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abstract

Data visualization is often the first step in data analysis. However, creating visualizations is hard: it
depends on both knowledge about the data and design knowledge. While more and more data is
becoming available, appropriate visualizations are needed to explore this data and extract information.
Knowledge of design guidelines is needed to create useful visualizations, that are easy to understand and
communicate information effectively.

Visualization recommendation systems support an analyst in choosing an appropriate visualization by
providing visualizations, generated from design guidelines implemented as (design) rules. Finding these
visualizations is a non-convex optimization problem where design rules are often mutually exclusive: For
example, on a scatter plot, the axes can often be swapped; however, it is common to have time on the
x-axis.

We propose a system where design rules are implemented as hard criteria and heuristics encoded
as soft criteria that do not need to be satisfied, that guide the system toward effective chart designs.
We implement this approach in a visualization recommendation system named overlook, modeled
as an optimization problem implemented with the Z3 Satisfiability Modulo Theories solver. Solving
this multi-objective optimization problem results in a Pareto front of visualizations balancing heuristics,
of which the top results were evaluated in a user study using an evaluation scale for the quality of
visualizations as well as the low-level component tasks for which they can be used. In evaluation, we did
not find a difference in performance between overlook and a baseline of manually created visualizations
for the same datasets.

We demonstrated overlook, a system that creates visualization prototypes based on formal rules and
ranks them using the scores from both hard- and soft criteria. The visualizations from overlook were
evaluated in a user study for quality. We demonstrate that the system can be used in a realistic setting.
The results lead to future work on learning weights for partial scores, given a low-level component task,
based on the human quality annotations for generated visualizations.
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introduction

The amount of digital data that is being created and is available for analysis is increasing. Today, more
information is available than ever before. This co-occurred with both an increase in usage of advanced
data analysis methods and the democratization of data science. At the same time, exploring information
becomes increasingly difficult as the volume of data increases [HS12].

While data processing is automated; reasoning, applying domain knowledge, and interpreting the
data is performed by humans. Visualizing data is an important step, both during exploratory data
analysis as well as when presenting results. Being able to create useful visualizations, that are relevant
and give new insights has become a must-have skill for data analysts.

Analysts use visualizations to explore data, spot trends, etc. Creating visualizations is a mostly
manual process, where choices need to be specified by analysts. The resulting visualizations are used by
decision-makers in corporations, government, etc. By extension, one could argue that data visualization
is an essential skill for the members of the general public or even society at large.

The choices made when designing a visualization depends on multiple variables, including the dataset,
selected facts, selected data, type of visualization, and the task at hand. The utility of the resulting
visualization depends on its relevance to the task at hand and whether it gives new insights.

While there are many methods for creating visualizations, this thesis will focus on visualizations
specified in high-level languages that concisely describe a visualization. These specifications describe
how the visualization encodes data, without offering fine-grained control over details.

Creating visualizations is usually a manual process instead of a process where a system recommends
visualizations. Wongsuphasawat et al. [Won+16a] group systems that recommend visualizations on
two orthogonal axes of recommendations they provide: recommending the data that is queried and
recommending visual encodings.

1.1 setting

This thesis focuses on encoding recommendation, where specifications for visualizations are recommended
based on a high-level description of the visualization (what type of visualization, what fields to use) and
dataset (meta-)data1.

These visualizations are created in the setting of statistical data which is available in a data warehouse
containing tables with several facts and dimensions, and where for each dataset an example selection
(chosen facts, dimensions, and filters) is available.

In this setting, we assume that the data warehouse is accessed through a REST API. This design is
common for (open) data sources and implies that retrieving data has a high latency. The meta-data
does not change often and can be cached. However, due to the latency of retrieving data, the data for a
visualization can not be retrieved while recommending visualizations.

CBS StatLine. One source of such information is Statistics Netherlands (CBS), which provides access
to their statistical datasets stored in a data warehouse as open data accessible via a REST API. This
API also provides the data for CBS StatLine (StatLine), the Statistics Netherlands (CBS) website for
viewing statistical information. The meta-data for both the facts and dimensions of datasets in the data
warehouse is machine-readable, with values for dimensions taken from standardized taxonomies. The
API is implemented following the Open Data Protocol (OData) standard, which defines both how the
data is described (meta-data), as well as how data can be projected and selected.

1E.g., “A bar chart containing the year, industry, and expected revenue fields from the dataset 81238ned

1



2 CHAPTER 1. INTRODUCTION

1 https://opendata.cbs.nl/ODataApi/odata/81238ned/TypedDataSet
2 ?$select=BedrijfstakkenBranchesSBI2008,Perioden,RegioS,SaldoOmzetKomende3Maanden_26,\
3 SaldoVerkoopprijzenTKomende3Mnd_31,SaldoInkoopOrdersKomende3Mnd_41,\
4 SaldoPersoneelssterkteKomende3Mnd_80,SaldoEconomischKlimaatKomende3Mnd_105&
5 $filter=(
6 (BedrijfstakkenBranchesSBI2008 eq "300016") or
7 (BedrijfstakkenBranchesSBI2008 eq "307500") or
8 (BedrijfstakkenBranchesSBI2008 eq "800037")
9 ) and (

10 (Perioden eq "2019MM02") or
11 (Perioden eq "2019MM03") or
12 (Perioden eq "2019MM04") or
13 (Perioden eq "2019MM05")
14 ) and ((RegioS eq "NL01"))

Figure 1.1: CBS StatLine default query for table 81238ned.

Queries used by StatLine use a subset of OData to select data, almost exclusively using queries in
conjunctive normal form. Literals in the queries consist of comparisons and the usage of substring
operators. The example query shown in Figure 1.1 selects five facts and three dimensions, and filters the
rows by selecting only specific values for the dimensions.

1.2 problem

Encoding recommendation can be viewed as the process of enumerating and ranking candidate visualiza-
tions from the space of possible visualizations. Design knowledge is commonly incorporated in the design
by generating candidate visualizations using expressiveness constraints that express visualization limitations
and by ranking by effectiveness constraints based on models of visual encoding effectiveness [Won+16a,
p.2].

This is an abstract approach, but simpler models, such as creating visualizations based on templates,
are limited since the suitable visualization depends on the data. For example, while “a bar chart with all
years on the x-axis” seems sensible, when the data only contains one year this yields a chart with one bar,
which is generally seen as ineffective.

Implementations of encoding recommendation systems commonly generate visualizations using the
effectiveness- and expressiveness constraints as “ground truth” rules created by experts, grounded in
perception research [Won+16a, p.3]. Implementing a system that balances and optimizes these rules is
complex: because of implementation complexity, when implemented using a generate and test approach,
prior approaches often had to compromise the implementation of effectiveness constraints [Mor+19, p.7].

1.3 research goals

When applying an encoding recommendation system in a practical setting with information from (open)
data sources queried through APIs as inputs, multiple problems arise. The first question encountered is
that of information available to the recommendation system, since (open) data sources do typically have
meta-data, but access to the information is relatively slow. This setting was introduced earlier in this
chapter. This thesis uses StatLine open data as a data source, which allows us to compare our generated
visualizations to a baseline of visualizations from StatLine in evaluation.

The primary objective of this study is to investigate how an implementation of an encoding recom-
mendation system performs in this setting. The resulting product needs to be evaluated, accounting for
the different use cases and variations of inputs and datasets encountered.

The first research question investigates the literature on automated visualization systems and leads to
an overview of the start of the art, as well as a summary of design choices in implementations.

RQ1: What models are used in the implementation of visualization recommendation systems?
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After the state of the art is known, a new system is designed which accounts for issues described in the
literature review as well as constraints implied by using a real-world situation, with partial visualization
prototypes, as input to the system.

RQ2: How can an encoding recommendation system be implemented in order to account for design
variation and soft heuristics?

This results in the design and implementation of overlook, a visualization recommendation system
that finds relevant visualizations from a description of the dataset and selected data while adhering to
the constraints of the setting.

Afterward, the system is evaluated on its value for users in a user study. To the knowledge of the
author, there is no standard evaluation methodology that is applicable for systems that generate sets
of visualizations based on a user query. This thesis views this setting as being on the intersection of
information visualization and (interactive) information retrieval. This lead to the following two research
questions:

RQ3: How can the value to users, for visualizations from a set of visualizations for a given query on a
visualization recommendation system, be evaluated?

RQ4: How do the results of overlook perform compared to the baseline visualizations by CBS?

In aggregate, these questions allow us to answer the main question of whether overlook provides
good visualization support [for users] in a realistic setting. Besides answering the main question, three
artifacts are delivered: (i) an implementation of an automated encoding recommendation system, (ii) an
evaluation methodology for assessing sets of visualizations for a query, and (iii) a set of annotated charts
that can be used in future work (e.g., learning to rank).

1.4 thesis outline

The overall structure of this thesis takes the form of six chapters, including this introductory chapter.
Chapter 2 begins by presenting the setting of this thesis and laying out related work on models of
visualization and visualization recommendation systems. The related work leads to the design of
overlook, presented in Chapter 3. The fourth chapter is concerned with the design of the evaluation
materials used in this thesis, which are then first evaluated and validated in Chapter 5. Chapter 6 details
the design of the user study and analyzes the results. Finally, the conclusion gives a summary and critique
of the findings.





visualization recommendation

This chapter describes and discusses the methods used in visualization recommendation. The first
section introduces the available information for the visualization recommendation algorithm. The
next section will provide an overview of the related work on models of visualization (Section 2.2) and
visualization recommendation systems (Section 2.3). The final section moves on to describe the concerns
and implementation choices shared by the discussed visualization recommendation systems.

2.1 available information

This chapter assumes that the dataset to visualize is already selected, either by a user or by another part
of a system. The meta-data for the dataset is available, but data (and collection statistics) are not available
to this system without performing a call to the data source. The generation of visualizations is performed
offline without communicating with data sources. The included data sources in the prototype are CBS
and third party datasets hosted by CBS. Looking up data on data sources is expensive1; the system can not
query the data source while recommending visualizations. This implies that (selection specific) summary
statistics are not available.

To decouple the prototype from StatLine, the data source specific meta-data is transformed into an
abstract model that is independent of the data source2. This model is based on the type of queries
supported by data warehouses, with dimensions (fields that data are grouped by) and facts (fields that
contain independent variables) in a star-schema. Figure 2.1 shows the schema for an example dataset
containing three dimensions (each with hierarchical levels) and several facts.

Dimensions. The cardinality of dimensions is known and can be restricted by the query if it selects
specific values. The type of measurement of a dimension or topic (quantitative, ordinal, nominal) and its
specific type (e.g., date, percentage, geographic location) are known.

Facts. For facts (i.e., quantitative fields), the cardinality of selected data is not available during visualiza-
tion recommendation. The type and unit of values are known.

Visualization meta-data. The data source provides meta-data for visualization. However, the meta-data is
not re-usable for our purpose. First of all, in some situations, the current application changes the data
that is selected. This can cause semantic differences in the chart (e.g., a bar chart comparing ten regions
gets reduced to one bar for the selected region, which is not a sensible visualization).

In addition, there are some practical considerations for the decision to build a new meta-model.
Documentation for the provided meta-data is not available, and some unspecified heuristics are used

1Queries on data sources are slow because of round trip latency, time taken to perform the query, and time to parse the data
after it has been retrieved.

2And has been applied to other data sources in earlier iterations.

Landsdeel Nederland

SBI 2008-12
(1 digit) Industry All companies

'Saldo productie/bedr. afgelopen 3 mnd'
'Productie/bedrijvigheid komende 3 mnd'
…

81238ned
'Conjunctuurenquête Nederland; maand'

MonthYear Provincie

SBI 2008-12
(2 digit)

Figure 2.1: Snowflake schema of CBS StatLine table 81238ned.
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Figure 2.2: Visual variables by Bertin,
from [Ber83].

25 100500 75
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mark: areavisual variable: y
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y-axis: ordinal x-axis: quantitative

visual variable: size

visual variable: color

Figure 2.3: Example visualization showing the elements of a graphic annotated using the model
of Bertin.

by CBS when creating a visualization3. These heuristics are a black box and reverse engineering them
caused the first version of the prototype to break when data was updated or when CBS made different
choices when annotating new or updated datasets.

Furthermore, multiple concerns (e.g., selecting a supported chart type, merging filters into query,
picking fields for an axis) were scattered throughout the code, leading to an implementation that was
hard to maintain. That motivated the decision to (a) create a custom meta-model and (b) using a more
formal method for recommending (relevant) visualizations. Later in this chapter, Section 2.3 will provide
an overview of work on visualization recommendation. Afterward, the next chapter describes the data
model used by overlook and how it implements visualization recommendation.

2.2 models of visualization

Previous research has established an abstract model of graphics. One well-known early study that is often
cited in research on information graphics is that of Bertin [Ber83]. It identified three major properties of
information graphics: (1) The classification of variables by their type of measurement, (2) the classification
of designs by the types plotted on their axes, and (3) the concept of visual variables as properties of marks.

Bertin’s model uses the typology by Stevens [Ste46] to classify the scale of measurement of variables as
being either Quantitative, elements with a constant numerical difference, e.g., integers; Ordinal, elements
with a natural sequence, e.g., age groups; or Nominal, which consists of elements with no inherent order,
e.g., gender. The type of variables on axes is used to categorize designs; for example, a Quantitative-
Quantitative plot is commonly referred to as a scatter-plot. Elements on a plot (points, lines) were named
marks. Finally, Bertin defined seven visual variables that modify (the appearance of) marks: position, size,
shape, value, color, orientation, and texture. Figure 2.2 provides an overview of these visual variables.

The model of Bertin provides a vocabulary to describe the visual design of information graphics.
Figure 2.2 shows a horizontal bar chart of which the elements have been annotated using this model. The
horizontal bar chart uses the visual variables x, y, size, and mark. The graphic has area marks and displays a
quantitative variable on the x-axis and an ordinal (alphabetically sorted) variable on the y-axis. Note that
this makes it a horizontal bar chart and that all of the (sub)bars (i.e., marks), are using multiple visual
variables. Each person is identified by a color, the value of a mark is shown by its size, and the x position is
defined by the sum of the values.

Wilkinson was apparently the first to use the term grammar of graphics, and view graphics as sentences
in a language. The term grammar refers to the relationship between components of graphics (instead of the
words, the elements). Graphics are specified in a formal language, assembled, and finally displayed [Wil05].

3E.g., “Topics on the x-axis”, “Time on x-axis”, “Prefer Time over Topics on x-axis, “use grouped bars for Topics”.
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Figure 2.4: "Design tree" for a chart, from [Wic10, p.10].

Group Visual variables

Marks Points, lines, areas
Positional 1-D, 2-D, 3-D
Temporal Animation
Retinal Color, shape, size, saturation, texture, and orientation

Table 2.1: Bertin’s graphical objects and graphical relationships, as reproduced by Mackinlay [Ber83; Mac86].

The specification uses the following elements to declare graphics: data, variable transformations, scale

transformations, a coordinate system, elements (e.g., points) and their aesthetics, and finally guides (axes,
legends). The components are combined in a hierarchical fashion, as shown in Figure 2.4.

This model of graphics is the basis used in common applications. For example, the ggplot2 library in R

implements an algebra based on the grammar of graphics [Wic10], and Vega-Lite [Sat+17] is a JavaScript
implementation of a grammar of graphics that adds extensions for interaction and uses rules to select
“smart defaults” for unspecified values (e.g., the colors of a color scale, font size of labels).

2.3 visualization recommendation systems

Vartak et al. propose the class of Visualization Recommendation (VizRec) as systems that allow users
to easily traverse the space of visualizations and focus on the ones most relevant to a task. The
recommendations (potentially) include both relevant data and relevant visualizations, with criteria for
relevance that include classic relevance, for a user given a task; surprise, which considers the novelty
of a recommendation; and non-obviousness which considers whether the recommendation provides
new information for a domain expert [Var+17]. Most current systems focus exclusively on either
recommendation of data to be queried or of visual encodings. This section will first introduce the history
of, and current systems for the recommendation of visual encodings, followed by the introduction of
several data (query) recommendation systems.

2.3.1 Visual encoding recommendation systems

Visualization recommendation was first demonstrated by Mackinlay [Mac86]. In his seminal study,
Mackinlay reports on the design of an automated system, A Presentation Tool (APT), for the presentation
of relational information (charts). APT used Bertin’s vocabulary of visual variables (Table 2.1).

APT used the effectiveness of specific visual variable for each type of measurement to define an
order. The order is based on an extension of the ranking of the accuracy with which users can perform
quantitative perceptual tasks by Cleveland and McGill [CM84]. Furthermore, it restricted visual variables
to specific scales of measurement, since a visual encoding (e.g., size) may imply an ordering to users that
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does not exist in the data. Finally, it introduced expressiveness criteria, that ensure that a design can express
the given information and effectiveness criteria for retinal variables, which determine if a design matches
the constraints of the human visual and cognitive system.

APT was developed on a Symbolics LISP Machine using logic programming, with 200 rules that
express the expressiveness- and effectiveness criteria. Depth-first-search with backtracking could be used
because the effectiveness criteria defined a total ordering over designs. However, Mackinlay notes that
this is unlikely to hold when the theory of effectiveness, and transitively the effectiveness criteria become
more sophisticated.

Unlike APT, which synthesizes designs from logical rules, S. F. Roth et al. propose a System for Automatic

and Graphical Explanation (SAGE) that that matches data to visualization prototypes. It uses a library of
design prototypes that are then customized for visualization. Compared to APT, SAGE uses a richer
representation of the characteristics of data, including scales of measurement, the frame of measurement
(quantitative/valuation, coordinate), and complex types (e.g., interval) [Rot+94].

The model of a grammar of graphics was extended in Polaris [STH02] where a visual specification is
used to display data in relational databases. The specification defines a table with row, column, and layer

dimensions where each table entry (cell) is a graphic. The tables are shown as small multiple displays,
which is the term Tufte [Tuf01] used to refer to a design where each cell in a table contains the same
graphical design; viewers only need to understand the design of a single cell to understand the design of
all cells.

In Polaris, a visual specification consists of a specification of the data selection, the type of mark used
in each cell, and the details of visual encodings. The data selection is defined with a relational algebra
that is transformed into SQL.

Polaris evolved into Tableau, which distinguishes different roles for how fields are used in a graphic
(i.e., as a dimension, as an attribute). In Tableau, a graphic is a selection of categorical (subtypes: data,
discrete values, dimensions) and quantitative (subtypes: continuous, dependent, independent, independent: date)
fields from a dataset, mapped to rows, columns, or properties of marks. It then defines what chart types are
possible given the number and type of selected fields, and defines a default order (indicating a preference)
for types of charts.

Show me (Figure 2.5(a)) is a user interface element that shows what charts are possible (i.e., “Two
quantitative fields can create a scatter plot, bar chart, . . . ”). Finally, a graphic is assembled by the user
(selection from possible views) or proposed by the system [STH02]. In the user interface (Figure 2.5(b))
fields are grouped by type of measurement as being dimensions (categorical) or measures (quantitative).
Fields are dragged to “shelves” that map to visual variables (of Bertin). The type of chart implies the
mark type, the columns shelve maps to the x-axis4, rows shelve maps to the y-axis, and the marks shelve to
retinal properties.

A broader perspective has been adopted by Elzen, Elzen, and Wĳk [EEW13] who argue that users do
not have an overview of the space of information contained in a dataset and of possible visualizations, and
propose a system that guides users in the visual data exploration process5. When adjusting parameters the
systems displays (Figure 2.6) a large view of the current visualization (large single) and small multiples
for each value of the parameter being adjusted, and keeps a history of changes to enable users to undo
these easily. Participants in a user study preferred the system and explored a larger area of the space of
visualizations compared to a baseline system (without small multiples or history).

The view that data exploration is important is shared by Wongsuphasawat et al. [Won+16b], who draw
on earlier work on automated presentation and argue that data variation (seeing different variable selections

4When more axes are selected than is possible for the type of chart, multiple rows or columns of charts are created by faceting
on the additional field.

5In the model of Van Wĳk [Van05]: the activity of gaining knowledge while exploring data by creating visualizations.
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(a) Show me (b) Shelves and Marks

Figure 2.5: The Tableau user interface.

Figure 2.6: [Small multiple] mapping split by visualization type, Figure 3e from [EEW13, p.195].

and encoding) is more important than design variation (different visual encodings of the same data). There
is a combinatorial explosion of possible design variations. Voyager is designed as a mixed-initiative system6
where the system recommends charts by suggesting variables and encodings. Charts are rendered using
Vega-Lite.

As in APT, the permitted mark types and encoding channels are based on the type of data. However,
compared to APT, the model is extended by using the same typology as used by Tableau. In addition,
because humans can only easily discriminate a limited number of different colors, shapes, rows, or columns

at once, the cardinality of a field is taken into account when evaluating permitted encodings, creating
more complicated expressiveness constraints. These rules are reproduced in Figure 2.8.

The architecture of the recommendation system (Figure 2.7), named Compass implements recommen-
dation as a series of sequential, independent steps: (1) variable selection, (2) data transformation, (3)
encoding design, and (4) clustering and ranking. Encodings are scored with a weighted sum of the
effectiveness score of features, with manually tuned weights.

In contrast to Voyager (which recommends variables), Voyager 2 supports exploration steered by the
user by augmenting manual specifications, with the main view matching the input and small views for
(multiple) alternative encodings. The user specifies what part of the specification is filled in by the system,
and the system presents a ranked collection of graphics as output. As an example, a user can specify that
each country is plotted on the x-axis and “all other variables” on the y-axis (Figure 2.9). Compared to
Voyager, users have more control over the results.

6A system that contains agent(s) that provide automation based on guesses of user intent [Hor99].



10 CHAPTER 2. VISUALIZATION RECOMMENDATION

Clusters of EncodingsDerived
Data Tables

Data
Transformation

Suggested
Variable Sets

Variable
Selection

Data
Transformation

Horsepower

Horsepower

Horsepower
Name

Selected
Variable Set

Horsepower
Cylinder Horsepower,

Cylinder

Mean(Horsepower),
Cylinder

Data
Transformation

Encoding 
Design

A

B

C

Horsepower

Bin(Horsepower),
Count

Encoding 
Design

Encoding 
Design

Encoding 
Design

U

�

�

D

Figure 2.7: Compass’s 3-phase recommendation engine, from [Won+16b, p.6].

Data Types Encoding Channels
quantitative, temporal x,y > size > color > text
ordinal x,y > column, row > color > size
nominal x,y > column, row > color > shape

Table 1. Permitted encoding channels for each data type in Compass,
ordered by perceptual effectiveness rankings.

Mark Types Required
Channels

Supported Channels
X, Y Column, Row Color Shape Size Detail Text

point x or y X X X X X X
tick x or y X X X
bar x or y X X X

line, area x and y X X X X

text text and
(row or column)

X X X

Table 2. Required and permitted encoding channels by mark type.

Data Types Mark Types
Q tick > point > text
(O or N) ⇥ (O or N) point > text
Q ⇥ N bar > point > text
Q ⇥ (T or O) line > bar > point > text
Q ⇥ Q point > text

Table 3. Permitted mark types based on the data types of the x and y
channels. N, O, T , Q denote nominal, ordinal, temporal and quantitative
types, respectively.

Positions x, y
Facets column, row
Level of detail color (hue), shape, detail
Retinal measures color (luminance), size

Table 4. Encoding channel groups used to perform clustering.

Figure 2.8: Required and permitted mark and encoding types, from [Won+16b, p.7].

A B

D

C

Figure 5. Mapping a quantitative field wildcard to x and origin to y
(A) produces a gallery of plots. A wildcard function enumerates no func-
tion (none) and mean (B-C), generating strip plots of raw values and bar
charts of mean values (D). The ? in (A) denotes the wildcard function.

Figure 2.9: Wildcards in Voyager 2, from [Won+17, p.4].

The recommendation system implements the CompassQL [Won+16a] query language using a derivation
of the recommendation engine used in Voyager. The enumeration of chart specifications that adhere to
all criteria is implemented with a backtracking algorithm. These are then ranked based on the order
specified by the query, with manually tuned weighing factors used when ranking by effectiveness.

A recent study7 by Moritz et al. [Mor+19] introduced Draco, bringing together techniques from logic
programming and information visualization. In this innovative study, Moritz et al. point out that prior
approaches often had to compromise the implementation of effectiveness criteria due to implementation
complexity, and argue that implementing visualization recommendation using logic programming allows
designers to focus on describing the design space of visualizations and visualization preferences instead
of on re-implementing search algorithms that are available through domain-independent constraint

7Published after the design and implementation for this thesis had finished.
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solvers [Mor+19, p.8].
The constraint programming problem was implemented as an Answer Set Programming (ASP)

program using Vega-Lite for visualization specifications. In ASP programs, rules have the form of
A : −L1 , . . . , Ln , consisting of a head (A), followed by a body (L1 , . . . , Ln). A rule is true if its body is true.
Rules can either define atoms; be integrity constraints; or be soft constraints, which have a weight/cost
when they are violated. The cost of a result is the sum of all soft constraint violations multiplied by
the count of their violations. The generated ASP program contains rules describing the visualization as
well as (optional) rules indicting fields of interest and task. Several base rules are added to implement
expressiveness criteria. Solving the ASP program finds solutions that adhere to the constraints and have
a minimal cost.

Moritz et al. show that ASP programs can re-create the results of APT (without using soft constraints)
and Voyager 2 (with manually tuned weights). Given the difficulty of manually tuning these weights,
the authors propose that Learning to Rank (LTR) (linear regression on pairs of soft constraint violation
counts) can be used to learn these weights. User preferences between pairs of visualizations from results
of graphical perception experiments were re-used as training data. Moritz et al. demonstrate that a system
trained on a subset of the annotations from [KH18] and a small subset of [SED18]8 correctly orders 93 %
of pairs on the test set held out from training.

Draco demonstrates that multiple encoding recommendation systems can be implemented as ASP
programs and that (effectiveness) scores can be learned by re-using results of graphical perception
experiments. Moritz et al. propose that future work could re-rank visualizations using low-level features,
use multi-objective (Pareto) optimization to enumerate the frontier of designs that make a trade-off or
add a richer task taxonomy to capture latent information (i.e., the task is in the user’s mind).

2.3.2 Data (query) recommendation systems

Contrary to the studies discussed in the previous section, which have a background in information
visualization, finding a relevant visualization has also been approached from the perspective of data
management and/or database research.

A premise is that the design space of possible visualizations for a dataset is too large, but that an
analyst needs to explore the relevant area in order to extract relevant information from data [EEW13;
Won+17; Var+15; Sid+16]. The following systems were designed to support this process.

In [Var+15] Vartak et al. present SeeDB, a system that finds the visualizations of a dataset with the
highest utility. Data is retrieved from a generic DBMS using select-project-join queries on a snowflake
schema. The utility is defined as the deviation from a reference, defaulting to creating a normalized
histogram of selected data and using earth mover’s distance as a metric. Both the metric and the reference
query are specified by the user.

Comparing all selections of data is computationally expensive; therefore, multiple optimizations are
used. Data is processed in partitions. After each partition, candidates visualizations for which the upper
bound of the confidence interval of the expected utility is outside the top K are pruned. In addition,
by using a multi-armed-bandit approach, candidates that are very likely in the top K are kept without
additional computation.

The prototype was evaluated in a user study with a within-subject design (2 × 2 visualization tool
× dataset) using a think-aloud protocol. Participants had prior data analysis experience. During the
experiment, participants answered a survey per task. Afterward, they participated in an exit interview.

Another approach is used by zenvisage [Sid+16], which instead searches data for visualizations with a
desired pattern. Zenvisage uses a model that views visualizations as being defined by the following five

8Selecting only the value and summary tasks from Saket, Endert, and C. Demiralp [SED18].
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Name X Y Z Viz

*f1 ‘year’ ‘sales’ ‘product’.‘chair’ bar.(y=agg(‘sum’))

Table 2.2: Query for the bar chart of sales over year for the product chair, from [Sid+16, p. 3].

components: x-axis attribute, y-axis attribute, subset of data used, type of visualization (e.g., bar chart,
scatter plot), and binning and aggregation functions used.

Visualizations are queried by a query in ZQL, that binds these components of visualizations to part
of the queries. A query selects axes (x, y), data (z), and visual properties (Viz). A ZQL query and its
resulting visualization are shown in Table 2.2 and Figure 2.10.

Using ZQL, it is possible to perform queries that specify collections of visualizations and perform
operations on these collections. ZQL supports wild-cards (“evaluate every column for the z-axis”),
and queries can depend on the result of an earlier query. zenvisage is a database-oriented system; thus,
implementation and evaluation focus on how the queries are executed and their performance9. For
zenvisage automation of visualization was out of scope, but the data model for the user interface was
based on a grammar of graphics and used Vega-Lite for the implementation of the user interface.

The prototype was evaluated in a user study with a within-subject design, with 12 participants with
data analysis experience. The tasks were based on interviews with experts and performed on a dataset
that participants could relate to (housing data). After a familiarization period, participants performed
tasks on both zenvisage and a baseline system. Follow-up questions were asked by e-mail afterward
if needed. In evaluation, participants valued the possibility to search for attributes that match a trend
(i.e., the generations of sets of visualizations instead of enumerating attributes manually) for finding
correlations.

2.3.3 Summary

This section provided a brief summary of literature relating to two imports aspects of visualization
recommendation systems: models of visualization, and how previous studies designed visualization rec-
ommendation systems. Studies that focused solely on the visualization of data (i.e., without visualization
recommendation) were not included.

The included studies have reported the ubiquitous usage of two concepts. Most research on
visualization systems has emphasized the use of a model of visualization based on the model of
Bertin [Ber83], which more recent work implemented as implementations of a grammar of graphics [Wic10].
Furthermore, almost every paper on visualization recommendation includes the notion of expressiveness
and effectiveness criteria for visualizations as introduced by Mackinlay [Mac86]. Together, these studies
provide valuable insights into the design of visualization recommendation systems, and are in general
agreement on the following concerns10:

9I.e., runtime and number of SQL queries issued.
10List of citations for each concern is not exhaustive and generally follows their first usage.
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describing plot types by scales of measurement
Plot types are distinguished by the scales of measurement of the variables on their axes [Ber83].

mark types
Systems distinguish mark types [Ber83; Mac86].

using scales of measurement
Scales of measurement are used to describe the type of variables [Ste46; Ber83; Mac86] and often
specialized with subtypes [Rot+94; STH02].

visual effectiveness
The effectiveness of (retinal) encodings differs and can be used to rank them [Mac86; CM84].

scale of measurement and cardinality influence encoding
Scales of measurement [Mac86], and the cardinality of a variable influence its possible encod-
ings [STH02; Won+17].

visualization influences query
The requirements of the visualization adept/lead to the query needed to retrieve the data [STH02].

logic or constraint programming
Searching for the best encoding is a non-convex problem and is implemented using logic- or
constraint programming [Mac86; Won+16b; Mor+19].

learning to rank
Learning to rank is used to learn weights to rank visualizations [Mor+19].

task Recognizes the influence of task on the suitability of a visualization and uses this in recommenda-
tion [Mor+19].





implementation

This introductory section provides a brief overview of the rationale behind the implementation of
Visualization Recommendation (VizRec) in the prototype system named overlook. The chapter then goes
on to describe the structure of the implemented solution. What follows is a detailed explanation of the
steps of the implementation.

Before proceeding to examine the implementation of VizRec in overlook, it helps to take a moment to
re-introduce choosing a visualization from the perspective of a search problem. As explained earlier in
Section 2.2, there is a common language for describing visualizations1. This language describes a subset of
all possible visualizations; some visualizations are not (intuitively) expressible in this (formal) language.
A notable example of this is Minard’s Carte Figurative (Figure 3.1), which Wickham [Wic10, p.18] provides
as an example. While this visualization can be approximated using ggplot2, it is not intuitive to do so.

In addition to the limitation that not all visualizations can be expressed using a grammar of graphics,
there is a sub-set of all visualizations that is expressive and communicates the pattern in the data (e.g.,
“expressive”, “good”, “intuitive”, . . . visualizations).

The expressiveness and effectiveness criteria, as introduced by Mackinlay [Mac86] are a method of
formalizing knowledge about what makes an expressive visualization. In turn, the set of graphics that
adhere to these criteria make up the space of visualizations considered by such an automated visualization
system. Not all of the visualizations considered are possible visualizations.

An automated visualization system has the goal of creating visualizations that are in the intersection
of (a) the language of the implementation of a grammar of graphics it uses, (b) expressive visualizations,
and (c) visualizations considered by the system.

Most of the criteria are logical for humans. For example, for a chart to make sense, the essential axes
are used (e.g., x-axis, y-axis), and all retinal variables are used at most once. Besides, there are aspects of
good charts, for example, that a chart should prefer an effective encoding over a less effective encoding
(e.g., color over shape) that can be encoded as criteria.

1The (formal) grammar of graphics defines the language of valid graphics in that language.

Figure 3.1: Charles Minard’s Carte Figurative, Wikimedia Commons [Min69].
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(a) Annotated with Vega-Lite attributes

{
"$schema": ".../schema/vega-lite/v2.json",
"title": "Line Graph Title",
"data": { "url": "..." },
"mark": "line",
"encoding": {
"x": { "field": "month",
"type": "temporal", "timeUnit": "month",
"axis": { "title": "Months" }},

"y": { "field": "sales", "type": "quantitative",
"axis": { "title": "Sales Units (K)" },
"scale": { "domain": [0, 100] }},

"color": { "field": "product", "type": "nominal"
}↪→

}
}

(b) Specified with Vega-Lite

Figure 3.3: Elements of a chart.

3.1 high-level description of overlook

overlook implements VizRec as a constraint optimization problem. The problem is solved using Z3 and
is implemented in multiple steps (see Figure 3.2). The solutions of the optimization problem form a
Pareto frontier2, with each solution being a prototype for a visualization. Each solution is translated into
a visualization specification in an intermediate model. These specifications contain the allocations made,
as well as scores for the heuristics matched and allocations made in the visualization. These visualization
specifications are then re-ranked based on the sum of their scores. Finally, these visualization prototypes
are transformed into a Vega-Lite specification, which is rendered in a user interface using Vega-Lite.

Vega-Lite is an implementation of a grammar of graphics, that uses a declarative JSON specification
to define a visualization. A specification (see Figure 3.3(b)) contains encodings for multiple axes, a title,
a type of marks, and definitions of axes. The mark attribute defines the type of visualization and thus
implies available encoding channels. Figure 3.3(a) shows these elements annotated on an example chart.

3.2 constraint-based model of visualization

VizRec can be viewed as a constraint optimization problem, using expressiveness criteria to find valid
visualizations, and effectiveness criteria to order them. Expressiveness criteria can be viewed as constraints
that are required to be satisfied for a visualization to be valid, and effectiveness and other heuristic goals
can be seen as optimization goals for the quality of the visualization.

The descriptions of expressiveness criteria and the priorities of possible encodings (i.e., effectiveness
criteria) differ in literature. The data model and priorities used in overlook are based on the model of
Vega-Lite since this is used in the implementation of the user interface.

For each type of chart, the possible axes are known3. The visual variables map to encoding channels in
Vega-Lite4. The possible encodings are restricted by the properties of a field, including the cardinality and

2A set of allocations that are each optimal for one or more criteria, more formally introduced later in Section 3.3.3.
3E.g., “a bar chart has a slot for x, y”.
4https://vega.github.io/vega-lite/docs/encoding.html, retrieved on 2019-01-22.

https://vega.github.io/vega-lite/docs/encoding.html
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Name Description

Expressiveness criteria

possible encodings Possible encodings for a field.
used Every selected field is encoded.
per type Only one encoding of each type (e.g., retinal) is used per field.
mutually exclusive Each encoding can only be used once.
sharing Shared encodings all have the same visual variable.
required axes The required axes are used.
color or saturation Color and Saturation can not be used at the same time.

Effectiveness criteria

score encoding Use the most effective visual variable (maximize the score of the encoding).

Heuristics

time Prefer time on main axes.
topics Prefer topics on main axes.
preference Prefer time over topics.

Table 3.1: Criteria and heuristics included in OVERLOOK.

type of measurement, e.g., “colors can be used for up to 7 nominal values”. These are hard constraints or
expressiveness criteria.

The effectiveness criteria are a different type of constraint. Determining the possible encodings given
a mark type (chart of type) and a set of fields is not a concave problem; choosing the best encoding for the
first field could mean that the remaining best choice for the second field leads to a lower overall utility.
This implies that a greedy approach does not work and that in order to find the best encoding, all possible
encodings need to be evaluated.

The number of constraints is dynamic, and a possible result needs to adhere to all restrictions.
Additionally, several heuristics are used to guide the solver toward good charts. For example, there is the
convention that time is displayed on the x-axis. These heuristics are soft constraints and have different
utilities (scores); some heuristics take priority over others. In literature this process is often implemented
using logic- or constraint-programming [Mac86; Won+16b; Mor+19].

overlook describes encoding recommendation as a Satisfiability Modulo Theories (SMT) problem
and uses the Z3 theorem prover [MB08] to solve this problem using Pareto optimization. In this problem,
the expressiveness criteria are encoded as hard constraints on solutions. The effectiveness criteria (such
as the utility of a visual encoding) are encoded using optimization objectives. A part of the effectiveness
criteria is implemented in Python code. For example, the lookup of the possible encodings for a field,
given its cardinality and scale of measurement, is implemented this fashion. The results are equivalent
to if this was encoded this in the SMT problem. The expressiveness criteria, effectiveness criteria, and
heuristics included in overlook are listed in Table 3.1.

When this system is solved, Z3 yields results that adhere to all hard constraints. The results are on the
Pareto frontier of optimal allocations, given the constraints5. The heuristics are independent constraints
of which multiple can apply for a solution. A distance function is used to sort all the possible solutions
and pick one of the optimal ones. For the top-ranking solutions, a chart object is constructed. Finally, this
chart object is transformed into a Vega-Lite specification.

5For example: A scatter-plot where the x-axis and y-axis are switched.
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name: str
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FieldSpec

field: str

op: eq | and | or | in | substring
source: Source
args: Set[FilterArg]

Filter

value: Any
arg_type: call | identifier | literal

FilterArg

1

*

*
query
defaults
unknown
expansion

<<enumeration>
Source

Figure 3.4: Diagram of the data source independent data model.

Scale of measurement Subtypes

Ordinal region, time
Nominal string, topics
Quantitative topic_values, monetary, monetary_per_unit, percentage, number, relative

Table 3.2: Subtypes of values.

3.3 implementation of visualization recommendation in overlook

Before proceeding with the introduction of the steps in the implementation of VizRec in overlook, it
will be necessary to introduce the data-model and corollary functions used. The paragraphs that follow
describe (1) the basic structure of the SMT problem; (2) the logical constraints created for fields; (3)
the global constraints, for heuristics; (4) how the solutions to the SMT problem are transformed into
visualization specifications; and finally (5) how these solutions are ranked.

3.3.1 Data model

As explained earlier in Section 2.1, the meta-data model used by overlook was designed to be independent
of the data source. A chart is specified by the type of visualization and a set of BoundFieldMeta objects.
Together with the related objects (see Figure 3.4), each of these BoundFieldMeta objects describes a field in
the dataset used in the visualization.

The BoundFieldMeta objects provide an abstraction for both the dataset and the query. It contains
information on the field (FieldSpec), information on the query (Filter), and information on how the field is
used for this chart (position, name, selected values, whether the field can share its axis with another field).

The data source performs pre-processing to create these objects. Some fields in the data source may
be split up into two objects if they are used both as a topic and a dimension6. For ordinal and nominal

fields, this pre-processing includes calculating the number of matching values. All these operations are
performed “offline” — without interaction with the data source.

FieldSpec objects contain the information needed to display a field as either an axis or item of the
legend. The object includes a textual description as well as the scale of measurement. Sub-types of scales
of measurement were added for more precision (Table 3.2). For now, this information is not used in the
SMT problem; however, it is used while creating the visualization specification.

6This is applied to “topics” from CBS.
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Channel Axis channel Visual variables

Position X x, y, x2, y2, region
Row X row
MarkProperty color, opacity, shape, size
TextTooltip text, tooltip
LevelOfDetail detail
Order order

Table 3.3: Visual variables for each of the (Vega-Lite) channels, ordered by preference (descending).

Chart type Visual variables

Line x, y
Bar x, y, column
Map region, column
Table x, y, x2, y2

Table 3.4: Visual variables on the axes of chart types by order of preference.

3.3.2 Corollary functions

Previous studies of VizRec systems typically include preferences and limitations on mark and encoding
types. A similar component is included in overlook. These apply to all visualizations and are independent
of the implementation as a SMT problem (which will use them).

Channels. The visualization is rendered with Vega-Lite, which defines the possible channels for charts
and possible mark types (Table 3.3). These are ordered by the visual quality of the channels (top-bottom)
and within a channel (left-right).

axisEncodings. This function uses the table of channels and visual variables (Table 3.3) to define what
visual variables are an axis of a chart:

axisEncodings(chartT ype : ChartT ype) → Set[Encoding]

isPrimaryAxisChannel. Another function indicates if an encoding is a required axis of a chart. An
encoding is required if the visual variable is on an axis of the chart type (Table 3.4) and it is x, y, or re gion.

isAxisChannel(encodin g : Encoding) → bool

possibleEncodings. The possible (distinguishable) visual variables for a field depend on the scale of
measurement of the field and the number of values. A viewer should be able to distinguish the order
of elements (for an ordinal scale) or individual elements (for a nominal scale). Human perceptual
capabilities limit the number of different values that can be distinguished and thus be used by retinal
encodings [STH02, p.8]. The mapping used by possibleEncodings is listed in Table 3.5.

possibleEncodings(measurementT ype : MeasurementType, values : Sized) → Set[Encoding]
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Scale of measurement Number of values Visual variables

Nominal < 7 x, x2, y, y2, row, column, color, size, shape, region
Nominal >� 7 x, x2, y, y2, row, column, size, shape, region
Ordinal < 6 x, x2, y, y2, row, column, color, size, shape, region
Ordinal 6 x, x2, y, y2, row, column, color, shape, region
Ordinal 7 <� |values | < 12 x, x2, y, y2, row, column, color, region
Ordinal >� 12 x, x2, y, y2, row, column, shape, region
Quantitative ∞ x, x2, y, y2, size, color, text, region

Table 3.5: Available visual variables by scale of measurement and number of values.

scoreEncoding. Another method evaluates the quality of an encoding. The heuristic used in function
is that a field should use the most perceptually effective encoding (locally), but that quantitative fields
have priority over ordinal/nominal fields for the most effective encodings. This leads to a preference for
quantitative fields on the axes (the highest quality encodings).

The index in the ordering of all encodings is used as the base of the score. This index is then used to
calculate a score that prefers all encodings for quantitative fields over ordinal and nominal fields. The
scores for quantitative fields range from

��encodin gs
�� + 1 to 2

��encodin gs
��, while for ordinal and nominal

fields the scores range from 0 to
��encodin gs

��.
scoreEncoding(measurementT ype : MeasurementType, encodin g : Encoding) → int

3.3.3 Steps of visualization recommendation

Problem structure. The basic structure of the SMT problem consists of a const for each field used in the
visualization (ei) and an enumeration of all the channels of the visualization (C). A solution assigns
encodings to fields while adhering to the constraints. In the pseudo-code in this chapter, model. add(goal)
adds a hard constraint to the SMT problem and model. optimize(goal) adds an optimization goal. In the
final SMT instance, we defined the following variables7:

C enumeration (type) of all the Vega-Lite channels.

ei state variable indicating the encoding for field i.

The solver is set-up for Pareto optimization in order to find all possible matching solutions on
the Pareto-front. A Pareto optimal allocation is an “optimal” allocation {x1 , . . . , xi} where there is no
allocation {x′1 , . . . , x′i} where for each i, u(x′i) > u(xi)8. Note that this considers the optimal utility for each

criterion without considering the exact utility for a criterion9. Since part of the SMT problem is encoded
with heuristics that are implemented with scores, the Pareto front contains solutions with differing (total)
scores that are all Pareto-optimal. overlook ranks visualizations by the sum of their component scores.

Problem setup. After the solver is set up, the constraints are added. These can be grouped into constraints
for fields, heuristics on fields, and global constraints. The SMT problem is built using the algorithm set

7These are not used to in the pseudo-code in this chapter. However, in the implementation, the constraints added to the Z3
model are defined in terms of these variables.

8With u(xi) defined as the utility of xi .
9I.e., criterion are independent, the exact values are not considered.
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Algorithm 1 Main SMT problem setup.
Precondition: chartT ype is the chart type, f ie lds a set of field objects, and model is a Z3 context.

function encodeProblem(chartT ype ,model , f ie lds)
for f ∈ f ie lds do

constrainFields(model , f ie ld) . Add constraints for each field.
constrainDistinctFields(model , f ie lds) . Ensure fields have distinct encodings.
constrainRequiredAxes(chartT ype ,model , f ie lds) . Ensure required axes are used.

Type Visual variable

x column

Time 110 55
Topics 100 50

Table 3.6: Scores for Time and Topics heuristics.

out in Algorithm 1, of which the structure is described below. In the algorithms, the implementations of
criteria and heuristics have been emphasized10.

For each field, the possible encodings, and an optimization goal for the optimal encoding are
added (Algorithm 2). If applicable, a heuristic score (see Table 3.6) is added as an optimization goal.
Afterward, global constraints are added. This is performed in two steps. In the first step, the grouping of
fields is considered. For fields that can be grouped, a constraint is added that ensures that all fields in a
group have the same value, and a characteristic element from the group is picked. In the second step, a
constraint is added that ensures that non-grouped fields and the characteristic elements of the groups are
distinct. This guarantees that visual variables are only used once (Algorithm 3). Finally, a constraint is
added that ensures that the axes of the chart are used by one of the fields (Algorithm 4).

Solving. Once the model is set up, its solutions are used to create candidate visualization specifications.
Z3 checks for satisfiability of the model and all Pareto-equal solutions are gathered. Each solution contains
both assignments for the variables as well as score on objectives (heuristics, quality of assignments). Only
the Pareto front is considered instead of enumerating all possible solutions. When this process finishes,
the result is a set of possible visualization specifications. As explained earlier, these are Pareto-equal (per
objective) but have different global utility.

Ranking and transformation. Finally, the solutions are ranked and transformed into a Vega-Lite specification.
Many approaches are suitable for ranking the solutions. Overlook sorts the solutions on the Pareto front
by the sum of their component scores. This specific method could be added to the Z3 model; however,
it is performed in a separate step for extensibility. Afterward, the best candidates are transformed into
Vega-Lite specifications.

10Note that the per type and color or saturation expressiveness criteria are implied by the fact that overlook only assigns a single
visual variable to a field.



22 CHAPTER 3. IMPLEMENTATION

Algorithm 2 Sets up the constraints and heuristics for a single field.
Precondition: f ie lds is a set of field objects, and model is a Z3 context.

function ConstrainFields(model , f ie lds)
for f ∈ f ie lds do

E← possibleEncodings( f ie ld) . Expressiveness criterion: possible encodings.
oneO f ← ∨

ei∈E
f � ei . Expressiveness criterion: used.

bestEncodin g← ∑
ei∈E

{
scoreEncoding( f , ei) if f � ei

0 otherwise.
model. optimize(bestEncodin g) . Effectiveness criterion: score encoding.
model. add(oneO f )
if type( f ) ∈ {Topics, Time} then

condScore←



100, if type( f ) � Topics∧ f � x;
55, if type( f ) � Topics∧ f � column;
110, if type( f ) � Time∧ f � x; . Heuristic: preference.
55, if type( f ) � Time∧ f � column;
0, otherwise.

model. optimize(condScore) . Heuristics: time, topics.

Algorithm 3 Global constraints: encodings are only used once unless otherwise specified.
Precondition: f ie lds is a set of Field objects, model is a Z3 context

function ConstrainDistinctFields(model , f ie lds)
fd ← {y ∈ f ie lds | y.channelExclusive}
fnd ← {y ∈ f ie lds | ¬y.channelExclusive}
distinct← fd
b yT ype← GroupBy( fnd , ( f ) → f .subT ype) . Group fields by their types.
for (t ype , f ie lds) ∈ b yT ype do

f irst← f ie lds[0]
eqToFirst← []
for f ∈ f ie lds do

if f , f irst then
eqToFirst. append( f �� f irst) . f �� f irst is a Z3 expression (c.f. boolean)

model. add(And(∗eqToFirst)) . Expressiveness criterion: sharing.
distinct. append( f irst) . The first element is used as a representative of a group.

model. add(Distinct(∗distinct)) . Expressiveness criterion: mutually exclusive.

Algorithm 4 Ensures the required axes are used.
Precondition: chartT ype is the chart type, f ie lds a set of field objects, and model is a Z3 context.

function ConstrainRequiredAxes(chartT ype ,model , f ie lds)
requiredAxes← {c : axisEncodings(chartT ype) | isPrimar yAxisChannel(c)}
for r ∈ requiredAxes do

oneO f ← ∨
f ∈ f ie lds

f � r . Expressiveness criterion: required axes.

model. add(oneO f )



design of data collection instruments

An important aspect of evaluation is the design of the data collection instruments. The evaluation of
overlook investigates the usability of visualizations. This evaluation is different from classical settings
(the usability of a system, in human-computer interaction; the relevance of documents, in information
retrieval) while being very similar to evaluations for interactive information retrieval.

This chapter will first position the evaluation approach. It then explores the goals of the evaluation,
what elements the evaluation contains, and finally, the design of the instruments.

4.1 evaluation in information visualization

Evaluation in information visualization is complicated since it considers the tool under study, the process
that the tool supports, and the visualizations simultaneously. The problem of how to carry out specific
evaluation methods has been extensively studied. However, few studies focus on when to choose a
specific evaluation type [Lam+12].

In a comprehensive literature review of evaluation scenarios, Lam et al. included 850 papers from
four information visualization publication venues, 361 of which contained at least one evaluation. The
authors distinguish four scenarios that focus on data analysis and three scenario’s that focus on evaluating
visualization performance. Most of the papers focus on visualization performance with evaluating user

performance in 33 %, evaluating user experience in 34 %, and evaluating visualization algorithms in 22 % of
papers that include an evaluation.

It is evident that evaluation is rare in information visualization. Most evaluations use a within-subject
design with a limited number of selections from known datasets and a limited number of participants.
The dataset and task are generally chosen so that participants can relate to the data1

A recent trend is the usage of online user experiments instead of a laboratory setting — with the
number of participants magnitudes higher than in laboratory studies. This makes it possible to investigate
more variables and/or use different research designs.

In their large-scale online user study of the effectiveness of scatterplots, Kim and Jeffrey Heer [KH18]
performed a mixed design study assigning visual encoding within-subject and task and data distribution
between-subject. The data was created by sampling from US daily weather data to create datasets with
specific cardinalities and distribution shapes. Compared to a laboratory setting, this type of online user
experiment uses simpler questions (binary) and generally only provide (detailed) quantitative results2.

In contrast to these studies, in the evaluation of overlook, [characteristics of the] datasets are varied as
inputs to the visualization recommendation system. Furthermore, there is no specific component task
for the visualization recommendation system except to “generate understandable visualization prototypes”.
Suitable component tasks for visualization types are a result instead of an input.

4.2 evaluation of overlook

The evaluation of overlook is positioned between the evaluation of a visualization system, evaluating user
experience; and Information Retrieval (IR) evaluation, where the performance of a system on multiple
search topics is measured. This approach is similar to Interactive Information Retrieval (IIR) evaluation
and uses user-oriented methods to evaluate system performance.

The evaluation is designed as a within-subject usability study in a laboratory setting which evaluates the
interactions of visualization type, query heuristics, and dataset and compares the utility of the visualizations

1Similar to the usage of simulated work tasks, by Borlund and Ingwersen [BI97], in Interactive Information Retrieval (IIR).
2Cf. a combination of quantitative and qualitative results.

23
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to a baseline result from StatLine. All results are evaluated using instruments that will be introduced in
Section 4.3.

The system under test is a non-interactive system that is early in its design process. The goal of the
evaluation is twofold: validate that the system works for multiple datasets, and investigate the influence
of inputs on the quality of results. This goal led to the choice to explore a high number of items with a
limited number of participants, without balancing effects or a between-subject design, instead choosing
to have a low number of overlapping ratings on items (as is common in IR). This method was chosen
because it is particularly useful when studying a system where the influence of different parameters is
still unknown.

Measuring usability. The beginning of this section left open the conceptualization of performance because
it would distract from the discussion of the goals. Performance is viewed as usability. However, a precise
definition of usability has proved elusive. The International Organization for Standardization (ISO) [Int98,
p.2] defines usability as the extent “to which the users of products are able to work effectively, efficiently and with

satisfaction.”. The ISO definition is the most commonly used definition of usability and defines usability
as a concept that includes measures for effectiveness, efficiency, and satisfaction. These concepts are
presented below:

Effectiveness “the accuracy and completeness with which these goals can be achieved.”

Efficiency “the level of effectiveness achieved to the expenditure of resources”

Satisfaction “the extent to which users are free from discomfort, and their attitudes towards the use of
the product”

A good summary of the evaluation of usability and interactive information retrieval prototypes has
been provided in the work of Kelly [Kel09]. In this thesis, effectiveness will be measured by measuring
whether subjects indicated errors in the visualization and by their indication of how hard it was to
understand a visualization. Efficiency will be measured by measuring the time between a visualization
being displayed and the user beginning his annotation of the visualization. Finally, satisfaction will be
measured by open questions and their indicated preferences between overlook and the baseline.

4.3 instruments

To measure usability, three questionnaires were designed. These are included in Appendixes 7.4 and 7.4.
During the study three common elements of the structure of a usability experiment [Kel09, p.97] were used:
a demographic survey in order to gather descriptive statistics of the population, a post-task questionnaire
to rate each document, and an exit survey. The text in this chapter describes the instruments as used in
the final evaluation. An earlier iteration of these instruments was evaluated in the preliminary evaluation,
which is presented in Chapter 5.

Usability will be measured using the measures listed below. These measures are grouped by the
instrument used for data collection. A detailed account of the design of the post-task questionnaire is
given in Section 4.4.

Demographic questionnaire

Age of subject 15–25, 25–50, 50+

Education field of subject science, technology, engineering and, mathematics or other

Education level of subject high school, Bachelor of Science, Master of science
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Visualization experience basic, intermediate, expert, machine-learning. Based on examples

Experience rating 1=strongly disagree, 7=strongly agree

Experience (time) Years of experience with data visualization

The personal details were optional. Despite its common inclusion in descriptive statistics of populations
in literature, a question on gender was not included.

Post-Task questionnaire

Errors (missing data, sparse data, visualization is not displayed properly)

Usability (ease of understanding, Likert-type scale, 1=strongly disagree, 7=strongly agree)

Suitability for task (selection of set of suitable component tasks)

Exit questionnaire

Utility what stood out in the visualizations?

Design rules the system seems to follow the following design rules. . .

System logs

Interaction time to start answering the questionnaire after visualization is displayed.

Interaction time until submitting the questionnaire.

4.4 design of post-task questionnaire

Previous studies either consider the usability of a system (in Human-Computer Interaction (HCI)), or
the relevance of documents returned (in IR), or the experience while using a search system (in IIR). This
evaluation considers the usability of a document returned by system returning ranked results.

The design of the post-task questionnaire was based on standard instruments when possible. However,
because of the position at this intersection of fields and the need for system-specific questions, a single
standard questionnaire could not be used.

It was decided after a preliminary evaluation that the best method to adopt for this investigation
was to measure three separate concepts for each visualization that is generated. The first consists of
possible errors in the visualization. The second concerns the usability of the visualization. A final
question concerns the component task the visualization is suitable for. The following paragraphs will
introduce literature on- and discuss the design of the questions for each of the concerns included in the
questionnaire.

4.4.1 Error types

During the development of the system, “broken visualizations” were common. While developing
the evaluation interface, it became apparent that this had multiple causes. The error types and their
description were first added and then iteratively refined during development and initial testing of the
evaluation interface.

Within these errors, two groups can be distinguished. The first group of errors, data errors, are caused
by the selection of data that cannot create a good visualization. The second group, visualization errors,
are the result of a poorly designed visualization. The following four error types were included, with the
accompanying descriptions:
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Missing data Data is missing

Visualization not displayed properly The visualization is not displayed properly; it does not fit in the
available area without scrolling or was truncated.

Data not displayed properly The data is not displayed properly. Marks are not distinguishable
or overlap. In some situations, (part of the) data is not visible
because of this.

Sparse data The data is sparse; some marks (bars, dots, . . . ) are missing and
this leads to a bad visualization.

4.4.2 Usability

A post-task rating of difficulty was chosen as a measure for usability. This type of rating is commonly
used to provide diagnostic information and provide an estimate of usability. The rating needs to be both
reliable and easy to use.

At the system-level, the System Usability Scale (SUS) by Brooke [Bro96] is one of the most commonly
used scales for measuring user satisfaction. The SUS consists of ten statements scored on a Likert-type
scale (1=Strongly disagree, 5=Strongly agree, the score ranging from 0–100 is a weighted sum of the
items with defined weights). Its primary use is estimating and classifying the usability of a system, and
monitoring the usability of a system over time [BKM08]. An alternative at the system level is heuristic
evaluation [NM90]. While the SUS is found to be reliable, it is not suitable as a post-task questionnaire
due to its length. Besides, measuring user satisfaction immediately after an event potentially increases its
validity [SD09].

J. R. Lewis [Lew90; Lew93] was one of the first to examine the development and evaluation of
standardized questionnaires for subjective usability using psychometric methods3. The resulting
questionnaire, the After-Scenario-Questionnaire (ASQ) is a three-item questionnaire that addresses ease
of task completion, time to complete a task, and adequacy of support information answered using a
7-point graphic scale (1=Strongly disagree, 7=Strongly agree), with an option for not applicable (“N/A”)
positioned outside the scale.

Tedesco and Tullis [TT06] evaluated multiple methods of eliciting subjective user feedback. Included
conditions included two out of three ASQ questions (support information was not deemed to be relevant);
two variants that inquire about self-assessment of task difficulty (“Overall this task was . . . ”, 1=very easy,
5=very difficult), “before and after” questions, for rating expectations of task difficulty; and usability
magnitude estimation, which measures ratios between subjective ratings for multiple situations. In an
online experiment with 1131 participants where each participant was assigned to one out of five conditions
and performed seven tasks on a system. All rating techniques correlated with user performance on the
tasks performed. While all rating techniques identified significant differences between the difficulty of
the tasks performed, the single question was most consistent at small sample sizes.

Sauro and Dumas [SD09] evaluated three one-question rating types in a within-subject experiment
with 26 participants performing five tasks on two systems, evaluating a Likert-type scale with 7 points
(Figure 4.1(a)); Usability Magnitude Estimation (UME), where the difficulty is compared relative to a
baseline task; and an online variant of the Subjective Mental Effort Question (SMEQ), which displays
a continuous linear scale with no upper boundary (as shown in Figure 4.1(b)). The rationale for the
SMEQ is that subjects can re-interpret their difficulty scale after encountering earlier samples. There was

3According to a definition provided by J. R. Lewis, “The goal of psychometrics is to establish the quality of psychological
measures (Nunnally, 1978). Is a measure reliable in the sense that it is consistent? Given a reliable measure, is it valid (measures the
intended attribute)? Finally, is the measure appropriately sensitive to experimental manipulations?” [Lew93, p.2].
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(a) Variant of Likert-type scale (b) The Subjective Mental Ef-
fort Question

Figure 4.1: Examples of scales, from [SD09].

a significant difference in the performance of the SMEQ and the Likert-type scale. UME was hard for
participants to learn and had a lower sensitivity. However, with small sample sizes (below ten to twelve),
none of the post-task question types (nor post-test questionnaires such as the SUS) have high detection
rates.

The questionnaire used in the evaluation of overlook included a single Likert-type question on
perceived difficulty (“How easy was it to understand this visualization”) with seven points and “N/A”
displayed beside the scale. The choice for seven points was made because of its higher reliability.

4.4.3 Component tasks

The following section will first introduce an early paper on visualization tasks and then describe multiple
(grounded) taxonomies that were used in the synthesis of the classification used in this study.

Several attempts have been made to create a task taxonomy of information visualizations. One early
study that is often cited in research is that of Shneiderman [Shn96] which introduced “overview first,
zoom and filter, then details-on-demand” as a mantra for the user interface design for visualization
prototypes, and postulated seven component tasks (that relate to user interface interactions) that relate to
the tasks in other taxonomies.

Overview Gain an overview of the entire collection

Zoom zoom in on items of interest

Filter filter out uninteresting items

Details-on-Demand Select an item or group and get details when needed

Relate View relationships among items

History Keep a history of actions to support undo, replay, and progressive refinement

Extract Allow extraction of sub-collections and of the query parameters

In their work on data characterization that introduced the foundation of SAGE, S. F. Roth et al.
distinguished several information-seeking goals4. These were: accurate value lookup, comparison of values,
pairwise or n-wise comparison (between series in a dataset), distribution of values, correlations, and indexing a

structure by an element [RM90; Rot+94].
4Named “display goals”.
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Wehrend and C. Lewis [WL90] draw a distinction between object classes and operation classes and
align their operation classes with these of S. F. Roth and Mattis [RM90]. The operation classes are
abstracted from an analysis of 90 representation problems and distinguish the classes identify, locate,
distinguish, categorize, cluster, distribution, rank, compare within and between relationships, associate, and
correlate.

In a study which set out to determine components of visual activity Amar, Eagan, and Stasko [AES05]
found ten clusters of analysis tasks. Students proposed 196 valid analysis tasks which were then clustered,
providing both a taxonomy of tasks as well as example tasks for each cluster. Only primitive tasks were
included, tasks that could be composed of primitive tasks were not included.

Retrieve value given a set of specific cases, find attributes of those cases

Filter given some concrete conditions on attribute values, find data case satisfying
those conditions

Compute derived value given a set of data cases, compute an aggregate numeric representation of
those data cases

Find extremum Find data cases possessing an extreme value of an attribute over its range
within the data set

Sort

Determine range Given a set of data cases and an attribute of interest, find the span of values
within the set

Characterize distribution Given a set of data cases and a quantitative attribute of interest, characterize
the distribution of that attribute’s value of the data set

Find anomalies Identify any anomalousness within a given set of data cases with respect to a
given relationship or expectation, e.g., statistical outliers

Cluster Given a set of data cases, find clusters of similar attribute values.

Correlate Given a set of data cases and two attributes, determine useful relationships
between values of those attributes

A more systematic study of interaction primitives was reported by R. E. Roth in 2013 [Rot13]. This
study views the interactions with visualizations as an aspect that is shared between geographic sciences
(GIS, cartography, . . . ) and information visualization. Roth interviewed 21 expert interactive map users
using semi-structured interviews to elicit statements on user tasks (operations) or interactive functionality
(operators). These statements (for both operations and operators) were then grouped in a card sorting
study by 15 (other) expert interactive map designers.

The study distinguishes operands, what the action is performed on (e.g., “space in time: . . . interactions
with the temporal component of the map”); interaction goals, goals of complete interactions (e.g., “predict:
. . . interactions that are performed to forecast what may occur in the future based on current conditions”);
objective primitives, primitives that are part of goals (e.g., “compare . . . interactions that determine the
similarities and differences between two map features”); and operation primitives, which are actions (e.g.,
“annotate . . . interactions that add graphic markings and textual notes to the visualization”). For this
work, we use the object primitives since these align with the primitives from the other taxonomies.

identify describes interactions that examine an individual map feature
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compare describes interactions that determine similarities and differences between two map features.

rank determine the order or relative position of three or more map features

associate characterize the relationship between multiple map features

delineate interactions that are performed to organize map features into a logical structure

used component tasks Due to semantic differences between, and differing numbers of elements of the
taxonomies, it is not possible to align the primitives from all discussed taxonomies. However, three of the
described taxonomies align very well, with S. F. Roth and Mattis [RM90] proposing low-level primitives,
Amar, Eagan, and Stasko [AES05] providing similar primitives as well as a set of examples for each
primitive, and R. E. Roth [Rot13] providing a systematically validated set of primitives.

In the evaluation instruments, the following component tasks were used. The set of component tasks
consists of four of the objective primitives by R. E. Roth (excluding delineate), with an added “overview”
primitive. Each of the primitives was reworded so as not to refer to maps. The component tasks can be
seen as compositions of visual activities. Examples for the visual activities from Amar, Eagan, and Stasko
[AES05] are used to provide examples for the visual activities. For example, “rank” contains the “sort”
activity, for which “Rank the cereals by calories” is an example. These examples were included in the
evaluation instructions, which are reproduced in Appendix 7.4.

overview Gain an overview of the entire collection

identify [describes] interactions that examine an individual visualization feature

compare describes interactions that determine similarities and differences between two visualization
features.

rank determine the order or relative position of three or more visualization features

associate characterize the relationship between multiple visualization features





preliminary evaluation

In the previous chapters, we introduced the design of a visualization recommendation system and the
instruments for evaluating such a system. Before proceeding to the full evaluation of the system, the
evaluation materials need to be tested.

This chapter describes and discusses a preliminary evaluation of the system and data collection
instruments. The preliminary evaluation investigates the quality of the evaluation interface, the prototype
system, and the instruments. Furthermore, the results of the preliminary evaluation were used to motivate
the chosen variations included in the final evaluation.

The first section of this chapter will start with a description of the parameters used for the evaluation
and the evaluation protocol. The next section presents the results of the preliminary evaluation. Finally,
we will discuss the changes to the instruments and the evaluation protocol made after the preliminary
evaluation.

5.1 evaluation parameters

In order to evaluate whether the visualization generation and query handling were working, we evaluated
all variations of chart types and query types. Since our experience during development was that the
quality of the visualizations was highly dependent on the dataset, we selected five datasets, which are
listed in the table in Appendix 7.4. Five chart types were included (line, trail line1, bar, horizontal bar, and
circle). These types include two pairs of closely related charts (line and trail line, bar and horizontal bar)
which differ in their heuristics. Furthermore, five query types were tested (default, most recent, all years,
quartiles, most common)2. StatLine changes the query when switching between views3. These query types
attempt to have a similar effect.

The two top-ranked results from overlook for each of these permutations were included. This lead to 5
(datasets) ×5 (chart types) ×5 (query types) ×2 (results per setting) � 250 visualizations to be evaluated. A
participant annotated these in a single session. This participant did not participate in the final evaluation.

5.2 analysis

In the analysis of these preliminary results we are investigating (a) what query types should be included
in the final evaluation, (b) what chart types to include in the final evaluation, and (c) the questions used
for the evaluation. Before analyzing the detailed results, during exploratory analysis, we verified that
datasets, chart types, and errors influence the measured variables. Afterward, we investigated multiple
measurements in the results. These are discussed in the paragraphs below.

Influence of chart- and query type. There are no significant results to use as a basis for the decision of
what chart- and query-types to include in the final evaluation. However, there are other considerations.
The trail line and circle chart types were excluded because they do not have equivalent visualizations in
StatLine.

Effectiveness and relevance metric. The dataset contains two measurements for the effectiveness of a
visualization. These are ease of understanding and relevance. The hypothesis is that these variables contain
different information. In the questionnaire, relevance was an optional metric and not filled when a result
was unusable. For this analysis, missing elements and N/A were filled with the lowest value possible for

1Chart with a line of varying thickness.
2The most common query type selects a single point in time. The other query types select all values with a certain interval from a

time series.
3For example, when switching from a bar to line chart, years are added on the x-axis.
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Figure 5.1: An example of a chart that is easy to understand but does not provide relevant information.

Question Suitable task

compare identify not applicable overview rank NULL

Most suitable task 40 16 17 76 3 138
Next suitable task 28 5 1 20 5 231

Total 68 21 18 96 8 269

Table 5.1: Most suitable component tasks.

the field. In order to decide which of these metrics to keep, we investigate whether they measure different
results.

From the Shapiro-Wilk test, it follows that the p-values are less than the significance level (p �

1.308 × 10 � 14, p � 4.784 × 10 � 12), implying that the alternative hypothesis is true and that relevance and
ease of understanding are not approximately normally distributed. Because the data is not approximately
distributed, we use Kendall’s rank correlation test to test for independence. From the result of Kendall’s
rank correlation test we find that the p-value is lower than the significance level (p < 2.2 × 10� 16) and find
that the alternative hypothesis is true; relevance and ease of understanding are correlated.

However, we have seen examples (such as Figure 5.1) of visualizations that are easy to understand but
not relevant. This counter-example shows that while the measurements are correlated, they measure
different concepts. For the final evaluation, both items are included, and both will be required.

Suitable component tasks. When testing the evaluation system subjects gave feedback that it was harder to
rank the (abstract) component tasks than to choose which applied. In addition, as Table 5.1 shows, the
data for the suitable tasks was sparse. Due to the question being optional, two values for not applicable
were possible (explicit N/A. or by a NULL value). Based on this, for final evaluation, this question was
changed into a field where the set of applicable component tasks is selected.

Error types. Errors in either the data or the visualization have a considerable influence on the rating of a
visualization. Figure 5.2 shows the difference in mean ease of understanding (EOU) over all datasets
when errors are present, split up by combination of chart- and query type. From the chart, it can be seen
that on average, the existence of errors dominates the effect of the chart- and query type.

Factor analysis of the error variables is not possible due to it being dichotomous variables. Principal
component analysis4 finds that four principal components are needed to explain > 95% of the variance
with each component explaining > 20% of the variance, indicating that none of the items is redundant.

Implicit data: Timing. Measured data includes the time it takes a participant to start filling the questionnaire
after the visualization is displayed. This data contains a large number of outliers and is skewed right.

4Corrected for zero mean, unit variance of variables.
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Figure 5.2: Dot plot showing the influence of errors on the EOU of the top-ranked result.

The mean time to start an answer is 73.0 s, the median is 3.2 s, and the maximum is 5486.4 s. When a user
takes a break, this results in a very long duration.

In order to increase the quality of the timing data in the final evaluation, two measures were taken.
First of all, participants will be instructed to reload the visualization after a break. Second, the amount of
work performed by each participant will be reduced, so a session can be finished without taking breaks.

5.3 conclusions

Based on the preliminary evaluation, we made several choices for the evaluation of overlook, resulting
in changes to the evaluation protocol, data collection instruments, and the parameters included in the
evaluation. Furthermore, we made several changes to overlook and the evaluation interface. The version
of overlook evaluated in this chapter differs from the version used in the final evaluation.

Participants will be instructed to answer visualizations without taking breaks before answering the
questionnaire for a visualization, to reduce the number of outliers in the measured durations caused by
pauses. The number of visualizations evaluated by each participant will be reduced to reduce the time it
takes to participate in the experiment.

To measure the quality of a visualization, the questionnaire includes both EOU as 7-element Likert
scale item and the question on relevance. In contrast to the preliminary evaluation, an answer for both
questions is required. The questions on error types and suitability for tasks were kept. The former is used
to check the performance of the system on datasets, and the latter provides empirical data on task-chart
suitability given aspects of the data. The error types have been (re-)grouped by type (data errors first,
followed by visualization errors). Task suitability will be measured with a checkbox for each option
instead of as an ordered preference (two sets of radio buttons).

Besides these changes to the data collection instruments, we changed the variations of overlook we
evaluated. We removed the trail line chart, due to its inconsistent performance and lack of similar chart
from StatLine; and the circle chart because there is no similar chart from StatLine. The levels of the query
type were reduced to have similar behavior as StatLine: default is always included, the most recent type is
used for bar charts, and most common for line charts.





evaluation

We conducted a user study to assess overlook’s ability to recommend visualizations for CBS datasets
based on their meta-data. Participants evaluated the quality of visualizations using the instruments
designed in Chapter 4, which we adjusted after the preliminary evaluation described in Chapter 5. We
compared visualizations generated by overlook with visualizations from StatLine for identical datasets.
To adjust for the data selection implicitly performed by StatLine when choosing a visualization type, we
added conditions that used a similar adjustment to the data selection.

6.1 study design

Visualizations depend on visualization type, query type, and visualization tool. Dataset is an independent
variable. In this chapter, we will refer to a combination of a dataset, visualization type, and query type as
[a] query [to the visualization recommendation system]. From the perspective of IR, the recommended
visualization specifications are documents. Our study included 16 (dataset) ×3 (chart type) ×2 (variations)
� 96 queries, with four visualizations each as documents.

Our study employed a within-subject design (concerning chart type, query type, and tool) with
random assignment to conditions. We chose this design over a balanced design due to the need to explore
multiple datasets while still taking a reasonable amount of effort for each participant. This design is
similar to how IR test-collections are created in with pooling. In a test run, it took a participant fifteen
minutes to annotate the results of six queries (24 visualizations).

We assigned each participant in the study to six conditions/queries, at random without replacement,
from the queries with the least number of assignments. It follows that a participant was very likely to
be assigned to multiple datasets and chart- and query types. Due to the drop-out of participants after
assigning queries to a participant, queries did not have the same number of participants.

Visualization types. In the evaluation line, bar, and vertical bar charts were included, since these are the
types that are supported by StatLine, and thus can be compared.

Visualization Tools. Both overlook, and StatLine were included in the evaluation. StatLine provided one
visualization for a condition; for overlook the top-three results were evaluated.

Datasets. We selected datasets from CBS for either being recent, or important1. After selection, each
dataset was manually checked to validate that most of its visualizations in StatLine were working. From
an initial selection of twenty datasets2, four datasets were excluded: Two datasets were excluded because
they did not have any working visualizations in StatLine and two were excluded because overlook did
not support the query in the meta-data (time not formatted according to the standard format and query
not in conjunctive normal form, respectively). Out of the sixteen selected datasets (listed in the table in
Appendix 2), three had one broken visualization when viewed using StatLine.

We did not test the selected datasets in overlook before evaluation. This procedure was designed to
ensure that selected datasets from CBS were valid, without introducing a bias against StatLine by tuning
after the evaluation set was known.

Query type. Only overlook has different query types. This condition was added to approximate the
change of selection that StatLine implicitly applies when choosing a different visualization type after
having selected data. These query types alter the default data selection provided by CBS. For line charts,

1Indicated by being included on the overview page at https://www.cbs.nl/nl-nl/cijfers, retrieved on 2019-05-23.
2Of which two important datasets were included in the preliminary evaluation.
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Figure 6.1: Participant progress over time.

the default query was used, as well as a query which finds the most common unit of time and selects all
values of that unit (e.g., all years, all quarters). For (horizontal) bar charts, the default query was used as
well as a variation that selected the most recent period.

Participants. We recruited sixteen participants, including 11 (former) graduate students and 13 partici-
pants with a background in a technical3 field. All participants had prior data visualization experience (9:
0–2 years, 4: 2–5 years, 3: 5+ years). Almost all participants (14) had experience using Excel, eight with
more specialized tools (Tableau, D3, Vega-Lite), nine used data-oriented work-flows (GIS, data science,
open data, Jupyter, R, . . . ), and six had experience with machine learning. On average participants agreed
that they had data visualization experience4.

When inviting potential participants to the user study, we informed them that they would be evaluating
the quality of visualizations from a VizRec system and that participating would take fifteen to twenty
minutes. Participants did not receive any compensation. The median duration of participation was 22
minutes, with two participants taking more than 30 minutes. During the experiment, each participant
evaluated between 19 and 24 visualizations. Figure 6.1 provides an overview of the progress of participants
over time.

Study protocol. At the start of the session, potential participants received the information sheet describing
the study and were asked to read it (Appendix 7.4). In addition to providing the information sheet, the
researcher verbally summarized the study protocol (including the right to withdraw consent) and data
usage. After this step, potential participants were asked for consent and asked to sign a consent form,
followed by a demographic questionnaire (Appendices 7.4 and 7.4).

When a potential participant agreed to participate, the researcher provided them with a printed copy
of the evaluation instructions (Appendix 7.4). Using the figure on the evaluation instructions, participants
were verbally introduced to the evaluation interface, and the questions it contained. Before starting the
tasks, it was verbally repeated that evaluating the visualizations takes fifteen to twenty minutes when
making steady progress and that it would be followed by two verbal exit-interview questions5.

After this introduction, the participant started by evaluating the first of their visualizations, using the
evaluation interface shown in Appendix 7.4. A think-aloud protocol was not used during the experiment
due to the high number of visualizations a participant needs to assess during the study. When a participant
had questions during the experiment, questions about the evaluation questions were answered. Questions
that considered the systems under test, or specific visualizations, were acknowledged and answered once
the participation was finished.

3I.e., Science, Technology, Engineering, and Mathematics.
4Self assessment on a scale of one through seven, mean: 5.5, first quartile: 3, median: 5, third quartile: 6.
5“What did stand out in the visualizations?” and “The system used rules to guide visualizations. What design rules do you think were

incorporated?”.
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Ease of understanding Relevance

−3 −2 −1 0 1 2 3 0 1 2 3

All (n � 381)
n 119 55 29 34 59 48 37 138 92 84 67
% 31.2 14.4 7.6 8.9 15.5 12.6 9.7 36.2 24.1 22.0 17.6

Inter-rater (n � 233)
n 63 41 16 25 30 24 34 81 51 53 37
% 28.4 18.5 7.21 11.3 13.5 10.8 10.4 36.5 23.0 23.9 16.7

Table 6.1: Distribution of ratings.

All sessions were held in a laboratory setting. Participants used the evaluation interface in a full-screen
browser window (Safari 12.1.1) on a 15” retina MacBook Pro running OS X 10.14.5 with a resolution of
2880 × 1800 pixels (effective resolution: 1440 × 900).

6.2 analysis

Sixteen participants were recruited for the user study6. Fifteen participants evaluated six queries each.
One participant experienced in visualization evaluated twelve queries over two separate sessions in order
to allow us to evaluate inter-rater reliability on these queries.

The data were preprocessed before analysis. The levels for the ease of understanding (EOU) metric
were centered around 0, with −3: strongly disagree and 3: strongly agree. The levels for relevance range
from 0 . . . 3 with “not applicable” mapped to 0, with 0: irrelevant and 3: highly relevant.

Inter-rater reliability. During the experiment, 266 unique visualizations were evaluated, with participants
creating a total of 381 assessments. Out of the 266 visualizations 159 were evaluated once, 99 were
evaluated twice, and 8 were evaluated three times.

Both EOU and relevance were measured on an ordinal scale. Since each participant only evaluated
a part of the collection, and there is no evaluation shared between all participants, Fleiss’ kappa
could not be used7. Instead, Krippendorff’s alpha (α) was used since it can be used for all common
scales of measurement and in the presence of missing/sparse data [Kri04]. Alpha is defined as
Agreement � 1 − Do

De
� 1 − Observed Disagreement

Expected disagreement 8. All alpha values were calculated using the irr package in
R.

Krippendorff [Kri04] argues that the level of acceptable agreement differs per application, but that
for scholarly usage in content analysis α ≥ 0.800 could be a threshold, and an agreement of α ≥ 0.667
allows for tentative conclusions. In IR literature, Damessie et al. [Dam+17] compared multiple types
of judgments to a gold standard. They found an agreement of α � 0.687 for judgments created in a
laboratory study, α � 0.407 for crowd-sourced judgments where participants were paid after judging a
complete topic, and α � 0.561 where crowd-sourced assessors were paid per document. Schaer [Sch12]
found a substantially lower average alpha of 0.145 for relevance assessments created by undergraduate
students.

The distribution of the ratings, as shown in Table 6.1, indicate that Krippendorff’s alpha can be
used. None of the levels is scarce, which prevents substantial changes in Krippendorff’s alpha caused
by disagreement on an infrequent level. Furthermore, we can see that the distribution of ratings of the
items with inter-rater overlap, on which the inter-rater agreement is measured, is similar to the overall
distribution of ratings.

6The author did not participate in the user study as a particpant.
7Maximum overlap between two participants eight visualizations.
8With Do and De being functions that calculate disagreement using a different metric function for each scale of measurement.
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Krippendorff’s alpha

Overlap n Raters Ease of understanding Relevance

All↔ all 246 16 0.357 0.377
All↔ expert 23 6 0.483 0.769

Table 6.2: Inter-rater reliability.
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Figure 6.2: Ease of understanding and relevance by chart type and system — top-ranked visualization per system.

Inter-rater agreement was low. This indicates that evaluating visualizations is a hard task for annotators.
As Table 6.2 shows the inter-rater agreement between all participants is lower than the threshold used
in content analysis and close to that found by Damessie et al. What is interesting in this data is that the
inter-agreement between a visualization expert and all other participants is higher (α � 0.483 for EOU,
α � 0.769 for relevance), even though the participants were relatively experienced with visualization,
especially compared to the general public.

Quantitative results. Having investigated the reliability of the ratings, we will now move on to investigate
the ratings themselves. We will first present an overview of the data, followed by the precision at differing
relevance thresholds. Finally, the number of situations in which overlook performs better than StatLine
is analyzed.

To give an overview, the ratings for the top-ranked visualizations for all queries are shown in Figure 6.2.
This figure is quite revealing in several ways. First of all, it can be seen that the quality of visualizations
is highly variable: it is highly dependent on the dataset and the existence of errors. Second, it shows
that, per the evaluation instructions, only visualizations with errors were rated with a relevance rating
of not applicable. Finally, it shows that a visualization that shows irrelevant information can be easy to
understand.

For both systems, the majority of the visualizations had one or more errors in how they were displayed,
with more errors in visualizations generated by overlook (77.8 %) than those of StatLine (52.0 %). Table 6.3
presents the summary statistics for the ratings. From this data, we can see that for all variations of
overlook the mean (for EOU and relevance) is greater than the median, the distributions are positively
skewed. As Table 6.4 shows, the Shapiro-Wilk test rejects the null hypotheses (p < 0.001), there is evidence
that EOU and relevance ratings for any combination of system and chart type are not normally distributed.
Therefore, it is not possible to test for significant differences between systems (per chart type) using
unpaired two-samples t-test.
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Any Visualization
error error Ease of understanding Relevance

System Query type n n % n % x̄ s M x̄ s M

bar

StatLine default 36 17 47.2 8 22.2 0.8 1.8 1 1.8 1.1 2
overlook default 45 39 86.7 14 31.1 −0.7 1.7 −1 1.3 0.9 1
overlook most recent 57 45 78.9 23 40.4 −0.9 2.0 −2 1.1 1.1 1

horizontal bar

StatLine default 38 21 55.3 9 23.7 0.4 2.1 1 1.8 1.0 2
overlook default 39 29 74.4 18 46.2 −0.1 2.2 0 1.3 1.1 1
overlook most recent 63 49 77.8 24 38.1 −0.8 2.1 −2 1.0 1.1 1

line

StatLine default 28 15 53.6 13 46.4 0.3 2.4 1 1.6 1.2 2
overlook default 45 34 75.6 18 40.0 −1.9 1.8 −3 0.7 1.0 0
overlook most common 30 21 70.0 14 46.7 −2.0 1.8 −3 0.6 1.1 0

Table 6.3: Scores over all visualizations.

Relevance
Ease of

understanding

System Query type w p w p

bar

StatLine default 0.850 < 0.001 0.879 0.001
overlook default 0.877 < 0.001 0.915 0.003
overlook most recent 0.841 < 0.001 0.856 < 0.001

horizontal bar

StatLine default 0.860 < 0.001 0.885 0.001
overlook default 0.866 < 0.001 0.880 0.001
overlook most recent 0.782 < 0.001 0.856 < 0.001

line

StatLine default 0.835 < 0.001 0.853 0.001
overlook default 0.712 < 0.001 0.665 < 0.001
overlook most common 0.600 < 0.001 0.600 < 0.001

Table 6.4: Shapiro-Wilk test for normality, h0: sample came from a normally distributed population.

However, information retrieval style metrics are commonly used in this situation. In the field of IR,
the generalized non-binary precision is defined as P �

∑
d∈R r(d)/n, for documents d from a set of results

R, with r(d) looking up the relevance score for a document [KJ02].

The average of the precision9 for all datasets, for both EOU and recall, was calculated for varying
relevance thresholds. The threshold t was used to map the ratings r(d) ≥ t to 1, 0 otherwise. Fig-
ures 6.3 and 6.4 present the precision for the top-ranked visualizations, and Figures 6.5 and 6.6 for all
visualizations. From these figures, it is apparent that the top-ranked result for overlook performs better
than the average of the top 3. The full precision results, shown in the tables in Appendix 7.4, indicate that
the performance of overlook is close to that of StatLine. There is no apparent difference in precision
between the default- and adjusted queries.

When comparing between overlook and StatLine, the results are mixed. For some datasets and query
methods, the former performs better, for some the latter. The top-ranked result from overlook has an
equal or higher rating than StatLine for 56 out of 102 situations (chart type × query type) for EOU and 59
out of 102 for relevance. To distinguish between the different query types, these were split out. From the
data in Table 6.5, it is apparent that the default query performs better than the adjusted query.

9Note that this differs from the average precision used in IR, which is the average of the precision at the position of each relevant
document.
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Figure 6.3: Precision on relevance for top-ranked visualizations.
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Figure 6.4: Precision on ease of understanding for top-ranked visualizations.
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Figure 6.5: Precision on relevance for all visualizations.
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Figure 6.6: Precision on ease of understanding for all visualizations.

Relevance Ease of understanding

� ≥ � ≥

Query type n n % n % n % n %

bar

default 15 3 20.000 10 66.667 5 33.333 9 60.000
most recent 21 7 33.333 12 57.143 7 33.333 11 52.381

horizontal bar

default 15 5 33.333 9 60.000 2 13.333 10 66.667
most recent 23 8 34.783 13 56.522 6 26.087 15 65.217

line

default 15 3 20.000 8 53.333 3 20.000 7 46.667
most common 13 2 15.385 6 46.154 2 15.385 4 30.769

Table 6.5: Comparison of per-item ratings for OVERLOOK compared to StatLine.
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Participant feedback. After rating the visualizations, participants were asked what stood out in the
visualizations and asked to speculate about the design rules used by the system. The majority of the
feedback (15 participants) was given in Dutch; therefore, the included quotations have been translated.
Statements indicating similar themes were grouped, leading to six themes about the visualizations and
five on the rules used by the visualization system.

The most common view among participants, noted by nine participants, was that there were issues
in how labels were displayed for visualizations and that this made visualizations hard to understand.
Five participants noted that there was a low number of useful visualizations. As one interviewee put
it: “Hardly anything works!”. Two participants noted that they had trouble assessing the relevance of
the information displayed in a visualization without knowing the dataset. Three participants noted the
lack of usage of colors by overlook: “It is a fan of the color blue.”. When it comes to the difference
between systems, five participants explicitly indicated that StatLine was much clearer, specifying that it
made better use of colors, had better labels, and clear visualizations in general. Finally, five participants
commented on visualization types, and in specific trellis plots, which are a matrix of scatter/line plots.

Trellis plots were confusing/unknown to one participant, while two (more experienced) participants
valued them. One participant indicated that trellis plots were familiar, but that they were complex to
interpret if you do not know what you are looking for.

When it comes to feedback on the rules used by the system, six participants could not make guesses
for or provide examples of rules or heuristics used by the system. Three participants noted that the
system distinguishes between categorical and quantitative fields or dependent and independent fields in
the dataset. Four participants noted that there were sequential results were axis were swapped (e.g., x
with y), showing one first, followed by another variation. One participant noted that sometimes, first, a
single bar chart is shown, and then later a time-series. Finally, one individual indicated that they did not
expect the visualizations to have been generated by an automated system.





discussion and conclusion

In this thesis, we investigated visualization recommendation systems, with the high-level goal of
supporting data exploration. More specifically, we examined how these systems perform in a real-world
setting. We designed overlook, a system that uses heuristic criteria as optimization criteria; designed
an evaluation methodology for sets of visualizations from a VizRec system; and evaluated overlook on
real-world datasets, comparing it to a deployed system which uses curated visualizations.

The final chapter of this thesis has four parts. The first section reviews the most important findings of
this thesis. The next section moves on to reflect the limitations of this work. The third section proposes
future work. The final section concludes this thesis.

7.1 research questions

The first research question of this study was to identify what models are used in the implementation of
visualization (recommendation) systems. To answer this research question, we performed a literature
review, which led to a list of concerns addressed in other systems. In turn, we used these concerns as
design criteria for overlook.

As mentioned in the literature review in Chapter 2, there is a consensus on the models for visualizations,
but the implementation of VizRec systems differs. Visualization systems commonly use the model of
visualization by Bertin, with a growing number of systems using an implementation of a grammar of
graphics. VizRec systems commonly distinguish variable types and scale of measurement and use this in
determining encodings, use models of perceptual effectiveness to search for effectiveness visualizations,
and are implemented using search algorithms or constraint programming techniques.

The second question in this study was to create a design/architecture for a VizRec system that accounts
for design variation and supports soft heuristics. This design, introduced in Chapter 3, incorporated the
concerns found in the literature review and views VizRec as a constraint optimization problem. This
constraint optimization problem consists of hard and soft objectives (for heuristics), the solution of which
is a Pareto front of visualizations that are ranked by their objective scores. This design was implemented
in overlook using the Z3 SMT solver.

The third question in this study was how the value to users of visualizations in the set of results of a
VizRec system for a given query can be evaluated. We developed (Chapter 4) data collection instruments
based on questionnaires used in literature and evaluated (Chapter 5) the instruments by performing
a preliminary user study. Based on the results of this user study, we created a new iteration of the
instruments. Our instruments evaluate visualizations on how easy it was to understand the visualization,
the relevance of the data shown, and component tasks the visualization is suitable for.

Our final research question was to evaluate how overlook compares to the visualizations of StatLine.
As described in Chapter 6, a set of 16 StatLine datasets was selected to evaluate the systems in a user
study. Because StatLine adjusts the data selection when switching chart type, a similar mechanism was
implemented in overlook, leading to two query types per type of chart. For each of these datasets, the
bar, horizontal bar, and line chart from StatLine were compared to the three top-ranked visualizations of
the same type from overlook.

We evaluated these visualizations in a user study in a laboratory setting with 16 participants. This
study had a within-subject design, where each participant evaluated the visualization from both systems
for six combinations of dataset, data selection method, and chart type. In total, 381 assessments were
made during the user study.

Based on the data collected in the user study, we first investigated the inter-rater reliability. We
concluded that inter-rater reliability was low, which indicates that assessing visualizations is a hard task.

43



44 CHAPTER 7. DISCUSSION AND CONCLUSION

We then continued our analysis by investigating the distribution of the ratings. From this, it became
clear that a large number of visualizations, for both overlook and to a lesser extent StatLine had errors.
We concluded that the presence of errors influenced the rating of the visualizations and that the questions
for EOU and relevance measure different concepts.

Finally, we compared the performance of StatLine and the two variations of overlook. We concluded
that the top-ranked result for overlook performs better than the lower-ranked results. When investigating
precision, with varying thresholds for relevance, all three systems have similar performance, with no
clear improvement by adjusting the query. When comparing the rating for StatLine with overlook for a
dataset, the default query performs better than the adjusted query, with overlook performing better or
equal to StatLine for most visualizations. The relative performance of overlook was better for the two
types of bar charts compared to the line charts. However, with the small sample size, caution must be
applied when interpreting this result.

Most participants indicated that there were issues in how labels were displayed and that this made
visualizations hard to understand. A third of the participants commented that a lot of the visualizations
by overlook were broken. Finally, five participants explicitly indicated that the visualizations by StatLine
were clearer.

While not making a statement to the size of the effect, we conclude that overlook creates visualizations
of similar quality to the visualizations by StatLine, with the handling of labels and selection of data as the
major limitation of overlook.

7.2 limitations

So far, this chapter has focused on reviewing the findings of this thesis. However, there are several
limitations to our study, which can be improved. These can be grouped by limitations in the prototype, in
the evaluation, and in the metrics used. The following paragraphs will discuss each of these in turn.

Prototype. During the evaluation, we used a high fidelity prototype (overlook), which resembled a
finished product. While a high fidelity prototype is needed to investigate the performance in a realistic
setting, limitations of the prototype influence the ratings of visualizations.

The first limitation of this prototype are errors that are not caused by the visualization algorithm. In
39.8 % of visualizations, an error in the data selection was indicated. This fraction can likely be reduced
by improving how meta-data from CBS is interpreted. Also, the majority of participants indicated that
labels were not displayed correctly. Overlapping or cluttered labels can be improved by displaying them
differently or even considering the length of labels during visualization recommendation. An alternative
approach is to display the visualizations from StatLine using Vega-Lite instead of using a screenshot from
StatLine. This change would remove a bias introduced by the different styles of the visualizations.

Another limitation is in the set-up of the evaluation, which introduces a bias towards StatLine. First of
all, the datasets were checked for working visualizations in StatLine, but not in overlook before being
included. Furthermore, the data-selection between charts may differ slightly. The format of the meta-data,
and data selection behavior of StatLine was undocumented. This added complexity in implementation,
with query transformations to attempt to select equivalent data. In turn, this led to (subtly) different data
selection and thus visualizations of different data.

Evaluation. Our experimental results were also affected by choices in the evaluation setting, where we
chose to perform a user study with IR style aspects. Moreover, we chose to approximate a realistic setting
which is disadvantageous compared to other studies, which often do not include a user study, or use
known datasets.
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When comparing to IR evaluation, our evaluation included a low number of topics (datasets), whereas
25–50 topics are common in IR [Voo09]. In visualization studies a substantially lower number of datasets
is commonly used, enabling a counterbalanced design.

There is also a potential ordering effect present in the evaluation. First, (ordered) overlook visualiza-
tions for a dataset were shown, followed by the StatLine chart of the data dataset. We recommend that
new experiments randomize this order.

Finally, due to the drop-out of participants after assigning visualizations described in Section 6.1,
visualizations have differing numbers of evaluations. This non-uniform distribution weighs the average
scores towards the visualizations where this occurs.

Metrics. The evaluation compared two systems, where one has a single result, and the other has multiple
results. This led to difficulties compared to standard IR evaluation protocols. For example, Text REtrieval
Conference (TREC) tracks commonly define the evaluation metrics used, a collection of documents, a set
of topics to be tested, and a relevance assessment process. The evaluation process commonly collects
the top documents from participating systems for each topic, and assessors evaluate the top 100–200
documents for each system. Pooling all documents from multiple systems gives an estimate of the best
documents in the collection, which can be used in evaluation metrics. In contrast, there is no standard
approach and metric for evaluating sets of visualizations leading to a number of novel choices.

The first issues we encountered was that during the final evaluation, the time between displaying
the visualization, and the first interaction with the evaluation form was not measured due to a bug.
This type of time measurement is commonly used to measure efficiency — one of the three aspects of
usability [Kel09, p.118]. Another limitation is in the limited number of topics (datasets), and documents
(visualizations) tested. This is a result of both time constraints and the laboratory setting and was a
conscious decision given that we wished to perform exit interviews.

Other limitations were external to the system and are pervasive in IR experiments. Models of
information-seeking behavior assume that the relevance of documents decreases as searcher knowledge
increases. This process occurs when evaluating multiple visualizations about one dataset in sequence.
Moreover, the evaluation instructions we used did not give instructions on how to handle insights that
overlapped with other visualizations. A dataset contains multiple clusters of visualizations with each
cluster showing relevant insights, similar to instance-recall (distinct correct answers) in the TREC question
answering track.

Finally, since the experiment just evaluated two systems, one of which had a single result, evaluation
metrics for ranked retrieval could not be used. Precision at K illustrates this point clearly. For precision at
K, for K > 1, StatLine’s maximum possible score would be 1

K . With Discounted Cumulative Gain (DCG),
any information gain after the first document would introduce a bias against StatLine.

In the hypothetical situation where pooled results would be available from multiple systems, another
issue would arise when calculating the normalized Discounted Cumulative Gain (nDCG). Systems
(potentially) create distinct visualizations that other systems can not generate1. nDCG normalizes by
dividing by the ideal DCG, which would contain visualizations that a single system could never produce
since the (pooled) collection used for ideal DCG differs from that of the system.

7.3 future work

While results from this study were promising, this research has thrown up many questions in need of
further investigation. The areas of further research can be categorized into three categories. These areas
are described in the paragraphs that follow.

1E.g., visualizations created by different libraries.
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Prototype. While overlook is a working system, it is a proof of concept system that can be expanded
upon. The main area of improvement is in the included heuristics. Various errors in visualizations can be
expressed as constraints or heuristics. For example, the product of the cardinality of the datasets fields,
when mapped to the row and column channel can be constrained, limiting the number of elements of
trellis plots.

When these rules interact with the data used for the visualization, it is idiomatic to implement them in
python. When this is not required, we propose to follow the approach of Moritz et al., who showed that
logical rules can be expressively expressed in ASP programs, and provide a database of design guidelines
expressed in ASP programs. ASP programs can be parsed and included in the Z3 model.

In evaluation, overlook recommended a set of bar, horizontal bar, or line charts. This allowed
for comparison to the baseline system. The implementation can be expanded to support additional
visualization types, or to recommend multiple visualization types in one query. Visualizations of
different types are disjunct; thus, the number of states in the Z3 model scales linearly with the number of
visualization types requested.

A natural progression from this is to remove the restriction that fields are only used for a single visual
variable and allow the assignment of a field from the dataset to multiple visual variables. When this is
supported, a regularization penalty could be added as an optimization goal to ensure efficient allocation
of visual variables.

With regard to the information available to the VizRec algorithm, overlook does not query data
sources during recommendation. That implies that (selection specific) summary statistics of datasets are
not available. Future research might explore methods for incorporating the shape of the data during
recommendation, for example, by sampling collection statistics.

Evaluation. This study has used an evaluation approach positioned between the evaluation of a
visualization system and IR evaluation. While this is valuable, when evaluating detailed features of a
system, or when a large number of responses is needed, further research might choose another approach.
Two approaches are common.

When investigating how users experience a system, other studies often use mixed methods designs
with multiple treatments. This approach can evaluate multiple interventions and allows for a balanced
design. It is also common to design a task that is similar to IIR, where users need to select or save results
out of all results. This data can then be used as training data. A disadvantage of this approach is that it is
not feasible to evaluate on multiple datasets since the number of respondents needed scales with the
number of datasets.

Another approach is to use crowdsourcing2 to gather assessments. Crowdsourcing is especially useful
when a high number of assessments and or assessors is needed. For example, Kim and Jeffrey Heer use
crowdsourcing to measure the error rate of assessors when interpreting visual encodings, for various
primitive tasks, and use that to rank encodings by visual effectiveness [KH18]. Ç. Demiralp, Bernstein,
and Heer evaluate the usage of different judgment types to create an effectiveness ranking for different
shapes for shape marks using crowdsourcing.

Ranking. After the SMT problem is solved, overlook ranks the candidate visualizations by the sum of
their heuristic scores. A system that presents results to a user, ordered by a utility function, is using a
ranking function [Bur+05]. When labeled examples are available, machine learning can be used to learn a
ranking function. The term Learning to Rank (LTR) refers to this application of machine learning.

LTR has been applied in VizRec [Luo+18; Mor+19]. Using this technique, visualization assessments
from this study, visualization ratings from other studies (as used by Moritz et al. [Mor+19]), or user

2Also called: micro tasks.
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behavior3 can be used to improve the ranking of visualizations and make the system increasingly more
effective after initial deployment. For overlook in specific, LTR can be used to learn weights for heuristic
scores or to re-rank visualizations based on how visualizations use fields (e.g., number of values on the
x-axis).

Another ranking technique to be considered is using heuristic scores to include diversity in the ranked
results. For example, a heuristic can express the difference in encoding between a clustered bar chart and
a stacked bar chart.

Finally, further research might investigate the usage of machine learning to learn the primitive tasks a
visualization is suitable for. This classifier can then be used as either decision support, where a system
suggests what tasks a visualization is suitable for; or as a ranking problem, where a system returns a list
of visualizations ranked for the task(s) given.

7.4 conclusion

This study set out to investigate the usage of Visualization Recommendation (VizRec) system in a realistic
setting. To achieve this goal, we implemented overlook, a system that views VizRec as a constraint
optimization problem, with design guidelines and heuristics implemented as hard- and soft criteria.
Solving this problem results in a Pareto front of visualizations that are each optimal for one of the soft
criteria.

We evaluated the system in a user study where participants compared bar, horizontal bar, and line

chart from overlook to the same type of chart from StatLine for 16 datasets. This evaluation performs a
more challenging comparison (cross-system) in a more difficult setting (real datasets) than in other works,
which commonly use synthetic or known datasets in a mixed-method design to evaluate features of a
system. We contribute data collection instruments for VizRec systems in a realistic setting and show that
evaluating visualizations is a hard task for annotators.

This study has shown that overlook can be used in a realistic setting and did not find a difference in
visualization quality between overlook and the baseline system. This demonstrates that visualizations
generated by overlook are an alternative to manually created visualizations and that the system has the
potential to support data analysts by generating visualizations based on design guidelines. In contrast to
the baseline system, overlook can generate visualizations during data exploration, closing the loop, and
making data exploration more interactive.

The evidence from this study suggests that overlook can be deployed in a real-world setting, increasing
the value of data by supporting non-experts during data exploration.

3E.g., implicit feedback such as interacting with a visualization, or explicit feedback such as saving, rating, or bookmarking a
visualization.
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data collection instruments

information sheet

overlook – information sheet, 12-06-2019  

You are being invited to participate in a research study titled overlook. This study is being done by Ties de 

Kock from the Faculty of Electrical Engineering, Mathematics and Computer Science at the University of 

Twente. 

You are being invited for this study since you are likely to have some experience with data visualization, and 

likely been exposed to information from similar types of datasets as the datasets from Statistics Netherlands 

(CBS) used in this study. You are free to discuss both your choice to participate in this study, as well as the 

content seen during the study with anyone. You can take your time to reflect on your choice of whether you 

participate in this study. If you have any questions about the study or the process, I will try to answer your 

questions to the best of my ability. You can ask additional questions at any time, both before and after 

participating. 

The purpose of this research study is to evaluate the quality of results from an automated visualization 

system. It will take you approximately 15 minutes to complete. During your participation you will evaluate 

the quality of visualizations for multiple datasets from CBS in order to provide a ground truth for the quality 

of the results of the system, using a questionnaire for each visualization. You will evaluate multiple 

visualizations per dataset. 

Before the study starts you will be asked to answer a survey that will be used to provide a summary of the 

demographics of the participants. After the study ends, the researcher will ask two questions about the 

results you have seen. This exit interview is optional. 

Participation in the study is voluntary and you have the right to refuse to participate, or withdraw from the 

study at any time, both before the study starts, as well while, and after participating. Please note that, as is 

customary, any information you provide before withdrawing from the study, and that has already been 

processed before withdrawing, may still be used. 

There a no risks involved in this study. Participating in the study does not provide direct benefits. No 

financial compensation will be offered for participation. 

The study does not collect personally identifiable information (except for the name and signature on the 

consent form). The consent forms cannot be directly linked to the pseudonyms used during the study, and 

consent forms are confidential. 

Responses on the demographic survey are anonymous and will be used in aggregate to describe the study 

population. Questionnaire responses (multiple choice) during the study are stored anonymously and will be 

used to evaluate the quality of the visualization systems. (Anonymous) quotes from the exit-interview, 

written down as notes by the researcher, may be used in the report. 

The results of the study will be used in a master thesis that is due to be finished in this academic year. The 

results and/or data gathered during this study, may be used for future research and learning. 

Participation is voluntary and you have the right to withdraw. Data you provide, from the moment of 

consent, up to the moment of withdrawal (of consent), can be used in research. You have the right to view, 

and/or alter data provided during your participation. 

If you want more information about this study, now or in the future, you can contact Ties de Kock, e-mail: 

ties@tiesdekock.nl.  

If you have questions about your rights as a research participant, or wish to obtain information, ask 

questions, or discuss any concerns about this study with someone other than the researcher(s), please 

contact the Secretary of the Ethics Committee of Faculty of Electrical Engineering, Mathematics and 

Computer Science at the University of Twente, mrs J Rebel-de Boer by e-mail: ethics-comm-ewi@utwente.nl. 
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consent form

Consent Form for overlook 
YOU WILL BE GIVEN A COPY OF THIS INFORMED CONSENT FORM 

  

Please tick the appropriate boxes  Yes  No   

Taking part in the study       

I have read and understood the study information dated 12‐06‐2019, or it has been read to 
me. I have been able to ask questions about the study and my questions have been answered 
to my satisfaction. 

□ □ 

I consent voluntarily to be a participant in this study and understand that I can refuse to 
answer questions and I can withdraw from the study at any time, without having to give a 
reason.  

□ □

 



I understand that information I provide will be used for a master thesis, and possibly in other 
publications. 

□

 

□

 



I understand that personal information collected about me that can identify me, such as my 
name, will not be shared beyond the study team.  

□

 

□

 



I agree that my information can be quoted in research outputs.  □

 

□

 



I give permission for the data I provide (e.g. questionnaires rating visualizations) to be archived 
so it can be used for future research and learning. 

□ □

 



    

Signatures       

 
…………………………………………..                        …………………………………  ………….  
Name of participant                                            Signature                    Date 

 

     

I have handed out the information sheet to the potential participant and, to the best of my 
ability, ensured that the participant understands to what they are freely consenting. 

 

Ties de Kock                                                        …………………………………  ………….  

Researcher name                                       Signature                    Date 

 

     

Study contact details for further information:  Ties de Kock, e‐mail: 
t.dekock@student.utwente.nl 

 

If you have questions about your rights as a research participant, or wish to obtain 

information, ask questions, or discuss any concerns about this study with someone other than 

the researcher(s), please contact the Secretary of the Ethics Committee of Faculty of Electrical 

Engineering, Mathematics and Computer Science at the University of Twente, mrs J Rebel‐de 

Boer by e‐mail: ethics‐comm‐ewi@utwente.nl. 
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demographic questionnaire

Participant 

Participation id   

Date   

Time   
 

Personalia1 

Age  o 15‐25 
o 25‐50 
o 50‐65 
o 65+ 

Education 
(ongoing or finished)  

o Science, technology, engineering, and mathematics 
o Other 

 
o Havo, vwo 
o Hbo‐, wo‐bachelor 
o Wo‐master, doctor 
o Unknown/none of the above/decline to answer 

 

I consider myself to have experience with (multiple answers possible): 
o Creating charts in Excel 
o More specialized visualization tools (tableau, D3, vega‐lite, …) 
o Data oriented workflows (GIS, data science, open data, Jupyter, R, …) 
o Machine learning 

 

I have experience with data visualization: 
Strongly 
disagree 

          Strongly 
agree 

o   o   o   o   o   o   o  

 

Years of experience: 
o 0‐2 
o 2‐5 
o 5+ 

 

Visualization is a(n) …: 
o Technology 
o Art 
o Science 

 

 

                                                            
1 This information will be used for descriptive statistics of the population of participants, if wanted questions 
can be left unanswered. 
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evaluation instructions

1/2 
 

Evaluation instructions 
During the experiment you will evaluate multiple visualizations for their effectiveness by answering 

multiple questions. This is done using a web interface that shows the title of the visualization, the 

visualization, and a questionnaire. The user interface is shown in the figure below.  

During the experiment you will evaluate visualiations for six combinations of datasets and 

visualization. For each combination, up to four visualizations are shown.  

The answers for the questions are introduced on the next page. This document can be kept as a 

reference while answering the questions. In addition, feel free to ask additional questions now or as 

the experiment progresses. 

 

Figure 1: layout of the evaluation form 
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2/2 
 

Questions 

Errors 
The first question investigates potential errors in the visualization.  

It consists of checkboxes that for different types of errors, two on the data in the visualization, and 

two on how it is displayed (error in the visualization itself, or in how a potentially valid visualization 

is displayed in the tool). Please tick any error type that is applicable. 

Ease of understanding 
The second question investigates how hard it was to understand the visualization. 

Was the visualization clear? Did you understand how it was structured? 

Relevance 
The third question measures the relevance of the visualization. A relevant visualization from a da‐

taset should show a pattern or trend; a chart showing a single bar would not be relevant. 

A visualization that gives insight into [some] information that would help when writing report on [its 

title/topic] is relevant. 

When a visualization is broken and you can not understand it, answer N/A. 

Suitable tasks 
The final question is on the task the visualization is suitable for. Examples for the tasks are given be‐

low. 

Answer these questions with your best estimate and check the types that apply, multiple options can 

be checked. 

overview 

The visualization gives a general overview of the data in the dataset. 

identify 

 “What is the mileage per gallon of the Audi TT?” 

 “What comedies have won awards?” 

compare 
 “Are there exceptions to the relationship between horsepower and acceleration?” 

 “What is the car with the highest MPG?” 

rank 

 “Rank the cereals by calories” 

 “What actresses are in the data set?” 

 “What is the distribution of carbohydrates in cereals?” 

associate 

 “Is there a trend of increasing film length over the years?” 

 “Are there groups of cereals with similar fat/calories/sugar?” 
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preliminary evaluation

selected datasets

Dataset Chart type

Title ID line bar hor.
bar

Overheid; ontvangen belastingen 82569NED X X X

Consumentenprĳzen; prĳsindex 2015=100 83131NED X X X

Consumentenprĳzen; basisjaren vanaf 1969 83136NED X X X

Consumentenprĳzen; werknemers laag, 1969-1995 83433NED X X X

Beloning en arbeidsvolume van werknemers 82577NED X X X

Bevolking; generatie, geslacht, leeftĳd en migratieachtergrond 37325 X X X

Table 1: Selected datasets for preliminary evaluation.
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evaluation

selected datasets

Dataset Chart type

Title ID line bar hor.
bar

Faillissementen, zittingsdaggecorrigeerd 83085NED X X X

Bouwvergunningen woonruimten; aantal en index 83668NED X X X

Vacatures; vacaturegraad naar SBI 2008 80567ned X X X

Bevolking; hoogstbehaald onderwĳsniveau en onderwĳsrichting 82816ned X X X

Invoer en uitvoer volgens eigendomsoverdracht; volumeontwikkelingen 84264NED X X

Uitzendbureaus en arbeidsbemiddeling; ontwikkeling omzet, 2015=100 83853ned X X X

Zorguitgaven internationaal vergelĳkbaar; functies en financiering 84043ned X X X

Basisverzekering (Zwv); kosten per persoon, inkomen 81827ned X X X

Sociale zekerheid; kerncĳfers, uitkeringen naar uitkeringssoort 37789ksz X X X

Arbeidsdeelname; kerncĳfers 82309ned X X X

Bedrĳfsgegevens; omzetontwikkeling (stĳgers-dalers), SBI 2008 82190ned X X X

Huishoudens; grootte, samenstelling, positie in het huishouden, 1 januari 82905ned X X X

Totale reizigerskilometers in Nederland per jaar; vervoerwĳzen, regio’s 83497ned X X X

Jaarmutatie consumentenprĳsndex; vanaf 1963 70936ned X X

Consumentenprĳzen; prĳsindex 2015=100 83131ned X X

Beloning en arbeidsvolume van werknemers; kwartalen, nr, 1995–2018 82577NED X X X

Table 2: Selected datasets for user study.
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results

precision

Ease of understanding Relevance

System Query type n −3 −2 −1 0 1 2 3 N/A 0 1 2 3

bar

StatLine default 36 1 0.92 0.83 0.78 0.69 0.42 0.17 1 0.92 0.83 0.58 0.33
overlook default 45 1 0.84 0.58 0.47 0.31 0.11 0.02 1 0.89 0.78 0.40 0.11
overlook most recent 57 1 0.67 0.47 0.44 0.30 0.14 0.04 1 0.88 0.65 0.33 0.14

horizontal bar

StatLine default 38 1 0.84 0.74 0.66 0.58 0.37 0.18 1 0.95 0.87 0.66 0.29
overlook default 39 1 0.77 0.69 0.54 0.44 0.36 0.15 1 0.85 0.72 0.41 0.15
overlook most recent 63 1 0.68 0.49 0.43 0.35 0.17 0.08 1 0.78 0.51 0.33 0.13

line

StatLine default 28 1 0.79 0.71 0.57 0.54 0.39 0.29 1 0.86 0.75 0.57 0.32
overlook default 45 1 0.38 0.24 0.20 0.13 0.09 0.04 1 0.67 0.40 0.22 0.09
overlook most common 30 1 0.30 0.23 0.20 0.20 0.10 0.00 1 0.67 0.30 0.17 0.13

Table 3: Mapped precision (rating ≥ indicated value � 1.) for all visualizations

Ease of understanding Relevance

System Query type n −3 −2 −1 0 1 2 3 N/A 0 1 2 3

bar

StatLine default 36 1 0.92 0.83 0.78 0.69 0.42 0.17 1 0.92 0.83 0.58 0.33
overlook default 15 1 1.00 0.87 0.80 0.67 0.33 0.07 1 0.93 0.93 0.67 0.27
overlook most recent 21 1 0.86 0.67 0.67 0.52 0.24 0.10 1 0.81 0.67 0.52 0.24

horizontal bar

StatLine default 38 1 0.84 0.74 0.66 0.58 0.37 0.18 1 0.95 0.87 0.66 0.29
overlook default 13 1 0.92 0.92 0.77 0.62 0.54 0.38 1 0.85 0.77 0.54 0.31
overlook most recent 23 1 0.87 0.78 0.61 0.52 0.30 0.17 1 0.87 0.61 0.52 0.22

line

StatLine default 28 1 0.79 0.71 0.57 0.54 0.39 0.29 1 0.86 0.75 0.57 0.32
overlook default 15 1 0.60 0.40 0.40 0.40 0.27 0.13 1 0.73 0.53 0.47 0.27
overlook most common 10 1 0.60 0.50 0.50 0.50 0.30 0.00 1 0.80 0.60 0.50 0.40

Table 4: Mapped precision (rating ≥ indicated value � 1) for top-ranked visualizations.
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