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Abstract

This paper describes the use of sequence labeling methods in predicting the se-
mantic labels of extracted text regions of heterogeneous electronic documents, by
utilizing features related to each semantic label. In this study, we construct a novel
dataset consisting of real world documents from multiple domains. We test the per-
formance of the methods on the dataset and offer a novel investigation into the
influence of textual features on performance across multiple domains. The results
of the experiments show that the Conditional Random Field method is robust, out-
performing the neural network when limited training data is available. Regarding
generalizability, our experiments show that the inclusion of textual features does not
guarantee performance improvements.
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Preface

I chose the topic of ”Predicting Semantic Labels of Text Regions in Heterogeneous
Document Images” for my master thesis due to my keen interest in analyzing and
mining data from textual sources. Understanding and predicting the different textual
regions in documents remains a complex and challenging problem for computers.
This is mainly due to the variety of ways documents are represented in the real
world.

After carrying out research on the above-stated topic, my general remarks on the
topic are that;

• A good segmentation of the textual regions is very important for reliable pre-
diction of their semantic roles,

• Larger datasets with ‘high-variety’ characteristic (i.e. different layouts and for-
mats) are needed and they are crucial to improve generalizability of methods
for the task of semantic role labeling,

• End-to-end approaches provide a more complete and unified procedure for the
task and can benefit from dependencies between segmentation and semantic
labeling.

This master thesis report is divided into two parts. The first part consists of the
research paper on my masters project, containing a concise overview of the work
and the important results. The research paper was a deliverable for the assessment
of my research work. The paper was also submitted to a workshop in a conference.
The second part consists of a detailed appendix providing further explanation on
the motivation, the models, data and error analysis, and additional experiments to
provide the reader with more information and it is also an additional deliverable for
assessment.
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Abstract

This paper describes the use of sequence la-
beling methods in predicting the semantic
labels of extracted text regions of hetero-
geneous electronic documents, by utilizing
features related to each semantic label. In
this study, we construct a novel dataset con-
sisting of real world documents from mul-
tiple domains. We test the performance of
the methods on the dataset and offer a novel
investigation into the influence of textual
features on performance across multiple
domains. The results of the experiments
show that the Conditional Random Field
method is powerful, outperforming the neu-
ral network when limited training data is
available. Regarding generalizability, our
experiments show that the inclusion of tex-
tual features don’t guarantee performance
improvements.

1 Introduction

On a daily basis, legal departments of corporations
produce many electronic documents for documenta-
tion of cases, investigative reporting, internal com-
munication etc. Whenever these corporations are
involved in litigation or investigations as part of
regulatory requests, the need arises to collect and
review these documents and share their contents
with third parties. As document data sets increase,
the corporations turn to e-discovery technology to
facilitate the process of collecting, reviewing and
sharing. E-discovery technology helps to automati-
cally analyze the documents by using text mining
and other text-related analytics to discover rele-
vant information. However, these text mining tech-
niques for automatic document analysis only work

Figure 1: Example of a segmented document and
its corresponding labels

optimally when the roles of different text sections
in a document are known. For example, by recog-
nizing tables, headers and footers, we can apply
different extraction and analysis techniques than
on normal paragraphs, and expect better results.

For safety reasons however, electronic docu-
ments in the legal domain are mostly transformed
into images (e.g. jpg, tiff) so the corporation or
firm can have control of what they share with other
parties. Electronic documents usually contain hid-
den information (information that can’t be seen
when the document is viewed) and these pieces of
information could contain hidden details they don’t
want to disclose to the receiving party. On the other
hand, transforming the documents to images cre-
ates another problem as it makes it more difficult
to automatically identify the specific role of the
document areas. Hence, to provide automatic tools
to determine the function of textual regions derived
from document images, we need to do document
image understanding.

The primary goal in document image understand-



ing is to (1) identify regions of interest in a docu-
ment image (page segmentation) and (2) recognize
the role of each region (semantic structure label-
ing). Many related studies treat these two tasks as
separate sequential tasks. However, they are also
often handled as one unified task. In this work, we
specifically address the second step in the under-
standing of document images: the task of semantic
structure labeling. The goal of this task is to la-
bel a sequence of physically segmented regions in
a document image with semantic labels such as
header, paragraph, footer, caption, etc. (see Figure
1). We treat the task as a sequence labeling prob-
lem, which involves assigning a categorical label
to each member of a sequence of observations i.e.
a sequence of document segments in our scenario.
Though the work of document image understand-
ing covers various types of document images, our
work focuses on electronic and digital-born docu-
ments. Typical examples of electronic documents
which can be converted to images are PDF, Word,
Powerpoint, E-mails, etc.

Even though extracting the semantic information
from a document is a task that is easily done by a
human, it is still an open and challenging problem
for computers due to the inherent complexity of
documents (Rangoni et al., 2012), especially when
the set of documents in focus are diverse in layout
and format. Similar works on semantic labeling
such as (Tao et al., 2013) and (Shetty et al., 2007)
are usually very specific to a document format or
a set of related document types and problematic
when we try to generalize to other document types.
There is still a high demand for robust methods,
capable of dealing with a broad spectrum of layouts
found in digital-born documents (Clausner et al.,
2011).

Our work addresses this gap in research by com-
paring sequential labeling methods for the semantic
labeling task, and considering heterogeneous doc-
ument images. Homogenous formats and lack of
fine-grained semantic labels relevant for real world
documents, limit understanding of previous doc-
ument image datasets. To address these issues,
we annotated a new dataset containing documents
from an infamous legal case - the Enron Corpora-
tion scandal investigation. We also compare the
performance of the following sequence labeling
methods on the annotated dataset: (i) A feature-
based Conditional Random Field (CRF) (ii) A re-
current neural network with a Bidirectional Long

Short-Term Memory (LSTM) architecture.
Our methods perform fine-grained recognition

on text regions and include identification of tables.
Furthermore, we check the influence of textual re-
lated features on the generalizability of our meth-
ods to a different domain. Luong et al. (2010)
and Yang et al. (2017) prove that the performance
of methods improves when text information in a
region is considered for semantic labeling. We ex-
tend this by checking its influence across a different
document domain.

Our main contributions are summarized as fol-
lows:

• We compare two sequential labeling meth-
ods to address document semantic structure
labeling. Unlike previous works, we consider
heterogeneous document formats and identify
both fine-grained semantic-based classes and
tables.

• We offer a novel investigation into the influ-
ence of text-related features on the perfor-
mance of our methods across a different docu-
ment domain.

• We provide an evaluation dataset for the task
of semantic labeling on digital-born docu-
ments.1

In section 3, we present our evaluation dataset.
We then provide a detailed description of our sys-
tem architecture in section 4. Section 5 is a break-
down of the sequence labeling methods performed
for the task. We show the results of our experi-
ments in section 6 and conclude on our work in
section 7.

2 Related Work

Previous works on document image understanding
(Chen and Blostein, 2007; Marinai, 2008; Kamola
et al., 2015) divide the task into two parts: a phys-
ical decomposition or segmentation of document
images into regions (page segmentation) and a log-
ical/semantic understanding of these regions (se-
mantic structure labeling). Though the focus of
our work is on semantic labeling, we also present
a high-level discussion on existing page segmenta-
tion techniques.

1The dataset will be made publicly available at a later date.



2.1 Page Segmentation

Page segmentation techniques involve identifying
segments enclosing homogeneous content regions,
such as text, table, figure or graphic in a docu-
ment page or image. These techniques fall into
three categories: bottom-up, top-down and hybrid
approaches. Bottom-up approaches (Kise et al.,
1998; Adnan and Ricky, 2011) begin by group-
ing pixels of interest and merging them into larger
blocks or connected components, which are then
clustered into words, lines or blocks of text. How-
ever, such approaches are expensive from a compu-
tational point of view. Top-down approaches (An-
tonacopoulos, 1998; Gatos et al., 1999) recursively
segment large regions in a document into smaller
sub regions. Both approaches however, are lim-
ited by their inability to successfully segment com-
plex and irregular layout documents. Hybrid meth-
ods, such as proposed in Pavlidis and Zhou (1992)
combine both top-down and bottom-up techniques.
With recent advances in deep neural networks, neu-
ral based models have become state-of-the-art for
segmentation. Siegel et al. (2018) utilized a neural
network to extract figures and captions from scien-
tic documents. Vo et al. (2016) proposed using a
fully convolutional network (FCN) to detect lines
in handwritten document images.

2.2 Semantic Structure Labeling

Our work focuses on the second aspect of doc-
ument image understanding. Semantic labeling
couples semantic meaning to a physical region or
zone of a document after it has been segmented.
Two types of approaches have been considered in
the literature to handle this task: the model-driven
approach and the data-driven approach (Mao et al.,
2003). Early work in semantic structure labeling fo-
cused on the model driven approach. Models made
up of rules, or trees, or grammars contained all
the information that was used to transform a physi-
cal structure into a logical or semantic one. Rule
based systems (Kim et al., 2000), though fast and
human-understandable proved to be poorly flexible
and unable to handle irregular cases and varying
layouts.

Recent studies have considered the data-driven
approach using supervised learning methods as an
alternative to avoid the inflexibility and rigidity
of manually built rule systems and mechanisms.
These data-driven approaches make use of raw
physical data to analyze the document and no

knowledge or predefined rules are given. Vari-
ous document image datasets have been created
for this purpose including images in the document
space of electronic documents, scanned documents,
magazines, newspapers etc. (Todoran et al., 2005;
Antonacopoulos et al., 2009) but they are usually
confined to a single domain or class. Chen et al.
(2007) define a document space as the set of doc-
uments that a classifier is expected to handle. The
labeled training and test samples are all drawn from
this document space. Our dataset includes hetero-
geneous formats of electronic documents such as
Microsoft Office files, PDF and email files which
cover multiple domains like business letters, ar-
ticles, memos, forms, reports, invoices etc. that
significantly vary in layout, structure and content.

Most existing supervised learning methods for
semantic labeling use CRF and deep neural net-
work approaches. Tao et al. (2013) built a CRF
model as a graph structure to label fragments in a
document. Shetty et al. (2007) used CRFs utiliz-
ing contextual information to automatically label
extracted segments from a document. Yang et al.
(2017) and Stahl et al. (2018) used visual cues and
deep learning methods to analyze documents. In
this study, we treat the semantic structure label-
ing task as a sequential labeling problem where a
document image is modeled as a sequence of re-
gions. The motivation for this is to model spatial
dependencies and possible transitions between the
different regions. Shetty et al. (2007) model spatial
inter-dependencies between sequential segments
in documents. Luong et al. (2010) also treat their
semantic labeling task as an instance of the sequen-
tial labeling problem. CRFs and recurrent neural
networks are popular sequential learning methods
for this type of modeling. We offer a comparison
of these state-of-the-art methods for semantic la-
beling across heterogeneous document formats in
this study.

Luong et al. (2010) report in their work that
adding textual information to a CRF model for
semantic labeling improves its performance. We
build on this work by also checking the influence
of textual information on the performance of our
methods across different document domains.

3 Datasets

This section describes the construction of our eval-
uation dataset for the task of semantic labeling
which we call SemLab (SemLab coined from Se-



Dataset SemLab PRIMA

Document images 400 478

Document space
Office docs,
PDF & Email

Magazine

Label categories 13 9

Table 1: Overview of the datasets used in this study.

mantic Labeling). The documents we used were
gathered from the Enron Corpus.2 This corpus is
a large database of approximately 600,000 emails
generated by 158 employees of the Enron Corpora-
tion and acquired by the Federal Energy Regulatory
Commission, a United States federal agency, dur-
ing its investigation after the company’s collapse.

To compare the performance of the sequence
labeling methods across different domains, we
used the PRIMA dataset of Antonacopoulos et
al. (2009). Table 1 contains an overview of both
datasets.

3.1 Dataset Creation
We select documents for our dataset from the email
folder of the then CEO of Enron corporation. Of
all the employees in the corporation, he received
the most emails. The documents comprise of sent
and received email messages in the folder as well
as document attachments. For attached documents,
we consider four formats of documents: Word,
PDF, Excel and Powerpoint documents, and ig-
nore other file formats in the folder. This selection
of different document formats meets the variety
characteristic of an ideal dataset as described in An-
tonacopoulos et al. (2006) because several classes
of document pages are represented. In total, we se-
lect 100 email messages and 406 unique documents
from the CEO’s email folder. With each document
containing different pages, the full set we collected
from the email folder contained 2,447 document
pages.

After selection of the electronic documents, we
converted them to TIFF images since document
images are the focus of our work. For conversion,
we used the Group 4 compression standard - a loss-
less method of image compression. The SemLab
evaluation dataset is a random selection of 400 doc-
uments from the 2,447 document images, contain-

2See en.wikipedia.org/wiki/Enron_Corpus,
accessed 2019-06-19

ing a total of 2,869 regions and their ground truth
representation in CSV format (see section 3.3).

3.2 Document Semantic Labels

We attempt to identify 13 labels in a document:
paragraph, page header, caption, section heading,
footer, page number, table, list item, title, email
header, email body text, email signature and email
footer. Our choice of labels is specific to regions
in a document that contain text. Hence we didn’t
consider regions in a document that are devoid of
text e.g. figure, image, graphic etc.

3.3 Annotation Process

Apart from the document images part of our dataset,
we created the geometric hierarchical structure of
each image (in CSV format) as ground truth for
the dataset. We achieved this as follows: For each
region, the corresponding bounding box was given
in terms of its x and y coordinates on the document
image. Each region was also given a label from the
set of 13 labels we defined. The bounding box co-
ordinates were defined by page segmentation using
the Tesseract OCR engine3 while the labeling of
the regions was done manually. Tesseract OCR per-
forms an automatic full page segmentation of the
document image thereby producing the bounded
regions in the document. We allowed for manual
correction of the regions by the annotators in case
of a faulty or overlapping region. In total, 5 non-
domain experts took part in annotating the sample
of 400 document images independently. Each doc-
ument image was annotated by 3 annotators (fixed
number).

To make the manual annotation effort easier for
the annotators, we split the 400 documents into
40 groups i.e. 10 documents per group, so that
they had the liberty to annotate a minimum of
10 documents and a maximum of 400 documents.
We set up the process by providing the annotators
with a simple image editor tool to manually correct
the segmentation (by specifying imprecise region
boundaries using a variety of drawing modes such
as using rectangles or arbitrary polygons) and label
each region in a document image. We pre-loaded
the labels into a toggle annotation editor to improve
annotation efficiency. Hence, the annotator only
needed to select the labels from a drop-down. To
ensure that the annotators understood the annota-
tion task, we provided a user guide containing com-

3github.com/tesseract-ocr/tesseract accessed 2019-06-09



Figure 2: Implementation architecture, showing training and testing phases including the input and output
for the sequence learning models

plete instructions on how to use the image editor
tool and carry out the labeling of the regions.

We measured the Inter-Annotator Reliability
(IAR) of agreement using the Fleiss’ Kappa mea-
sure.4 It has been shown to be more suitable to
measure IAR when more than 2 annotators are in-
volved, compared to other measures such as Cohen
Kappa.5 The Fleiss’ Kappa value measured for
our annotation task was 0.52. This value indicates
moderate agreement between the annotators, going
by the table given in (Landis and Koch, 1977) for
interpreting Fleiss’ Kappa values. It has been noted
however, such as in (Sim and Wright, 2005) that
the table interpretation is flawed, as the number of
categories and subjects will affect the magnitude
of the value. For example, the Kappa value will
be higher when there are fewer categories. After
annotation, the main author of this paper reviewed
8,977 annotations and resolved the disagreements
between the three annotators for each document
image. Disagreements were resolved by majority
voting and in instances where each annotator had
unique annotations, the author revisited the anno-
tated samples and made the most logical choice of
label to form the gold-standard set.

3.4 Data Augmentation
To artificially expand the size of the dataset for
carrying out experiments on our deep neural net-
work models, we employed traditional augmenta-
tion techniques as described in Perez and Wang
(2017). The goal of carrying out data augmentation

4Fleiss’ Kappa works for any number of annotators giving
categorical ratings, to a fixed number of items

5See en.wikipedia.org/wiki/Fleiss_kappa

is to add more variation to the dataset and enable
the neural network generalize better. A detailed
discussion on the augmentation operations can be
found in Appendix A.

4 System Architecture

Figure 2 summarizes the architecture of our seman-
tic labeling system. During the training process, we
run all input document images through the Tesser-
act OCR software to obtain raw text data as well
as geometric layout information. The feature ex-
tractor utilizes both the layout information and raw
text, when available, to produce features which go
through the sequence labeling trainer together with
corresponding manually labeled data, to produce
the learned models. The trainer learns to assign a
semantic label to the segmented regions R of a doc-
ument image D. Each region Ri ∈ R is bounded by
a bounding box Bi ∈ B that includes coherent text
content and each bounding box is a set of pixels
between its top left corner and bottom right corner
coordinates. None of the bounding boxes overlap
the other.

During testing, we want to assign a label Li ∈W
: i = {1,...,n} to each region Ri. Given a sequence
of regions x = (x1, x2,..., xn) in a document image,
the task is to determine a corresponding sequence
of labels y = (y1, y2,..., yn) for x. This can be
seen as an instance of a sequence labeling problem,
which attempts to assign labels to a sequence of
observations. We take into account the contextual
information for each of the regions in the sequence
i.e. the labels of preceding or following regions are
taken into account for label classification.



5 Methods

In this section, we present the sequence labeling
methods for semantic labeling of document images
and the evaluation procedure.

5.1 Linear-Chain CRF (LC-CRF)

CRFs are probabilistic models used to segment and
label sequential data. They are reported to be very
effective for semantic structure detection (Peng and
McCallum, 2004; Luong et al., 2010). An inherent
merit of the CRF model to perform this task is its
ability to combine two classifiers: a local classi-
fier which assigns a label to the region based on
local features and a contextual classifier to model
contextual correlations between adjacent regions.
Linear-chain CRFs are one well known type of
CRFs which are similar to Hidden Markov Models
but are reported to perform better (Peng and Mc-
Callum, 2004). They have one chain of connected
labels. As CRF is a feature-based method, we im-
plement two models with different feature sets in
our work (see Table 2). We use the scikit-learn
Python package, sklearn-crfsuite for implementa-
tion of our CRF models.

LC-CRF without OCR (LC-CRF1): In this
model, we exclude any features that can be ex-
tracted from the OCR output. That is, we consider
only geometric/physical layout features to predict
the label of a region in a document. The LC-CRF
classifier will learn regions based on their position
and location on the bounding box level of the doc-
ument image. For example, it is common for titles
to appear at the top of documents so the model may
learn this observation from the extracted features.

LC-CRF with OCR (LC-CRF2): By virtue of
the generality and flexibility of CRF model, it is
promising to achieve better performance by extend-
ing feature sets and exploring higher-level depen-
dencies (Shetty et al., 2007). Luon et al. (2010)
and Yang et al. (2017) report that by adding tex-
tual information to their models, there was an im-
provement in performance. We implement another
LC-CRF model extending the feature set by includ-
ing textual features from the OCR output. We also
consider features for detecting tables. We re-use a
subset of features for table detection in (Ghanmi
and Abdel, 2014).

5.2 Recurrent Neural Networks (RNNs)

RNNs are a class of nets that are used for sequence
learning. They can simultaneously take a sequence

Feature set Description

Without OCR

Block coordinates The location of the region bounding box
within the document image (x and y co-
ordinates)

Height Normalized height of block
Width Normalized width of block
Area Normalized area of block
Aspect ratio Width/height of block
Vertical position Vertical position of region in the image

(top, middle, bottom)

With OCR

Digit Binary feature indicating if the text in
the region consists of digits or contains
digits

Capital letters Binary feature indicating if if the text in
the region is all in capital case or contains
capital letters

Nr of tokens The number of tokens in a region block
Nr of lines Binned number of lines in a region block

(small, medium, large bins)
List item pattern Binary feature indicating if text contains

bullet items
Caption pattern contains caption keywords (table, source,

fig., figure)
Email keywords Keywords found in different parts of an

email
Has multi-white
space (table feature)

Binary feature indicating if bounded re-
gion contains multiple white spaces be-
tween tokens.

% of white space (ta-
ble feature)

The sum of white space lengths divided
by the line length

Avg white space
length (table fea-
ture)

The mean length of the white spaces
within a line.

Table 2: Features used by the CRF methods.

of inputs and produce a sequence of outputs. They
have shown great power in learning latent features,
finding the most representative features from an
input sequence and training the best model given
these features (Akhundov et al., 2018).

Here, we use a Bidirectional-LSTM architecture
for our network. We transform the feature sets of
the CRF models into a 3D tensor and use this as
input to the network. Two neural models (RNN1
and RNN2) are trained and evaluated as such imple-
mented for the CRF models, using feature sets with
and without OCR features. Hyper-parameters are
set in reference to the best performing configura-
tions in Reimers and Gurevych (2017) with minor
deviations. We use the adam algorithm for gradient
descent optimization (Kingma and Ba, 2015). We
don’t include an embedding layer and set the num-
ber of recurrent units to 100 for all 3 hidden layers.
Kernel and recurrent (l2) regularizers are added to



LC-CRF1 LC-CRF2 RNN1 RNN2

Overall Micro F1 0.736 0.830 0.564 0.580

table 0.667 0.885+0.22 0.370 0.378
paragraph 0.617 0.754+0.14 0.506 0.502
page number 0.946 0.959 0.688 0.694
list item 0.336 0.589+0.25 0.206 0.268
heading 0.564 0.545 0.514 0.502
page header 0.868 0.875 0.654 0.660
title 0.571 0.720+0.15 0.432 0.412
footer 0.781 0.875+0.09 0.666 0.724
caption 0.667 0.708 0.116 0.072
email header 0.907 0.980+0.07 0.678 0.704
email body text 0.944 0.980 0.718 0.792
email signature 0.935 0.974 0.866 0.858
email footer 0.969 0.985 0.774 0.768

Table 3: Comparative performances among LC-
CRF1, LC-CRF2, RNN1 and RNN2 models for
semantic labeling. Category-specific performance
given in F1. Results in bold mark the best system
for each category. Superscripts indicate large im-
provements in F1 (> 0.05 points) between first and
second ranked systems.

our first hidden layer. We add dropout with a value
of 0.1 and use a batch size of 32. Furthermore, if
the training loss does not decrease for 3 epochs, the
learning rate is reduced by a 0.8 factor. Training is
stopped if the minimum change in validation loss
is less than 10-5 for 8 epochs or when 100 epochs
are reached. We use the keras deep learning library
running on top of tensorflow, for implementation
of our RNN models.

5.3 Evaluation
The aim of our evaluation is to compare how se-
quence labeling methods perform for the task of se-
mantic labeling of document regions and compare
how their performances change with an extended
feature set. We also evaluate the generalizability of
our methods to a different document domain.

Let TP denote the number of correctly classi-
fied text regions (true positive); similarly, FN for
false negatives, FP for false positives, and TN
for true negatives. We assess category-specific re-
sults according to the F1 measure, defined as 2xPxR

P+R
where P is Precision = T P

T P+FP , and R is Recall
= T P

T P+FN . Overall results are evaluated using the
micro-averaged F1 measure, the average of the re-
sults of 3 runs is reported per experiment. We split
our dataset into train/test sets with a 70/30 ratio.
We perform 3-fold cross validation on the train set
to tune the hyper-parameters of the model.

Figure 3: Comparison of LC-CRF2 and RNN2 with
different training data set sizes. Training docu-
ments >400 are created from data augmentation.

6 Results

This section presents the results of our experiments.

6.1 Semantic Labeling of SemLab Dataset
Table 3 shows an overview of the results of our
models comparison on the non-augmented dataset.
The LC-CRF model without OCR output (LC-
CRF1) performs fairly well, approaching an F1
score of 0.74. It is clear however that including
features from the OCR output has a significant
impact: the LC-CRF2 model with OCR increases
micro-averaged F1 to 0.83. LC-CRF2 greatly im-
proves performance on the majority of categories,
out of which 6 categories have F1 improvements
greater than 0.05. Though RNN2 performs better
than RNN1, both models generally score less than
the LC-CRF models on the dataset. This is at least
partly because of the very small amount of training
data used as input to the model. We show that for
our specific task, neural networks perform slightly
better with more training data as seen in Figure 3
and start to flatten out after about 40 times the origi-
nal dataset size. The CRF models on the other hand
seem to remain stable even with more training data.
In addition, we make the following observations.

We observe that list items, titles and headings
have the lowest scores for the best performing
model. These categories usually have very sim-
ilar features. For example, headings and list items
are often started with numbering. Titles and head-
ings also usually contain similar features such as
having all capital letters. We also observe that list
items have a very low F1 score without OCR fea-
tures. The classifier is able to only learn geometric



and positional features of this category and mis-
classifies a lot of its samples as paragraph since
both have similar locations on a document image
and more so, paragraph is the majority category.
The email related categories generally have high
F1 scores irrespective of the local feature sets in-
cluded. This is because of the ability of sequence
labeling methods to take into account the neighbor-
hood of items; for example, an email body text is
very likely to appear after an email header and thus
the classifier learns this contextual knowledge.

6.2 Comparison across different document
domain

In many real life scenarios, the datasets available
to train models for the semantic labeling task are
mainly homogeneous document images with sim-
ilar or comparable layout and format. This raises
the question about how generalizable a model that
has been trained on a set or related set of document
images is, to different domains. We trained the
sequence labeling methods on our SemLab dataset
which contains documents from multiple domains
and tested each model on the records from the
PRIMA dataset which contains documents from
the magazine domain, not represented in our own
dataset. For fair comparison, we evaluated only
labels applicable to both datasets i.e. intersecting
labels (header, paragraph, section heading, caption,
page number, footer). For this reason we excluded
some features in the ‘With OCR’ feature set that
are directly related to the excluded labels.

Table 4 provides a summary of the performance
of each method on the different domains. The
results show that the methods have lower perfor-
mances when evaluated on unseen data of a dif-
ferent domain than the trained. Interestingly, both
LC-CRF and RNN methods perform better when
OCR information is not included for the cross do-
main experiment. This proves that the inclusion of
textual features harms generalizability of methods
across new domains for semantic labeling. This
can be explained by considering the diverse ways
text is written in different types of document. It
is difficult for models to capture these variations
from one document domain to another as some of
the semantic categories are not very generalizable
across different domains. Furthermore, we observe
that RNN1 is able to generalize better than the LC-
CRF1. This could be explained by the techniques
specifically employed to reduce overfitting in the

Testing Domain

Method SemLab PRIMA

LC-CRF1 0.820 0.615
LC-CRF2 0.845 0.567
RNN1 0.716 0.693
RNN2 0.726 0.543

Table 4: Review of the transfer learning experiment.
Each method is trained on the SemLab dataset and
tested on in-domain and cross-domain documents.
All scores are micro-averaged F1 scores.

RNN such as the use of dropout, early stopping, l2
regularization etc. However, these techniques seem
limited as the generalization performance decreases
more significantly for the RNN2 when the feature
space is extended compared to the LC-CRF2.

7 Conclusion and Future Work

In this work we have presented a comparison be-
tween state-of-the-art sequential learning models
applied to the task of semantic labeling of doc-
ument regions. We constructed a novel evalua-
tion dataset to benchmark model performance on.
The experimental results reveal that the LC-CRF
method is able to perform well using only a small
amount of training data; a contrast to the RNN
method which needs more data to see increasing
performances. Though there is improvement with
the RNN method with more training data, the slight-
ness of its improvement indicates a limitation in
our augmentation technique or limited variation
in the original document set for the augmentation
technique to benefit from. Also, including OCR in-
formation in the feature set is promising to achieve
better performance as they reduce confusion be-
tween ambiguous semantic classes. Nevertheless,
their inclusion might negatively affect generaliza-
tion performance, as shown by our transfer learning
experiments on the PRIMA domain.

Future work includes extending the document
dataset in terms of size and variety to cover more
document spaces, domains and classes. Models can
exploit these characteristics to better generalize to
new domains. Other types of augmentation tech-
niques other than the traditional transformations
listed in Appendix A could be beneficial as well to
create variety in the expanded set. By virtue of neu-
ral networks’ great power to learn latent features,
we believe more (varying) data will also contribute
to improving the performance levels of our neural
method.
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A Appendix

A.1 Augmentation Techniques
To carry out experiments comparing model per-
formance on different data set sizes, we expanded
our training dataset using traditional transforma-
tion operations. While doing the augmentation, we
considered techniques and operations that will not
create unreal variations of each document image
which may confuse the models even further. For
example, since each document contains multiple
regions that are sequentially arranged, it is possi-
ble that performing a geometric expansion of each
bounding box region on the vertical and horizontal
axis could lead to overlapping regions or regions
going beyond the width or height of the document
page. Hence, we carefully selected operations and
set rules that will avoid these scenarios, almost
completely. We artificially expanded the set using
augmentation operations as follows:

1. Horizontal Shifts: Regions were shifted to the
left and right of the document image based
on a shifting factor. The shifting factor was
set between 100 - 200 pixels. For instance, if
the shifting factor was set to 150 pixels, the
regions and their bounding box were shifted
to the left or to the right by 150 pixels. We
included rules to ensure the horizontal shifts
do not violate the nature of possible real life
documents by for example, ensuring regions
that are already close to the left or right border
of the image are not moved further beyond the
border of the image.

2. Vertical Shifts: Regions were shifted upward
and downward of the document image based
on a shifting factor. We applied similar rules
as those described in the horizontal shift

3. Shrink: This operation shrinks regions to a
smaller size by a shrinking factor. The rules
applied here prevent shrinking beyond a rea-
sonable factor as this will violate certain se-
mantic regions e.g. page number, as they are
already of a minute size in height and width.
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Appendix A

In-Depth Overview of Research Work

In this section, we present a detailed overview of the research work done on ‘pre-
dicting semantic labels of heterogeneous document images’ and also include more
details on the research process that has been left out in part 1 of this report.

A.1 Motivation

The research work was carried out in ZyLAB, Amsterdam. ZyLAB is a company
involved in the legal tech industry, working closely with law firms, corporations, and
governments to deal with e-discovery, answering regulatory requests, internal inves-
tigations, audits and handling public records requests. ZyLAB’s approach to dealing
with these requests is a smart fact-finding solution which utilizes machine learning
and information extraction techniques to provide answers and insights to their cus-
tomers and their needs. However, for ZyLAB, it is not just about providing a solution,
but also how to deal with large unstructured data in various forms which is a part of
the everyday e-discovery and fact finding process. Manual analysis of these data
is a time consuming process that is neither beneficial to ZyLAB nor their clients.
Hence, ZyLAB provides the most powerful legal search engine, data analytics and
machine learning on the market. ZyLAB’s solution provides support to legal service
providers by assisting them to review data automatically, filter and prioritize data and,
most importantly, eliminate the dull and tedious work involved in handling customer
requests manually.

One of the foremost steps in the fact-finding mission performed by the ZyLAB
software solution is to assign semantic roles to named entities (i.e. Named Entity
Recognition) in documents. Other steps involve topic modeling, sentiment and emo-
tion mining, relation mining etc. These steps are mostly classification approaches
based on statistical models that classify text entities according to statistical proper-
ties of continuous natural language. However, these approaches only work optimally
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when they are used on the type of data that they are trained on, e.g. clean and full
sentences.

This creates the need for a ‘pre-processing’ step in which ZyLAB desires to un-
derstand the role of different text regions in a document, and thus be able to apply
the right models during further processing. Such a pre-processing step allows for
the choice of an optimal technique to use for specific parts of the document. Most
advanced models can be run on cleaner segments with full text sentences while
more robust methods can be chosen for the unstructured parts with text information.

The above motivation is the reason for the research work carried out at ZyLAB.
Understanding the semantic structure or predicting the semantic labels of text re-
gions in documents is a task that is easily done by humans (though it may be time
consuming and is still prone to error due to ambiguity), however, it is still an open
and challenging problem for computers due to the inherent complexity of documents,
high variety of documents and noisy documents (such as OCR scans). At ZyLAB,
these problems are exhibited in the documents received for the fact finding mission:

• High variety in types and formats of documents such as office documents,
PDF, emails, document images etc.

• High variety of textual contents in documents (i.e. there are no strict rules
applied when creating the documents. They can consist of a combination of
lists, paragraphs, headings and other types of textual content.)

• Image versions of these documents with only image information available (no
metadata or any information on document structure in the file).

These highlighted scenarios and problems affirm the need for understanding the
semantic role or structure of different text regions in a document at ZyLAB. The focus
of the research work was on document images (i.e. images of documents), which is
the most common way ZyLAB’s clients send the documents needed for e-discovery,
investigations, among others.

A.2 Discussion and Findings

In this section, we summarize how the problem was studied. We discuss the ques-
tions we attempted to answer, the approach used and its justification, and a review
of our findings from the research work.

As has been highlighted in the previous section, the main subject of the research
was to assist computers to understand and assign semantic labels to text regions
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in heterogeneous document images. The specific labels we focused on were para-
graph, page header, caption, section heading, footer, page number, table, list item,
title, email header, email body text, email signature and email footer. Their defini-
tions are presented in the user guide in appendix D. Our choice of labels is specific
to regions in a document that contain text. Hence we didn’t consider regions in a
document that are devoid of text e.g. figure, image, graphic.

We firstly defined the task as a sequence labeling problem. Sequence labeling
problems involve assigning a categorical label to each member of a sequence of
observations. We set up the task as a sequence labeling task because documents of
various types contain a sequence of segments or regions which are read or analyzed
in a particular direction depending on the language of the document and sometimes,
its format. With this representation, methods can take a sequence of input instance
(i.e. document segments) and learn to predict an optimal sequence of labels. This is
how the problem was set up and inherently, the goal - to predict an optimal sequence
of labels for the sequence of text segments in a document.

Therefore, the main question we attempted to answer was: “To what degree can
we successfully perform reliable prediction of semantic labels of text regions
in heterogeneous document images using sequence labeling methods? Our
focus was on CRFs and deep learning methods, in particular, LSTMs. As sub-
activities in answering the main research question, our main contributions in this
research work were the following:

• A comparison on the performance of the aforementioned sequence labeling
methods in addressing the semantic labeling problem,

• An investigation into the influence of textual-related features on the perfor-
mance of these methods when tested across a different document domain,

• Creation of an evaluation dataset for the task of semantic labeling on document
images.

To better understand the general background of the research topic and what is
already existing about the topic in the scientific community, we reviewed various
related literature in the domain of natural language processing, image processing,
computer vision etc. In summary, we found that most works divide the task of doc-
ument image understanding (understanding the different segments in a document
image) into two stages: page segmentation (which has to do with segmentation
of document images into homogeneous regions), and a semantic/logical structure
analysis (which is concerned with assigning segmented physical regions with se-
mantic labels that define the function of such regions in the document). The second
step was the focus of our research work.
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Page segmentation uses low-level algorithms and methods to segment docu-
ment images. However, there are limitations for the existing methods. They are
usually not suitable for real document image datasets, their performances are un-
satisfactory for documents that have complex layouts and evaluating such algorithms
is also a difficult task because many authors tend to compare their algorithms with
other algorithms based on the same technique. Semantic structure labeling is an-
other aspect of the task that needs annotated data to be able to label segmented
regions of a document image. Most methods used here rely on classification mod-
els to classify regions of a document image. Before deep learning models became
predominant both in applications and research, which was not a very long time ago,
Hidden Markov Model (HMM) and Conditional Random Fields (CRF) were the best
models for this problem. Many recent literature however, now point to deep learn-
ing models as very promising to achieve best performance for the semantic labeling
task.

A.2.1 Sequence Labeling and Chosen Methods for Prediction

Sequence labeling is a task that involves assigning categorical values to each mem-
ber of a sequence of observed values. Depending on the nature of the problem,
the output label for each member of the sequence can be any item from a set of
2 or more labels. Thus, sequence labeling can be considered as a type of binary
or multi-class classication problem. The sequence labeling problem is most com-
monly assigned for tasks such as Named Entity Recognition and parts-of-speech
tagging in which the labels of neighboring members in the sequence are taken into
consideration for prediction.

Figure A.1: Named Entity Recognition as a Sequence Labeling Problem1

1Source: www.depends-on-the-definition.com/guide-sequence-tagging-neural-networks-python

www.depends-on-the-definition.com/guide-sequence-tagging-neural-networks-python


A.2. DISCUSSION AND FINDINGS 19

The figure above shows an example of the sequence labeling formalism. A se-
quence of words are assigned a sequence of labels with labels of neighboring mem-
bers taken into consideration in assigning a label. Examples of traditional machine
learning algorithms developed for sequence labeling are Hidden Markov Model,
Maximum Entropy Markov Model and Conditional Random Field. These algorithms
make a Markov assumption, which means the choice of label of one member of the
sequence is directly dependent on the label of the previous member. However, it
has been seen that Conditional Random Field performs the best in sequence la-
beling task over these other algorithms [1]. CRFs provide several advantages over
HMM including the ability to relax strong independence assumptions made in those
models. CRFs also avoid the fundamental limitation of MEMM, that is, bias towards
states with few successor states, known as label bias problem. Deep Learning mod-
els such as Long Short Term Memory (LSTMs) are also very promising for the task
as they can generalize better than previously mentioned models, on unseen data.
Thus, we chose these models (CRF and LSTM) to answer the stated research ques-
tions.

Conditional Random Field

CRFs directly model the conditional probability p(y|x) i.e. the probability of a label y
given x (where x is a sequence of observed feature vectors, x = (x1,...,xn) and y is a
sequence of class labels, y = (y1,...,yn)). It was developed by John Lafferty, Andrew
McCallum and Fernando Pereira in the year 2001, as a framework to build prob-
abilistic models to segment and label sequence data [2]. CRFs in their formalism
take into account the context of the input x, that is to say, the labels of surrounding
or neighbouring inputs.

CRF is expressed using the following simplified form:

p(y|x, λ) = 1

Z(x)
exp(

∑
j

λjfj(y, x)) (A.1)

The above equation represents the probability of a particular sequence y given
an observation sequence x. fj(y, x) represents either a state function s(yi, x, i) or a
transition function t(yi−1, yi, x, i). λj are the feature weights to be set while training
and Z(x) is a factor normalizing the sum of probabilities to 1. The state and transition
functions are represented as binary features and this is given in the form as shown
below using our problem context:

s(yi,x,i) =

{
1, if text of xi has uppercase letters and yi = ”heading”
0, otherwise

}
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t(yi−1,x,i) =

{
1, if yi−1= ’heading’ and yi= ’paragraph’
0, otherwise

}
These functions (state and transition) are called feature functions in the CRF for-

malism. During training, each feature function fj is assigned a weight λj, and the
sum of the weighted features give a score s of the observed item. These scores are
further transformed into probabilities by exponentiation and normalizing the scores.
One way to learn the feature weights is by using gradient descent, where the weights
are randomly initialized but moved in the direction of the gradient to minimize the
error (difference between predicted output and actual output). If the weight λj as-
sociated with a feature function is large and positive, then the feature is essentially
aligning itself or giving preference to a particular label. For example, say we have a
state binary feature function s(yi, x, i) where s(yi, x, i) = 1 if yi = Heading and the x

observation contains all capital letters, and 0 otherwise. If the weight λj associated
with this feature is large and positive, then this feature is essentially saying that it
prefers labelings where the observation contains all capital letters, gets labeled as
Heading.

Apart from CRFs difficulty to generalize to unseen data, they have other limita-
tions which are specific to Markov-Chain based models (of which they are a mem-
ber). They have difficulty handling longer sequential dependency, due to their Marko-
vian assumptions, e.g., dependencies of the input sequence longer than 3 steps or
larger are often ignored. For our experiments, we used Linear chain CRFs. They are
one common type of CRFs and are similar to HMMs. CRFs are generally undirected
graph structures but linear-chain CRFs are sequence structures conditioned on pre-
vious transitions with a linear structure i.e. they have only one connected chain of
labels where their parameters are tied across time.

Bi-directional Long Short Term Memory (LSTM)

LSTMs are a version of the recurrent neural network (RNN). To get a better un-
derstanding of LSTMs, we will briefly discuss RNNs. Recurrent (Feedback) neural
networks add an interesting twist to basic neural networks as they are graphs in
which loops occur because of feedback connections. This is unlike feed-forward
neural networks which are graphs with no loop and their neurons have only uni-
directional connections between them. RNN models are also designed to capture
local dependencies and find longer patterns unlike the Markov-Chain models previ-
ously described. They can be applied to connect long-term dependent contextual
information to a current task since their feedback loops allow information to per-
sist. However, in practice they suffer two problems called the exploding gradient
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and vanishing-gradient problems i.e. error signals flowing backwards in time tend to
either blow up or vanish.

The way RNNs are trained is that first, both the inputs and outputs are provided
to the network. The network processes the inputs and compares the actual out-
puts with the predicted outputs. The error between the actual and predicted outputs
is then pushed backed through the network to adjust the weights, which control
the network. Error gradient is the direction and magnitude calculated in training
RNNs, which is used to update network weights in the right direction and by the
right amount. This creates the exploding gradient problem which occurs when gra-
dients having values larger than 1 are repeatedly multiplied through the layers of
the network. On the other hand, vanishing gradients occur when the gradients are
so small values that they no longer update the weights, hence the weights do not
change. This prevents the network from learning long-term dependencies between
the inputs.

LSTMs were then introduced by Sepp Hochreiter and Jurgen Schmidhuber in
1997 to deal with these error problems faced by simple RNNs [3]. LSTMs can learn
to bridge time intervals in excess of 1000 steps in input sequences without the loss
of short time lag capabilities. This is achieved by enforcing constant flow of error via
the hidden states of the network. For our prediction task, we used a bi-directional
architecture of the LSTM network. Bi-directional LSTM differs from a normal LSTM
in that it offers a forward and backward looking network as compared to LSTM which
only uses contextual information from the past. Bi-directional LSTM will run inputs
in two ways, one from past to future and the other from future to past and thus using
the two hidden states combined, the network is able in any point at time to preserve
information from both past and future.

For example, let’s say an LSTM model tries to predict the word ‘swimming’ in the
sentence, “The girls went swimming and they swam for 3 hours”. On a high
level, what a unidirectional LSTM will see is ‘The girls went....’ and try to predict the
next word. On the other hand, a bi-directional architecture will also see information
further down the road, So, both ‘The girls went....’ and ‘and they swam for 3 hours’
to predict the word ‘swimming’.

The two models described above were used for the task of predicting the seman-
tic labels of text regions in document images. CRFs make use of a hand-crafted,
high-quality feature set to learn weights to be set while training. However deep learn-
ing models like LSTM have shown great power to learn latent features. The training
process is a joined learning of finding the most representative features and train-
ing the best model given these features. Many deep learning techniques deployed
for sequence labeling in natural language processing, deal with labeling word se-
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quences e.g. NER or POS-tagging. However, since our sequence labeling task is a
different problem involving tagging document region sequences, we transformed the
CRF features as input to the Bi-LSTM model. However, another viable representa-
tion could be to derive image-based or pixel-wise features using a pre-trained image
feature extraction neural network. We opted for using the CRF features as input to
our neural network because of the limited training data available for the task.

A.2.2 Approach Summary

In this section we provide a summary of the approach followed for the complete task
of semantic labeling.

As one of the main contributions of this research work, an important task was
to create an evaluation dataset that can be used to evaluate performance of the
sequence labeling methods for the task of semantic labeling of text regions (see
Appendix B for a detailed analysis of the dataset). There was no readily available
dataset that fits the problem at ZyLAB and hence the need to create the dataset.
We selected 400 document images - a combination of office documents, PDFs and
email documents from the Enron Corpus.2 As a first step, we carried out page seg-
mentation of each document image. Page segmentation as discussed in several
literature such as [4] and [5], is the first step in the task of document image under-
standing. For our work, we used the state-of-the-art Tesseract 4.0 OCR engine3

to segment the document images. In version 4 of its engine, Tesseract also imple-
mented a Long Short Term Memory (LSTM) based recognition engine to perform
page segmentation as well as Optical Character Recognition (OCR). One reason
for the choice of this engine is its seemingly popular use for evaluation comparison
of other page segmentation methods used in international document analysis and
recognition competitions [6], [7]. It is also an open source system and hence doesn’t
require commercial licensing which is beneficial for ZyLAB. We also used Tesseract
to perform OCR recognition which produces the text content of each segment in
a document image. OCRing of the document image was important for our work
since one of our contributions was to analyze the influence of text-related features
on the generalizability of our methods. When considering the results presented later
in this chapter, it is worth mentioning that predictions of some of the text segments
depends on this OCR tool.

After segmentation, 3 annotators manually annotated the document images to
produce ground-truth information (the research paper contains detailed information

2See en.wikipedia.org/wiki/Enron_Corpus, accessed 2019-06-19
3github.com/tesseract-ocr/tesseract, accessed 2019-06-09

en.wikipedia.org/wiki/Enron_Corpus
github.com/tesseract-ocr/tesseract
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on the annotation process and Appendix B provides an analysis on the annotation
task). Before extracting the features used in learning the models (see research
paper), we had to map/match the OCR output (all tokens in document image with its
bounding box coordinates) with the segmentation output (bounding box coordinates
of all text regions in document image) into a ground-truth file.

We modeled the matching problem as such: We represent a set of polygon co-
ordinate points in a text region as:

S = {P1(x, y), P2(x, y), P3(x, y)..Pn(x, y)}

and the (rectangular) bounding box of each OCR token as:

T = (x1, y1), (x2, y2), (x3, y3), (x4, y4)

To match/map each token to its polygon text region, the following steps are taken:

1. For each ground truth file, we transform relevant polygon text blocks into rect-
angular blocks by finding the min(x,y) and max(x,y) in S.

2. For each token in OCR output, we check if bounding box coordinate points are
within a rectangular block.

3. Assign token to block if it meets condition

A.2.3 Summary of Results

The experiments we carried out were with a view to answer the main research ques-
tion as well as questions or problems introduced by the proposed contributions.
After creating the evaluation dataset, we evaluated our sequence labeling models
on the dataset to measure their performances for our task. Actually, only a part of
the dataset was used for evaluation (30%) and the other split was used for training
the model (70%). The evaluation procedure is described in the research paper in
Part 1 of this report. We created 2 variations for each model since another goal was
to investigate the influence of textual features on the generalizability performance
of the models. The variations included models without the OCR related features in
the feature set(LC-CRF1 and RNN1) and another set of models with OCR related
features (LC-CRF2 and RNN2). The models comparison revealed the results shown
in table A.1.
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LC-CRF1 LC-CRF2 RNN1 RNN2

Overall Micro F1 0.736 0.830 0.564 0.580

table 0.667 0.885+0.22 0.370 0.378
paragraph 0.617 0.754+0.14 0.506 0.502
page number 0.946 0.959 0.688 0.694
list item 0.336 0.589+0.25 0.206 0.268
heading 0.564 0.545 0.514 0.502
page header 0.868 0.875 0.654 0.660
title 0.571 0.720+0.15 0.432 0.412
footer 0.781 0.875+0.09 0.666 0.724
caption 0.667 0.708 0.116 0.072
email header 0.907 0.980+0.07 0.678 0.704
email body text 0.944 0.980 0.718 0.792
email signature 0.935 0.974 0.866 0.858
email footer 0.969 0.985 0.774 0.768

Table A.1: Comparative performances among LC-CRF1, LC-CRF2, RNN1 and
RNN2 models for semantic labeling. Category-specific performance
given in F1. Results in bold mark the best system for each category.
Superscripts indicate large improvements in F1 (> 0.05 points) between
first and second ranked systems.

We also carried out a transfer learning experiment to test how generalizable our
methods are on a different document domain. Each method was trained on our eval-
uation dataset and tested on in-domain and cross-domain documents. The results
are shown below:

Testing Domain

Method In-domain Cross-domain

LC-CRF1 0.820 0.615
LC-CRF2 0.845 0.567
RNN1 0.716 0.693
RNN2 0.726 0.543

Table A.2: Review of the transfer learning experiment. Each method is trained on
the evaluation dataset and tested on in-domain and cross-domain docu-
ments. All scores are micro-averaged F1 scores.

More concise analysis and conclusions of the results are presented in Part 1 of
this report (research paper). Appendix B also contains an error analysis where we
examine some instances in which our model produces wrong predictions. However,
we present a summary of our findings:
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On Label Ambiguity

Reviewing the evaluation performance of some individual labels, it is evident that
there are some of the labels that generally have unsatisfactory performance scores
such as caption, heading and list item, across all the compared models. We present
a detailed analysis of the ambiguity of these labels in appendix B.

CRF (LC-CRF) vs RNN (Bi-LSTM)

The results reveal that the LC-CRF method is able to perform well using only a small
amount of training data. On the other hand, we need more data to see increasing
performances for the RNN method (see figure 3 in research paper). Increasing the
amount of data for the CRF model has little or no effect. Generally, it has been sur-
veyed such as in [8], that for traditional machine learning algorithms (linear or logistic
regressions, SMVs, Random Forests, CRF and so on), performance increases as
we train the models with more data, up to a certain point, where performance stops
going up as we feed the model with more data. When this point is reached, the
model’s performance can not be improved any more by feeding more data. It is a
scenario in which the model does not know what to do with the additional data.

On the other hand, this is not the case with deep neural networks. Performance,
almost always increases with data (if the data is of good quality), and it does so
at a faster pace depending on the size of the network.



26 APPENDIX A. IN-DEPTH OVERVIEW OF RESEARCH WORK

Figure A.2: Figure showing the evolution of the performance of different algorithms
as we feed them more training data 5

Therefore, to get the best possible performance, we would need to be some-
where on the green line (large neural network) and towards the right of the X axis
(high amount of data) as shown in figure A.2.

Though we saw increase in the performance of the recurrent neural network in
our experiments, it was not significant enough and still did not match the perfor-
mance of the LC-CRF model. This indicates either a limitation in the additional data
created using traditional augmentation techniques or a limited variation in the origi-
nal document dataset for the augmentation technique to benefit from.

We also note the difficulty to train deep neural networks. There are a lot of
optimization issues to deal with before getting the right configuration of the net-
work, unlike CRFs which are easy and straightforward to train. Also, the weights
to be trained in deep learning networks are much more than the weights trained
for the CRF model, buttressing the point about their simplicity compared to the
LSTM. CRF learns weights for each feature and hence the number of weights is
proportional to the number of input features given to the model. However, due to
back-propagation and feedback connections, the LSTM model learns more than 100
times more weights. We investigated our LSTM model to contain 507,734 trainable
weights.

5towardsdatascience.com/deep-learning-for-nlp-anns-rnns-and-lstms-explained-95866c1db2e4

towardsdatascience.com/deep-learning-for-nlp-anns-rnns-and-lstms-explained-95866c1db2e4
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Inclusion of Textual Features vs Non-Incluson of Textual Features

We verified that textual-related features have a positive influence in seeing improv-
ing performances when evaluated on in-domain documents as they reduce confu-
sion between ambiguous classes. However, their inclusion might negatively affect
generalization performance as shown in the results of the transfer learning experi-
ments on cross domain documents. This may be due to the model over-fitting on
certain textual features of the training documents while not capturing the variations
or diverse ways text is written or represented in documents of another domain.

A.2.4 Impact of the Research Work on ZyLAB and Scientific Com-
munity

The research work that has been carried out is a potentially viable addition to the
smart fact finding solution or environment of the ZyLAB software. The work is a very
important pre-processing step that will enable ZyLAB to understand the structure
of documents that they deal with before carrying out information extraction steps to
extract relevant information. This pre-processing step helps to apply more specific
techniques for fact finding since document structure is known and thus improve the
quality or performance of the said techniques. We have created an approach for
document image analysis that spans across the 2 steps of document image under-
standing. The first step, using a state-of-the-art segmentation and OCR tool and the
second step, making use of supervised learning/classification techniques to label
various segments of a document but beyond that, evaluate their performances.

The evaluation dataset we created, which contains ground-truth information, also
yields a lot of benefit to on-going research work at ZyLAB as it can be used to
evaluate the performance of other models or techniques that may be applied for
the task of semantic structure labeling. This evaluation dataset is also useful for the
scientific community as it provides a starting point for researchers who are looking to
evaluate models on the type of documents present in the dataset. Researchers on
legal tech matters will find this very useful as the documents are mainly documents
typically used in the legal domain.

We also recognize 13 semantic labels, which covers a large number of labels
and is useful for comparison purposes for other research works. A known problem in
the evaluation of semantic structure labeling is the lack of similar labels to compare
different model performances. However, our list of labels includes categories that are
present in various document types and we also take care of email related categories.

To the best of our knowledge, we are the first to represent the task of seman-
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tic/logical structure labeling of text regions in a document as a sequence labeling
problem using Bi-directional LSTMs. Many other works that use LSTMs for se-
quence labeling do so for tasks such as POS tagging, NER etc. and thus use or
combine character and word embeddings/representations which are then fed into
the LSTM to model context information of each word. In our work, we model fea-
tures of each text region and feed into the LSTM model to learn context information.
Our approach provides a signal or direction of the usefulness or usability of deep
learning for such representation.

A.3 Limitations

The research work has some limitations which we discuss next. The major limitation
is that there was no readily available dataset to evaluate our models on. Hence, we
needed to manually label/annotate a set of documents for training and evaluation
purposes. The annotation scheme developed for this purpose was time consum-
ing and extensive, hence due to these constraints we were only able to annotate
400 documents. This rather limited number of documents is an acknowledged chal-
lenge in other research works to create models that are highly generalizable across
document domains, classes, types and formats. Another challenge is the ability
to generate large amount of data which is important especially where data is not
available for learning the deep neural networks. This creates an extra task to find
techniques for automatic data generation. Though we chose traditional augmenta-
tion techniques in this work, there are other probable techniques that may be used
to create richer (higher quality) data.

Some of the document images in our dataset were scanned documents and
documents with black backgrounds. These types of documents are problematic for
OCR tools (they add noise) and thus may need further image processing operations
before being used. We didn’t consider this image processing step in our research
work as it wasn’t part of the scope. High resolution of the document images is also
necessary for effective OCRing, at least 300 DPI. The OCR tool (Tesseract) is limited
by its recognition quality. Its recognition quality decreases when lower resolutions
are used. However, some of our document images fall below this 300 DPI threshold.
It is also important to note the impact of the page segmentation and OCR tool used
for our work. As earlier described, the tool makes use of a deep learning based
recognition engine. So a lot of its accuracy on segmentation, is dependent on the
data images the engine was trained on.

Another limitation of our work has to do with the lack of full evaluation of the doc-
ument image understanding task. Since we created a fully annotated dataset with
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region coordinates, giving the annotators freedom to adjust the regions’ bounding
boxes, it is possible to carry out an evaluation of the entire task. However, imple-
menting a segmentation algorithm/model was beyond the focus of this research and
hence, the absence of segmentation evaluation. We only evaluated the second step,
which is the semantic structure labeling part.

A.4 Recommendations

There are several ways our research work can be extended. Some of these are
described in this section.

In our work, we left out using image features in training our models. Generally,
these features take more time to train. However, including image-related features
per region block, in the feature set, is capable of improving the prediction perfor-
mance. Another possible experiment to carry out is to compare the performance
of the sequential models used in this research against non-sequential models (that
look only to the document region itself) to attest to the benefits of sequential learning
for this task.

For the task of predicting the labels of text regions in a document, it is impor-
tant to further consider end-to-end segmentation approaches. Works such as [9]
consider the task as a pixel-wise segmentation task, and propose a unified model
that classifies pixels based on their visual appearance and underlying text content.
Their work is a generalized page segmentation model that additionally performs
fine-grained recognition on text regions i.e. their model handles the two steps of
document image understanding.

A consideration which could be helpful to improve performance of the deep neu-
ral approach is to combine different techniques to achieve an optimal model. In [10],
an architecture is presented combining Convolutional Neural Network (CNN), Bi-
LSTM and CRF to perform linguistic sequence labeling which yields state-of-the-art
performance. Other research works have also proposed more advanced RNN mod-
els such as attention-based models, Pixel-RNN, Convolution LSTM (ConvLSTM)
which address some limitations in simpler LSTM models [8]. An exploration of these
type of networks may yield results on the direction to go for deep learning on our
specific task. Further improvement of the feature set used to learn the models could
also enhance their performances. Though we already include an effective set of fea-
tures, others such as the horizontal positioning of region tokens, indentation level,
token distances (particularly for tables) may be effective in improving model perfor-
mances.

For the CRF model, a 2-step or hierarchical method to label the regions could be
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helpful to improve performance. It is likely that the label with the second highest con-
ditional probability, is actually the correct label category. Passing the labels with the
highest and second highest probability to another classifier with a specialized fea-
ture set or heurestic rules could limit prediction errors especially for the ambiguous
label categories.

Furthermore, making cross-domain comparisons with documents having very
diverse layouts is not very beneficial. Though we aim to achieve highly general-
izable models, comparing for example, documents with a Manhattan layout (fixed
composition with clear horizontal and vertical blocks) against documents with Non-
Manhattan layout (very loose, non-rectangular blocks) will definitely damper per-
formance values. A further consideration will be to carry out transfer learning ex-
periments with more similar documents in layout (single column documents), as
compared to the cross-domain dataset used for our transfer learning experiment.

As earlier stated, other advanced techniques for automatic data generation may
also be considered. In [9], a synthetic document generation method is presented.
The authors created a synthetic data engine, capable of generating large-scale,
pixel-wise annotated documents. Other advanced augmentation techniques to scale
up data from a small set are also discussed in [11].



Appendix B

Overall Analysis

In this appendix, a more detailed analysis of the dataset used for evaluation is car-
ried out. First, an examination is done on the (dis)agreement between the volunteers
that annotated the dataset, to be able to indicate the most agreed upon or disagreed
upon semantic labels. Further analysis is done on the errors that our labeling mod-
els make, to be able to understand the ambiguities and complexities between the
semantic labels. Finally, we propose disambiguated labels for new evaluation.

B.1 Data Analysis

The evaluation dataset was annotated by 3 non-domain annotators, independently
and in parallel. To ensure the annotators understood the task and the semantic
labels that were to be assigned, a user guide was provided (see appendix D). After
the annotation task, we measured the Inter-Annotator Reliability (IAR) of agreement
between the annotators using the Fleiss’ Kappa measure. The Fleiss’ Kappa value
measured was 0.52. We analyze the level of (dis)agreement between the annotators
and further provide a description of which labels were the most/least agreed upon.

Table B.1 shows the agreement level of the annotators for each label. Perfect
agreement represents a situation when all 3 annotators annotated a particular text
region as the same label. Partial agreement indicates when 2 out of 3 annotators
agreed on the same label while Isolated shows when only 1 of the annotators chose
a particular label. We also report the percentage of Perfect agreement to indicate
the most and least agreed upon labels. From the report table B.1, one can see
that among the 3 annotators, page number was the most agreed upon followed
closely by the paragraph label. The least agreed upon label was caption, in that
no occurrence of the caption label in the dataset had a perfect agreement.

From this analysis, we can make conclusions based on the results. One con-
clusion is that even for humans, it is difficult to reach a consensus on the labels to

31
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Labels/Agreement per region 3 (Perfect agreement) 2 (Partial agreement) 1 (Isolated) % of Perfect agreement
Paragraph 478 86 204 62.2%
List item 178 126 107 43.3%
Heading 27 68 102 13.7%

Page header 70 65 191 21.4%
Caption 0 33 121 0%
Footer 67 63 57 35.8%

Page number 88 37 16 62.4%
Table 123 42 39 60.3%
Title 13 51 112 7.3%

Email header 89 137 134 24.7%
Email body text 121 211 234 21.3%
Email signature 13 84 96 6.7%

Email footer 15 75 104 7.7%

Table B.1: Report on the level of annotator agreement per label. Each row repre-
sents a label and each column represents the level of agreement be-
tween the annotators.

assign to a particular text region due to the ambiguity of some of them. An example
is the caption label which received a 0% perfect agreement value. Analyzing some
of the other labels with less ambiguity and which are easier to assign, we can also
postulate that the user guide in which instructions on carrying out the annotation
task were presented, may not have been very clear for the annotators who took part
in the task.



B.2. ERROR ANALYSIS 33

B.2 Error Analysis

We also analyzed some predictions made by one of our sequence labeling models,
the LC-CRF2 model. The confusion matrix of figure B.1 shows an overview of the
true and false positives, and true and false negatives for each semantic label class.

Figure B.1: Confusion Matrix of test set LC-CRF2 model

To perform the prediction of labels, the LC-CRF2 model takes into account the
current observation and its features, as well as contextual information (information
from neighborhood regions). In table B.2, we present the top 20 likely contextual
transitions that the model learns (i.e. how likely it is for a label to be seen after a
preceding one), as well as their weights. At the end of this appendix (appendix B),
in table B.3, we also present a breakdown of the top two features for each label.1 A
brief explanation on how these feature weights are calculated is given in A.2.1

1Some additional features have been included apart from the ones presented in table 2 of the
research paper.
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Top Likely Transitions Weights
email header − > email body text 6.81
email header − > email header 4.05
email body text − > email signature 3.33
page number − > title 3.24
page header − > title 2.77
page header − > page header 2.60
table − > table 2.30
page number − > footer 2.23
caption − > table 2.17
email body text − > email body text 1.94
list item − > list item 1.91
footer − > footer 1.79
page header − > page number 1.60
table − > caption 1.57
footer − > page number 1.51
paragraph − > paragraph 1.22
caption − > caption 1.19
heading − > paragraph 1.16
title − > heading 1.08
table − > heading 0.78

Table B.2: Top likely label transitions and their weights

For five labels, we highlight an example of predictions made by the model that
goes wrong, and discuss their interpretations.

B.2.1 Footer

As shown in the confusion matrix of figure B.1, the model mis-classifies the footer
label as paragraph 6 times out of the total number of footer instances. Figure B.2 is
an example of one of such mis-classifications.

In this example, the model mis-classifies the last region in the document (i.e.
footer) as a paragraph. The region contains the following text: “This position was
taken as a voice vote and no written resolution was developed”. We put forward two
reasons why this mis-classification may have occurred:

• Preceding Paragraph Context: In this example, 8 preceding regions before
the footer region are paragraphs. Since the LC-CRF model takes the neigh-
borhood context into account, it learns (from training samples similar to this
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Figure B.2: Figure showing mis-classified region. The highlighted region was la-
beled as a footer in the ground truth dataset. However, it was predicted
as a paragraph by the model.

document) that it is very likely a paragraph will follow another paragraph and
this is the case in this document with 8 consecutive paragraphs.

• Absence of Page Number in Neighborhood: As seen in the transition likelihood
of table B.2, it is common for a page number to appear in the neighborhood of
a footer (before or after). In this example, this is not the case.

A possible solution to eliminate or reduce this prediction error is to include spe-
cific local features apart from the ones the model already benefits from. An example
of such local feature which is not part of our feature set is, the presence of a dividing
line above the footer text that separates it from the main text in a document. It is
very common for footers to follow such a line in various types of documents.
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B.2.2 Caption

We define captions as pieces of text that surround, or are in the neighborhood of
tables, figures, charts etc. and define these items in a document page. Captions
are mostly mis-classified as headings by the model. Below is an example of one of
such mis-classifications:

Figure B.3: Figure showing mis-classified regions. The highlighted regions were
labeled as captions in the ground truth dataset. However, they were
predicted as headings by the model.

The highlighted regions in the document page were annotated as captions in the
evaluation dataset. However, the model predicts them as headings. One would as-
sume that the transitional probability of 1.19 between table − > caption is sufficient
for the model to correctly predict this specific example as caption, but that isn’t the
case.

The local feature used by the model to learn captions consists of keywords such
as table, source, figure, fig. etc. However, the text content in the first highlighted
region: “ * Percentage points deviation.” doesn’t contain any of those keywords. In
fact, it begins with an asterisk and has a similar sentence-length as a heading may
have. These type of errors are again caused by ambiguities in the text and the
features used to recognize them.

A possible solution to this prediction error is to include asterisks as a ‘caption’
keyword in the feature set. However, this doesn’t really solve the problem as other
labels such as list items and headings also begin with asterisks. An alternative
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solution will be to introduce new labels that are more representative of such text
regions as the ones highlighted in this example (see B.3) or generally, introduce
more training data containing caption labels.

B.2.3 List Item

List items are misclassified as paragraphs 28 times by the model. Below is an
example of one of such mis-classifications.

Figure B.4: Figure showing mis-classified regions. The highlighted regions were
labeled as list items in the ground truth dataset. However, they were
predicted as paragraphs by the model.

In this example, all the highlighted list item regions in the document are predicted
as paragraphs. After inspecting the OCR output for this document, it was discov-
ered that the bullet items are represented by a non-ASCII character, not captured
by the list item pattern feature. In that case, the model predicts those regions as
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paragraphs which is furthermore strengthened by the transitional likelihood between
paragraph to paragraph.

A possible solution to reduce this prediction error is to expand the list item pattern
feature to include the different characters represented as bullet points by the OCR
engine. Another possible solution is to add an indentation feature, which checks the
indentation level of the region in relation to the rest of the document regions.

B.2.4 Title

A title is a name given to a text region that describes the entire content of a document
page. It usually occurs at the top center of a document. It differs from a page header
in that it actually describes the document content. Titles are mostly mis-classified as
page headers by the model. As shown in figure B.1, the mis-classification of titles
as page headers occurs 4 times. Below is an example:

Figure B.5: Figure showing the mis-classified region. The highlighted region was
labeled as title in the ground truth dataset. However, it was predicted
as a page header by the model.

In this example, the model mis-classifies the highlighted region as a page header.
The region contains the following text: “What is Electronic Invoice Processing?”.

It is common for page headers to appear at the very beginning or top of a doc-
ument page. The model captures this in the ‘vertical position’ local feature, which
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represents the vertical position of the region in relation to the document page i.e.
top, middle or bottom. Since the highlighted region (i.e. title) appears at the top of
the document page, some ambiguity is encountered by the model and not enough
information is present to predict the region as a title.

A possible solution is to introduce more local features to help distinguish a title
from a page header in case they appear around the same location - at the very top
of the document page. One of such local features could be a ’horizontal position’ of
the region. It is more common for titles to appear at the middle of a document page
compared to page headers that are usually placed at the extreme left or right of the
document page.

B.2.5 Heading

The model predicts headings as list items 7 times, as shown in figure B.1. Below is
an example of one of such mis-classifications:

Figure B.6: Figure showing the mis-classified regions. The highlighted regions
were labeled as headings in the ground truth dataset. However, they
were predicted as list items by the model.

In the example above, the highlighted regions show the mis-classified samples.
Instead of being identified as headings, the model predicts the regions as list items.
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The reason for this is because the previous region before the first highlighted
(i.e. region 3), was also wrongly predicted as a list item (instead of paragraph) and
the model seems to begin to assign subsequent labels based on the contextual
classifier (taking into account the likely transition of list item − > list item). As a
digression, the mis-classification of region 3 i.e list item instead of paragraph, is
another type of prediction error the model makes, which has not been discussed
previously. In this case, the quotation marks in the region’s text - “ “Is the Window
of Opportunity Closing for Distributed Energy Resources?” ” are interpreted as non-
ASCII characters by the OCR engine and thus is represented as a list item feature
by the model.

A possible solution for the wrong prediction of headings as list items is to intro-
duce more local features per region such as ‘change of indentation’, to signify that
a region’s indentation level has changed. It is common for list items to be slightly
right-indented to other parts of a document page such as headings or paragraphs.

B.3 Splitting Ambiguous Labels

After carrying out analysis on the evaluation dataset and some of the predictions
made by the model, we deduced that some of the labels defined for our task are
either too ambiguous or generally confusing.

To solve label ambiguity, we revised the training and test set documents of the
dataset and corrected erroneous annotations in them. It was also discovered that
the definition given to the label caption was too general and hence, confusing to both
human annotators (see table ??) and inherently, the model classifier. To solve this
confusion, we redefined the caption label and introduced new labels. We provide an
example below.

B.3.1 Example

The example in figure B.7 shows a document image with a caption, table and caption
as annotated in the evaluation dataset. As highlighted in B.2.2, regions that surround
and define items such as tables, figures etc are labeled as captions. However, this
causes ambiguities as shown in this example. Is region 1 really a caption? Is region
3 also a caption? Does region 3 really define the table?

To deal with these confusing ‘caption’ labels, we limited the definition of captions
to be - “regions that surround an item (e.g., table) and that start with keywords such
as ’table’, ’figure’, ’fig’ etc”. So in this example, region 1 and 3 do not meet this
criteria. Hence, we split the ‘heading’ label into section heading and item heading
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Figure B.7: A document image and it’s segmentation. In the evaluation dataset,
region 1 is labeled as a caption, region 2 as a table and region 3, a
caption.

and the footer label into page footer and item footer. The ‘item heading’ covers
regions such as region 1 which appears at the top of an item and defines it but does
not contain any caption keyword. ‘Item footer’ on the other hand covers regions such
as region 3 that lies under an item and makes references to the item but does not
contain a caption keyword. In this way, we deal with the ambiguity in the caption
label but also simplify the heading and footer labels.
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Label category Top 2 features Description

Caption
startswithsource Indicates if text content begins with ’source:’
has tablecaption Indicates if text content contains ’table:’

List item
startswithlistitempattern Indicates if text starts with bullet item

prev textcolon Indicates if previous text region content ends with colon

Page number
is top Indicates vertical position of text content

next fontsize Indicates there is a change in font size from current region to next region

Paragraph
has multiple whitespace Indicates if text content contains consecutive multiple whitespaces.

end of regions Indicates last region in sequence

Table
has multiple whitespace Indicates if text content contains consecutive multiple whitespaces.

line bin large Categorizes number of lines in text region into small, medium or large.

Title
line bin small Categorizes number of lines in text region into small, medium or large.
prev textcolon Indicates if previous text region content ends with colon

Footer
has email pattern Indicates if text content contains an email pattern or keyword

has digit Indicates if text content contains digit

Heading
prev fontsize Indicates there is a change in font size from previous region to current region

is sentence capitalized Indicates if text content is all capitalized

Page header
starts with digit Indicates if text content starts with a digit

close to top Indicates if y axis of text region falls within the top border of document

Email header
endswithcolon Indicates if text content ends with colon

has email pattern Indicates if text content contains an email pattern or keyword

Email body text
is ascii Indicates if text content contains all ASCII characters

prev textcolon Indicates if previous text region content ends with colon

Email signature
heightratio Indicates the height ratio of previous region and current region

avg font size Indicates the average font size of tokens in text region

Email footer
bullet pattern Indicates if text region contains unicode bullet characters

heightratio Indicates the height ratio of previous region and current region

Table B.3: Top 2 features learned by the LC-CRF2 model for each label category
and their descriptions.



Appendix C

Additional Experiments

In view of some of the results, conclusions and recommendations from the research
work, we carried out a few additional experiments in an attempt to improve the per-
formance of the models.

C.1 Experiment 1: 100 additional documents and cor-
rected annotations

We annotated an additional 100 documents in the remaining time left of the research
duration and added it to the training set. The annotation was done independently
by the main author of this report, focusing on documents containing label categories
which were found to be ambiguous in the original dataset e.g. caption, list item,
heading. We also inspected the annotations in the original dataset and split am-
biguous labels as described in B.3. However, evaluation was still done on the same
label categories introduced in the research paper. We ignored the new categories
because there were very few instances of them in the training set. It is worthy to
note that section heading represents heading before the label split and page footer
represents footer. In table C.1, we show the new results for only the LC-CRF2 model
and thus, compare it with its previous results. It is also noteworthy to mention that the
RNN2 model had a similar range of improvement in the overall micro F1 score (from
0.58 to 0.61), after revising the annotations and including the additional documents
in the training set.
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LC-CRF2 LC-CRF2new

Overall Micro F1 0.830 0.867

table 0.885 0.906
paragraph 0.754 0.818
page number 0.959 0.971
list item 0.589 0.635
section heading 0.545 0.769
page header 0.875 0.919
title 0.720 0.730
page footer 0.875 0.875
caption 0.708 0.800
email header 0.980 0.987
email body text 0.980 0.980
email signature 0.974 0.974
email footer 0.985 0.969

Table C.1: Comparative performances among original LC-CRF2 model and the new
model after correcting the annotations and adding 100 documents fo-
cused on ambiguous labels (LC-CRF2new). Category-specific perfor-
mance given in F1. Results in bold mark the best model for each cate-
gory.

From the results shown above, we see a significant increase in performance of
the ambiguous labels e.g. caption, list item and section heading. This indicates a
positive effect of the splitting of labels and additional data focusing on those labels.
The overall micro F1 also increases by 0.2%.

C.2 Experiment 2: Improving the LSTM Network

We further investigated the reason(s) why the LSTM network was giving unsatisfac-
tory results. Though we concluded that more data is needed to see improving perfor-
mances and our methods for data augmentation may have been limited, we decided
to pursue a more in-depth investigation into the network. The further investigation
led us into discovering an issue related to the input data being fed into the network.
As stated in appendix A, the input we fed into the network was a transformed feature
set of the hand-crafted CRF features into a 3D tensor. However, these tensor values
were un-normalized. To understand the problem with un-normalized values, we will
briefly recap how training occurs in neural networks and an optimization concept
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called gradient descent.
When the neural network is fed with inputs/observations, it produces an expected

output which is compared to the actual output of the observation. Gradient descent
is then used to update the parameters of the model in the direction which will min-
imize the error (difference between expected output and actual output) that we ob-
serve in the model’s predictions. In more detailed terms, what gradient descent does
is to find the values of each parameter where the loss function is minimized on a loss
function surface.1 Summarily, it’s a search for the lowest or minimum value on a loss
function topology/surface.

The problem with un-normalized or unscaled values as input into the network is
that when the network combines these inputs through a series of linear combinations
and nonlinear activations, they don’t match the scale of parameter values associated
with each input (i.e. they exist on different scales). This causes an awkward loss
function surface where the gradients of larger parameters dominate the updates.
This is why it is important to normalize the input values. Normalizing/scaling the
input values to a standard scale helps the network to learn the optimal parameters
for each input node quickly and therefore, quickly find the minimum loss. In addition,
it is recommended that the inputs and target outputs are within the typical range of
-1 to 1 or else the default parameters for the neural network such as the learning
rate, will likely be ill-suited for the data.2

To normalize the input values for our network, we used the batch normalization
technique [12]. Batch normalization helps to improve the convergence properties of
the network and has the effect of accelerating the training process of a neural net-
work, and in some cases improves the performance of the model. We implemented
this batch normalization technique by adding a batch normalization layer before the
input layer and before every hidden layer in the LSTM network. The batch normal-
ization layer normalizes the activations of the previous layer at each batch and will
transform inputs so that they are standardized, meaning that they will have a mean
of zero and a standard deviation of one. We carried out another experiment on the
LSTM using the revised training set (100 additional documents and corrected anno-
tations) and evaluated on the revised test set. The effect of batch normalization in
our network is seen in the experiment results below:

1See https://www.jeremyjordan.me/gradient-descent/
2See https://www.jeremyjordan.me/batch-normalization/

https://www.jeremyjordan.me/gradient-descent/
https://www.jeremyjordan.me/batch-normalization/
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RNN2 RNN2new

Overall Micro F1 0.58 0.86

table 0.37 0.87
paragraph 0.50 0.78
page number 0.69 0.97
list item 0.26 0.74
section heading 0.50 0.65
page header 0.66 0.91
title 0.41 0.74
page footer 0.72 0.87
caption 0.07 0.67
email header 0.70 0.97
email body text 0.79 0.98
email signature 0.85 0.96
email footer 0.76 0.98

Table C.2: Comparative performances among original RNN2 model and the model
after including batch normalization layers before the input and hidden
layers (RNN2new). Category-specific performance given in F1. Results
in bold mark the best model for each category.

From the results shown above, we see the vast and significant difference that
normalizing the inputs makes. There is a 28% increase in the overall micro F1 score
and significant increase in all the labels including the ambiguous ones. The overall
F1 of 0.86 shows a match in performance with the LC-CRF2new model, indicating
the critical importance of the batch normalization step.
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Usage 
1. To begin using the application, open the ‘via.html’ file with a Chrome or Firefox 

browser. If any of these browsers are not your default browser then right click on the 

file and select ‘Open With’ to choose either browser option. The opened file will look as 

shown in the figure below.  

 

 

2. Click on the ‘Project’ menu and click ‘Load’ (i.e. Project > Load). This will open your file 

explorer, navigate to the main folder where the ‘via.html’ file resides. Select any of the 

Pro_GroupXY.json files in the directory of the application. (where XY represents a 

number from 1 - 40). This will load the project containing the segmented files including 

all project settings.  

NB – Only incomplete project group numbers should be worked on. Hence, open this 

link to confirm incomplete groups 

https://docs.google.com/document/d/1kd0S84fE4DwvbQ3PZAN6W19Srsm7-

cfckQ7DN1BjQHc/edit?usp=sharing 

 

3. Each project contains 10 files. The task is to select a type attribute for every region in 

each file in the project.  
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Labeling Steps 
1. To label a region, click within the bounding box of the region and a Toggle Annotation 

Editor pops up to the right side of the region as shown below: 

 

2. Two attributes are shown in the Annotation Editor – name and type. The name attribute 

is pre-filled because most regions contain Text (A more detailed explanation on the 

attribute values is presented from page 4). The type attribute also needs to be filled. To 

do this, click on the drop-down and select an appropriate option from the list.  

 

3. When all regions in each file have been labeled appropriately, the annotations need to 

be saved. To do this, hover on the ‘Annotation’ menu and click on ‘Export Annotations 

as CSV’. Save the csv file that has been automatically generated. 

 

4. Rename the saved .csv file as GroupXY (where XY is a number from 1-40). This indicates 

the project group number that you have worked on (See page 2). Please send this .csv 

file to senendu5@yahoo.com then fill in your name in the group row you’ve worked on 

using this link > 

https://docs.google.com/document/d/1kd0S84fE4DwvbQ3PZAN6W19Srsm7-

cfckQ7DN1BjQHc/edit?usp=sharing 
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Name and Type Attributes 
The name attribute in the Toggle Annotation Editor contains 4 options to select from while the 

type attribute contains 13. This section will help to guide you in making a choice for the 

appropriate ‘name’ value and ‘type’ value. 

Name 
The annotation task is to select a ‘type’ attribute. However the annotator is allowed to override 

the ‘name’ attribute when it may be necessary to do so. 

• Text (Default) – This is the default selection. Most regions contain textual content hence 

why it is selected by default. Text should be selected whenever the region being labeled 

is a text region or dominantly contains text. 

• Graphic – Graphic should be selected whenever the region is a graphic such as (charts, 

plots). When Graphic is chosen, the type attribute MUST BE ‘Unknown (object)’. 

• Image – Image should be selected whenever the region is an image (other than charts or 

plots e.g. logos). When Image is chosen, the type attribute MUST BE ‘Unknown (object)’. 

• Line/Separator – When Line/Separator is chosen, the type attribute MUST BE ‘Unknown 

(object)’. Line/Separator should be selected if the region is: 

o A line 

o A separator that separates sections 

o A line that signifies that start of a table 

o A line within a table or form 

Type 
1. Paragraph – This should be selected if the region is a paragraph. A paragraph typically 

looks as thus: 

 
 

2. Page header – A page header is typically found at the top of document pages. Select 

header if the region lies at the top left or right corner of the document image. There 

may also be other reasons for choosing header. The annotator should do this at their 

discretion. The image below shows an example of a page header, surrounded by the 

yellow-colored rectangle. 
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3. Title – Title represents document titles. Titles are likely to be found at the top center of 

the document. 

 
 

4. Address Section – This region will mainly be found in letter documents. This represents 

the sender or receiver’s address and should be labeled as such. 

 
 

5. Date – Any region that contains only a date should be labeled as Date 

 
6. Caption – A caption label represents a caption for either an image, table, graph, chart or 

plot. That is, any text that is used to ‘name’ any of these items. Two captions can be 

seen in the figure below, beginning with the word, ‘Source’. 

 

 

7. Section Heading – A section heading represents a heading that is used to begin a new 

section or item. This also includes table or form headings. An example is shown below. 

The region containing the text ‘THE BUSINESS MODEL’ is a section heading. Also the 
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table heading in the figure above (i.e. ‘% of Labour Force, 1960s, 1970s etc’)represents a 

section heading. 

 
 

 

8. Table – Quite straightforward, a region that houses a table should be labeled as a Table. 

 

 

9. Forms – A region should be labeled as a Form if it bounds a form or what looks like a 

form to the annotator. 
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10. List Items – A region should be labeled as a list item if it contains text arranged as a list 

whether ordered or unordered (bullet lists, numbered lists etc). 

 
 

 

 

11. Footer -  A footer will likely appear separately from the main text in a page,  at the 

bottom of the document. The region at the bottom left of the figure below can be 

considered a Footer region. 
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12. Unknown (object) – Use this label when the region is unidentifiable or cannot be 

interpreted as any of the other regions. This will usually be the case for a graphic or 

image  ‘name’ attribute. The region with the ‘Velocity’ logo in the figure below should 

take the unknown label. 

 
 

13. Page number – Select page number when the region represents the number of the 

page. This could be just a number as in ‘5’ or could be represented in other ways such as 

‘Page 5’ or ‘Page 5 of 10’ etc. 

 

14. Email Header – This region is specific for email document images. It is the region that is 

normally found at the top of an email containing the addresses (i.e. From, Sent, To) and 

subject of the email. Email headers can be also be found at the center or end of the 

page, its main property is that it contains the addresses and/or subject of the email. 

 

15. Email salutation – This region is specific for email document images. It is the region that 

is normally used to begin an email. (i.e. Dear/Hello/Hi). 

 

16. Email body text – This region is specific for email document images. It is the region that 

contains the body of the email i.e. the email message. 

 

17. Email Signature – This region is specific for email document images. It is the region that 

is normally found at the end of an email message. It includes the signature of the email 

sender (i.e. personal name/company details). 

 

18. Email Footer – This region is specific for email document images. It is the region that is 

normally found at the bottom of the email document image. It usually signifies  
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False and Overlapping Regions 

In some of the segmented document images, there are regions that overlap one another. This is 

especially common for documents that contain tables or forms. Specific contents within the 

tables or forms are also segmented thereby causing overlaps and unnecessary regions. An 

example is shown in the figures below to the left: 

 

Figure 2: Corrected Segmentation 

We want to get rid of such overlapping segmented regions and hence turn figure 1 into what 

figure 2 looks like. Note that it is sufficient to have one bounding box that bounds the entire 

table or form (region 5 in figure 2), there is no need to segment the contents within them. 

However for tables, the annotator should include bounding boxes for table headers as shown in 

figure 3 below and the type attribute should be ‘Section heading’. 

Figure 1: Overlapping Regions 
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Figure 3: Table header bounded with a bounding box. (Region should be labelled as section heading) 

The easiest way to deal with this situation is to undo all or some of (the overlapping) 

segmented regions and for the annotator(s) to manually segment the document themselves 

before labelling. This can be achieved by carrying out the following steps: 

1. Delete a Region: In case the annotator wants to delete just a region, select the region 

then click the icon to the farthest right ‘Delete Region’. This is illustrated in the figure 

below 

 

 

2. Delete all Regions: In case the annotator wants to delete just all regions, click the 

‘Select all regions’ icon and then the ‘Delete Region’ icon. This is illustrated in the figure 

below 
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3. Manually drawing regions: Regions can be drawn by clicking and dragging across the 

document image. The rectangular shape is selected by default and should be used 

when drawing regions manually.  
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Submission and Finalization 
1. When all regions in each file have been labeled appropriately, the annotations need to 

be saved. To do this, hover on the ‘Annotation’ menu and click on ‘Export Annotations 

as CSV’. Save the csv file that has been automatically generated. 

 

2. Rename the saved .csv file as GroupXY (where XY is a number from 1-40). This indicates 

the project group number that you have worked on (See page 2). Please send this .csv 

file to senendu5@yahoo.com then fill in your name in the group row you’ve worked on 

in this link https://docs.google.com/document/d/1kd0S84fE4DwvbQ3PZAN6W19Srsm7-

cfckQ7DN1BjQHc/edit?usp=sharing 

 

3. If you have any questions, please send an email to senendu5@yahoo.com  
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