
Adapting the variational auto encoder for datasets with large amounts
of missing values.

Raoul Fasel1

Abstract— This research provides an adaptation to the Vari-
ational Auto Encoder(VAE) aimed at handling missing values.
This adaptation comes in the form of a modified loss function.
different VAE configurations are trained and evaluated on real-
world data. These configurations include, next to the normal
and modified loss functions, different beta parameters and
usage of beta annealing. Practical implementations of the VAE
or parts of it include dimensionality reduction and classification
using network pretraining or a data preprocessor. While the
modified loss function has a big influence on the VAE during
training and reconstructing tasks, it does not have any influence
on the performance of classification when either used as a
data preprocessor or as a pretrained network. Lower beta
values are preferred for reconstruction tasks and classification
using a pretrained network. Higher beta values are preferred
when using the VAE as a data preprocessor for classification.
Annealing has shown to have no usable influence in research.

I. INTRODUCTION

Machine learning has become a very popular research
topic in the past decades. Thanks to this, artificial intelligence
have been outperforming humans in very complex tasks [1].
While very impressive, this research is often accompanied
by an abundance of high-quality data or an ability to collect
high-quality data. However, not every data source in the real
world can be considered high quality. One of the problems
with real-world datasets is that they contain a lot of missing
values [2][3]. The reasons for missing values can vary, for
example missing values because of errors during acquisition
or addition of new variables to an existing dataset. Further-
more, data gathering is often done by collecting everything
that is available without knowing how much information is
gained for solving the required task. This leads to data with
many dimensions that are hard to deal with [4]. Another
smaller problem is imbalanced data in which not every class
is equally represented.

Traditionally, imputation during prepossessing was used
to fill in the missing values. It is also possible to use
algorithms that can deal with missing values, for example,
neural networks have proven to be robust when dealing
with missing values[2] [5]. An easy method for dealing
with the number of dimensions of your data is selecting
features that are most important for the task at hand and
only using these features leading to some information loss.
A more universal technique would be using some kind of
dimensionality reduction technique like principal component
analysis (PCA) [6]. PCA minimizes information loss. Class

1R. Fasel is with Faculty of Electrical Engineering, Mathematics and
Computer Science, University of Twente, 7500 AE Enschede, The Nether-
lands r.fasel at student.utwente.nl

imbalance problems are often mitigated by simple class
weighting or over- and under-sampling [7].

We propose a novel loss function that allows a Variational
Autoencoder (VAE) [8] to not learn from missing values and
only learn from the data that is actually available. The VAE
is able to reduce highly dimensional data that contain lots of
missing values, making it suitable for usage on real-world
data. Practical usage examples of the VAE are also provided
and evaluated. These examples include predicting consumer
buying patterns by using the VAE as a pre-trained part of
a neural network trained for classification and by using
the VAE as a dimensionality reduction data pre-possessor
that can be used like PCA on any classifier. Next to the
methods based on the VAE a semi-supervised Generative
Adversarial Network (SGAN)[9][10], random forest[11] and
boosted tree[12] were also implemented and evaluated on
the unmodified dataset. These were used as a baseline for
comparisons. Both training and evaluating were done on a
real-world dataset.

A. Dataset

Such a real-world dataset was provided for this research by
an external company called Centraal Beheer (CB). CB is one
of the bigger insurance companies in the Netherlands. The
interests of CB are as follows: Predicting buying patterns
of customers using Neural Networks and dimensionality
reduction. Because of the amount of data and the number of
variables, CB would like this research to include dimension-
ality reduction techniques. Secondary interest of CB includes
data generation and in-depth model explanation.

The dataset consists of almost 600.000 unique customers.
Every customer has up to 5000 variables in this dataset. The
number of variables per customer is highly variable however.
The dataset is very sparse, with lots of missing values. These
missing values may not be available because it has not been
recorded as of now, could not be recorded or because it
is dependent on another variable. Dependency information,
however, is not available.

All these customers received an email as part of an active
email campaign targeted at getting the customer to buy
more products from CB. Customers have a binary label that
indicates whether they have bought an extra insurance within
a month after the email campaign. The customer data was
recorded on a preset time period before the email campaign
as a snapshot of the data at that moment. However, because
the campaign was not sent to every customer on one single
day, dates of these snapshots differ for every customer. The
date this snapshot was made on is available. The dataset is



highly imbalanced, with only 6000 customers belonging to
the class that has bought anything after the email campaign.

Four distinct datatype variations are identifiable, these
include binary data, categorical data, continuous numerical
data and time data. The numerical data contains arbitrary
numbers, for example, money claimed in the last month. The
time data contains timestamps of events, for example, the last
visit on a website. An example of a binary variable would be
whether the user is the owner of a car. The categorical data
contains codes, for example the variable INSURANCETYPE
can contain PREM or STAN standing for a premium or
standard insurance respectively.

II. RELATED WORK

Unsupervised pre-training is a technique that can be used
to improve the performance of deep learning. According to
Erhan et al. [13] unsupervised pre-training causes networks
to generalize consistently better compared to randomly ini-
tialized networks. Unsupervised pre-training works by letting
a neural network learn the intricate dependencies between
parameters without using class labels that could influence
these dependencies. An example of a network that allows
for unsupervised pre-training is an autoencoder [14]. An
autoencoder is a neural network that learns a set of latent
variables by itself by encoding examples to a latent space
and then decoding from a latent space while minimizing
the information loss between the original data point and its
decoded counterpart. The encoding and decoding are done
in one single pass. The benefit of an autoencoder is the
fact that the decoding and encoding parts can be used as
pre-trained networks in generative and discriminating tasks.
The encoder could also be used as a compression system on
its own. However, this compression is rarely lossless. The
autoencoder will select the latent variables best suited for
reconstruction. Whether these latent variables are also best
suited for classification remains to be seen.

Beaulieu-Jones et al. [15] provide an autoencoder with
a modified loss function that handles missing values. The
modified loss function does not calculate loss over variables
within a datapoint that are missing. It does this by adding
extra binary variables to each original variable that track
if the original variable was missing or not. Beaulieu-Jones
et al. concluded that this technique is a robust alternative
compared to traditionally popular imputation techniques.
These techniques include imputation by mean averaging, me-
dian averaging or K nearest neighbor. Beaulieu-Jones et al.
does only explore the reconstruction imputation performance
and does not experiment with the usability of the latent
dimension.

Ennett et al. [5] show that Neural networks can work with
missing values without any modification by simply replacing
the missing values with zeros. This way the input neurons
are not activated during classification. Different versions
of artificially created data with missings were made and
compared to a constant predictor baseline. While the goal
of the research was to find a breaking point of the neural
network all versions performed better than the baseline.

Kingma et al. [8] provide an adaptation of the Autoencoder
network called the Variational Autoencoder (VAE). The VAE
inherits the basic Autoencoder architecture but extends it
with a Variational Bayes approach. In a VAE the encoder
does not simply output a vector of latent variables but two
vectors, one that contains the means and one that contains
the standard deviations of the latent variables. These vectors
are then used to sample the encodings. This means that for
the same input the encoding can be slightly different on
every pass while keeping the means and standard deviations
the same. An extra cost function based on the Kullback
Leiber divergence [16] is added to the loss function in
order to penalize distributions that drift away from the other
distributions during training. The complete loss function can
be simplified to the following formula:

L = R+K (1)

Where R is the reconstruction loss overall input and output
variables, for example, MSE and K is the Kullback Leiber
divergence. Thanks to all this the VAE makes it hard for the
autoencoder to ”memorize” specific cases in the latent space,
which is a possibility when only having the reconstruction
loss like in an AE. The VAE is suited for use on big data
because it allows efficient training using very small batch
sizes or even single data points according to Kingma et al.
Like an autoencoder the decoder can be used as a pre-trained
part in a generative model and the encoder can be used as a
pre-trained part of a discriminating model.

The KL divergence term used in the VAE can be controlled
as first proposed by Higgins et al. [17]. Higgins et al. control
the KL term by introducing a simple hyper-parameter � and
finally conclude that a � > 1 can lead to more disentangled
learning. The best � could be found using a basic grid search
method. This � however could also be increased from 0 to 1
during training. This was discovered by Bownman et al. [18].
Bownman calls this KL cost annealing and was discovered
to improve the training of the network. Intuitively KL cost
annealing works by first letting the network learn as much
as possible without any constraint because the � is zero.
Equation 1 can be expanded in to the following simplified
formula:

loss = R+ � �K (2)

When the � increases it slowly forces to generalize better
like a standard VAE. According to the results of Bownman
and Higgins it would be very interesting to experiment with
a slowly increasing � and with a � > 1.

A more significant change to the autoencoder is the Ladder
network first proposed by Valpola [19] and later improved
to allow supervised and unsupervised training with the same
model by Rasmus et al.[20]. The original network has, just
like an autoencoder, an encoder and a decoder. However,
every layer of the encoder has a lateral connection with the
corresponding layer in the decoder. Furthermore, the encoder
is corrupted by introducing noise on every layer. An encoder
without noise is also added next to the corrupted encoder
and decoder combination. This ”clean” encoder is used to



calculate a cost on every layer between the ”clean” encoder
and decoder. This cost is used in the loss function that
consists of the weighted mean of every layer costs added to
the cross-entropy calculated between the true label and the
label predicted by the corrupted encoder. The setup is rather
complex but proven [21] and does not require pre-training.

The Generative Adversarial Nets(GAN) framework was
first proposed by Goodfellow et al. [22]. This framework
trains two models at the same time in an unsupervised
adversarial manner. The discriminative model has the result
from the generative model as input. The generative model
uses random data from a normalized This can be explained
by seeing the two models as players in a mini-max two-
player game. One player tries to ”fake” examples while
the other tries to recognize the fakes. The discriminative
model has the result from the generative model and known
”real” data as input. The generative model uses random
data from a normalized and predefined latent space. The
discriminator can be pre-trained using known examples to
avoid a generator that is too good which will lead to the
discriminator not learning anything.

A GAN can be adapted for classification by adding an
extra output [9], creating a semi-supervised GAN (SGAN).
In an SGAN the discriminator is adapted into a combined
discriminator and classifier. Instead of a single sigmoid
output unit, the output consists of multiple outputs with
a Softmax activation. One output denoting real classes,
replacing the sigmoid output in a GAN, and the addition
of one softmax output for every class in the dataset. Ac-
cording to the results of the initial papers [10] [9] these
improvements benefit both the generative performance and
the classification performance when compared to a GAN
and a more traditional supervised Neural Network. The
combination of generative and classification within a single
network and the ability of semi-supervised learning makes
this type of network highly suited for the interests of CB.
This single network can full fill both the generative and
classification requirements while keeping the implementation
time and learning time lower by only needing one model. A
disadvantage, however, is the fact that is network is trained
on a labeled dataset, thus possibly influencing the resulting
generator.

Evaluating generative models is different from classifica-
tion models because no ground truth exists. Instead, genera-
tive models are evaluated by the likelihood of the generated
data belonging to the target datatype. Often evaluation is
done by human assessment of generated samples when cal-
culating likelihood is impossible or unpractical. For example,
GAN models trained on visual data can be evaluated by
humans [10]. However visual assessment of samples does
not always correlate with likelihood according to Theis et
al. [23]. Even though Theis et al. denote the use of visual
assessment as generally a poor evaluation technique, they do
note that using visual assessment evaluation for the purpose
of creating purely visual pleasant images is valid. Theis et al.
conclude that there is no one size fits all solution to model
evaluation and that human assessment can only be used as

a measure in the specific assessment context and not as a
general model performance metric.

The dataset used in this research is not visual however
the same core concepts could be used. For example, when
a human assesses a generated human head the human will
look for human head shape and will consider the image as
wrong if he finds a triangle shape with eyes. A triangular
head can simply not exists, in other words, some rules could
be defined that can be used by the assessor. The same is true
for this data set. Especially within the dependency of some
of the variables. For example, a customer with age below 18
and a car insurance can simply not exist. These rules could
be tested automatically. However when going back to the
results of Theis et al. high results on these automated test
do only prove that the generated samples will be assessed as
real by human annotators. It will not prove that the generator
was able to capture the distribution of the original dataset.
Moreover, no validated set of such rules is currently available
so a working implementation of this system cannot even be
implemented.

Because the dataset is highly imbalanced and because the
important label is the least represented in the dataset. It is
important to make a classifier in such a way that it takes
the importance of the label into account. This is called Cost-
Sensitive Learning [7]. These techniques are often applied to
medical classification problems where finding true positives
are very important compared to other metrics, for example,
the accuracy of the classifier as a whole. One technique to
apply Cost-Sensitive Learning is Class Weighting [24] where
the classes get a weight that represents the importance of
the class. This weight is used to alter the miss-classification
cost. Different re-sampling techniques can also be used to
counter this imbalance problem. For example, oversampling
of the minority class using adaptive synthetic sampling
(ADASYN) [25] or Synthetic Minority Over-sampling Tech-
nique (SMOTE) [26]. Both of these techniques generate
synthetic examples that fit in the distribution of the original
class. Another example is undersampling which as the name
suggests decreases the number datapoints in the majority
class while also keeping the distribution of these data points
the same as the original.

III. METHODS AND MODELS

This section describes the methods and models used in this
research. This section is divided into subsections. The first
one III-A describes the pre-processing done to the data. This
pre-processing was used for the models described in the later
subsections. The implementation of these models, including
prepossessing functions can be found on GitLab [27]. The
implementation was done using the Python language together
with some well-established Python libraries including but not
limited to Keras [28] and the SciPy toolkit [29]

A. Data preparation and missing values

It is important to normalize and standardize data in order
to get the best results from a neural network [30]. Further-
more, because of the sparsity of this dataset some prepa-



rations were made to allow the models to handle missing
values. All missing values were encoded as 0, because input
nodes with value zero will have no influence on the rest of
the network. This is comparable to the approach of Beaulieu
-Jones et al and Ennett et al. The numerical and binary data
were normalized between [-1,1].

The timestamps variables, for example last time that the
customer visited the website, available in the dataset were
converted to time deltas by relating the timestamp variable
to the timestamp of the moment that the data snapshot was
made. These deltas are calculated using the time that the data
snapshot was made minus the time of the data point. The
delta was limited by a time limit parameter and standardized
between [0,1], with 0 being a delta that equals the limit
parameter or more and with 1 being equal to the time of
capture. A formula of this can be found in equation 3. During
this research the time limit parameter was set to 10 years.

� = 1� T � C
T � L

(3)

Where C is the time the data snapshot was made, T the time
data point and L the time limit parameter. The categorical
data were converted to a binary representation also known
as dummy variables.

Before each experiment the data was shuffled and split
into three subsets. These subsets are the training set, the test
set and the validation set. The training set was used to train
neural networks. The validation set was used to validate the
neural network after every epoch. The model from the epoch
that performed best on the validation set was then used for
final evaluation. This final evaluation was done on the test
set. In the case of models that are not neural networks, the
validation set is added to the training set. These models were
fitted on the training set and then evaluated on the testing
set.

B. VAE

The VAE architecture can be divided into three main parts.
These parts are the encoder, the decoder and the classifier.
It is important to note that combinations of these parts
are used in this research. Two combinations are used the
autoencoder, a combination of the encoder and decoder, and
the encoder-classifier which is a combination of the encoder
and classifier.

The encoder is a neural network that has the goal of
reducing dimensionality while minimizing information loss.
The output is called an encoding. The input data for this
encoder needs to be normalized between [-1,1] with missing
values defined as 0. The decoder is a neural network that
has the goal of recreating the original data from an encoding
while minimizing information loss. The input data is an
encoding form an encoder. The output data for this decoder
is normalized between [-1,1] with missing values defined as
0. The classifier is a neural network that has the goal of
classifying encodings to a binary target.

The combination of the encoder and decoder results in the
autoencoder. Because the output of the autoencoder should

be the same as the input, thanks to the en- and decoding,
it is possible to train both the encoder and decoder at the
same time. The combination of the encoder and classifier
results in the encoder-classifier. A graph representation of
the encoder and the decoder can be seen in figure 1a and
figure 1b

This setup allows for a pretrained encoder by first training
the autoencoder and then cutting of the decoder part. This
pretrained encoder can then be used to create the encoder-
classifier potentially improving performance and training
time.

It is also possible to use a non-neural network classifier
in combination with the encoder. The encoder is then used
as a dimensionality reduction preprocessor. The encoder
compresses the data into a lower dimension. This compressed
data is then as input for the classifier. The combination of
these models can however not be trained together to further
optimize them like the encoder-classifier can.

1) Modified VAE loss: The reconstruction loss used to
train the VAE will be heavily influenced by the large num-
ber of missing values in this dataset. For example, during
reconstruction, the network could generate a value of 1 for
a certain variable that was missing. This means that the loss
for this variable would be very high. However this is wrong
because the network is doing what it is supposed to do,
it is simply impossible to validate the generated variable.
What we actually want is the network to learn only from the
available data and not from the missing values.

We therefore propose a simple addition to the reconstruc-
tion loss that takes missing values into consideration, based
on the work of Beaulieu-Jones et al. [15]. The pseudo-code
can be seen in algorithm 1. The Modified VAE loss uses the
normal VAE loss from equation 2 but for each input variable
that is zero it will return a zero instead of calculating a
reconstruction loss between that input variable and its related
output variable. This approach makes sure that the network
is only penalized for outcomes that are really wrong instead
of missing.

if y 6= 0 then
return reconstructionErrorFunction(y; ŷ) ;

else
return 0;

end
Algorithm 1: Modified VAE loss. Input is the original data
(y) and and the recosntruced data (ŷ), if y is zero no loss
is calculated

2) KL annealing and �-VAE: To evaluate the influence of
the KL divergence term multiple combinations were imple-
mented. This includes constant values of � and increasing
values of � with different intervals and different value ranges.
The following table shows the parameters tested. Note that a
�-VAE with a constant � = 1 is the same as a normal VAE.
In this research the � was increased the maximum � starting
at 0 during the first 10 epochs when annealing was enabled.



(a) Encoder network. Input starts at the top (encoder input). This
network has three outputs that can be seen at the bottom. The outputs
are, from left to right, p re lu 115 the latent mean , p re lu 115 the
latent standard deviation and z the sampled vector from this mean
and standard devaition.

(b) Decoder network. Input starts at the top z sampling. This network
has one output that can be seen at the bottom. The output is a
reconstructed representation based on input z sampling .

Fig. 1: Graph representations of the decoder and encoder networks. The autoencoder is created by connecting z from the
encoder network to z sampling form the decoder network. Images were generated by Netron [31].

C. SGAN

The SGAN architecture can be divided into two main
parts. The generator and the discriminator. The generator
generates data from a randomly sampled vector of length
100. The discriminator classifies data on their class labels

and a special label that denotes fake data. The one-hot
encoded labels used in this data are as follows: [buy,not-
buy,fake]. These 3 output neurons are activated by a softmax
layer. Neurons can be dropped to adapt the network for
different tasks. For example [buy,not-buy] with a softmax



(a) Encoder network. Input starts at the top (input 2). This network
has one output (activation 2) that can be seen at the bottom. The
output is in the form of a generated customer.

(b) Decoder network. Input starts at the (top input 1). This network
has one softmax output with the following labels [buy,not-buy,fake].

Fig. 2: Graph representations of the discriminator and generator that are important parts of the Sgan architecture. Images
were generated by Netron [31].

activation for label classification or [fake] with a sigmoidal
activation for fake data detection.

The SGAN is a bit different from a normal Neural Net-
work in the way the training set up. every batch flows through
the architecture two times. The pseudo-code from Odena [9],
that can be seen in figure 3 illustrates this perfectly. Every
batch first is doubled by adding generated data from the
generator, creating a new batch with both generated and real
data where generated and real are both equally represented.
The D/C is then trained using this batch, note that the

generator weights are locked during this. After training of
the D/C, the generator gets updated by feeding the generator
a noise batch. The weights of the generator are then updated
based on the output of the D/C, note that the D/C weights
are locked during this.

D. Network training

All networks were trained using the Nadam optimizer [32].
Early stopping was also used with a patience of 20 epochs
and a maximum of 200 epochs. Model selection was done by



Fig. 3: Copy of SGAN training algorithm from Odena [9].
In this copy D is the discriminator, D/C the combined
discriminator, G the generator and classifier and NLL the
negative log likelihood. See the paper of Odena [9] and the
section II.

selecting the model from the epoch with the lowest validation
loss. The training data was shuffled before every epoch. The
batch size of every model was 32. The latent dimension size
of the VAE unless stated otherwise was 24.

IV. EARLY RESULTS

A VAE was implemented based on the techniques provided
by Kingma et al. [8] in order to explore the usability of a
VAE on this dataset. During the unsupervised training a part
of the data set was used that only included the numerical
datatype. This part included the data of 4000 customers. This
part was the only available data at the start of the research
and is different from the set used during the final evaluation.
The latent variables were constrained to three dimensions
in order to visualize them. The visualization contains the
encodings for every data point in a three-dimensional graph
where every dimension corresponds to a latent variable. The
data points were divided into three groups based on the age
of the person due to the buying targets not being available
yet. The graph can be seen in figure 4

By visually inspecting the graph it is clear that some
clustering occurs. Even though the goal of this research is not
to predict age groups and the fact that latent space was con-
strained to 3 dimensions the VAE shows to be a promising
method for doing dimensionality reduction on this dataset. It
was therefore decided to continue with fully implementing
and evaluating VAE’s using different parameters.

V. EVALUATION

The subset used for evaluation was created from the
dataset provided by CB, more information about this dataset
can be found in section I-A. More information about the
data preparations can be found in section III-A. This data set
contained 34289 customers with target labels equally repre-
sented by under-sampling the minority class. Each customer
had 4820 variables recorded. Of these variables an average
of 97 percent are missing. The train and test set was were

Fig. 4: Latent vector visualisation of 4000 customers. Colors
indicate customer age group.

created by splitting the dataset into 60 percent training set
and 40 percent test set.

A. Dimensionality reduction

The dimensionality reduction capabilities of the VAE will
be evaluated by multiple metrics. First the reconstruction
loss, specifically the mean squared error of the input and
output. A lower loss will show the ability of the network
to reduce dimensions while keeping information loss at a
minimum. And because a dimensionality reduction with the
lowest information loss is preferred the network with the
lowest reconstruction loss will be considered best.

Secondly the F1 [33] performance of classification when
using the network as a preprocessor or pre-trained network.
This F1 score can then be compared to a classifier that was
trained on the original data. This will show the influence of
information loss due to compression. The lowest influence or
in other words the classifier with an F1 score that is closest to
the F1 score of the classifier trained on the original data will
be considered best. Note that only one target set is available,
thus giving only an indication of this influence.

Lastly, the dimensionality reduction will also lead to de-
creased file sizes and decreased classifier training time when
the dimensionality reduction is used as a pre-processing step.
The decreases in file size and training time are only beneficial
if the previous metrics are satisfactory. The benefits have to
be considered together in order to make a useful conclusion.

B. Influence of missing data on reconstruction

Related to the dimensionality, the influence of missing
data on reconstruction will be evaluated by replacing values
with missing values before reconstruction. The number of
replaced variables is controlled by a parameter. The parame-
ter contains the chance that a variable will be replaced by a
zero. by setting the parameter to 10% for example, will lead
to a dataset with 10% of its non-missing variables replaced
by zeros. The data containing the added missing values is
then reconstructed in using one of the VAE configurations.
The reconstructed data is then compared to the original data.



C. Neural network classification

The SGAN and the encoder-classifier networks can be
used for classification directly. These networks are evaluated
based on the F1 score.

VI. RESULTS
A. Parameters

In this section VAE configurations will be defined using
three parameters. The first parameter is Loss function this
parameter defines the loss function used, it can be either
normal or modified see section III-B.1 for more information
on this. The second parameter is Annealing this variable
defines if annealing was used during training of the VAE, see
section III-B.2 for more information. The last parameter is
beta which defines what beta was used during training, again
see section III-B.2 for more information. When annealing
was enabled the beta parameter defines the maximum value.
In this document, these configurations have the same color
in every graph.

A fourth parameter can be found in configurations that
are used for classification either with a pre trained or
preprocessor setup. This parameter is Classifier and defines
the type of classifier used, the possible paramters are precls,
boost and randomf. precls defines a neural network classifier
using a pretrained encoder. boost refers to a Boosted Tree
while randomf refers to a Random Forest using a VAE
preprocessor.

B. VAE training

Figure 5 shows the training loss of every VAE configu-
ration. Note that not all of the VAE losses can be directly
compared because of the fact that some parameters altered
the loss functions. Because of early stopping, not every
configuration ends on the same epoch. the maximum number
of epochs was set at 400. The lines indicate validation loss
while the dotted lines indicate the training loss.

All of the configurations show a fast decrease of the loss
within the first 20 epochs and a further stabilization up
to epoch 50 after which no big decreases in loss can be
observed. However, some configurations show a sudden drop
in loss around the 100 epoch mark. The models seem to get
stuck in a local minimum and then break out to get into a
second local minimum.

Furthermore, before this sudden drop every configuration
goes through at least one spike of very high loss, the
validation loss quickly increases and decreases within a few
epochs. However, overall the validation loss follows the
training loss closely indicating no overfitting, the training
loss is cannot be seen in the graph in order to keep the
graph readable.

There is also a clear difference in loss between the con-
figurations with the modified and the normal VAE loss. The
configurations with the normal VAE loss have a generally
higher training and validation loss. This difference could be
explained by the exclusion of the missing variables in when
using the modified loss, again it is hard to compare these
loss functions directly due to the influence of the parameters

on the loss during training. Note that the loss is stable but far
from zero, this could be due to the high number of missing
values or that more optima remain.

Because the results from figure 5 only show the results
of single training runs the training was repeated in order to
get more reliable results. However, due to time constraints,
these runs were limited to 20 epochs. Figure 6 shows the
mean and standard deviation validation loss of every VAE
configuration during training. The VAE’s were trained three
times for 20 epochs each time. The standard deviation is
depicted by the shaded area around the lines.

The results show to be the same as during the first 20
epochs of figure 5, the lines seem to stabilize at the same
amount of epochs and there is a clear difference of eventual
loss between the normal and modified VAE losses. The
standard deviation during training is very low, meaning a
low influence of chance. The parameters next to the two
different VAE loss functions do seem to have an influence
on the first few epochs but do not seem to have an influence
later on because every configuration converges to the almost
same loss value eventually. However, as noted earlier, it is not
really possible to compare these eventual loss values because
the parameters directly influence the outcome of the loss
function.

Loss function Beta Annealing Epochs Final loss

modified 1 False 177 110.836
modified 1 True 268 109.899
modified 2 False 254 112.217
modified 2 True 217 112.075
modified 3 False 55 133.288
modified 3 True 53 133.691
normal 1 False 195 117.456
normal 1 True 175 117.606
normal 2 False 114 140.867
normal 2 True 128 140.856
normal 3 False 93 140.869
normal 3 True 98 140.868

TABLE I: VAE epoch amount and final training loss

Another view of the data from figure 5 can be seen in
table I. This table shows the final validation loss of every
configuration and the number of epochs the training ran.
Because of early stopping, not every VAE trained for the
same amount of epochs. It can be seen that the number
of epochs varies heavily. VAE’s with annealing enabled are
close to their constant beta counterparts for both the max
epochs and the loss. This indicates that the Annealing has no
influence on the loss during training after the beta reaches
the maximum value. High beta values lead to higher final
training loss in this table. Higher beta values also trained for
fewer epochs.

C. Data reconstruction

Because of the influence of the parameters on the training
loss and the influence of the KL-divergence every VAE
configuration was also evaluated using a normal MSE and
a masked MSE after training. These will give an error that
can be used to compare the different configurations more




