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Abstract

Computer programmers who create software benefit from the avail-
ability of API specifications, because they enable them to more reliably
create correct software. This thesis presents our research on generat-
ing type specifications for JSON-based APIs in an automated manner.
Such specifications describe the type of a JSON document in such a
way that they are usable for formal applications such as static type
checking. Additionally, we aimed to let the specifications convey the
semantics of the API to a programmer. We noticed that despite the
availability of API specification languages, many APIs do not have
specifications. This may be because it is costly to create them. With
our automated method to create such specifications we hope to alle-
viate the hurdle to create them, and thereby increasing adoption. The
basis of our solution is type inference on JSON data that resides in
responses to an API request. We present a minimisation algorithm
to decrease the size of inferred types, and transform a purely formal
specification into one that can be interpreted better by a programmer
as well. It identifies recurring parts of a type and makes this explicit in
the specification. It also has a heuristic-based method for identifying
semantically equivalent types, which can be fused together, which is
then also made explicit. Furthermore, an automated clustering algo-
rithm is presented, which attempts to group JSON data by API op-
eration. We conclude that our automated method can be of use for
formal purposes, because generated specifications reliably detect typ-
ing errors in a program (which we call the completeness property),
even though it should be taken as a serious consideration that absence
of errors can not be proved (which we call the lack of the soundness
property). The extent to which the generated specifications convey
semantics of APIs varies, but the techniques we present in this thesis
increase usefulness of specifications for programmers.
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Chapter 1

Introduction

Traditionally, when a user ran a computer program, the software executed locally on
their computer. In the current age, a lot of software functionality on one computer is
provided externally over the internet, by another computer. A web service is such soft-
ware, that offers functionality over the internet that is to be interacted with by other
software. User-facing programs such as websites or smartphone applications are not
web services, but the external software components they rely on to provide the function-
ality are. For example, these services provide functionality such as getting the weather
forecast and posting a message on a forum.

A programmer uses web services by communicating with their APIs (Application
Programming Interface). This is the interface to a web service, consisting of the opera-
tions the service supports, and the data types of the data these operations return. APIs
enable re-use of software, because they allow multiple programs to make use of a single
service. They can be used internally by an organisation, to communicate between sev-
eral applications of its IT infrastructure, or they can be accessible to the public. Many
popular web services, like Twitter, Instagram, and Wikipedia, have publicly available
APIs.

In order to use an API, one needs to know its specification. An API specification is a
technical document that specifies features of an API. In our case, we are interested in the
different operations the API supports, and what the data types are of the data returned by
these operations.

We are interested in APIs that uses data in the JSON (JavaScript Object Notation)
format, which is a simple and widely-used data format that is human-readable and
computer-readable . Broadly speaking, we call the structure of a JSON document its
type (also called schema). Such types are captured in a specification, and the indus-
try standard for stating such data type specifications is JSON Schema. JSON Schema
is specification language, in which the type of (a corpus of) JSON documents can be
described.

The current thesis presents a method to automatically generate type specifications for
the operations in an API. These specifications are inferred from network traffic data logs,
which is a log that contains what was sent over a network to a web service (request),
together with the data that the web service sent back (response). To discover which
operations exist we require the information in the requests, and to infer the data types
that they return we require the responses. Through an example we now illustrate what
our method does, after which we continue with the motivation for this research. Here
we provide only the minimally required descriptions of some terminology, which we
give details for in Chapter 2.

Consider the example traffic data in Figure 1.1, which is input for our method. This
figure lists three distinct JSON responses of a web service that represents a coffee ma-
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1.1. MOTIVATION CHAPTER 1. INTRODUCTION

chine, supporting espressos and cappuccinos in cheap and in premium variations. The
captions of the figures indicate the request that yielded this response. To understand
these requests, it is sufficient to see that the operation get=drink yields the cheap version
of a drink, get=variations yields the possible variations of a drink, and the argument
type= indicates which drink we want.

The response in Figure 1.1a shows an object (indicated by braces {...}) with two
properties: name with textual value "Normal Espresso" and price with numeric value
0.26. Despite the responses in Figures 1.1a and 1.1b being different, they have the same
type in our type system, because the objects have the same keys (name and price), and
the types of their values are the same (textual and numeric respectively). Figure 1.1c
shows an array (indicated by braces [...]), with three objects as elements. Because the
three elements do not have the same type, we call the array heterogeneous.

Our algorithm infers a specification for these three requests, for which the JSON
Schemas are shown in Figure 1.2. It consists of two types. Figure 1.2a states the type of
the object in Figures 1.1a and 1.1b. For now, the most important aspects of the schema
are "type":"object", which indicates that the top-level type is an object, for which the
value of "properties" states the names of the fields in that top-level object (price and
name), which in turn state that their values are numbers and strings respectively. In the
second schema, in Figure 1.2b, the values of items are the types of the elements of the
array. Note that despite the array in Figure 1.1c being heterogeneous, there is only one
item. The anyOf field is used to indicate that the price field has either numeric or string
values.

One more thing to note is that we identify operations using filters. A filter of a
schema specifies a condition on the requests, such that the schema is valid for only those
requests that match the filter. For example, the filter get=drink (see the caption of
Figure 1.2a) matches the requests of Figure 1.1a and 1.1b, but not of 1.1c.

In short, our method has the following properties:

• It identifies operations of an API, and their data types.

• It is an automated approach. That is, it does not require user-input.

• It generates correct specifications. That is, all data from which a specification is
inferred is accepted by this specification.

• It aims to generate specifications that convey semantics of an API. That is, it con-
veys some meaning of the API to a human programmer.

• It works on heterogeneous data: the traffic log can be a mix of differently typed
responses.

Our method computes type specifications from a set of JSON responses as follows. The
first step is to compute types of each response separately. Then, these types are com-
bined in various ways to create more general, yet still precise, types. Because the set of
responses correspond to several operations (that is, the set is heterogeneous), the method
analyses both the computed type of a response together with the corresponding request
with the aim of identifying operations. The type specifications are then improved by
computing types per operations instead of for the complete set of responses at once.

1.1 Motivation

The motivation of the current research is twofold. Firstly, having API specifications
is useful. Secondly, availability of specifications is not as widespread as it should be,
because they are time consuming to create. This section addresses these points.
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1.1. MOTIVATION CHAPTER 1. INTRODUCTION

{
"name" : "Normal Espresso",

"price" : 0.26

}

(a) Request: get=drink&type=espresso

{
"name" : "Normal Cappuccino",

"price" : 0.26

}

(b) Request: get=drink&type=cappuccino

[

{
"name" : "Normal Espresso",

"price" : 0.26

},
{

"name" : "Premium Espresso",

"price" : 0.52

},
{

"name" : "Decaf Espresso",

"price" : "Not available"

}
]

(c) Request: get=variations&type=espresso

Figure 1.1: Three requests and their JSON responses

1.1.1 Why specifications?

In software engineering, software is often described using informal documentation[8].
These are documents consisting of explanations in natural language and usage-examples,
intended for the programmer. Informal documentation of an API convey semantics of
an API to the programmer. We define semantics of an API in the same manner as for
programming languages, namely as how syntactic structures are to be interpreted by a
human [3]. Although our method does not generate informal documentation but formal
specifications, it is desirable that they convey semantics of an API as well as possible.

The problem with informal documentation is that they can be ambiguous, outdated
and incomplete (or even non-existent). Learning how to use an API then becomes a
trial-and-error process. Incorrect usage obviously leads to incorrect results and bugs.

A more precise, and useful, thing, is a formal specification. These are precise specifi-
cations written in, for example, mathematical notation or such that it can be interpreted
by a computer program. These enable the use of formal methods[8], such as static (and
dynamic) software analysis, which increases correctness of programs, and mitigates un-
expected bugs and vulnerabilities. Tools such as type checkers, code completion, soft-
ware generators, and data validators become available to programmers when a formal
specification is available, which speeds up development by mitigating the trial-and-error
aspect. The most important of these for software correctness is a type checker, which is
a tool that says whether or not a piece of data in a program conforms to the expected
type, and throws an error if it does not.
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1.1. MOTIVATION CHAPTER 1. INTRODUCTION

{
"$id$" : "C.schema.json",

"type" : "object",

"properties" : {
"price" :

{"type" : "number"},

"name" :

{"type" : "string "}

}
},
"required" : [ "price", "name"

]

}

(a) Filter: get=drink

{
"$id$" : "M.schema.json",

"type" : "array",

"items" : [ {
"$id$" : "P.schema.json",

"type" : "object",

"properties" : {
"price" : {

"$id$" : "N.schema.json",

"anyOf" : [

{"type" : "number"},

{"type" : "string "}

]

},
"name" : {

"type" : "string"

}
},
"additionalProperties" : false ,

"required" : [ "price", "name" ]

} ]

}

(b) Filter: get=variations

Figure 1.2: Two inferred types (with their corresponding filters)

1.1.2 Why automatically generate specifications?

There exist languages and tools for writing API specifications (which we describe later,
in Section 2.4). This should increase how often specifications are available for APIs.
According to a survey, adoption of OpenAPI specifications (an industry standard for
API specifications) rose among respondents, from 25% in 2015, to 69% in 2019 [16]. It
should however be noted that the respondents are users of their API tools, and therefore
this might not represent absolute usage of specification languages.

Still, many APIs do not have specifications, which may be due to difficulty and costs
associated with creating them. Creating a specification of existing software incurs high
initial costs, because software systems are increasingly complex. Capturing behavior of
software is far from trivial, and often involves reverse engineering. This is especially
apparent in legacy systems, which are old but functional systems whose notoriously
complex software is not fully understood by a single person. Additionally, just like
other forms of documentation, specifications require maintenance. When the software
changes, the specification may need to be updated to reflect this. This is another reason
not to create APIs for existing systems, as it introduces another artifact that requires
maintenance.

The current research provides a possible solution, by proposing automation of the
creation of these specifications. By generating specifications, we mitigate the associated
difficulties and costs. Whenever software is updated, its specification could be regen-
erated in a correct fashion. An additional advantage of generated specifications is that
they may provide a well-defined link with the actual software, because even though a
manually written specification can be correct, the thought process that led to this correct
specification is not well-specified.
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1.2. OUTLINE CHAPTER 1. INTRODUCTION

1.2 Outline

The current thesis is structured around three research questions. The first research
question is treated in Chapters Method and Related work (Chapter 3 and 5). The second
and third research questions are the concern of the chapter Evaluation (Chapter 4).

• Research Question 1: How can API specifications be generated in an automated man-
ner?
We answer this question by describing the method we developed for this goal, as
this was the central point during our research. Also, we describe related research,
techniques and tools that have similar goals.

• Research Question 2: How useful are these automatically learned API specifications for
formal purposes?
We want these specifications to be usable for formal methods, such as static anal-
ysis and type checking. To answer this question, we evaluate correctness of the
specifications, by checking the specifications against the data it is learned from.
Additionally, we check the specification against data it was not learned from, to
assess whether or not our approach is useful if one has an incomplete traffic log
(that is, it does not contain all possible responses of some API operation).

• Research Question 3: How useful are these automatically learned API specifications for
semantic purposes?
Because specifications are not merely consumed by computers, for formal pur-
poses, it is also interesting to look at if they provide semantic value for a program-
mer. That is, they are a useful piece of documentation to a programmer. This
question is answered through in part through subjective evaluation of the gener-
ated specifications, and also by evaluating statistics of the generated types, such
as their sizes and (the number of) identified operations.

Chapter 2 describes concepts the reader needs to know to understand our research,
some of which we have introduced in the current chapter. Chapter 3 describes how our
method works and how we have approached the requirements of this method. Chap-
ter 4 describes how we evaluate the implementation of our method, and discusses the
results. It also describes the datasets we used and shows and discusses the results of the
evaluation. Chapter 5 gives an overview of existing related work, to put our work into
context. Finally, Chapter 6 concludes our research, answers our research questions, and
describes future work.
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Chapter 2

Background

This chapter describes background concepts for our research. It serves to clear up the
terminology used throughout this document.

2.1 JSON

JSON1 is a simple and widely used data-interchange format. It is commonly used for
serialising data and sending it over a network, such as in many JavaScript based web
applications. By serialising some data into this format it can be transferred from one
piece of software to another.

Before we give the formal syntax of JSON, see Figure 2.1 for an example of a JSON
object. It shows a JSON object that represents a person named John. An object is an
unordered set of members. The object has three members, which are name:value pairs,
starting with a { token, and ending with a } token. The first member has a string value
"John". The second member has an array value. Arrays are ordered collections of
values, starting with a [ token, and ending with a ] token. Its first value is a number,
its second value is another object. The third member has a boolean value.

Here we state a simplified version of the JSON syntax, and refer to ECMA-404 for a
complete formal definition[7]. It is simplified by not addressing details such as whites-
pace and which characters make up a string or a number. Terminals are written in
lowercase, and non-terminals start with a capital letter.

Json := Element
Elements := Element |Element , Elements
Element := Value

Value := Object |Array |String |Number |true |false |null
Object := { } |{Members }

Members := Member |Member , Members
Member := String : Element

Array := [ ] |[ Elements ]

Where String is a sequence of Unicode characters that starts and ends with a quote,
and a Number can be an integral number, decimal number, or a number in scientific
notation.

1http://json.org (accessed 14th August 2019)
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2.2. URL FORMAT CHAPTER 2. BACKGROUND

In this document, we call a JSON-document containing one Element an instance. An
instance is what we use as training data to generate types, and as validation data to test
the generated schemas.

Because objects and arrays allow nesting, graph like structures can be represented.
However, because JSON does not support referencing other nodes, it does not allow
cyclic graphs. Therefore, JSON object can be represented as trees. For this reason, we
adopt terminology originating from trees, such as leafs, nodes, edges, root of the tree,
et cetera, and apply it to JSON objects.

{
"name": "John",

"dates": [2019, { "year" : "1995" , "month" : "July" } ],

"alive": true

}

Figure 2.1: JSON object representing a person.

2.2 URL format

A Uniform Resource Locator (URL) is an address that points to some resource on the
web. For our purpose, URLs are used to provide access to APIs. The most important
thing to know is its basic syntax, which is the same as that of a Uniform Resource
Identifier (URI).

A URL consists of a few components, as described in RFC3986 [4]. These are referred
to as the scheme, authority, path, query, and fragment. The syntax can be given as:

scheme : [//authority]path[?query][#fragment]

For example, the URL "https://wikipedia.org/w/api.php?title=computer&action=

search" has the following components:

scheme : https
authority : wikipedia.org

path : /w/api.php
query : title = computer&action = search

f ragment : (none)

The path can be subdivided in path-segments: w and api.php. Furthermore, the
query can be divided into parameters and arguments. In this example, title and action
are parameters, and computer and search are arguments.

2.3 APIs

An Application Programming Interface (API) is the bridge between a human program-
mer and an implementation of some functionality [12]. Generally speaking, it defines
the available functions and datatypes of a piece of software, which can be used to pro-
gram an application. For example, Java has a library that contains code that implements
Set, Map and List functionality, which a programmer can use through the Collections
API. It lists datatypes and method, allowing a programmer can interact with the library
without having to know how a Set is implemented. The current research focusses on
APIs of web services.
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2.4. SPECIFICATION LANGUAGES CHAPTER 2. BACKGROUND

In recent years, the software industry started noticing the importance of explicitly
specifying APIs, and publishing them. Incentivised by gaining more users, companies
now offer their service through publicly accessible APIs. This is accomplished because
application programmers can now create applications based on the service. As an ex-
ample, the online Twitter API spawned 3rd party Twitter applications, and websites that
embed twitter functionality such as sharing a news article.

Usability and power (i.e. expressiveness) are the two basic qualities of an API [12].
When an API is hard to use, it costs more time to develop software, adoption rates
will be lower and the resulting software often contains more bugs and security issues.
Design methods can be used as guidelines, but usability evaluation of a created API
yields better insight into the actual quality. Creating an API is a design task, and what
constitutes a good one is subjective. For resources that discuss guidelines for creating a
good API we refer to two documents discussing general API design principles, by Bloch
[6] and Blanchette [5].

In the APIs that we have used to evaluate our current work, the URL schema, au-
thority and path are constant throughout different requests to the API. The URL query
changes between calls, and thus the query uniquely identifies a request. For different
APIs, there are different, but fixed, sets of valid query parameters (we call them valid if
they are defined by the API). The arguments to these parameters can be chosen freely.
While this thesis assumes that API requests are identified only by their queries, many
APIs have a different approach. For example, in the APIs based on the Representa-
tional State Transfer (REST) architecture, the URL path must also be used to identify
requests[13]. Our related work, and OpenAPI (which we discuss later in this chapter)
specifically target this style of API, but limit ourselves to APIs in which the path is
irrelevant and only the query of the request is considered.

2.4 Specification languages

There exist standardised ways to represent JSON types and APIs, which are introduced
now.

2.4.1 JSON Schema

JSON Schema was created as a standard for specifying the structure of JSON files[14].
A JSON Schema is a specification that describes the structure of some JSON data. A
schema is itself is written in JSON, and has meta-information about another JSON object.
The most current version is draft 72. Use-cases for schemas are to implement type-
checking for JSON objects and for documentation purposes, giving the developer insight
into the structure of JSON data.

An example of a JSON Schema is shown in Figure 2.2, corresponding to the JSON
object in figure 2.1. We explain the semantics of a relevant subset JSON Schema here.
The work-in-progress draft is available to get details on the full language3. The lefthand-
side terms we list below are keys in a JSON Schema with a special meaning, and the
righthand-side describes what the value of this key represents.

2https://json-schema.org/ (accessed 24th July 2019)
3https://json-schema.org/latest/json-schema-core.html and https://json-schema.org/

latest/json-schema-validation.html (accessed 24th July 2019)
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2.4. SPECIFICATION LANGUAGES CHAPTER 2. BACKGROUND

{
"$id": "example.person",

"$schema": "http ://json -schema.org/draft -07/ schema#",

"title": "Person",

"type": "object",

"properties": {
"name": {

"type": "string",

"description": "The person ’s first name."

},
"dates": {

"type": "array",

"description": "Important dates in this person ’s life.",

"items": {
"anyOf" : [ {

"type" : "number",

"minimum": 1900

},
{"$ref" : "example.birthdate "}

]

}
},
"alive": {

"description": "Is this person still alive?",

"type": "example.status",

}
},
"additionalProperties" : false ,

"required" : ["name", "alive"]

}

Figure 2.2: An example JSON Schema for the object in Figure 2.1. It specifies properties
about each field in the JSON object.
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$id := A unique identifier used to reference the current
(sub-)schema.

$schema := Points to the meta-schema of the version of JSON Schema that
is being used.

$ref := Reference another schema that is defined elsewhere, using its
$id. In our example, the dates array may contain values of
type example.birthdate (not shown).

title := An informal name for the schema.
description := An informal description of the schema.

type := The type of the value described by this schema. Either null,
boolean, object, array, number, integer or string.

items := The types of values in an array. If one type is given, all ele-
ments have that type. If an array of types is given, the type of
an element is given by its position in the array.

properties := The keys and their types of members in an object.
required := Which members in properties are always present in an ob-

ject. Non-required members still match the given type if it
exists, but are ignored otherwise.

additionalProperties := If true, the object may have members that are not specified in
properties. Otherwise, there are never more members than
those in properties

.

patternProperties := Like properties, except that all members whose key match the
regular expression have the given type.

anyOf := Lists one or more types the values may have.
minimum/maximum := Specifies ranges for number types.

minLength/maxLength := Specifies length ranges for string types.
minItems/maxItems := Specifies ranges for the number values in an array.

enum := Specifies which literal values a value may have. For example,
to say that some date property only contain strings from the
set ”Januari”, ”Februari”, ...

There are more constructs in JSON Schema, but this subset is sufficient to understand
our research, and was sufficient to represent all types we generate in our type system.

2.4.2 Swagger and OpenAPI

Swagger4, first created in 2011, is a toolkit for designing, documenting and testing REST
APIs using JSON (and YAML) format. It defines a standard format for writing API
definitions, and as a result it can offer tools for automatically generating documentation
webpages, clients to call the API, and testing tools for experimenting on the API.

OpenAPI is the continuation of Swagger. In 2015, the Swagger Specification was
renamed to OpenAPI specification. It is being maintained as an open source project
by the OpenAPI initiative5. Swagger still provides the tools for APIs conforming to
the Open API specification, but the specification itself is maintained by the Open API
initiative. OpenAPI incorporate parts of JSON Schema in its definitions, namely the
types in Swagger are defined using JSON Schema. On top of that, OpenAPI groups

4https://swagger.io (accessed 14th August 2019)
5https://www.openapis.org/ (accessed 14th August 2019)
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"/pets/{id}": {
"get": {

"description": "Returns a pet based on a single ID",

"operationId": "findPetById",

"produces": [

"application/json"

],

"parameters": [

{
"name": "id",

"in": "path",

"description": "ID of pet to fetch",

"required": true ,

"type": "integer",

"format": "int64"

}
],

"responses": {
"200": {

"description": "pet response",

"schema": {
"\$ref": "#/ definitions/Pet"

}
},
...

}
}

}

Figure 2.3: A part of a openAPI specification, that defines an operation.

these operations by API operation, so that each operation indicates type of its response.
An operations is defined per REST resource, that is a combination of the URL path,
method (e.g. GET or POST), and its parameters (i.e. the URL query).

Figure 2.3 shows an example of an OpenAPI specification6. Starting at the top
of the example, it shows the definition of an operation at the path /pets, with a pa-
rameter id. So, for example, it matches the following request (with GET as method):
"http://example.org/pets/14". The parameters object defines the type of this pa-
rameter and its location (the in property). The responses object states that, if the sta-
tuscode is 200 (which is a code that means that the server handled the request without
errors), the response has the type as described by the child object (which is written
in JSON Schema). In this case, the response type is defined by an external schema
#/definitions/Pet.

Just as with JSON Schema, there exists a wide variety of tooling for working with
OpenAPI, such as converters between different specification formats, GUI specification
editors, schema validators and data validators, parsers, documentation generators and
SDK generators that generate a functioning client or a server stub that supports the
operations that are in the specification7.

6taken from https://github.com/OAI/OpenAPI-Specification/blob/

73b79bf7db9adb45a3d5d8076e614e64ab0f0897/examples/v2.0/json/petstore-simple.json (accessed
14th August 2019)

7These tools are listed at https://openapi.tools (accessed 14th August 2019)
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Chapter 3

Method

This chapter describes our method for generating specifications for JSON APIs, for
which the motivation given in chapter 1. This chapter gives detailed descriptions of
the parts it consists of, as well as an overview of how they relate to each other. We
also discuss the requirements which led us to this method. The method is described in
increasingly precise explanations. Section 3.1 starts by stating our requirements. Sec-
tion 3.2 gives a high-level overview of our method. Section 3.3 gives the overview of our
type system, and remaining sections 3.4 through 3.7 go into detail on the four parts of
our method.

3.1 Requirements

This section states the approach we used to deal with the problem that was introduced
in our Introduction chapter and certain sections of the Background. The global goal
is that the generated specifications serve both formal usage and semantic usage. Our
requirements bridge the gap between our motivation and our created method. The re-
quirements for our method are expressed in terms of requirements on the specifications
that it generates.

Requirement 1: The specification is complete.

We consider the method correct if creates specifications that are complete with respect
to the input to the method. A specification is complete with respect to an input to our
method (consisting of a set of JSON instances), if it flags as correct all these inputs.
This means that a specification is inferred from a set of instances, accepts all instances
in this set. For a type checker, completeness means that no correctly typed values are
flagged as incorrectly typed (i.e., it gives no false negatives). Section 3.3 explains what
it means for a value to be (in)correctly typed. We do not require the stronger notion of
completeness, completeness with respect to an API, which means that it flags as correct
all valid inputs for this API. Checking this requires knowledge of all valid inputs, but
our datasets merely contain a subset of every valid input (incomplete dataset).

Note that we do not require the soundness property, which in the current context
means that it flags only valid inputs to an API as valid. Soundness would imply that
the specification could be used to prove typing-correctness of a program, that is, the
absence of typing-errors. A type specification is sound if all inputs that it flags as valid,
is in fact valid. Our method does not have this requirement.
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Requirement 2: The specification conveys semantics.

It is desirable that the specifications is not only computer-interpretable, but also capture
the human-interpretable meaning of elements of the API. Our method aims to achieve
this is through identification of commonalities and variations in types, and through
grouping types by their operations.

Requirement 3: The specification is small.

A small specification is less complex, and thereby easier to read for a programmer. This
requirement does not mean that given two specifications, the smaller is always better. It
only means that a small size, on an absolute scale, is preferable.

Requirement 4: The specification generalises over multiple instances.

A network traffic log is unlikely to contain every possible value an API may return. We
call such a set incomplete. A specification that matches exactly such a set of instances
conforms to the completeness requirement for that set, but fails to match any unseen
instances. This is also known as over-fitting. We say that a specification generalises if
it describes some class of values. Ideally, we want our specifications to generalise over
values with the same semantics. Similarly to Requirement 3, a type that generalises
more than another is not by definition better.

Requirement 5: The specification is specific.

A specification should match only a specific group of instances. Imagine that we would
simplify our type specification to the universal type, that matches any instance. Such
a specification is neither useful for type checking because it does not identify typing
errors, nor is it useful for a programmer to learn anything about the API. This is also
known as under-fitting. This requirement balances out Requirement 4.

Requirement 6: Minimal user input required.

Our problem statement is that it is costly to create specifications, and our solution is
automation. Therefore, our method must not be guided by a user or require extensive
configuration.

Requirement 7: Training data can be heterogeneous.

As addition to Requirement 6, we require minimal data preparation. This means that
the method must handle an input of a mix of differently typed responses.

Requirement 8: Training data can be provided by network traffic.

Network traffic logs are relatively accessible if one has control over the API in question.
We list this as a requirement to make it clear that we did not want to rely on data
sources, such as the source code of the API.

3.2 Method Overview

Our method consists of multiple parts. This section walks through those parts, to explain
what they do, and why they exist. Subsequent sections go into detail on each of these
parts.
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Figure 3.1: Overview of Type Inference

Figures 3.1 and 3.2 together show an overview of the architecture. The green boxes
represent algorithms in our method, the yellow boxes represent data, and the red di-
rected arrows indicate the flow of data.

Type Inference (Figure 3.1) takes as input a set of instances, and computes one or more
types for it. It consists of two algorithms, Initial Type Inference, and Type Minimisation.
The former creates one type per instance, and the latter processes these and reduces the
number of types and their sizes. Type Minimisation consists of a Merging algorithm and
a Fusion algorithm. Merging reduces the number of types and their sizes by merging
(parts of) types that are equivalent. Fusion minimises types further, by introducing sum
types based on heuristics, and propagating these through transformations on the types.
In Type Minimisation, each of these two algorithms can introduce new work for another,
and therefore they are called iteratively until a minimal type is returned. We explain
Type Inference in Sections 3.4, 3.5 and 3.6.

Note that Type Inference normally yields one or more types, but we can force it to
create a single type that describes all instances. From a set of types, we can create a
single type by moving them into a Sum type, which is the supertype of all those types
(details on this in the following section). This is done after Initial Type Inference and
before minimisation, so that the single type is minimised. This has the advantage that all
types are fused into one minimal type, but has the disadvantage that, for semantically
unrelated inputs, it creates an equally semantically meaningless type. We refer to Single
Type Inference when such a single type is created, and to Multi Type Inference otherwise.

Clustering (Figure 3.2) generates specific types for specific groups of instances. This
allows our method to find better types for heterogeneous data. It also allows us to spec-
ify a relation between the request and the type of the response of an API call. Filter
Candidate Selection selects potential Filters from the request data, which are used to split
a cluster in two non-overlapping clusters. Then, similarity of its types is calculated, and
new clusters are only accepted if the types of the two are dissimilar enough. This rests
on the assumption that requests to different functions in an API yield significantly differ-
ently typed responses, and requests to the same function but with different arguments,
yield relatively similarly typed responses. Clustering is detailed in Section 3.7.

All parts of the method contribute to fulfilling the requirements from Section 3.1.
Some parts however, play a larger role for some requirement than others. Requirement
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Figure 3.2: Overview of Clustering

1 (completeness) is a hard requirement that is preserved throughout all algorithm. Re-
quirement 6 (user-input) is also generally preserved at runtime, although tweaking can
be done, such as configuring the heuristics of the fusion algorithm. For Requirement 2
(semantics), clustering has the biggest effect on unveiling semantics, and minimisation
contributes also, albeit less obviously. For Requirement 3 (size), decreasing sizes of types
is the largest concern of minimisation, but also clustering. Requirement 4 (generalisa-
tion) is achieved in part by a general type system (upcoming Section 3.3, but increased
further by fusion. Requirement 5 (specificity) is mostly the concern of clustering, just
like requirements 7 (heterogeneity), as it creates specific data groups from the heteroge-
neous data.

3.3 Type System

This section defines the syntax and semantics of our type system, and give other defi-
nitions that are useful for later sections. It serves as a reference for the reader, which is
why it already names terminology that we explain later in this chapter.

3.3.1 Definition

The syntax below describes types in our type system, which is used to define our al-
gorithms. Below that, a description and the semantics of the type system are given.
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Terminals are written in lowercase, and non-terminals start with a capital letter.

Root := Type (3.1)
Type := Primitive | Collection | Clustering (3.2)

Primitive := number | text | boolean | null (3.3)
Collection := Record | Array | Sum | Map (3.4)

Label := Key | Optionalkey (3.5)
Record := {Label1 : Type1, ..., Labeln : Typen} (3.6)
Array := [Type] (3.7)

Sum := (Type1 + ... + Typen) (3.8)
Map := 〈Pattern : Type〉 (3.9)

Pattern := P(Regex) (3.10)
Clustering := [Filter1 → Type1, ..., Filtern → Typen] (3.11)

Filter := F(Condition1&...&Conditionn) (3.12)
Condition := Stringk : Stringv | Stringk : ∗ | !Condition (3.13)

The type system can be used to form directed acyclic graphs, similarly to how JSON
objects form trees (Section 2.1). The nodes in this graph are formed by the terms in the
syntax. Every Type is either a Primitive, Collection or a Clustering. Primitives are the
simple Types, number, text, boolean and null, which always form leafs in the graph.
Collections are Types that can contain child types, and thereby form nodes in the graph.
A Collection is either a Record, an Array, a Sum type or a Map type. Broadly speaking,
these types relate to JSON as follows: Records and Map types describe Objects, Array
types describe Arrays and Sum types can describe a mix of Values. A Record contains
associations of the form Label : Typec, where Typec is the child of the Record. The Label
is a string, which corresponds to a String in a JSON Object that is associated with some
Value. When a Label is a Key, the Label is required to be present in an Object, whereas
if it is a Optionalkey is not required that it is present. A Map is similar to a Record,
but instead of specifying all Labels, a single regular expression (specified by Pattern)
is used that matches all Strings in an Object. It can be seen as mapping from strings
to some child Type, where all these strings match the Pattern. A Sum type represents
a supertype of its children, that is, it is the type of all Values whose type is given by
any of the children of the Sum type. A Clustering is a conditional type, which we use
to specify that the type of some JSON Value depends on which condition on the Value
holds. These Conditions are expressed in a Filter, for which at this point it is sufficient
to know that it expresses some boolean condition on a Value. We also define Root as a
Type without parents, which therefore only occurs at the root of the graph.

We express semantics of the type system more precisely by the definition of a type
checking function, called check. This function takes as arguments a Type and a Value,
and returns true if and only if the Value has the given Type, and returns false otherwise.
If check returns true for some Type T and some Value V, then we say that T is the type
of V. Value has been defined by the JSON grammar in Section 2.1.

Let T be some Type, and we let V be some Value, then the function check returns true
if any of the following conditions hold:

• T is number and V is a Number.

• T is text and V is a String.

• T is boolean and V is true or false.
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• T is null and V is null.

• T is a Record {Label1 : Type1, ..., Labeln : Typen} and V is an Object, such that for
each Labeli : Typei in T:

– if Labeli is a Key, then there exists a Member in V, s : v, such that s matches
Labeli, and the type of v is Typei.

– if Labeli is a Optionalkey, then there need not exist such a Member s : v in V

such that s matches Labeli, but if it does, then the type of v is Typei.

• T is an Array [Typec] and the V is an Array, such that all children in V have type
Typec.

• T is a Sum (Type1 + ... + Typen) and V is some Value, such that at least one of the
children of T is the type of V.

• T is a Map 〈Pattern : Typec〉 and V is an Object, such that for each Member s : v in
V, s matches the Pattern and v has type Typec.

• T is a Clustering [Filter1 → Type1, ..., Filtern → Typen] and V is some Value, such
that there exists one Filteri → Typei in T such that the request that yielded V

matches all Conditions of Filteri and the type of V is Typei.

In this thesis we give examples of types by a visualisation of the graph it forms,
Such as Figure 3.3 in the next section. Types are visualised such that each node has the
form name : Type, where the name is a (arbitrary) one-letter identifier for that node,
and the Type is one from the syntax. Collection types can have outgoing edges, which
signals a parent-child relation. For Records, the Label that points to a child is written on
the outgoing edge to that child. If a Label is a Optionalkey, it is written with a question
mark ? at the end. For Maps, the Pattern is written on the outgoing edge to the child.
This is a regular expression that starts with the token ^ and ends with the token $.
Arrays have only one child, and Primitives can only form leafs in the graph. Clusterings
are the only Types that we do not visualise in this manner.

3.4 Initial type inference

Initial Type Inference is the first step in type inference, which infers simple types for JSON
instances. It generates exactly one root type for each instance it sees. Figure 3.3 already
shows an example of a JSON document and its inferred Type.

We first state the format of the input to this algorithm. Then, we state how types are
inferred from this input.

3.4.1 Instance data model

An instance is a data structure that encapsulates one request to an API and its response.
A set of instances is used as input for the inference algorithm. The request is encoded
as a list of parameter-argument pairs from the query component of a URL, and the
response is a JSON Value. The request part of the instance is only used by the clustering
algorithm (Section 3.7), not by the type inference algorithms. While the current research
only uses the query for the request field, this format could encode other request data,
such as path segments for example.
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[

{
"name" : "Normal Espresso",

"price" : 0.26

},
{

"name" : "Decaf Espresso",

"price" : "Not available"

}
]

(a) Example JSON

A : Text

B : NumberC : Record

name

price

D : Text

E : Text

F : Record name
price

H : SumI : Array

(b) Inferred type by Initial Type Inference

Figure 3.3: Initial type inference example

3.4.2 Conversion

Initial Type Inference converts the response field of one instance to one Type in our type
system. It traverses the JSON tree and generates a tree in the internal representation of
our type system. Each visited JSON Value corresponds to one term of our syntax. We
describe the conversion as a function called initial. It takes as argument a Value, and
returns a Root type. If the Value is a Number, String, true or false, or null, it returns
respectively a number, text, boolean and null Type. If the Value is an Object, a Record is
returned with equivalent Keys (so that all members are required), and the children are
recursively computed by initial. If the Value is an Array, an Array is returned whose child
type is a Sum type, whose children are computed by applying initial on the elements of
the Array Value. The Root type that it returns is a tree, which is the type of the provided
JSON tree.

Note that the only Primitives, Records with required keys, Arrays and Sum types
are generated.

3.5 Type Minimisation: Merging

The merging algorithm is the first part of type minimisation. One observation is that
results from initial type inference contain a lot of redundancy. Merging removes redun-
dancy in a set of types, which exists both within root types, as well as between root
types. Because the decision to merge Types is based on information of the subtree at a
Type, we say that merging is done based on synthesized attributes[1]. As a result, the
algorithm first merges redundant leafs, then redundant subgraphs, and finally redun-
dant Root types. The last one only happens if the graphs formed by two root types are
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completely equivalent. The former two happen when only parts the graph formed by
a root type are equivalent. This enables sharing of subgraphs of Types, that is, a node
may now have multiple parents, which indicates that some data structure is reused.
See Figure 3.4 for an example, where three Root types are merged into two. Initially,
Record nodes (I, F and C) are not merged because none of them are equivalent due to
not having the same children. After merging the leaf nodes, leaving only A and B for
the Primitives, Records C and F have the same labels pointing to the same children, and
are thus merged.

A : Text

B : Number

C : Record

name

price

D : Text

E : Number

F : Record
name
price

G : Text

H : Text
I : Record

name

price

(a) Step 0: 9 Types from Initial
Type Inference.

A : Text

B : Number

C : Record name

price

F : Record
name

price

I : Record

name

price

(b) Step 1: equivalent leafs (G,
H and D) and (E and B) are
merged.

A : Text

B : Number

C : Record
name

price

I : Record
name
price

(c) Step 2 : equivalent records
(F and C) are merged.

Figure 3.4: Merging example

3.5.1 Algorithm

The merging algorithm removes redundancy in a Type in an iterative manner. We define
it as the function merge which takes as argument a set of Types and returns another set
of Types.

The way it works can be split into two steps. The first step is to identify which types
are equivalent. This is done by defining an equivalence relation that groups equivalent
types together. A set of equivalent types is called the equivalence class of those types.
From each equivalence class we preserve only one element (picked arbitrarily from the
class), and remove the others. Because the types that are to be removed may have
parents, edges incoming to these types are moved to point to the preserved Type in the
equivalence class. The second step is to remove all the redundant Types, and move their
incoming edges.

A single application of these two steps removes one or more equivalent Types from
the input (assuming there are equivalent types). When equivalent types are removed, it
can simultaneously “create” new equivalent Types, because of the way the equivalence
relation is chosen. Therefore, removing all redundancy requires iterative application
of the two steps. Iteration halts when there are no more equivalent types (that is, all
non-empty equivalence classes have size 1).

Which equivalence classes are formed is determined by the following equivalence
relation, which mostly follows the Syntax for Types. Firstly, all numbers are equivalent,
that is, (number, number) is in the relation. Similarly for text, boolean and null. Records are
in the relation if the sets of Labels they have are equal (also considering whether they
are required or not), and for each of these Labels, the child it points to is equal between
both Records. Two Arrays are in the relation if and only if both have equal children. Sum
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A : Text

B : Number

E : Text

I : Array L : Record
name

J : Sum

price

Figure 3.5: Fusion applied to the Type of Figure 3.3

types are in the relation if and only if both have an equal set of children (disregarding
order). Map types are in the relation if and only if the Patterns of both are equal, and
their child Types are equal. Any other types are not in the relation.

3.6 Type Minimisation: Fusion

The fusion algorithm supplements the merging algorithm. It achieves two things: First
of, it makes Types that contain Sum types more precise by propagating these Sum types
downwards. Secondly, syntactically different types which appear to represent the same
semantics are fused together by introducing a Sum type for these types, yielding a more
general type.

Consider the previous example in Figure 3.3. The two Records (C and F) represent
the same thing semantically (a coffee entry), yet they are two distinct types. Because
they are part of a Sum type already suggests they are the same, but the Type is verbose
and can be more precise. The Sum type can be propagated downwards, yielding the
Type in Figure 3.5. The two Record C and F are fused into Record L, and it is now
explicit that the Type of the value at name is Text, and price is either a Number or Text.
Furthermore, the Sum type I is removed, because it would only have one entry (L).

Sum types are propagated towards its children, whereby inherited attributes are
imposed upon the subgraphs of Sum types. Note that determining semantically equiv-
alent types relies on assumptions, and whether or not these assumptions hold differs
between APIs. The algorithm captures these assumptions using heuristics, which may
be adapted for different APIs.

3.6.1 Heuristics

The algorithm considers a number of heuristics to decide if Types will be fused. A
heuristic together with a (user-provided) threshold forms a condition, and when this
condition is met, a Sum type is introduced. First, consider the following heuristics:

1. # of keys in a Record

2. # of optional keys in a Record

3. # of optional keys
# of keys

4. children are equal types (boolean)

5. regularity of the labels (allow specific patterns or broad patterns)

The first heuristic counts the number of members in a Record type. Some instances
contain objects with a very large number of members, which yield equally large Record
types. The question is whether these Records properly convey the semantics of the
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object. It seems that if a Record is very large, then neither each individual Label nor its
associated value are semantically relevant. These Records instead represent a Map type.

For example, we encountered objects with language-codes as keys and a country
name as value. This represents a map from a language-code to country names. Apart
from conveying semantics more concisely, a Map type may also form a more proper
generalisation, as it does not become incorrect if the set of object were to be extended or
shrunk (for example, if more languages are added).

The number of optional keys and the ratio of optional keys are a measure for how
specific a type is. If there are several instances with a language object with different
subsets of languages, then most members in the Record are optional.

The equality of children is true if all children of a Record point to the same Type
node, and therefore depends on the result of the merging algorithm. This is used to
form an extra condition on Records that are turned into Map types, namely that the
children are equal. This is currently a boolean heuristic, but a numeric value expressing
similarity of children would be an interesting heuristics for future work.

The regularity of labels relates to the size of the language that captures all labels. In
some cases, a transformation is only sensible if all labels match a specific pattern, for
example a date like dd/mm/yyyy, or a language code consisting of exactly three letters. In
other cases, labels are very irregular but a using a broad pattern is still sensible because
all children are semantically equivalent, for example when article titles are used as keys,
and the values are objects that represent articles.

Our implementation lists two conditions that allow a Record to be transformed into
a Map if any of them is met. The first condition is that a Record has at least 5 keys in
a Record and all children are the same Type (that is, there is only one child), and the
Pattern must be specific (for example, dates are allowed, but generic patterns such as
“any sequence of characters” are not). The second condition is that a Record has at least
12 optional Labels, the fraction of optional Labels must be at least 0.9, the children need
not be of equal types, and broad Patterns are allowed. Which heuristics and conditions
are used are parameters to the algorithm (and somewhat subjective), and by inspecting
the network traffic we found these two conditions capture (mis)usage-patterns of JSON.

3.6.2 Introducing Map types

Map types are introduced when a condition is met. We show how a Sum type is in-
troduced for children of a Record. Note that creation of a Sum type with merely one
element is always disallowed, as to avoid an infinite loop of creating, followed by remov-
ing single-element Sum types. Two examples are shown in Figure 3.6 and Figure 3.7.

As the first step, a Pattern is inferred from the labels of a Record. This is done by
selecting the first Pattern from a pre-defined ordered list of Patterns that matches all
Labels. By ordering this list from specific to broad, it prefers picking specific patterns
over broad patterns. Then, a Sum type is created of all children of the Record. Finally,
a Map type is created to replace the Record, using the inferred pattern as label and the
Sum type as child.

As mentioned earlier, this only happens if certain conditions are met. If, for example,
the number of keys does not exceed the threshold, or a pattern can not be inferred from
the Labels, then the transformation is not performed.

3.6.3 Propagation

We define a number of transformations that propagate Sum types. The Sum types are
propagated in a top-down fashion. Considering that a Sum type is a supertype of each
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A : NumberF : Record

2019-01-02

2019-01-01
2019-01-00
2019-01-04
2019-01-03

(a) Input

A : NumberG : SumH : Map ^d{4}-d{2}-d{2}$

(b) Output

Figure 3.6: Example of introducing a Map type and Sum type

A : Number

B : Number

C : Number

D : Text

E : Record

F : Record

Alice?

Bob?

Charlie?
1984?

Catch-22?

(a) Input

A : Number

B : Number

C : Number

D : Text

E : Record

G : SumH : Map ^[\sa-zA-Z0-9_-]+$

(b) Output

Figure 3.7: Example of introducing a Map type and Sum type

of its children, the overall effect of these transformations is that large sub-types are
transformed into smaller sub-types.

Propagation: general

A Sum type with a single child Type is replaced with its child Type. That is, the Sum
type (T) is replaced with T.

Children of nested Sum types are moved to the parent Sum type. That is, a Sum
type of the form ((T1 + ... + Tn) + Tn+1 + ... + Tm) is replaced with (T1 + ... + Tm).

Propagation: Primitives

Primitive types are simply merged, in the same way as in the merging algorithm of
Section 3.5. That is, a Sum type of the form (Primitive1 + Primitive2 + · · · ) with
equivalent Primitive types (e.g. both are Number) is replaced with (Primitive1 + · · · ).

Propagation: Arrays

The Sum type of two Arrays becomes an Array that holds the children of both. That is,
a Sum type of the form ([Type1] + [Type2] + · · · ) is replaced with ([(Type1 + Type2)] +
· · · ). See for example Figure 3.8 which shows fusion of two Arrays into a single Array.

Propagation: Maps

A Sum type of Map types becomes a Map type, with a new Pattern and as child a
new Sum type. The Pattern is recomputing such that it matches all labels that match
with either or both of the original two Patterns. The new child type is the Sum type
of the values of both Map types. That is, a Sum type of the form (〈Pattern1 : Type1〉+
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A : TextB : Array

C : NumberD : Array

E : Sum

(a) Input

A : Text

C : Number

F : Array

(b) Output

Figure 3.8: Example of fusion of Arrays

A : Boolean

B : Text

C : NumberD : Record

color

size

E : Record color
F : Sum

(a) Input

A : Boolean

B : Text

C : Number

G : Sum

H : Record
size?

color

(b) Output

Figure 3.9: Example of fusion of two Records

〈Pattern2 : Type2〉+ · · · ) where Pattern1 and Pattern2 were respectively inferred from
the set of Labels L1 and L2, is replaced with (〈Pattern3 : (Type1 + Type2)〉+ · · · ), where
Pattern3 is inferred from both sets of Labels, L1 ∪ L2.

Propagation: Records

For a Sum type of two Records becomes one Record with members of both. Children of
the new Record are formed by creating Sum types of the child types of both Records.
The Label wil be required if it is present in both Record, and it is required in both
Records. That is, a Sum type of the form (Record1 + Record2 + · · · ) is replaced with
(Record3 + · · · ) where the set of Labels in Record3 is the union of those in Record1 and
Record2, which are required if and only if they occur in both, and the child at a Label is
either the Sum of the children at the corresponding Labels in Record1 and Record2, or, if
only one of the two Records has the Label, the child from that Record. Figure 3.9 shows
an example of this transformation.

3.7 Clustering

We apply a clustering algorithm to group related instances together, as to improve in-
ferred types. A cluster is a subset of inter-related instances, and a Clustering is set of
(non-overlapping) clusters. Note that clustering can also be described as finding a par-
tition on a set of types. It makes types smaller, specific for a particular set of instances,
and it relates the request of an instance with the response. An overview has been depicted
in Figure 3.2.

As an example, consider the three instances in Figure 3.10 which are used to create a
Clustering. These first two requests have in common that both have the drink argument
to the get parameter, while the third request has a different argument to this parameter.
Notice that both responses of the first two requests have different types from the third
request, namely the top-level Type is a Record in one case and an Array in the other. A
Clustering is then created consisting of two Clusters: instances whose requests contain
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the parameter-argument pair get=drink and the subset whose requests do not. Note
that while the first and third request also have a commonality, type=espresso, but the
types of the responses show less similarity. In this case no more Clusters are made
because splitting either of these Clusters further does not yield a (sufficiently) different
Type compared to if they are not split further.

{
"name" : "Normal Espresso",

"price" : 0.26

}

(a) Request: get=drink&type=espresso

{
"name" : "Normal Cappuccino",

"price" : 0.26

}

(b) Request: get=drink&type=cappuccino

[

{
"name" : "Normal Espresso",

"price" : 0.26

},
{

"name" : "Premium Espresso",

"price" : 0.52

},
{

"name" : "Decaf Espresso",

"price" : "Not available"

}
]

(c) Request: get=variations&type=espresso

Figure 3.10: Three requests and their JSON responses

The issue that clustering deals with is that the data we work with is heterogeneous,
because we do not manually segment the traffic logs. Then, the type computed from a
heterogeneous set of instances, using Single Type Inference, covers a wide range of se-
mantic concepts. Another issue is that, when semantically unrelated instances are fused
together, the assumptions that the heuristics of the fusion algorithm are based on do no
longer hold. Compared to a type from Single Type Inference, the number of root types
increases from 1 in total to 1 per cluster, the overall size of the type thereby increases,
but each individual sub type is smaller. A Cluster prescribes Conditions that hold for all
instances that it contains. (These conditions are not pre-defined, but determined as we
go, which is called refinement of the clusters.) Identifying suitable conditions, which
in our case is identifying which API operation an instance belongs to, is the largest
challenge for clustering.

The main goal of this section is the explanation of clustering refinement (Section 3.7.4),
but that first requires explaining three things, in the upcoming three sections. Firstly,
that we consider clustering successful when it is able to identify API operations. Sec-
ondly, how similarity of two types is calculated, which we use to determine which types
should be clustered together. Thirdly, the clusters must be based on certain keywords
that must be present in the query of the request (called Conditions) that yielded the
types of the responses, and we use a simple strategy to select potentially good con-
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ditions. After that, we explain how refinement works, which is the act of turning a
Clustering into a more precise Clustering.

3.7.1 Clustering by Operation

For our research, ideally one cluster is formed by instances of one operation of a given
API. It then only contains instances of a single operation. We define an operation as
a unit of functionality that, from the programmers perspective, does one single thing,
but can be applied to different (sets of) arguments. In our previous example, we can
say that one operation is to get details on one type of drink, and the other is to list all
variations of a type of drink. Parameter-argument pair get=drink is that first operation,
and type=espresso and type=cappuccino are arguments to this operation. From a
programmer’s perspective, an API specification that makes this explicit is semantically
meaningful, because one is typically interested in the argument-types and return-types
for a given operation. (Additionally, this allows these clustered types to be encoded in
the openAPI format, which also segments an API into operations.)

Unfortunately, which part of a request indicates what the operation is that the re-
quest represents, is ambiguous. For example, consider the query ?operation=search &

title=hamlet. Through human interpretation we may identify that operation=search
is the operation, with the argument title=hamlet. There is however no standardisa-
tion in calling conventions, which makes it hard to identify this algorithmically. As a
result, clustering becomes a search algorithm over all possible partitions of the set of
instances. Some parts of a URL that may identify an operation are, among others: the
path, the existence of a parameter, a specific argument to such a parameter, the presence
of a URL parameters. Combination are also possible, such that the combination of two
parameters together identify an operation.

We rely on the following assumption to deal with this unknown. We assume that all
queries on a given operation return similarly typed responses regardless of the provided
arguments, and that queries on a different operation returns significantly differently
typed responses. With this idea we differentiate operations from arguments as follows:
All instances of one operation have similar types, and the different arguments in these
instances merely result in variations of the same type.

3.7.2 Similarity metric

Similarity of two Types is calculated through a similarity metric. We created a metric
that depends on our Type Inference algorithm and compares the sizes of inferred types.
It is used in the refinement step (Section 3.7.4) to assess how to refine a clustering. This
section only describes how the metric is computed, and later how it is used to refine
clusterings. The similarity of two types is zero for two completely dissimilar types, and
it is maximal (we chose 1.0) when two types are exactly the same.

For this section, we say that the size of a Type is the number of nodes, excluding
Sum nodes, in the graph that does not share nodes. With this we mean that nodes that
are shared, will not just be counted once, but counted multiple times. This is the same
as making a summation, over every node, of the number of paths from the root to that
node. Sum nodes are excluded because they do not represent nodes in JSON instances.
We denoted size with vertical bars |, such as |Type1|. For example, in Figure 3.11b,
|I| = 4.

Now, let Type1 and Type2 be two minimised types, and Type1+2 the results from
applying the Minimisation algorithm on the Sum type (Type1 + Type2) (that is, it is the
minimised supertype of the two). We can determine the range of the size that this type
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may have. We know that when Type1 and Type2 have high similarity, minimisation re-
moves more redundancy in Type1+2 than when they are dissimilar. The extreme case is
when Type1 is a subtype of Type2, then Type1+2 equals Type2, because fusing a supertype
with its subtype yields the same supertype. Therefore, Type1+2 can be no simpler than
the most complex of the two, and thus max(|Type1|, |Type2|) ≤ |Type1+2|. On the other
hand, if Type1 and Type2 are completely dissimilar, they can not be fused, and Type1+2
contains the full graphs of both types. Thus, Type1+2| ≤ |Type1|+ |Type2|. The growth of
the fused type relative to its lower bound is |Type1+2| −max(|Type1|, |Type2|). Because
|Type1+2| can never exceed |Type1|+ |Type2|, and max(|Type1|, |Type2|) is the minimum
size, the growth can never be more than the potential growth min(|Type1|, |Type2|). Dis-
similarity is then calculated by dividing the actual growth by the potential growth, that
is:

dissimilarity =
(|Type1+2| −max(|Type1|, |Type2|))

min(|Type1|, |Type2|)
Intuitively speaking, this measures the growth that occurs if two types were fused to-
gether. We define similarity as 1 minus the dissimilarity.

For an example, see Figure 3.11. In Figure 3.11a, the Types labelled C and D share
more similarity than E and D. Figure 3.11b shows the fused type of C and D, and Fig-
ure 3.11c shows the same for E and D. Type E has size 2, C and D have size 3. Type I

has size 4, and N has size 4. Then, for the two similar types we have dissimilarityCD =
4−3

3 = 0.33, and for the dissimilar types we have dissimilarityED = 4−3
2 = 0.5. Note that

the goal is to maximise similarity within a cluster, but to minimise similarity between
clusters.

A : Text

B : Number

C : Record
name

price

D : Record
name

price

E : Record calories

(a) Input

A : Text

B : NumberG : Sum

I : Record

name

price

(b) Output similar types

A : Text

B : Number

N : Record

name?

price?

calories?

(c) Output dissimilar types

Figure 3.11: Similarity Example

3.7.3 Filters and candidate selection

The syntax for a Filter indicates that it is a conjunction of a number of Conditions. A
Filter is evaluated with an Instance, and we say that an instance matches a Filter if
the request of the instance matches all Conditions of the Filter. A request matches a
Condition if using the following rules. If the condition is of the form Stringk1 : Stringv1,
then it matches any request whose query contains Stringk1 = Stringv1. If the condition
is of the form Stringk1 : ∗, then it matches any request whose query contains Stringk1
or, for some arbitrary other string, Stringk1 : stringv2. If the condition is of the form
!Condition1, then it matches any request for which Condition1 does not hold.
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Examples of a filter that evaluates to true for all coffee machine examples (Fig-
ure 3.10) is Filter(get:* & type:*) and one that only evaluates to true for two
of the examples is Filter(!get:variations & get:drink).

A complete search for a clustering would entail computing every possible cluster-
ing. Instead of that, clusterings are only computed for a selection of filters, to mitigate
the combinatorial explosion. By picking filter candidates from the request part of an
instance (as opposed to the response part), it is prevented that multiple types are gener-
ated for a single operation. Our approach for selecting filter candidates is as follows:

• frequently occurring key-value pairs are candidates for conditions of the form
Stringk : Stringv in a filter.1

• frequent keys are candidates for conditions of the form Stringk : ∗ in a filter.2

• If a filter with some key-value pair yielded good clusters (explained further in the
upcoming Section 3.7.4), we extend the candidates with this key. For example if
get:drink was successful, then get:* and get:variations also become candi-
dates in the next refinement iteration.

In each iteration of clustering (that is, each refinement step), a procedure is executed to
find a list of candidate filters, that satisfy these requirements.

3.7.4 Refinement

Finally, the heart of the clustering algorithm is the refinement of a Clustering, which
is the process of splitting existing clusters into more, and more specific, clusters. The
refinement algorithm takes as input a Clustering that needs refinement, and returns a
Clustering that is fully refined (that is when further refinement does not improve the
result). For example, say we have some Clustering:

[F(get = drink)→ (Type1 + Type2), F(!get = drink)→ (Type3 + ... + Typen)]

The second cluster in this clustering may be refined, giving the following:

[F(get = drink)→(Type1 + Type2),
F(get = snack)→ (Type3 + ... + Typem),
F(!get = drink & !get = snack)→ (Typem+1 + ... + Typen)]

This happens if (Type3 + ... + Typem) is sufficiently dissimilar from (Typem+1 + ... +
Typen).

To perform clustering from a set of instances, we initially make a trivial Clustering
using all provided instances, consisting of one cluster: [Ftrue → (Type1 + ... + Typen)]
where Ftrue is a filter that always evaluates to true and (Type1 + ... + Typen) are the
Types of the responses of each individual instance. Refinement works by repeatedly
selecting the “best” new Condition from a number of candidates, which is used to split
the current Cluster further. The iterative process works as follows.

At the start of each iteration we have a Clustering, of which some clusters are marked
final and some are not. A cluster has a final mark if and only if refining it yields no
improvement, and therefore only clusters without this mark are further refined in an
iteration. In the first iteration no clusters are marked as final (and the algorithm will
halt when they all have a final mark).

1limited by the parameter n f ilter, see Section 4.1
2toggled by the parameter key filters, see Section 4.1

30



3.7. CLUSTERING CHAPTER 3. METHOD

An iteration handles one cluster, say F(Condition1 & .... & Conditionm) → (Type1 +
... + Typen). The first step in each iteration determines candidate filters, as described
in Section 3.7.3. These are determined from those instances of which the types in the
current cluster were inferred. From these candidates, the “best” one is determined as
follows. For each candidate, Conditionm+1, the cluster is split into one with the new
filter and one with the negation of that filter . These form new clusters, respectively
F(Condition1 & ... & Conditionm+1) → T+ and F(Condition1 & ... & !Conditionm+1) →
T−, where T+ and T− represent the type of the (non-overlapping) set of instances that
match those filters. Both T+ and T− are subsets of set {Type1, ..., Typen}. Then, the
similarity between T+ and T− is calculated. From all candidates, the one that yields the
highest dissimilarity is picked. Then, if and only if the dissimilarity is higher than some
thresholdd, the cluster is accepted, and the two clusters are added to the Clustering,
replacing the current one. Otherwise, the only change to the Clustering is that the
current cluster is marked final.
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Chapter 4

Evaluation

The goal of evaluating our method is to assess how well it works when applied to
actual data. Because we want to evaluate its use on actual data, we obtained datasets
from existing web services, although we had to generate our own traffic to them. The
implementation is evaluated by tests that execute (parts of) our implementation and
gather results. We first describe our implementation, then describe the results, and
finally discuss these results in the context of our research questions, as a set-up to the
conclusion in the next chapter.

4.1 Implementation

4.1.1 Architecture

We made an implementation of the type inference, minimisation, and clustering algo-
rithms in Java1. We used the Justify library2 for creating a serialisation of Types from
our type system in JSON Schema, and for schema validation/type-checking. We used
the Jackson library3 for parsing JSON files.

Our type system is implemented as an abstract class called Type, with subclasses for
specific types. We implemented Collection types as having references to other Types,
forming a graph of Types. We added a Universe class, which holds a closed set of
Types, and the Root Types, as to make looking-up specific types easier than traversing
the graph. The methods that implement the algorithms of our method then take a
(mutable) Universe object as argument, to which they apply the transformations.

One important difference between the described method and the implementation is
that the method states that an Array has a single child Type, but the implementation al-
lows Arrays to have multiple children. In the implementation of Fusion, heterogeneous
Arrays are transformed into Arrays with a single Sum type that contains the children
of the original heterogeneous Array. This allows the Fusion of the children of Arrays,
just like described in our method. This difference does not change which types can
be expressed, because an Array with multiple children has the same semantics as an
Array with a single Sum type with these children. Therefore, when Type Inference and
Clustering are executed as a whole, the schemas that the implementation outputs still
conform to the description of the method. Still, it causes a discrepancy in our “interme-
diate” results, when only Initial Type Inference, or only Initial Type Inference together
with Merging, are applied, because in the implementation these still allow Arrays to
have multiple children, while addition of Fusion removes Arrays of that form.

1https://github.com/willemsiers/apispec_learner
2https://github.com/leadpony/justify (accessed 24th July 2019)
3https://github.com/FasterXML/jackson (accessed 24th July 2019)
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4.1.2 Parameters

The implementation is configured by a number of parameters. These have significant
effect on the execution of the algorithms, and therefore on the results as well. They give
the implementation flexibility so that it can be adapted for learning specifications for
different APIs. Below we list important ones we implemented.

• In filter candidate selection, n f ilter is the maximum number of conditions of the
form key:value are considered per clustering refinement iteration.

• In filter candidate selection, the boolean key filters determines whether or not
conditions of the form key:* are also considered. In our experiments this is always
true.

• For clustering refinement, the threshold between 0 and 1 indicates how dissimilar
types must be in order for the new clustering to be accepted. Generally, a higher
threshold creates fewer clusters.

• The heuristics that determine whether types are fused (as described in Section 3.6.1)
give rise to the following parameters :

– The threshold for # of keys in a Record.

– The threshold for # of optional keys in a Record .

– The threshold for # of optional keys
# of keys .

– A boolean to indicate whether or not children must be equal types.

– The set of patterns that are allowed for Map keys.

When we do not mention the values of all parameters in the upcoming results, we
use some defaults that were chosen by trying out several values, and settling on those
that gave decent results. These default values are n f ilter = 10, key filters=true, thresh-
old=0.85. The values we used for the parameters of the heuristics were already given in
Section 3.6.1.

4.2 Input datasets

This section describes our two datasets and our method of obtaining them. We have a
dataset based on the OMDb API, and a dataset based on the Wikipedia API.

4.2.1 Datamining method

We intended to obtain datasets from network traffic logs. Although we assume that these
are easily obtainable for owners of a server, we did not have access to one. Therefore,
we used a different method. Our approach relies on doing requests from the client side
and receiving the response from the server. Each request-response pair becomes one
item in our dataset.

Gathering request URLs

We obtained an initial set of possible requests by looking at documentation.
For OMDb, we looked at the API specification, which lists two methods and their

parameters, for which we manually created some request URLs.
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For Wikipedia, the documentation page4 was scraped for all examples of API request
URLs. This yielded 413 URLs, of the ”Main Module” of the API. These do not cover the
complete Wikipedia API.

Fuzzing

Because the gathered set of URLs is very incomplete, most combinations of parameters
are used only once. For example, the request string ?action=query &prop=templates

&titles=Main Page is contained in the set of URLs. It is a single example of how the
query method is used, while in practice this method will be called with many different
values for prop and titles.

To mitigate this problem, we expanded the set of URLs with fuzzing. To generate
our full set of requests, we started with a initial set of requests and applied a simple
fuzzing technique. This fuzzing technique analyzes the URL parameters of the provided
requests, and adds extra requests for combinations of these parameters, as well as some
additional values we provided. Note that we do not alter the response, but rely on the
server to provide it for us based on the query. Therefore, illegal requests will still yield
a valid entry in our dataset.

Fuzzing altered the requests sufficiently to provide us with responses that were
structurally different from those we saw in our initial dataset.

4.2.2 Description of datasets

Here we briefly describe our datasets. The OMDb dataset consists of 258 instances, and
the Wikipedia dataset consists of 17676 instances.

OMDb

The Open Movie Database5 (OMDb) REST API provides access to a user-contributed
database of movies information. The page list two methods, one retrieving information
by either movie title or movie ID, the other for searching movies based on keywords.
There are a total of 8 parameters, and for each parameters we provided some possible
arguments such as movie titles, ids, and years, to enable fuzzing. The API is small and
many JSON responses are structurally similar to each other. Notable is that primitive
values are presented as strings, such as "True" and "1999", instead of true, and 1999.

Our OMDb dataset has 258 instances and provides a rather complete view of the
possibilities of the API.

Wikipedia

Wikipedia is an online encyclopedia running on the MediaWiki server software. The API
of MediaWiki6 provides a large set of operations, most of which are informally described
in their documentation. Unfortunately, the large number of options of the API are not
well-structured and responses also vary wildly in structure for small changes in options.

We started with an initial set of 413 request URLs that where scraped from examples
on their documentation page. For a number of parameters we manually provided extra
possible arguments which were used for fuzzing. The final Wikipedia dataset has 17676
instances, but does probably not provide a complete view of the API.

4https://en.wikipedia.org/w/api.php?action=help&submodules=true&recursivesubmodules=

true&toc=true (Last accessed 14th August 2019)
5http://www.omdbapi.com (Last accessed 14th August 2019)
6https://www.mediawiki.org/wiki/API:Main_page/en (accessed 14th August 2019)
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4.3 Results

4.3.1 Sizes of the output of Type Inference

Tables 4.1 and 4.3 list the sizes of the inferred types for Multi Type Inference. The sizes
are listed separately as the number of nodes as well as the number of edges. Note that
it counts unique nodes: total is the total of unique nodes that all root types have, avg
is the average number of unique nodes per root type, and max is the highest number of
unique nodes in one of the root types. Therefore, avg is not calculated by dividing the
total by the number of root types. We differentiate three phases, which illustrates how
the progression of our algorithm progressively changes the size of types. The output of
each phase (the set of types) becomes the input of the next phase.

The output of the first phase is the set of types after executing Initial Type Inference.
Note that after the initial phase, the number of root types equals the number of instances
in the dataset because every instance gets a root type. The second phase (repeatedly)
applies the bottom-up merging algorithm (Section 3.5) so that all equivalent types are
merged. This decreases the number of nodes and edges. The number of root types also
decreases, if and only if two root types are completely equivalent. The third phase ap-
plies the full type minimisation algorithm repeatedly, which consists of the bottom-up
merging algorithm and the top-down fusion algorithm (Section 3.6). For the Wikipedia
dataset, this decrease the size. Note that in this case the maximum size decreases con-
siderably more than the average size. For the OMDb dataset, this does not decrease the
sizes, because its instances are structured very uniformly.

Tables 4.2 and 4.4 list the sizes for Single Type Inference. It is computed by creating
a Sum type of all root types in phase 3 of the preceding tables, and then applying the
minimisation algorithm.

# unique nodes # edges # root types

1) Initial
total 7567 7309 258
avg. 29.329 28.329
max. 64 63

2) After Merging
total 9 77 5
avg. 3.0 15.4
max. 4 30

3) After
Merging +
Fusion

total 9 64 5
avg. 3.0 12.8
max. 4 28

Table 4.1: OMDB Sizes of types from Multi Type Inference

# unique nodes # edges # root types
4) Single type total 4 9 1

Table 4.2: OMDB Sizes for Single Type Inference
.
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# unique nodes # edges # root types

1) Initial
total 5829617 5811941 17676
avg. 329.80 328.80
max. 95193 95192

2) After Merging
total 11727 138399 3555
avg. 9.72 38.93
max. 212 4866

3) After
Merging +
Fusion

total 9080 67097 2808
avg. 9.45 23.89
max. 108 526

Table 4.3: Wikipedia Sizes of types from Multi Type Inference

# unique nodes # edges # root types
4) Single type total 54 94 1

Table 4.4: Wikipedia Sizes for Single Type Inference Wikipedia
.

4.3.2 Sizes and Filters of Clustering

Table 4.5 lists the clusters that were computed for the OMDb dataset, and Table 4.6
shows those for the Wikipedia dataset. In this test we provided our implementation
with the OMDb dataset and the full Wikipedia dataset It determined 3 clusters for
OMDb and it determined 14 clusters for Wikipedia. Each row in the table corresponds
to a cluster, showing the filter, then the size of the cluster type, and the number of
instances that match this cluster, and finally the dissimilarity that this filter achieved.
Because our algorithm selects the filters with the highest dissimilarity, the table only
lists those filters that had the highest dissimilarity. Note that there is no overlap in the
filters, and therefore the filter in a given row has the implicit condition that all filters in
other rows are excluded. For OMDb, the value of the clustering parameter threshold

was lowered, to 0.7. For the rest, the default values for parameters, as given in Section
4.1.2, were used.

Filter #Instances # Nodes #Edges Dissimilarity
F(r:xml) 5 1 0 1
F(!r:xml & s:*) 76 4 10 0.7272
F(!r:xml & !s:*) 146 4 30 0.7272

Totals 227 9 40

Table 4.5: Clusters for OMDB
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Filter #Instances # Nodes #Edges Dissimilarly
F(action:query &

formatversion:2 &

prop:pageassessments)

66 12 21 0.94

F(action:query &

formatversion:2 &

!prop:pageassessments)

228 20 61 0.94

F(action:query

& prop:info &

generator:categories)

83 9 21 0.98

F(action:query

& prop:info &

generator:transcludedin)

83 9 20 0.97

F(action:query

& prop:info &

generator:templates)

84 9 22 0.96

F(action:query

& prop:info &

generator:redirects)

83 9 22 0.97

F(action:query

& prop:info &

generator:links)

85 9 24 0.96

F(action:query

& prop:info &

generator:linkshere)

83 9 22 0.96

F(action:query &

prop:info & generator:*)

640 10 30 0.96

F(action:query &

prop:info & !generator:*)

164 27 120 0.96

F(action:query &

!prop:info)

12242 43 104 0.88

F(action:templatedata

& titles:Template:Stub|

Template:Example)

4 8 12 0.86

F(action:templatedata &

!titles:Template:Stub|

Template:Example)

130 8 11 0.86

F(!action:templatedata) 2885 40 95 0.99
Totals 16860 222 585

Table 4.6: Clusters for Wikipedia
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4.3.3 Schemas of Type Inference

Types for OMDb

The results of applying Type Inference on the OMDb dataset results in 5 Root Types,
of which the schemas are shown in Figures 4.1 and 4.2. Schema 1 represents an Object
with only a Response and an Error field, Schema 2 represents an Object that has movie
details, Schema 3 represents search results which are contained in the Array at the
Search label, Schema 4 represents responses consisting of only a single string (in this
case, when the response is a string in XML format), and Schema 5 is the same as Schema
2 except that it has 5 extra properties (such as DVD and Website). Parts of the types are
shortened, indicated by ellipses (...). In Schemas 2 and 5, there are many more properties
that have string as their type (which can still be found in the required field), and therefore
we shortened the properties object. Array types are also shortened, because in this case
they were homogeneous, but the same type occurred more than once (for example, in
the Ratings property in Schema 2). The fact that homogeneous arrays have multiple
entries is addressed when beside Merging, Fusion is also applied. The only difference
in the OMDb schemas that adding Fusion makes is that the arrays only have single
values, which causes a decrease in the number of edges, while the number of nodes
stays constant.

{
"$id": "C",

"type": "object",

"properties": {
"Response": {

"$id": "BBA",

"type": "string"

},
"Error": {

"$id": "BBA",

"type": "string"

}
},
"required": [

"Response",

"Error"

]

}

(a) OMDb Schema 1

{
"$id": "BBA",

"type": "string"

}

(b) OMDb Schema 4

{ "$id": "DGE",

"type": "object",

"properties": {
"imdbID": {

"$id": "BBA",

"type": "string"

},
"Response": {

"$id": "BBA",

"type": "string"

}, ... ,

"Ratings": {
"$id": "BDF",

"type": "array",

"items": [ {
"$id": "BCY",

"type": "object",

"properties": { ... },
"required":["Value","Source"]

}, ... ]

}
},
"required": [

"Released", "totalSeasons",

"Metascore", "imdbID",

... ]

}

(c) OMDb Schema 2

Figure 4.1: OMDb Schemas Multi Type Inference (part 1/2)
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{
"$id": "BDQ",

"type": "object",

"properties": {
"imdbID": {

"$id": "BBA",

"type": "string"

},
"Response": {

"$id": "BBA",

"type": "string"

}.
"Ratings": {

"$id": "BDF",

"type": "array",

"items": [

{
"$id": "BCY",

"type": "object",

"properties": {
"Value": {

"$id": "BBA",

"type": "string"

},
"Source": {

"$id": "BBA",

"type": "string"

}
},
"required": ["Value","

Source"]

}, ... ]

}
},
"required": [

"Metascore", "BoxOffice",

"imdbVotes", "Ratings",

"Runtime", "Language",

"DVD", "Website",

... ]

}

(a) OMDb Schema 5

{
"$id": "BCH",

"type": "object",

"properties": {
"Response": {

"$id": "BBA",

"type": "string"

},
"totalResults": {

"$id": "BBA",

"type": "string"

},
"Search": {

"$id": "BCE",

"type": "array",

"items": [

{
"$id": "BBF",

"type": "object",

"properties": {
"Type": {

"$id": "BBA",

"type": "string"

},
"Year": {

"$id": "BBA",

"type": "string"

},
"imdbID": {

"$id": "BBA",

"type": "string"

},
"Poster": {

"$id": "BBA",

"type": "string"

},
"Title": {

"$id": "BBA",

"type": "string"

}
},
"required": [

"Type",

"Year",

"imdbID",

"Poster",

"Title"

]

}, ... ]

}
},
"required": [ "Response", "

totalResults", "Search" ]

}

(b) OMDb Schema 3

Figure 4.2: OMDb Schemas Multi Type Inference (part 2/2)

Additionally, Figure 4.3 shows the schema resulting from Single Type Inference. This
single schema represents the supertype of all previous schemas, 1 to 5.
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{ "$id": "KFH",

"anyOf": [

{ "$id": "KFL",

"type": "object",

"required": [],

"patternProperties": {
"(?=^[a-zA-Z]+$)": {

"$id": "KFN",

"anyOf": [ {
"$id": "BBA",

"type": "string"

},
{ "$id": "KFS",

"type": "array",

"items": [ {
"$id": "KFU",

"type": "object",

"properties": {
"Type": { "$id": "BBA", "type": "string" },

"Year": { "$id": "BBA", "type": "string" },

"imdbID": { "$id": "BBA", "type": "string" },

"Poster": { "$id": "BBA", "type": "string" },

"Value": { "$id": "BBA", "type": "string" },

"Title": { "$id": "BBA", "type": "string" },

"Source": { "$id": "BBA", "type": "string" }

},
"required": []

} ]

} ]

} }
},
{

"$id": "BBA",

"type": "string"

}
]

}

Figure 4.3: OMDb Schema Single Type Inference

Excerpts of Types for Wikipedia

Figure 4.4 shows (a shortened version of) two schemas that result from Multi Type
Inference without Fusion. They are nearly identical schemas as both contain a pages
Object, which lists pages that are the response to a query. In both excerpts, the page
Object has the same type (with id FPVEK), but the parents have different Types due to
this page Object being referred to by different keys, 14640471 and 27680 respectively.
This causes a large number of seemingly duplicate and equivalent schemas, in which
only the key in the page Object differs.

The merging algorithm does not merge the types further because they have different
keys, but, as Figure 4.5 shows, the Fusion algorithm identifies that the pages objects can
be more accurately described as a Map type by using a patternProperties field.
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{
"$id": "FQCIU",

"type": "object",

"properties": {
"query": {

"$id": "FQCIT",

"type": "object",

"properties": {
"pages": {

"$id": "FQCIS",

"type": "object",

"properties": {
"14640471": {

"$id": "FPVEK",

...

}
},
"required": [ "14640471" ]

}
}

}, ...

}
}

(a) Wikipedia Schema 1

{
"$id": "JEZLN",

"type": "object",

"properties": {
"query": {

"$id": "JEZLM",

"type": "object",

"properties": {
"pages": {

"$id": "JEZLL",

"type": "object",

"properties": {
"27680": {

"$id": "FPVEK",

...

}
},
"required": [ "27680" ]

}
}

}, ...

}
}

(b) Wikipedia Schema 26

Figure 4.4: Wikipedia Schemas Multi Type Inference, without Fusion

{
"$id": "GUHLY.schema.json",

"type": "object",

"properties": {
"query": {

"$id": "FPVEM.schema.json",

"type": "object",

"properties": {
"pages": {

"$id": "LTDHW.schema.json",

"type": "object",

"patternProperties": {
"(?=^ -?\\d+$)": {

"$id": "FPVEK.schema.json",

...

}
}

}
}

}, ...

}
}

Figure 4.5: Wikipedia Schema 172, Multi Type Inference, with Fusion

4.3.4 Schemas of Clustering

In Section 4.3.2 we have shown the sizes of the clusters that were computed, as well
as the filters that correspond to each of the clusters. Now, we give the corresponding
schemas that were produced. We only show the clustering for OMDb, and not for
Wikipedia, due to its large size. We therefore show all schemas of the clustering of this
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dataset.
Figures 4.7, 4.8 and 4.6 show the JSON schemas corresponding to the clusters. The

captions of each subfigure indicates the Filter that the schema belongs to. For additional
illustration, Figure 4.8b shows one of the instances that is contained in the cluster of
Figure 4.8.

The first cluster corresponds to requesting data in an XML format, as can be seen
from the filter. The type of the response is then a string (in XML format). The second
cluster corresponds to the operation of performing a search query, as indicated by the
presence of the s(earch) parameter in the Filter. This operation returns an array of movie
results. Lastly, the third cluster corresponds to requesting movie details for one movie,
which is indicated by the lack of the s parameter, which according to the API reference
implies the presence of an i(d) or t(itle) parameter. This operation returns an object that
represents a movie, with many optional fields.

{
"$id" : "AMMB.schema.json",

"title" : "AMMB",

"type" : "object",

"properties" : {
"Title" : { "type" : "string" },

"Response" : { "type" : "string" },

"Error" : { "type" : "string" },

...

,"Ratings" : {
"$id" : "AIIE.schema.json",

"type" : "array",

"items" : [ {
"$id" : "SDJ.schema.json",

"type" : "object",

"properties" : {
"Value" : { "type" : "string" },

"Source" : { "type" : "string" }

},
"additionalProperties" : false ,

"required" : [ "Value", "Source" ]

} ]

}
},
"additionalProperties" : false ,

"required" : [ "Response" ]

}

Figure 4.6: OMDb Schema of cluster 3 (!r:xml & !s:*)
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{
"$id" : "SCU.schema.json",

"title" : "SCU",

"type" : "string",

"additionalProperties" : false

}

Figure 4.7: OMDb Schema of cluster 1 (r:xml)

{
"$id" : "AMLD.schema.json",

"title" : "AMLD",

"type" : "object",

"properties" : {
"Response" : {

"type" : "string"

},
"totalResults" : {

"type" : "string"

},
"Search" : {

"$id" : "AIIG.schema.json",

"type" : "array",

"items" : [ {
"$id" : "BGG.schema.json",

"type" : "object",

"properties" : {
"Type" :

{ "type" : "string"},

"Year" :

{ "type" : "string"},

"imdbID" :

{ "type" : "string"},

"Poster" :

{ "type" : "string"},

"Title" :

{ "type" : "string "}

},
"additionalProperties" :

false ,

"required" : [ "Type", "Year"

, "imdbID", "Poster", "

Title" ]

} ]

},
"Error" : {

"type" : "string"

}
},
"additionalProperties" : false ,

"required" : [ "Response" ]

}

(a) OMDb Schema of cluster 2, with example of
a matching instance

[ {
"input" : {

"s" : "pirates",

"apikey" : "113 dd685",

"plot" : "short",

"page" : "1"

},
"output" : {

"Search" : [ {
"Title" : "Pirates of the

Caribbean",

"Year" : "2003" ,

"imdbID" : "tt0325980",

"Type" : "movie",

"Poster" : "https ://..."

},
. . .

{
"Title" : "Pirates of Silicon

Valley",

"Year" : "1999" ,

"imdbID" : "tt0168122",

"Type" : "movie",

"Poster" : "https ://..."

} ],

"totalResults" : "308",

"Response" : "True"

}
}, {
. . .

},
. . .

]

(b) Example of one of the instance in cluster 2
(shortened)

Figure 4.8: OMDb Cluster 2 (!r:xml & s:*)
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4.3.5 Cross-Validation and Generalisation

The following results illustrate to which extent generated types contain values that were
not contained in the learning dataset. This indicates how well generated types generalise
over JSON values. To quantify this, we have used an existing JSON Schema checker (see
4.1) to count the number of instances that match a generated specification. These results
are obtained through repeated sub-sampling cross validation (also known as Monte-Carlo
cross validation). Hereby, a type is inferred from different, random, subsets of instances,
and validated using a different set of instances. These training and the validation sets
do not overlap. Table 4.7 and 4.8 show the results for respectively the OMDb dataset
and the reduced Wikipedia dataset7. The same test has been run for another schema
generator, called Schema Guru (further described in Chapter 5), for sake of comparison.
We compared with this tool because its type inference is similar to our research, and
it also takes multiple instances as inputs. Furthermore, the tool is published, easily
available, and a fully automated approach.

Column f shows the ratio of training data to validation data, on a logarithmic scale
(i.e. they range from 0.14 to 1.04). We chose to sample logarithmically because we
noticed that the values fluctuate most for small values (< 0.1) and less for larger values.
The calculation is repeated 100 times for each ratio, each time picking different subsets.
For Schema Guru it is repeated 10 times due to longer runtimes.

The column Correct % avg. shows the average percentage of instances (from the
validation set) that correctly type check with the generated specification (made from
the training set). This column shows an increasing trend as the ratio (f) increases. The
number of instances that correctly type checks is not strictly increasing because the size
of the validation set changes as the size of the training set changes, but the percentage
is increasing.

Note that for the rows whose values are marked with a star (?), the training set equals
the validation set, both containing of 100% of the dataset. This serves as to validation
that the specifications are complete, and thus will at least match all instances that it was
generated from.

7We reduced the Wikipedia dataset size to prevent Schema Guru from running out of memory on our
system, for very large inputs. The reduced dataset contains 3555 instances. To this goal, a pre-processing
step was applied to remove instances that had duplicate types according to our Type Inference algorithm.
This seemed a better method than simply taking some subset of the data, because that would could increase
skewness of the dataset.
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OMDB f f Correct Correct Training Validation
log4 % % avg % stddev # #

Current work

0.1 0.01 37.1 39.17 1 257
0.2 0.16 37.1 39.17 1 257
0.3 0.81 75.3 40.60 3 255
0.4 2.56 93.2 20.68 7 251
0.5 6.25 97.2 7.83 17 241
0.6 12.96 98.4 2.60 34 224
0.7 24.01 98.9 2.25 62 196
0.8 40.96 99.5 1.25 106 152
0.9 65.61 99.8 0.47 170 88
1.0? 100? 100? 0? 258? 258?

Schema Guru

0.1 0.01 2.8 6.94 1 257
0.2 0.16 2.8 6.94 1 257
0.3 0.81 37.7 33.65 3 255
0.4 2.56 54.0 23.71 7 251
0.5 6.25 80.7 18.03 17 241
0.6 12.96 86.7 8.44 34 224
0.7 24.01 92.8 9.05 62 196
0.8 40.96 94.8 5.06 106 152
0.9 65.61 97.9 1.30 170 88
1? 100? 98.0? 0? 258? 258?

Table 4.7: Generalisation results. Current work 100 repetitions, Schema Guru 10 repeti-
tions

Wikipedia f f Correct Correct Training Validation
(Reduced) log4 % % avg. % stddev. # #

Current work

0.1 0.01 0.006 1.42 1 3554
0.2 0.16 0.14 7.35 6 3549
0.3 0.81 12.04 537.83 29 3526
0.4 2.56 61.25 113.84 92 3463
0.5 6.25 76.23 51.55 223 3332
0.6 12.96 82.00 35.21 461 3094
0.7 24.01 85.77 20.85 854 2701
0.8 40.96 88.65 15.16 1457 2098
0.9 65.61 90.85 9.66 2333 1222
1? 100? 100? 0? 3555? 3555?

Schema Guru

0.1 0.01 0.04 0.89 1 3554
0.2 0.16 0.25 3.83 6 3549
0.3 0.81 1.63 8.41 29 3526
0.4 2.56 5.07 8.73 92 3463
0.5 6.25 8.95 16.56 223 3332
0.6 12.96 13.80 18.91 461 3094
0.7 24.01 18.67 19.83 854 2701
0.8 40.96 23.91 15.44 1457 2098
0.9 65.61 29.18 16.99 2333 1222
1? 100? 98.79? 0? 3555? 3555?

Table 4.8: Generalisation results. Current work 100 repetitions, Schema Guru 10 repeti-
tions
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4.3.6 Runtimes

The following figures show the runtime performance of our implementation, which is
the time it takes to run the Type Inference and the Clustering algorithms. Figure 4.9 and
Figure 4.10 illustrate the relation between the runtime of Type Inference and the size of
the input, split into Initial Type Inference and Minimisation, such that the sum of these
two runtimes is the runtime of Type Inference for that input size. Figure 4.11 illustrates
the relation between the runtime of Clustering and the size of its input. Figures 4.12
and Figures 4.13 illustrates the effect of two parameters on Clustering, respectively the
number of filters per iteration of clustering refinement (n f ilters), and the threshold for
dissimilarity that is used to accept or discard new clusters.

The defaults for clustering performance tests were different than those in the other
results, as follows: n f ilters = 8, threshold= 0.9, use keyfilters=true, inputsize=1024. For
clustering, 10 repetitions were used for each setting. For type inference, 100 repetitions
were used for each setting. We used average times, as the deviations between minimum
and maximum runtimes were small. In the Appendix, these runtimes are given in Tables
A.2, Figure A.3 and Figure A.1.

For the tests that compare runtimes for different input sizes (Figure 4.11, 4.9 and
4.10), we performed linear regression and power regression and found that results indi-
cate quadratic relation between size and runtime, rather than a linear relation. In these
figures, the functions that approximates the runtimes are shown by the dashed line.

The benchmarks were performed on a Ubuntu 16.04 system with an Intel 7700HQ
processor, 16GB RAM and an SSD, using 64-Bit OpenJDK 12.0.1, ran with JVM parame-
ter -Xmx10g to limit the heap size to 10GB.
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Figure 4.9: Runtimes of Initial Type Inference for several input sizes
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Figure 4.10: Runtimes of Minimisation for several input sizes
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Figure 4.11: Runtimes of Clustering for several input sizes
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Figure 4.12: Runtimes of Clustering for several n f ilter
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Figure 4.13: Runtimes of Clustering for several thresholds

4.4 Discussion

This section discusses the results as a way of answering research questions 2 and 3.
Research Question 2 (How useful are these automatically learned API specifications for formal
purposes?) is answered through the discussion points in Sections 4.4.1, 4.4.2 and 4.4.6.
Research Question 3 (How useful are these automatically learned API specifications for seman-
tic purposes?) is answered through the discussion points in Sections 4.4.6, 4.4.5, 4.4.4 and
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4.4.3. Not belonging to any particular research question is the discussion of the runtime
performance, in Section 4.4.7.

4.4.1 Completeness

To reiterate, for some input set, the method creates a complete specification for this
input, if and only it flags all inputs as correct. The validation results in Section 4.3.5,
specifically the rows marked with a star (?) (of the current work) in Tables 4.7 and
4.8, indicate that the generated specifications are complete. For these rows, the whole
dataset was the training set as well as the validation set. The specifications learned
from the complete dataset correctly check all instances in that dataset. It can not be
concluded that specifications are complete with respect to an API, because there may be
valid inputs that are not contained in the dataset. We do however conclude from this
data that for a complete dataset, it learns a complete specification.

4.4.2 Lack of Soundness

A type specification is sound if and only if all instances that match it are valid inputs
for the API. The following example illustrates that our type system is not sound. The
Type specification Number allows the decimal value 1.5, which is an invalid value for a
system that only supports integers. Because such an invalid input would be flagged as
correct by the specification, the type system is not sound.

For applications that only receive JSON data this does not form a large problem,
except that its programmers may have to consider a broader range of values than what
will be received in practice. On the other hand, it does hamper its usefulness for type
checking an application that sends JSON data, because type checking will then not
ensure that it sends valid data.

4.4.3 Effects of different parts of Type Inference

Applying Merging and Fusion decreases sizes of types significantly, based on the results
on the sizes of type inference (Section 4.3.1). Let us call the ratio between the size before
minimisation and after minimisation compression. This is calculated using the average
sizes, because the total sizes are largely influenced by the number of instances that
were used, and thus, the compression in terms of total size could be inflated to be
arbitrarily large by inserting duplicate instances into the dataset. The compression that
merging achieves on the average number of nodes is 29.329/3 = 9.8 for OMDb and
329.804/9.721 = 33.9 for Wikipedia. The compression on the average number of edges
is 28.329/15.4 = 1.8 for OMDb and 328.804/38.930 = 8.4 for Wikipedia.

For the results of Phase 3, when both merging and fusion are applied, the aver-
age number of nodes in both datasets remains mostly equal, compared to Phase 2, but
the average number of edges still significantly decreases. For OMDb, adding Fusion in-
creases the compression of the number of edges to 29.329/12.8 = 2.3, and for Wikipedia,
it increases to 328.80/23.89 = 13.8. This decrease is caused by representing Record with
many outgoing edges as Map types, and by the propagation of Sum types. It may also be
influenced significantly by the fact that in our implementation Arrays can have multiple
children, but these are removed in Fusion.

For Fusion it is also interesting to look at the maximum sizes. In Phase 3, the maxi-
mum number of nodes per type is reduced from 212 to 110, and the maximum number
of edges is reduced from 4866 to 531. The maximum decreases more than the average
decreases, and thus it seems that the largest minimisation occurs in types that are al-
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ready large. This is because map-like structures in types inflate the size a lot when they
are encoded as a Record.

4.4.4 The effect of clustering on sizes of types

We look at the results about the Type Inference Sizes and Clustering Sizes (Sections 4.3.1
and 4.3.2) to assess the effect of clustering on the sizes of the generated types, compared
to Single Type Inference. For this, we look at the sizes of clusters in Tables 4.5 and 4.6,
and compare them to the size of single types in Tables 4.2 and 4.4 where clustering is
not applied . The single type describes the same instances as all types of the clusters
combined.

Our hypothesis was, firstly, that a clustering would always be larger than the single,
minimised, type because they contain more redundancy due to increased precision, and
secondly that individual sizes of clusters would always be smaller than the single type
because they only describe a limited set of instances. However, the results disprove
the latter. The single type of OMDb has 4 nodes and 9 edges. The maximum number
of nodes among the clusters is 4, and the maximum number of edges is 30. Sizes of
individual clusters here are thus larger than the single type. On the other hand, the
total size of the clustering, 9 nodes and 40 edges, is indeed larger than the single type.

A slightly different observation holds for the Wikipedia dataset. The single type of
Wikipedia has 54 nodes and 94 edges, while the maximum of the clusters is 43 nodes
and 120 edges. In this case, all cluster types have fewer nodes, and most have fewer
edges, although some exceed the single type size. The sum of the cluster sizes is again
larger than the size of the single type, at 222 nodes and 585 edges.

The reason that our hypothesis is not supported by the results is a deficiency in
the current implementation of Fusion, namely that the heuristics are evaluated on in-
dividual cluster types only instead of the whole clustering. This is because we had to
disable Fusion during the clustering refinement as a workaround to a programming
error whereby we substituted Map types computed in the unrefined cluster into the re-
fined clusters. This caused the results to become extremely general, as the Map types are
already initially computed for the whole dataset and these are copied into the refined
clusters. The reason we substituted Map types from unrefined clusters into refined clus-
ters in the first place is that we need to preserve the requirement refined cluster types
are smaller than their unrefined type, which would otherwise be broken because the
heuristics could infer some Patterns in the unrefined cluster than could not be inferred
its smaller, refined clusters. The solution would be to only compute the Pattern for the
Map types in the unrefined cluster, and instead of fully substituting it, to compute the
actual Map type in the refined clusters, based on only its own instances.

From the results from Wikipedia we have some support to suggest that clustering
generates smaller individual types, at the cost of increasing the total size. So we can
conclude that clustering generates smaller individual types in some cases, but does
generally not hold for the current implementation.

4.4.5 The effect of clustering

This section considers the clustering results in Section 4.3.2. For OMDb, the three clus-
ters that were found were:

• parameter r has value xml. According to the API reference8, this parameter accepts
the values json and xml, which changes the response format accordingly.

8http://www.omdbapi.com
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• parameter s exists. The argument to this parameter is the search query for a movie.
Search is one of the two operations of the API.

• parameter s does not exist (this filter matches the remainder of the data). This matches the
other operation of the API that retrieves details of a single movie. This operation is
formed which is formed by the absense of the search parameter s, which implies
the presence of either a i or t parameter.

The API reference9 lists that there are two operations, search and get by ID or Title. Clus-
tering thus identified the two methods that are documented in the API reference. The
former is listed explicitly while the latter is only implied by the absence of the s(earch)
parameter. A third operation was identified, which is not listed in the API reference,
namely the one formed by the format parameter r. This is caused by the fact that a
response in XML format gets a very different type than a response in JSON format,
namely a string type. All operations of the API were thus found, with one additional
operation. Therefore, the generated specification is not equavalent to the reference, but
it could be argued that the format parameter has such a significant effect on usage of
the API, that explicitly listing it as a separate operation may be a welcome addition.

14 clusters were found for Wikipedia. While for this API it is less trivial to deter-
mine the number of supported operations, a glance at the documentation reveals that
this clustering does not provide a good view of the whole API. For example, our cluster-
ing suggests that the action parameter takes as argument either query or templatedata,
and leaves the rest unspecified. The reference lists 78 possible arguments for this pa-
rameter alone, while, intuitively speaking, the argument to this parameter determines
the operation. The cause for not finding many operations is the used configuration. De-
creasing the dissimilarity threshold would yield more clusters, but when we inspected
those results it would have the opposite problem of finding too many filters. It would
then create separate clusters for each individual title of a Wikipedia article that a re-
quest was done for, because the responses are considered different types because the
title of the article is used as keys in the objects. The Fusion algorithm is in fact what
is supposed to resolve this issue, but because we disabled Fusion during the clustering
iteself (as was explained in Section 4.4.4), it was unable to detect that the responses of
an operation have the same type when the argument to the title argument varies.

4.4.6 Generalisation of specifications

Results of cross-validation were shown in Section 4.3.5. Looking at the relation between
training ratio f and the ratio of correctly checked instances in Tables 4.7 and 4.8 we
notice that a high ratio of correctness is achieved for rather low training ratios. For
example, in the OMDb table, a higher than 90% correctness is achieved for a training
percentage of only 2.56%. In the Wikipedia table, 90% correctness requires a training
ratio of 65.61%.

However, for no training ratio that is not 100% did it reach 100% correctness. This
is due to the many repetitions of repeated random sub-sampling, in which it is likely
that in some repetition the training set misses an instance that has a unique type. This
suggests that from incomplete data our method does not create specifications that cap-
ture an entire API. We can speculate however that in practical application it may still
generate specifications that capture the entire API because a dataset will likely contain
at least one instance that is representative for some type. The limitation in terms of
generalisation can thus be attributed to missing edge cases, but our results suggest that
it does generalise strongly over instances.

9http://www.omdbapi.com
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Based on Tables 4.7 and 4.8 we compare our method with Schema Guru in terms
of generalisation. The correctness ratio for Schema Guru are structurally lower than
those for our approach, for a given training ratio. For the OMDb dataset it achieves
a correctness ratio that is close to the that of our method, when using a large enough
training ratio of 65.61%. The values are much lower for the Wikipedia dataset, where at
a training ratio of 65.61%, it only correctly matched 29% of the instances. Also notable,
is that Schema Guru does not achieve a 100% correctness when trained with the same
set as the validation set (i.e. the last row of the tables). This means that this tool does not
produce complete results. The cause for this is that Schema Guru does not handle strings
as top level values, despite strings being valid JSON according to the specification. These
values are ignored, and therefore the schema does not describe these values. As a result,
it fails on those instances where the server responded with a string.

4.4.7 Runtime performance

From runtime results in Section 4.3.6, we already saw that there is a quadratic relation
between input size and runtimes. An interesting artifcact in Figure 4.11 shows that it is
not monotonic, considering that the runtime decreases between input size 213 and 214.
We think this is because of the combination of that different Filter candidates will be
considered for different input data, and that the input data is only randomised initially
but not between repetitions. To clarify, remember that only a selection of the most
common key-value pairs become Filter candidates. The most common key-value pairs
may change when input size is increased, and therefore a different best filter can be
found, resulting in a different clustering and a different runtime.

Our implementation was not optimised for performance, and clustering tests ran
within minutes and type inference tests within seconds. We do not expect that the
runtime complexity will be an issue in practice, even for reasonably complex APIs.
However, if the size of a network log used as input data increases much beyond the
sizes we used, it is advisable to use either a selection of the log, or optimise the current
implementation so that equivalent entries in the network log have limited effect on the
runtime.

52



Chapter 5

Related Work

This chapter discusses previous work related to our research, to place the current re-
search into the context of others. The first section provides a global outline, and sub-
sequent sections give more details on specific works. Finally, we provide a comparison
between previous works about schema inference and ours.

5.1 Outline

First, we discuss three JSON schema inference tools that are practical in use. While
these are limited in terms of handling multiple instances, they provide useful ideas for
improvement of other inference tools, and an idea of which user-friendly tools exist.

Next, the work by Ed-douibi et al. [11] seems most similar to ours in terms of its
goal, as it aims to generate full openAPI specifications of APIs. Their contribution of a
meta-model of openAPI, as well as a structured approach to populate these models, are
valuable.

Then there is an approach by DiScala and Abadi [10], which is based on functional
dependencies, and has a different goal. They generate normalised relational schemas,
for use in relational databases. Their goal was to improve over the work by Chasseur
et al. [9]. The technique by DiScala and Abadi [10], for finding relations between fields
in JSON data can be valuable for our clustering algorithm. Concerning their inferred
schemas, they are not suitable for our goal, because the schema does not capture the
structure of a JSON instance. Therefore it can not be used to, for example, decode or
type check a JSON response that an API returned.

In terms of methodology, the approach based on structural information, by Baazizi
et al. [2] resembles our work. It also has a fusion algorithm, which operates on ar-
ray types that are inferred in the initial schema inference phase. They show that their
approach successfully generates succinct types for 2 out of 4 datasets.

5.2 JSON Schema inference tools

There exist user-friendly web applications that determine a schema for a JSON docu-
ment. We first discuss two tools that use a single JSON instance to infer a JSON schema,
which limits these tools in their ability to infer a type that generalises over multiple
documents.
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5.2.1 Single instance inference tools

With the tool called Jsonschema.net1 a user creates a schema as follows. The user pro-
vides a JSON file for which a schema must be inferred. Then, they can specify options
such as the minimum and maximum of number types and whether or not to set the
uniqueItems flag for arrays. Note that these user-specified options are simply copied into
the schema, not inferred from the input. In the generated schema, the tool also popu-
lates the examples field of properties with the value of the field in the given JSON, and
also populates the title field for each subschema with the label that is used to reference
it. As the tool provides multiple options for how the schema should be built from the
given JSON, a good use-case for the tool is building a schema with some user-provided
knowledge of the data.

Quicktype2 is more advanced, but has a similar user-interface, where the user sup-
plies a JSON document. It additionally has (partial) support for features such as detect-
ing UUIDs, dates, and times in text values, as well as and enums. They also have an
option that infers maps, which, when all children of an object have equal types and the
property names appear to be map keys, replaces the properties field in the schema with
an additionalProperties field. They use a Markov model of property names in objects to
statistically distinguish map keys from object property names [15].

5.2.2 Schema Guru

Schema Guru is a tool that handles a set of JSON instances to create a single schema. It
is assumed that all instances are of the same type, however it has the option to segment
instances on a user-provided identifier. For example, the user can specify that instances
with the property "event" : "A" are separated from "event" : "B", thereby pro-
ducing two schemas. It uses the multiple instances to infer useful properties such as
lengths of strings, ranges of numbers, and recognises values that are formatted as, for
example, dates, IP addresses, and URLs. Furthermore, it detects enums. These are text
properties in JSON of which the value is always from a specified set of strings.

5.3 Relational schemas for semi-structured data

There is also work that creates relational schemas from semi-structured data (such as
JSON).

DiScala and Abadi [10] noted the shift from structured data towards semi-structured
data. This shift occurs due to developers shying away from the rigidity of the relational
model used in relational databases (RDBMS). Their method infers a relational schema
from semi-structured data, so that an RDBMS can be used to querying this data. In the
relational model, one field in the data can reference another piece of data. This allows a
database to be normalised. One advantage is that this de-duplicates data. Furthermore,
it imposes constraints on the data, because relations between data are made explicit.
This is in contrast with semi-structured such as JSON, which inlines all fields and allows
fields can be added or removed on a per-instance basis due to a lack of schemas.

Preceding their work, work by Chasseur et al. [9] yielded a proof-of-concept tool to
already create relational schemas from semi-structured data, called Argo. Their moti-
vation was that database systems that store JSON documents, lack a good query lan-
guage and ACID safety guarantees (measures that ensure, among others, consistency

1https://jsonschema.net and https://github.com/jackwootton/json-schema (accessed 24th July
2019)

2https://quicktype.io (accessed 24th July 2019)
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of a database), which are present in many RDBMSs. Their tool enables storing JSON
documents into a RDBMS, and it can be queried with the Argo/SQL language. This is
done by encoding JSON objects as 3-tuples (object-id, field-name, field-value), such that
each value in a JSON object becomes a row in the database. They show that relational
schemas can indeed be made from semi-structured data.

However, according to DiScala and Abadi [10], Argo does not facilitate data explo-
ration. They, similarly to the current research, then aimed to create a semantic schema.
They state that it is better not to rely on structural information to determine a schema,
because structure may be meaningless if structure can be changed arbitrarily (which is
the case in JSON). Instead, their encoding relies on finding functional dependencies be-
tween fields. For two fields A and B, A has a functional dependency on B if the value of
A sufficiently predicts the value of B. That is, if the following condition holds for some
threshold α: # of unique values of A

# of unique (A,B)pairs > α. Such fields together form a semantic entity, and,
because of their coherence, are put together in a separate table.

Their results are normalised relational schemas, which, according to their evalua-
tion, caught many meaningful attributes (which they determined manually). Counter
to their approach, our approach is based on structure. They already noted that a hybrid
approach that uses values as well as structural information will yield higher quality
schemas.

5.4 Structural schema inference

Baazizi et al. [2] also noted the lack of schemas for JSON datasets, and laments that
queries can not be statically checked and that the user can not benefit from structural
information to figure out the structure of a dataset. Their schemas do not aim to describe
relations in the data (for usage in an RDBMS), but instead describe the data structurally.
They created a type inference algorithm that captures irregularities in a set of JSON
instances, and creates a single type for it. They assume heterogeneous data, with at most
small variations. Important evaluation metrics they use are precision and succinctness of
the inferred schemas. These two metrics are a trade-off, but their target for succinctness
is: “small enough to enable a user to consult it in a reasonable amount of time, to get
knowledge on the structural and type properties of the JSON collection”. For assessing
succinctness, they measure number of distinct types, minimum, maximum and average
size of types (i.e. number of nodes in the AST), and size of the fused type. Their
evaluation used 4 datasets, and found succinct schemas for 2 of them. Similarly to our
research, their approach uses multiple examples of JSON instances to create a single
schema. Their approach consists of two parts, initial type inference and application of a
fuse operation.

5.5 Generating API specifications

The work of Ed-douibi et al. [11] focusses on a similar goal as us, that is discovering a
specification for a REST API from usage examples. They note the availability of Swag-
ger and openAPI but the lack of use of it. Instead, API documentation, if it exists, often
consists of informal documentation. Therefore, developers need to manually discover
how to call the API and how to encode a query and decode the response. Their solution
to make formal specification more widespread is to make it easier to create them. Their
approach consists of two parts, both accompanied by a meta-model: behavioral discov-
ery and structural discovery. The behaviour model lists operations on the API by their
path and parameters, and describes its response. The model is populated by extracting

55



5.6. COMPARISON CHAPTER 5. RELATED WORK

the information from examples. Parameters are detected in the path if it is a UID (i.e.
an integer or hexadecimal string), and query parameters are always added to the model
instance. Conflicts in parameter types are resolved by taking the most generic form, e.g.
if it can be an integer and a string, it becomes a string. If and only if the response is
JSON, the structural discovery is then started. The structural model is updated with
every example of a type that it sees.

5.6 Comparison

Table 5.1 compares features of different methods and tools. It compares the following
selected features:

Multiple It supports multiple instances as input
Heterogeneous It supports and handles heterogeneous input data
Semantics It attempts to generate semantically meaningful schemas
Structural The schemas describe the original structural
Subschemas Subschemas are identified
Patterns Support for detection of enums or patterns in values
Use case One potential use-case (among others)
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Use case
JsonSchema.net × × X X × × Building JSON Schema
QuickType × × X X X X Building JSON Schema
Schema Guru X X1 X X X × Advanced Schema inference
Argo [9] X × × × × × Storage in RDBMS
DiScala and Abadi [10] X X2 X × × X Semantic storage in RDBMS
Baazizi et al. [2] X X2 X X × X Schema inference on Big Data
Ed-douibi et al. [11] X X2 X X × X Building API specifications
Current work X X X X × X API specification from hetero-

geneous data

Table 5.1: Feature comparison of related work

1If user provides segments
2Limited/if user-guided
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Chapter 6

Conclusion

Firstly, the current research found a method to automatically generate type specifica-
tions for JSON based APIs. We have shown the type system of our specifications, the
algorithms to create them, and previous work on this topic. We did not find previ-
ous work that both preserved (our definition of) completeness and applied a form of
clustering to produce specifications.

Secondly, we assessed the usefulness of these specifications when employed in for-
mal applications such as static type checking. A limitation for formal application is the
lack of the soundness property, which means that using these specifications for type
checking may yield false positives. On the other hand, they do hold the completeness
property, which means that type checking will at least not yield false negatives. Ex-
perimental evaluation showed that it is complete with respect to its learning dataset,
and therefrom we conclude that if the dataset covers the whole API, that the specifica-
tion is also complete with respect to the API. However, an incomplete dataset may still
produce useable specifications because of the generalising ability of the specifications.
Experimental evaluation of our type inference algorithms found that the merging and the
fusion algorithms decreases the size of types significantly, which increases consiseness,
and thereby, readability of types. For the fusion algorithm, the increased consiseness
comes at the cost of precision. The clustering algorithm increases the overal size of a
type specification (because it consists of multiple constituent types), but its constituent
types are in most cases smaller than the non-clustered type. Thereby, clustering increases
precision of types at the cost of conciseness.

Thirdly, we assessed whether the specifications convey semantics of the API to a
programmer. One positive for the semantic aspect is that the merging algorithm identi-
fies recurring structures in the data and makes them explicit, by identifying equivalent
subgraphs within types, and making them shared by replacing them with references.
Another positive is that the fusion algorithm identifies semantically equivalent types
(according to a heuristic) and makes this fact explicit, by creating a supertype of these
semantically equivalent types and fusing common parts. The latter adds the risk of cre-
ating a type that is too general if the heuristics do not match the learning dataset, and
using it requires more care than the former. Another positive is that clustering makes ex-
plicit which specific types specific API operations return, although our evaluation found
that for only one of the two datasets, the result conforms to the reference specification,
but for the other it did not produce a great result. Clustering only works well if there is
a strong correlation between a request and the type of its response.

We conclude that our automated method can be of use for formal purposes, be-
cause completeness of specifications implies they can reliably detect typing errors in
a program, even though it should be taken as a serious consideration that the lack of
soundness prevents it from proving a program correct. The extent to which the gen-
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erated specifications convey semantics of APIs varies, but the techniques we present in
this thesis increase usefulness of specifications for programmers.

6.1 Limitations and Future work

Subtyping of Primitives

Schema Guru and Quicktype infer ranges in number values, lengths of strings, and
enums from string values. These are subtypes of primitive types. The current work sup-
ports explicit subtyping through Sum types and implicit subtyping occurs for Collection
types, but primitives are not there exists no subtyping for primitive values. One could
define subclasses for primitives, such as dates and ip-addresses, or integers and natural
numbers. A possibility is to apply automata learning as well as on primitive values, to
detect patterns in strings.

Heuristics and Map detection

The heuristics for introducing Sum types that we implemented were added based on
cases we encountered, where it seemed that the semantically meaningful type was not
inferred due to syntactical oddities. One could experiment with different heuristics.
One that could use some research is a heuristic that only introduces a Sum type or a
Map type if all children bare enough similarity. We currently only implemented this as
a boolean toggle (either children must be equal, or they do not need to be).

An alternative for Map detection is the method based on Markov model of property
names, as seen in QuickType. Although, unlike our method, this does not provide the
pattern for the property names, it is more flexible.

Extend instance model and support more aspects of requests

In the current model instance model we use, the availability of request data is lim-
ited. Only the query parameters and arguments are available. It does for example not
consider paths and the Hypertext Transfer Protocol method Currently, our clustering imple-
mentation does not support APIs whose operations are formed by the path of a request.
The meta model made by Ed-douibi et al. [11] could be used to capture all elements of
an OpenAPI specification.

Application on more APIs

Applying the current research on more APIs will yield more interesting results. A
limitation of our research was that obtaining API traffic data was more difficult than
expected. We had no access to suitable server-side request logs. Reasons include con-
fidentiality and lack of logging facilities. Another obstacle is that most traffic is end-
to-end encrypted, making it harder to intercept at the client-side. Also, we did not use
API requests that require authentication, and implementing support for this enables
application on more APIs.

Comparison with handmade specifications

It is interesting to compare results of our method to specifications that a human would
make. An experienced API designer or specification writer may make a specification,
and this is then to be compared to the results of our method. We expect that results
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would differ significantly, but it may yield useful insights into limitations of our method
that are valued by programmers.

Clustering

In terms of improving our current clustering approach, one can look at the following.
Calculate similarity of types using a different metric. For example, Tree edit distance

is used for comparison of trees [17]. It is the minimal number of tree-edit operations
(adding, removing and renaming nodes) required to transform one tree into another.
An alternative, type specific edit-distance needs to be devised, because tree edit distance
does not seem to match with similarity of types. That is, for example, renaming of a
node in a type tree can result in very different types, while still only having an edit
distance of 1.

Another possibility is to calculate a score for the clustering on a complete clustering.
Currently, the score is only computed for each refinement step, which may be limiting
compared to computing it for the total clustering.

One could also look into an approach in machine learning. We currently can not
do K-means (or X-means) clustering because we have no way to compute a number to
represent the position of a Type on a plane. Important features of types would need to
be devised so that such traditional clustering methods can be used.
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Appendix A

Tables of Runtime Performance

Initial Type Infer-
ence avg. [ms]

Minimisation
avg. [ms]

Clustering avg. [ms]

n=32 0.27 7.13 115.7
n=64 1.22 15.97 2085.7
n=128 2.45 27.65 4444.6
n=256 3.36 47.26 12838.8
n=512 28.48 246.84 40654.9
n=1024 65.22 611.97 63658.9
n=2048 211.82 1710.1 116052.4
n=4096 377.25 3351.29 260167.2
n=8192 836.85 8780.9 604805
n=16384 2092.08 19028.28 355776.4

Table A.1: Runtimes of Type Inference and Clustering for several input sizes.

n f ilters Runtime avg. [ms]
6 30589
8 64149
10 100998
12 123434

Table A.2: Runtimes of Clustering for several values of n f ilters

threshold Runtime avg. [ms]
0.1 144
0.2 139
0.3 114
0.4 111
0.5 108
0.6 85
0.7 50
0.8 36
0.9 23

Table A.3: Runtimes of Clustering for several thresholds
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