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Abstract

The liver is a common location for primary cancer and metastatic disease, often originating
from colorectal, lung, breast and pancreatic tumors. Nowadays, surgical resections, when com-
pared to other treatment plans, provide the best patient outcome for various types of liver ma-
lignancies. Due to high complexity and inter-patient variability of underlying hepatic vascular
anatomy, planning and execution of safe resection is challenging in surgery. Currently, US is the
only imaging modality that is widely accepted and integrated into a surgical workflow, making
it the most suitable imaging modality for intraoperative visualization of hepatic vasculature. De-
spite many advantages of intraoperative ultrasound, it is still a primary 2D imaging modality,
which complicates precise localization of each 2D image in 3D for a surgeon. Automatic registra-
tion with preoperative imaging would provide great value in determining a resection plan. In this
thesis, the goal was to realize automatic registration between pre- and intraoperative imaging.

For that purpose, a 3D U-Net is trained to automatically segment intraoperative vasculature.
Training on a combined dataset of stacked 2D and 3D imaging gives the most promising results,
with a Dice of 0.773 (± 0.10) and a Jaccard index (JI) of 0.640 (± 0.12), comparing to an inter-
observer variability of respectively 0.879 (± 0.02) and 0.785 (± 0.02). The centerline of this in-
traoperative segmentation is then registered with a preoperative, semi-automatically segmented,
vasculature model. An initial registration is performed based on the US probe orientation and one
point translation to crop a similar point cloud from the preoperative model, as is segmented in-
traoperatively. With visually successful registrations we acquire an automatic target registration
error (TRE) of 12.29 (± 4.93), however, 55 % of the registrations fail expectantly due to a relatively
big cropping volume with respect to the US information that is acquired. Manually adjusting the
cropping volumes reduces the TREs over all volumes from 47.32 (±25.71) to 25.66 (±10.48).

In conclusion, we demonstrate a fast (69.74 ± 14.6 seconds) deep learning based hepatic vas-
culature registration pipeline. Given that the US acquisitions do not contain the vena cava or
gallbladder, and span a large part of the hepatic vasculature, our approach looks promising. Fur-
ther optimization of automatically acquiring similar point clouds is expected to stimulate the
adaptation of surgical navigation on a regular basis.
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Chapter 1

Introduction

1.1 Clinical background

In the Netherlands, approximately 830 patients are diagnosed with primary liver cancer each year
[1]. Liver diseases, such as the final stage of liver fibrosis, liver cirrhosis, radically increase the risk
for hepatic cancer. Even though a malignant liver mass most likely represents a metastatic hazard
instead of a primary hepatic malignancy [2], hepatocellular carcinoma (HCC) is the most common
primary cancer of the liver, arising mainly in patients with chronic liver disease [3]. Furthermore,
HCC is the third-most common cause of cancer-related deaths and the sixth-most common cancer
worldwide [4]. A chronically damaged liver commonly gives rise to the molecularly and geneti-
cally highly heterogeneous group of cancers comprised by HCC [5].

Moreover, the biggest group of liver lesions are metastasis originating from colorectal cancer
(CRC). In 2017 about 13.800 patients were diagnosed with CRC in the Netherlands [1], of which
half face liver metastases [6]. In 30-70% of the cases liver metastases will develop in patients
with advanced CRC of which 25% have metastases at presentation [7], causing two thirds of the
deaths in CRC patients [6]. Thus, primary tumor staging routinely analyzes the liver and its
lesions. After lymph nodes, the liver is the organ most likely to be invaded by colorectal liver
metastases (CRLM), therefore regular imaging is necessary [2]. Other primary hazards for liver
metastases include lung, breast, stomach and pancreatic cancer [5, 8].

1.1.1 Diagnosis

In hepatic cancer, imaging is divided in surveillance and diagnostic imaging of a previously dis-
covered hazard. Both in metastatic deposits and in primary tumors, accurate detection of malig-
nant hazards is crucial in patient management [9]. B-mode ultrasound (US) is used as the first
diagnostic modality for patients with an elevated risk, i.e. chronic hepatitis B or cirrhosis. Imag-
ing strategies should include lesion characterization since benign lesions are very common [10,
11]. The fast, non-invasive and cost-effective properties of US make it the primary screening test
to examine the liver parenchyma, which can be done as often as needed [12]. A possible lesion
can be localized in the liver, vascularity within and around the lesion can be monitored with color
Doppler and abnormalities can be characterized as cystic or solid [13, 14]. Possible thrombosis or
vascular infiltration can also be determined, without anesthesia and no downsides for frequent
follow up.

Conventional grey scale US has a relatively poor sensitivity to depict a hepatic metastasis (53-
77 %) [15, 16] compared to MR imaging and contrast-enhanced CT (80-95 %) [17]. The relatively
small difference in backscatter between the hepatic parenchyma and the lesion can result in chal-
lenging contrast differentiation in US [18]. US contrast agents such as microbubbles of air or low
solubility gasses stabilized by a lipid, increase echogenicity of the liver as they accumulate within
the normal parenchyma, thus increasing the visibility of critical structures and hepatic metastases
[19, 20]. However, US-based screening is sub-optimal when cirrhosis is present in terms of sen-
sitivity and specificity [21]. Moreover, US is highly operator-dependent and sensitivity can be as
low as 20% in sub centimeter lesions [16, 22, 23]. Also, MRI or CT is preferred for precise relation
with surrounding critical anatomy, further characterization and in case of malignant neoplasms,
detection of associated metastatic disease. Thus, patients with an abnormal liver on US often
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undergo contrast-enhanced CT or MR examination when they are diagnosed with cirrhosis [21].
CT offers the ability to study the entire liver and its surroundings whilst offering the best

spatial resolution in a single-breath hold [22]. Iodine contrast is routinely used in liver imaging,
improving the contrast-to-noise ratio between normal liver tissue and focal liver lesions, thus
aiding detection. Based on enhancement patterns during various phases of contrast circulation,
contrast media help to characterize liver lesions [24]. At the same time it provides useful informa-
tion about vascular anatomy, quality of the liver parenchyma, partial and total liver volumes and
many other clinical parameters [25]. However, it also exposes the patient to ionizing radiation.
Sahani et al. [26] found that MRI offers greater specificity and sensitivity than CT, especially in
<1cm lesion detection. Also, diffusion-weighted MRI has shown to improve diagnostic accuracy
because of the proton diffusion differences between malignant and benign tissue. The capacity of
MRI for detecting and characterizing small lesions has further improved due to recent introduc-
tion of new liver-specific MRI contrast agents [26]. In the NKI-AvL, multi-phase MR sequences
with liver specific gadolinium-based contrast agent gadoxetic acid (Gd-EOB-DTPA, Primovist)
are used in the diagnostic MR protocol. Although CT and MR provide superior imaging com-
pared to US, they are rarely used intraoperatively.

1.1.2 Anatomy and pathology

Nowadays, even tumors less than 1 cm can be characterized on CT and MRI techniques [27,
28], easing the removal of smaller lesions. Guidelines state that CT is not sufficient enough for
lesions smaller than 1 cm, therefore MRI is recommended for those lesions [29]. Knowledge of
segmental anatomy as described by Couinaud [30] is essential when inspecting the relation of the
tumors to the liver vasculature and is shown in Figure 1.1. This classification divides the liver
into eight functionally independent segments, where each segment has its own biliary drainage
and vascular in and outflow. The center of each segment is marked by a branch of the bile duct,
portal vein and hepatic artery. Outflow of each segment happens through the hepatic veins in the
periphery. Whilst surgery’s primary goal is radical resection, the segmental branches have to be
identified in order to preserve essential liver tissue, of which the borders are difficult to determine
intraoperatively [31]. The regenerative ability of the liver has shown an operative mortality of less
than 5%, for resections up to 80% of the liver [32–36].

Figure 1.1: Classification as defined by the Couinaud [30] model (adapted from [37]).

1.1.3 Treatment

In patients with CRLM, there are three main options for treatment: radiotherapy, surgical re-
section or systemic therapy. To prolong survival, liver resection is the treatment of choice as it
currently provides the best prognosis [6, 38]. However, tumor location, major vascular contact,
insufficient liver remnant, bilaterality or patient co-morbidity frequently impede with the resec-
tion feasibility. The majority (70-80%) of patients with liver lesions were considered unsuitable for
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resection in recent years at diagnosis [39]. Nowadays, due to the significant improvements in sur-
gical techniques, anesthesia, chemotherapy, imaging modalities and the expansion of resectability
criteria among surgeons, a greater number of patients undergo surgery [39]. Due to these factors,
the vast majority of patients will undergo liver resection after downstaging of the lesions with
alternative treatment. While the most optimal treatment option is surgical resection, not all le-
sions can be removed surgically. Local treatment options such as microwave ablation (MWA)
and radio-frequency ablation (RFA) are becoming more common and can be performed percuta-
neously by intervention radiologists [6, 40, 41]. A combination of surgical intervention and the
aforementioned techniques, performed on a daily basis in the NKI-AvL, can also be performed
when at least one lesion appears unresectable during surgery. Intraoperative ablation techniques
heavily rely on optimal localization and visualization of the target lesion, a satisfactory resection
margin can solely be achieved by ensuring accurate needle placement in the center of the lesion.

External radiation therapy exceeds the tolerance of non-tumorous liver and therefore has had
limited success in the past [42–44]. In the last two decades, image-guidance has improved due
to technological developments, leading to increased accuracy of dose delivery, allowing for more
effective focused high-dose liver radiotherapy [45, 46]. However, the best survival rate of patients
is achieved with surgery, which is prone to various criteria and rules for partial resection, limiting
the operable patients to 50% [47]. Complex liver surgeries can be aided by detailed knowledge of
the patient-specific vasculature and biliary structures, simultaneously contributing to successful
surgical resection and higher preservation of functional liver tissue [48–50]. In the NKI-AvL, the
surgeon is often provided with a preoperative 3D model, visualizing patient-specific anatomy
based on a preoperative contrast-enhanced MR scan. Information based on a preoperative model
is of added benefit when a patient underwent chemotherapy with a good response and it is there-
fore difficult to localize lesions. Moreover, it is beneficial when patients present with centrally lo-
cated lesions (Figure 1.1 Couinaud segments 4, 5 or 8) or unusual arterial or biliary tract anatomy.
It however remains difficult to optimally use the model during live surgery, due to the high nat-
ural flexibility and mobility of the liver [51, 52].

1.2 Technical background

Another means of using imaging as support during an intervention is seen in the percutaneous
approach to liver lesions. Several clinical applications, such as ablations and biopsies, utilize
US-guided navigation [53]. The user is provided with a more detailed view of the anatomical
structures surrounding the lesion, by means of tracking the US transducer and biopsy or ablation
tools. Although intraoperative application for liver surgery has not made an introduction into
regular practice, this principle is used on a regular basis in interventional radiology to facilitate
ablation and biopsy guidance. In the NKI-AvL the EPIQ7 US platform with PercuNav software
(Philips, The Netherlands) lets clinicians register different diagnostic scans with live percutaneous
US imaging. Currently, US is the most widely used method of guidance for percutaneous abla-
tions of carcinomata in the liver [54, 55]. However, as elaborated on in section 1.1.1, cross-sectional
modalities (e.g., MRI and CT) are less limiting. In the liver specifically, US can lead to insufficient
distinction from surrounding tissue due to isoechogenicity. On pretreatment US, Kim et al. [56]
reported that 25.3% of target tumors were undetectable, with distance between the diaphragm
and tumor, tumor size and liver cirrhosis as significant factors. Contrast enhanced US has been
reported to enhance lesion conspicuity and findability compared to US [57, 58]. However, it is still
reported as a major cause of mistargeting [59]. Accordingly, it is of interest to combine advantages
of different imaging modalities, which can be achieved by image-guided surgery.

1.2.1 Image-guided surgery

Any surgery using tracked surgical instruments combined with advanced imaging to monitor,
localize, control and target procedures is spanned by the concept of image-guided surgery (IGS).
Imaging complements direct visualization and procedures to allow for better targeting and im-
proved outcome. Prior to a procedure, routine diagnostic imaging is performed on the patient.
The acquired imaging is converted into 3D images and processed into a 3D model representing
the patient’s anatomy. This 3D information can then be used for preoperative planning, and after
registration of the 3D model of the preoperative imaging to the intraoperative organ position, it
enables and guides intraoperative surgical decision making. Therewith, the tracking of surgical
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instruments, during the surgical procedure, aims to minimize complications and allow for accu-
rately navigating towards targeted tissue or lesions. The orientation and position of the tracked
surgical instruments are mapped to an artificial space or 3D scene, where their motion is pre-
cisely visualized with respect to the patient’s anatomy. Navigating in 3D helps the surgeon’s vi-
sualization inside the body in relation to the actual surgical instrument’s position. Image-guided
navigation helps surgeons to perform surgery accurately and minimizes guesswork that is often
involved in complicated procedures.

In order to establish the spatial relationship between the artificial and surgical field, the images
have to be registered. Usually, specific points in the imaging dataset are matched with the corre-
sponding point in the surgical field. To achieve registration, a minimum of three points should be
matched or registered [60]. Section 3.4 further elaborates on this.

Tracking methods

In IGS, tracking is the process of making localization possible in the patient’s coordinate system,
where optical and electromagnetic (EM) tracking are the two main methods used. Active optical
trackers use several video cameras to triangulate the 3D position of flashing LEDs, which can be
mounted on any surgical instrument. Passive optical tracking uses infrared light reflectance to
calculate the precise location of the instrument. These systems are wireless but require a direct
line of sight between the camera and sensors. EM tracking circumvents this limitation by placing
small electromagnetic sensors on instruments in a pulsed magnetic field of known geometry, al-
lowing detection of position and orientation in 3D space, whilst being virtually transparent to the
surgeon, when compared to optical trackers. EM tracking systems serve the purpose to provide
a 3D Cartesian coordinate system of markers attached to instruments and patient anatomy. A
drawback of EM tracking is that large ferromagnetic objects can distort the EM generated field
and diminish accuracy. EM tracking is preferred in the NKI-AvL as this system does not require a
clear line of sight of optical imaging systems. Feasibility of EM tracking during surgery has been
shown by Nijkamp et al. [61] in the NKI-AvL. However, the use of skin-bound EM-sensors was
concluded as the major error source for inaccuracies. An overview of the components that are
used in the current study, to realize EM tracking, is given in section 2.3.

1.2.2 Clinical application of surgical navigation

As aforementioned, intraoperative US is routinely used in liver surgery for tumor localization
to assist resection [62]. A discrepancy between the preoperative imaging modality and the US
imaging, possibly hindered by isoechoic or vanishing lesions, might lead to inconclusive obser-
vations [63]. US-based navigation can improve adequate lesion localization in surgery. In current
practice, all preoperative imaging information is processed by the surgeon, by mentally recon-
structing the preoperative information guides the surgery. The preoperative information could
gain importance when it is available during surgery and is directly related to the surgical tool
positions, in real-time. Surgical tools can be registered to an image, and then be used to display
orthogonal views of the patient’s preoperative image. Additionally, damage to vital structures
can be prevented. Structures which are poorly visible on US can be seen on preoperative imag-
ing [63]. Navigation performed in a three dimensional, preoperative imaging based environment
facilitates better assessment of ablation zones and resection planes during open surgery. Tradi-
tionally, this is done by cone beam computed tomography (CBCT), allowing for 3D visualization
of both the organs at risk and the target volume, but also introduces a non-negligable additional
dose to the patient [64]. Therefore, US imaging appears to be an interesting alternative since it is
non-irradiating and non-invasive. Thus, it does not imply any additional risk for the patient [65].

Current systems

In recent years, several groups have developed US-based navigation systems in the field of liver
surgery. Van Belle et al. [66] developed and evaluated a system with optical sensors for navigated
liver segment resections using intraoperatively acquired 3D US data. However, they did not
register to preoperative imaging. Fusaglia et al. [67] use a 3D volume, reconstructed from 2D
laparoscopic US images and aligned it with a CT volume by means of a stochastic optimizer,
where they performed accuracy assessment on a phantom. Penney et al. [68] introduced manual
annotation-based US-MR registration, where they acquired a TRE of 9.95 ± 3.83 mm using ICP.
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The average time taken for a registration was 300 seconds. Another approach is presented by
Haque et al. [69], which achieves high accuracy, but requires breath hold. Weon et al. [70] try
to mitigate breath holding by presenting a real-time registration method. However, they have a
setup that is significantly different from the common clinical workflow. Wei et al. [71] show that,
by means of automatically segmenting liver vasculature and parenchyma, they are able to achieve
a TRE of 1.97± 1.07 mm. They report that limited vascular US information has a significant effect
on their accuracy. All of the aforementioned studies base their findings on imaging performed
percutaneous or on a phantom.

Commercially, multiple systems are presented in literature which realize registration of pre-
and intraoperative imaging. Banz et al. [72] initially developed a system as part of a research
project, but subsequently evolved it to a commercially available platform (CAS-One, CAScination
AG, Bern, Switzerland). This guidance system utilizes optical tracking and explored three differ-
ent registration approaches which developed over time: liver surface landmark based, surface
combined with parenchyma landmarks and an US-based volume registration. They show feasi-
bility of the system in more than 65 patients with an ultimate accuracy of 4.5 ± 3.6 mm in 22 pa-
tients with a combination of landmark and US-based volume registration. Furthermore, another
liver navigation system; Explorer (Analogic, Inc., Boston, MA), has shown an error of 2-6mm in
target surface areas [51]. More recent studies report usage of this system in open procedures and
ablation guidance, but do not report on accuracy [73, 74]. An overview of the aforementioned
literature is presented in Table 1.1.

The commercial solutions rely on landmark selection for registration purposes. However, even
for an expert it can be challenging to select the exact corresponding points on both modalities.
Furthermore, the aforementioned software is based on optical tracking systems, requiring a direct
line of sight, which might not always be possible in an operating theatre setting. Moreover, it is
not well suited for laparoscopy as the tip of many instruments can flexibly move in relation to
the markers on the device. Due to the extensive size of an optical tracker it is very challenging to
properly secure an optical tracker to the liver.

CustusX (SINTEF, Trondheim, Norway) [75] is an image-guided therapy research platform
allowing the user to implement custom functionality to circumvent restrictions imposed by the
aforementioned commercially available software. In addition to optical tracking, it supports EM
tracking, allows for a personalized graphical user interface and has been used in navigation for
liver phantom use and research during liver and abdominal surgery [76, 77]. The user is able to
extract an acquired US volume which can then be processed as the user wishes. The vasculature
that is present in the US volume can be used to align the preoperative coordinate system with the
US coordinate system, by means of registration. A necessary step in this process is segmentation
of vasculature in both modalities, which is elaborated on in the following section.

Table 1.1: Overview of related work.

Authors Accuracy (mm) Time (s) Type Applied registration Success rate
Fusaglia et al. [67] 8.2 ± 1.63 720 3D-3D Phantom
Penney et al. [68] 9.95 ± 3.83 300 3D-3D Percutaneous
Haque et al. [69] 3.88 ± 1.38 40 3D-3D Percutaneous 73%
Weon et al. [70] 2.80 ± 1.44 0.06 3D-3D Percutaneous 56%
Wei et al. [71] 1.97 ± 1.07 0.5 2D-3D Percutaneous 80%
Banz et al. [72] 4.5 ± 3.6 3D-3D Intraoperative
Cash et al. [51] 2 - 6 3D-3D Intraoperative

1.2.3 Medical image segmentation

To detect vessels or edges in medical imaging, intensity and gradient features have tradition-
ally been used. Despite encouraging results, these techniques are directly influenced by the im-
age quality of US imaging [78, 79]. Well known 3D techniques such as region growing and de-
formable models are often used in the segmentation of vessel trees in other modalities than US
[80, 81]. However, typical shadowing, speckle of US images and missing boundaries due to image
orientation make it difficult to perform accurate segmentation [82]. Manual intervention is usu-
ally required at some stage in general purpose segmentation methods, which impedes with an
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intraoperative workflow. These traditional segmentation methods often lead to lower accuracy
and are thus considered to be limited. Features are included, but the model is not able to influ-
ence feature definition. In recent years they have become less popular [83], due to the manually
defined features when compared to machine learning models. Linde [84] argues that artificial
intelligence (AI) systems need to acquire their own knowledge, by extracting patterns from raw
data. Self acquisition of behaviour imitating human knowledge, by a computer, is referred to as
machine learning. This involves real world knowledge in problem solving leading to computers
making decisions that appear subjective [85]. Machine learning can be used to discover the map-
ping from representation to output. Deep learning simplifies this even more by learning highly
abstract image features [86].

In the past, AI projects were sought in logistic regression, handcrafted features and logical
knowledge about the world. Deep learning can circumvent the cumbersome and time-consuming
task of manual intervention when segmenting live data. Also, it has demonstrated to increase
performance in image segmentation and classification tasks, providing aid in many computer
vision tasks [87].

1.2.4 Convolutional neural networks

The growth in popularity of deep learning models mostly is due to hardware improvements,
allowing for faster training of convolutional neural networks (CNNs). But also due to data avail-
ability and accessibility. Employing CNNs in the processing of volumetric data has taken a lot
of effort, 2D CNNs have been used to aggregate 3D features in adjacent slices [88], multi-view
planes [89] or orthogonal planes [90]. 2D networks benefit from lower computational costs and
thus faster processing, whereas 3D networks benefit from information of an added dimension,
potentially increasing accuracy.

LeCun et al. [91] introduced the concept of CNNs, as we know it today, based on a self-
organizing artificial network [92] that was able to recognize patterns regardless of spatial shift.
Despite successes in industrial technology, CNNs were largely forsaken in automatic image recog-
nition tasks until the ImageNet competition in 2012, where Krizhevsky et al. [93] halved the error
rate of traditional approaches. They showed that a large, deep CNN is capable to achieve record
breaking results using purely supervised learning on a highly challenging dataset. Three main
types of layers can be identified when building a CNN architecture: convolutional layer, max
pooling layer and the fully connected layer. The convolutional and max pooling layer are dis-
cussed in the following sections.

Convolutional layer

The core building block with the most computational effort is the convolutional layer. Its pa-
rameters consist of a collection of learn-able filters, which are spatially small (i.e. 3x3 pixels) but
generate output whilst sweeping over the whole input image. During the forward pass each filter
slides across the input volume and computes dot products between the input and the entries of
the filter at any position (Figure 1.2). The composition of the filters is initially determined ran-
dom, but is optimized over the course of training a network. The necessary amount of filters
often depends on the complexity of the task, whereas all filters produce output and thus rapidly
increase the number of weights and biases. These filters are then stacked along the depth dimen-
sion before they are passed into the next layer. Two other important parameters in the design of a
CNN are the stride and zero-padding. First, the stride determines the movement with which the
filter slides over the image, a stride of 1 corresponds with a movement of 1 pixel. Bigger strides
would lead to a smaller output volume. Second, it might be convenient to pad the input volume
with zeros around the border, allowing for control over the spatial size of the output volumes. It
is most common to apply a zero-padding of 1 with a stride of 1, so that the output volume is the
same size as the input volume (with a filter of 3x3). When processed by a convolutional layer,
the feature map is passed through an activation function, which nowadays most commonly is
the Rectified Linear Unit (ReLU), presented in Figure 1.3. When processed by a ReLU activation
function, only positive values are propagated further through the network, as described by the
formula ReLU(z) = max(0, z). This function is so commonly used because it has proved faster to
train, whilst often also improving discriminative performance [94].
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Figure 1.2: Convolutional layer
(adapted from [95]).

Figure 1.3: Activation function
(adapted from [96]).

Figure 1.4: Max pooling layer
(adapted from [95]).

Max pooling layer

Convolutional layers with many filters lead to a rapid increase in trainable parameters and thus
computational effort and time needed to train the network, whilst also reducing over-fitting.
Max pooling layers are introduced in-between successive convolutional layers to reduce the load
caused by the increasing amount of trainable parameters. A max pooling layer is independently
applied to every feature map, where it spatially resizes the feature map using a max operation
within the field of view. Only the highest value from within the field of view is passed on to
the succeeding layer. Max pooling layers with filters of size 2x2 and stride 2 are most commonly
used, reducing the number of activations by 75% (Figure 1.4).

Network training

Feeding data through the aforementioned layers comprises training of a neural network. The
purpose of training a neural network is to minimize the difference between the networks’ pre-
diction and the ground truth, especially when predicting on new data. This can be achieved by
using the optimal set of values for the network weights and biases, which are computed by means
of back-propagation. Back-propagation is an algorithm which computes the partial derivative of
the cost function that is chosen to minimize the difference between the networks’ prediction and
the ground truth. During the forward pass of a single iteration all weights (values in filters in
case of a CNN) are applied (first iteration is randomly initialized). During the backward pass
weights that have contributed the most to the overall error will undergo the largest change, they
are identifiable by larger derivation values.

The three most important steps in back-propagation, the forward pass, the backward pass and
the weight updates respectively are expressed in equations 1.2 - 1.4 [97]. In these equations, the
state of layer k for pattern p is denoted byXp(k), with the global state of the network for pattern p
denoted by Xp. The non-linear transformation associated with layer k is denoted with Fk, which
is typically an activation function. The vector of total input to units in layer k (weighted sums) is
denoted by Ap(k), of which the value is given by equation 1.1. Here, layer k − 1 is connected to
layer k through a connection matrix W (k).

Ap(k) =W (k)Xp(k − 1) ∀p ∈ [1, P ] (1.1)

Xp(k) = Fk(Ap(k)) ∀k, p ∈ [1, N ][1, P ] (1.2)

Equation 1.3 gives the usual method for computing the gradient variables Y by backward
propagation. Whereas equation 1.4 presents the weight updates, where we are looking for a
minimum in the output cost function with respect to W . According to literature [97], the method
of steepest descent is the most common and easiest method to do so. Hence, it is presented, where
λ is the step size. In a CNN, the individual filter values are the weights, which are updated based
on the gradient determined with the derivative, leading to an improved prediction with the next
iteration.

Yp(k) = 5Fk(Ap(k))WT (k + 1)Yp(k + 1) ∀k, p ∈ [0, n− 1][1, P ] (1.3)

W (k)←W (k) + λ

P∑
p=1

Yp(k)X
T
p (k − 1) ∀k, p ∈ [1, N ][1, P ] (1.4)
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1.2.5 3D modeling

Given what is presented in the foregoing sections, an essential development in most surgical fields
has been brought by the advancement of radiological imaging and segmentation techniques. CT
and MR imaging make it possible to visualize the size and location of lesions in organs, subse-
quently allowing for planning of surgery. Whereas deep learning allows for automatic delineation
of surgically relevant structures. Without knowledge of important structures related to the lesion
or major vessels, surgery cannot be performed safely and curatively at the same time [31]. Signif-
icant improvements have been made in the surgical equipment to resect liver tissue, as well as in
post and intraoperative treatment [31]. However, the largest contributor has been the improve-
ment of imaging techniques, with intraoperative US further improving the localization of lesions
[98]. Open surgery is performed in 3D, whereas resection line planning may cause difficulties
when based on 2D imaging, even though 3D information is present. Creating a 3D model bridges
the gap between a 2D mental representation of the surgeon and a 3D visualization. Data segmen-
tation is a prerequisite to construct a visualizable 3D model. It should, however, be as automatic
as possible without compromising the accuracy in an intraoperative setting. In preoperative seg-
mentation, speed is less important and manual corrections can still be applied. An example of a
preoperative model as it is used during surgery is presented in Figure 1.5.

Figure 1.5: Example 3D model, hepatic vein depicted in purple, portal vein in light blue, the
gallbladder in yellow brown, and the lesions in yellow.

1.2.6 Registration

Based on the (automatically) extracted models, one can combine the information from both modal-
ities. Here, it is important to realize that the preoperative images and the intraoperatively ac-
quired US data have their own coordinate systems. Registration is the process resulting in a geo-
metrical mapping between data represented in different modalities (coordinate systems). Regis-
tering preoperative imaging to intraoperative imaging gives more insight to the anatomical struc-
tures and enables the possibility of surgical navigation. The warping of a source volume (pre-
operative imaging) to align with a fixed volume (intraoperative US) is the typical formulation of
volume registration. In the preoperative imaging the xy-plane is defined as the transversal plane,
with the z-axis oriented from the cranial to caudal direction. Both the preoperative and intraop-
erative coordinate system are Cartesian. However, there is a difference in orientation of the z-axis
in the EM-tracked field, it is orthogonal to the opening of the generator and thus depending on
its orientation relative to the patient. Figure 1.6 presents the steps that are necessary to perform a
correct registration. A reference sensor can be fixed in place near the liver in order to have a point
of reference as close to the region of interest, eliminating possible EM inaccuracies. Another sen-
sor is clipped and calibrated on the US probe. The calibration transformation between the 2D US
plane and its location and orientation in space is defined as Tcal. The transformation between the
tracked probe and the reference sensor is established by continuously updating Ttrack, resulting
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in transformation matrix Ttot (Formula 1.5). Registration is finalized by applying transformation
matrix Treg , in order to express the US coordinates in MR coordinates. When applied to a point
USp, position MRp in the preoperative model can be expressed as presented in Formula 1.6.

Ttot = TregTtrackTcal (1.5)

MRp = TtotUSp (1.6)

Figure 1.6: Overview of coordinate systems and transformations (modified from [99]).

In many computer vision tasks registration of point sets is a key component, where the goal
is to recover the transformation that maps one point set to the other. Often the points in a point
set are features extracted from an image, such as boundary points, locations of corners or salient
regions. Practically, three main desirable properties can be identified with registration algorithms:

• Robustness to outliers, noise and missing points resulting from sub-optimal feature extrac-
tion and image acquisition

• Accurate modeling of the transformation necessary for aligning of the point sets using man-
ageable computational complexity.

• The ability to handle dimensionality of point sets (2D/3D)

The variable in our overview (Figure 1.6) representing the registration from one coordinate
system to another is Treg. Usually Treg is performed in a rigid or non-rigid manner, where a
rigid transformation solely allows for rotation and translation. One of the most commonly used
registration algorithms is the iterative closest point algorithm [100] (ICP), it iteratively determines
the sum of distances between all corresponding points in a point cloud and can either be rigid
or affine. The transformation matrix is iteratively adjusted and ultimately used when a global
minimum is found. Another registration algorithm, which has proven to outperform ICP [101] in
a registration task between vascular centerlines, is coherent point drift [102] (CPD). It is used in
this study and further elaborated on in section 2.7.1. An affine transformation is the most simple
non-rigid transformation, which also allows for anisotropic skews and scaling whilst preserving
parallel lines. In order to improve diagnostics and monitoring there is a demand for finding better
ways to fuse and compare corresponding images in US technology.

Deformable image registration can be applied in addition to rigid image registration tech-
niques [103–105] in order to find a more accurate registration. Different approaches have been
established within the last few years for deformable image registration. [103] present an overview
of recent methods for US registration, including several deformable approaches. In general it is
assumed that muscular activity, external forces or weight displacements cause elastic movements
of tissue. Therefore, all models have to preserve tissue topology and represent a physiologi-
cally plausible situation when they are applied. The three main approaches include: knowledge
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based transformations, models derived from interpolation and geometric models based on phys-
ical models [106]. Deformable registration strategies generally comprise a slow deformable trans-
formation with many degrees of freedom preceded by affine transformation for global alignment.
It is, however, difficult due to spatial and temporal variability between both modalities to provide
a model that is sufficiently robust for clinical use [107]. Moreover, it typically requires significant
processing time as well as the use of computationally intensive approaches. Multiple machine
learning approaches [108–111] that try to solve this challenge, based on labeled data, argue that
faster models can be developed while maintaining clinical robustness. Hu et al. [112] propose a
weakly supervised network with only sparse annotations in registering preoperative MR images
to transrectal US. Other deep learning based approaches are illustrated by [109, 113, 114].

Multidimensional point sets in real world problems are common and most registration algo-
rithms are well suited for 2D and 3D cases. However, outliers, noise and missing points com-
plicate the registration task. Given that the point clouds presented in this thesis are acquired by
centerline extraction (section 2.7), from automatic segmentation, missegmentations are possible.
Over-segmentation results in outliers and noise, whereas under-segmentation results in missing
points. In order to realize an accurate registration, the point set registration method should be
robust to these degradations.

1.3 Problem definition

As elaborated on in section 1.1.3, surgical resections, when compared to other treatment plans,
provide the best patient outcome for various types of liver malignancies [38]. Due to high com-
plexity and inter-patient variability of underlying hepatic vascular anatomy, planning and exe-
cution of safe resection is challenging in surgery. Therefore, repetitive intraoperative imaging is
required to monitor surgery progress and assess the tumor-vessel relationship in 3D. Currently,
US is the only imaging modality that is widely accepted and integrated into a surgical workflow,
because it is an easy to use, real-time, non-ionizing and relatively cheap modality, compared to
e.g. CBCT or MRI. Additionally, even though intraoperative ultrasonography is sensitive to im-
age artifacts, i.e., reverberation, ghosting, signal loss due to the presence of the air, it results in
high soft tissue contrast and spatial resolution. Therefore, ultrasonography is the most suitable
imaging modality for intraoperative visualization of hepatic anatomy.

Despite many advantages of intraoperative US, it is still a primary 2D imaging modality,
which complicates precise localization of each 2D image in 3D for a surgeon. Even when 3D
reconstructions of 2D ultrasound images are performed, assessment of these 3D volume requires
scrolling in three anatomical slice orientations, which is cumbersome in a surgical environment.
An interactive visualization of automatically segmented vasculature in 3D would be of great
value, yet challenging due to the complexity of US segmentation [82, 115]. CT or MR images
ease identification of basic hepatic anatomy, containing all required information in tumors, major
vessels and biliary tracts. Given this information, surgeons can find it difficult to estimate rela-
tions during surgical planning. Easing interpretation of conventional images seems fundamental
to improve surgical outcome.

However, the deformability of the liver impedes with proper correlation to a 3D model, result-
ing in extended surgery time as the lesions have to be discovered manually. Improper localization
potentially results in incorrect ablations or insufficient resection margins. Improvement of surgi-
cal planning has largely been a consequence of modern image processing and computer-based
operation planning systems [116]. A patient specific visual illustration of an organ allows for op-
eration planning by the surgeon. The spatial relation between the liver surface and lesions, the
vasculature and other relevant structures can be shown by different visualization methods [31,
117]. Intraoperative US with registered image quality of CT and MR, can provide superior infor-
mation, allowing the surgeon to spare large vessels based on real time feedback of a 3D model of
the vascular topography. Additionally, a negative resection margin can be achieved with greater
accuracy, thus increasing patient benefit. Surgical navigation is already implemented in several
applications, such as facial surgery, neuro-surgery and orthopedics [118–120]. In literature, sur-
gical navigation is mostly realized by preoperative CT or MR imaging combined with intraoper-
ative tracked US or CBCT [61, 62, 73, 121]. Image guided surgery which is established this way
provides real-time information of the surgical site. CBCT however increases the radiation load,
is bulky and expensive, whereas US can be used freely at any point in time. In this work, an
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attempt to alleviate these challenges using 3D ultrasound imaging, in conjunction with automatic
vasculature segmentation is proposed.

1.3.1 Rationale of this thesis

These potential benefits of US-based registration lead to our research question: is it possible to
automatically register preoperative imaging with intraoperative US imaging based on vascular
centerline registration in patients with hepatic lesions? In order to answer this question, several
sub goals have been defined where automatic segmentation of the ultrasound vasculature com-
prises the first step, followed by post processing to make the segmentations more similar in both
modalities, expectantly improving registration. The centerlines of the automatic segmentations
are used to register the US imaging to the preoperative imaging, providing optimal information
to the surgeon during surgery. The subgoals are indicated as follows, with a schematic overview
presented in Figure 2.1:

1. Development of a neural network to acquire a model that is capable of automatic vascular
segmentation in 3D US images of the liver. Here we will also investigate the effects of
training on datasets from different sources as well as a combination of sources.

2. Quantification of the performance of these models, and ultimately using the best model for
construction of a patient-specific 3D vasculature model.

3. Automatic registration of preoperative volume to US volume based on automatically ex-
tracted centerlines of both modalities.

4. Evaluation of registration accuracy in a (post)clinical setting.

1.3.2 Thesis outline

This thesis presents a segmentation and a registration challenge. The outcome of the segmentation
performance serves the registration performance, hence both challenges are presented together.
Chapter 2 presents the materials and methods that are used in this thesis. Chapter 3 presents the
results, followed by a discussion and general conclusion in chapter 4. The thesis is concluded
with recommendations in chapter 5.
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Chapter 2

Materials and methods

This study proposes to automatically register intraoperative US imaging with preoperative (MR
or CT) imaging, thus providing additional information for localizing lesions and their location
with respect to the major hepatic vasculature. In previous studies at the NKI-AvL, 35 3D US
volumes have been acquired. For a study running in parallel we expanded that dataset by 34
additional stacked 2D US scans that are acquired in 7 patients during hepatic surgery. Registration
is based on the vasculature that is present in both imaging modalities. The vasculature of the
preoperative imaging is segmented semi-automatically and adjusted manually, whereas the US
vasculature is segmented automatically by using a CNN. After an initial registration by recording
the orientation and location of the ultrasound probe, the centerlines of both segmentations are
used in the fine registration process. Figure 2.1 provides a visual overview of the developed
registration framework. The Euclidean distance between the lesion in the US model and the
registered preoperative model is used as a measure of accuracy.

Figure 2.1: Vasculature is extracted from the preoperative scan prior to surgery. During surgery
vasculature is extracted from a reconstructed US volume. Centerlines from both modalities are
used for registration.

2.1 Patients

Inclusion to the additional patient group of whom stacked 2D US scans are acquired were bound
by certain criteria. Patients scheduled for open surgery, for primary or secondary liver lesions
from any origin, for whom MWA/RFA is required during surgery are included in the study pop-
ulation when the in- and exclusion criteria are satisfied.
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2.1.1 Inclusion criteria

In order to be eligible for the study, a patient had to meet the following criteria:

• Age >= 18 years

• Patient provides written informed consent

• Lesion located within 5cm of the liver surface

• Lesion diameter under 8cm

• Presence of at least one centrally located liver lesion

• Patient is scheduled for ablation, open liver resection or both

2.1.2 Exclusion criteria

Patients who met the following criteria were not included in the population:

• Pregnancy

• Pacemaker

• Presence of large cysts near the target lesion

• Preoperative scan older than 2 months at the time of surgery

• Lesions with a complete radiological response or isoechoic liver lesions

• Metal implants in the thoracic or abdominal area, or other influences, that could interfere
with the EM tracking

Table 2.1: Patient characteristics.

Characteristic 3D Stacked 2D
Sex – no. (%)
Male 8 (50) 10 (59)
Female 8 (50) 7 (41)
Age – yr
Median (interquartile range) 61 (57-68) 66 (53-71)
Range 43-80 45-82
Number of lesions per patient 3.5 3.3
Usable US acquisitions per patient 2.2 3.3

2.2 Data

In total 115 US scans were collected in the study running parallel, of which 50 volumes were
considered of sufficient quality. The main reason of exclusion was incorrect recombination of the
stacked 2D volume due to either an EM-field error or due to too fast movement of the US-probe
during acquisition. From these 50 volumes, 34 have been delineated. CustusX [75] was used for
acquisition of the stacked 2D volumes, where the US operator was instructed to acquire a volume
as large as possible, in one straight path. These instructions were sometimes misconceived as ac-
quiring imaging for a clinical purpose could follow a different trajectory. The stacked 2D volumes
were constructed, based on the 2D US slices, using the pixel nearest neighbor algorithm.

The readily available 3D dataset contained 35 scans and was expanded with 34 stacked 2D
volumes (stacked based on EM tracking, Aurora Northern Digital — Ontario, Canada). Data dis-
tribution is presented in Table 2.2 and visualizations of the differences in volumes are presented
in Figure 2.5. The test set of the stacked 2D volumes is twice as big with regard to the 3D dataset
because these are used in the clinical setting, hence the segmentation performance on these scans
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is of higher importance. Original 3D volume sizes were 512 × 400 × 256 pixels and stacked 2D
volumes ranged from 293× 396× 526 to 404× 572× 678 pixels, depending on the zoom of the 2D
slices, but were downsampled to 40% prior to training. US acquisitions were performed by five
different operators at the NKI-AvL.

Each acquisition was delineated in 3D Slicer [122] by one out of four annotators and has been
validated with an expert radiologist. The hepatic and portal veins were segmented separately, as
well as the liver parenchyma, however, in this study we combined the hepatic and portal vein la-
bels adn did not utilize the liver parenchyma. To estimate the performance of automatic segmen-
tation, a benchmark was established. This was done by computing the inter-observer variability
of four scans, delineated by two users. For registration accuracy assessment additional scans have
been used from the parallel study, of which the majority lack a ground truth delineation and thus
are not reported for segmentation accuracy.

Table 2.2: Overview of number of US volumes per modality.

Dataset Training Validation Test Total
3D 26 6 3 35
Stacked 2D 22 6 6 34
Combined 48 12 9 69
Inter-observer 4 4

2.3 Components

This Section describes the components that are used in realization of tracking of the US probe
in order to create stacked 2D volumes. The Aurora V2 from Northern Digital Inc. (Waterloo,
Canada) is one of the popular commercially available tracking systems today and is also used
in this study. Two types of field generators are used during data acquisition. The planar field
generator in Figure 2.2a is mounted on a positioning arm, offering flexible setup options around
the patient. The tabletop field generator in Figure 2.3a is positioned in a Plexiglas casing un-
derneath the mattress of the operating bed. The generated EM field has a predetermined field
of view where the sensors positioned on the tools can be tracked (Figures 2.2b and 2.3b). The
field generator generates a well-defined EM field, the coils in the sensors, when placed within
the field, deform it. Specific deformations are then related to a specific position and angle of the
coil. In-house sensor holders have been developed, for stacking 2D US slices, and allow unique
positioning onto the US probe (BK FlexFocus 5000, T- I145T US, Figure 2.4b), which have been
calibrated using the methodology described in [123]. The electric signal coming from the sen-
sors is amplified and digitized by a Sensor Interface Unit (SIU), increasing the distance that can
be spanned by the signal and minimizing noise. The amplified signal is collected by the System
Control Unit (SCU), which then calculates the position and orientation of each sensor and con-
nects with the host computer. The 35 3D US volumes that were available in the NKI-AvL have
previously been acquired with the Philips EPIQ7, X6-1 probe.

The aforementioned components are combined using dedicated software on a navigation trol-
ley. Open-source software CustusX [75] is used for the navigation and visualization and is dedi-
cated to ultrasound imaging and intraoperative navigation in a phantom or research setting [124].
This software is able to reconstruct a 3D volume based on the 2D US acquisition combined with
the spatial information acquired with the EM system.

2.4 Initial registration

Prior to acquiring US volumes, the orientation of the tracked US probe is used for setting an
approximate patient orientation, one landmark is then used for the translation part of the reg-
istration. This initial registration allow for partial overlapping of the images, thus preventing
possible local minima during the fine registration.
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(a) (b)

Figure 2.2: Aurora NDI planar system and generated EM field, dimensions are in mm.

(a) (b)

Figure 2.3: Aurora NDI tabletop system and generated EM field, dimensions are in mm.

2.5 Pre-processing

As US imaging inherently contains speckle noise, a 3x3 median filter is applied prior to training
of the network. Median filtering is commonly used in segmentation tasks in order to reduce noise
and improve segmentation performance [125]. Moreover, since US imaging that is acquired for
training of the network, originates from different sources, the pixel spacing of both modalities
(true 3D and stacked 2D) is normalized to 1. In order to allow for a bigger batch size, all US
images were down-sampled to 40 % of their original size prior to training, reducing burden on
the GPU memory.

(a) (b)

Figure 2.4: Aurora 6DOF sensor (a) and calibrated US probe grip with 6DOF sensor (b).
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(a) 3D volume. (b) Stacked 2D volume.

Figure 2.5: Two types of US volumes acquired.

2.6 Segmentation

Once the data has been pre-processed, it can be used to train a CNN. In this study, a reduced
filter 3D U-Net, chosen due to its popularity in medical image segmentation [126], is proposed to
achieve accurate vessel segmentation in both true 3D (Figure 2.5a) and stacked 2D (Figure 2.5b)
US volumes. Segmentation performance is reported based on training and testing of the 3D U-Net
on solely 3D US volumes, solely stacked 2D US volumes and a combination of both datasets (3D +
stacked 2D). Significance regarding performance measures is tested with relation to the combined
dataset based on a t-test. In the ultimate clinical workflow, stacked 2D volumes will be used for
registration. Based on the segmentation performance, the best performing model will be used for
segmentation of the vasculature that is used for registration.

2.6.1 3D U-Net

Figure 2.6 illustrates the 3D U-Net [127] architecture used in this study, like the standard U-Net
[128], it has an analysis and synthesis path each with four resolution steps. Each layer in the anal-
ysis path contains two 3×3×3 convolutions, which are followed by a rectified linear unit (ReLU)
activation function and a 2× 2× 2 max pooling with strides of two in each dimension. Each layer
in the synthesis path consists of an upconvolution of 2 × 2 × 2 with strides of 2 in each dimen-
sion, followed by two 3 × 3 × 3 convolutions which are followed by a ReLU activation function.
Skip connections from layers of equal resolution, transfer the essential high-resolution features
to the synthesis path. The final layer reduces the number of output channels to 2 by means of a
1 × 1 × 1 convolution. Moreover, batch normalization is performed before each ReLU activation
function. The 3D U-Net architecture that is used in this study is a NiftyNet [129] Tensorflow im-
plementation similar to Cicek et al. [127], however with an eighth of the amount of filters in every
layer compared to the original implementation (Figure 2.6), to avoid memory related bottlenecks.
Training using the Dice loss was performed on four NVIDIA (Nvidia cooperation, Santa Clara,
California) 1080 GTX GPUs. Every epoch the network parameters are stored in a checkpoint, the
5 checkpoints with the lowest loss on the validation set are used to asses performance on the test
set, of which the best performing checkpoint is used to report the ultimate results. Performance
measures used for determining segmentation accuracy are elaborated on in section 2.6.3.

2.6.2 Hyper-parameter optimization

Depending on the model and on how many hyper-parameters the experimenter chooses to op-
timize, neural networks have from ten to fifty hyper-parameters [130]. A combination of grid
search and manual search is the most widely used strategy [131] in optimizing hyper-parameters.
Grid search requires choosing a set of values for each variable (e.g., learning rate, type of op-
timizer, amount of patches taken from volume), resulting in an exponentially growing number
of combinations with the number of hyper-parameters. Manual search identifies regions that
are promising while at the same time developing the intuition that is necessary for further op-
timization. Where manual search suffers from difficulty in reproducibility, grid search suffers
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Figure 2.6: 3D U-Net architecture [127] used in segmentation of liver vasculature.

from mostly ineffective computing time, whilst performing poorly. Random search is proposed
in literature because of its practicality and robustness [131]. Despite decades of research into
hyper-parameter optimization algorithms [132, 133], manual search has no technical overhead
and gives a degree of insight into the model’s behavior, whereas grid search is easy to implement
and reliable [131]. Hence, in this study a combination between grid and random search is used for
tuning of the hyper-parameters. Hyper-parameters that are optimized are the amount of patches
per volume and their size, learning rate, regularization type, batch size, padding, type of opti-
mizer and the amount of feature maps. The hyper-parameters are optimized based on their Dice
loss performance (1−mean Dice score over fore- and background classes), ultimate performance
is reported in Dice and Jaccard index.

2.6.3 Performance measures

After hyper-parameter optimization, ultimate performance is reported in metrics similar to those
used in literature [134], based on wide use in the evaluation of segmentation algorithms. Namely:

• the Dice similarity coefficient (DSC, Equation 2.1) [135, 136]

• Jaccard index (JI, Intersection over Union, Equation 2.2)

Volume metrics are specifically chosen, to give an overview of segmentation accuracy [134].
Boundary metrics are highly sensitive to outliers [137] and it is expected that parts of the smaller
vasculature are more challenging to segment due to the downsampling of the data. DSC and JI
are volume based metrics that are optimal when equal to 1, indicating full overlap of the volumes
[138]. Although the two measures appear similar, in JI poor classifications are weighted more
strongly and in literature both metrics are used separately.
DSC is defined as:

DSC =
2(A ∩B)

|A|+ |B|
(2.1)

where A is the number of segmented voxels in the ground truth and B is the number of voxels in
the segmentation result.

JI gives the similarity between the ground-truth and predicted region and is defined as the size of
the overlap divided by the union of the two regions:

JI =
TP

FP + TP + FN
(2.2)

Where TP, FP and FN respectively signify the true positive, false positive and false negative.
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2.6.4 Post-processing

Prior to surgery, the vasculature is segmented from preoperative imaging by using a vesselness
filter and manual post processing. This step is performed so that the surgeon is only exposed to
the relevant vasculature, hence smaller branches do not occlude the overview. This step is not
time-critical and can be iterated over multiple times. Predicted (US) segmentations often contain
small islands and other noise that do not belong to a vascular model and can be discarded by
post-processing the output of the network. A median filter with kernel size 3 is used in both
modalities to remove excess noise and make the point clouds that represent vasculature more
similar with respect to the vessel sizes. From the median filtered output the two largest struc-
tures are identified, followed by extraction of their centerlines. An implementation of [139] is
used to automatically extract the centerlines from both the preoperative and the intraoperative
segmentation, similar to that of [140]. The centerlines are represented as a set of discrete points.
Centerlines are used because they represent a smooth path of the vessels, whilst at the same time
reducing the size of the point cloud, hence reducing computational load and improving speed of
the registration process.

2.7 Fine registration

After the centerlines have been extracted, successful navigation depends on accurate registration
between the pre- and intraoperative centerlines. Given the initial registration, a region of interest
based on the volume spanned by the stacked 2D US reconstruction, can be cropped out of the
preoperative point cloud. A visual impression of this is given in Figure 2.7. This step is essential
because it results in two similar point clouds that can then be automatically registered by aligning
the centerlines. The centerlines of both modalities are registered based on the CPD algorithm. In
all registrations, manual corrections are made to shed a light on possible improvement of the
registration pipeline. These manual corrections comprise adjusting of the cropped volume from
the preoperative model, and removing of over-segmentations in the intraoperative model.

(a) (b) (c)

Figure 2.7: Automatically determined cropbox (black lines) around the US volume, based on US
acquisition. (a) Preoperative model with hepatic vein in blue and portal vein in red. (b) US
volume overlaid on preoperative model after initial registration, crop volume indicated by black
box. (c) Cropped preoperative vasculature used for fine registration based on CPD.

2.7.1 Coherent point drift

Iterative closest point (ICP) algorithm [141] is the most used registration algorithm because of its
efficiency and simplicity. However, it can be prone to converge to a local minima, especially if
there is a lot of noise [142]. Although post-processing is applied to make both point clouds as
similar as possible, it is expected that some differences in the amount of vascular branches can be
observed.

Myronenko et al. [102] introduce the CPD algorithm, which is a robust probabilistic multi-
dimensional point set registration algorithm suitable for rigid transformations. They consider
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the alignment of two point clouds as a probability density estimation problem, where the target
point cloud represents data points and the source point cloud is represented by the Gaussian
Mixture Model (GMM). The GMM centroids (US vasculature model) are fitted to the target point
cloud (preoperative vasculature segmentation) by expectation-maximization (E-M) optimization.
The E-step comprises finding out from which Gaussian the observed point cloud was sampled
from, providing a correspondence probability. In the M-step, maximization of the negative log-
likelihood that the observed points were sampled from the GMM is performed. This provides
transformation parameters as soon as the correspondence probabilities are known, resulting in a
rotation matrix and a translation vector, which can be combined into a transformation matrix.

The point sets are aligned at the optimum, where the correspondence is the maximum of the
GMM posterior probability for any given data point. The core of this method is that the GMM
centroids move coherently as a group, preserving the topological structure of the point sets. The
coherence constraint is imposed by explicit reparameterization of the GMM centroid locations.
Two distinct advantages are provided by this approach. First, it allows to assign points to each
other, so that the registration can be solved as a Procrustes problem. Moreover, depending on the
distance to the GMM centroid, proximity weighting can be applied to the loss.

In the original paper the authors have also shown how the computational complexity of the
method can be reduced to linear, making it applicable for large data sets. In this study, rigid
CPD registration is performed, the algorithm pseudo code is presented in Figure 2.8, where the
following notations are used:

• N,M - number of points in the points sets,

• D - dimension of the point sets,

• XNxD = (x1, ..., xN )T - the preoperative segmentation (the data points),

• YNxD = (y1, ...,yN )T - the automatic US segmentation (the GMM centroids),

• T (Y, θ) - Transformation T applied to Y, where θ is a set of the transformation parameters,

• 1 - column vector of ones,

• I - identity matrix,

• d(a) - diagonal matrix formed from the vector a

2.7.2 Performance measures

Performance of the fine registration using the CPD algorithm is assessed postoperatively. A dif-
ferentiation is made between successful and unsuccessful registrations based on visual inspection
of the overlapping centerlines after the fine registration. In both successful and unsuccessful reg-
istrations, the US lesion is delineated manually and is then used for determining the registration
accuracy. The registration accuracy is defined as the target registration error (TRE) between the
centroid of the US lesion and the centroid of the registered preoperative lesion, expressed in Eu-
clidean distance (mm, Figure 2.9).
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Rigid point set registration algorithm:

• Initialization: R = I, t = 0, s = 1 ≤ w ≤ 1
σ2 = 1

DNM

∑N
n=1

∑M
m=1 ||xn − ym||2

• EM optimization, repeat until convergence:

• E-step: Compute P,

pmn = exp
− 1

2σ2
||xn−(Rym+t)||2∑M

k=1 exp
− 1

2σ2
||xn−(sRyk+t)||2

+(2πσ2)D/2 w
1−w

M
N

• M-Step: Solve for R, s, t, σ2:

• NP = 1TP1, µx = 1
Np

XTPT 1, µy = 1
Np

YTP1,

• X̂ = X− 1µTx , Ŷ = Y− 1µTy ,

• A = X̂
T

PT Ŷ, compute SVD of A = USSVT ,

• R = UCVT , where C = d(1, .., 1, det(UVT )),

• s = tr(ATR)

tr(T d(P1)Ŷ )
,

• t = µx − sRµy,

• σ2 = 1
NPD

(tr(X̂
T
d(PT 1)X̂)− str(ATR)).

• The aligned point set is T (Y) = sYRT + 1tT ,

• The probability of correspondence is given by P.

Figure 2.8: Summary of rigid point set registration algorithm, adapted from [102]

Figure 2.9: Registration evaluation is computed as the Euclidean distance between the registered
preoperative lesion (yellow), and the reconstructed US lesion (blue). Distance is expressed in mm,
Figure inspired by [67].
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Chapter 3

Results

This chapter presents the study results, starting with the optimal hyper-parameter settings for
training of the network. Then, the segmentation performance over the different datasets is fol-
lowed by presentation of the registration results based on the automatic segmentations. The reg-
istration results are also compared between the different segmentation models and with inter-
observer variability.

3.1 Hyper-parameter optimization

As described in Section 2.6.2 we performed a grid search over the hyper-parameters in order to
optimize the training process. The hyper-parameters that were iterated over are presented in
Table 3.1. Optimization was performed over the combined dataset, the best performing values
were used during training of the network on all datasets. Adam optimizer, with learning rate
5 × 10−3, L1 regularization with 10−5 weight decay, and a batch size of 2 was used. Twenty
patches with size 152×152×96 were used per mean value normalized volume. All volumes were
padded with a volume of 32× 32× 32 and were augmented by rotating (between −10◦ and 10◦),
scaling (between −10% and +10%) and elastically deforming (S.D. 1).

Table 3.1: Table of hyper-parameters which was iterated over.

Hyper-parameter Range Best performing value
Samples per volume [4, 20, 32, 50, 500] 20
Learning rate [0.005, 0.01, 0.02] 0.005
Patch size [[96, 96, 96], [104, 104, 96], [152, 152, 152]] [152, 152, 152]
Regularization [None, L1] L1
Feature maps [[8, 16, 32, 64, 128], [32, 64, 128, 256, 512]] [8, 16, 32, 64, 128]
Batch size [1, 2] 2
Zero padding [None, [32, 32, 32]] [32, 32, 32]
Optimizer [None, Adam] Adam

3.2 Training

The network, using the best performing parameters presented in Table 3.1, was trained on the 3D
dataset for 320 epochs (± 35 hours), where the training and validation loss gradually respectively
converged to 0.044 and 0.126. When trained on the stacked 2D dataset for 223 epochs (± 50 hours)
the training and validation loss respectively converged to 0.038 and 0.068. A combination of the
datasets led to loss values of 0.052 and 0.081 for the training and validation respectively in 231
epochs (± 49 hours). Figure 3.1 shows the loss function values from training and validation on the
three different datasets. During training on the different datasets a similar trend is seen, where
fast converging is observed in both the training and validation loss up to the ± 40th epoch. In all
cases training was ceased ± 50 epochs after apparent converging of the validation loss stalled to
exclude further possible converging of the validation loss. The five checkpoints with the lowest
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validation loss were used to evaluate segmentation performance on the test set, all analyses are
based on the best performing checkpoint of which the loss is presented in Table 3.2.

Table 3.2: Training and validation loss at most optimal checkpoint when trained on solely stacked
2D, solely 3D or combined dataset.

Dataset Training loss Validation loss Epoch used for segmentation Time trained (hours)
3D 0.044 0.126 288 31

Stacked 2D 0.038 0.068 222 50
Combined 0.052 0.081 213 45
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Figure 3.1: Validation losses for different settings, note that these are running averages and there-
fore do not exactly match the values in Table 3.2.

3.3 Segmentation performance on different datasets

This section presents the performance metrics of the best performing checkpoint on the test set.
When trained on the 3D dataset, the reduced filter 3D U-Net obtained average Dice scores of 0.743
(±0.09), 0.655 (±0.12) and 0.684 (±0.12) for the 3D, stacked 2D and combined dataset respectively.
Mean JI is reported at 0.623 (±0.08), 0.435 (±0.13) and 0.498 (±0.15) respectively.

When trained on the stacked 2D dataset the mean Dice is reported at 0.593 (±0.08), 0.747
(±0.13) and 0.696 (±0.13) for the 3D, stacked 2D and combined dataset respectively. The mean JI
performance is respectively reported at 0.423 (±0.09), 0.610 (±0.14) and 0.548 (±0.15).

In case of training on the combined dataset the mean Dice is reported at 0.753 (±0.07), 0.783
(±0.10) and 0.773 (±0.10) for the 3D, stacked 2D and combined dataset respectively. In this train-
ing setup the mean JI is respectively reported at 0.607 (±0.10), 0.657 (±0.13) and 0.640 (±0.12). A
visualization of the segmentation performance of training on the combined model is presented in
Figure 3.2.

The inter-observer mean Dice is reported at 0.879 (±0.02) with an JI of 0.785 (±0.02) based on
a comparison between 4 (stacked 2D) US volumes. A complete overview of the aforementioned
numbers is presented in Table 3.3.

When comparing the model trained on the combined dataset with the models trained on the
separate datasets, the combined model outperforms either of the separate models. This change
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Figure 3.2: Segmentation performance, of the model trained on the combined dataset, on the
seperate and combined datasets.

in performance is only significant when comparing the JI between the stacked 2D and combined
dataset performance between the models trained on the 3D dataset and the combined dataset.
The JI performance is significantly lower on the stacked 2D volumes and combined dataset, when
compared to the segmentation performance based on the combined dataset model.

Figure 3.3 (3D) and Figure 3.4 (stacked 2D) present visual elaboration on performance for six
subjects based on training on the combined dataset, ranging from poor to excellent segmentation
performance according to the performance metrics.

Table 3.3: Performance metrics for vessel segmentation in 3D, stacked 2D, the combined dataset
and inter-observer. Note that all UVI US volumes are acquired with the 3D probe and the ULN
volumes are acquired with the stacked 2D probe. P-values comparing the 3D and stacked 2D with
the combined dataset are reported in parentheses with the mean values. Significance compared
to training on the combined dataset is indicated in bold.

Trained on dataset: 3D Stacked 2D Combined
Patient Dice JI Dice JI Dice JI
UVI_004 0.83 0.71 0.70 0.54 0.85 0.73
UVI_012 0.78 0.64 0.57 0.39 0.74 0.59
UVI_040 0.62 0.45 0.51 0.34 0.67 0.50
ULN_002003 0.46 0.30 0.48 0.31 0.57 0.40
ULN_003009 0.83 0.71 0.83 0.71 0.87 0.78
ULN_004004 0.72 0.56 0.83 0.71 0.86 0.76
ULN_004005 0.59 0.42 0.82 0.69 0.84 0.72
ULN_005001 0.70 0.54 0.80 0.67 0.81 0.68
ULNt_08005 0.63 0.46 0.72 0.57 0.75 0.60
Mean 3D 0.743 (0.91) 0.623 (0.86) 0.593 (0.10) 0.423 (0.11) 0.753 0.607
Mean stacked 2D 0.655 (0.09) 0.435 (0.02) 0.747 (0.62) 0.610 (0.60) 0.783 0.657
Mean combined dataset 0.684 (0.11) 0.498 (0.04) 0.696 (0.20) 0.548 (0.20) 0.773 0.640
Mean inter-observer 0.879 0.785 0.879 0.785 0.879 0.785
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(a) Dice = 0.75 (b) Dice = 0.80 (c) Dice = 0.84

Figure 3.3: Examples of 3D test set segmentation results, true positives are colored green, false
positives red and false negatives blue, Dice is measured over total volume. The indicated Dice
score is reported based on the complete volume.

(a) Dice = 0.63 (b) Dice = 0.73 (c) Dice = 0.80

Figure 3.4: Examples of stacked 2D test set segmentation results, true positives are colored green,
false positives red and false negatives blue. The indicated Dice score is the score over the complete
volume.

3.4 Registration

Due to the higher segmentation performance when trained on the combined dataset, this model
is used for segmentation of the vasculature that is used for registration with the preoperative
model. The TREs present a spread in accuracy based on whether the registration was successful
on visual inspection. The average successful TRE for automatic fine registration was 12.29 ± 4.93
mm. This is a slight improvement when compared to the initial registration (15.77 ± 5.92 mm),
based on orientation of the probe and a single point translation. Out of 11 target volumes, three
showed a TRE < 10 mm, which is considered a safety margin in [143]. Figure 3.5 shows examples
of alignment of the centerlines after fine registration. Figure 3.5a and 3.5b present successful
registrations. Unsuccessfully automatically registered volumes such as Figure 3.5c, have a mean
TRE of 47.32 ± 25.7 indicating a large spread and misalignment. It is noted that volumes with
more US information relative to the size of the volume that is used for cropping, perform better.
In this small test set it appears that when there is twice as much US information in the cropping US
volume, performance is near the 10 mm threshold. Figure 3.6 visualizes this relation. It is shown
that manual adjustments improve the registration accuracy, where the mean of the successful
registrations is reported at 13.23± 3.93 compared to initial (22.51± 13.33) and fine (31.40± 25.99)
registration. A complete overview of the TRE values acquired per volume are given in Table
3.4. The manually adjusted registrations that fail often present with correct alignment on a single
blood vessel (i.e. middle hepatic vein), but are rotated. The manual adjustments were made in
such a manner that a the preoperative volume is cropped by a volume more specific to the US
segmentation, which improves the accuracy of the registration.

34



(a) TRE = 6.74 mm (b) TRE = 9.72 mm (c) TRE = 34.98 mm

Figure 3.5: Examples of registered centerlines of stacked 2D US, preoperative centerline is visual-
ized in blue, US is visualized in red

Table 3.4: TRE after coarse and fine registration per patient, it is also reported whether the regis-
tration was successful on visual inspection, dimensions are in mm.

Patient TRE initial (mm) TRE fine (mm) Manually adjusted (mm) US to crop volume ratio Successful initial/fine (manual)
ULN_007006 13.75 29.02 15.19 1.2 no (no)
ULN_006001 27.17 33.36 25.71 1.2 no (no)
ULN_006002 29.92 34.98 45.48 1.2 no (no)
ULN_002003 9.93 100.71 22.03 1.4 no (no)
ULN_006003 31.52 28.84 19.91 1.4 no (no)
ULN_003009 56.56 57 12.4 1.5 no (yes)
ULN_004001 13.17 19.51 15.30 1.6 yes (yes)
ULN_004004 13.17 9.18 12.18 2 yes (yes)
ULN_005004 11.76 16.76 20.11 2 yes (yes)
ULN_004005 13.17 6.75 12.4 2.2 yes (yes)
ULN_006004 27.57 9.26 7.01 2.2 yes (yes)
Mean unsuccessful 28.14 ±15.07 47.32 ±25.71 25.66 ± 10.48 1.35 ±0.17 55 %
Mean successful 15.77 ±5.92 12.29 ±4.93 13.23 ± 3.93 2.13 ±0.1 45 %
Mean 22.51 ±13.33 31.40 ±25.99 18.88 ±9.83 1.69 ±0.41 100 %

3.5 Workflow efficiency

The current registration approach is set up in such a manner that volume reconstruction and
segmentation of the US vasculature take around 60 seconds, the extra time that is added by the
registration of the centerlines is 10.8 (± 1.5) seconds. During the average cumulative time of 69.74
(± 14.6) seconds needed to perform the whole registration procedure, the only action required
from the surgeon is making an US sweep after laparotomy. An overview of the time needed is
given in Table 3.5.

Table 3.5: Overview of average time taken for automatic registration from US sweep to registra-
tion, time is indicated in seconds.

Step Time taken (s)
Mean volume reconstruction 18.2 ± 8.99
Mean automatic segmentation 40.77 ± 11.4
Mean automatic registration 10.8 ± 1.5
Sum 69.74 ± 14.6
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Figure 3.6: Influence of US volume to crop volume ratio on TRE measured in the lesion, after
automatic fine registration.
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Chapter 4

Discussion and conclusion

4.1 Discussion

This thesis addressed the task to realize automatic vessel-based registration of intraoperative US
imaging with preoperatively acquired (CT or MR) imaging during hepatic surgery. For that pur-
pose, a 3D U-Net was trained to automatically segment intraoperative vasculature. Training on a
combined dataset of stacked 2D and 3D imaging gave the most promising results, with a Dice of
0.773 (±0.10) and a JI of 0.640 (±0.12), comparing to an inter-observer variability of respectively
0.879 (±0.02) and 0.785 (±0.02). The intraoperative segmentation was then registered with a pre-
operative, semi-automatically segmented, vasculature model. This has been achieved by means
of extracting the centerlines from the post-processed segmentations and determining the transfor-
mation matrix between the two using CPD algorithm. Ultimately, the registration performance
was quantified by computing the Euclidean distance between the center of the intraoperative le-
sion and the center of the lesion in the registered preoperative imaging. The registration achieved
decent results when the scanned US volume satisfied several requirements, with a TRE of 12.29±
4.93 in visually successful registrations. However in many cases (55%) the algorithm was prone to
failure (overall TRE of 47.32 ± 25.71 mm), when the preoperative model was adjusted manually,
an improvement was seen (overall TRE 25.66 ±10.48 mm).

4.1.1 Segmentation

The CNN that has been used to acquire automatic segmentations is adapted from literature but
has been reduced in the amount of filters to handle larger patches of 3D data. It proves to accu-
rately segment hepatic vessels on US imaging with a relatively small dataset, but deviates from
the inter-observer performance. We show that training on the combined dataset improves perfor-
mance, when compared to training on either separate dataset. However, the only measure that
shows significant underperformance is the JI on the stacked 2D and combined dataset, when seg-
mentation is done with the model trained on the 3D dataset. These results indicate that similar
features are present in the 3D and stacked 2D volumes, leading to increased performance. How-
ever, when using the combined dataset, training is performed on twice the amount of US volumes,
expectantly contributing to the performance gain. Furthermore, our results seem favorable [71,
144], but also slightly under perform [145] when compared to 2D segmentation literature.

A limitation of the segmentation framework is the overall under-segmentation the inferior
vena cava, especially near the edges of the volume (Figure 3.4a). We suspect that this is caused by
incomplete vessel information (i.e. incomplete visibility of vessel cross section), strongly influenc-
ing the Dice similarity index due to its large volume. The vena cava is often identified at the edge
of an US volume, resulting in fewer paths to propagate its information during the forward pass
[146]. Under-segmentation of a major vessel, weighting heavily on the points in the point cloud,
is prone to reducing the registration accuracy as the registration is performed between partial
point clouds. It would be interesting to investigate whether further optimization of the learning
rate hyper-parameter contributes to a gain in segmentation performance.

As stated in Section 2.6.2, the loss function of the network was defined as 1 - mean Dice score
(over fore - and background classes). When comparing the validation loss value, trained on the
combined dataset (0.081, hence mean Dice 0.838, Table 3.2), with the actual performance on the
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test set (Dice 0.773), under-performance is observed. Given that training on the combined dataset
achieves higher Dice scores than either of the models trained on their own dataset, we expect that
increasing the size of the dataset can improve performance.

Comparing the performance of the proposed CNN to the original 3D U-Net was not possible
due to GPU memory limitations. However, we expect that the under-segmentation issues can be
mitigated by either excluding the structures from the US acquisition, or by enlarging the receptive
field of the network. The vena cava is not specifically necessary for accurate registration due to
the distance with respect to the central lesions in the liver, hence excluding it might be benefi-
cial. The receptive field of the network can be expanded by downsampling the US acquisitions
even further, but also by implementing more convolutional layers or using a larger stride [146].
Performing more downsampling has an additional benefit of reducing computational load and
time needed for segmentation predicting. Moreover, it is expected that smaller vessels become
unidentifiable due to interpolation. This expectantly does not influence the registration heavily
as the smaller vessels are removed during post-processing in the current setup.

4.1.2 Registration

The mean accuracy of our successful registrations is less favorable when compared to the val-
ues presented in literature (Table 1.1). Most of the presented literature assesses their performance
based on the fiducial registration error (FRE), which is based on expert placement [69–71] of points
on anatomical features. These anatomical landmarks are by definition located closer to the vessels
or surface that is used during registration, making a skewed comparison to our TRE. Moreover,
most of the better performing solutions are based on percutaneous US imaging. In transplanta-
tion literature [147, 148] it is well known that the volume of a liver imaged preoperatively can
deviate up to 10 % when compared to an intraoperative measurement. Hence, there might be an
influence of the laparotomy on the US vasculature volume and thus the similarity of the two point
clouds. With respect to the amount of time it takes to perform a complete registration (69.74± 14.6
seconds, Table 3.5) is not as fast as presented by others in literature [69–71]. However, during the
course of this study, the surgeons use the time after the initial US acquisition for clinical guidance
of their resection approach. Hence, we do not foresee any clinical implementation issues with the
amount of time needed for registrations in the presented setup.

One of the major factors influencing the TRE is the amount of similarity between the two point
clouds generated from the extracted centerlines. As mentioned before, it is often seen that the pre-
operative model contains less vascular information than the intraoperative model. It is also seen
that in certain cases the gallbladder and the inferior vena cava are recognized as vasculature by
the segmentation algorithm. In this work we compensate for that by post-processing as described
in section 2.6.4, eliminating the smaller vessels in both modalities and thus providing point clouds
with similar information. What is often seen after manually adjusting the preoperative model is
a seemingly overlapping registration on a single vessel (i.e. middle hepatic vein). However, it
is then the case that there is a complete mismatch with the other vasculature. This supports the
claim of further exploring post-processing. Instead of applying post-processing to both modal-
ities, one could also provide a preoperative model of similar detail as the intraoperative model
initially. This would lead to creation of two models, as the amount of detail needed to create this
model exceeds the detail that is necessary for the surgeon to determine his resection strategy. The
additional work involved with the creation of a secondary model can possibly be circumvented
by training a neural network to automatically segment the preoperative scans. With some manual
post-processing it is expectantly less effort to acquire two models.

However, even after post-processing, the algorithm is still prone to a lot of failed registrations.
Only under certain circumstances (US to crop volume ratio larger than 2 and a big US acquisi-
tion excluding the vena cava and the gallbladder), satisfying (< 10 mm) registration results are
achieved in certain cases, but not on average (mean successful TRE 12.29± 4.93). We have shown
that manual adjustment of volume that is cropped after the coarse registration has a beneficial
effect on the overall registration accuracy. However, improvement does not yet lead to clinically
applicable results. A major factor influencing the cropping are the tool orientation and the one
point translation that are used for the initial registration (Section 2.4). The initial registration de-
termines which points are used for registration by means of cropping. Therefore, if the wrong
points are included in the cropped volume, registration is deemed to fail. Figure 3.6 indicates that
the quality of the registration improves when the US volume contains more US information. Sec-
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tion 3.4 presents the gain that can be made by manually adjusting the region that is cropped. This
indicates that there still is a lot of room for improvement in the amount of successful registrations
that were performed in this study.

A shortcoming of this thesis, making it more challenging to compare with certain literature, is
the sole use of TRE as a measure of registration accuracy. The main motivation for this study is to
perform more accurate surgery, hence TRE was chosen because it is the clinical parameter which
is most relevant in case of surgical navigation. It reports on how well the lesions overlap in the
pre- and intraoperative modality. This study could be expanded with other performance measure
to give more insight in the accuracy of the registration. As aforementioned, in literature [69–71]
the FRE is often used when reporting on registration accuracy and would therefore be a viable
option. Although, when used intraoperatively, which is the ultimate goal of this thesis, both the
TRE and FRE require manual intervention to be calculated.

Many of the articles described in section 1.2.2 utilize breath holding to mitigate deformation
in the vasculature segmentation of US. In our approach, we did not account for potential defor-
mation due to respiratory motion. It would be interesting to compare the amount of liver motion
before and after laparotomy, to give an insight into the necessity of motion compensation during
open surgery. Given that the results of this study compare less favorable to literature [67, 69–72],
it might be of interest to perform acquisition of the US data during surgery with the 3D probe,
instead of making a 2D sweep. The 3D probe acquires a volume within 1.5 seconds, when prop-
erly timed within one out-breath of the patient. Our model shows similar performance on the 3D
dataset as it does on the stacked 2D dataset, when trained on the combined dataset. Hence, we do
not expect difficulties with the automatic segmentation of vasculature on 3D imaging. Another
strategy would be attaching the reference sensor to the liver surface, in this manner movement of
the liver can be compensated for. Although, this does not account for heterogeneous compression
of the liver parenchyma.

4.2 Conclusion

This thesis presented a framework that can register hepatic vessels from preoperative imaging to
intraoperative US imaging using a fast rigid transformation, utilizing deep learning based seg-
mentation. Contrary to other registration techniques this foremost relies on the US sweep in the
vicinity of the target lesion. The hepatic vasculature that is segmented automatically using a 3D
U-Net acquires a Dice score of 0.773, when trained on a dataset containing stacked 2D and 3D
volumes. Although lower than inter-observer variability, it is suited for the registration task us-
ing the CPD algorithm. The TREs of visually successful registrations compare less favorable to
literature, but are near the clinical threshold of 10 mm. A challenge lies in registering all volumes
successfully, as in this study 55 % of the registrations failed. It is often observed that with smaller
US acquisitions the registration task becomes more challenging. Hence, several challenges re-
main in finding the optimal manner of cropping the right volume from the preoperative model,
in order to maximize the similarity of both point clouds. Moreover, the shape of the acquired
US volume has a large influence on the quality of the registration and it is therefore necessary to
further explore successful characteristics of an US acquisition.
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Chapter 5

Recommendations

The ultimate goal of the registration task posed in this thesis is to provide additional value to
a surgeon during hepatic surgery, cutting down on surgery time and improving patient benefit.
Based on the results presented in this thesis, several technical challenges are posed that expec-
tantly improve accuracy of the automatic registration.

First, the quality of the segmentation, determining the centerlines in the intraoperative imag-
ing, has a big impact on the accuracy of the registration. It is therefore necessary to exclude certain
anatomy from the region that is acquired with the US scan, the gallbladder and the vena cava are
respectively over- and undersegmented. This respectively leads to noise and missing information,
directly influencing the registration. Therefore it would be of interest to standardize the manner
in which the US volumes are acquired with respect to scan depth and anatomy that should be
contained in the US acquisition. Moreover, due to the improved performance on the combined
dataset and the gap between the (Dice) loss performance between the validation set and the Dice
on the test, we expect that including more US scans will provide an easy performance gain.

Moreover, prior to training of the 3D U-Net the data is downsampled by means of interpola-
tion, which is a time consuming process, in order to reduce the GPU memory burden. This process
also has to take place when using the algorithm during live surgery. A potential way around this
step would be increasing the stride that is used during training of the network. This makes that
the input patches are downsampled as they are propagated though the network, allowing for
input of the original volume during inference. However, it has to be investigated whether the
segmentation performance remains similar and what the effect on the segmentation prediction
speed of the network is.

Furthermore, the segmentation approach we present is mainly focused on general vascular
segmentation. It might be of clinical interest to be able to differentiate between the hepatic and
portal veins that are present in the liver. This provides the option of generating a 3D model solely
based on US segmentation, which can then be used for guidance during surgery. One can think
of this in the same manner as the preoperative model is used now during surgery. However, the
full benefit of a 3D model lies in the possibility to estimate the tumor relation to the vasculature.
To achieve this it would be optimal if tumor segmentation on US can be realized.

Second, a box spanning the total volume of the US acquisition is used to extract the region of
interest from the preoperative model after initial registration. When a US volume is not acquired
in a straight path, the volume of the box increases exponentially relative to the extra US data
that is acquired (US to crop volume ratio). This results in a cropped preoperative point cloud
that is very dissimilar to the intraoperative point cloud, making it more challenging to perform
a successful registration. We expect that this can be mitigated by solely cropping from the part
where there is US information available and discarding what is left. Here it will be interesting to
solely crop the volume that is spanned by the US data, but also look into expanding the region
of interest. The overlap of the initial registration might not be optimal and exclude necessary
information, requiring a larger region of interest. Determining a FRE by manually selecting points
in both modalities, will allow for quantification of a succesful registration, instead of solely visual
inspection.

Another approach to acquiring similar point clouds can be pruning of the point clouds based
on their graph representations. Chapman et al. [149] present an approach where they crop false
branches from pulmonary anatomy, based on directed graphs. In our challenge it would be inter-
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esting to extract the graphs from both the pre- and intraoperative imaging, followed by pruning
to a similar graph, which is then used for registration.

Moreover, the registration approach in this thesis is based on rigid registration, which is a sim-
plified representation of reality as the liver is prone to deformations during surgery. The elasticity
of the liver is very challenging to predict, and one does not want to make false assumptions dur-
ing surgery. Given that there is coherence in the deformations, it would be interesting to further
explore these techniques. Approaches can either be traditional or also deep learning based [112].
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