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Summary

Radar systems are large, complex, and technologically advanced machines that
have a very long life-span. This inherently means that there are a lot of parts and
subsystems that can break. Thales Nederland develops a whole range of radar sys-
tems, including the SMART-L MM, one of the world’s most advances radar systems,
capable of detecting targets at a distance of up to 2.000 kilometers. In order to aid
the maintenance and repair of the radar it is equipped with a wide range of sensors,
which results in a total of 1.100 sensor signals. The sensor signal are currently pro-
cessed by two programs, a Built-In Test system, which gives alarms based on a set
of rules and an outlier detection algorithm.
In the case of the anomaly detection algorithm the main shortcoming is the lack of
explanations. Even though an outlier might be detected, there is still no explanation
or label assigned to it. In order to resolve this shortcoming Thales wants to create
a system which is capable of recognizing and grouping previously seen behaviour.
This results in the following research questions:

1. To what extent can the system state be diagnosed automatically?

(a) Which techniques are available to diagnose the outliers and which are
most suitable given the case described in Section 1.1 and the available
data?

(b) How to assess the quality of the methods used to provide a diagnosis?

(c) How do the methods selected in RQ 1.a stack up against each other
based on the metric found in RQ 1.b and training and diagnostic speed?

Based on an extensive literature review this report proposes to use a clustering algo-
rithm to provide the explanations based on annotations. To find out which algorithm
works best, a total of seven combinations are tested. To find out if semi-supervised
learning provides a substantial benefit over unsupervised learning for the case of
Thales, this report also proposes a novel, semi-supervised constraint-based variant
of the Self-Organizing Map (SOM) called the Constraint-Based Semi-Supervised
Self-Organizing Map (CB-SSSOM).
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The methodology with which these algorithms are tested consists of four steps, (1)
pre-processing, (2) dimensionality reduction, (3) clustering and (4) evaluation. This
is done on three synthetic data sets and one real data set. The latter is annotated
manually by a domain expert to ease the evaluation.

A quick overview of the most important results can be found in Table 1. Most al-
gorithms were tried both with and without dimensionality reduction performed by a
Deep Belief Network (DBN).
The conclusion of the report is that unsupervised clustering is most likely not a vi-
able option, although there is still some hope in the form of subspace clustering.
However semi-supervised clustering did offer some promising results and could be
a viable solution, especially when combined with Active Learning.

Algorithm Dimensionality Reduction u/i/s 1 F-score
k-Means - u 0.2460
k-Means DBN u 0.4114
c-Means - u 0.2460
c-Means DBN u 0.2460
SOM - u 0.4020
SOM DBN u 0.2483
CB-SSSOM - i 0.5286

Table 1: Summary of the results obtained on a real data set

1u: Unsupervised, i: Semi-Supervised, s: Supervised
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Chapter 1

Introduction

This document describes the results of my master thesis at the University of Twente,
which forms the conclusion of the Master Computer Science with a specialization in
Data Science. The master thesis is performed at Thales Nederland in Hengelo.
Thales Group S.A. is a multinational company with over 80.000 employees that
builds and develops electronic systems for many markets, including aerospace, de-
fence, security and transportation. A large portion of the group’s sales are in de-
fence, which makes it the tenth largest defence contractor in the world.
One of the subsidiaries that develops defence systems is Thales Nederland. This
company that has its origins in the Hollandse Signaalapparaten B.V. primarily con-
cerns itself with the development of combat management, radar and sensor sys-
tems.
One of those radar systems is the SMART-L MM. This is one of the largest and most
advanced radar systems developed by Thales Nederland and can detect targets at
a distance of up to 2.000 kilometers. This project will focus on the SMART-L MM.

1.1 Motivation

The SMART-L MM radar systems are complex and expensive machines that are
crucial to the operations of the defence forces. Therefore unexpected downtime will
create serious issues for the operators. This is where the Health and Usage Moni-
toring System (HUMS) team comes in.
HUMS is responsible for monitoring the complete radar system and giving alarms
when a certain part is not functioning as expected. In order to do this a modern
radar system has a large number of sensors that monitor many properties including
the temperature of the cooling water and the electric current required by the mo-
tor that rotates the radar. In the case of the SMART-L MM this results in a total of
about 1.100 sensor signals. Those signals are currently monitored by two separate
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computer programs. The first one is the traditional Built-In Test (BIT) program. This
program is based around a predefined set of rules which it uses to fire alarms. So,
if a certain sensor reading crosses a threshold value an alarm is fired. The BIT
program also tries to find the origin of the problem and, if there are multiple alarms,
to group them and find the possible causes. This is partly done based on rules and
partly on a model of the radar system. These rules are entered through an elaborate
set of Excel sheets and are then parsed into a set of if-else clauses.
The second program that monitors the sensor readings is an outlier detection sys-
tem. This outlier detection is currently a univariate program that works based on
a statistical model of the data. When the likelihood of seeing a certain value falls
below a chosen threshold value an alert is send to the user through a monitoring
dashboard. This program is slated to be extended by a multivariate outlier detection
algorithm that should be capable of better handling the different usage states the
radar is in, which have a large influence on its behavior. It should also be able to
find correlations between different sensor readings. In the future Thales also wants
to include the temporal aspects of the data in the detection algorithm.
The goal of this research is to explain system behaviour in radar systems, however
this requires some further specification. A radar system, in this case, is a com-
plete radar system such as the SMART-L MM, including all of its sub components,
such as the cooling system, the rack PCs, send/receive modules, etc. System be-
haviour is defined as the combination of sensor readings and system states at a
certain point in time. System states describe the current state and activities of the
radar. This includes information on whether the radar is rotating or not, whether it
is operational and if it is in an eco state. These states have been shown to have
a substantial influence on the sensor readings and are therefore an important part
of the ”behaviour” of the system. The last part of the title is the term explanation,
which might be slightly confusing given the growing importance in both literature and
practice of explainable AI, which is not what this thesis concerns itself with. In this
case it refers to explaining the behaviour of a system based on textual annotations.
These annotations will be further described in the next section, however it comes
down to assigning labels to periods of time in a data-driven fashion, in other words,
classifying the combined sensor reading and system states. During the rest of this
report, explaining system behaviour will also be referred to as diagnosing system
behaviour.
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1.1.1 Annotations

The HUMS team has also been developing an annotation server. This annotation
tool is integrated in the monitoring dashboard and can be used by the operators to
provide truth values by adding a label to a certain point in time or to an anomaly, or
by giving feedback on an existing label, such as the BIT alarms. The user could for
example say that an anomaly was indeed a failure. The operator of the radar could
also say that the failure was not legitimate and give it a label. There are four types
of annotations, which are defined below.

• General; An annotation that spans a certain time period but is not assigned to
a specific element or time series

• Time series; An annotation that spans a certain time period and is assigned to
a specific data source

• BIT Alarm; An annotation that is assigned to a certain occurrence of a BIT
alarm

• Outlier; An annotation that is assigned to a certain outlier

1.1.2 Explanations

One of the things that is currently lacking is an explanation of what is happening on
or in the system. When an anomaly occurs it is presented as just that, an abnormal
value in a certain time series and when a series of alarms is fired, such as during
the startup sequence, all of those alarms are presented without a context. This is a
limitation as it is unclear to the operator how he should interpret those notifications.
The lack of an explanation also means that it is impossible to filter the outliers or to
decide what to do about them, without having in depth knowledge of the radar sys-
tem. Ideally such an explanation would also include a diagnostic of the underlying
cause of the problem, especially when a combination of outliers is detected. For
example, when ten temperature readings are reported as outliers because they are
too high, the operator does not want to get ten notifications, but just one with the
most likely cause, in this case the cooling system.
There are different kinds of behaviour that can occur in the radar system, ”normal”
behaviour, when the radar is operating as it should and the resulting data is as ex-
pected and ”abnormal” behaviour, when it is not. The latter can be further separated
into three variants, abnormal behaviour caused by the operator, abnormal behaviour
caused by external factors, such as the temperature, and abnormal behaviour cased
by failures. Failures in this case are the consequence of faults, which arise when
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a component does not operate according to its specifications, i.e. a defect. These
faults can become gradually worse or it can arise abruptly. The goal of this thesis
is to provide a diagnosis for each type of behaviour. For example, when starting up
the radar system a certain combination of alarms is raised at the same time. This
behaviour is normal, however it would still benefit from an explanation, which in this
case can be as simple as ”Startup”. A form of abnormal behaviour caused by exter-
nal factors is when, due to a low outside temperature, ice has formed on the outside
of the radar system, which might interfere with its ability to send and receive. In this
case a diagnosis ”Icing on antenna” would be very helpful to the engineers. When
the temperature of the radar system suddenly rises a diagnosis could be ”Cooling
system offline”. These states might either be available explicitly in the data, such as
”Startup”, which is included as a system state, or be hidden states, which are only
available implicitly through other time series. Ideally the resulting explanations can
be based on both the explicit and the hidden states, however this thesis will focus
primarily on the latter of the two.
Those aforementioned diagnoses, or class labels, are not known apriori and are en-
tered by the operator through the annotation server. The class labels do not have
to be related to outliers or alarms though. It could also happen that the operator
indicates that he is running an endurance test, in that case future endurance tests
should also be recognized. These, user-generated, class labels are used as an ex-
planation of the current system behaviour. The goal of this project is to do a literature
review in order to find out if there already exists a method to perform this task that is
suitable for the type of data described in the next section. If there is, it will be tested
and if there is not, an attempt will be made to create a novel method that is capable
of handling the problem.

1.2 Data

In order to apply machine learning there needs to be enough data. In this subsection
the data will be explained and a number of associated challenges will be listed. The
available data consists of six parts;

• Sensor readings (continuous data)

• System states (discrete data)

• System modes (discrete data)

• BIT Alarms (discrete data)

• Detected outliers (discrete data)
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• Annotations (textual labels)

All of these are collected periodically and are therefore stored as time series. An
overview of the data flow and how this leads to a diagnosis that explains the current
situation is given in Figure 1.1.

Figure 1.1: Overview of the data flow that leads to a diagnosis

1.2.1 Challenges

There are a number of challenges that result from the data described above. This
subsection lists those challenges.
First of all, the dimensionality of the data is quite high, there are about 1.100 sources
of continuous data such as sensors and 19.000 discrete data sources. This data is
collected over time and is therefore temporal data. The sampling rate differs per
sensor, some are collected every 10 seconds and some are only stored when they
differ substantially from the previous reading. Given that some outliers, such as
those generated during the startup sequence, are more likely to occur than others,
there is also a high sample imbalance.
The annotations are currently created by the test engineers, which makes it user
generated data, thus it might be ”messy” and sometimes downright wrong. It could
for example happen that the maintenance team replaced the wrong part and entered
that part as the cause or that they just selected the wrong reason from the list, due
to human error. The final challenge is that the annotation server is not yet working.
It will take a while for this data to become available. Therefore, should this data be
necessary in order to answer the research question, there are a couple of options.
The first option is to ask a domain expert to manually label the outliers in (a subset
of) the data. The other option is to generate synthetic data with the accompanying
labels. However, even when the annotation server is live, there will be a (very)
limited amount of annotated data. Even though the amount would increase once the
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annotation server is live, they are still outliers and therefore the data is by definition
sparse.
Radar systems have a long lifespan of more than 30 years. This means that any
fault diagnosis solution should be durable enough to keep functioning throughout
the entire lifetime. This long lifetime comes with its own set of unique challenges.
For one, it might happen that after 10 years a suppliers decides that a specific part
will not be produced anymore, which means that it has to be replaced by another
part. This means that the data that is collected is most likely different. The fault
diagnosis system could handle such a change in multiple ways, one of which is
through an update with a new, pre-trained, model. Another way to handle this issue
is having a system that is capable of handling the change and training itself again
using operator input. Since this would imply online training it is important to note that
any method which uses this solution should be scalable enough to be trained now,
on the currently collected data during testing, but also to train itself after 30 years
worth of data has been collected.
All of this data will be collected by multiple radar systems, however all of the systems
are hand-build, which means that there are slight variations in each machine. Those
variations will probably make it difficult to use the trained model of one radar on
the other systems. It might be possible to solve this problem through the use of
techniques like Transfer Learning, however investigating this is beyond the scope of
this project. Given that the market for radar systems is relatively small there will not
be a lot of systems sold. Most models are sold somewhere between 10 and 100
times. This means that there will most likely not be enough data to discover the
underlying structures in the data.

1.3 Research questions

The main goal of this project is to find a way to provide a diagnosis for the generated
outliers automatically based on the data, which should help the operators in main-
taining the radar system. This goal has lead to the following research questions:

1. To what extent can the system state be diagnosed automatically?

(a) Which techniques are available to diagnose the outliers and which are
most suitable given the case described in Section 1.1 and the available
data?

(b) How to assess the quality of the methods used to provide a diagnosis?

(c) How do the methods selected in RQ 1.a stack up against each other
based on the metric found in RQ 1.b and training and diagnostic speed?
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1.4 Research Method

Before trying to answer the research questions, it is important to decide on a valid
research methodology for each of them. The goal of the primary research question
is to find a feasible method to perform the task of diagnosing the outliers. This
question will be answered through answering the sub questions. To answer RQ 1.a
and RQ 1.b a literature review is performed, the result of which can be found in
Chapter 3. RQ 1.c combines the two prior sub-questions to compare the found
methods and find out which one is most suitable for the case of Thales as described
in Section 1.2. Given that there might be (very) few labels available during the
course of this project, the methods will also be compared based on a synthetic data
set which has a similar dimensionality as the Thales data set, but with artificially
introduced outliers and the accompanying labels.

1.5 Report organization

The remainder of this report is organized as follows. In Chapter 3 the literature study
that was performed is described. Then, in Chapter 4 a more extensive research
methodology is given. The results of the, in the methodology chapter described,
experiments are given in Chapter 5, which is followed by the discussion in Chapter 6
and the conclusion in Chapter 7.



Chapter 2

Background

Throughout this report a large number of techniques will be mentioned that the
reader is assumed to be familiar with. This chapter serves as a fallback for the cases
where this assumption is incorrect. When the reader does have the background
knowledge the rest of the report can be followed without reading this chapter.

2.1 Clustering methods

The goal when clustering data points is to group those data points which are more
similar to each other than they are to data points in other groups. There are a large
number of techniques available that try to accomplish this. This section will discuss
those that form an integral part of the report.

2.1.1 K-Means

K-Means might be one of the simplest but also one of the most effective clustering
methods. It tries to cluster the data points by assigning them to the nearest cluster
center, often based on the Euclidian distance between the data point and the clus-
ter center. The underlying problem is NP-hard, however when applying a heuristic
algorithm it is usually possible to quickly converge to locally optimal solution. In this
case the Lloyd’s algorithm is used to solve the problem. This is an iterative process
that uses the following steps to cluster the data;

1. Cluster center initialization

2. Assigning data points to cluster centers

3. Updating the cluster center to be the mean of the assigned data points

4. If the means have not yet converged, return to step two

8
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There are k cluster centers, with k being a predetermined hyper-parameter. The
k-Means algorithm has been proven to always converge to a solution. This solution
might however be a local optimum [1]. One solution to this problem is to restart the
algorithm several times, each with a random initialization. Another, more efficient,
solution to mitigate the problem is to use a heuristic in initializing the cluster cen-
ters. One such heuristic was proposed by Arthur and Vassilvitskii. They proposed
to initialize the cluster centers to be generally distant from each other and proved
that this leads to better results than those obtained when the initialization is done
at random [2]. They dubbed this initialization strategy k-means++. The complete
algorithm is described in full detail by Hastie, Tibshirani and Friedman in their 2001
book [3].

2.1.2 Fuzzy c-Means clustering

Each clustering method has its own characteristics and one of those characteristics
is whether the clusters are hard or soft. In hard clustering, each label is assigned to
one cluster and one cluster only. In soft clustering on the other hand each data point
has a degree of membership to a certain cluster. For example, a data point could be
70% likely to be a part of cluster A, 25% likely a member of cluster C and 5% likely
a member of cluster B. Fuzzy c-Means clustering is a soft clustering variant of the
previously described k-Means technique. A complete description of the algorithm is
given by Dunn, who first introduced the algorithm in his 1973 paper [4].

2.1.3 Self-Organising Maps

A Self-Organizing Map (SOM) is a type of artificial neural network that was mainly
intended as a tool for dimensionality reduction, however it has also proven itself use-
ful in the field of clustering. A SOM consists of a two dimensional map of ”units”.
Each unit is assigned a weight vector in the same dimensionality as that of the
original data. The weights are usually initialized at random. Then, through an iter-
ative process, that runs a predetermined amount of times (the number of epochs),
the weights of the units are updated to best match those of the original data. The
premise here is that this creates a good, two dimensional, representation of the
original data. This is done through a concept called the Best Matching Unit (BMU),
which is the unit whose weights are closest to those of the selected data point. The
weights of all the units are updated to be closer to those of the selected data point.
The update is larger when the unit is closer to the BMU. For the complete formula
and a more detailed description, please refer to Kohonen’s 1982 paper in which he
first introduced the concept [5].
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When the training is done, the data points are assigned to a cluster based on their
BMU. When data points have the same BMU, they belong to the same cluster.
SOMs are a hierarchical clustering method, which in this case means that there
is more information available than just which cluster a data point belongs to. For
example, if data point A belongs to the unit at (2, 15) and data point B belongs to the
unit at (3, 15) then the chances of the two data points are related and should actu-
ally be in the same cluster is higher than when they would be at (1, 3) and (50, 69)

respectively.

2.1.4 Mixture Models

A Mixture Model (MM) is a linear mixture of multiple probability distributions. The
goal is to find the combination of distributions that best describe the data. Each of
the distributions describes a cluster and data points are assigned to the distribution
that has the highest probability for their value. Even though this sounds good in the-
ory it does require that the parameters of each distribution are estimated. Since it is
not clear which of the data points belong to which distribution it is difficult to properly
estimate the values. This is where the Expectation Maximization (EM) algorithm
comes in. This algorithm, which consists of an expectation and a maximization step,
iteratively estimates the parameters to achieve the maximum likelihood. In his 2006
book Bishop gives a more detailed description of MMs [6].

2.1.5 Support Vector Machines

Traditional Support Vector Machine (SVM)s are not a clustering, but a classifica-
tion tool. They try to calculate the hyper plane that separates the data with the
widest margin. This calculation is done using a so-called kernel, of which the two
most popular are the Radial Basis Function (RBF) [7], [8] and the Pearson VII Uni-
versal Function Kernel (PUFK) [9]. Traditionally, SVMs are a binary classification
tool, however it is possible to use them for multi-class classification problems by
constructing multistage binary classifiers. This can be done in different manners,
the two most popular of which are One-Against-All (OAA) and One-Against-One
(OAO) [10]. When the OAA strategy is used, one classifier is trained for each class
such that the instances in that class are the positive training samples and all other
instances are the negative samples. The sample is then assigned to the class which
has the decision function with the highest value. In the OAO strategy a classifier
is trained for each combination of two classes. When a new sample comes in it is
classified by each classifier and the ”winning” class gets one vote each time. The
resulting class will be the one that has the most votes [6]. In the literature the latter
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of these two methods proofed most effective [11], [12].
Even though SVMs are traditionally supervised learning algorithms, it is possible
to also include unlabelled instances. This is done through a Transductive Support
Vector Machine (TSVM). TSVMs calculate the maximum margin solution, while si-
multaneously finding the most suitable label for the unlabeled instances [13].

2.1.6 Subspace clustering

When working with high-dimensional data there are often subspace in the data that
can be identified and utilised to perform clustering. Subspace Clustering (SC) as
this is called is a group of clustering techniques. This subset of clustering algorithms
tries to cluster the data points based on a limited number of subspaces, so cluster
a and b might only exist in the combination of dimension 1 and 2, whereas cluster c
only exists in dimensions 3 and 4. In order properly differentiate these clusters they
should be looked at in their respective dimensions. More details on this technique
and the exact implementation can be found in Parsons’ 2004 book [14].

2.1.7 Semi-supervised clustering

In unsupervised learning the algorithms do not use any information about the un-
derlying data to create clusters, whereas supervised learning requires all of the data
to be labelled in order to train. A middle ground here is semi-supervised learning,
which uses side information about the data to create a more accurate clustering.
Semi-Supervised learning arose in the 60s when the concept of self-learning algo-
rithms was introduced by Scudder. The technique really started to take of in the
70s however when researchers began to incorporate unlabelled data whilst training
mixture models [15]. According to Chapelle, Schlkopf, and Zien [15] the term semi-
supervised learning itself was first introduced in the context of classification by Merz
et al. [16].
There are multiple techniques available to incorporate information into semi-supervised
learning algorithms. Two of the most popular are label based and constraint based
semi-supervised learning. When semi-supervised learning is done using partial la-
bels it means that there are labels available, however not on the complete dataset.
Therefore the algorithm should be able to function with just a subset of the labels.
This is the kind of data that is used in algorithms such as TSVMs. In constraint
based semi-supervised learning the labels themselves are not available, but rather
there are instance level constraints. There are two types of constraints that are often
used, Must-Link (M-L) and Cannot-Link (C-L). A M-L between two samples means
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that they must be linked in the same cluster, whereas a C-L means that the sam-
ples must be in a different cluster. The label based method is more informative, but
the constraint based technique is a more generally applicable. It is possible to use
labels as the basis in a constraint based setting, but not the other way around [17].

2.2 Dimensionality Reduction

When the data consists of a large number of dimensions it might be required to
reduce the dimensionality before using the data for applications such as clustering.
This is because relevant patterns are likely to be overshadowed by meaningless data
from other dimensions. The general goal of dimensionality reduction is to map the
data to a lower dimensional subspace without losing information. There are multiple
methods that try to achieve this goal. This sections tries to give some background
on three that are important to this report.

2.2.1 Principal Component Analysis

Principal Component Analysis (PCA) is a linear transformation algorithm. The goal
of the algorithm is to find the directions (lines) of maximum variance. It iteratively
starts by finding the one with the maximum variance and is called the first compo-
nent. It then tries to find another component, with the second highest variance, that
has to be mutually orthogonal to the others. The first direction is called the first prin-
cipal component, the second is called the second principal component, etc. Each
component has an eigenvalue associated with it, that indicates the amount of vari-
ance that it is responsible for. This means that those components with the lowest
eigenvalue are also the ones that could best be thrown away. There are multiple
techniques to find those components, however the most popular one is Singular
Value Decomposition (SVD). More details on this method can be found in Bishop
(2006) [6].

2.2.2 Stacked Auto-Encoder

To understand what a Stacked Auto Encoders (SAE) is, one first has to understand
what an Auto Encoder (AE) is. An AE is an unsupervised artificial neural network
that tries to find a, lower dimensional, encoding for the data. An AE typically con-
sists of an input layer, a reduction side, that maps the input layer to a hidden layer
and a reconstruction side, that tries to reconstruct the original data based on the
hidden layer. A SAE or Deep Auto Encoder (DAE) are a deep learning variant of the
traditional AE, where multiple AEs are stacked on top of each other to get an even
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lower dimensional representation of the data. A more detailed explanation can be
found in Aggarwal’s 2018 book [18].

2.2.3 Deep Belief Network

A Deep Belief Network (DBN) is in the basis a stack of Restricted Bolzman Machine
(RBM)s. A RBM is a shallow generative neural network, which consists of a hidden
and a visible layer. The goal of a RBM is to, given a set of outputs, find which inputs
produced these outputs. A DBN is a stack of these RBMs where the hidden layer
of one RBM is used as the visible layer for the next network. These networks have
a large number of applications, however the one that will be used in this report is
dimensionality reduction. When a DBN find the input used to create the output it
has also found a lower dimensional representation of the output data. After all, the
rest of the output can be created by the network and is therefore the same or similar
to all other outputs, which means that the input which remains is what makes the
sample distinctive. For more information and the formulas, please refer to Aggarwal
(2018) [18].



Chapter 3

Literature review

As was established in the Chapter 1, the goal of this report is to find a method to
automatically explain the system’s behaviour, either through a literature review or by
creating a novel method. In this section a literature review will be performed to do so.
With the advent of cheaper sensors and storage, the field of monitoring equipment
and detecting and classifying faults has become an increasingly popular one. This
is often done by inferring the system state from the relevant sensor readings. In the
literature this is often called Fault Detection and Diagnosis (FDD). According to the
Scopus database a total of 3.397 articles or conference papers have been published
on the topic of Fault Diagnosis in 2018 alone. Thales already has a system in place
to detect the outliers. However it is not yet possible to diagnose those outliers.

3.1 Fault diagnosis

Isermann identified two methods of performing fault diagnosis [19], data-driven meth-
ods and reasoning based methods. Of these two methods the latter mainly relies
on a-priori knowledge of the system, whereas the prior is a data driven approach.
Given the high complexity of the radar system it is infeasible to encode all the ex-
pert knowledge required to diagnose every possible fault into the system. Another
complicating factor with the reasoning based approach is that there is most likely not
enough expert knowledge to determine every possible fault beforehand. Therefore
this research will focus on the data-driven diagnosis method. In order to review the
literature available on data-driven fault diagnosis a structured literature review was
performed. This search was performed on the Scopus database, with the goal of
finding all articles and conference papers related to clustering or classification in the
area of fault diagnosis. Since this yielded over 5.500 results, the search was limited
to work published after 2016. This resulted in the following search query and a total
of 1.280 results at the time of writing (the 13th of March 2019).

14
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TITLE-ABS-KEY (fault AND diagnosis) AND (TITLE-ABS-KEY(classification) OR

TITLE-ABS-KEY(clustering)) AND (DOCTYPE(ar OR cp) AND PUBYEAR > 2016)

The results of this search were then scanned manually to filter out work that did
not concern itself with fault diagnosis in machines or electrical equipment, which
brought the number of papers down to 404. Those papers were then categorized
based on the techniques used, their application area, the type of data, the method
through which the diagnosis was created and whether they are supervised, unsuper-
vised or semi-supervised. The complete categorization can be found in Appendix A.
The doughnut charts in Fig. 3.1 and Fig 3.2 are generated based on this categoriza-
tion. From those charts it becomes apparent that the most popular type of data is
vibration data. This was used in almost half of all cases. It is also clear that the most
popular type of fault diagnosis is through predefined faults. In those cases there is a
set of fault classes and the algorithm assigns one of those to a reading. The second
most used method is by clustering the readings and not assigning descriptions at all.

Figure 3.1: Data types used for fault diagnosis

Based on this categorization, four papers will be looked at in-depth to get a
deeper insight into the methodologies that were used. Those papers were selected
based on how compareable they are to the case of Thales and how much insight
they can provide.
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Figure 3.2: Types of faults that were diagnosed

3.1.1 Spacecraft

The first selected paper is by Li et al. They tried to diagnose faults in spacecraft
based on high-dimensional electric data. Their dataset consisted of 1000 time se-
ries, which had 22.800 readings each. Their fault diagnosis system works based
on a set of predefined fault modes which are then associated with the data using
a classification algorithm. In order to do this the problem was divided into three
parts, data cleaning, feature extraction and classification. The first of those three is
performed using the wavelet threshold denoising method. This method removes the
noise from the signal in an attempt to get a clearer approximation of the underlying
signal. Li et al. performed a data-driven experiment to test three feature extrac-
tion methods, PCA, SAE and DBN, and four classification methods, Naı̈ve Bayesian
Model, k-Nearest Neighbour (k-NN), SVM and Random Forest (RF). When compar-
ing those methods based on their accuracy they found that RF performed best in
all situations, irrespective of whether and how dimensionality reduction was applied.
However, when applying PCA the accuracy of all classifiers improved, except for RF,
which had a worse performance with PCA than without. They also found that the
best performing method was a DBN for dimensionality reduction, combined with a
RF classifier. This combination had an accuracy of 99.5%. The comparison was
done by training the classifiers on a training set, which consisted of 12.800 samples
and then testing it on the remaining 10.000 samples. The paper generally does not
describe the parameter selection for the models. The only parameter that was de-
scribed is the number of decision trees in the RF classifier. This value was set to
100 based on a visual inspection of an error rate graph, combined with the train-
ing times, which showed that after 100 trees the error rate stayed relatively stable,
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whereas the training time did increase substantially [20].

3.1.2 Power systems

Wu et al. designed a fault diagnosis system for power systems where they tried to
differentiate between three fault modes. This diagnosis is done using a classification
algorithm which sees the fault modes as classes. The test set used by Wu et al. is
smaller than the one used by Li et al., this set has nine features and 200 samples.
The classification between the three classes was done using a one-vs-all SVM clas-
sifier. All of these classifiers are trained twice, once for the voltage data and once
for the current data. This leads to two sets of three classifiers. If the classifications
of those two are inconsistent with each other the results will then be processed by
the fusion step. This fusion step uses the Dempster-Shafer (D-S) evidence theory to
decide which of the two classifications to use. However, when applying SVM there
are two parameters that need to be determined beforehand, the penalty factor (C)
and the kernel parameter (γ). Since there is no way to mathematically find the opti-
mal value for these parameters, there is no straightforward method of finding a good
value for them. The way Wu et al. solved this problem was by a grid search of all
possible values. However, with two real-valued parameters that are not limited the
possible combination are endless. Therefore they used a Genetic Algorithm (GA) to
speed the process up and come up with a good value within a reasonable amount
of time. A GA is a metaheuristic that draws from the Darwinistic principles of nature
to iteratively improve the solution. To prevent overfitting k-fold cross validation was
applied in this grid search. The accuracy of the proposed classifier were compared
to those of a standard SVM and a SVM that was optimized using Particle Swarm
Optimization (PSO). This comparison showed that the GA SVM D-S algorithm per-
formed better than the two opposing approaches [21].

3.1.3 Bearings

Whereas the two previously described papers focused on supervised classification,
Zhao and Jia did fault diagnosis using an unsupervised clustering technique. Their
application focuses on diagnosing faults in bearings using large amounts of vibra-
tion data. They tested their methodology on three cases, one with seven, one with
three and one with six fault states. The basis of their method is the Gath-Geva (GG)
clustering algorithm. This fuzzy clustering method measures the distance between
samples using a fuzzy maximum likelihood estimation. Zhao and Jia identified two
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main problems with GG clustering for their application, it counts all samples equally
and it has difficulty in selecting the optimal number of clusters. To overcome the
former of those issues they incorporated the Non-parametric Weighted Feature Ex-
traction (NWFE) method. This technique assigns weights to the different samples,
more effectively use the local information. To determine the number of clusters, the
PBMF clustering validity index is used. This index, which looks to balance out intra-
class compactness and inter-class separability, provides a score given a number of
clusters, the higher this value, the better suited the clustering. To determine the
number of cluster K the proposed Adaptive Non-parametric Weighted-feature Gath-
Geva (ANWGG) iteratively increases the K by one, until it reaches Kmax which is set
to
√
N , with N being the number of samples. To do dimensionality reduction Zhao

and Jia also incorporated a DBN. The proposed setup was tested on three different
cases, all of which concerned vibration data from a bearing test setup with a num-
ber of labelled faults. The algorithm was compared to GG clustering, Fuzzy c-means
clustering and GustafsonKessel (GK) clustering based on four criteria, the PBMF in-
dex, the Partition Coefficient (PC), Classification Entropy (CE) and the error rate.
The first three are indicators of clustering quality and are calculated solely based
on the cluster structure, whereas the error rate is calculated using the labelled sam-
ples. The clusters are given labels during the training phase based on the largest
membership degree, that is to say, the cluster label is determined by which class is
the most common in the cluster. Based on this measure it became clear that the
proposed setup performed better than the alternatives, albeit with a slightly higher
runtime [22].

3.1.4 General datasets

Hou and Zhang developed a clustering methodology which they proposed as a can-
didate for fault diagnosis, but did not test in this situation directly. However they took
a slightly different approach. Instead of using a density based clustering method,
which uses the distance to the cluster center they applied the Dominant Set algo-
rithm, which determines the clustering based on the pairwise similarity between two
points. The main benefit of this is that it allows for non circular clusters. Another ben-
efit is that there are no parameters that need to be tuned. The test case that was
used to validate the proposed methodology on a variety of public datasets which
are published with the goal of providing researchers with a dataset to test their al-
gorithm against. The Dominant Set based algorithm was compared to traditionally
popular clustering methodologies such as Affinity Propagation (AP), k -means and
DBSCAN, based on two measures, the Rand-index and the Normalized Mutual In-
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formation (NMI) index, which both compare the results of the clustering to the ground
truth to come up with a score of the clustering performance. This test showed mixed
signals, the proposed algorithm performed better than the rivals on some datasets
but worse on others [23].

3.2 Performance metrics

The metric that is used to measure the performance of a clustering algorithm is an
important decision as it defines what is considered ”good”. When class labels are
available and the algorithm in question is capable of assigning class labels the most
used measure of quality is accuracy, which is defined as the percentage of correctly
classified samples. This metric is used among others by the first two papers de-
scribed above. However, when no ground truth is available or when the algorithm is
not capable of assigning class labels, another way of measuring the quality should
be found. This has proven to be a challenging task, mainly due to the fact that
there is no knowledge of the underlying structure of the data. There are generally
speaking three types of criteria by which to judge the performance of clustering al-
gorithms, external-, internal-, and relative criteria [24]. External criteria judge the
resulting clusters based on a priori knowledge of the structure of the data. This
can manifest itself in different forms, though the most common one is labelled data.
Although such criteria would often lead to the most reliable results, it is often im-
possible to use them outside a controlled test environment. Internal criteria on the
other hand only use the data itself to rank the result. The last option compares the
resulting clusters to other clusters, generated by the same algorithm. Since there
is no knowledge of the underlying distribution of the data and the goal of this study
is to compare different algorithms, their performance will be measured based on in-
ternal criteria. This type of measurements usually focuses on two main properties,
inter-cluster separability and intra-cluster density [25].
Over the years a number of methods have been proposed to measure the perfor-
mance. Three of those have already been mentioned before, namely the PBMF
index, the Partition Coefficient and Classification Entropy. In 2007 Arbelaitz et al.
did an extensive comparison study of 18 cluster validation indices [24]. They com-
pared the indices on both a synthetic and a real data set, in different configurations.
They found that the three metrics which performed best overall were the Silhouette-,
Davies-Bouldin- and Calinski-Harabasz index. The exact definitions of the metrics
are given below. In the definitions of the indices the following notation will be used:
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X The data set
N The number of samples in data set X
C The set of all clusters
ck The centroid of cluster ck, defined as the mean vector of the cluster:

ck =
1
|ck|
∑

xi∈Ck
xi

X The centroid of data set X, defined as the mean vector of the data
set: X = 1

N

∑
xi∈X xi

de(xi, xj) The euclidean distance between two points xi and xj

Silhouette index

The silhouette index measures for each sample how similar it is to its own cluster
based on the distance between the sample and the other samples in the same
cluster (a(xi, ck)) and what the distance is to the closest cluster that it is not part
of (b(xi, ck)) [26]. The equation below shows the mathematical definition as it was
used by Arbelaitz et al. [24].

Sil(C) =
1

N

∑
ck∈C

∑
xi∈ck

b(xi, ck)− a(xi, ck
max

(
b(xi, ck),a(xi, ck)

) (3.1)

Where:

a(xi, ck) =
1

|ck|
∑
xj∈ck

de(xi, xj),

b(xi, ck) = min
cl∈C\ck

(
1

|cl|
∑
xj∈cl

de(xi, xj)

)
.

Davies-Bouldin index

The Davies-Bouldin index measures the same qualities as the Silhouette index, but
does so using the cluster centroids instead. The density is measured based on the
distance from the sample to the cluster centroid and the separability is calculated as
the distance from the sample to the nearest cluster centroid that it is not part of [27].
This is defined as follows by Arbelaitz et al. [24].

DB(C) =
1

K

∑
ck∈C

max
cl∈C\ck

(
S(ck) + S(cl)

de(ck, cl)

)
(3.2)

Where:

S(ck) =
1

|ck|
∑
xi∈ck

de(xi, ck).
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Calinski-Harabasz index

In the Calinski-Harabasz index the separability is not determined based on the in-
dividual samples but instead on the distance from the cluster centroid to the global
centroid. Just as in the Davies-Bouldin index the density is measured by taking the
distance from each sample in the cluster to the cluster centroid [28]. The mathemat-
ical definition in Equation 3.3 is courtesy of Arbelaitz et al. [24].

CH(C) =
N −K
K − 1

∑
ck∈C |ck|de(ck, X)∑

ck∈C
∑

xi∈ck de(xi, ck)
(3.3)

3.2.1 Supervised metrics

To evaluate the results during training and on the real data set, in other words,
when no truth data is available, measures such as the ones above need to be used.
However when the actual labels are known it is possible to use other, more informa-
tive, measures. There are a number of often used validity measures for supervised
classification tasks. These metrics are based on the results from a confusion ta-
ble. These results include the True Positives (TP) (the number of samples that were
correctly classified as positive), the True Negatives (TN) (the number of samples
that were correctly classified as negative), the False Positives (FP) (the number of
samples that were wrongly classified as positive) and the False Negatives (FN) (the
number of samples that were wrongly classified as negative).

Sokolova and Lapalma performed a systematic analysis of classification perfor-
mance measures for, among others, multi-class classification [29]. The measures
that are proposed are average accuracy, error rate, precisionµ, recallµ, F-Scoreµ,
precisionM , recallM and F-scoreM . For the precise definition please refer to [29]. The
measures they propose for multi-class classification are the same as the ones for
binary classification, with the exception that they are averaged for multiple classes.
The averaging can be done in two ways; macro averaging (M ), where the sum of
the measures is averaged, and micro averaging (µ), where the sums of the different
parts (TP, TN, FP, FN) are averaged. In both macro- and micro-averaging the TP,
TN, FP and FN are calculated in a one-against-all fashion, where a value is true if
the class in question is assigned to the sample and false if it isn’t.
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3.3 Techniques

The goal of this section is to provide an overview of all the methods that have been
applied to fault diagnosis over the last two years and to identify other, high potential
methods. This is done using the same search query that was used in Section 3.1.
A taxonomy of all the methods that are discussed in this section, can be found in
Figure 3.3.

Figure 3.3: Taxonomy of the described methods

3.3.1 Fault Diagnosis

This section will list the methods that were found in the fault diagnosis literature. The
methods are divided into two groups, classification and clustering.

Classification

One of the most popular methods to perform fault diagnosis is the SVM. In total,
102 of the reviewed papers used some form of SVM. Naturally there are differences
between the different implementation such as the use of different kernel functions,
e.g. RBF [7], [8] or the PUFK [9]. Another difference between the implementations
is how many classes they can differentiate. Traditional SVMs can only differentiate
between two classes. When doing multi-class classification instead a choice has to
be made between the OAA and the OAO strategy. In the literature the latter of these
two methods proofed most effective [11], [12]. Lou et al. used TSVMs to include
unlabeled instances as well while doing fault diagnosis [30].
Another widely used supervised classification algorithm is the Decision Tree (DT). A
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DT consists of a number of nodes. Each node in a DT splits the dataset based on
one attribute. This is done until only the instances of one class remain. In total 18 of
the reviewed papers used DTs to perform classification. One of these papers com-
bined DTs with the unsupervised k-means algorithm, which will be described later
on, to create a semi-supervised classifier. In their approach two models are trained,
one DT based on the labeled data and one k-means based on the unlabelled data.
These two models are then combined to classify new instances [31]. A benefit of
DTs over most other methods described in this section is it’s explainability. Since
a DT is only a combination of decisions steps, it is easy to explain how a certain
decision was made.
RF is an ensemble learning technique that combines multiple DTs to get a better
classification result than with just one DT. In a RF each DT only has access to a
random subset of features and training samples, which should prevent issues such
as overfitting. RFs are used by 11 of the reviewed papers, however all of these used
it in a supervised fashion.
A technique that has seen more and more widespread use in recent years are Arti-
ficial Neural Networks (ANN). ANNs are popular because of their widespread appli-
cability, they have been used for a lot of things, including image classification, sales
forecasting and fault diagnosis. There are different implementations of this idea, the
simplest of which is probably an Feed Forward Neural Network (FFNN) with only an
input and an output layer. When more layers are added, this forms a Multi-Layer
Perceptron Neural Network (MLPNN). A MLPNN has one or more hidden layers be-
tween the input and the output layer where calculations are performed. The training
of MLPNNs is usually performed in a two phased fashion, a forward phase and a
backward phase. The forward phase is used to calculate the loss function and the
backward phase is used to update the weights. This technique is called back propa-
gation [18]. Since 2016 the MLPNN has been applied to fault diagnosis a total of 29
times, sometimes on its own, sometimes in cooperation with other algorithms, such
as DT [32] or the Hidden Markov Model (HMM) [33].
Another ANN architecture that is often used for fault diagnosis is a Recurrent Neural
Network (RNN). One of the main advantages of RNNs over traditional feed-forward
networks is that they can use an internal memory to process sequences of data.
This is especially useful in sequences of data, such as text or speech. Another area
where this comes in handy is sensor data, which is usually represented as time se-
ries data. Basic RNNs have been used four times in the reviewed papers. There are
however also other variants of RNNs, such as Long Short Term Memory (LSTM).
LSTMs try to solve one of the main problems in RNNs, namely the vanishing gra-
dient problem [18]. This problem can be encountered during the training of RNNs
and implies that a certain gradient tends to zero. This type of network has been
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used five times in the field of fault diagnosis, of which one time in conjunction with a
Convolutional Neural Network (CNN) [34].
The origin of CNNs lies in the field of image recognition, where it has proven to
be one of the most successful Neural Network (NN) architectures. Based on this
success CNNs have been used in all kinds of fields, including object detection and
text processing. Since 2016 CNNs have been applied 28 times to fault diagno-
sis problems, sometimes in conjunction with other algorithms such as DBN [35] or
HMMs [36].
One of the issues with CNNs is that it takes a lot of labelled data to train the net-
work. One solution to this is to use Transfer Learning (TL). TL is a technique that
uses information from a previous task to speed up training on this task. It requires
another neural network that is trained on different, but similar data. For example if
you want to train a NN that identifies cows you could use a NN that classifies cats
and dogs as a basis. You then delete the existing loss-layer while keeping the rest
of the network and train it again on the, smaller, set of labelled cow images. This
technique is not only used for CNNs but also for example for RNNs [18]. It has been
applied to fault diagnosis a number of times during the last years, among others by
Hasan et al. [37] and Wang and Wu [38]. DBNs have also been applied to fault diag-
noses. When applied to classification, which is their main task in the fault diagnosis
literature, the DBNs are mainly used in a supervised manner [39]–[41]. There have
however also been papers that applied DBNs to fault diagnosis in a semi-supervised
or unsupervised manner, although this is mainly in the role of a dimensionality reduc-
tion algorithm. Zhao and Jia used a fuzzy clustering method for the semi-supervised
clustering and a DBN to perform dimensionality reduction in the context of rotating
machinery [22]. The same combination was also applied by Xu et al., though in their
case the clustering was performed completely unsupervised and in the context of
roller bearings [42].
AEs originate in the field of dimensionality reduction and are an unsupervised neural
network that try to find a, lower dimensional, encoding for the data. SAEs or their rel-
ative the Stacked Denoising Auto Encoder (SDAE) [43] have been used in the fault
diagnosis literature to do both classification, in conjunction with another layer or al-
gorithms such as a SVM [44] or a softmax classifier [45], [46] or semi-supervised
clustering, where the data is first clustered unsupervised and the clusters are then
improved using a small set of labelled data [47].

Clustering

The SOM is a paradigm that was introduced by Kohonen in 1982 [5]. In contradiction
to most of the aforementioned architectures, the SOM does not use error learning
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but instead uses competitive learning [18]. Like AEs, SOMs are typically used for
dimensionality reduction, but can also be used for clustering. This was done, among
others, in the field of fault diagnosis by Blanco et al. [48] and eight others.
Even though neural networks are widely popular nowadays there are also other tech-
nologies that offer promising results. One of the most popular of these is k-means
clustering and its supervised relative k-NN classification. K-means is used a total
of five times to perform fault diagnosis [49], often in conjunction with other methods
such as HMMs [50] or SVMs [51].
The k-NN algorithm is about as popular when it comes to fault classification, seeing
as it was applied six times since 2016.
Another popular clustering technique is fuzzy clustering. The main difference be-
tween fuzzy clustering and traditional or ”hard” clustering methods such as k-means
is that fuzzy clustering allows data points to belong to multiple clusters. One of the
most popular variants of fuzzy clustering is fuzzy c-means clustering. This tech-
nique was first introduced by Dunn in 1973 [4] and is highly similar to the traditional
k-means clustering. It was successfully applied to fault diagnosis [52], [53] a total of
17 times in different fields, including roller bearings [54] and wind turbines [55].
When working with high-dimensional data there are often subspace in the data that
can be identified and utilised to perform clustering. SC uses these subspaces to
identify clusters in the data. SC has been applied to fault diagnosis in bearings by
Gao et al. [56].

3.3.2 Classification in high-dimensional sparse data

In the previous section it became apparent that most of the techniques that were re-
cently used in fault diagnosis are based on classification or clustering algorithms. In
order to find ways to expand this body of methods a second search was performed.
This search focused on the type of data as it was described in Section 1.2, namely
sparse, high-dimensional data, with a small and incomplete set of labels, although
the labels are not explicitly taken into account in the search query, which looks as
follows:

(ab:(classification) OR ab:(clustering) OR ab:(categorization) OR ab:(grouping))

AND (ab:(sparse) OR ab:(sporadic) OR ab:(infrequent) OR ab:(scattered)) AND

(ab:(high-dimensionality) OR ab:(high dimensionality))

This search query was performed on the University of Twente WorldCat database
and resulted in 262 results at the time of writing (the 18th of March 2019). The
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results were categorized based on four characteristics, the main application (dimen-
sionality reduction, classification, regression or outlier detection), the techniques
that were used, the application field and whether they were supervised, unsuper-
vised or semi-supervised. On the results snowballing was performed, up to three
levels deep, with increasing scrutinization. The complete result can be found in Ap-
pendix B.
A large portion of the literature focused on dimensionality reduction, however there
are a number of interesting algorithms that have not been used for fault recognition
yet. Given that the data set has a (very) limited amount of labels, only unsupervised
and semi-supervised techniques will be considered.
Linear Discriminant Analysis (LDA) is a technique that is mainly used for supervised
dimensionality reduction and classification. Zhoa et al. used this technique in a
semi-supervised manner to perform image recognition by using a process called la-
bel propagation, where the labels are propagated to the unlabelled instances. Those
new labels are called ’soft labels’ [57]. To make sure that LDA has not been used in
fault diagnosis yet, a search was done. This turned up a total of 82 results where
LDA was used for fault diagnosis, including for Re-useable Launch Vehicles [58] and
motor bearings [59], meaning that the use of LDA in fault diagnosis is not new.
Another clustering algorithm that came up in the search is the MM. MMs try to sep-
arate the clusters based on a probability distribution, for which the parameters are
approximated using a technique called EM [60], [61]. Even though it did not appear
in the search for papers after 2016, MMs have been used to perform fault diagnosis
before, among others Luo and Liang [62] and by Sun, Li and Wen [63].
One way of doing semi-supervised learning is through TL, a technique that was
explained in Section 3.1. Self-taught learning is another technique that works in a
similar manner. However, self-taught learning does not assume that the additional,
unlabelled, samples have the same distribution or class labels [64]. This techniques
has not been applied to fault diagnosis yet.
Although they have delivered great results in the past, unsupervised learning meth-
ods and techniques like TL might not always be up to the task. In that case a
supervised algorithm could be required. However, it is usually still too expensive to
label all the data. This is where Active Learning (AL) comes in. AL is a supervised
algorithm that selects instances from the pool of unlabelled samples and asks an
”oracle”, usually a human annotator, to label them. This limits the amount of work
that the oracle needs to perform, while still being able to train a supervised classi-
fier [65], [66].
The last method that was not found in the fault diagnosis search was the Markov
Random Walk (MRW). This technique is used to perform semi-supervised classifi-
cation [67]. In this technique the classified instances are used as starting points for
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the random walk and the parameters are optimized using the EM algorithm. Like
self-taught learning, no papers could be found in the Scopus database where this
tactic was applied to the field of fault diagnosis.

3.4 Summary

The literature review on machine learning models in fault diagnosis has resulted in
a lot of promising results. A large number of clustering and classification algorithms
have already been applied successfully to this field. However there are still a number
of shortcomings when it comes to the specific case of Thales as it was described in
Chapter 1.
The main problem here lies in the type of data that was used as an input for the di-
agnosis. In the reviewed literature it often concerned either vibration data or image
data. In the case of Thales the data consists of a large number of sensor measure-
ments, which makes for a very different situation. A large number of the reviewed
papers also assumed that there were a limited number of fault classes or that all data
is labelled. This is not the case here. The majority of the data is unlabelled, which
makes is infeasible to apply supervised classifiers. This means that only a few of
the proposed algorithms can be applied to Thales’ problem as only semi-supervised
and unsupervised algorithms qualify. Out of the algorithms described in Section 3.1
the following algorithms are capable of semi-supervised or unsupervised learning:
TSVMs, k-means clustering, SOMs, fuzzy c-means clustering and SC. However
most of these, with the exception of subspace clustering, will not perform well on
high-dimensional data without some sort of preprocessing such as feature transfor-
mation or feature extraction. In the literature the process of feature extraction was
often done using DBNs or SAEs.
In Section 3.3.2 five methods were identified that have been applied successfully
to classification or clustering in high-dimensional data with few or no labels. Two of
these, LDA with label propagation and MM have been applied successfully to fault
diagnosis, albeit before 2017. In the literature there was no example found where
the three remaining methods, self-taught learning, AL and the MRW were applied to
fault diagnosis.
An overview of the previously mentioned methods can be found in Table 3.1. This ta-
ble shows that the most popular method is fuzzy clustering, in one of its forms (e.g.
GG clustering, fuzzy c-means clustering). There are three methods which have
been applied to fault diagnosis 9 times or more, fuzzy clustering, k-Means clustering
and SOMs. All of the methods that were not applied to fault diagnosis yet require
additional data. The MRW needs a graph of the system and self-taught learning
needs a similar dataset to train on, both of which are not available. Therefore these
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methods are deemed infeasible in the situation of Thales during the course of this
project, however they would warrant future research. Another method that requires
extra data is AL. This method needs an oracle that can provide feedback. Given
that the time and availability of the oracles is limited, it would be uncertain if it is
possible to implement and test this method within the course of this project. Given
this constraint, AL will not be implemented, however it is advised that this method is
researched further in the future.
Based on the background set out in the previous section and popularity in the fault
diagnosis literature the following methods were selected: fuzzy clustering, k-Means
clustering and SOMs.
Another area of research that showed some promising results in the literature but
was not very popular was semi-supervised learning. In order to test whether this
is indeed of added value, a semi-supervised method will also be tested. In order
to easily compare this approach to the unsupervised methods, a semi-supervised
variant of the SOM will be used.
The performance of those techniques will be compared on the Thales dataset and
an artificial dataset, which will be described later in Section 4.1. Parameter estima-
tion will be performed using a Genetic Algorithm as was proposed by, among others,
by Wu et al. [21]. Finally, every method will be tested without and with dimension-
ality reduction performed by a DBN, which in the research of Li et al. turned out to
outperform PCA and SAE [20].

Technique Times
applied

Remarks

Fuzzy clustering 23
K-Means clustering 9
SOM 9
LDA 3 Needs at least one sample of each class
MM 3
TSVM 1 Needs at least one sample of each class
Subspace clustering 1
Self-taught learning - Requires a relatively similar dataset
AL - Requires interaction with an expert
MRW - Needs a graph of the system

Table 3.1: Unsupervised or semi-supervised fault diagnosis methods



Chapter 4

Methodology

A valid research methodology is the basis of every good piece of research. Based
on the conclusions from the previous section, the methodology that was proposed in
Section 1.4 can be extended. RQ1.a and RQ1.b have already been answered in the
previous section through a literature review. The one remaining question is RQ1.c.
This question will be answered in a data-driven fashion, as is common in the related
literature described above. To evaluate the three algorithms that were selected,
k-Means clustering, fuzzy c-Means clustering and SOMs, they will be tested on
multiple data sets. The evaluation is done in three steps, (1) pre-processing, (2)
dimensionality reduction, (3) clustering and (4) evaluation. Figure 4.1 provides a
visual representation of these steps, which will be described in more detail in the
sections below. During steps two and three there are a number of hyper-parameters
that need to be determined. The search spaces in which those values can lie are
already described in each respective subsection. The manner in which the search
is performed is described at the end of this chapter in Section 4.6. Before going into
detail on the steps themselves, the data sets will be discussed shortly.

Figure 4.1: Visual representation of the methodology

4.1 Data

As was mentioned before, the different methods will be tested on three synthetic
data sets and one real data set. The synthetic data sets are created by domain
experts with the goal to be similar to the real data set. In this case synthetic data
sets are used because it is difficult and expensive to get a real data set. Using
synthetic data makes it possible to quickly test the performance of the algorithms in
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a controlled environment. Since it is possible to control the number of dimensions, it
is also easier to visualize the data, which helps to get a quicker insight into the data.
The real data set covers a period of five months and is annotated manually by a
domain expert. This was done through a visual inspection of the time series. Since
domain experts are mere humans, it is possible that this annotation is not 100%
correct, however it should serve as a good benchmark for the algorithms. More
details on these data sets are provided in Appendix C.

4.2 (1) Pre-processing

The data set consists of a large number of sensor reading that all have their own
characteristics. If they are compared without any pre-processing, based on the eu-
clidean distance, observations that have a different magnitude will have a dispropor-
tionate effect on the results. Therefore some data pre-processing is required. The
features will be scaled using a technique called z-normalization, where the mean of
the feature is subtracted from the data and it is then divided by its variance. The
exact formula is Xi =

µX−Xi

σX
with X being a feature vector, i being a sample in that

feature vector, µX being the mean of the feature and σX being the standard devi-
ation. As a further pre-processing step, all alarms will be removed from the data,
since according to Thales’ domain experts most of the variables are merely an alarm
raised when another reading crosses a certain threshold. Thus this data is already
derived from other observations and will be disregarded.

4.3 (2) Dimensionality reduction

As was described in Section 3.4, the dimensionality reduction will be performed by a
DBN. Each of the clustering methods will be tested both with and without dimension-
ality reduction, to get a clear view of its influence on the results. When implementing
a DBN there are a number of hyper-parameters, most of which are found in most
neural networks. These includes the activation function, the learning rate, the num-
ber of epochs, the batch size and the structure of the network (i.e. the number of
hidden layers and the number of neurons per layer). To determine the size of the
search space the recommendations of Bengio for hyper-parameters in neural net-
works will be used [68]. As activation function only the ReLu function will be used,
since this is one of the few activation functions that do not suffer from the vanish-
ing gradient problem [69]. According to Bengio the optimal learning rate for cases
where the input is mapped to a range of (0, 1), lies in the range (10−6, 1]. Since a
change of 0.01 will be relatively higher when it is done on a value of 0.02 than when
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it is added to an initial value of 0.1, the values in the range will increase with 10% of
their value at each step (i.e. from 0.01 to 0.011 and from 0.1 tot 0.11). Since there
is no ”rule of thumb” available for the number of epochs, the search range will be
limited at the interval (5, 250), with a uniform distribution over the interval. This range
is chosen to get a good overview of all values, while still maintaining a reasonable
training time. The batch size is an important hyper parameter to optimize as it deter-
mines how many times per epoch the parameters are updated. There are generally
speaking three options, a stochastic, or online, training where the batch size is one
(i.e. there are no batches), a mini-batch, where the data set is divided into multiple
batches which are all larger than one and ”normal” batch training where all samples
are entered in one batch. In the case of a large training set, the batch method is
infeasible as it will most likely have trouble converging or at least be very slow. In
accordance with the recommendation from Bengio the batch size will be searched
over the interval (1, 200). The network will be tested with zero to five hidden layers
and 25 to 200 neurons per layer.

4.4 (3) Clustering

As was concluded in the previous chapter, a total of three clustering methods will
be compared to each other on three synthetic data sets and one real data set. This
section describes the algorithms that are compared to each other.

4.4.1 k-Means Clustering

The k-Means clustering algorithm is a popular algorithm to partition a data set into
k different clusters. The details of the algorithm were described in 2.1.1. As an
initialization schema k-Means++ will be used. The k-means algorithm is relatively
simple, which means that there is only one parameter that needs to be estimated,
namely k. This parameter determines the number of clusters that the data set needs
to be divided into. Since, given the nature of the problem, there are always a number
of labels available, the number of distinct available labels will be used as a lower
bound for this parameter. The upper bound of the interval will be given by the lower
bound plus 250. This upper bound has a disadvantage though, when the number of
samples is relatively low, e.g. 500, and the number of clusters is 250, the clusters
contain very few samples. This makes that the F-score gives a high value, however
the clustering barely has any meaning. Therefore the upper bound will be set to the
minimum of 250 plus the number of distinct classes that are known a priori and the
number of samples divided by 5.
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4.4.2 Fuzzy Clustering

Fuzzy clustering was implemented using the Fuzzy c-Means algorithm. This tech-
nique, which is related to the k-Means algorithm which was described in the previous
section, is used because of its widespread usage in the related works. The imple-
mentation is based on the one put forward by Bezdek, Ehrlich and Full in their 1982
paper [70]. Since fuzzy clustering is a soft clustering methodology, samples are not
automatically assigned one specific cluster, but instead have a membership to each
cluster. In order to be able to compare the results from the fuzzy clustering to that
of the other clustering methodologies, the data points are later assigned to the clus-
ter with the highest membership factor. In fuzzy c-Means clustering there is also
just one hyper parameter that may be tuned, namely the number of cluster centers.
Given that this is the same parameter as the one that needs to be tuned in k-Means
clustering, the search space will be the same as well.

4.4.3 Self-Organizing Maps

The concept of a SOM was first introduced by Kohonen in 1982 [5]. In this case
the SOM is used as an unsupervised clustering algorithm, however it can also be
used for dimensionality reduction. SOMs revolve around BMUs. A SOM consists
of a map of nodes. In this map the different units are assigned weights, which are
then updated based on the samples closest to them (i.e. the samples for which the
unit is the best match). The clustering is done based on these BMUs. Each BMU
represents a cluster and the samples are assigned to the BMU, and thereby to the
cluster, that best matches them. In order to train a SOM there are four parameters
that need to be set, the number of epochs, the learning rate and the width and the
height of the map. For the number of epochs and the learning rate the same search
space is used as for the DBN. The height and width of the network is, among other
things, dependent on the number of samples and the number of clusters in the data.
The width and height together determine the size of the map (size = width∗height).
The lower bound for the size of the map is the number of distinct clusters. In this
case the lower bound is given by the number of distinct, known, class labels (see
Section 4.4.1 for more details). The upper bound is given by the number of samples
in the entire data set times two.

4.4.4 Constraint-Based Semi-Supervised Self-Organizing Map

As was concluded in Section 3.4, a semi-supervised of variant of the SOM will be
tested, since this makes it possible to directly compare it to the results of the un-
supervised variant and determine if semi-supervised learning provides a substan-
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tial benefit. Some background on semi-supervised clustering can be found in Sec-
tion 2.1.7. Since the constraint-based variant of semi-supervised clustering is more
versatile than its label-based counterpart the learning will be performed using con-
straints. This offers more possibilities when it comes to gathering user input, such as
asking the question ”Do these two samples belong to the same fault?”, which makes
it easier for the operator to provide input. In the Scopus database only one paper
could be found that worked on incorporating constraints into the SOM. Allahyara,
Sadoghi and Haratia did worked on such a variant, however they focused solely on
an online variant, whereas the focus of this report is on offline learning [71]. There-
fore this section proposes a new extension to the SOM to incorporate constraints
while doing offline learning. The details of this implementation are described in Ap-
pendix D.

4.5 (4) Evaluation

Based on the results of the literature review performed in Section 3.2 two metrics
are selected to evaluate the results of the clustering, one that does not require truth
data and one that does.
From the definitions given in Section 3.2, it shows that the Davies-Bouldin index
and the Calinski-Harabasz index are both calculated based on the cluster centroids,
whereas the Silhoutte index is calculated by taking the distance between each sam-
ple. One of the main pitfalls of the centroid based methods is that they, due to their
nature, favour circular clusters. Since this is an assumption that can not be made
at this point, the Silhoutte index will be used when there is no truth data available,
even though it is a more computationally intensive measure.
When selecting a supervised quality metric an important point to keep in mind here
is that the data is highly imbalanced. When using macro-averaging, all classes are
weighted equally, whereas in micro-averaging the classes with more samples are
favoured. Given Thales’ imbalanced data set, macro-averaging will be used. The
imbalanced data set also implies that some measures are more suitable than others.
For example, if an event occurs only three times in a data set of 200 samples and
the classifier gives none of the samples this label, it will still have an accuracy of
98.5%. Therefore measures such as recall and precision are more suitable. In this
case the F-score will be used. This score is the harmonic mean of the recall and
the precision and provides a comprehensive representation of performance, without
suffering the effects of an unbalanced data set.
Something that has to be kept in mind when using the F-score, or other metrics
based on the recall, is that the annotations in the real data set might be inconclu-
sive, as was mentioned in the previous section. In other words, the algorithm might
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pick up on an anomaly that the domain expert did not notice.

4.6 Hyper-parameter estimation

Hyper-parameter estimation is one of the most challenging tasks in machine learn-
ing, most of all because there is usually no way to mathematically determine the
optimal value. Over the years a number of methods have been proposed. These
methods include widely used tactics such as grid searches, which enumerate over
all possible solutions in order to find the best performing one, and random searches,
where possible combinations are selected at random from the total population. The
former of these methods works well when the size of the population is limited and
training the model is fast, however it is very computationally intensive when the pop-
ulation size or the training time increases. The random search does not have this
issue, given that it only tries a subset of all methods, however, given that the hyper
parameters are selected randomly from the population it follows logically that there
is a substantial chance that the optimal parameters are not selected.
Another way to estimate the hyper parameters is through an Evolutionary Algorithm
(EA). Using this method solves the two aforementioned problems to a large extend
and has therefore been often used in the literature described in Chapter 3. EAs try
to solve black-box optimization problems, of which the hyper-parameter estimation
problem is one. The implementation of the EA for hyper-parameter estimation is
done using the python package sklearn-deap [72]. A flowchart of the optimization
process is given in Fig. 4.2.

Figure 4.2: Flow chart of the optimization process



Chapter 5

Results

This chapter describes the results that were obtained by testing the classification
performance of the selected methods on four different data sets. The data sets and
their characteristc are described in full detail in Appendix C and are quickly sum-
marized in Table 5.5. A complete overview of all results can be found in Table 5.1
and Table 5.2. The former contains the Silhouette scores and the latter contains the
F-scores. In Table 5.3 an overview is given of all the hyper-parameters as they were
determined by the genetic algorithm.
Unfortunately, due to time constraints it was not possible to test the Constraint-
Based Semi-Supervised Self-Organizing Map (CB-SSSOM) on the synthetic data
sets. Therefore these results will only be provided and discussed for the real dataset
since this is the most informative and relevant to the case of Thales.

5.1 Synthetic data set

The first of the three synthetic data sets is also the smallest. It is used primarily to
test whether or not the algorithms work as expected. Also, if they already perform
poorly on a small data set the changes are slim to none that they will perform well
on a large, high-dimensional data set. As was mentioned before and is described
in detail in Appendix C, the synthetic data set has one type of anomaly, which is
visible in most of the time series. To validate the workings of the algorithms, they
are first tested on a synthetic data set with just two time series, thereby creating a
very basic clustering problem. The results of these tests were generally favourable
for all methods. The resulting clusters may be found in Fig. 5.2. Visually speaking
DBN-SOM seems to have the best separation between the clusters. All four obvious
clusters have their own colour. This is also visible in its silhouette score, which is
the highest of all methods. DBN k-Means also has a high silhouette score, however
from a visual inspection the separation does not seem substantially better than that
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of k-Means, c-Means or SOM. When looking at the confusion matrices in Fig. 5.1
and the F-Scores in Table 5.2 one noticeable thing is that all algorithms have the
same F-Score and the same confusion matrices. This probably means that those
samples are very hard or impossible to distinguish using any of these techniques.
Based on the aforementioned visual inspections of the clustering results the hypoth-
esis is that DBN-SOM will perform best on the other data sets.

When applying the methods to the second synthetic data set, the results start to
fluctuate more. The best score is achieved by the combination of DBN and k-Means,
however the improvement over normal k-Means is small. In the case of c-Means the
score is also improved when the dimensionality is reduced beforehand, however in
the case of SOM doing dimensionality reduction prior to clustering has a detrimental
effect, which is not in line with the previous results or the proposed hypothesis. This
might be explained by the fact that both of these methods attempt to find a lower
dimensional subspace to project the data on, which may lead to too much informa-
tion being discarded. This reduction in dimensionality might also be the reason why
the SOM performed worse than the other two algorithms. More detailed results can
be obtained when looking at the confusion matrices in Fig. 5.3, which show that the
combination of DBN SOM has the tendency to classify all instances as ”Normal”,
which given the label propagation method used would imply that the resulting clus-
ters are too large. The same problem, to a lesser extend, is also visible when SOM
is used on its own and, to an even lesser extend, when c-Means is combined with
DBN. Each method made mistakes on different parts of the data. This implies that
the methods complement each other, so a committee of clustering algorithms might
be worth looking into. When hypothesizing about the next data set, which is larger
only in the number of samples, the same pattern is likely to arise, with DBN k-Means
having the highest F-Score.

In the first two variants on the data set there were only 400 samples. Given that
the real data has substantially more samples it is important that the algorithms are
also tried on this kind of data. Therefore the same model is used to generate a new
data set, although this time with 10.000 samples. Even though the underlying distri-
bution has not changed, other core characteristics of the data set have. Therefore
the hyper-parameters are determined again on this new data set. The results are
again very different than in the two previous tries. This means that each method
responds differently to an increase in the number of samples. In all of the cases the
performance of the methods worsened, however this was most visible in the case
of the DBN-SOM combination. The F-Score of this method came down to 0.4763,
compared to 0.9472 when the data set only had 400 samples. A similar decrease,
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Figure 5.1: Confusion matrices for the different algorithms on synthetic data set 1a.
All methods have the same confusion matrix.

(a) k-Means (b) DBN k-Means

(c) c-Means (d) DBN c-Means

(e) SOM (f) DBN SOM
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Figure 5.2: Plots of the data points in data set 1a. The data points are colored
according to the cluster to which they belong.

(a) k-Means (b) DBN k-Means

(c) c-Means (d) DBN c-Means

(e) SOM (f) DBN SOM
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Figure 5.3: Confusion matrices for the different algorithms on synthetic data set 1b
(a) k-Means (b) DBN k-Means

(c) c-Means (d) DBN c-Means

(e) SOM (f) DBN SOM
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albeit slightly less severe, is visible when SOM is used stand-alone. This decrease
is substantial and may be explained by a number of reasons. The first one would be
that, due to the larger number of samples, the weights are not updated often enough.
Since the weights are initialized randomly it could happen that a unit is placed in the
middle of two clusters and serves as the BMU for both. If this happens it means
that the weights of the unit are updated by samples from both clusters, meaning it
will most likely also stay the BMU for both. This random initialization may also have
a negative influence on the performance. That is to say that even though a certain
configuration performs well during the hyper-parameter estimation, this doesn’t au-
tomatically mean that it will perform well the next time. Both of these problems may
also occur when the SOM is used together with the DBN. k-Means and c-Means
both showed a slight decrease in performance, with a minimal difference between
the two methods. DBN c-Means however saw a more substantial performance de-
crease. This might again be explained by the same problem that was mentioned
before, namely that the cluster centers have the tendency to all stay in the middle,
which might be further reinforced when there are more samples involved and fewer
dimensions to distinguish between them.
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Figure 5.4: Confusion matrices for the different algorithms on synthetic data set 1c
(a) k-Means (b) DBN k-Means

(c) c-Means (d) DBN c-Means

(e) SOM (f) DBN SOM
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5.2 Real data set

Even though the results on the synthetic data set are very interesting, it is even more
interesting how these algorithms perform when they are tested on the real data set.
On this data set, all algorithms performed considerably worse than they did on the
synthetic data set, which is likely a result of the faults being less pronounced and
the fact that the dimensionality is higher and that there are more types of sensors.
When looking at the Silhouette index the results, which can be found in Table 5.2
alongside those of the other data sets, they seem very promising and are generally
higher than those on the synthetic data sets, which implies that there is a good sep-
aration between the clusters as well as a good cluster density.
This is however a pattern that does not continue when looking at the F-Score. On
the synthetic data sets the Silhouette index usually under performed compared to
the F-Score, but on the real data set the two have swapped places. In all cases
except for the DBN k-Means combination and SOM, the F-Score is quite low with
0.2460. This can be explained when looking at the confusion matrices in Figure 5.6.
Here it becomes apparent that all clusters are labelled ”Normal”. The most likely
cause of this is that the clusters are too large and will therefore always include a
majority of points labelled as ”Normal”.
This problem is to a lesser extend also visible in the case of DBN k-Means. In
this case the hyper-parameter estimation came up with a higher number of clus-
ters, namely 29, which led to part of the samples being labelled as fault ”M10”. The
two less frequent faults, ”M9” and ”M11” were however still not discovered. However
when dimensionality reduction was applied before running the c-Means clustering al-
gorithm the number of clusters did increase, but the F-Score did not and all samples
were still labelled as ”Normal”. SOM also performed better than the other methods.
The net was relatively large at a width of 4096 and a height of 128 units. This means
that the total size is 524.288 units and thereby 524.288 potential clusters.
The problems that DBN k-Means and SOM, as well as the other methods, encoun-
tered could in part be due to the fact that the faults are not very pronounced. The
distance between a sample which is labelled as ”M11” and the closest other sample
with the ”M11” label is on average 1.1012. The distance between a ”M11” sample
and the closest sample with the label ”Normal” is on average 1.0830. Therefore it
may be concluded that it would be very difficult to achieve a good result here. Pos-
sible solutions for this problem are discussed in Chapter 6.
When looking at the results of the CB-SSSOM a couple of thing need to be kept in
mind. Since this method is semi-supervised, in contrast to the other methods that
were discussed, it will need more information. To provide this the labels provided by
the domain expert were used. However since this is a constraint based and not a
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label based method, those labels are first converted to constraints. The algorithm
is tested in different setups, each with a different amount of labelled samples. The
settings as well as the results can be found at the bottom of Table 5.2. Fig. 5.7
shows the confusion matrix for each of the settings. If the algorithm got one percent
labelled samples this means that from each class, one percent of the labels was
provided, with a minimum of two labelled samples per class.
From the table it is clear that with one percent of the labels available the best F-score
is achieved. The score then goes down, but increases again once a quarter of all
labels are included. A possible explanation for this phenomenon might be that the
algorithm is already able to extract the necessary structure from the one percent,
but that, due to having just one BMU for a whole Must-Link group the algorithm has
trouble to correctly update these weights, while this problem disappears again once
the groups become large enough to enforce a certain structure.
Overall the results of the CB-SSSOM were substantially better than those of the un-
supervised algorithms. This was especially visible in the case of fault ”M9”, which
was not found by any of the unsupervised algorithms. The F-scores were also better
than those of the unsupervised algorithms.
Due to time constraints it was impossible to re-estimate the hyper-parameters, there-
fore the hyper-parameters that were found for the normal SOM in Chapter 5 were
used.



44 CLASSIFICATION: OPEN CHAPTER 5. RESULTS

Algorithm Metric Synth. 1a Synth. 1b Synth. 1c Real
k-Means Silhouette 0.6254 0.5309 0.3965 0.5879
DBN k-Means Silhouette 0.9245 0.5376 0.3262 0.5061
c-Means Silhouette 0.5973 0.4656 0.3596 0.2540
DBN c-Means Silhouette 0.9221 0.4364 0.2316 0.5501
SOM Silhouette 0.5626 0.2571 0.2610 0.4683
DBN SOM Silhouette 0.9667 0.5230 0.5198 0.4999

Table 5.1: An overview of all Silhouette scores

Algorithm Metric Synth. 1a Synth. 1b Synth. 1c Real
k-Means F-score 0.9472 0.9792 0.9241 0.2460
DBN k-Means F-score 0.9472 0.9795 0.9190 0.4114
c-Means F-score 0.9472 0.8403 0.9237 0.2460
DBN c-Means F-score 0.9472 0.8885 0.4763 0.2460
SOM F-score 0.9472 0.7916 0.6126 0.4020
DBN SOM F-score 0.9472 0.4624 0.4763 0.2483
CB-SSSOM (1%) F-score - - - 0.5286
CB-SSSOM (5%) F-score - - - 0.4383
CB-SSSOM (10%) F-score - - - 0.3633
CB-SSSOM (25%) F-score - - - 0.5266

Table 5.2: An overview of all F-scores

Figure 5.5: Visual overview of the F-scores on the real data set
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Figure 5.6: Confusion matrices for the different algorithms on the real data set.
Many methods classify all data points as ”Normal”, which is why three
of the confusion matrices are the same.

(a) k-Means (b) DBN k-Means

(c) c-Means (d) DBN c-Means

(e) SOM (f) DBN SOM
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Figure 5.7: Confusion matrices for the CB-SSSOM for the different included per-
centages.

(a) 1 percent (b) 5 percent

(c) 10 percent (d) 25 percent
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Algorithm Parameter Synth. 1a Synth. 1b Synth. 1c Real
k-Means k 27 6 29 7

DBN k-Means

k 42 6 48 29
Epochs 45 137 60 110
Hidden layers [103, 103,

103]
[39, 39,
39, 39]

[103, 103,
103]

[102, 102,
102]

Batch size 29 23 32 54
Learning rate 0.0766 0.3521 0.0927 0.0394

c-Means c 35 6 21 5

DBN c-Means

c 29 6 29 26
Epochs 215 202 187 53
Hidden layers [172, 172] [52, 52,

52]
[172, 172] [145, 145,

145, 145]
Batch size 38 110 75 185
Learning rate 0.0766 0.0058 0.0004 0.0179

SOM

Width 1 1 6 4096
Height 339 728 8071 128
Epochs 190 75 145 68
Learning rate 0.000006 0.000097 0.001051 0.0222

DBN SOM

Width 10 10 10 2048
Height 41 75 506 8
Epochs 72 141 156 202
Learning rate 0.00033 0.00065 0.00033 0.0013
Epochs (DBN) 214 238 229 186
Hidden layers [21, 21,

21, 21]
[173, 173,
173, 173]

[38, 38,
38, 38]

[171, 171,
171]

Batch size 5 191 23 66
Learning rate
(DBN)

0.0058 0.000002 0.0044 0.0017

CB-SSSOM 1

Width - - - 4096
Height - - - 128
Epochs - - - 68
Learning rate - - - 0.0222

Table 5.3: Results of the hyper-parameter search for each of data sets

1Due to time constraints the hyper-paramters have not be re-estimated, but instead the values
found for the SOM were used
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5.3 Runtime

The previous two sections described the results in terms of the Silhouette index and
the F-Score. However when building a product, the runtime is also a very important
factor to consider. To compare the costs of the algorithms in terms of time, the
runtimes of the algorithms are compared on synthetic data set 1b. Another factor
that has to be kept in mind here is that when the hyper-parameters need to be
estimated periodically, then the number of possible combinations and the number
of tries needed to converge to a solution are also an important factor. Both the
runtimes and these combinations are summed up in Table 5.4.
In terms of combinations, the methods that employ dimensionality reduction have
by far the most possible combinations, with the DBN SOM combination leading the
pack, with almost 1.5 million possible combinations. In the case of k-Means and
c-Means only the number of clusters needs to be determined, which in this case
means that there were only 94 possible combinations and that the search was done
after 45 and 47 tries respectively. In those cases the genetic algorithm did not
perform a very important job, even though the number of tried possible combination
was cut in half, compared to a full grid search. However the real benefit here is in
the more complex cases, such as the DBN based methods and, to a lesser extend,
SOM. In the case of DBN SOM only 284 tries were required before a satisfactory
answer was found in the search space of almost 1.5 million options. A similar pattern
could be seen at the DBN k-Means, DBN c-Means and SOM.
When looking at the runtimes of the algorithms the DBN-SOM combination takes up
most of the time with a wide margin. In that case the time is measured in minutes
instead of in seconds as it is with the other methods. One iteration of DBN-SOM
takes on average 1.2 minutes on this data set. The simplest of the methods, k-
Means and c-Means both take up about 0.5 seconds on average. The time that it
takes for DBN-SOM to come up with a solution is in line with the other results, since
the other methods also take up 20 to 30 seconds longer per try when a DBN is used.
This is also in line with the general complexity of the methods. k-Means and c-Means
are often considered as some of the simplest and most straightforward methods to
perform clustering and, although they are computationally complex, there has been
a lot of research over the last decades into performance enhancing heuristics. SOM
on the other hand is a more complex algorithm, as is DBN. Therefore it is evident
that training the model also takes up more time.
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Algorithm Possible combina-
tions

Tried combinations Average time per try

k-Means 94 45 0.5s
DBN k-Means 1.159.526.792 282 17.2s
c-Means 94 47 0.5s
DBN c-Means 1.159.526.792 224 33.5s
SOM 355.612.500 186 23.5s
DBN SOM 1.498.469.552 284 1.2m

Table 5.4: The average search time and number of tried combination for synthetic data set 1b.

Synthetic 1a Synthetic 1b Synthetic 1c Real
Dimensionality 2 37 37 63
Continuous variables 1 35 35 32
Discrete variables 1 2 2 31
# of samples 400 400 10.000 1.051.871

Table 5.5: Technical characteristics of the data sets



Chapter 6

Discussion

The presented results in Chapter 5 have made it clear that the presented techniques
are not yet ready to be used in a production system. The achieved results on the real
data set were disappointing. The aim of this chapter is to present some implications
of the results, followed by a number of issues with the proposed solutions, including
some avenues of future research.

6.1 Implications

When discussing the results it is also important to look at the implication of the re-
sults on a real-life scenario. In other words, what would happen when the system
was put in use right now. In order to answer this question only the best case sce-
nario, in this case the CB-SSSOM with one percent of the labels available, will be
considered. When determining what the real world implications would be there are
two primary points to consider, what are the benefits and what are the disadvan-
tages? When looking at the confusion matrix in Fig. 5.7a it becomes clear that in
1.032.894 of the 1.050.989 cases the system made a correct classification, in other
words in 98.28% of the cases the classification given was right. When looking at
the disadvantages there are two main problems. On the one hand there are false
alarms, where a ”Normal” sample is classified as a fault and there are false neg-
atives, when faults are classified as ”Normal”. The former happened in 10.404 or
0.99% of the cases and the latter in 7.691 or 0.73% of the cases. This might not
seem like a lot, however when looking at the absolute numbers it means that for
almost 29 hours in the five month period there would be false alarms and for more
than 21 hours there would be false negatives. In other words, this would not be a
viable solution yet when looking at the practical implications.

50
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6.2 Issues

When discussing the issues the elephant in the room ought to be the results them-
selves. The results were not good enough to produce a production ready system.
This is likely a result of the high dimensionality. Since most of the faults are only
visible in a couple of time series they are easily overshadowed by other time series
with more fluctuations, when looking at the complete system. The proposed solution
for this issue was to employ dimensionality reduction however it turned out that this
did not perform satisfactorily. Therefore other techniques should be investigated.
One possible solutions with high potential that were already discussed passingly in
Chapter 3 is subspace clustering, which looks at subsets of the dimensions to find
clusters. For a more detailed explanation please refer to Section 2.1.6. Given that
this strikes at the core of the problem mentioned before this is a very interesting
avenue of future research. Another potential solution that was already tested and
deserves further investigation is semi-supervised clustering. The previous chapter
showed that even with only 1% of the labels it already performed substantially bet-
ter than the unsupervised methods. This might even be further improved when the
labels are not picked at random as was done in this case, but are picked to be the
most informative. This could be achieved by employing Active Learning where the
operator is asked to provide labels for points that are considered difficult to cluster.
Both subspace clustering and semi-supervised clustering are not methods them-
selves but rather groups of techniques. However, even though both of these have
a high potential of solving the problem mentioned earlier it is also possible that that
these do not pan out and it should be concluded that clustering is not a valid solution
direction for the case of Thales, however this should not be done unless all potential
solutions have been exhausted.
In case a solution is found that improves the results there are still some other issues
that should be dealt with. One of those issues is the explainability of a classification.
When a new sample is classified, the engineer needs to be able to understand why
the classification is given, especially when he does not agree with it. Being able to
explain a decision would help in building trust in the system and to further improve
it. One way to make the results more explainable is to display the other samples in
the cluster, to the users. This might however not be fully satisfying, which makes
this issue important to solve before putting the system in production.
Another potential issue is the hyper-parameter search. In some cases, such as
in k-Means clustering, the number of clusters needs to be determined beforehand.
However as new data comes in, new clusters arise. For example when a previously
unseen problem is encountered. This means that the hyper-parameters need to be
retrained periodically, which in turn means that it should be feasible to do a hyper-
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parameter search on-board. There is however a difference between the different
methods. For example, some methods will need a search every time a new clus-
ter arises, but other methods only need to be retrained when a previously unseen
time series is included. There are a couple of methods to mitigate this issue, for
example limiting the search space around the previously found values or only trying
a couple of options, in the expected direction. For example in the case of k-Means it
can be assumed that over time the number of clusters will grow, therefore when the
hyper-parameters are re-estimated on a weekly basis, it will most likely suffice to try
the the values in the range [k, k + 10], with k being the previous number of clusters.
However this is only an estimation and such a tactic will require further investigation.
The third problem is one that arises when an engineer does not agree with the
given classification. This is a situation that is probably going to occur, because no
system is impeccable, and that will have to be dealt with satisfactorily, otherwise
the engineers will lose faith in the system. Therefore some way has to be found
to incorporate user feedback into the classification, a feature which the given solu-
tions lacks. Some interesting avenues here are Active Learning and Reinforcement
Learning and the advice is to further investigate this issue and these possible solu-
tions.
When looking at the methodology there are a couple of open issues that remain.
The first of those is the evaluation. In order to compare the different methods a
straightforward evaluation strategy was set up based on the Silhouette score and
the F-Score. However this required that each of the methods outputted exactly one
cluster label for each data point. In other words, all other information, such as the
membership probability of the fuzzy c-Means clustering and the topological informa-
tion which is available in the SOM was discarded. That information might be very
useful, however this is currently not investigated. In the future an investigation into
how this kind of information can be integrated into the solution would be beneficial.
Another issue with this approach is that, even though soft clustering is used, each
data point is still assigned to only one cluster. If the second cluster was also taken
into account, the score of c-Means might have been substantially higher.
Something else that could be seen as a drawback of the used evaluation technique
is that the number of clusters are not considered. Due to the label propagation
technique, the F-Score is generally higher when the clusters are smaller. However
having more distinct clusters means asking more questions to the user to find out
which label belongs to a certain cluster. This might be prevented by training only
on using the Silhouette score as a metric, but the fact that this is not considered
explicitly could be seen as a drawback.
When it comes to the hyper-parameter estimation there is also an issue that needs
to be considered, namely the problem of local optima. As could be seen in the pre-
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vious chapter, the GA only tested a fraction of the possible solutions for the more
advanced methods. This means that it is highly likely that the algorithm finished at a
local optimum and that the score could be further improved by testing more options.
This is something that needs to be kept in mind and that might need to be further
investigated.
Another integral part of the methodology is the use of synthetic data. This is not
without its dangers and limitations. First and foremost it is difficult to generate high
quality data that follows the same distribution as the real data. Thus, if this can not
be guaranteed, it can also not be guaranteed that the results on the synthetic data
are similar to those on the real data. In order to mitigate this problem, both synthetic
and real data sets have been used.
Finally, one of the issues is that over time a lot of data is being collected. Radar
systems will typically run for extended periods of time, decades even. During this
period data is collected, the question however is, which data should be used to train
on? It might not be possible, nor desirable, to train on all the data for a number
of reasons. The main one being time, if the model is retrained periodically it will
take a long time if there is 20 years worth of data. However, if the system is only
trained on the last months, it will not recognise issues that occurred before this pe-
riod. Something that further complicates this situation is that parts of the radar may
be replaced by other types with a similar function during its lifetime, because the
original part is no longer manufactured. This has an effect on the (types of) data
that is generated by this part. Therefore the selection of training data is a delicate
process that needs to be executed carefully and that requires some research to be
done beforehand. A possible solution is to only consider the last year in its totality
and to only include the abnormal situations during the period before that. However
there might be other, more advanced, forgetting strategies available in the literature.
This will require some additional research.



Chapter 7

Conclusion

Throughout this report the goal has been to answer the three research questions
that were asked in Section 1.3. RQ1.a was answered through an extensive litera-
ture review and resulted in a list of algorithms that had in the past been used to solve
similar problems. This list was then narrowed down to three methods, k-Means clus-
tering, fuzzy c-Means clustering and SOMs.
The second research question, RQ1.b was also answered through a literature re-
view. Based on this literature review two metrics were chosen to evaluate the quality
of the resulting diagnoses, the Silhouette score and the F-Score. The former does
not require labels, but the latter does.
The three aforementioned algorithms have been tested on three synthetic and one
real data set. The results for each method differed between each of the data sets
and on the synthetic data sets there was no clear winner, although in all three cases
SOM performed worst, both in terms of Silhouette score and F-Score.
On the real data set none of the methods was able to correctly cluster all the faults.
The most likely reason for this is that, due to the high number of dimensions and
most faults only being visible in a couple of dimensions, most faults were overlooked.
When answering RQ1.c the selected methods should be compared between them-
selves. As was mentioned before, no clear winner can be selected when looking at
all the data sets at the same time, which is likely a result of the different character-
istics of the data sets and the algorithms. In other words, one algorithm might deal
better with a lot of data, whereas another algorithm is better capable of handling a
large number of dimensions. Therefore when formulating an answer to RQ1.c only
the real data set is considered, since it is a better reflection of the problem that was
posed in the introduction than the synthetic data sets. In the end, when considering
the F-Score and the results as they were displayed in the confusion matrices the CB-
SSSOM was the best performing method with a substantial margin. This is also to
be expected given that the method has more information to work with. When looking
only at the unsupervised methods DBN k-Means was the best performing algorithm,
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closely followed by the SOM. However the score was still not satisfactory. Therefore
it may be concluded that, although this is certainly an interesting avenue for further
work, the current solution is not yet ready to solve the problem. In the discussion a
number of points of improvement with regards to the methodology were pointed out
and some avenues for future work were presented.
Thus it may be concluded that the major contribution of this work is that an extensive
literature review was performed and that a number of possible solutions were imple-
mented and tested on both synthetic and real data. In addition to this a constraint-
based semi-supervised variant of the SOM was developed. A methodology was also
developed, which may be used in the future by Thales to test other methods while
still being able to compare them directly to results obtained earlier. Finally a number
of suggestions were done for future work that could be used by Thales to shape the
development of a production ready system.
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Appendix A

Fault Diagnosis

This table provides an overview of the relevant fault diagnosis literature, published since 2016. In this overview supervised papers
are indicated as s, unsupervised as u and semi-supervised as i.

Technique(s) s/u/i Field Type Types of faults Ref.
CNN s Bearings Vibration signal Predefined faults [73]
Hilbert-Huang Transform (HTT), CNN s Bearings Vibration signal Predefined faults [74]
Fuzzy clustering u Bearings Vibration signal Unlabelled faults (clustering) [75]
Extreme Learning Machine (ELM) u Analog circuits Voltages Predefined faults [76]
SDA s Bearings Vibration signal Combined faults [77]
Entropy, RF s Bearings Vibration signal Predefined faults [78]
Fuzzy clustering u Actuators Temperature, pressure, flow,

density
Dynamically discovering new
faults

[79]

Multi-Kernel Learning (MKL) s Pumps Pressure, temperature, flow,
current, voltage, vibration

Predefined faults [80]
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Generative Adversarial Networks
(GAN)

u Bearings Vibration signal Predefined faults [81]

selective ensemble learning, PSO s Rotary machin-
ery

Vibration signal Predefined faults [82]

Support Vector Nerual Network
(SVNN)

s Analog circuits Voltages Predefined faults [83]

k-NN u Motors Vibration signal Predefined faults [84]
Radial Based Function Neural Net-
work (RBFNN)

u synchronous
condenser

Voltages Predefined faults [85]

SVM, PSO s Bearings Vibration signal Predefined faults [86]
GAN u Bearings Vibration signal Unlabelled faults (clustering) [87]
k-NN s Bearings Vibration signal Predefined faults [88]
empirical mode decomposition
(EMD), genetic neural network
adaptive boosting (GNN-AdaBoost)

s Bearings Vibration signal Predefined faults [89]

CNN s Rotary machin-
ery

Vibration signal Predefined faults [90]

CNN s Gearboxes Vibration signal Predefined faults [91]
DBN s Turbine Vibration signal Predefined faults [92]
Transfer Learning (TL), CNN s Bearings Vibration signal Predefined faults [37]
LSTM s Turbine Displacement, acceleration,

wind speed, rotor speed,
torque, wind power

Predefined faults [93]

k-NN u HVAC Temperature Predefined faults [94]



Decision tree s Motors Categorical data Predefined faults [95]
LSTM s Gearboxes Vibration signal Predefined faults [96]
SVM s Bearings Vibration signal Predefined faults [97]
non-naive Bayesian classifier (NNBC) s Bearings Vibration signal Predefined faults [98]
SVM, PCA s Turbine Power output, speed, torque,

pitch angles,acceleration
Predefined faults [99]

SVM, PCA s Bearings Vibration signal Predefined faults [100]
Support Vector Data Description i Circuit breaker Voltages Predefined faults (clustering) [101]
Fuzzy clustering u Three-tank sys-

tem
Pump output Unlabelled faults (clustering) [102]

SVM s Distillation Feed composition, tempera-
ture

Predefined faults [103]

DBN, Fuzzy clustering i Rotary machin-
ery

Vibration signal Unlabelled faults (clustering) [22]

DE, Stacked Sparse Autoencoders s Bearings Vibration signal Predefined faults [104]
PCA, Multilayer Perceptron NN s Motors Voltages Predefined faults [105]
Nave Bayes s Motors Voltages Predefined faults [106]
DBN s Bearings Vibration signal Predefined faults [107]
Deep CNN u Bearings Vibration signal Unlabelled faults (clustering) [108]
GAN, SDA s Gearboxes Vibration signal Predefined faults [109]
SDA i Rotary machin-

ery
Vibration signal Unlabelled faults (clustering) [110]

BPNN s Sensors Level, flow Predefined faults [111]



Relevance Vector Machine (RVM),
PSO

s Bearings Vibration signal Predefined faults [112]

GAN s Rotary machin-
ery

Vibration signal Predefined faults [113]

SVM s Bearings Vibration signal Predefined faults [114]
CNN s Bearings Vibration signal Predefined faults [115]
DBN S Compressor Pressure, current, vibration Predefined faults [116]
BPNN s Mechanical

faults
Temperature, vibration Predefined faults [117]

Fuzzy clustering, PSO u Bearings Vibration signal Unlabelled faults (clustering) [118]
Decision tree s Photovoltaic

system
Current, voltage, tempera-
ture

Predefined faults [119]

k-NN s Photovoltaic
system

Current, voltage Predefined faults [120]

BPNN s Rotor bars Current Predefined faults [121]
SVM s Bearings Vibration signal Predefined faults [122]
k-NN, Nave bayes s Transformers Dissolved Gas Analysis Predefined faults [123]
SVM s Power network Current Predefined faults [124]
Subspace clustering u Bearings Vibration signal Unlabelled faults (clustering) [56]
SVM s Rotary machin-

ery
Torque Predefined faults (clustering) [125]

Bayesian Extreme Learning s Rotary machin-
ery

Air ratio, sound, voltage Predefined faults [126]

SVM s Bearings Vibration signal Predefined faults [127]



SVM s Motors Current Predefined faults [128]
Stacked AutoEncoder s Bearings Vibration signal Predefined faults [129]
Radial Basis Function Neural Net-
work (RBF), Generalized Regression
Neural Network (GRNN)

u Bearings Vibration signal Unlabelled faults (clustering) [130]

Stacked Sparse AutoEncoder (SSAE) s Chemical pro-
cesses

Temperature, pressure Predefined faults [131]

k-Means u Compressor Pressure, current, vibration Unlabelled faults (clustering) [132]
SDA s Bearings Vibration signal Predefined faults [133]
SDA, BPNN s Chemical pro-

cesses
PH, temperature, feed, pres-
sure

Predefined faults [134]

Sparse AutoEncode (SAE) s Turbine Images Predefined faults [135]
SVM s Inverted pendu-

lum
Pole analysis Predefined faults [136]

HMM, k-Means s Fuel cell Pressure, temperature, volt-
age

Predefined faults [50]

CNN s Manufacturing Images Predefined faults [137]
Sparse Deep Stacking Network
(SDSN)

s Motors Vibration signal Predefined faults [138]

k-NN i Bearings Vibration signal Predefined faults [139]
SVM s Inverter Voltages Predefined faults [140]
DNN s Rotary machin-

ery
Vibration signal Predefined faults [141]



hierarchical dimension reduction
(HDR) classifier

s Transformers Dissolved Gas Analysis Predefined faults [142]

SVM s Motors Vibration signal Predefined faults [143]
RNN s Grinding Temperature, pressure,

sound, vibration
Binary (fault/fault free) [144]

Fuzzy Cognitive Map s Motors Vibration, current Predefined faults [145]
PCA, Fuzzy clustering u Manufacturing PH, temperature, feed, pres-

sure
Predefined faults [146]

PCA u HVAC Pressure, temperature, flow
rate

Binary (fault/fault free) [147]

LSTM s Bearings Vibration signal Predefined faults [148]
Fuzzy c-means clustering u Transformers Dissolved Gas Analysis Unlabelled faults (clustering) [149]
Dominant Set Clustering u General Images Unlabelled faults (clustering) [23]
GA, SVM s Power systems Current, voltage Predefined faults [21]
PSO, SOM, Learning Vector Quanti-
zation Neural Network

s Turbine Vibration signal Predefined faults [150]

SVM s Power network Voltage, current Predefined faults [151]
RF, SVM s Bearings Vibration signal Predefined faults [54]
SVM s HVAC Temperature, pressure, flow

rate
Predefined faults [152]

HMM, SOM u Bearings Vibration signal Unlabelled faults (clustering) [153]
Fushion (MLP-NN, RBF-NN, Decision
trees, k-NN)

s Turbine Speed, torque, power, ac-
celleration

Predefined faults [154]



LSTM s General PH, temperature, feed, pres-
sure

Predefined faults [155]

SVM s Rotor bars Vibration signal Predefined faults [156]
Locality Preserving Projection s General Vibration signal Predefined faults [157]
Exponential Discriminant Analysis
(EDA)

s Chemical pro-
cesses

PH, temperature, feed, pres-
sure

Predefined faults [158]

GMM i/u General Current, acceleration, torque,
speed

Unlabelled faults (clustering) [159]

SVM s Transformers Dissolved Gas Analysis Predefined faults [160]
Fuzzy kernel clustering u Rotary machin-

ery
Vibration signal Predefined faults [161]

Fuzzy c-means clustering u General Images Unlabelled faults (clustering) [162]
Fuzzy c-means clustering u Bearings Vibration signal Predefined faults [163]
DNN s Bearings Vibration signal Predefined faults [164]
DBN, PCA, Fuzzy clustering u Bearings Vibration signal Unlabelled faults (clustering) [42]
PSO s Engines Vibration signal Predefined faults [165]
RNN s Gearboxes Vibration signal Predefined faults [166]
Elman-NN, AdaBoost s Bearings Vibration signal Predefined faults [167]
SVM s Bearings Vibration signal Predefined faults [168]
Fuzzy inference s Photovoltaic

system
Temperature, voltage, cur-
rent, wind speed

Predefined faults [169]

RNN s Bearings Vibration signal Predefined faults [170]
Wavelet transform, CNN s Bearings Vibration signal Predefined faults [171]
CNN s Bearings Vibration signal Predefined faults [172]



CNN s Rotary machin-
ery

Vibration signal Predefined faults [173]

SAE, Softmax classifier s Hydraulic equip-
ment

Temperature, pressure,
shock, revolution

Predefined faults [174]

GA, k-means u Engines Vibration signal Predefined faults (clustering) [175]
SOM, PCA u Bearings Vibration signal Predefined faults (clustering) [176]
SVDD, SVM s Rotor bars Current Predefined faults [177]
PCA, SVM, PSO s Manufacturing % of aggregates passing the

sieve
Predefined faults [178]

PCA u Bearings Vibration signal Binary (fault/fault free) [179]
SVM s Bearings Vibration signal Predefined faults [180]
SVM s Bearings Vibration signal Predefined faults [181]
SVM s Bearings Vibration signal Predefined faults [182]
Logical Analysis of Data (LAD) s Chemical pro-

cesses
PH, temperature, feed, pres-
sure

Predefined faults [183]

SDA s Bearings Vibration signal Predefined faults [184]
SVM s Sensors Temperature oxygen Predefined faults [185]
SOM u Turbine Temperature, speed, power Predefined faults (clustering) [48]
Double Paralell feedforward Extreme
Learning Machine (DP-ELM)

s Bearings Vibration signal Predefined faults [186]

Relevance Vector Machine (RVM) s Turbine Vibration signal Predefined faults [187]
CNN, HMM s Bearings Vibration signal Predefined faults [36]
Rough set theory Neural Network s Gearboxes Vibration signal Predefined faults [188]



RBFNN, Probablistic Neural Network
(PNN)

s Motors Vibration signal Predefined faults [189]

SVM s Bearings Vibration signal Predefined faults [9]
AdaBoost, RVM s Engines Vibration signal Predefined faults [190]
SVM s Motors Vibration, current Predefined faults [7]
CNN, LSTM s Bearings Vibration signal Predefined faults [34]
CNN s Bearings Vibration signal Predefined faults [191]
k-Means, 1-NN i Gearboxes Vibration signal Predefined faults [192]
SDA s Rotary machin-

ery
Vibration signal Predefined faults [193]

RF s Motors Vibration signal Predefined faults [194]
SVM s Turbine Vibration signal Predefined faults [195]
Native Bayes, PSO s Gearboxes Vibration signal Predefined faults [196]
SAE, CNN, DBN s Bearings Vibration signal Predefined faults [35]
SAE, PSO, SVM s Bearings Vibration signal Predefined faults [44]
Fuzzy entropy, SOM, PCA u Bearings Vibration signal Unlabelled faults (clustering) [197]
ELM s Bearings Vibration signal Predefined faults [198]
ANN, Nave Bayes s Manufacturing Vibration signal Predefined faults [199]
PCA, SVM s Actuators Torque, voltage, current Predefined faults [200]
ANN, SVM, LS-SVM s Bearings Vibration signal Predefined faults [201]
Neighborhood Preserving Embed-
ding

s Bearings Vibration signal Predefined faults [202]

k-NN s Engines Vibration signal Predefined faults [203]



Transductive Support Vector Machine
(TSVM)

i Gearboxes Vibration signal Predefined faults [30]

SVM s Bearings Vibration signal Predefined faults [142]
CNN s Gearboxes Vibration signal Predefined faults [204]
LAD s General PH, temperature, feed, pres-

sure
Predefined faults [205]

Nave bayes s Gearboxes Vibration signal Predefined faults [206]
ANN, DNN s Gearboxes Vibration signal Predefined faults [207]
RF, k-NN s Rotary machin-

ery
Vibration signal Predefined faults [208]

TL i Rotary machin-
ery

Vibration signal Predefined faults [209]

k-NN u Bearings Vibration signal Unlabelled faults (clustering) [210]
SVM s Bearings Vibration signal Predefined faults [211]
RF s Spacecraft Pitch, position, electronical

data, etc. (1000 features)
Predefined faults [212]

SVM s Power network Current Predefined faults [213]
k-NN s Bearings Vibration signal Predefined faults [214]
Rought set u Power network Current, voltage, switch Unlabelled faults (clustering) [215]
SVM s Gearboxes Acceleration, torque, speed,

temperature, vibration,
sound

Predefined faults [216]

SVM s Turbine Temperature, pitch, rotor Predefined faults [217]
Fuzzy kernel, ELM s Bearings Vibration signal Predefined faults [218]



PCA, SVM s Cloud comput-
ing

Images Predefined faults [219]

Decision trees s Gearboxes Vibration signal Predefined faults [220]
Deep transfer learning i Power systems Dissolved Gas Analysis, tem-

perature, moisture, density
Predefined faults [38]

Decision trees s Turbine Vibration signal Predefined faults [221]
Fuzzy Petri Net s Motors Vibration signal Predefined faults [222]
BPNN s Trains Vibration signal Predefined faults [223]
MLPNN s Rotor bars Vibration signal Predefined faults [224]
Locality preserving clustering u Bearings Vibration signal Unlabelled faults (clustering) [225]
PSO s Cell network Temperature Predefined faults [226]
ELM s Bearings Vibration signal Predefined faults [227]
HMM s Rotary machin-

ery
Vibration signal Predefined faults (clustering) [228]

DBN s Bearings Vibration signal Predefined faults [39]
ANN s Photovoltaic

system
Current, voltage Predefined faults [229]

Fuzzy classifier s Photovoltaic
system

Current, voltage Predefined faults [230]

SAE s Bearings Vibration signal Predefined faults [231]
Linear Vector Quantization (LVQ) NN s Analog circuits Voltage Predefined faults [232]
1-nn, k-means i Gearboxes Vibration signal Predefined faults [233]
PSO s Bearings Vibration signal Predefined faults [234]
RNN s Gearboxes Vibration signal Predefined faults [235]



SVM s Bearings Vibration signal Predefined faults [236]
RVM s General Feed, flow, pressure, temper-

ature
Predefined faults [237]

DBN s Chemical pro-
cesses

PH, temperature, feed, pres-
sure

Predefined faults [40]

dag-SVM s Analog circuits Current, voltage Predefined faults [238]
ELM s Aircraft Speed, temperature, pres-

sure, fuel flow
Predefined faults [239]

CNN s Transformers Current Predefined faults [240]
SVM s Pumps Multiple (pressure, tempera-

ture, flow, current, voltage, vi-
bration)

Predefined faults [241]

Bayes classifier, LDA, k-NN s Motors Current Predefined faults [242]
RBFNN s Gearboxes Vibration signal Predefined faults [243]
SVM s Bearings Vibration signal Predefined faults [244]
Stacked Sparse Denoising AutoEn-
coders (SSDA)

s Bearings Vibration signal Predefined faults [245]

Manifold learning i Bearings Vibration signal Predefined faults [246]
Deep confidence nets s Transformers Images Predefined faults [247]
DBN s Motors Vibration signal Predefined faults [41]
Rough set, SVM s Motors Current Predefined faults [248]
RBFNN s Transformers Current, voltage Predefined faults [249]
Weightless Neural Networks (WNN) s General Vibration signal Predefined faults [250]
Paired RVM s General Vibration signal Predefined faults [251]



Multi-scale pssiblistic clustering u Bearings Vibration signal Predefined faults (clustering) [252]
Genetic Programming u General Artificial data Unlabelled faults (clustering) [253]
DHMM, BPNN s Gearboxes Vibration signal Predefined faults [33]
ELM s Bearings Vibration signal Predefined faults [254]
K-SVD s Bearings Vibration signal Predefined faults [255]
CNN, DBN s Mechanical

faults
Vibration signal Predefined faults [256]

Fuzzy Q-Learning (reinforcement
learning)

i Turbine Current, voltage Predefined faults [257]

ANN s Photovoltaic
system

Current, voltage Predefined faults [258]

Logistic regression classifier
(LASSO)

s Bearings Vibration signal Predefined faults [259]

SAE, softmax classifier s General Voltage Predefined faults [45]
SVM s Crawling-rolling

robot
gyro, accelerometer, magne-
tometer

Binary (fault/fault free) [260]

Decision Tree s Bearings Vibration signal Predefined faults [261]
ELM s Bearings Vibration signal Predefined faults [262]
SVM s Gearboxes Vibration signal Predefined faults [263]
Bayes, BPNN, Decision Trees s Turbine Speed, torque, pitch Predefined faults [32]
SVM s Bearings Vibration signal Predefined faults [264]
ELM s Bearings Vibration signal Predefined faults [33]
Rough set, fuzzy classification s General Dissolved Gas Analysis Predefined faults [265]
Random projection, SVM s General Vibration signal Predefined faults [266]



Fuzzy c-means clustering u General Images Unlabelled faults (clustering) [52]
k-means u Analog circuits Voltage Predefined faults [49]
Decision Tree s Rotary machin-

ery
Vibration signal Predefined faults [267]

k-NN s Transformers Dissolved Gas Analysis Predefined faults [268]
RVM s Transformers Dissolved Gas Analysis Predefined faults [269]
SDA s Turbine Vibration signal Predefined faults [270]
RF s Bearings Vibration signal Predefined faults [271]
fuzzy Takagi-Sugeno (T-S) state ob-
server

s Actuators Current, angle Predefined faults [272]

RF s Motors Current, voltage Predefined faults [273]
Deep CNN (ConvNet) u Bearings Vibration signal Unlabelled faults (clustering) [274]
PSO, SVM s Power network Current, voltage Predefined faults [275]
RF s Bearings Vibration signal Predefined faults [276]
LDA, BPNN s Bearings Vibration signal Predefined faults [277]
SVM s Bearings Vibration signal Predefined faults [12]
LS-SVM, LaPlacian eigenmaps i General Images, vibration signal Predefined faults [278]
Kernel Entropy Component Analysis
(KECA)

s Turbine Vibration signal Predefined faults [279]

Decision Tree, k-means i General Current, voltage Predefined faults [31]
SAE, softmax classifier s Grinding temperature, pressure,

sound, vibration
Predefined faults [46]

Fuzzy c-means clustering u Engines Vibration signal Unlabelled faults (clustering) [53]
SVM, GA s Circuit breaker Vibration signal Predefined faults [280]



Manifold clustering u Bearings Vibration signal Unlabelled faults (clustering) [281]
ANN, PNN s Motors Voltage Predefined faults [282]
DBN s Gearboxes Vibration signal Predefined faults [283]
Distributed clustering u HVAC Temperature Unlabelled faults (clustering) [284]
ICA, SVM s Engines Vibration signal Predefined faults [285]
Nave bayes s Gearboxes Vibration signal Predefined faults [286]
field programmable gate array
(FPGA)

s Rotor bars Vibration signal Predefined faults [287]

Density based clustering u Discrete events Discrete events Predefined faults [288]
SAE, DBN s Bearings Vibration signal Predefined faults [289]
GMM i Rotary machin-

ery
Vibration signal Unlabelled faults (clustering) [290]

Hierarchical CNN s Bearings Vibration signal Predefined faults [291]
ANN s Inverter Current, voltage Predefined faults [292]
Decision tree, Fuzzy classifier s Gearboxes Vibration signal Predefined faults [293]
Dictionary learning, Singular Value
Decomposition, PCA, k-NN

s Rotary machin-
ery

Vibration signal Predefined faults [294]

BPNN s Analog circuits Current Predefined faults [295]
Fuzzy Nearest Neighborhood Label
Propogation

i Transformers Dissolved Gas Analysis Predefined faults [296]

SVM s Bearings Vibration signal Predefined faults [297]
DNN s Temporal data Vibration signal Predefined faults [298]
Manifold embedding s Bearings Vibration signal Predefined faults [299]
SVM s Transformers Dissolved Gas Analysis Predefined faults [300]



local tangent space alignment(LTSA)
, k-NN

u Bearings Vibration signal Predefined faults [301]

PCA, HMM s Bearings Vibration signal Predefined faults [302]
SVM s Bearings Vibration signal Predefined faults [303]
Adaptive Neuro-Fuzzy Inference Sys-
tem

s Bearings Vibration signal Predefined faults [304]

ELM s Bearings Vibration signal Predefined faults [305]
Gath-Geva Clustering, SVD, EEMD u Bearings Vibration signal Unlabelled faults (clustering) [306]
SVM s Engines Vibration signal Predefined faults [307]
Fuzzy c-means clustering u Mechanical

faults
Vibration signal Unlabelled faults (clustering) [308]

SVM, GA s Compressor Vibration signal Predefined faults [309]
Decision tree, fuzzy inference s Compressor Vibration signal Predefined faults [310]
RCM s Transformers Dissolved Gas Analysis Predefined faults [311]
Affinity Propagation (AP) clustering,
PCA

u Engines Rotation speed Unlabelled faults (clustering) [312]

CNN s Manufacturing Temperature, pressure, volt-
age, currents

Predefined faults [313]

large memory storage retrieval (LAM-
STAR) neural network

s Bearings Vibration signal Predefined faults [314]

SVD, SVM s Bearings Vibration signal Predefined faults [315]
DBN, RF s Spacecraft Pitch, position, electronical

data, etc. (1000 features)
Predefined faults [20]

ANN s Bearings Vibration signal Predefined faults [316]



Variational Mode Decomposition,
Fuzzy c-means clustering

u Turbine Vibration signal Predefined faults [55]

SVM, fruit Fly Optimization Algorithm
(FOA)

s Bearings Vibration signal Predefined faults [317]

Fuzzy decision making s Actuators Temperature Predefined faults [318]
SVM, PSO s Bearings Vibration signal Predefined faults [11]
SOM, SVM, PCA, k-means u Manufacturing Discrete events Binary (fault/fault free) [51]
DBN s Bearings Vibration signal Predefined faults [319]
Fuzzy c-means clustering, sparse
component analysis

u Bearings Vibration signal Unlabelled faults (clustering) [320]

SVM s Solenoid valve Pressure, leakage Predefined faults [321]
local tangent space alignment(LTSA)
, k-NN

s Bearings Vibration signal Predefined faults [322]

k-NN s Bearings Vibration signal Predefined faults [323]
Dynamic uncertain causality graph
(DUCG), Fuzzy Decision Tree

s Nuclear Power
Plants

Pressure, flow, temperature Predefined faults [324]

MLPNN s Gearboxes Vibration signal Predefined faults [325]
Best fit tree, functional trees s Turbine Vibration signal Predefined faults [326]
SVM s Bearings Vibration signal Predefined faults [327]
Decision tree s Chemical pro-

cesses
Alarms Predefined faults [328]

Normalized cross correlation func-
tion, phase space reconstruction
(PSR)

u Bearings Vibration signal Unlabelled faults (clustering) [329]



Resevoir Computing (RC) s Fuel cell temperature, voltage, cur-
rent, flow, humidity

Predefined faults [330]

Deep CNN s Bearings Vibration signal Predefined faults [331]
BPNN s HVAC Current, voltage Predefined faults [332]
Fuzzy entropy, SVM s Bearings Vibration signal Predefined faults [333]
Kernel Entropy Component Analysis s Chemical pro-

cesses
PH, temperature, feed, pres-
sure

Predefined faults [334]

Non-Nave bayes, EMD s Rotary machin-
ery

Vibration signal Predefined faults [335]

PNN, IMF s Transmission
line

Voltage Predefined faults [336]

PCA, PSO, SVM s Bearings Vibration signal Predefined faults [337]
CNN s Bearings Vibration signal Predefined faults [302]
Fuzzy c-means clustering, SVM,
rough set

s Engines Vibration signal Predefined faults [338]

Bayesian inference, SVM s Bearings Vibration signal Predefined faults [339]
Decision trees, SVM s Bearings Vibration signal Predefined faults [340]
SVM s General Speed, acceleration Predefined faults [341]
Feed Forward Neural Network s Bearings Vibration signal Predefined faults [342]
Artificial Immune Algorithm, ensem-
ble learning

s Gearboxes Vibration signal Predefined faults [343]

Fuzzy entropy, Variable predictive
model-based class discrimination
(VPMCD)

s Bearings Vibration signal Predefined faults [344]



Neuro-fuzzy classifier s Photovoltaic
system

Voltage, current, tempera-
ture, solar irradiance

Predefined faults [345]

SVM, Fuzzy clustering u Electrical equip-
ment

Voltage, current Unlabelled faults (clustering) [346]

Fuzzy c-means clustering, SVM, PCA u/s Spacecraft Temperature, voltage, cur-
rent, pressure, flow

Unlabelled faults (clustering) [347]

Fast Clustering Algorithm (FCA),
SVM, Variational Mode Decomposi-
tion (VMD), PCA

u Rotary machin-
ery

Vibration signal Unlabelled faults (clustering) [348]

SVM s Bearings Vibration signal Predefined faults [349]
learning vector quantization (LVQ)
neural network, Decision tree

s Bearings Vibration signal Predefined faults [350]

EMD, ANN s Gearboxes Voltage, current Predefined faults [351]
ANN s Turbine Vibration signal Predefined faults [352]
SVM s Textile spinning Vibration signal Predefined faults [353]
Support Vector Regressive Classifi-
cation

s Bearings Vibration signal Predefined faults [354]

Kernel Fisher Discriminant Analysis,
GMM, k-NN

u Chemical pro-
cesses

PH, temperature, feed, pres-
sure

Unlabelled faults (clustering) [355]

DBN s Bearings Vibration signal Predefined faults [356]
CNN s Bearings Vibration signal Predefined faults [357]
EMD, ANN s Engines Vibration signal Predefined faults [358]
Adaptive Neuro-fuzzy Inference Sys-
tem (ANFIS),

s Turbine Temperature Predefined faults [359]



Rough set, fuzzy covering s Gearboxes Vibration signal Predefined faults [360]
CNN s Bearings Vibration signal Predefined faults [361]
k-NN s Bearings Vibration signal Predefined faults [362]
ELM s Photovoltaic

system
Power output, voltage, cur-
rent

Predefined faults [363]

PCA, GG clusering u Temporal data Temperature, pH, dissolved
oxygen

Predefined faults [364]

Least Squares (LS)-SVM, TL i Bearings Vibration signal Predefined faults [365]
k-star classifier, k-nn s Bearings Vibration signal Predefined faults [366]
Fuzzy logic s Motors Vibration signal Predefined faults [367]
Decision tree, MLPNN s Manufacturing Vibration signal Predefined faults [368]
PSO, SVM s Turbine Vibration signal Predefined faults [369]
CNN s Bearings Vibration signal Predefined faults [370]
SVM s Bearings Vibration signal Predefined faults [371]
SDA i Bearings Vibration signal Predefined faults [47]
Teager-Kaiser Energy Operator, ELM s Bearings Vibration signal Predefined faults [372]
SVM, Cuckoo search algorihm s PVC production Speed, pressure, tempera-

ture, current
Predefined faults [373]

SVM s Gearboxes Vibration signal Predefined faults [374]
Decision tree, k-star classifier s Gearboxes Sound Predefined faults [375]
SVM s Sensors Temperature Predefined faults [376]
EMD, IMF, SVM s Rotary machin-

ery
Vibration signal Predefined faults [377]

ART-NN, Fuzzy competitive learning s Bearings Vibration signal Predefined faults [378]



Sparse coding u Bearings Vibration signal Unlabelled faults (clustering) [379]
ANN s Misfire Vibration signal Predefined faults [380]
TL, ANN i Bearings Vibration signal Predefined faults [381]
KPCA, Fisher Discriminant Analysis
(FDA)

s Power systems Voltage Predefined faults [382]

PCA, SVM s Chemical pro-
cesses

PH, temperature, feed, pres-
sure

Predefined faults [383]

ELM s Compressor Vibration signal Predefined faults [384]
one-vs-one ELM s Engines Temperature, exhaust gas Predefined faults [385]
Bayesian networks s HVAC Temperature Predefined faults [386]
EMD, RF s Bearings Vibration signal Predefined faults [387]
CNN, SVR s Rotary machin-

ery
Vibration signal Predefined faults [388]

ELM s Bearings Vibration signal Predefined faults [389]
Orhogonal LDA s Mechanical

faults
Vibration signal Predefined faults [390]

orthogonal fuzzy neighbourhood dis-
criminative analysis, RNN

s Unmanned Ma-
rine Vehicles

Current, vibration Predefined faults [391]

Nave bayes, expert system s Aircraft Pressure, temperature, vibra-
tion, etc.

Predefined faults [392]

VMD, Local Linear Embedding, SVM s Bearings Vibration signal Predefined faults [393]
RBFNN s Bearings Vibration signal Predefined faults [394]
SVM s Radial distribu-

tion feeder
Voltage, current Predefined faults [8]



CNN, EMD s Rotary machin-
ery

Vibration signal Predefined faults [395]

PSO, SVM s Bearings Vibration signal Predefined faults [396]
EMD, Fuzzy entropy, PSO, SVM s Bearings Vibration signal Predefined faults [397]
EMD, SVD, Fuzzy c-means clustering u Turbine Vibration signal Predefined faults [398]
Sparse Component Analysis s Bearings Vibration signal Predefined faults [399]
ANN (FFNN) s Rotor bars Vibration signal Predefined faults [400]

Table A.1: Overview of the relevant fault diagnosis literature since 2016



Appendix B

Classification

This table provides an overview of the relevant classification in high-dimensional
data literature. In this overview supervised papers are indicated as s, unsupervised
as u and semi-supervised as i. They are further categorized based on their type,
here DR stands for Dimensionality Reduction and C stands for Classification.

Type Technique s/u/i Application Ref.
DR/C SVM s Biomedical [401]
DR Tensor decomposition s EEG [402]
DR/C Mixture-gaussian, SVD s/u Genes [403]
DR LDA s General [404]
DR LDA s Face recognition,

text classification
[405]

DR Linde-Buzo-Gray u General [406]
DR/C Dictionairy learning s General [407]
DR/C External data, k-Means s/u General [408]
DR Manifold learning u General [409]
DR/C L2,1-norm-based sparse representa-

tion model
u Video recognition [410]

DR Random subspaces s Images [302]
DR LDA, Multidimensional scaling (MDS) s Undersampled [411]
C Regularized classification method s Biomedical [412]
DR SRC s General [413]
DR SR, NPE s General [414]
DR/C L2,1 norm, matrix factorization s General [415]
DR/C NPE, SRC s/u Images [416]
C ELM s Biomedical [417]
DR/C Proximal Support Vector Machines

(PSVMs)
s Biomedical [418]
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DR/C LDA i General [419]
DR/C Relative transformation, Neighbor-

hood graph
i Genes [420]

DR Maximum Margin Criterion (MMC), lo-
cal manifold

s General [421]

OD Density clustering s Time series [422]
DR Multilayer perceptron s Images [423]
C k-NN, mutual information u General [424]
DR Multimanifold learning u General [425]
DR LDA, MMC, BGA s Genes [426]
DR PCA u Time series [427]
C L2 norm u General [428]
DR/C Evolutionary Computing (EC), sparse

subspace classification
u Face recognition [429]

C Compressed Sensing, Compressed
classification, Nearest Neighbour

u Face recognition [430]

C L2,1 regression matrix i General [142]
DR/C VAE, CNNs, Feed forward NNs u Fault diagnosis [431]
C Bayesian Inference s General [432]
DR/C k-NN, smoothly clipped absolute de-

viation (SCAD) logistic regression
s General [433]

DR/C high-order statistical moments (SM),
Virtual Collaborative Projection (VCP)

s Face recognition [434]

C SVM s General [435]
C Bayesian additive regression trees s General [436]
DR/C Bayesian, kernel dictionairy learning s Genes [437]
C Evolving tree s Biomedical [438]
C Simmulated Annealing s General [439]
DR ICA, PCA u Genes [440]
DR/C Spectral regularization u General [441]
DR LDA, MMC, Least-squares classifier i Images [442]
DR LDA, LLD i Time series [443]
DR/C Feature selection, SVM s General [444]
DR LDA s General [445]
DR Trace Ratio LDA (TR-LDA) i General [446]
DR PCA, CCA s/u/i General [447]
C Soft subspace clustering u Fault diagnosis [448]
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C Stacked Denoising Autoencoders s Fault diagnosis []
C Kernel Canonical Correlation Analy-

sis
i Biomedical [450]

DR/C PCA, C4.5 Decision trees BPNN s Fault diagnosis [451]
C Maximum entropy s Fault diagnosis [452]
DR/C Manifold learning, Pairwise con-

strained
i Images [453]

DR/C PSO, SVM s General [454]
DR/C Sparse coding, self-taught learning i Images [455]
DR Locality Preserving Projection u General [456]
DR L2,1-norm regularization s Genes [457]
DR Neural Networks s General [458]
DR/C DNN, Softmax classifier s Fault diagnosis [297]
DR/C PCA, SVM s Fault diagnosis [459]
DR/C Tranfer learning i General [460]
DR Manifold learning i General [461]
DR/C ANN, k-NN, Improved Distance Eval-

uation (IDE)
s Gearboxes [462]

DR Non-negative Matrix Factorization
(NMF)

u Genes [463]

DR/C Short-time Fourier Transform,
Stacked Sparse AutoEncoder

s Fault diagnosis [464]

DR/C Binary Particle Swarm Optimization
(BPSO), k-NN

u General [465]

C Transductive Support Tensor Machine
(TSTM)

i General [466]

DR/C RBNN, CEA s General [467]
C Bayesian Mixture Model, Gibbs sam-

pler, Reverse Annealing
u Genes [468]

DR/C SVM, Recursive Feature Elimination
(RFE)

s Genes [469]

C Gaussian Fields, Manifold learning i Images [470]
DR/C Lower supspace projection s Face recognition [471]
DR/C Subspace clustering u General [472]
DR/C LDA, Least Squares (LS) i General [473]
C Self-taught learning i Images [474]
DR Deep auto-encoders u Images [475]
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DR Subspace clustering, PCA u Indexing [476]
DR Local Fisher discriminant, PCA i Text classification [477]
DR Manifold learning, Elastic Net s Face recognition [478]
DR/C SVM, ACO s Fault diagnosis [479]
C Icremental SVM s Fault diagnosis [480]
C SDA s Fault diagnosis [481]
C DNN s Fault diagnosis [482]
C Deep Belief Network (DBNs) s Fault diagnosis [483]
DR GA, SVM s General [484]
DR/C Continuous Hidden Markov Models

(cHMMs), SOMs
s Fault diagnosis [485]

C Markov Random Walk i Text classification [486]
C Random Forest s Fault diagnosis [487]
C Expert system, BPNN s Fault diagnosis [488]
C EP, ANN s Fault diagnosis [489]
C RF, GA s Fault diagnosis [490]



Appendix C

Data

As was mentioned before the data will be tested on three data sets. Two of those are
generated synthetically and one is a real data set, augmented with anomalies. This
section provides an overview of these data sets, how they were generated and what
their properties are. For the sake of confidentiality the axis have been anonymized
when the figures concern real world data.

Synthetic 1a Synthetic 1b Synthetic 1c Real
Dimensionality 2 37 37 63
Continuous variables 1 35 35 32
Discrete variables 1 2 2 31
# of samples 400 400 10.000 1.051.871

Table C.1: Technical characteristics of the data sets

C.1 Synthetic data

In an effort to generate realistic synthetic data a data generation tool has been build.
The data generation assumes that there are a number of relations between states
of the radar, that may or may not be observed, and the observations done by the
sensors. Therefore a number of states will be generated. The state values are
predefined, for example the state ”technical state::prs” can have three values: ”ON”,
”OFF” and ”RESET”. Each of these states have a predefined transition probability to
each other state, thereby creating a Markov Chain. The transition probabilities are
selected to be visually similar to the states found in the real data set.
The sensor readings are then generated based on these states. There are multiple
options as to what might happen when a state changes. One option is a level shift,
where the signal continues in a similar fashion as before, but on a different level.
This change can occur instantaneous, such as in Fig. C.1 or more gradually such as

132



C.1. SYNTHETIC DATA CLASSIFICATION: OPEN 133

in Fig. C.2.

Figure C.1: Instantaneous level shift in the temperature of the motor

Figure C.2: Gradual level shift in the input air temperature of the cooling system

Another situation that occurs when a state changes is a short peak. For example,
when the system goes into operational mode, a sudden peak in the load is expected.
This is also visible in the data, when the operational mode changes the load has a
short peak. This is shown in Fig. C.3.

There is also a situation possible where the amplitude of the observations changes
when a state changes. For example, when the radar starts rotating, the motor cur-
rent goes from flat to a moving value. This example is illustrated in Fig. C.4.

It is also possible that an observation has no relation at all with states of the
radar, but is still included. This is the case for for example the outside humidity and
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Figure C.3: Short load peak when the system goes into operation

temperature. Those are also included in the data set. The generation of the data is
done in such a way that the resulting time series are visually similar to those in the
real data set. The result of this comparison can be found in Fig. C.5.

The two synthetic data sets both have a different dimensionality as was already
displayed in Table C.1. The first data set has a dimensionality which is about 5%
of the original. That way it is possible to first test the proposed methods on a lower
dimensional data set to figure out what the impact is. The second set is equal in di-
mensionality to the original, to provide an approximation that is as close as possible.
The ratio of the different variable types (temperature, voltage, load, etc.) is also kept
as close to the original as possible.

There are two types of states in the synthetic data, latent and observed. Both of
these state types can influence the observed continuous variables described before,
however only the latter can be used for training the model. These hidden states
are also used for introducing anomalies into the data. The hidden states have, in
addition to their usual states, an error state and a transition probability to that error
state. When the variable is in an error state the observed variables which are derived
from the state will produce an anomalous reading. When the state variable returns
to the error state the observed variable will again produce a, similar, anomalous
reading.
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Figure C.4: Amplitude change when the radar starts rotating

C.2 Real data

To test the solutions on a real world dataset the data for the period from 2019-01-01
until 2019-05-29 is used. This data is resampled to include a reading every 10 sec-
onds. This makes that the data set consists of a total of 1.050.989 samples, spread
out over a period of almost five months. It has been limited to 63 time series, of
which 32 continuous and 31 discrete variables. In this data set every anomaly has
been annotated by a domain expert. The points which are not accompanied by an
annotation will be considered to be normal behaviour. The time series which are
included are picked based on their correspondence to these annotated faults.
In total there were three faults found by the domain expert. These faults were la-
belled as ”M9”, ”M10” and ”M11”. This naming is in line with other, internal, docu-
mentation. Fault ”M9” is a sudden drop in the temperature of the cooling liquid, while
the two known states (the system state and the drive state), do not change. An ex-
ample of this can be found in Figure C.6. Fault ”M10” occurs when there is suddenly
a higher average load than would be expected given the technical states and the
radar mode. An example of this can be found in Figure C.7. The final fault, ”M11”
is a sudden drop in the pressure and flow rate of the cooling liquid, even though the
system and drive state do not change. This is shown in Figure C.8.
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(a) A synthetic time series (b) A real time series

(c) A synthetic time series (d) A real time series

Figure C.5: A visual comparison between a synthetic and a real time series

Figure C.6: A sudden drop in the temperature of the cooling liquid.
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Figure C.7: A sudden higher average load than would be expected.

Figure C.8: A sudden drop in the pressure and flow rate of the cooling liquid.



Appendix D

Constraint-Based Semi-Supervised
Self-Organizing Map

The goal here is to extend the SOM to incorporate M-Ls and C-Ls. This appendix
describes the entire implementation in full detail. In the literature there is a distinction
between soft constraints (where solutions that violate the constraints are allowed,
though not desired) and hard constraints (where solutions where the constraints are
violated are not considered) [15]. In this case the constraints are considered hard.
During the rest of this section the following notation will be used:

X The data set
N The number of samples in data set X
D The number of dimensions in data set X
CL The set of all C-Ls
CLi The list of samples with which sample i may not be linked
MLi The list of samples with which sample i must linked
W u The weights of unit u in all D dimensions
U The map of units
U2,6 The unit at coordinate (2, 6) in the map

BMU1 The BMU for sample 1

Due to the properties of M-Ls groups may be created. In this implementation the
BMU for each of the samples in the group is calculated. Then the modus of these
BMUs is selected to be the BMU of the entire group.
When it comes to the C-Ls the BMUs may not be the same. In order to achieve this
the BMUs of each of the C-Ls with a lower index than the sample in question are
taken out of consideration. So when CL = [[1, 2]], BMU1 = U4,2 then BMU2 6= U4,2.
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D.1 Pseudo code

In order to provide a complete and holistic view of the implementation this section
will attempt to describe the algorithm in full detail in psuedo code. The code below
is meant to be easy to read, not to be efficient. For that purpose non-essential
details have been omitted. The pseudo code as well as the actual implementation
are based on the SimpSOM package by F. Comitani [491].

procedure TRAIN(width, height, X, CL, ML, lratestart, epochs)
U ← create map(width, height)

lrate← lratestart

σstart ← max(width, height)/2

τ ← epochs/log(σstart)

for i in range(epochs) do
σ ← σstart − e−i/τ
lrate← lratestart − e−i/epochs
x← randint(0, N)

BMU ← find bmu constrained(x,X,CL,ML,U)

update weights(x,X,BMU, σ, lrate)
return U

procedure CREATE MAP(width, height)
Create a map U of width× heights units and return it.

procedure FIND BMU CONSTRAINED(x, X, CL, ML, U )
units← []

for ml inMLx do
units.append(find bmu cl(ml,X,CL,ML,U))

units.append(find bmu cl(x,X,CL,ML,U)) return get modus(units)

procedure FIND BMU CL(x, X, CL, ML, U )
exclude← []

for cl in CLx do
if cl < x then

exclude.append(find bmu constrained(cl,X,Cl,ML,U))
return find bmu(x, X, U , exclude)

procedure FIND BMU(x, X, U , exclude)
Find the unit that is closest to sample x, while excluding the units in exclude.

procedure UPDATE WEIGHTS(x, X, BMU , σ, lrate)
for u in U do

dist← get distance(u,BMU)

upd← e−dist×dist/(2×σ
2)

W u ← W u − (W u −Xx)× upd× lrate
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procedure GET DISTANCE(ux, BMU )
Get the distance between unit u and BMU (the euclidean distance between

their weights)

procedure CLUSTER(X, CL, ML, U )
clusters← []

for x in X do
clusters.append(find bmu constrained(x,X,CL,ML,U))

return clusters

D.2 Assumptions

A couple of assumptions have been made while extending the SOM, the first of
which is that there is a solution. Using hard constraints means that it is possible
that there is no viable solution. The simplest example of this is that sample 1 and 2

have both a M-L and a C-L or that there is a M-L between [1, 2] and between [2, 3]

but also a C-L between [1, 3]. The other assumption is that the preprocessing of the
constraints has already been performed. That is to say that when there is a M-L
between [1, 2], [2, 3] there should also be a M-L between [1, 3] in the list. The same
should be true for the C-Ls (e.g. when ML = [[1, 2], [2, 3]] and CL = [[3, 4]] the
complete list of C-Ls should be as follows: CL = [[1, 4], [2, 4], [3, 4]]).



Appendix E

Packages

Since reinventing the wheel is most of the time a rather useless activity, most of the
algorithms have been implementing using a publicly available package. In Table E.1
an overview is given of the different packages used.

Algorithm Package Author Version Citation
DBN deep-belief-network A. Dub 1.0.3 [492]
k-Means Scikit-Learn D. Cournapeau 0.19.1 [493]
c-Means Scikit-Fuzzy J.D. Warner 0.4.1 [494]
SOM SimpSOM F. Comitani 1.3.4 [491]

General

NumPy 1.13.3 [495]
SciPy 0.19.1 [496]
Tensorflow 1.4.0 [497]
Pandas 0.20.3 [498]
Python 3.6

Table E.1: An overview of the used packages
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