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CHAPTER 1 BACKGROUND 
 
Head and Neck Cancers (HNC) are well known to be aggressive tumours. The overall 5-year survival rate ranges 
between 42-77%, in respectively HNC stage IV and I[1]. Furthermore, locoregional control is limited to 50% in patients 
with locally advanced head and neck Squamous Cell Carcinoma(SCC)[2]. One of the possible treatment options for HNC 
is radiotherapy. Radiotherapy treatment planning is challenging in HNC, since Organs At Risk (OARs) are located close to 
targets and dose related side effects in this area have major effect on quality of life[3]–[5]. Currently, manual treatment 
planning is used to create clinical acceptable radiotherapy treatment plans. Treatment planning is a time consuming 
process, taking hours up to days for each patient[6]. In clinical practice, time is limited and it is shown that plan quality 
is correlated with time invested in an individual plan[7]. Furthermore, plan quality is dependent on the skills and 
experience of dosimetrists[6]. Automation in HNC radiotherapy treatment planning may improve plan quality[6], [8]. 
This can be achieved by using Machine Learning (ML)[9], [10].  
 
Chapter 1  provides background information about head and neck cancer, radiotherapy and machine learning. 
 
Chapter 2 describes the main content of this study: generating clinical acceptable machine learning based radiotherapy 
treatment plans for oropharyngeal cancer. 
 
1. Head and neck cancer 
 
1.1 Clinical presentation 

 
The prevalence of HNC is low compared to other cancer types, only 3% of all malignant tumours in the Netherlands are 
found in the head and neck region. This anatomical region reaches from the skull base to the clavicles[11].  Nowadays, 
HNC has an incidence of approximately 3000 in the Netherlands[12]. This is a notable increase of 50%,  compared to 
1990, which can be explained by a still growing and aging population[13], [14]. Therefore, it is expected that the HNC 
incidence will further increase in the future and more patients will need treatment.  
 
Patients with HNC can suffer from a painful tongue, sore throat, hoarseness, dysphagia and nose bleedings[15]. HNC 
can be further categorized by the anatomical area of origination of the tumour. An overview of HNC regions is shown in 
figure 1[16].  

 

Figure 1 Overview of head and neck cancer regions. The head and neck 
area can be subdivided into: salivary glands, paranasal sinuses, oral 
cavity, nasopharynx, oropharynx, hypopharynx and larynx.[16] 
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HNC can originate at the following sites, mentioned in decreasing incidence: oral cavity,  larynx, oropharynx, salivary 
glands, hypopharynx, paranasal sinuses and nasopharynx tumours[12]. These tumour sites include several anatomical 
structures [17]: 
 

 Oral cavity, including the upper and lower lips, buccal mucosa, the floor of the mouth, retromolar trigone, 
anterior two thirds of the tongue, hard palate and upper and lower gingiva  

 Larynx, including the glottic, the supraglottic or the subglottic area 

 Oropharynx, including the tonsils, tongue base, soft palate and the oropharyngeal wall 

 Salivary glands, including the large salivary glands (parotid gland and submandibular gland) and several small 
salivary glands 

 Hypopharynx, including the hypopharyngeal wall, lateral and medial piriform sinuses and postcricoid 

 Paranasal sinuses and nasal cavity, including the sinuses in bones of the head or in the nasal vestibule 

 Nasopharynx: Tumours originating from epithelial between soft palate, the base of the skull, the lateral and 
posterior pharyngeal wall 

 
The majority of malignancies in the head and neck region is SCC. Other HNC histology like adenocarcinoma, adenoid 
cystic carcinoma and mucoepidermoid carcinomas occur less frequent [18]. The risk of development SCC in the head 
and neck region increases by exposure to tobacco and alcohol[19]. Another risk factor for developing SCC is the Human 
Papilloma Virus (HPV)[20].  Noticeable, is that patients with oropharyngeal HPV positive tumours have a significant 
better prognosis compared to patients with HPV negative tumours[21]. Besides the HPV status, the tumour site and 
overall stage do significantly influence the prognosis [21].   
 
1.2 Diagnostics 
The diagnosis of HNC is usually performed by physical examination, nasopharyngoscopy, Computed Tomography (CT) 
and/or Magnetic Resonance Imaging (MRI). Physical examination is sufficient for superficial oral cavity tumours when 
depth infiltration is not present or doubted. Nasopharyngoscopy is used to determine superficial extension of tumours 
in the pharynx and mobility of vocal cords in laryngeal tumours. The choice between MRI and CT is dependent on 
tumour location and probable contraindications. In general, patients with tumours above the epiglottis undergo MRI. In 
case a partial or total larynx extirpation is considered for larynx cancer, MRI is indicated to determine cartilage invasion. 
Furthermore, a diagnostic Positron Emission Tomography (PET) scan is indicated when the patient is at high risk for 
distant metastasis[22].  

1.3. Treatment  
 
Curative treatment options for HNC include surgery, radiotherapy and systemic therapy. For patients with limited or 
early-stage disease (stage I and II), treatment with only surgery or radiotherapy is sufficient [23]. Patients with locally 
advanced tumours receive often a combination of these modalities to enlarge the local control and survival prognosis. 
Decisions for treatment are made in a multidisciplinary team, including surgeons, medical oncologists, radiation 
oncologists, radiologists and dentists. Both surgery and radiotherapy can be performed as primary treatment. There are 
no randomized controlled trials available to compare the results of both modalities[17][24]. In general, surgery is 
performed when resection margins of minimal 5 mm can be achieved without the risk of damaging critical structures. 
Radiation therapy can be employed concurrent with chemotherapy or additional to surgery[19].   
 
2. Radiotherapy 
 
2.1 Indications  
 
 Radiotherapy will be indicated when surgery is limited by anatomical extent of the tumour and function loss is likely. As 
an example, oropharyngeal cancer surgery may induce dysphagia, which may result in tube feeding dependency and 
has a major impact on quality of life[17]. Furthermore, primary radiotherapy should be considered for irresectable 
tumours, with the expectation of small resection margins (<5 mm) or in patients with limited physical performance. 
Adjuvant radiotherapy will be given if local tumour control is not expected since one or more of the following 
observations of the pathologist and/or the surgeon are present: [24] 

 lymph node metastasis with Extra-Nodal Extension (ENE) 

 small resection margins(< 5 mm) 

  irradical resection margins (<1 mm) 
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 macroscopic tumour residual 

 multiple lymph node metastasis  

 one or more lymph node metastases at more than 3 cm distance from the primary tumour 
Furthermore, adjuvant radiotherapy is advised when one or more of the following clinical presentations are observed 
by the pathologist and/or radiologist:  

 perineural extension 

 tumour cross section of more than 4 cm (cT3) 

 tumour growth in bone, cartilage or intracranial invasion (pT4)  

 irregular tumour growth in oral cavity tumours 
Radiotherapy of these latter mentioned indications will decrease the risk on a locoregional recurrence, however, 
patients and/or physicians can decide to renounce the adjuvant radiotherapy[25].  
 
2.2 Toxicity 
During and after treatment, patients can suffer from acute mucositis of the throat and mouth, alternation of taste, 
xerostomia, skin reaction, hoarseness and dysphagia. Some of these side effects will only be present during and a few 
weeks after treatment. However, some side effects,  like xerostomia and dysphagia are common late complications[17]. 
The risk of developing xerostomia seems highly related with  the dose on parotid and submandibular glands[26]. 
Furthermore, it is known that complication rates will increase when concomitant chemoradiation therapy is given [17]. 
Grading of xerostomia and dysphagia is based on subjective (dry mouth), functional consequences (impact eating 
pattern) and objective consequences (saliva production) and can be found in appendix A. 
 
2.3 Treatment preparation  
When an indication for radiotherapy is determined and both patient and physician agree on the treatment, treatment 
preparations start. First a mask is made, to immobilize the patient during the fractionated treatment course. Thereafter 
a CT scan and if indicated MRI and PET scans are acquired with the mask. The radiation oncologist delineates the target 
and subsequently planning technicians delineate the OARs. Then, a dosimetrist makes a treatment plan using clinical 
goals, see table 1[24].  Sufficient target coverage is reached when 98% of the Planning Target Volume (PTV) received 
95% of the prescribed dose (D98 ≥95%), according to the ICRU recommendations[27]. During treatment planning, the 
goal is to minimize the dose to OARs to reduce side effects while maintaining adequate target coverage. 
  

Table 1 Overview of clinical goals for multiple ROIs used in 
radiotherapy treatment planning[24], [28] 

ROI Clinical goal 
PTV 7000 D98    ≥ 6650 cGy 

Dmean ≥ 6950 cGy 
Dmean ≤ 7050 cGy 
D2        ≤ 7490 cGy 

PTV 5425 D98      ≥ 5154 cGy 
Brainstem D0.1   ≤ 6300 cGy 
Brain D0.1   ≤ 6300 cGy 
Optic nerve  D0.1   ≤ 6000 cGy 
Optic chiasm D0.1   ≤ 6000 cGy 
Retina D0.1   ≤ 6000 cGy 
Spinal cord D0.1   ≤ 5400 cGy 
Other OARs Dmean = ALARA 
ROI: Region Of Interest, PTV: Planning Target Volume, OARs: 
Organs At Risk, D98: dose at 98% of a volume, Dmean: mean dose of 
a volume, D2: dose at 2% of a volume, D0.1: dose at 0.1% of a 
volume,  ALARA: As Low As Reasonably Achievable 

 
 
2.4 Model-based selection procedure for proton therapy 
The standard photon treatment in the UMCG for HNC is Volumetric Modulated Arc Therapy (VMAT). Since January 
2018, the UMCG has the possibility to treat HNC with Intensity Modulated Proton Therapy (IMPT). Proton therapy is 
able to achieve major reduction of dose on OARs. The maximum energy is released when a particle is almost stopped, 
this phenomenon is known as the Bragg peak[29]. Therefore, the normal tissue behind a beam receives less dose as 
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compared to photon treatments[30][31]. Dose prescription and clinical goals of proton therapy are similar to photon 
therapy. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Both VMAT and IMPT radiotherapy treatment plans will be made for all HNC patients, when proton therapy might be 
indicated. A patient will be selected for proton therapy via a model based approach following the ‘Dutch National 
Indication Protocol for Proton Therapy’[32]. Predictions of radiation-induced side effects are compared for both photon 
and proton treatment plans with Normal Tissue Complication Probability (NTCP) models. Only patients with a 
significant benefit, calculated with the difference between NTCP (∆NTCP) values of both plans, are eligible for proton 
therapy. Table 2 indicates the minimal ∆NTCP to be eligible for proton therapy. An example of sufficient benefit with 
proton therapy is shown in the NTCP curve of the Pharyngeal Constrictor Muscle (PCM) superior in figure 2. The PCM 
superior is involved in dysphagia and tube feeding dependence. The patient receives 40 Gy on the PCM superior in the 
photon plan and 30 Gy in the proton plan. The difference in dose results in a ∆NTCP of 10% that is enough for 
qualification for proton therapy and as can be seen in table 2.  
 

 
2.5 Treatment  
Patients who will be treated primarily with radiotherapy will receive 70 Gy in PTV7000 and 54.25 in PTV5425.  The 
fractionation scheme is  35 x 2 Gy and 1.55 Gy respectively. In case of T1a and T2b tumours, a total dose of 66Gy is 
given in 33 fractions of 2 Gy.  The total dose for adjuvant radiotherapy is 66 Gy for high risk tumours, i.e. resection 
margins < 1mm and/or lymph node metastasis with ENE. The dose will be given in 33 fractions of 2Gy. Tumours with 
intermediate risk (resection margins >1 mm without lymph nodes with ENE)  after surgery receive a maximum of 56 Gy 
in 28 fractions of 2 Gy[17][24]. 
 
The 6 MV VMAT plans comprise a dual arc of 360 degrees with a maximum Constrained Leaf Motion (CLM) of 0.25 
degrees/cm, or without a maximum CLM. A dose grid of 0.3 x 0.3 x 0.3 cm

3
 was used. The proton plans use four beams, 

two anterior oblique and two posterior oblique beams are used. The beam angles range from 150-160 (beam 1), 40-60 

 

Figure 2 NTCP curve of mean dose on PCM superior. A patient will be 
selected for proton therapy when the difference in dose,  in NTCP  involved 
organs like the PCM superior, between the photon (red) and proton plan 
(green) results in a significant difference in NTCP (∆NTCP of any grade 2≥ 
10%).PCM: pharyngeal constrictor muscle, Dmean: mean dose of a volume, 
NTCP: normal tissue complication probability 

Table 2 NTCP model and decision criteria for proton therapy selection for head and neck cancer [32] 

NTCP model Organs involved 
Xerostomia (6 months; grade 2-3) Contralateral parotid 
Dysphagia (6 months; grade 2-3) Oral cavity; superior PCM 
Tube feeding dependence (6 months; grade 3-4) Contralateral parotid, superior PCM, inferior PCM, 

cricopharyngeal muscle 
Decision criteria ∆NTCP 
∆NTCP of any grade ≥2 complication ≥ 10% 
∆NTCP of any grade ≥3 complication ≥ 5% 
∑ ∆NTCP of grade ≥2 complication ≥ 15% 
 NTCP: Normal Tissue Complication Probability, PCM: Pharyngeal Constrictor Muscle 
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(beam 2) 310-325 (beam 3) and 200-225 (beam 4).The caudal part of the target is irradiated by only the anterior beams, 
to avoid range uncertainties in shoulder and neck region. A range shifter of 4.0 cm was used for all beams to ensure 
coverage of superficial targets. A range uncertainty of 3.0 % is used to optimize and test plan robustness and radii of 3.0 
and 5.0 mm are used for the setup uncertainties. Initial beam energy ranged between 70 and 225 MeV. The minimum 
spot weight was 0.01 Monitor Units (MU) per spot, 1 MU is defined as 1 cGy in a field of 10x10 cm

2
 at 10 cm depth[33]. 

 
3. Machine learning 
 
3.1 What is machine learning? 
The field of Artificial Intelligence (AI) tends to develop a functional intelligence system what is able to argue and solve 
problems without the human brain. According to Arthur Samuel, a pioneer in the field of AI, ML is a field within AI that 
gives computers the ability to learn and improve themselves without being explicitly programmed[34]. Another field 
within AI is Deep Learning (DL) is based on multiple layers of neural networks to learn from large amounts of data. A DL 
network tends to simulate or beats the human brain in specific applications[35]. In general, ML can be used for 
automation of simple or repeating tasks, recognition of patterns in data, perform predictions and take complex 
decisions. ML has the ability to compare, analyse and classify large amounts of data fast and reliable. This section 
provides a concise, global overview of ML categories and applications in radiotherapy. 
 
3.2 Machine learning categories 
ML  algorithms can roughly be separated into three categories: supervised learning, unsupervised learning and 
reinforcement learning[35]. In supervised learning, the algorithm learns how input and  known, labelled, output are 
related to make predictions on novel input data. The algorithm compares predicted data with known data and adjusts 
the weights in the algorithm if necessary to create acceptable results. Supervised learning can either be a classification 
or a regression problem. In a classification problem, the output variable is a category, for example ‘yes’ or ‘no’. The 
output in a regression problem is a value like radiation dose. Unsupervised learning algorithms tend to recognize 
patterns in unlabelled data, this can be used for example to cluster data based on corresponding characteristics or 
associate rules in large portions of data, for example patients with characteristic X often have complication Y. The final 
category of ML, reinforcement learning, attempts to learn actions by highly repeated trial and error. Reinforcement 
learning is one of the methods used to beat the game of Go master Lee Sedol in 2017, a historical moment in the field 
of AI to outperform humans[36]. An action is either punished or rewarded, based on a time delayed reward. The goal is 
to maximize the cumulative reward and this type of ML differs from supervised learning by allowing sub optimal actions 
and does not require labelled data[37]. Further division of ML categories and algorithms can be found in appendix B.  
 
Traditional ML algorithms perform better when a task is more repeated, however, the impact of adding more data 
reduces as the training data increases[38]. In ML applications should be aimed to reach the plateau of the learning 
curve to obtain optimal model performance. Neural networks and DL algorithms require a minimum of training data to 
reach sufficient model performance[39]. 
 
3.3 Machine learning in radiotherapy 
ML can play a role in the field of radiotherapy by improving efficiency and especially quality of patient care in multiple 
components within the radiotherapy workflow. Several opportunities of the use of ML in the radiotherapy workflow are 
described by Feng et al.[40]. A short overview of opportunities in each step of the workflow, see figure 3, are described 
here. 
 
Patient assessment 
In the patient assessment is the patient informed about risks and benefits of treatment and the physician and patient 
discuss the patient’s goal of care and treatment strategy. ML can play a role in patient assessment by predicting 
treatment outcome and toxicity based on patient characteristics like treatment stage, viral status, prior and current 
therapies, eventual resection margins and overall performance status. Furthermore, prediction models can be used to 
predict the benefit and risks of concomitant chemo radiotherapy, time to pain relief and the risk of undesirable OAR  
complications blindness, or paraplegia for individual patients[41]. Both physicians and patients can make better 
decisions about the treatment since they are better informed about the probable impact of their decision[40]. 
However, the development of adequate prediction models for a heterogeneous patient population remains challenging 
and needs further investigation.  
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Figure 3 Schematic overview of radiotherapy workflow components; from patient assessment to 
follow-up. QA: quality assessment[40] 

 
Simulation 
In the simulation phase, images are acquired and reconstructed and tumour and OARs are delineated. The main 
challenge in contouring a tumour is to decide if tissue is part of the tumour or not. ML models may help a physician in 
this decision making[42]. Although the field of target auto-contouring is not widely investigated yet, there are some 
promising results. For example the study of Cardenas et al. showed close agreement in predicted high risk Clinical 
Target Volumes (CTVs) in oropharyngeal cancer patients compared with manual observers[43]. Automated OAR 
contouring using DL shows already superior performance than manual contouring in head and neck OARs[44].  
 
Treatment planning 
ML can be of added value in treatment planning by selection of an appropriate treatment technique i.e. VMAT or IMPT 
or in the iterative treatment planning process. The iterative process can be replaced  or supplemented by machine 
learning optimization planning. ML plans can serve as a good starting point for complex plans or final plans in easier 
plans. Physicians can be more critical on radiotherapy treatment plans, since improvements in the plan do not require 
intensive manual labour. These factors are likely to lead to improved plan quality compared with only manual 
planning[6], [8].  Furthermore, ML can be used to predict patient specific plan outcome based on previous plans[45]. 
Once treatment plans are created and evaluated automatically, treatment technique selection can be performed easily 
by comparing the plan quality of multiple plans. Further optimization of IMPT plan quality can be done by predicting 
optimal beam angles, that is already done for Intensity Modulated RadioTherapy IMRT[46], [47].  
 
QA and treatment delivery 
Several studies have shown that ML has potential in Quality Assurance (QA) and treatment delivery: QA passing rates 
and performance of linear accelerators over time can be predicted[48]–[50]. These applications can help physicists to 
focus on outliers, the patients that impact workload the most[51]. Furthermore ML can be used to predict the need for 
re-planning in HNC[52].  
 
Follow up 
In the follow-up, post treatment decisions will be made, like the need of additional surgery of primary tumour and/or 
lymph nodes. ML can correlate patient characteristics and image features with clinical outcome[53], [54]. A drawback is 
the need of a large amount of patient data, which is not always available in health care. 
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VMAT PLANNING FOR OROPHARYNGEAL CANCER 
Ilse G. van Bruggen1,3, Roel G.J. Kierkels1, Roel J.H.M. Steenbakkers1, Mats Holmström2, David Lidberg2, Karl 

Berggren2, Cornelis H. Slump3, Stefan Both1, Johannes A. Langendijk1, Fredrik Löfman2 and Erik W. Korevaar1 

1
University of Groningen, University Medical Center Groningen, Department of Radiation Oncology, Groningen, the 

Netherlands.  
2
RaySearch Laboratories AB, Stockholm, Sweden. 

3
University of Twente, Enschede, the Netherlands 

ABSTRACT 
Objective To demonstrate that fully automated Volumetric Modulated Arc Therapy (VMAT) dose distributions for 

oropharyngeal cancer patients can be generated, with similar quality as the clinical ‘dosimetrists-optimized’ dose 

distributions, further indicated as reference plans. Furthermore, the influence of model size and composition on 

Machine Learning Optimization (MLO) plan quality is investigated. 

Method MLO planning involved training of a model, which was used to predict the voxel dose for novel patients. CT 

scans, structures and dose distributions of 155 consecutive primary Head and Neck Cancer (HNC) patients, previously 

treated with dual arc VMAT, were retrieved from our clinical database. In the final step, the predicted dose distribution 

was input to a mimicking optimization to generate a deliverable dose distribution. The main goal of this study, 

generating clinical acceptable MLO plans, was investigated with a model containing 60 oropharyngeal cancer plans. In 

order to assess the effect of model size and composition on treatment plan quality, 3 additional models were trained 

(30 and 90 oropharyngeal cancer plans and 60 all HNC plans). Validation was performed with 39 oropharyngeal cancer 

patients to tune prediction and mimicking settings using both target and Organ At Risk (OAR) quality measures on 

models with 60 oropharyngeal cancer plans. The dose distributions of the validation plans were compared against the 

reference plans and the additional models.  

Results The predicted dose was in accordance with reference dose for all plans. Plan quality was highly dependent on 
prediction and mimicking settings. In the final settings, the mimicked plans of the model with 60 oropharyngeal cancer 
plans had adequate target coverage, acceptable OARs dose and sum NTCP lower or within 2% increase compared to 
reference plans in 26/39 (67%) plans. Clinical acceptable plan quality was reached in 30/39 (77%), 31/39 (80%) and 
26/39 (67%) for the models with 30, 90 and 60 all HNC plans, respectively.  
Conclusion In this study, we have demonstrated that clinical acceptable MLO VMAT plan quality can be reached in the 

majority of oropharyngeal cancer patients. Comparable plan quality was reached as reference plans in all models. This 

study indicates that MLO planning can serve as a step towards automated treatment planning in radiotherapy. 

 

 
Keywords: Automated treatment planning, knowledge based planning, machine learning, machine learning 

optimization, random forests, dose distribution, head and neck cancer 
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1. Introduction  

 
Head and Neck Cancer (HNC) treatment planning is challenging. Organs At Risk (OARs) are located close to targets and 
dose related side effects in this area have a major effect on quality of life[55]–[57]. To minimize the side effects, a 
balance in dose distribution between target and OARs is to be found. Currently, manual treatment planning is used to 
create clinically acceptable radiotherapy treatment plans. Treatment planning is a time consuming process, taking 
hours up to days for each patient[6]. Multiple iterations are required for plan optimisation. In clinical practice, time is 
limited and it is shown that plan quality is correlated with time invested in an individual plan[7]. Furthermore, plan 
quality is dependent on the skills and experience of dosimetrists[6]. Radiotherapy treatment plan quality impacts 
clinical outcome in HNC patients[58]. Hansen et al. and Fogliata et al. have already shown that automation in HNC 
radiotherapy treatment planning may improve plan quality[6], [8]. 
 
Automated radiotherapy treatment planning has recently received much attention from the pertinent research 
community[6], [8], [59]. The user intervention can be eliminated entirely by using a pre-set dose volume objective list, 
as implemented in treatment planning system Pinnacle[6]. Other automated planning techniques, such as RapidPlan in 
Varian Eclipse treatment planning system, use a database of previous plans, also known as Knowledge Based Planning 
(KBP)[8]. RapidPlan is a Dose-Volume Histogram (DVH) based algorithm to estimate DVHs for OARs using a trained 
model, an inverse planning optimization algorithm is then applied[60]. Results in HNC treatment planning with 
RapidPlan show similar plan quality as manual optimized plans. However, a main drawback of DVH-based KBP is the 
lack of spatial information. Since plan quality is highly associated with target and OAR location[45], [61] using spatial 
information like three Dimensional (3D) dose distributions, can potentially further improve quality of automated 
planning. Machine Learning (ML) KBP techniques as random forest and neural networks, U-net and Generative 
Adversed Network (GAN), are capable to include spatial information in automated 3D dose distribution prediction[9], 
[59], [62]. However, neural networks and Deep Learning (DL) algorithms, require high amounts of patient data to 
perform well, especially in complex treatment sites such as head and neck[63]. In clinical studies, patient data can be 
limited and neural networks and DL may be less suitable for automated treatment planning in HNC. 
 
Machine Learning Optimization (MLO) planning has shown to be able to predict acceptable treatment plan quality with 
limited amount of patient data[10]. The contextual atlas regression forest planning pipeline of McIntosh et al. is based 
on the assumption that patients with identical geometry and appearance should be treated in the same way[10]. A 
model learns how Computed Tomography (CT) data and contour features are related to dose distributions. After 
feature extraction, a dose distribution can be predicted on a patient and a mimicking optimization can be applied to 
create a deliverable plan[64].  
 
The study of McIntosh et al. generated 12 clinical acceptable plans using a model with 54 right-sided oropharyngeal 
cancer treatment plans[10]. The first results are promising, however, the study from McIntosh et al. had small 
variability in model size and composition. Furthermore, it is unknown if the results can be translated to bilateral 
elective neck irradiation, the most common treatment in oropharyngeal cancer. The method of McIntosh is fully 
implemented in the commercial treatment planning software system of RayStation v8 (RaySearch Laboratories AB, 
Stockholm, Sweden). Plan quality after this implementation needs to be evaluated, which will be done in this study. The 
required number of training atlases is a function of the variation and complexity of a given tumour site[9]. Boutilier et 
al. investigated the requirement of a minimum sample size in training prostate cancer OARs models to reach clinical 
acceptable plans[65].  The minimum required sample size was different for each model and varied between 20 samples 
for the rectum and 75 to predict the bladder. Another study of McIntosh et al. showed that 40 atlases were sufficient to 
achieve high conformity in lung, breast and prostate[9]. Since variation in a model may impact the required number of 
training atlases to reach adequate model performance, model composition (i.e. single tumour sites versus multiple 
tumour sites in a model) should be investigated as well.  Since treatment planning in the head and neck area is highly 
complicated, it is likely that model size and composition can influence treatment plan quality in HNC[66].  
 
The main goal of this study is to generate clinical acceptable machine learning based VMAT treatment plans for 
oropharyngeal cancer in RayStation. Furthermore, the influence of the model size and composition on oropharyngeal 
cancer treatment plan quality are investigated. We used a fully automated machine learning based optimization 
approach using random forests and conditional random fields to train a model, predict voxel dose and perform a 
mimicking optimization in novel patients. A brief description of the method is described in section 2, as well as the used 
study population, plan characteristics and plan evaluation criteria. In this study, further adjustments of prediction and 
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mimicking settings were made, in close collaboration with the RaySearch ML team, and described in section 2.5. The 
results are shown in section 3 and the discussion can be found in section 4. 

2. Materials and methods  
 
2.1 Study population 
In this study, we included a total of 155 HNC patients, who started curative intent (chemo)radiotherapy treatment 
between January 2016 and May 2019 at the UMCG. Patient selection was restricted to tumours originating in the 
oropharynx, larynx, oral cavity, hypopharynx and nasopharynx, an overview of patient characteristics is shown in table 
3. The treatment for all patients included a dose level prescription of 7000 cGy to the primary Clinical Target Volume 
(CTV) and involved nodes and 5425 cGy to the bilateral elective lymph node region in 35 fractions. Patients were 
treated with either VMAT or IMPT depending on the result of the model-based selection procedure for IMPT. All 
included patients had a clinical approved VMAT plan, further indicated as ‘reference plan’.  
 
A repeated random subset validation was applied, to split patient data into training and validation sets, see figure 4. 
The main goal of this study, generating clinical acceptable MLO plans, was investigated using a model containing 60 
oropharyngeal cancer plans. In order to assess the effect of model size and composition on treatment plan quality, 
three additional models were trained, see figure 4.  

 
2.2 Plan characteristics 
The clinical VMAT plans were optimized in the RayStation treatment planning system (v4.5 and v8b RaySearch 
Laboratories AB, Stockholm, Sweden). A dose grid of 0.3 x 0.3 x 0.3 cm

3
 was used. CTVs were expanded with 3 (planned 

since 2019) or 5 mm (planned before 2019) to create a planning target volume (PTV). Plans were optimized by 
achieving D98≥95% and D2<107% in the PTV and minimizing dose on Normal Tissue Complication Probability (NTCP) 
involved organs[32]. We used an evaluation structure to determine adequate target coverage in case part of the PTV is 
located outside or within 5 mm of the skin. Plans planned before 2019 had a CLM of 0.25 deg/cm, plans planned since 
2019 had no constraint leaf motion. Final dose distributions were calculated by a collapsed cone dose engine. The 6 MV 
Volumetric Modulated Arc Therapy (VMAT) plans comprised a dual arc of 360 degrees were delivered by an Elekta 
linear accelerator. 
 
2.3 Machine learning optimization planning 
 
2.3.1 Training 
The training of a model in MLO planning consisted of feature extraction, Atlas Regression Forest(ARF) and Prediction 
Random Forest (pRF)[9], [10], [67]. The features consisted of image and Region Of Interest (ROI) features. Voxel-wise 
features were extracted by a set of first- and second-order 3D Gaussian filters convolved with the CT image, resulting in 

 
Figure 4 Upper part: schematic overview repeated random subset validation. The study population was split into two 
random sets of training and validation patients, the results of the two validation subsets were combined. Lower part: 
schematic overview of training and validation patients of one subset in four models used to investigate influence of 
model size (models 30, 60 and 90 oropharyngeal cancer plans) and composition (60 all head and neck cancer plans) on 
machine learning optimization plan quality.  
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86 image features. The ROIs used in the training were; PTV7000, PTV5425, brain, brainstem, spinal cord, parotid glands, 
oral cavity, larynx, cricopharyngeal muscle, Pharyngeal Constrictor Muscles (PCMs), cervical oesophagus, mandible and 
thyroid. Four features per ROI were used, resulting in 64 ROI features, describing the direction and distance to the 
closest point of the target boundary and a signed distance transform to the target. An ARF was trained to predict dose 
and feature density. An ARF consisted of a set of decisions trees trained on random voxels and features from the 
training data. One ARF per patient was trained from the input features against the corresponding clinical dose. The ARF 
consisted of 96 trees with a maximum depth of 10 node levels in each tree. Selection of features in the nodes was done 
by maximizing the information gain at each split. The information gain was calculated for multiple features and the 
highest gain was used in the node. A pRF model was then trained to select the best matching ARFs, given the presence 
or absence of specific features. In the pRF, first, feature distance was calculated against the other ARFs. Thereafter, a 
Bhattacharyya distance was calculated at node level 7 for all ARF combinations[68]. 
 
The pRF was then trained to predict DVH distances at gamma 20, the clinical dose value at 20% of the prescription and 
above. The accuracy of an ARF could then be predicted for a patient without knowing the dose distribution, only 
features were used. The models were trained on an Intel Core tm i9-7940X CPU @ 3.1 GHz. 
 
2.3.2 Prediction 
Given the features of a novel patient, a dose estimation at each voxel could be predicted based on the trained model. 
The predicted accuracy measures were used to select the five best matching ARFs. A joint probability distribution per 
voxel from the five selected ARFs is used. Then, a conditional random field model was used to find the most likely 
spatial dose distribution while adhering to the dose prior. A predicted dose distribution from most similar atlases 
combined with scalar dose estimation resulted in a predicted plan.  
 
2.3.3 Mimicking optimization 
The final step in MLO planning was to perform a mimicking optimization on the predicted plan to generate a deliverable 
dose distribution. The beam setup was copied from the reference plans. A collapsed cone convolution dose engine was 
used to calculate a mimicked dose, while taken into account the delivery machine parameters, beam geometry, scatter 
and attenuation. Three sets of 60 iterations were used. The first 20 iterations were only in the fluence domain and 
during the last 40 iterations the positions of the leafs and Monitor Units (MU) were optimized. There was no CLM. The 
mimicking optimization used both voxel-based and DVH-based objectives. Voxel-based objectives equal or improve the 
predicted dose at each voxel[10]. DVH-based objectives consider the dose distribution by the DVH of each ROI[69]. 
Prediction and mimicking optimization were executed using remote HPE DL380 Gen9 servers with 2 Intel Xeon E5-
2698v4-core CPU processors. 
 
2.4 Analysis 
The dose distributions (i.e. predicted and mimicked dose) of the plans of the model with 60 oropharyngeal cancer plans 
were compared against the reference plans. The plans of the models with 30 , 90 and all HNC plans were compared 
against mimicked plans of the model with 60 plans. Evaluation parameters were determined by simulating physicians’s 
plan observation method by calculating and translating plan approval observations into measurable parameters. All 
plans were evaluated by means of dosimetric parameters (evaluation structures of PTV7000 and PTV5425: D98, D2; 
OARs: Dmean or D0.1), NTCP for xerostomia, grade 2-4 dysphagia, and Percutaneous Endoscopic Gastrostomy (PEG) 
tube dependence and MU. Target structures were contracted by 1mm and evaluated on D99.9 to examine gaps in dose 
distribution, as a surrogate parameter for visual dose distribution observation.  
 
Furthermore, the Homogeneity Index (HI), HI=(D2-D98)/D50  and Conformity Index (CI), CI = 𝑇𝑉95/𝑉95 were calculated. 
TV95 was the volume within the 95% isodose line of the target and V95 the volume in the patient what receives 95% or 
more of the dose prescription[70]. The OARs evaluated in this study were: brainstem, brain, spinal cord, eyes posterior, 
eyes anterior, parotid glands, submandibular glands, oral cavity, PCM superior-medius-inferior, cricopharyngeal muscle, 
supraglottis, glottis and thyroid. All dosimetric parameters were extracted from RayStation with RaySearch analytics 
software and visualised in Tableau (version 2019.1.0, Tableau Software Inc., Seattle, United States of America).  
 
A plan was considered clinical acceptable when criteria as listed in table 4 are met. The threshold of accepting 2% 
increase in sum NTCP values was chosen as a non-inferiority margin to show that MLO plans perform not clinically 
relevant worse than reference plans. Evaluation parameters not included in this table were considered plan quality 
objectives instead of hard constraints since these are clinically less relevant(anterior eyes, CI, HI, non-NTCP OARs) 
and/or exact criteria have not yet been determined (hotspots in PTV 5425, D99.9 in 1mm contracted target structures).  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3 Overview of patient characteristics for all models. The study population was split into two random sets of training and validation patients, 
this table shows patient characteristics of each training subset and the validation subsets. 
  Model 30 Model 60 Model 90 Model all HNC Validation 
Characteris-
tics 

 subset 1 
(n) 

subset 2 
(n) 

subset 1 
(n) 

subset 2 
(n) 

subset 1 
(n) 

subset 2 
(n) 

subset 1 
(n) 

subset 2 
(n) 

subset 1 
(n) 

subset 2 
(n) 

Patients  30 30 60 60 90 90 60 60 23 16 
Sex Male 19 19 39 35 58 58 41 46 19 10 

Female 11 11 21 25 32 32 19 14 4 6 
Age ≤59 12 15 23 29 43 47 17 16 10 4 

>60 18 15 37 31 47 43 33 34 13 12 
Tumour site Oropharynx 30 30 60 60 90 90 15 15  39 39 
 Larynx 0 0 0 0 0 0 15 15 0 0 
 Oral cavity 0 0 0 0 0 0 12 12 0 0 
 Hypopharynx 0 0 0 0 0 0 12 12 0 0 
 Nasopharynx 0 0 0 0 0 0 6 6 0 0 
Pathological 
T-stage 

T1 6 4 14 13 19 18 7 8 1 1 
T2 5 7 8 8 15 18 11 9 7 2 
T3 3 6 8 6 11 12 18 23 3 2 
T4* 16 13 30 33 45 42 14 20 13 11 

Pathological
/clinical 
 N-stage 

N0 2 3 6 8 9 10 21 17 3 1 
N1 5 4 9 10 13 13 10 12 4 3 
N2** 17 18 34 35 53 53 16 28 14 9 
N3 6 5 11 7 15 14 13 3 2 3 

Target 
location 

Left 11 11 23 19 32 30 14 16 4 6 
Right 7 8 15 16 25 23 21 19 11 6 
Middle 12 11 22 33 33 37 15 15 8 6 

PTV: Planning Target Volume, *T4 includes  T4a, T4b, TNOS, ** N2 includes N2a, N2b, N2c and N2NOS,   



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Only mimicked plans were evaluated on significant differences. Two-tailed p-values were calculated by a paired 
Wilcoxon signed-rank test. A Bonferroni correction was used to correct p-values for multiple experiment-wise testing 
(multiple parameters), since a large number of independent tests are performed and the results of all tests combined 
are relevant in this study[71][72]. Family-wise testing (across multiple models) was not corrected by Bonferroni because 
the study is restricted to four pre-planned comparisons and known hypotheses. Differences were considered 
statistically significant if p<0.006(α=0.05/9 parameters) for target coverage, p<0.01(α=0.05/5 structures) for maximum 
OAR dose, p<0.005(α=0.05/10 structures) for average OAR dose, p<0.013(α=0.05/4 NTCPs) for NTCPs and 
p<0.016(α=0.05/3 parameters) for other plan evaluation parameters. Statistical analyses were performed by  SPSS (IBM 
Corp. Released 2015. IBM SPSS Statistics for Windows, Version 23.0. Armonk, NY). 
 
2.5 Tuning MLO plans 
Prediction and mimicking settings can be tuned to optimize the MLO plan. Each voxel has a most probable value, which 
is shown in a predicted plan. In addition to that, each voxel has less likely, but possible values. The dose distribution of a 
predicted plan can be influenced by adjusting clinical constraints and objectives in the prediction phase. During 
mimicking optimization, target and OARs weights can be added and adjusted to impact dose value selection of the 
predicted dose in each voxel. Tuning of prediction and/or mimicking settings will influence the trade-off between target 
coverage and OARs sparing of the final MLO plan. The optimal trade-off is dependent on institution’s and physician’s 
preferences and patient’s tumour characteristics.  
 
MLO planning is able to generate multiple plans for each patient, focussing on target coverage, OAR sparing or both, 
based on specific preferences. A standard strategy can be used to achieve both adequate target coverage and OARs 
sparing. Other strategies can reach additional target coverage while accepting higher OAR dose or focus on sparing 
critical OARs like brain, brainstem and spinal cord while allowing less target coverage. 
 
2.5.1 Requirements 
In this study, MLO planning was validated by tuning prediction and mimicking optimization settings in 39 patients to 
reach clinical acceptable MLO plans using the model with 60 oropharyngeal cancer plans. MLO planning will 
supplement or replace manual treatment planning, therefore we determined that MLO plans has to equal or improve 
clinical relevant parameters: time (hands-on time and calculation time), ease of use, quality and reliability. These 
parameters were translated into the following requirements to validate MLO: 

 MLO should reach clinical acceptable plan quality in 90% of the plans 

 MLO shoud reach clinical acceptable plan quality within three strategies 
 
In these requirements, hands-on time and calculation time will be non-inferior to manual treatment planning. In 90% of 
the plans the hands-on time and calculation time will be decreased from 4 hours to 15 minutes and 4 hours to at 
maximum 3 hours, respectively. MLO plans can be generated during the night so that in the 10% failing MLO plans a 
manual treatment plan can be created in the next day without losing time in the treatment preparation. Ease of use of 
MLO will be guaranteed in the requirements by demanding only a few clicks to start a strategy. A maximum of three 
strategies is chosen to keep plan quality review achievable for dosimetrists and physicians. Reliability will be reached by 
consistency of MLO planning, in at least 90% of the plans, clinical acceptable plan quality is achieved.  
 

Table 4 Criteria for clinical acceptable plan quality in machine learning 
optimized plans[24], [28] 

ROI Clinical acceptable threshold 

PTV 7000 

D98    ≥ 6650 cGy 
Dmean ≤ 7050 cGy 
Dmean ≥ 6950 cGy 
D2        ≤ 7490 cGy 

PTV 5425 D98      ≥ 5154 cGy 
Brainstem D0.1     ≤ 6300 cGy 

Brain D0.1     ≤ 6300 cGy 
Spinal cord D0.1     ≤ 5400 cGy 

Eyes posterior D0.1     ≤ 6000 cGy 
Sum NTCP (Sum NTCPMLO-Sum NTCPref) ≤ 2% 

ROI: Region Of Interest, PTV: Planning Target Volume, NTCP: Normal 
Tissue Complication Probability, MLO: Machine Learning Optimization. 

Note that the clinical acceptable threshold for sum NTCP was turned  
when clinical acceptable plan quality was determined in reference plans 
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2.5.2  Tuning approach 
A schematic overview of the tuning approach can be found in figure 5. A subset of 5 patients of the validation set was 
used as starting point for tuning prediction and mimicking settings. Plan quality of both predicted and mimicked plans 
were evaluated. In case predicted or mimicked plans were clinical unacceptable, prediction and mimicking 
optimizations settings, respectively,  were adjusted until clinical acceptable plans were reached. Furthermore, plan 
quality objectives were evaluated and optimized if possible. Thereafter, the settings were applied to a larger subset or 
total set of 39 validation patients. The settings were iteratively adjusted. The tuning was done on model level, contrary 
to manual treatment planning where tuning is done per plan. This process was repeated until 90% of all plans in the 
validation set reached clinical acceptable plan quality. In this study, only one standard strategy is used due to time 
constraints. No additional tuning was done between models; the prediction and mimicking settings were the same 
across all 39 patients generating plans using other models. 
 

 
Figure 5 Flowchart of tuning approach prediction and mimicking settings. The input was the validation set containing 
39 oropharyngeal cancer patients. Machine learning optimization plans were predicted using the model with 60 
oropharyngeal cancer plans and then mimicked. If plan quality was unacceptable, prediction and mimicking settings are 
optimized, this process was repeated until the plan quality was sufficient. Then, the validation set was input in the 
other models with variation in size and composition.  

3. Results 

Training of the model with 60 plans took 48 hours. Prediction was executed in 5-10 minutes and mimicking optimization 
was finished in 50 minutes, fully automated. Manual treatment planning took approximately 240 minutes hands-on 
time per plan. 
 
3.1  Tuning results 
An overview of the number of clinical acceptable plans and results during the tuning process is shown in table 5 and 
figure 6. The first prediction and mimicking settings(1.1) resulted in clinical unacceptable plans for the 5 patients of the 
subset since NTCP values were higher than observed in the reference plans. Both predicted and mimicked plans of 1.1 
were clinical unacceptable, therefore prediction and mimicking optimizations settings were adjusted. In further tuning 
only mimicking optimization settings were adjusted, since predicted plan quality was clinical acceptable. The adjusted 
settings (1.2) resulted in better OAR sparing, however, unacceptable hotspots were observed in PTV 5425 and the 
spinal cord. The second round of adjustments (1.3) resulted in inadequate target coverage of PTV 5425. The final round 
(1.4) showed clinical acceptable plans in 26/39 (66.7%) of the MLO plans. The complete final settings can be found in 
appendix C.  
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Table 5 Results of four rounds in tuning approach of prediction and mimicking settings. The table shows the 
used prediction and mimicking settings, the number of clinical acceptable plans reached, the main reason for 
unacceptable plan quality and indicates prediction or mimicking problem for each round of tuning. 
Round Prediction and mimicking 

settings 
Clinical 
acceptable 
plans/total (%) 

Reason unacceptable plan 
quality (number of 
unacceptable plans) 

Prediction or 
mimicking 
problem? 

1.1 PTV 7000: 2 
PTV 5425: 4 
All OARs: 1 
DecreaseMaxdose: 0.5 

0/5 (0%) NTCPMLO >NTCPref (n=5) 
 

Prediction and 
mimicking 

1.2  CG: overlap parotid glands 
and PTV: D10<1300cGy 

5/39 (13%) D2 PTV 5425 >107% (n=35)         
D0.1 spinal cord >5400 (n=1) 

Mimicking 

PTV 5425: 8 
Parotid glands: 12 
PCM superior: 6 
Crico: 6 
PCM inferior: 6  

   
   
   

1.3  PTV 7000: 5 
PTV 5425: 11 
DecreaseMaxdose: 2 

5/7 (71%) 
 

D98 PTV 7000 <95% (n=1) 
D0.1 spinal cord >5400 (n=1) 

Mimicking 

28/35 (80%) D98 PTV 7000 <95% (n=3) 
D98 PTV 5425 <95% (n=4) 
D0.1 spinal cord >5400 (n=1) 

Mimicking 

1.4 PTV 7000: 10 
PTV 5425: 15 
Spinal cord: 3 

6/7 (86%) D0.1 spinal cord >5400 (n=1) Mimicking 
26/39 (67%) D98 PTV 5425 <95% (n=2) 

D0.1 spinal cord >5400 (n=1) 
NTCPMLO>NTCPref (n=12) 

Mimicking 

PTV: Planning Target Volume, PCM: Pharyngeal Constrictor Muscle, NTCP: Normal Tissue Complication 
Probability, MLO: Machine Learning Optimization, ref: reference plans, Italic settings indicate prediction 
settings. 

 

 
Figure 6 D98 and sum NTCP difference of validation patients for each round in the tuning approach. Each plan is shown 
by lines (D98) and dots (Sum NTCP). The solid red line indicates the D98 threshold of 95% and the dashed red line 
indicate the 2% threshold for sum NTCP. Note that the plans of round 1.2 had unacceptable high D2 values in PTV 
5425, not visualized in this figure.  NTCP: Normal Tissue Complication Probability, PTV: Planning Target Volume 
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3.2 Clinical acceptable plan quality 
All predicted plans had higher plan quality regarding all evaluation parameters compared to reference and mimicked 
plans, see table 6. All MLO and reference plans reached adequate target coverage in terms of D98 for both high risk and 
elective volumes. The average dose at high risk volume was significant lower (Δ=27 cGy, p=0.000) in MLO plans and 
within the range (6950-7050 cGy) for 38/39 plans for both MLO and reference plans. One MLO plan had minor 
underdosage (6938 cGy) and one reference plan had minor overdosage (7052 cGy). Figure 7 shows comparable target 
DVHs for reference and mimicked plans. The maximum dose on high risk target was not exceeded in all MLAP and 
reference plans. The maximum dose in the spinal cord was significant higher in MLAP plans (Δ=539 cGy, p=0.000). One 
MLO plan exceeded the maximum dose on spinal cord (D0.1=6286 cGy). Other maximum doses for brain, brainstem, 
spinal cord and posterior eyes were not exceeded.  
 
In MLO and reference plans, the contracted high risk volume had adequate target coverage in 36/39 (92%) and 31/39 
(80%) respectively. Adequate target coverage in the contracted elective volume was achieved in 5/39 (12.8%) and 
28/39 (71.8%) for MLO and reference plans respectively. The average difference was significant (Δ=60 cGy, p=0.000), an 
example of inadequate elective target coverage is shown in figure 8 by patient B. The D2 was significant higher in MLO 
in elective target volumes compared to reference plans (Δ=175 cGy, p=0.000, xxx), see figure 8 patient C for an 
example. High risk and low risk target homogeneity was significant lower in MLO plans compared to reference plans 
(high risk: Δ=0.013, p=0.001,  low risk: Δ=0.010, p=0.001). The sum NTCP value was lower or within 2% increase from 
the value observed in the reference plan in 27/39 (69.3%) MLO plans. Xerostomia NTCP values of the MLO were 
lower(Δ=1.6%, p=0.006) and PEG NTCP values were higher (Δ=0.5%, p=0.003) compared to the reference plans. The 
average dose on OARs is lower in MLO in parotid glands (Δ=156 cGy, p=0.000) and higher in PCM superior (Δ=168 cGy, 
p=0.000)  and PCM medius (Δ=359 cGy, p=0.000) and supraglottic (Δ=311 cGy, p=0.000). The average dose of other 
OARs is comparable in MLO and reference plans. The maximum dose on anterior eyes was exceeded in 3/39 (7.7%) 
MLO plans and 2/39(5.1%) reference plans. MU were significant higher in MLO (Δ=31, p=0.010). Clinical acceptable plan 
quality was reached in 26/39 (66.7%) of the reference plans, the same as in MLO plans.  
 
3.3 Model size 
Training of the models with 30 and 90 plans took 22 and 90 hours respectively. Predicted plans generated by models 
with 30 and 90 plans were comparable to the predicted plans generated by the model with 60 plans. An overview of 
results of model size can be found in table 6 and figure 9. Adequate target coverage in D98 was reached in all plans in 
both high and low risk target volumes in plans of model 30. The maximum dose on spinal cord was exceeded in two 
plans (D0.1 = 6160 cGy and 5612 cGy). Plans generated by the model with 30 plans had significant lower PEG NTCP 
values (Δ=0.41%, p = 0.004) and lower elective target conformity (Δ=0.006, p=0.012) compared to plans generated by 
the model with 60 plans. Sum NTCP values were lower or within 2% increase compared to the reference plans in 30/39 
(77%) plans. Clinical acceptable plan quality was reached in 30/39 (77%) plans generated by the model with 30 plans. 
 
All target coverage parameters were significant worse for the MLO plans of model 90 compared to MLO plans of model 
60, except for D2 for high and low risk target which were significant lower (p = 0.005) in the plans of model 90. 
Adequate target coverage was reached in 35/39 (90%) and 36/39 (92%) for high risk and low risk target volumes, 
respectively, in plans of model 90. The maximum dose on the spinal cord was exceeded in one patient (D0.1=6003 cGy). 
The D0.1 was significant lower in model 90 plans compared to model 60 plans (Δ=325 cGy, p=0.000). Average dose on 
parotid glands, submandibular glands and PCM superior were lower in the plans of model 90 (Δ=66 cGy, Δ=53 cGy, 
Δ=72 cGy respectively, all p=0.000). Furthermore, all NTCP values were lower in the model with 90 plans (Xerostomia: 
Δ=0.8%, Dysphagia: Δ=0.6%, PEG: Δ=0.9%, Sum NTCP: Δ=2.1%, p=0.000-0.001). Plans of model 90 had lower or within 
2% increase sum NTCP values compared to reference plans in 35/39 (90%). Clinical acceptable plan quality was reached 
in 31/39 (80%) plans of model 90. 
 
3.4 Model composition 
Predicted plan quality of the plans generated by the model with all HNC plans were comparable with the plans 
generated by the model with 60 oropharyngeal cancer plans. All model all HNC plans reached adequate target coverage 
in both high risk and elective target volumes. Only high risk target homogeneity and conformity were lower in the all 
HNC model plans (HI: Δ=0.003, p=0.002, CI: Δ=0.010, p=0.000). Two plans exceeded the maximum dose on the spinal 
cord (D0.1 = 6253 cGy and 5555 cGy). In 27/39 (69%) of the all HNC model plans was clinical acceptable plan quality 
reached. 
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Figure 8 Transversal and sagittal cross sections of three model 60 mimicked and reference dose 
distributions. PTV 7000 is indicated in black contours and PTV 5425 in white contours. Patient A is a 
representative patient regarding OARs dose, patient B visualizes isodose line gaps of in this case 3mm in PTV 
5425 in two dimensions and patient C shows high dose in elective target volume. D98 and difference in sum 
NTCP of the mimicked plans are shown in figure 9. PTV : Planning Target Volume 

 
 
 

 

Figure 7 Average DVH of PTV 7000 (blue), PTV 5425 (pink), Pharyngeal Constrictor Muscle (PCM) superior 
(red), oral cavity (green) and parotid glands (orange) of 39 validation patients using the model with 60 
oropharyngeal cancer treatment plans 



Table 6 Average results  and standard deviation of evaluation on dosimetric parameters, HI, CI and NTCP values of predicted and mimicked plans of all models 
 Parameters Reference  Prediction 

model 30                 
Mimicking 
model 30 

Prediction 
model 60 

Mimicking 
model 60 

Prediction 
model 90 

Mimicking 
model 90 

Prediction 
model all HNC 

Mimicking 
model all HN 

Ta
rg

e
t 

co
ve

ra
ge

 PTV 7000 D98 (cGy) 6737 ± 37 6764 ± 30 6744 ± 25 6766 ± 32 6745 ± 28 6756 ± 33 6697 ± 52** 6741 ± 65 6723 ± 61 
PTV 7000 Dmean(cGy) 7010 ± 27 6985 ± 8 6987 ± 12 6983 ± 11 6983 ± 15* 6981 ± 13 6965 ± 22** 6945 ± 62 6949 ± 62 
PTV 7000 D2 (cGy) 7238 ± 89 7212 ± 25 7163 ± 15 7204 ± 33 7156 ± 23* 7201 ± 33 7154 ± 24 7152 ± 81 7112 ± 67 
PTV 7000-1mm D99.9 (cGy) 6646 ± 127 6724 ± 39 6700 ± 29 6723 ± 38 6698 ± 36 6712 ± 40 6644 ± 59** 6700 ± 67 6676 ± 63 
PTV 7000 HI 0.080 ± 0.03 0.075 ± 0.04 0.068 ± 0.04 0.073 ± 0.1 0.067 ± 0.04* 0.075 ± 0.04 0.074 ± 

0.04** 
0.071± 0.03 0.064 ± 

0.03** 
PTV 5425 D98 (cGy) 5243 ± 41 5279 ± 28 5230 ± 30 5276 ± 31 5226 ± 31 5249 ± 34 5198 ± 41** 5284 ± 28 5228 ± 33 
PTV 5425-PTV 7000 D2 (cGy) 5922 ±112 5750 ± 113 6098 ± 82 5771 ± 94 6097 ± 118* 5791 ± 79 6003 ± 112** 5764 ± 75 6122 ± 105 
PTV 5425-1mm D99.9 (cGy) 5144 ± 88 5214 ± 53 5092 ± 57 5209 ± 59 5084 ± 76* 5136 ± 83 5030 ± 98** 5198 ± 44 5080 ± 67 
PTV 5425 HI 0.345 ± 0.026 0.339 ± 0.025 0.336 ± 0.025 0.335 ± 0.025 0.335 ± 

0.025* 
0.343 ± 0.027 0.343 ± 

0.027** 
0.335 ± 0.027 0.333 ± 0.027  

O
A

R
D

0
.1

 

(c
G

y)
 

Brain 3013 ± 1122 2958 ± 562 2790 ± 1111 2710 ± 751 2769 ± 1149* 2518 ± 723 2585 ± 1112 3010 ± 632 2815 ± 1147 
Brainstem 3380 ± 1067 3433 ± 395 3262 ± 1174 3146 ± 467 3172 ± 1183 3099 ± 509 2923 ± 1099 3298 ± 482 3271 ± 1251 
Spinal cord 4265 ± 382 4226 ± 200 4911 ± 441 4085 ± 253 4804 ± 485* 3997 ± 257 4479 ± 451** 4182 ± 215 4867 ± 494 
Eyes anterior 219 ± 200 128 ± 65 230 ± 266 109 ± 75.0 224 ± 261 101 ± 55 216 ± 241 118 ± 124 228 ± 271 
Eyes posterior 259 ± 213 183 ± 68 309 ± 412 157 ± 98.0 305 ± 417 149 ± 70 289 ± 378 158 ± 116 299 ± 383 

O
A

R
 m

e
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 d
o
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 (

cG
y)

 Parotid glands  2584 ± 836 1809 ± 789 2401 ± 819 1817  ±798 2428 ± 812* 1802 ± 777 2362 ± 807** 1806 ± 793 2423 ± 815 
Submandibular glands  5785 ± 1239 5803 ± 922 5941 ± 980 5720 ± 1063 5914 ± 1029 5764 ± 955 5861 ± 989** 5756 ± 931 5908 ± 984 
Oral cavity 4691 ± 992 4514 ± 798 4639 ± 845 4384 ± 90 1 4573 ± 906 4412 ± 859 4548 ± 874 4363 ± 932 4574 ± 917 
PCM superior 5824 ± 904 5661 ± 785 5981 ± 724 5631 ± 816 5992 ± 716* 5655 ± 808 5920 ± 744** 5617 ± 811 5954 ± 738 
PCM medius 5509 ± 1008 5477 ± 1007 5872 ± 694 5134 ± 1016 5868 ± 660* 5231 ± 968 5820 ± 697 5249 ± 905 5904 ± 644 
PCM inferior 4068 ± 1239 4011 ± 1236 4154 ± 1094 3725 ± 1113 4224 ± 1062 3707 ± 1061 4120 ± 1042 3801 ± 1077 4308±1009 
Cricopharyngeal muscle 3142 ± 1047 3151 ± 1048 3247 ± 803 2603 ± 675 3373 ± 791 2398 ± 605 3157 ± 722 2663 ± 869 3430 ± 839 
Supraglottic 4946 ± 1239 4908 ± 1216 5219 ± 1032 4586 ± 1232 5257 ± 982* 4589 ± 1215 5185 ± 999 4685 ± 1205 5346 ± 939 
Glottic 3662 ± 1340 3635 ± 1340 4092 ± 1019 2909 ± 1126 4160 ± 976 2965 ± 1001 4052 ± 920 3033 ± 1199 4235 ± 971 
Thyroid 5109 ± 480 5100 ± 481 5187 ± 396 4934 ± 492 5152 ± 411 4831 ± 467 5076 ± 425 4949 ± 443 5168 ± 414 

N
TC

P
   

   

( 
 %

) 

Xerostomia 39.3  ± 6.2 30.55 ± 4.39 37.30 ± 5.96 30.7 ± 4.2 37.7  ± 5.7* 30.61 ± 4.08 36.89±5.65** 30.59 ± 4.28 37.73 ± 6.02 
Dysphagia 32.0 ± 8.5 30.02 ± 7.26 32.31 ± 7.40 29.4  ± 7.7 32.2 ± 8.5 29.53 ± 7.52 31.55±7.49** 29.29 ± 7.74 32.04 ± 7.62 
PEG 14.5 ± 5.1 10.48 ± 3.40 14.49±4.62** 10.9 ± 3.7 14.9 ± 4.6* 10.63 ± 3.32 13.99±4.35** 11.02 ± 3.64 15.05 ± 4.74 
Sum NTCP 84.9 ± 19.4 71.0 ± 15.0 84.1 ± 18.0 70.7 ± 15.2 84.5 ± 17.8 70.8 ± 14.9 82.4 ± 17.6** 70.9 ± 15.5 84.8 ± 18.3 

P
la

n
   

   
   

   
 

e
v 

al
u

at
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n
 

PTV 7000 CI95% 0.818 ± 0.038 0.854 ± 0.038 0.820 ± 0.038 0.850 ± 0.040 0.818 ± 0.038 0.851 ± 0.037 0.843 ± 
0.040** 

0.845 ± 0.040 0.808 ± 
0.040** 

PTV 5425 CI95% 0.826±0.067 0.850±0.056 0.817 ± 
0.063** 

0.857 ± 0.054 0.823 ± 0.060 0.832 ± 0.056 0.826 ± 0.062 0.854 ± 0.056 0.718 ± 0.058 

Monitor units (#) 349 ± 98.5 - 384 ± 37.5 - 380 ± 38.8* - 387 ± 38.3 - 378 ± 33.8 
Total planning time (min) ~240 10 ± 5 55 ±10 10 ± 5 55 ±10 10 ± 5 55 ±10 10 ± 5 55 ±10 

PPTV: Planning Target Volume, PCM: Pharyngeal Constrictor Muscle, NTCP: Normal Tissue Complication Probability, PEG: Percutaneous Endoscopic Gastrostomy 
*Significant difference compared to reference plans 
** Significant difference compare to mimicked model 60 machine learning optimized plans 



4. Discussion 

 
In this study, machine learning optimization planning has shown to be able to achieve clinical acceptable treatment 
plan quality in the majority of the oropharyngeal cancer plans (26/39 (67%)). We have compared MLO plans of a model 
with 60 plans with the reference plan and evaluated on dosimetric parameters, CI, HI and NTCP. Tuning of a model 
using prediction and mimicking settings highly influenced plan quality. Furthermore, an increase in model size showed 
lower target coverage and NTCP values in the plans generated by a model with 90 plans compared to a plans generated 
by a model with 60 plans. Furthermore, the influence of model composition on oropharyngeal cancer treatment plan 
quality was investigated, the plan quality of a model with all HNC plans was similar to the model containing 60 
oropharyngeal cancer plans. This study showed that fully automated machine learning optimization planning has 
potential to achieve similar plan quality as dosimetrists optimized plans.  
 
The predicted plans of our study were all clinical acceptable, unlike the mimicked plans. The mimicking optimization of 
our study was not able to realize the predicted plan. It is likely that this can be explained by a too optimistic predicted 
plan since mimicked plan quality is highly comparable with reference plans. This finding is in contradiction with the 
results in the study of McIntosh et al., they found that almost all mimicked plans had higher plan quality compared to 
predicted plans[10]. However, the results of adequate target coverage and acceptable OARs dose in the majority of the 
mimicked plans are in accordance. They found that their automated method can create comparable mimicked dose 
distributions to clinical. Furthermore, the results of our study are in line with other studies, an overview of results of 
these studies can be found in appendix E[60], [73]–[75]. For example, the study of Babier et al., who used DVH 
predictions to generate comparable plans as clinical plans[75]. This study has not been able to generate improved plan 
quality by decrease in NTCP values, as shown by fogliata et al.[8]. A possible explanation for that may be a relatively 
high plan quality of reference plans in our institute.  
 
Consistent with the literature, this study found that a model with 30 plans was able to generate clinical acceptable 
plans[9], [60]. Furthermore, we found that the results of model with 30 plans were comparable with the results from 
the model with 60 plans. This finding was also reported by the study of Tol et al.[60]. The results of the model with 60 

 
Figure 9 D98 and sum NTCP difference of validation patients for all models. All plans are shown by lines (D98) and dots 
(Sum NTCP), A,B and C indicate the plans shown in figure 8. The solid red line indicates the D98 threshold of 95% and 
the dashed red line indicate the 2% threshold for sum NTCP. NTCP: Normal Tissue Complication Probability, PTV: 
Planning Target Volume 
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all HNC plans confirm the finding that smaller training atlases are sufficient to reach acceptable plan quality. The plan 
quality of outliers is not investigated in this study. 
 
A strength of this study is the use of a relatively large validation set compared to some other studies[10]. A larger 
validation set will result in robust results of a test set and  generalizability of the MLO results for novel patients. 
Especially for outliers, this can be of benefit, since outliers can be recognized and handled in a large validation set. 
Another strength is that this is the first study, to our knowledge, that compares influence of model size and 
composition on plan quality in machine learning automated planning studies for HNC.  
 
The study has a few limitations. First, the study lacks an independent test set, which is recommended to verify the 
results. However, validation plans have shown to be clinical acceptable in  already 26/39 plans, similar as in reference 
plans, and therefore it is expected that the prediction and mimicking settings are robust enough to create clinical 
acceptable MLO plans in the majority of novel patients. Another limitation of the study is copying the clinical beam 
orientations of the reference plan. However, beam orientations in oropharyngeal cancer treatment plans are highly 
standardized. An option to overcome this limitation is to extract the beam orientation from the five selected ARFs in 
the prediction. A limitation in the plan evaluation method of this study is the lack on hotspot size and location 
information. The D2 of the elective target volume of MLO plans are significant higher and it is possible that larger 
hotspots are present and are located in undesired areas like OARs, as shown by patient C in figure 8. It is recommended 
to implement hotspot size and location in evaluation parameters, for example by using distance to OARs and targets 
and CT density.  
 
An important finding of this study was that plan quality was highly dependent on prediction and mimicking settings and 
the model used for tuning. The results of the model containing 90 plans had significant lower target coverage and lower 
OARs dose, than in the model with 60 plans, shown in figure 9. An explanation for that can be that the mimicking 
weight on OARs is too high or target weight too low. In a model with 90 plans more similar ARFs are selected and more 
options for sparing may be available. It is recommended to tune prediction and mimicking settings on each model. 
 
One unanticipated finding was the exceeded spinal cord dose of one patient (MLO plan: 6004 cGy, ref: 5404 cGy). The 
overlap between the spinal cord and elective target volume can be an explanation for this result, the MLO is not able to 
create a steep dose fall off near the PTV, since this is currently not included in the objective list. Furthermore, target 
underdosage in PTV overlap with a critical OAR like the spinal cord is allowed, but not implemented yet in the MLO 
method. It is recommended to evaluate if and how a steeper dose fall off can be achieved in MLO and adjust the MLO 
algorithm to allow target underdosage in comparable patients, for example by a critical OAR dose MLO strategy. In case 
this strategy will not result in clinical acceptable plans, these patients can have manual adjustments after MLO planning 
or a fully manual plan. It is likely that when only one area has inadequate dose, MLO planning can give a good starting 
point for manual post processing. 
 
It is interesting to note that elective target volume objectives of D98 were reached comparable in MLO plans (37/39, 
95%) and reference plans (38/39, 97%) but the D99.9 of the contracted PTV5425 decreased significant with 60 cGy on 
average. This implicates that more gaps in isodose line are present in MLO plans, an example is shown in figure 8 by 
patient B. An explanation for this finding is that a gap larger than 1 mm in the isodose line can be corrected in the 
relatively large elective target volume to reach the D98 objective. It is recommended to penalize isodose line gaps of 
more than 1 mm by implementing D99.9 in the model and settings.  
 
The model with 90 plans achieved most clinical acceptable plans (model 30: 30/39, model 60: 26/39, model 90: 31/39, 
reference: 26/39), however the D99.9 of this model was the lowest (5030 cGy). The latter result is not taken into 
account in the evaluation of clinical acceptable plan quality. Therefore, it is important to interpret D98 results without 
additional information about dose distribution with caution. 
 
The requirement of reaching 90% clinical acceptable MLO plans was not met with the only strategy used in this study. 
As described previously, the exceeded dose on critical OARs is expected to be fixed easily. Furthermore target coverage 
is likely to be improved by increasing weight on target coverage. However, the remaining failing plans had higher sum 
NTCP values than the reference plans and require further tuning of target and OAR weights. A possible option for 
reaching clinical acceptable quality in 90% of the plans is to create multiple strategies and choose dependent on patient 
characteristics and/or an initial strategy which strategies would fit best for this patients. Ideally mimicking weights will 
be updated automatically during the optimization, a feature which probable will be released in future RayStation 
versions. Further work is required to establish a multiple strategy approach in MLO planning.  
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Contrary to expectations, the mimicking optimization took around 50 minutes per plan in our institute. That was longer 
than the 29 minutes, reached by RaySearch[76]. This inconsistency may be due to differences in the processor 
power(UMCG: Intel Xeon E5-2698v4 20-core CPU, RaySearch: Intel i9-7940X CPU)[77]. Furthermore, it is reasonable 
that computing power can be lower in our institute, since RayStation is shared between users and less random access 
memory (RAM). High-performance computing processors are recommended if MLO will be used in future in clinical 
practice in multiple treatment sites to reach fast MLO plans. 
 
Several questions remain unanswered at present. An important issue for future work is to investigate if changes in 
clinical protocols require new trained models or if tuning a model on the new requirements will be sufficient. 
Furthermore, it should be investigated if MLO plan quality can be predicted to determine if adequate OARs dose is 
reached or if manual treatment planning is necessary to improve plan quality in clinical use. Finally, as mentioned 
before, isodose line gaps and hotspots should be improved. 
 
When MLO planning will be used in clinical practice, several changes will in workflow and decision making will appear. 
Physicians may ask more frequently for a plan adaptation during the treatment course. It is shown that adaptive 
planning results in better outcome and less normal tissue complications[78].  Furthermore, the content of daily work of 
dosimetrists may change. It is likely that dosimetrists will focus on manual treatment planning of outliers or 
complicated patients. The result for the patient will be a better matching treatment plan and potential shorter 
treatment preparation. 
 
In conclusion, machine learning optimization planning has shown to be able to generate clinical acceptable VMAT plans 
for the majority of oropharyngeal cancer patients. Comparable plan quality was reached as reference plans in all 
models. This indicates that MLO planning can serve as a step towards fully automated treatment planning in 
radiotherapy.  
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CHAPTER 3 FUTURE PERSPECTIVES 
 
The main goal of this study was to generate clinical acceptable machine learning based VMAT treatment plans for 
oropharyngeal cancer. We tuned prediction and mimicking settings in a set of 39 patients on a model of 60 plans. 
Clinical acceptable plan quality was reached in 67% using one strategy. Results of our study of other model sizes 
showed that large models are not a requirement in using machine learning optimization planning. However, the plan 
quality of outliers is not investigated in this research. Since it is expected that larger models especially perform better 
on outliers it cannot be concluded that large models do not have advantage over smaller models. Furthermore, our 
results showed that model performance was highly dependent on prediction and mimicking settings. These preliminary 
conclusions can be used for further research towards clinical implementation of automated treatment planning. In this 
chapter will be discussed which tasks and questions need to be answered before machine learning optimization 
planning can be implemented in clinical practice. 
 
 Improve machine learning optimization plan quality 
As recommended in the discussion section of chapter 2, several characteristics of MLO plans including D2, maximum 
dose on critical OARs and D99.9, can be improved towards the reference plans. First, dose hotspots in elective target 
volume should not appear in or near OARs. However, it may be clinically accepted if hotspots appear in fatty tissue or 
close to high risk targets. Since a sample of the MLO plans already showed unacceptable hotspots, see figure 8 patient 
C, hotspots should be evaluated properly and reduced if they are present. Secondly, maximum dose on critical OARs 
should be decreased as discussed before. Each patient should receive at least two plans, the first one with optimal 
critical OARs sparing and the second one with adequate target coverage. These plans may support patient and 
physician decision making of sacrificing critical OAR(s) or risk of recurrence. Finally, gaps in the isodose lines in targets, 
indicated by low D99.9 values, need to be reduced. As discussed before, new structures like contracted PTVs can be 
added in MLO planning. Furthermore, results showed that some reference plans from 2016 and 2017 had gaps as well. 
These plans are not accepted in clinical practice nowadays. The study of Witte et al. showed that the PTV margin may 
be contracted not more than half of an unilateral PTV margin to safely treat the CTV[79]. Therefore, it may be necessary 
to remove these plans from MLO training and validation sets.  
 
In addition, it is important to investigate the use of strategies in MLO planning to reduce OARs dose and reach clinical 
acceptable plan quality in 90% of the plans. It is suggested to examine patient and plan characteristics for further tuning 
of multiple strategies. For example, small and large tumours currently have the same strategy. Furthermore, strategies 
for other HNC types should be investigated. It may be possible that each HNC type needs different strategies. Finally, 
results need to be verified with an independent test set, especially when further tuning is performed on smaller sets. 
 
Practical updates of MLO planning 
In this study, MLO plans are optimized and evaluated using contracted PTV structure (evaluation structure) in case part 
of the PTV is located outside the skin. This outdated method is done to avoid high MU in the skin in case of shifts during 
the treatment course. However, in clinical practice, plans are optimized using a virtual bolus, an option to avoid high 
MU in the skin without contracting the PTV and risk on lack of coverage. The study of Tyran et al. showed that virtual 
bolus can be used safely during treatment and did not impact the plan quality during treatment planning[80]. 
Therefore, we assume that we can keep using contracted PTV structures in this study, but we should switch to the 
virtual bolus method when MLO planning will be used in clinical practice. 
 
Another practical consideration is a new clinical protocol with higher priority on oral cavity, which will be released in a 
few months. It should be investigated if MLO plans according the new protocol can be reached with tuning or that new 
models need to be trained with oral cavity plans. Furthermore, new OARs are added in the clinical protocol and should 
be added in the training. 
 
Evaluation method 
Currently, clinical plan quality evaluation is done by manual scrolling through the slices and additional dosimetric 
parameters. This process is time consuming when many plans should be evaluated in research or clinical setting, for 
example when multiple plan strategies are generated. A possible solution is to (partial) automate plan quality 
evaluation. Automation in plan quality evaluation may lead to objective evaluation and easy comparison between plans 
for both clinical and research use.  
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The process of creating automated plan approval can be divided in the following steps: 
 
Step 1: Determine criteria with physicians  
Step 2: Translate scrolling criteria into measurable parameters 
Step 3: Score criteria 
Step 4: Implement criteria in automated rating method 
Step 5: Visualize plan quality 
 
The first two steps are already included in the evaluation criteria of this thesis, except for D2 evaluation, see an criteria 
overview in table 7. A concept of scores to the criteria is also shown in table 7 (step 3). The following considerations are 
taken into account in rewarding or punishing the criteria: 

 All scores are linear descending, the constraints steeper than objectives, since constraints have higher 
priority[24].  

 Reached criteria are rewarded with 100 points, it is not higher rewarded when a criteria is reached easy since 
clinical advantages seem minimal. 

All scores are summed and divided by the amount of criteria scored. The final scores can be implemented in the 
RaySearch Analytics pipeline (step 4) and visualized in Tableau (step 5).  
 
When the automated method is finished, it should be evaluated with physicians to verify adequate reflection of plan 
quality in the plan score. If the method is confirmed, plan quality can be used to select strategies or recognize worse 
plan quality. In addition, it should be investigated what plan quality is reachable for a specific patient, for example by 
combining patient and plan characteristics like target size, target location, target and OARs overlap and distance to 
target[81]. It is recommended to manually evaluate the final plan since currently not the total dose distribution is 
reflected by the plan score, however, automatic plan evaluation may a good starting point in selecting and evaluation 
MLO plans. 
 
 
 
 
 
 
 
 

Table 7 Overview of criteria and score for multiple ROIs for automated plan evaluation 
 ROI Criteria Prio-

rity 
Score 
100 

Score  
50 

Score 
0 

Constraints PTV 7000 D98    ≥ 6650 cGy 1 ≥ 6650 6640 ≤ 6630 
6950 ≤ Dmean ≤ 7050 
cGy 

1 6950 ≤ Dmean ≤ 
7050 

6940 ≥ Dmean 

≥ 7060 
6930 ≥ Dmean 

≥ 7070 
D2        ≤ 7490 cGy 1 ≤ 7490 7500 ≥ 7510 

PTV 5425 D98      ≥ 5154 cGy 1 ≥ 5154 5144 ≤ 5134 
Brainstem D0.1     ≤ 6300 cGy 1 ≤ 6300 6310 ≥ 6320 
Brain D0.1     ≤ 6300 cGy 1 ≤ 6300 6310 ≥ 6320 
Spinal cord D0.1     ≤ 5400 cGy 1 ≤ 5400 5410 ≥ 5420 
Eyes posterior D0.1     ≤ 6000 cGy 1 ≤ 6000 6010 ≥ 6020 
Cochlea D0.1     ≤ 5250 cGy 1 ≤ 5250 5260 ≥ 5270 

Objectives PTV 7000– 1mm D99.9  ≥ 6650 cGy 2 ≥ 6650 6600 ≤ 6550 
PTV 5425– 1mm D99.9  ≥ 5154 cGy 3 ≥ 5154 5054 ≤ 4954 
PTV 5425 – PTV 
7000 

V5800 = ALARA 3 ? ? ? 

NTCP OARs Dmean = ALARA 4 Plan score = 100 - NTCP 
Other OARs Dmean = ALARA 5 0 35 ≥ 70 

ROI: Region Of Interest, PTV: Planning Target Volume, OARs: Organs At Risk, NTCP OARs: parotid glands, pharyngeal 
constrictor muscle superior (PCM), PCM inferior, oral cavity and cricopharyngeal muscle, D98: dose at 98% of a volume,  D-

mean: mean dose of a volume, D2: dose at 2% of a volume, D0.1: dose at 0.1% of a volume,  ALARA: As Low As Reasonably 
Achievable 
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APPENDIX A GRADING XEROSTOMIA AND DYSPHAGIA 
Table I Grading xerostomia according to CTCAEv4.0[32] 
Grading Description 
Grade I Mild symptoms: oral intake is altered 

Unstimulated saliva production: 0.1-0.2 ml/min 
Grade II Adequate oral intake not possible 

Unstimulated saliva production: <0.1 ml/min 
  

 

 

 
 

 

 

 
 

 

Table II Grading dysphagia according to CTCAEv4.0[32] 
Grading Description 
Grade I Symptomatic, but normal diet possible 
Grade II Symptomatic and altered eating and swallowing pattern 
Grade III Highly altered eating and swallowing pattern 

Tube feeding dependence 
Hospitalization required 

Grade IV Life-threatening consequences 
Acute intervention indicated 
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APPENDIX B OVERVIEW MACHINE LEARNING ALGORITHMS 

 
Figure i Overview machine learning algorithms[82] 
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APPENDIX C FINAL PREDICTION AND MIMICKING SETTINGS 
 

 
Figure ii Final prediction and mimicking settings 
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APPENDIX D SUPPLEMENTARY MATERIAL MODEL 60 RESULTS  
 

 
Figure iii Boxplot of dosimetric and evaluation parameters. Reference plans are subtracted from the Machine learning 
optimization (MLO) plans of model 60.  
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APPENDIX E OVERVIEW OF KNOWLEDGE BASED HEAD AND NECK CANCER STUDIES  

Table III Overview of results knowledge based automated treatment planning head and neck cancer studies 

Articles Method 
type 

Model 
size 

Validation 
size 

Test 
size 

Target comparison Metrics comparison Target Max OARs Mean OARs NTCP 

Wu 2011 Case/DVH 91 not 
mentioned 

15 Re-planned vs 
clinical 

Difference reference comparable lower lower  

Wu 2012 Case/DVH  not 
mentioned 

40 Re-planned vs 
clinical 

Difference reference comparable lower lower  

Yuan 2012 Model/DVH 82 not 
mentioned 

24 Predicted vs 
clinical 

error bound comparable comparable comparable  

Lian 2013 Model/DVH  not 
mentioned 

53 Predicted vs 
clinical 

error bound comparable lower lower  

Wu 2013 Case/DVH  not 
mentioned 

12 Re-planned vs 
clinical 

Difference reference comparable lower lower  

Tol 2015 RapidPlan 30 and 
60 

not 
mentioned 

30 Re-planned vs 
clinical 

Difference reference comparable comparable lower  

Schmidt 2015 Case/DVH 103 not 
mentioned 

10 Re-planned vs 
clinical 

Difference reference comparable lower lower  

Zhang 2018 Model/DVH 80 148  Predicted vs 
clinical 

Weighted root mean square  higher  

Van Bruggen 2019 Voxel 
based 

63 0 32 Goals Difference reference 27/32 (84%) higher lower  

McIntosh 2017 Voxel 
based 

54 12 12 Difference 
reference 

Difference reference 0.6% higher  2.4% lower  

Fogliata 2017  83 not 
mentioned 

20  Difference reference comparable  lower 7% 
decrease 

Hansen 2016   not 
mentioned 

30   comparable  lower  

Mahmood 2018 Gan, 
deliverable 

130 not 
mentioned 

87   comparable lower lower  

Nguyen 2019 U-net, 
prediction 

80 80 20 Difference 
reference 

Difference reference  lower lower  
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APPENDIX F SHORT PAPER ICCR  
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Introduction 

Traditional intensity modulated treatment planning requires a manual and iterative loop of changing planning objectives. 

Therefore, plan quality remains subject to the experience of the dosimetrist and may greatly benefit from automation. 

Currently, fully and semi-automated methods have been proposed in literature, such as lexicographic-based methods and 

multi-criteria optimization, amongst others. We hypothesize that a (photon) dose distribution for head and neck cancer 

(HNC) patients can be predicted within minutes, which can then be mimicked to create a deliverable volumetric 

modulated arc therapy (VMAT) dose distribution with similar quality as the clinical ‘dosimetrist-optimized’ dose 

distributions.  

Materials & Methods 

The machine learning based automated planning (MLAP) involves training of a model, which is used to predict the voxel 

dose in novel patients. The CT scan, structures and dose distributions of 71 consecutive primary HNC patients, 

previously treated with dual arc VMAT and two dose levels (70 Gy and 54.25 Gy in 35 fractions), were retrieved from 

our clinical database. Patient selection was restricted to tumors originating in the oropharynx, larynx, oral cavity, 

nasopharynx and paranasal sinuses. As part of the evaluation of the MLAP, we applied a repeated random subset 

validation approach where patient data was split into four sets; using 8 patients for testing and the remaining 63 patients 

for training in each set. 

The patient data was trained using an Atlas Regression Forest (ARF) model. During training, the ARF creates a set of 

decisions trees based from random voxels and features from the training data. The features are extracted imaging 

features, information about distances to target  and OARs contours and the dose distributions of the patients in the 

training set. A prediction random forest (PRF)model is then trained to learn to select the best matching forests from the 

model using accuracy measures (gamma criteria)from the decision tree information. Hence, the five ARFs with the 

highest accuracy were used to predict a probability distribution of potential dose values per voxel in the test patients by 

using their input features. A conditional random field was then used, in combination with the clinical goals, to boil this 

distribution down to the most probable dose in each voxel.  The authors refer to the work of McIntosh and Purdie for 

more details on the dose prediction step [1]. In the final step, the predicted dose distribution was input to a mimicking 

optimization algorithm to generate a deliverable dose distribution.  

The dose distributions (i.e. predicted and mimicked dose) of the patients in the test set were compared against the 

dosimetrist-optimized clinical plans, further indicated as reference plans. Plans were compared by means of target 

conformity (CI95%),dosimetric parameters (targets: D98 (D98≥95%), D2; OARs: Dmean, Dmax) and normal tissue 

complication probabilities (NTCP) for xerostomia, grade 2-4 dysphagia, and percutaneous endoscopic gastrostomy 

(PEG) tube dependence.  

Results 

The predicted dose was in accordance with reference dose for all plans (table 1). The mimicked plans  had adequate 

target coverage for high risk and elective volumes according to clinical goals in 27/32 (84%) and 29/32(91%) of the 

cases, respectively. For reference plans, 30 of 32  (94%) had adequate target coverage for both high risk and elective 

volumes. Target conformity was better in mimicked plans compared to reference plans. The NTCP values of mimicked 
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plans were lower or did not increase with more than 2.0% compared to the reference plans in 23 of the 32 cases (72%). 

The Dmax on the posterior eye (580cGy) exceeded the maximum eye dose (500cGy) in one mimicked plan.  Other 

maximum doses for brain, brainstem, spinal cord and left eye were not exceeded in both reference plans and mimicked 

plans. Dmean for oral cavity, pharynx constrictor muscle superior and inferior, cricopharyngeal muscle and supraglottic 

larynx were lower in mimicked plans than reference plans, on average for these OARs: 36.7 ± 11.6 Gy vs. 39.2 ± 13.0 Gy 

respectively.  Figure 1 shows the median dose volume histogram (DVH) of all mimicked and reference plans. 

 

Table 1: Overview of results reference, predicted and mimicked plans. 

SD: standard deviation, PTV: planning target volume, CI: conformity 

index, NTCP: normal tissue complication  probability, PEG: 

percutaneous endoscopic gastrostomy 

 

 Reference(SD) Prediction(SD) Mimicked (SD) 

PTV_7000 D98 (Gy) 67.1 (0.7) 67.3 (0.5) 66.9 (0.5) 

PTV_7000 D2 (Gy) 72.3 (0.8) 71.1 (0.0) 72.1 (0.5) 

PTV_7000 CI95%  1.3 (0.2) 1.3 (0.1) 1.2 (0.1) 

PTV_5425 D98 (Gy) 52.6 (2.0) 52.5 (0.4) 51.9 (1.0) 

PTV_5425 D2 (Gy) 71.7 (0.9) 70.9 (0.2) 71.3 (0.7) 

PTV_5425 CI95%  1.4 (0.1) 1.2 (0.1) 1.2 (0.1) 

NTCPXerostomia (%) 38.2 (11.8) 38.4 (8.5) 39.8 (10.8) 

NTCP Dysphagia (%) 20.8 (11.7) 19.3 (9.6) 19.7 (10.2) 

NTCP PEG (%) 12.9 (9.0) 10.9 (6.6) 11.9 (7.6) 

NTCP Sum (%) 72.3 (30.4) 68.8 (23.4) 71.6 (27.0) 
 

 
Figure 1: Median dose volume histogram(DVH) 

of all mimicked and reference plans; PTV_7000 

(red), PTV_5424 (excluding PTV_7000 orange), 

pharynx constrictor muscle superior (navy), oral 

cavity (green), combined parotid glands 

(turquoise) 
 

Discussion & Conclusions 

In this study, we demonstrated that adequate target coverage can be reached using MLAP in the majority of HNC VMAT 

treatment plans. Similar or lower NTCP values were reached in 72% of the plans This indicates that MLAP can serve as 

a promising tool for automated treatment planning to overcome lower plan quality due to inexperienced dosimetrists. 

Further improvements in OARs dose is likely to be reached by optimizing machine learning settings and  increasing the 

trainings set size, as more similar ARFs can be used to predict dose.  

References 

[1] McIntosh C, Purdie TG, Contextual Atlas Regression Forests: Multiple-Atlas-Based Automated Dose Prediction in 

Radiation Therapy, IEEE Trans Med Imaging 2016 Apr;35(4):1000-12 

†
Corresponding Author: e.w.korevaar@umcg.nl  

 

 

 

 

 

 

 

 

 



 
42 

APPENDIX G MANUAL MACHINE LEARNING IN RAYSTATION 
Document created by: Maaike Dotinga 
Edited by: Ilse van Bruggen  
Date: 22-08-2019 

 

TRAINING 

After deciding which patients you would like to include in your ML model, please follow the next: 

1. Go to \\zkh\appdata\Raystation\Research\ML\trained_models\RayStation8b and create your own folder 

a. Create a txt file comprising a patient list with ID and name of plan, an example can be found here:  

\\zkh\appdata\Raystation\Research\ML\trained_models\RayStation8b\Modeltest0702\\training_pati

ent_test.txt  

b. Define your model_meta.JSON file, for examples go to: 

\\zkh\appdata\Raystation\Research\ML\trained_models\model_config\Maaike\JSON_files 

c. Change the txt and JSON file in your start_training file: 

\\zkh\appdata\Raystation\Research\ML\trained_models\RayStation8b\Modeltest0702\\start_trainin

g_modeltest0702.py     

 

further instructions about parameters in this file are found in: 

\\zkh\appdata\Raystation\Research\ML\Instructions_ML-models\RaySearch_instruction.docx 

 

NB: when using the GUI, keep in mind that ‘modelname’ should correspond with one of the defined 

folders in \\zkh\appdata\Raystation\Research\ML\trained_models 

2. Open RayStation Development (RayStation 8B), open each new patient 
a. Verify if a patient is imported in RayStation Development, if not, import the patient from RayStation 

Klinisch 

b. Copy and rename the clinical plan to PhotonPlan 

c. Go to ‘Plan Design’, verify if dual arc is used, if not, create dual arc 

d. Change machine to latest Agility machine 

 
3. In RayStation Development (RayStation 8B) >> Scripting >> Script creation 

a. Open: 

\\zkh\appdata\Raystation\Research\ML\trained_models\RayStation8b\Modeltest0702\\start_trainin

g_modeltest0702.py    

b. Change ‘Phyton interpreter’ to RayLearnerGron 

c. Start training and wait until it is completed 

 

4. Output is created in the same folder as where your txt and json files are located. A new folder called ‘Photon’ 

will appear that includes a log file, pkl and npz files. Check your log file after training to detect empty 

structures and errors to find out whether adjustments have to be made or if training was successful.  

TESTING 

To generate predicted and mimicked plans, consider the following steps. For all actions keep in mind that you have 

opened RayStation in patient data management, that will speed up the process. 

5. Copy your ‘Photon’ folder and JSON file into the folder with corresponding model name found here: 

\\zkh\appdata\Raystation\Research\ML\trained_models 

file://zkh/appdata/Raystation/Research/ML/trained_models/RayStation8b
file://zkh/appdata/Raystation/Research/ML/trained_models/RayStation8b/Modeltest0702/training_patient_test.txt
file://zkh/appdata/Raystation/Research/ML/trained_models/RayStation8b/Modeltest0702/training_patient_test.txt
file://zkh/appdata/Raystation/Research/ML/trained_models/model_config/Maaike/JSON_files
file://start_training_modeltest0702.py
file://start_training_modeltest0702.py
file://zkh/appdata/Raystation/Research/ML/Instructions_ML-models/RaySearch_instruction.docx
file://zkh/appdata/Raystation/Research/ML/trained_models
file://start_training_modeltest0702.py
file://start_training_modeltest0702.py
file://zkh/appdata/Raystation/Research/ML/trained_models
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6. Make sure ‘autoplanning_raystation_script.py’ and ‘autoplanning_service_script.py’ are present in the folder. 

If they are not there, copy them from: 

\\zkh\appdata\Raystation\Research\ML\trained_models\model_config\scripts  

7. Have a look at the model_settings file. Do you want to change something in the settings? 
8. Make sure the plans you want to use for prediction have to following settings: 

a. Current machine: Go to Plan design  double click on machine change to latest agility machine. 
There is no script available for make changes in a batch, so you have to change the machine for each 
patient manually. 

b. Prescription set to site: go to patient data management  start script ‘change to site’ 
\\zkh\appdata\Raystation\Research\ML\raylearner\AutomaticPlanning 
1.1\Model_oro30_1\batch_change_to_site.py  
and specify the plans you want to change in the txt file 
\\zkh\appdata\Raystation\Research\ML\raylearner\AutomaticPlanning 
1.1\Model_oro30_1\patients_change_to_site.txt   

 

9. The prediction and mimicking consists of three steps. It is recommended to run the script only for one action at 

the time in new patients.  Comment out (#) the other actions. 

\\zkh\appdata\Raystation\Research\ML\raylearner\AutomaticPlanning 

1.1\Model_oro30_1\Model_copy_predict_mimick_expected.py  

a. Copy plans: batch_copy_plans(COPY_PATIENT_PLAN_FILE, NEW_PLAN_NAME). Specify the new plan 

name in the script. Copy plans takes around 1-2 minutes per plan.  

b. Prediction: batch_autoplanning_predict(PATIENT_PLAN_FILE, MODEL_NAME, MODEL_DIR, 

[STRAT_NAME]). Choose the strategy you want for prediction in ‘STRAT_NAME’. Prediction takes 

around 15 minutes per plan. 

c. Mimicking: batch_autoplan_mimick_plans(PATIENT_PLAN_FILE, MODEL_DIR, STRAT_NAME). 

Mimicking takes around 45 minutes per plan. 
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