-4
, thereby obtaining the 

fitted linear coefficients or weights for each feature (found in Table 1) and a bias term (found in 

Table 2). The weight magnitude of the different input features reflect the importance of the 

features.[163, 164] Therefore, we can determine which features are relevant to the model. The top 

three most important features in this model includes both left and right putamen/caudates indices 

as well as the specific binding ratio of the right putamen. Gender is the least relevant feature to 

the model to classify new examples.  

 

In case a new prediction has to be made for an unseen example, a vector of all aforementioned 

features (x) is first normalized according to Formula (1). Using the weights (θ, in vector form) 

and the bias term (β), the classification score (S) can be obtained:  

 

𝑆 = 𝑥 ∙  𝜃 +  𝛽   (2) 

The classification score reflects the distance from x to the decision boundary and is either positive 

or negative. A positive score indicates that x is classified as PD, while a negative score indicates 

that the model classifies the example as being non-PD. To derive a probability that an example 

belongs to PD, a sigmoid function is derived using the inbuilt function <fitSVMPosterior> in 

Matlab (MATLAB and Statistics and Machine learning Toolbox Release 2018b, the Mathworks 

Inc.). Parameters comprising the scale (a) and intercept (c) of the sigmoid function are 

determined (found in Table 2) using this function after which the probability of PD (P) can be 

assessed:  

 

𝑃 = 1 − 
1

1+𝑒−𝑎(𝑆−𝑐)   (3) 

 

In conclusion, an interpretable model was derived that subsequently was validated as described in 

Chapter 2. This Appendix provides all means to make new predictions for previously unseen 

examples, but caution should be taken when applied in a different center in which the proposed 

ML model is not validated (yet). 

 
Table 2: Derived values for the bias term and scale and intercept parameters of the sigmoid function. 

 
parameter value 

𝛽 0.592 

a -2.349 

c -0.017 
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APPENDIX B  

Protocol reconstructie en uitwerking van I-123  
FP-CIT scans 

Reconstructie 

1. Selecteer gehele patiënten map  en klik op All applications >> Brain >> Brain SPECT 

2. Selecteer uit het lijstje de FPCIT (Dataset Name) en vul in bij Data Usage Confirmation 

(wanneer gevraagd): 

a. Scan Group: -EARLY 

b. Modify usage >> Emission 

3. Ga naar Rec/Ref >> Recon/Reformat/Mask 

 

4. Pas de rode lijnen in het cine-beeld dusdanig aan dat de hersenen goed zijn omsloten. Zet 

de witte lijn op een slice waarin sagittaal het striatum goed zichtbaar is. 

 

5. Zorg ervoor dat de activiteit in het striatum goed zichtbaar is in het overview en oriënteer 

de hersenen op de juiste manier.  

a. Sagittal Limits: groene lijn in het midden van linker- en rechter striatum. 

Eventueel de as draaien zodat het striatum recht komt te liggen (te controleren in 

transversale overview).  
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b. Transversal Limits: zet de groene lijn dusdanig neer dat in het transversale 

overview te zien is dat de activiteit in het striatum toeneemt en weer afneemt. 

Eventueel de as draaien zodat de as evenwijdig loopt met de acanthomeatale lijn 

(wit).  

 

c. Coronal limits: zet de groene lijn dusdanig neer dat in het coronale overview te 

zien is dat de activiteit in het striatum toeneemt en weer afneemt. 

  

6. Ga naar SPECT options en pas de instellingen eventueel aan. Het is erg belangrijk dat 

deze goed staan! 

a. Reconstruction options 

i. Recontruction type: FBP 

b. Correction options 

i. Scatter correction: Off 

ii. Attenuation correction 

1. Method: Change order 0 

2. Coefficient 0.11 

3. Threshold: 15 (standaard) 

c. Filters 

i. Pre-filter: Butterworth 

ii. Critical frequency: 0.65 

iii. Power: 10 

iv. RampFilter: Quantitative 

 

7. Om de transversale sneden plaatst zich een region. Zet in je cine-view links je groene lijn 

dusdanig neer dat je het striatum in beeld krijgt en pas de threshold aan zodat de region 

de contouren van het hoofd volgt. Controleer de fit met behulp van de de groene lijn 

naast de transversale snede, scroll door het hoofd heen en kijk of de region het hoofd 

goed omsluit in elke slice. Wanneer correct: proceed. Nu verschijnt de attenuatie-

gecorrigeerde uitwerking van de SPECT. 
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8. Scroll door je cine-view en controleer of het hoofd compleet binnen de rode lijnen vallen 

in je sagittal, transversal en coronal limits. Pas ze eventueel aan.  

 

 
 

9. Ga naar Review  

 
 

10. Kies bij plane >> transversal, je krijgt nu een overzicht met transversale beelden 

11. Gebruik de zoom functie om de hersenen beeldvullend in beeld te brengen (zoom ca. 

2.5). Zorg dat de kleuren setting op GE COL staat. 

12. Maak een screencap via EF-screencap 

13. Save de plaatjes via File >> save and exit 

 

Kwantificatie 

14. Selecteer de gesavede studie en werk deze uit met het protocol: DatSCAN 3r21 

15. Selecteer de snede waarin het striatum het duidelijkste zichtbaar is qua volume en qua 

activiteit >> proceed 

16. Positioneer de regions. Door de regions aan te klikken wordt deze geactiveerd en kan 

deze verplaatst en gekanteld worden.  

a. Occipital region: het is belangrijk dat deze region op eenzelfde hoogte komt te liggen 

voor elke patiënt. Hiervoor moeten twee stappen worden uitgevoerd: 
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i.  de region dusdanig verplaatsen naar beneden totdat de punten waar de 

witte en groene lijnen elkaar kruizen (rode kruizen) op de grens van het 

hoofd komen te liggen (gele lijn). 

ii.  De platte kant van de region is nu de hoogte waar de groene lijn terecht 

moet komen (zie witte pijl). Verschuif de region naar deze hoogte en 

zorg dat er evenveel afstand is tussen de groene bolletjes en de grens van 

het hoofd. Kantel de region niet! 

 

             
 

             
 

b. Striatum regions: begin bij het putamen en plaats deze waar (je denkt dat) je de 

staart kan zien. Zet de andere region om de nucleus caudates en zorg ervoor dat 
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ze zo goed mogelijk op elkaar aansluiten (zie voorbeelden hieronder). Ze mogen 

niet overlappen! 

c. Proceed. De regions worden nu gekopieerd naar rechts.  Herhaal stap b voor de 

rechterkant.  

 

17. Calculate results. Controleer alle slices en pas waar nodig je putamen en nucleus caudates 

regions aan. De occipitaal region moet voor alle slices gelijk blijven. Zonodig herhalen 

via ‘Start over’.  

 

18. Controleer de acquisitie en reconstructie parameters. Wanneer het Butterworth filter niet 

de juiste waarde aangeeft is er iets mis gegaan in de reconstructie. 

a. Dataset Name: FBPAC_Transversal Obl 

b. Acquisition Zoom: 1.28 

c. Slice thickness: 3.45 mm 

d. Filter: Butterworth 0.65 / 10 

e. Attenuation corrected: YES 

f. Attenuation Corr Type: CHANG 

g. Attenuation Coeff: 0.11 

 

19. Maak een screencap via EF-screencap 

20. Save de studie via File >> save and exit  

 

21. Stuur alles m.u.v. de result series naar SECTRA 
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APPENDIX C  

Accepted abstracts  

Submitted and accepted abstracts for the European Association of Nuclear Medicine  (page 47)   

and Dutch Society of Nuclear Medicine and (page 48). 

Machine learning-based interpretation of I-123-FP-CIT scans allows high-accuracy 

detection of Parkinson’s Disease  

M Dotinga
1,3

, JD van Dijk
1
, BN Vendel

1
, CH Slump

3
, JA van Dalen

2 

Departments of 
1
Nuclear Medicine and 

2
Medical Physics, Isala, Zwolle, The Netherlands and 

3
MIRA: 

Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The 

Netherlands 

Introduction: Dopamine transporter SPECT imaging with I-123-FP-CIT allows for visualisation 

of dysfunction of the dopaminergic system, which is characteristic of Parkinson’s Disease (PD). 

Interpretation of scans based on visual assessment and semi-quantitative analysis imposes 

limitations as the latter requires a site-specific reference database that is often not available. Our 

aim was to develop a machine learning (ML)-based approach for interpretation of I-123-FP-CIT 

scans and determine its added value in clinical practice. 

Methods: We retrospectively included a consecutive cohort of 130 patients that underwent I-123-

FP-CIT SPECT imaging (Discovery D670, GE Healthcare) and had a clinically confirmed 

diagnosis. Patients were labelled as either having PD or a diagnosis other than PD (non-PD) and 

divided into a training set (58 PD, 32 non-PD) and validation set (25 PD, 15 non-PD) using 

stratified random sampling. The training set was used to build a linear support vector machine 

(SVM) classifier to discriminate PD from non-PD using I-123-FP-CIT striatal uptake ratios, age 

and gender as input features. Ratios were obtained by means of semi-quantitative analysis 

(Xeleris 4.0, GE Healthcare) and comprised specific binding in striatum, caudate nucleus and 

putamen as well as a putamen/caudate index for both left and right hemisphere. A stratified, 10-

times repeated 10-fold cross-validation was conducted to perform model optimization using mean 

accuracy and F1-score as evaluation measures. Subsequently, the derived SVM model was tested 

on the validation set. I-123-FP-CIT scans and corresponding ratios of the validation set were 

scored as either PD or non-PD by two expert nuclear medicine physicians following European 

guidelines. Overread from a third expert was performed in case of disagreement. Next, their 

prediction performance was compared to that of the SVM model.  

Results: The highest mean prediction accuracy and F1-score as found by cross-validation were 

94.3% and 0.956, respectively. Testing the derived SVM model on the validation set, an accuracy 

of 95.0%, sensitivity of 96.0% and specificity of 93.3% were obtained. Prediction performance 

did not differ from visual assessment of PD, obtaining an equivalent accuracy, sensitivity and 

specificity of 95.0%, 96.0% and 93.3% (p > 0.99), respectively. 

Conclusion: ML-based interpretation of I-123-FP-CIT scans results in accurate discrimination of 

PD from non-PD identical to standard visual assessment, thereby encouraging implementation of 

this SVM model as diagnostic aid in clinical practice. 
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Machine learning-based interpretation of I-123-FP-CIT striatal uptake ratios allows 

high-accuracy detection of Parkinson’s Disease 

M Dotinga
1,3
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Departments of 

1
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2
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3
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Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The 

Netherlands 

Introduction: Dopamine transporter SPECT imaging (I-123-FP-CIT) allows for visualisation of 

dysfunction of the dopaminergic system, which is characteristic of Parkinson’s Disease (PD). 

Interpretation based on visual assessment and semi-quantitative analysis imposes limitations as 

the latter requires a site-specific reference database that is often not available. Our aim was to 

develop and validate a machine learning (ML)-based interpretation of these I-123-FP-CIT scans 

to discriminate Parkinson’s Disease (PD)  from non-PD. 

Methods: We retrospectively included 130 consecutive patients that underwent I-123-FP-CIT 

SPECT imaging (Discovery D670, GE Healthcare) and had a clinically confirmed diagnosis. 

Patients were labelled as either having PD or non-PD and divided into a training set (58 PD, 32 

non-PD) and validation set (25 PD, 15 non-PD) using stratified random sampling. The training set 

was used to build a linear support vector machine (SVM) classifier using I-123-FP-CIT striatal 

uptake ratios, age and gender as input features. Subsequently, the derived SVM model was tested 

on the validation set and its prediction performance was compared to that of an expert nuclear 

medicine physician who scored the I-123-FP-CIT scans as either PD or non-PD. 

Results: Accuracy, sensitivity and specificity of visual assessment of PD were 87.5%, 92.0% and 

80.0%, respectively. A comparable prediction performance was found when using the SVM 

model, obtaining an accuracy of 95.0%, sensitivity of 96.0% and specificity of 93.3% (p>0.24). 

Conclusion: ML-based interpretation of I-123-FP-CIT scans results in accurate discrimination of 

PD from non-PD similar to standard visual assessment, thereby encouraging implementation of 

this SVM model as diagnostic aid in clinical practice. 

 


