
Adapting the variational auto encoder for datasets with large amounts
of missing values.

Raoul Fasel1

Abstract— This research provides an adaptation to the Vari-
ational Auto Encoder(VAE) aimed at handling missing values.
This adaptation comes in the form of a modified loss function.
different VAE configurations are trained and evaluated on real-
world data. These configurations include, next to the normal
and modified loss functions, different beta parameters and
usage of beta annealing. Practical implementations of the VAE
or parts of it include dimensionality reduction and classification
using network pretraining or a data preprocessor. While the
modified loss function has a big influence on the VAE during
training and reconstructing tasks, it does not have any influence
on the performance of classification when either used as a
data preprocessor or as a pretrained network. Lower beta
values are preferred for reconstruction tasks and classification
using a pretrained network. Higher beta values are preferred
when using the VAE as a data preprocessor for classification.
Annealing has shown to have no usable influence in research.

I. INTRODUCTION

Machine learning has become a very popular research
topic in the past decades. Thanks to this, artificial intelligence
have been outperforming humans in very complex tasks [1].
While very impressive, this research is often accompanied
by an abundance of high-quality data or an ability to collect
high-quality data. However, not every data source in the real
world can be considered high quality. One of the problems
with real-world datasets is that they contain a lot of missing
values [2][3]. The reasons for missing values can vary, for
example missing values because of errors during acquisition
or addition of new variables to an existing dataset. Further-
more, data gathering is often done by collecting everything
that is available without knowing how much information is
gained for solving the required task. This leads to data with
many dimensions that are hard to deal with [4]. Another
smaller problem is imbalanced data in which not every class
is equally represented.

Traditionally, imputation during prepossessing was used
to fill in the missing values. It is also possible to use
algorithms that can deal with missing values, for example,
neural networks have proven to be robust when dealing
with missing values[2] [5]. An easy method for dealing
with the number of dimensions of your data is selecting
features that are most important for the task at hand and
only using these features leading to some information loss.
A more universal technique would be using some kind of
dimensionality reduction technique like principal component
analysis (PCA) [6]. PCA minimizes information loss. Class

1R. Fasel is with Faculty of Electrical Engineering, Mathematics and
Computer Science, University of Twente, 7500 AE Enschede, The Nether-
lands r.fasel at student.utwente.nl

imbalance problems are often mitigated by simple class
weighting or over- and under-sampling [7].

We propose a novel loss function that allows a Variational
Autoencoder (VAE) [8] to not learn from missing values and
only learn from the data that is actually available. The VAE
is able to reduce highly dimensional data that contain lots of
missing values, making it suitable for usage on real-world
data. Practical usage examples of the VAE are also provided
and evaluated. These examples include predicting consumer
buying patterns by using the VAE as a pre-trained part of
a neural network trained for classification and by using
the VAE as a dimensionality reduction data pre-possessor
that can be used like PCA on any classifier. Next to the
methods based on the VAE a semi-supervised Generative
Adversarial Network (SGAN)[9][10], random forest[11] and
boosted tree[12] were also implemented and evaluated on
the unmodified dataset. These were used as a baseline for
comparisons. Both training and evaluating were done on a
real-world dataset.

A. Dataset

Such a real-world dataset was provided for this research by
an external company called Centraal Beheer (CB). CB is one
of the bigger insurance companies in the Netherlands. The
interests of CB are as follows: Predicting buying patterns
of customers using Neural Networks and dimensionality
reduction. Because of the amount of data and the number of
variables, CB would like this research to include dimension-
ality reduction techniques. Secondary interest of CB includes
data generation and in-depth model explanation.

The dataset consists of almost 600.000 unique customers.
Every customer has up to 5000 variables in this dataset. The
number of variables per customer is highly variable however.
The dataset is very sparse, with lots of missing values. These
missing values may not be available because it has not been
recorded as of now, could not be recorded or because it
is dependent on another variable. Dependency information,
however, is not available.

All these customers received an email as part of an active
email campaign targeted at getting the customer to buy
more products from CB. Customers have a binary label that
indicates whether they have bought an extra insurance within
a month after the email campaign. The customer data was
recorded on a preset time period before the email campaign
as a snapshot of the data at that moment. However, because
the campaign was not sent to every customer on one single
day, dates of these snapshots differ for every customer. The
date this snapshot was made on is available. The dataset is



highly imbalanced, with only 6000 customers belonging to
the class that has bought anything after the email campaign.

Four distinct datatype variations are identifiable, these
include binary data, categorical data, continuous numerical
data and time data. The numerical data contains arbitrary
numbers, for example, money claimed in the last month. The
time data contains timestamps of events, for example, the last
visit on a website. An example of a binary variable would be
whether the user is the owner of a car. The categorical data
contains codes, for example the variable INSURANCETYPE
can contain PREM or STAN standing for a premium or
standard insurance respectively.

II. RELATED WORK

Unsupervised pre-training is a technique that can be used
to improve the performance of deep learning. According to
Erhan et al. [13] unsupervised pre-training causes networks
to generalize consistently better compared to randomly ini-
tialized networks. Unsupervised pre-training works by letting
a neural network learn the intricate dependencies between
parameters without using class labels that could influence
these dependencies. An example of a network that allows
for unsupervised pre-training is an autoencoder [14]. An
autoencoder is a neural network that learns a set of latent
variables by itself by encoding examples to a latent space
and then decoding from a latent space while minimizing
the information loss between the original data point and its
decoded counterpart. The encoding and decoding are done
in one single pass. The benefit of an autoencoder is the
fact that the decoding and encoding parts can be used as
pre-trained networks in generative and discriminating tasks.
The encoder could also be used as a compression system on
its own. However, this compression is rarely lossless. The
autoencoder will select the latent variables best suited for
reconstruction. Whether these latent variables are also best
suited for classification remains to be seen.

Beaulieu-Jones et al. [15] provide an autoencoder with
a modified loss function that handles missing values. The
modified loss function does not calculate loss over variables
within a datapoint that are missing. It does this by adding
extra binary variables to each original variable that track
if the original variable was missing or not. Beaulieu-Jones
et al. concluded that this technique is a robust alternative
compared to traditionally popular imputation techniques.
These techniques include imputation by mean averaging, me-
dian averaging or K nearest neighbor. Beaulieu-Jones et al.
does only explore the reconstruction imputation performance
and does not experiment with the usability of the latent
dimension.

Ennett et al. [5] show that Neural networks can work with
missing values without any modification by simply replacing
the missing values with zeros. This way the input neurons
are not activated during classification. Different versions
of artificially created data with missings were made and
compared to a constant predictor baseline. While the goal
of the research was to find a breaking point of the neural
network all versions performed better than the baseline.

Kingma et al. [8] provide an adaptation of the Autoencoder
network called the Variational Autoencoder (VAE). The VAE
inherits the basic Autoencoder architecture but extends it
with a Variational Bayes approach. In a VAE the encoder
does not simply output a vector of latent variables but two
vectors, one that contains the means and one that contains
the standard deviations of the latent variables. These vectors
are then used to sample the encodings. This means that for
the same input the encoding can be slightly different on
every pass while keeping the means and standard deviations
the same. An extra cost function based on the Kullback
Leiber divergence [16] is added to the loss function in
order to penalize distributions that drift away from the other
distributions during training. The complete loss function can
be simplified to the following formula:

L = R+K (1)

Where R is the reconstruction loss overall input and output
variables, for example, MSE and K is the Kullback Leiber
divergence. Thanks to all this the VAE makes it hard for the
autoencoder to ”memorize” specific cases in the latent space,
which is a possibility when only having the reconstruction
loss like in an AE. The VAE is suited for use on big data
because it allows efficient training using very small batch
sizes or even single data points according to Kingma et al.
Like an autoencoder the decoder can be used as a pre-trained
part in a generative model and the encoder can be used as a
pre-trained part of a discriminating model.

The KL divergence term used in the VAE can be controlled
as first proposed by Higgins et al. [17]. Higgins et al. control
the KL term by introducing a simple hyper-parameter β and
finally conclude that a β > 1 can lead to more disentangled
learning. The best β could be found using a basic grid search
method. This β however could also be increased from 0 to 1
during training. This was discovered by Bownman et al. [18].
Bownman calls this KL cost annealing and was discovered
to improve the training of the network. Intuitively KL cost
annealing works by first letting the network learn as much
as possible without any constraint because the β is zero.
Equation 1 can be expanded in to the following simplified
formula:

loss = R+ β ∗K (2)

When the β increases it slowly forces to generalize better
like a standard VAE. According to the results of Bownman
and Higgins it would be very interesting to experiment with
a slowly increasing β and with a β > 1.

A more significant change to the autoencoder is the Ladder
network first proposed by Valpola [19] and later improved
to allow supervised and unsupervised training with the same
model by Rasmus et al.[20]. The original network has, just
like an autoencoder, an encoder and a decoder. However,
every layer of the encoder has a lateral connection with the
corresponding layer in the decoder. Furthermore, the encoder
is corrupted by introducing noise on every layer. An encoder
without noise is also added next to the corrupted encoder
and decoder combination. This ”clean” encoder is used to



calculate a cost on every layer between the ”clean” encoder
and decoder. This cost is used in the loss function that
consists of the weighted mean of every layer costs added to
the cross-entropy calculated between the true label and the
label predicted by the corrupted encoder. The setup is rather
complex but proven [21] and does not require pre-training.

The Generative Adversarial Nets(GAN) framework was
first proposed by Goodfellow et al. [22]. This framework
trains two models at the same time in an unsupervised
adversarial manner. The discriminative model has the result
from the generative model as input. The generative model
uses random data from a normalized This can be explained
by seeing the two models as players in a mini-max two-
player game. One player tries to ”fake” examples while
the other tries to recognize the fakes. The discriminative
model has the result from the generative model and known
”real” data as input. The generative model uses random
data from a normalized and predefined latent space. The
discriminator can be pre-trained using known examples to
avoid a generator that is too good which will lead to the
discriminator not learning anything.

A GAN can be adapted for classification by adding an
extra output [9], creating a semi-supervised GAN (SGAN).
In an SGAN the discriminator is adapted into a combined
discriminator and classifier. Instead of a single sigmoid
output unit, the output consists of multiple outputs with
a Softmax activation. One output denoting real classes,
replacing the sigmoid output in a GAN, and the addition
of one softmax output for every class in the dataset. Ac-
cording to the results of the initial papers [10] [9] these
improvements benefit both the generative performance and
the classification performance when compared to a GAN
and a more traditional supervised Neural Network. The
combination of generative and classification within a single
network and the ability of semi-supervised learning makes
this type of network highly suited for the interests of CB.
This single network can full fill both the generative and
classification requirements while keeping the implementation
time and learning time lower by only needing one model. A
disadvantage, however, is the fact that is network is trained
on a labeled dataset, thus possibly influencing the resulting
generator.

Evaluating generative models is different from classifica-
tion models because no ground truth exists. Instead, genera-
tive models are evaluated by the likelihood of the generated
data belonging to the target datatype. Often evaluation is
done by human assessment of generated samples when cal-
culating likelihood is impossible or unpractical. For example,
GAN models trained on visual data can be evaluated by
humans [10]. However visual assessment of samples does
not always correlate with likelihood according to Theis et
al. [23]. Even though Theis et al. denote the use of visual
assessment as generally a poor evaluation technique, they do
note that using visual assessment evaluation for the purpose
of creating purely visual pleasant images is valid. Theis et al.
conclude that there is no one size fits all solution to model
evaluation and that human assessment can only be used as

a measure in the specific assessment context and not as a
general model performance metric.

The dataset used in this research is not visual however
the same core concepts could be used. For example, when
a human assesses a generated human head the human will
look for human head shape and will consider the image as
wrong if he finds a triangle shape with eyes. A triangular
head can simply not exists, in other words, some rules could
be defined that can be used by the assessor. The same is true
for this data set. Especially within the dependency of some
of the variables. For example, a customer with age below 18
and a car insurance can simply not exist. These rules could
be tested automatically. However when going back to the
results of Theis et al. high results on these automated test
do only prove that the generated samples will be assessed as
real by human annotators. It will not prove that the generator
was able to capture the distribution of the original dataset.
Moreover, no validated set of such rules is currently available
so a working implementation of this system cannot even be
implemented.

Because the dataset is highly imbalanced and because the
important label is the least represented in the dataset. It is
important to make a classifier in such a way that it takes
the importance of the label into account. This is called Cost-
Sensitive Learning [7]. These techniques are often applied to
medical classification problems where finding true positives
are very important compared to other metrics, for example,
the accuracy of the classifier as a whole. One technique to
apply Cost-Sensitive Learning is Class Weighting [24] where
the classes get a weight that represents the importance of
the class. This weight is used to alter the miss-classification
cost. Different re-sampling techniques can also be used to
counter this imbalance problem. For example, oversampling
of the minority class using adaptive synthetic sampling
(ADASYN) [25] or Synthetic Minority Over-sampling Tech-
nique (SMOTE) [26]. Both of these techniques generate
synthetic examples that fit in the distribution of the original
class. Another example is undersampling which as the name
suggests decreases the number datapoints in the majority
class while also keeping the distribution of these data points
the same as the original.

III. METHODS AND MODELS

This section describes the methods and models used in this
research. This section is divided into subsections. The first
one III-A describes the pre-processing done to the data. This
pre-processing was used for the models described in the later
subsections. The implementation of these models, including
prepossessing functions can be found on GitLab [27]. The
implementation was done using the Python language together
with some well-established Python libraries including but not
limited to Keras [28] and the SciPy toolkit [29]

A. Data preparation and missing values

It is important to normalize and standardize data in order
to get the best results from a neural network [30]. Further-
more, because of the sparsity of this dataset some prepa-



rations were made to allow the models to handle missing
values. All missing values were encoded as 0, because input
nodes with value zero will have no influence on the rest of
the network. This is comparable to the approach of Beaulieu
-Jones et al and Ennett et al. The numerical and binary data
were normalized between [-1,1].

The timestamps variables, for example last time that the
customer visited the website, available in the dataset were
converted to time deltas by relating the timestamp variable
to the timestamp of the moment that the data snapshot was
made. These deltas are calculated using the time that the data
snapshot was made minus the time of the data point. The
delta was limited by a time limit parameter and standardized
between [0,1], with 0 being a delta that equals the limit
parameter or more and with 1 being equal to the time of
capture. A formula of this can be found in equation 3. During
this research the time limit parameter was set to 10 years.

∆ = 1− T − C
T − L

(3)

Where C is the time the data snapshot was made, T the time
data point and L the time limit parameter. The categorical
data were converted to a binary representation also known
as dummy variables.

Before each experiment the data was shuffled and split
into three subsets. These subsets are the training set, the test
set and the validation set. The training set was used to train
neural networks. The validation set was used to validate the
neural network after every epoch. The model from the epoch
that performed best on the validation set was then used for
final evaluation. This final evaluation was done on the test
set. In the case of models that are not neural networks, the
validation set is added to the training set. These models were
fitted on the training set and then evaluated on the testing
set.

B. VAE

The VAE architecture can be divided into three main parts.
These parts are the encoder, the decoder and the classifier.
It is important to note that combinations of these parts
are used in this research. Two combinations are used the
autoencoder, a combination of the encoder and decoder, and
the encoder-classifier which is a combination of the encoder
and classifier.

The encoder is a neural network that has the goal of
reducing dimensionality while minimizing information loss.
The output is called an encoding. The input data for this
encoder needs to be normalized between [-1,1] with missing
values defined as 0. The decoder is a neural network that
has the goal of recreating the original data from an encoding
while minimizing information loss. The input data is an
encoding form an encoder. The output data for this decoder
is normalized between [-1,1] with missing values defined as
0. The classifier is a neural network that has the goal of
classifying encodings to a binary target.

The combination of the encoder and decoder results in the
autoencoder. Because the output of the autoencoder should

be the same as the input, thanks to the en- and decoding,
it is possible to train both the encoder and decoder at the
same time. The combination of the encoder and classifier
results in the encoder-classifier. A graph representation of
the encoder and the decoder can be seen in figure 1a and
figure 1b

This setup allows for a pretrained encoder by first training
the autoencoder and then cutting of the decoder part. This
pretrained encoder can then be used to create the encoder-
classifier potentially improving performance and training
time.

It is also possible to use a non-neural network classifier
in combination with the encoder. The encoder is then used
as a dimensionality reduction preprocessor. The encoder
compresses the data into a lower dimension. This compressed
data is then as input for the classifier. The combination of
these models can however not be trained together to further
optimize them like the encoder-classifier can.

1) Modified VAE loss: The reconstruction loss used to
train the VAE will be heavily influenced by the large num-
ber of missing values in this dataset. For example, during
reconstruction, the network could generate a value of 1 for
a certain variable that was missing. This means that the loss
for this variable would be very high. However this is wrong
because the network is doing what it is supposed to do,
it is simply impossible to validate the generated variable.
What we actually want is the network to learn only from the
available data and not from the missing values.

We therefore propose a simple addition to the reconstruc-
tion loss that takes missing values into consideration, based
on the work of Beaulieu-Jones et al. [15]. The pseudo-code
can be seen in algorithm 1. The Modified VAE loss uses the
normal VAE loss from equation 2 but for each input variable
that is zero it will return a zero instead of calculating a
reconstruction loss between that input variable and its related
output variable. This approach makes sure that the network
is only penalized for outcomes that are really wrong instead
of missing.

if y 6= 0 then
return reconstructionErrorFunction(y, ŷ) ;

else
return 0;

end
Algorithm 1: Modified VAE loss. Input is the original data
(y) and and the recosntruced data (ŷ), if y is zero no loss
is calculated

2) KL annealing and β-VAE: To evaluate the influence of
the KL divergence term multiple combinations were imple-
mented. This includes constant values of β and increasing
values of β with different intervals and different value ranges.
The following table shows the parameters tested. Note that a
β-VAE with a constant β = 1 is the same as a normal VAE.
In this research the β was increased the maximum β starting
at 0 during the first 10 epochs when annealing was enabled.



(a) Encoder network. Input starts at the top (encoder input). This
network has three outputs that can be seen at the bottom. The outputs
are, from left to right, p re lu 115 the latent mean , p re lu 115 the
latent standard deviation and z the sampled vector from this mean
and standard devaition.

(b) Decoder network. Input starts at the top z sampling. This network
has one output that can be seen at the bottom. The output is a
reconstructed representation based on input z sampling .

Fig. 1: Graph representations of the decoder and encoder networks. The autoencoder is created by connecting z from the
encoder network to z sampling form the decoder network. Images were generated by Netron [31].

C. SGAN

The SGAN architecture can be divided into two main
parts. The generator and the discriminator. The generator
generates data from a randomly sampled vector of length
100. The discriminator classifies data on their class labels

and a special label that denotes fake data. The one-hot
encoded labels used in this data are as follows: [buy,not-
buy,fake]. These 3 output neurons are activated by a softmax
layer. Neurons can be dropped to adapt the network for
different tasks. For example [buy,not-buy] with a softmax



(a) Encoder network. Input starts at the top (input 2). This network
has one output (activation 2) that can be seen at the bottom. The
output is in the form of a generated customer.

(b) Decoder network. Input starts at the (top input 1). This network
has one softmax output with the following labels [buy,not-buy,fake].

Fig. 2: Graph representations of the discriminator and generator that are important parts of the Sgan architecture. Images
were generated by Netron [31].

activation for label classification or [fake] with a sigmoidal
activation for fake data detection.

The SGAN is a bit different from a normal Neural Net-
work in the way the training set up. every batch flows through
the architecture two times. The pseudo-code from Odena [9],
that can be seen in figure 3 illustrates this perfectly. Every
batch first is doubled by adding generated data from the
generator, creating a new batch with both generated and real
data where generated and real are both equally represented.
The D/C is then trained using this batch, note that the

generator weights are locked during this. After training of
the D/C, the generator gets updated by feeding the generator
a noise batch. The weights of the generator are then updated
based on the output of the D/C, note that the D/C weights
are locked during this.

D. Network training

All networks were trained using the Nadam optimizer [32].
Early stopping was also used with a patience of 20 epochs
and a maximum of 200 epochs. Model selection was done by



Fig. 3: Copy of SGAN training algorithm from Odena [9].
In this copy D is the discriminator, D/C the combined
discriminator, G the generator and classifier and NLL the
negative log likelihood. See the paper of Odena [9] and the
section II.

selecting the model from the epoch with the lowest validation
loss. The training data was shuffled before every epoch. The
batch size of every model was 32. The latent dimension size
of the VAE unless stated otherwise was 24.

IV. EARLY RESULTS

A VAE was implemented based on the techniques provided
by Kingma et al. [8] in order to explore the usability of a
VAE on this dataset. During the unsupervised training a part
of the data set was used that only included the numerical
datatype. This part included the data of 4000 customers. This
part was the only available data at the start of the research
and is different from the set used during the final evaluation.
The latent variables were constrained to three dimensions
in order to visualize them. The visualization contains the
encodings for every data point in a three-dimensional graph
where every dimension corresponds to a latent variable. The
data points were divided into three groups based on the age
of the person due to the buying targets not being available
yet. The graph can be seen in figure 4

By visually inspecting the graph it is clear that some
clustering occurs. Even though the goal of this research is not
to predict age groups and the fact that latent space was con-
strained to 3 dimensions the VAE shows to be a promising
method for doing dimensionality reduction on this dataset. It
was therefore decided to continue with fully implementing
and evaluating VAE’s using different parameters.

V. EVALUATION

The subset used for evaluation was created from the
dataset provided by CB, more information about this dataset
can be found in section I-A. More information about the
data preparations can be found in section III-A. This data set
contained 34289 customers with target labels equally repre-
sented by under-sampling the minority class. Each customer
had 4820 variables recorded. Of these variables an average
of 97 percent are missing. The train and test set was were

Fig. 4: Latent vector visualisation of 4000 customers. Colors
indicate customer age group.

created by splitting the dataset into 60 percent training set
and 40 percent test set.

A. Dimensionality reduction

The dimensionality reduction capabilities of the VAE will
be evaluated by multiple metrics. First the reconstruction
loss, specifically the mean squared error of the input and
output. A lower loss will show the ability of the network
to reduce dimensions while keeping information loss at a
minimum. And because a dimensionality reduction with the
lowest information loss is preferred the network with the
lowest reconstruction loss will be considered best.

Secondly the F1 [33] performance of classification when
using the network as a preprocessor or pre-trained network.
This F1 score can then be compared to a classifier that was
trained on the original data. This will show the influence of
information loss due to compression. The lowest influence or
in other words the classifier with an F1 score that is closest to
the F1 score of the classifier trained on the original data will
be considered best. Note that only one target set is available,
thus giving only an indication of this influence.

Lastly, the dimensionality reduction will also lead to de-
creased file sizes and decreased classifier training time when
the dimensionality reduction is used as a pre-processing step.
The decreases in file size and training time are only beneficial
if the previous metrics are satisfactory. The benefits have to
be considered together in order to make a useful conclusion.

B. Influence of missing data on reconstruction

Related to the dimensionality, the influence of missing
data on reconstruction will be evaluated by replacing values
with missing values before reconstruction. The number of
replaced variables is controlled by a parameter. The parame-
ter contains the chance that a variable will be replaced by a
zero. by setting the parameter to 10% for example, will lead
to a dataset with 10% of its non-missing variables replaced
by zeros. The data containing the added missing values is
then reconstructed in using one of the VAE configurations.
The reconstructed data is then compared to the original data.



C. Neural network classification

The SGAN and the encoder-classifier networks can be
used for classification directly. These networks are evaluated
based on the F1 score.

VI. RESULTS
A. Parameters

In this section VAE configurations will be defined using
three parameters. The first parameter is Loss function this
parameter defines the loss function used, it can be either
normal or modified see section III-B.1 for more information
on this. The second parameter is Annealing this variable
defines if annealing was used during training of the VAE, see
section III-B.2 for more information. The last parameter is
beta which defines what beta was used during training, again
see section III-B.2 for more information. When annealing
was enabled the beta parameter defines the maximum value.
In this document, these configurations have the same color
in every graph.

A fourth parameter can be found in configurations that
are used for classification either with a pre trained or
preprocessor setup. This parameter is Classifier and defines
the type of classifier used, the possible paramters are precls,
boost and randomf. precls defines a neural network classifier
using a pretrained encoder. boost refers to a Boosted Tree
while randomf refers to a Random Forest using a VAE
preprocessor.

B. VAE training

Figure 5 shows the training loss of every VAE configu-
ration. Note that not all of the VAE losses can be directly
compared because of the fact that some parameters altered
the loss functions. Because of early stopping, not every
configuration ends on the same epoch. the maximum number
of epochs was set at 400. The lines indicate validation loss
while the dotted lines indicate the training loss.

All of the configurations show a fast decrease of the loss
within the first 20 epochs and a further stabilization up
to epoch 50 after which no big decreases in loss can be
observed. However, some configurations show a sudden drop
in loss around the 100 epoch mark. The models seem to get
stuck in a local minimum and then break out to get into a
second local minimum.

Furthermore, before this sudden drop every configuration
goes through at least one spike of very high loss, the
validation loss quickly increases and decreases within a few
epochs. However, overall the validation loss follows the
training loss closely indicating no overfitting, the training
loss is cannot be seen in the graph in order to keep the
graph readable.

There is also a clear difference in loss between the con-
figurations with the modified and the normal VAE loss. The
configurations with the normal VAE loss have a generally
higher training and validation loss. This difference could be
explained by the exclusion of the missing variables in when
using the modified loss, again it is hard to compare these
loss functions directly due to the influence of the parameters

on the loss during training. Note that the loss is stable but far
from zero, this could be due to the high number of missing
values or that more optima remain.

Because the results from figure 5 only show the results
of single training runs the training was repeated in order to
get more reliable results. However, due to time constraints,
these runs were limited to 20 epochs. Figure 6 shows the
mean and standard deviation validation loss of every VAE
configuration during training. The VAE’s were trained three
times for 20 epochs each time. The standard deviation is
depicted by the shaded area around the lines.

The results show to be the same as during the first 20
epochs of figure 5, the lines seem to stabilize at the same
amount of epochs and there is a clear difference of eventual
loss between the normal and modified VAE losses. The
standard deviation during training is very low, meaning a
low influence of chance. The parameters next to the two
different VAE loss functions do seem to have an influence
on the first few epochs but do not seem to have an influence
later on because every configuration converges to the almost
same loss value eventually. However, as noted earlier, it is not
really possible to compare these eventual loss values because
the parameters directly influence the outcome of the loss
function.

Loss function Beta Annealing Epochs Final loss

modified 1 False 177 110.836
modified 1 True 268 109.899
modified 2 False 254 112.217
modified 2 True 217 112.075
modified 3 False 55 133.288
modified 3 True 53 133.691
normal 1 False 195 117.456
normal 1 True 175 117.606
normal 2 False 114 140.867
normal 2 True 128 140.856
normal 3 False 93 140.869
normal 3 True 98 140.868

TABLE I: VAE epoch amount and final training loss

Another view of the data from figure 5 can be seen in
table I. This table shows the final validation loss of every
configuration and the number of epochs the training ran.
Because of early stopping, not every VAE trained for the
same amount of epochs. It can be seen that the number
of epochs varies heavily. VAE’s with annealing enabled are
close to their constant beta counterparts for both the max
epochs and the loss. This indicates that the Annealing has no
influence on the loss during training after the beta reaches
the maximum value. High beta values lead to higher final
training loss in this table. Higher beta values also trained for
fewer epochs.

C. Data reconstruction

Because of the influence of the parameters on the training
loss and the influence of the KL-divergence every VAE
configuration was also evaluated using a normal MSE and
a masked MSE after training. These will give an error that
can be used to compare the different configurations more



Fig. 5: VAE validation loss during the training of different VAE configurations. The red and orange lines are the configurations
with the modified loss function while the bluer and grey lines are the configurations with the normal loss function. The Beta
values are indicated by the hardness of the color.

Function β Annealing MSE ∗10−3 Masked MSE ∗10−3

modified 1 False 7.381 1.799
modified 1 True 7.308 1.795
modified 2 False 7.314 1.801
modified 2 True 7.344 1.801
modified 3 False 10.129 2.276
modified 3 True 10.260 2.279
normal 1 False 1.910 1.898
normal 1 True 1.917 1.902
normal 2 False 2.405 2.388
normal 2 True 2.405 2.390
normal 3 False 2.406 2.390
normal 3 True 2.406 2.388

TABLE II: MSE and Masked MSE reconstruction error of
each VAE configuration. Each VAE configuration had a
single training run with a maximum of 400 epochs.

accurately. The masked MSE works like the Modified loss
function by ignoring missing values, see III-B.1 for more
information. The VAE’s used for this were the same as the
VAE’s in the previous training results.

The reconstruction loss of different VAE’s after training
for a maximum of 400 epochs can be seen in table II.
In table II it can be seen that the losses of the annealing

configuration are very close to its non-annealing counterpart,
this is consistent with the results form table I and indicates
that the Annealing has no influence on the loss during
training after the beta reaches the maximum value.

Furthermore the masked losses are consistently lower than
the normal losses when the modified VAE loss function
is used during training. This was to be expected because
the configurations with the modified loss are trained and
therefore optimized using this error. It should therefore also
perform better when using this error.

There is no clear difference between masked a normal loss
when a normal VAE loss function is used. This means that
on average the usage of the modified loss does not impact the
performance on all of the variables while performing better
on the non-missing variables.

Finally, a lower β value leads to a lower loss in both the
normal MSE as the masked MSE. The configurations with
the modified loss function show a clear jump between a value
of 2 and 3 while the difference between 1 and 2 is relatively
small. The configurations with a normal loss function also
have a jump however this happens between a value of 1
and 2 with the difference between a value of 2 and 3 being
relatively small



Fig. 6: VAE mean validation loss and mean training loss during the training of different configurations and limited to 20
epochs. The red and orange lines are the configurations with the modified loss function while the bluer and grey lines are
the configurations with the normal loss function. The Beta values are indicated by the hardness of the color.

Function β Annealing MSE ∗10−3 Masked MSE ∗10−3

modified 1 False 11.596 ± 0.005 2.308 ± 0.005
modified 1 True 11.629 ± 0.025 2.306 ± 0.004
modified 2 False 11.648 ± 0.107 2.309 ± 0.003
modified 2 True 11.595 ± 0.100 2.306 ± 0.006
modified 3 False 11.592 ± 0.118 2.308 ± 0.006
modified 3 True 11.623 ± 0.015 2.308 ± 0.003
normal 1 False 2.491 ± 0.005 2.441 ± 0.019
normal 1 True 2.480 ± 0.008 2.449 ± 0.004
normal 2 False 2.491 ± 0.004 2.449 ± 0.011
normal 2 True 2.490 ± 0.004 2.447 ± 0.005
normal 3 False 2.495 ± 0.005 2.455 ± 0.014
normal 3 True 2.486 ± 0.008 2.454 ± 0.007

TABLE III: Mean and standard deviation of the MSE and
Masked MSE reconstruction error of each VAE configura-
tion. Each VAE configuration had three training runs with
each training run having a maximum of 20 epochs.

The reconstruction loss of different VAE’s after training
for 20 epochs can be seen in table III. The results show the
mean and standard deviation of the MSE and Masked MSE
reconstruction error of each VAE configuration. Each VAE
configuration had three training runs with each training run
having a maximum of 20 epochs

When training for only 20 epochs no clear distinctions
can be seen. The only clear divide is between the two types
of VAE losses. The modified VAE loss performs slightly
better using the masked MSE while the normal VAE loss
performs better using the normal MSE, again this is expected.
The overall standard deviations are very low. Comparing
this table with table II shows that the MSE and masked
MSE decrease even further after training for more epochs.
The configurations with the modified loss however have a
relatively bigger decrease when comparing the results from
epoch 20 and the final epoch

These results show that the difference between the modi-
fied loss and the normal loss already have an impact on the
resulting error as early as 20 epochs. Also, the configurations
with the modified loss benefit more from more epochs
when looking to the reconstruction losses. The low standard
deviations show that these results are repeatable.

D. Changes to error function

Due to the fact that the variables in the dataset are both
binary and continuous, it became clear during the evaluation
of the reconstruction error using MSE that MSE might not
be the best error function to use. A combination of binary



Loss function Beta Annealing Error Masked Error

modified 1 False 0.250 0.037
modified 2 False 0.249 0.038
modified 3 False 0.297 0.034
normal 1 False 0.050 0.215
normal 2 False 0.059 0.234
normal 3 False 0.059 0.236

TABLE IV: Normal and masked reconstruction error, as
covered in section VI-D, of each VAE configuration.

cross-entropy (BCE) and root mean squared error (RMSE)
was chosen. The formula can be seen in 4.

Error =
1

n

n∑
i=1

BCE(ybi, ŷbi) +RMSE(yci, ŷci) (4)

Where ybi and yci are the binary and continuous datapoints
respectively.

The VAE configurations from the previous chapter were
then reevaluated using this new error function. While retrain-
ing the configurations with this error function as the basis
for the loss functions would be possible it was not done due
to time constraints. The configurations with annealing were
not evaluated in these results due to time constraints and
the fact these configurations do not show clear differences
compared to the non-annealing configurations after training
in the previous sections.

The results of the evaluation of the reconstruction with
the new error function can be seen in table IV. The VAE
configurations with the modified loss function show to have
a significantly lower error using the masked error compared
to the configurations with the normal loss function. When
looking at the normal error however the configurations with
the modified loss function show to have a significantly higher
error compared to the configurations with the normal loss
function. This is different from the results from table II where
the configurations with the modified loss always performed
the same or better. Like in the tables from the previous
sections a lower beta value generally leads to a lower error.

E. Influence of missing data

In this section, the influence of missing data on the model
is explored by creating artificial missing data. The artificial
missing data is created by replacing non-missing data with a
0. By comparing the reconstructed output with the original,
before replacing that is, it can be observed how the model
reacts to more missing data. One possibility would be that the
model starts to impute the missing values because it learned
the relations between variables and can therefore predict
what variable could be in place of the missing. Another
possibility is that the model simply starts performing worse.

The error used in this section is the error described in
section VI-D.

Figure 7 shows the error of the reconstructed represen-
tation compared to the original when using different VAE
configurations and different percentages of variables replaced
by zeros. In this graph, all of the VAE configurations seem to

Fig. 7: Reconstruction error after replacing variables with
zeros. The error function used can be found in section VI-D.
Note that this figure has broken axes.

perform better when the amount of missing data is increased
except for the configuration with a beta of 1 and using the
normal loss function where the error increases somewhat.
The configurations with the normal loss function and with
a beta value of two and three stay completely flat, this is
possibly due to the network learning more of the distribution
of the variables instead of the relations between variables.
The configurations with a lower beta and the modified loss
function react somewhat to the added missing values by a
small decrease of error. Furthermore keep in mind that 93%
of variables are missing, heavily clouding these results.

Figure 8 is the same as the previous figure, however, before
calculating the loss the data is filtered by only selecting the
values that are non-missing in the original removing the
big influence of all of the missing data. Again his mask
somewhat resembles the modified loss of section III-B.1. Due
to this resemblance, the configurations with the modified loss
function have a significantly lower error compared to the
configurations with the normal loss function. The error of
the configurations with the modified loss is also significantly
lower when comparing it with the previous figure, figure 7,
while the configurations with the normal loss function have
significantly higher error compared to figure 7. This can also
be observed in table IV

Overall the Configurations do not seem to be influenced
that much from more adding missing data even up to feeding
the network with only zeros. Again except for the configura-
tion with a beta of 1 and using the normal loss function which
increases its error significantly and the configurations with a
lower beta and the modified loss function react somewhat to



Fig. 8: Reconstruction error after replacing variables with
zeros, filtered by only selecting the values that are non-
missing in the original.The error function used can be found
in section VI-D. Note that this figure has broken axes.

the added missing values by a small decrease of error.
Figure 9 is the same as the previous figures, however, the

data is filtered by only selecting the values that were replaced
by missing. The error of the VAE configurations with the
normal loss function is generally higher in this graph. All
of the models react to the increase of added missing values
by an increase of loss. The configurations with the higher
beta values find some kind of optimum pretty fast while the
configurations with the lower beta values continue to rise up
until there are only missing values.

Looking at all three figures in this section, the models do
not seem to learn much about the relations between variables
in this dataset. The straight lines indicate that the model
learns more about the distribution of each variable. When
looking at the configurations with the modified loss function
it is clear that the masked reconstruction error is consistently
lower. The modified loss function is therefore successful in
forcing the model to learn more about the non-missing data
points.

F. Classification baseline

The original data was used to train a Random forest [11]
and a Boosted Tree [12]. The F1 performance of these
models was used as a baseline for the models trained and
evaluated on the encoded representations.

The baseline F1 score can be seen in table V. Both models
perform close to each other. The mean classification F1 score
of the SGAN after training for 200 epochs was 0.72 as can
be seen in table V. This is very close to the performance
of the boosted tree and random forest. The fact that a state

Fig. 9: Reconstruction error after replacing variables with
zeros, filtered by only selecting the values that were replaced
by missings.The error function used can be found in section
VI-D.

Random Forest Boosted Tree SGAN

F1 .72 .73 .72

TABLE V: Average F1 performance of classifiers on original
data (not encoded or compressed)

of the art neural network cannot improve the classification
performance over the decision tree-based models indicates
that the data might not have complex relations or structures
in it.

G. Classification using VAE preprocessor

This section describes the performance of different classi-
fiers when trained and evaluated not on the original dataset
but on the encoded representation created by one of the VAE
configurations. This was done by only using the encoder of
a fully trained VAE and using it as a preprocessor that can
encode data with minimal information loss. More technical
information can be found in section III-B. The best case
scenario would be a classifier that performs just as good
as the baselines from VI-F while using the encoded data
representations.

The classification performance of the classifiers on differ-
ent VAE preprocessors with early stopping enabled and a
maximum of 400 epochs can be seen in table VI. The best
performing configuration comes very close to the baseline
performance. With only a difference of about .04 in F1
performance. Looking at this table the configurations with
the normal VAE loss have the best performing encodings.
Difference between the random forest classifiers and boosted



Beta Loss function Annealing boost precls randomf

1 modified False 0.601215 0.717730 0.593292
True 0.612548 0.724898 0.587447

normal False 0.613120 0.715219 0.606117
True 0.627714 0.719336 0.606843

2 modified False 0.581730 0.714370 0.587042
True 0.604980 0.710558 0.590170

normal False 0.678401 0.708795 0.675560
True 0.678202 0.725776 0.040526

3 modified False 0.640192 0.671702 0.651232
True 0.605225 0.718089 0.649865

normal False 0.677051 0.671702 0.180344
True 0.674207 0.726207 0.667493

TABLE VI: F1 performance of classifiers trained and eval-
uated on encoded representations (boost and randomf). F1
performance of classifiers trained and evaluated on encoded
representations (precls) The VAE’s trained for usage as pre-
processors were limited using early stopping to 400 epochs

Beta Loss function Annealing boost randomf

1 modified False 0.647 ± 0.011 0.660 ± 0.006
True 0.649 ± 0.013 0.666 ± 0.005

normal False 0.654 ± 0.006 0.664 ± 0.010
True 0.632 ± 0.018 0.642 ± 0.021

2 modified False 0.666 ± 0.011 0.672 ± 0.020
True 0.640 ± 0.009 0.662 ± 0.009

normal False 0.597 ± 0.074 0.647 ± 0.018
True 0.589 ± 0.069 0.654 ± 0.011

3 modified False 0.611 ± 0.054 0.647 ± 0.009
True 0.616 ± 0.047 0.650 ± 0.010

normal False 0.616 ± 0.029 0.659 ± 0.005
True 0.638 ± 0.028 0.651 ± 0.016

TABLE VII: Mean F1 performance of classifiers trained and
evaluated on encoded representations. The VAE’s trained for
usage as preprocessors were limited using early stopping to
20 epochs

tree classifiers is negligible. Contrary to the previous sections
a higher beta value leads to higher performance overall.

The classification performance of the classifiers on differ-
ent VAE preprocessors after training for 20 epochs can be
seen in table VII. The results show the mean and standard
deviation of 3 training runs. Even after 20 epochs, the
encoded representations perform very close to the baseline.
In this table the modified VAE loss based models perform
a bit better overall. Overall the standard deviation is quite
low, with some exceptions, meaning high reliability. Differ-
ence between the random forest classifiers and boosted tree
classifiers is negligible. In these results, the beta parameter
does not have much influence.

All dimensions Encoded representation

RandomForest 41 sec 2.4 sec
BoostedTree 37 min 7 sec

TABLE VIII: Training time of classifiers

The training time of different classifiers is also decreased
when using encodings as can be seen in table VIII. The
Random forest is faster overall, but that has to do with the

parallel training compared to the sequential nature of the
boosted tree. The difference between original and Encoded
is quite big however, the classifiers train more quickly on
the encoded representation. This was of course expected due
to the simple fact that fewer variables mean faster training.
However, this does not undermine the practical benefit that
the encoding of data has on the speed of classification and
training.

The difference in performance between classifiers trained
and evaluated on the original en the encoded data is rela-
tively small. This means that next to encoding information
needed for reconstruction, the goal of the VAE, the VAE
is also encoding useful for classification. Classification and
representation, therefore, have some information shared but
are not exactly the same as can be observed by the influence
of the beta parameter in these results. No clear difference
between classifier types can be seen in these results.

H. Preprocessor data compression

When the encoder of a VAE is used as a preprocessor
it could be seen as a data compression algorithm tailored
to the dataset is wat trained on. In this section, the generic
compression technique Zip is compared to the preprocessor.

Size original size zipped

Original 376MB 2.5MB
Encoded 396KB 365KB

TABLE IX: Compressed and uncompressed file size of 4000
customers

When file sizes of the data from 4000 customers are
compared between original and encoded representation it is
clear that the encoded representation uses significantly less
memory. This can be seen in table IX. When the original
and its encoded representation are compressed using Zip the
difference is significantly less big. While the zipped data uses
less memory than the original data, the zipped data needs to
be unzipped prior to using it. Therefore negating the benefits
of zip compression for practical usage. The original data and
the encoded representations were saved to the HDF5 [34] file
format without any compression.

The fact that the zip algorithm is unable to compress
the encoded representation any further indicates that the
encoder is able to compress the data into multiple unique
features, thus retaining as much information as possible.
This experiment however does no show the quality of these
features.

I. Classification using pretrained VAE

The biggest disadvantage of using the encoder of a VAE as
a preprocessor is the fact that the VAE was optimized to give
the best reconstruction possible, which is not necessarily the
same as optimizing for classification. However, because the
encoder is a neural network this disadvantage can be negated
by using the encoder as a pretrained part in a classification
network. This way the network gets a benefit in the form



Fig. 10: Validation loss during training of different configurations of a pre trained neural network.

of weights that are already optimized for the dataset and a
similar goal. These weights can then be improved further in
the classification network by doing more training.

Figure 10 shows the validation loss during the training
of different pre-trained classifiers. It is clear that every
configuration eventually reaches the same optimum with two
exceptions that seem to get stuck almost immediately. While
not in the graph the validation loss is generally lower than
the training loss.

Figure 11 shows the F1 validation during the training of
the same classifiers as figure 10. The F1 performance also
reaches an optimum quickly with again two exceptions which
seem to get stuck immediately. The validation performance
is generally higher than the training performance.

Figure 12 shows a zoomed-in version of figure 11 with
only 3 configurations present in order to show the influence
of a beta of three. The configuration with the higher beta
takes more epochs to get to the same performance as the
other two configurations. This could explain the two flat lines
in figure 11 that also have a beta of 3.

Interestingly these 2 lines both had annealing disabled
when training the VAE. This indicates that the annealing
does have an effect on the eventual VAE even after the beta
value has its maximum value. While Annealing did not have
any noticeable effect on the reconstruction and classification

using a preprocessor performances, it does have an effect on
the model’s ability to update its weights towards a new task.

Table VI shows the F1 test performance of the classifiers
after training on the test set. These results correspond to the
results of the previous two figures. Most classifiers performed
the same with the exception of the two classifiers that did not
seem to train. These classifiers both had annealing disabled
and a beta of 3. They have significantly lower F1 scores. On
average the F1 performance is comparable to the results of
table V. Overall the F1 performance is slightly higher when
using the modified loss function during pre-training.

It is clearly possible to use an encoder from a VAE as a
pretrained part of a classification network. The parameters
used during the training of the VAE do seem to have less
of an influence on the classification performance, contrary
to the results of the preprocessor setups. The beta has an
influence on the speed of which the network is able to get
to an optimum or to even get to an optimum at all. A high
beta makes the network untrainable, however, the enabling
of annealing makes it trainable again. The loss function does
to not have any influence.

VII. DISCUSSION

The results show that KL-annealing has a negligible influ-
ence on the normal and masked reconstruction losses when



Fig. 11: Validation F1 performance during training of different configurations of a pre trained neural network.

training a VAE for 400 epochs compared to its counterpart
with a constant beta. The KL-annealing also has no measur-
able impact on the classification performance when training
for a VAE 400 epochs compared to its counterpart with a
constant beta. This is to be expected because the annealing
is only done for the first 10 epochs. In other words after 10
epochs a VAE with a beta of 3 has the same loss function
as a VAE with annealing enabled and a maximum beta of
3. This becomes clearer when looking at the results of the
VAE’s that were trained for 20 epochs. Furthermore based
on the current results the KL-annealing does not influence
the number of epochs needed for an optimal loss.

The only big influence of KL-annealing was during fine-
tuning of the pre-trained networks. Configurations with a
beta of 3 and with annealing disabled did not learn at all and
therefore also have a significantly lower performance score
compared to their annealing counterparts or configurations
with lower beta values. However these higher beta values do
not result in better classification performance, the influence
of KL-annealing is therefore of no benefit.

The loss function used when training the VAE does not
show to have a significant influence when looking at the
pre-trained and preprocessor classification setups. It does,
however, have a huge influence on the reconstruction errors.
As expected, the modified loss performs better when evalu-

ating with the masked errors while the normal loss function
performs better when evaluating with the normal errors. The
modified loss, therefore, forces the network to focus on the
data that is available. But this has no measurable influence
on the classification tasks, at least in this dataset.

The loss function and annealing used during training of
the VAE are not used during fine-tuning. It therefore has
no direct influence during fine-tuning. The only influence of
these parameters would be a VAE that has overcome some
local optimums which would lead to better performance after
fine-tuning. This could be one of the reason for the inability
to learn during finetuning as covered previously.

A high beta decreases the number of epochs during VAE
training due to the fact that early stopping stops the training.
A higher Beta increases the number of epochs needed for
getting to an optimum during fine-tuning of a pre-trained
network or even impeding the ability to learn something
at all. The optimum of every parameter configuration is
eventually the same, except for the models that did not
learn anything. It can be therefore concluded that purely for
classification purposes and a decreased training time a lower
beta is preferred. When looking at reconstruction a low beta
also performs better. However when looking at classification
using a pre-processor, a higher beta is preferred.

This could be explained by the fact that a higher beta



Fig. 12: Validation F1 performance during training of different configurations of a pre trained neural network during the
first 30 epochs.

forces the network learn not only reconstruction but re-
construction with latent variables that conform to a certain
distribution. This is of course not useful when solely evaluat-
ing reconstruction. The reason for the pre-trained networks
benefitting form a high beta and the preprocessing classi-
fiers benefitting form a low beta is that the preprocessing
classifiers are stuck with an encoder that is optimized for
reconstruction, which is not optimal. An encoder trained
with a high beta is however less optimized for reconstruction
which leads to better classification. The pre-trained networks
can overcome this by re-optimizing during fine-tuning.

When introducing more missing values by artificially
creating more the reconstruction error did not change much
when looking at all of the variables. This is consistent with
the results of Ennett et al. [5] where it was not possible
to find a breaking point of the models. This is due to the
ability of autoencoders to generate reconstructions that are,
in simple terms, averages of the data distribution when no
or few input neurons are activated. This means that the VAE
configurations capture distribution more than structure even
when using the modified loss function.

Because of only a single observation is available of the
different VAE configurations trained for 400 epochs chance
could have a big impact on the conclusions. The fact that the

annealing and non-annealing counterparts perform similarly
removes this chance problem somewhat. Next to that early
stopping was also used which ended the training of some
configurations as early of 50 epochs. It might be possible
that these configurations were not done training but simply
dealing with local optimums or slow learning overall.

VIII. CONCLUSION

According to the results a VAE can be implemented as
a dimensionality reduction prepossessing step for classifica-
tion. Successful classification can still be done with only
minimal loss in performance. Classifiers using the VAE as a
pre-processor perform almost as well as classifiers trained on
all of the variables. The type of classifier is not important.
Networks with pretrained encoders from the VAE were on
par with the classifiers trained on all of the variables. The
VAE is therefore able to reduce dimensionality while keeping
the most of the important information needed to make a
reconstruction or a classification.

In return for the small drop of performance, training time
and memory usage are greatly decreased. This is especially
beneficial if the same data is used by multiple algorithms.
Which is the case for a company like CB for example.
Data could be compressed for example every day. After



compression every algorithm could then be updated or re-
trained. Leading to a decrease in total computational power
and total memory needed.

For classification using a pre-trained encoder a low beta
value is preferred while classification using an encoder as
preprocessor benefits from a high beta value. The type of loss
function has no influence on the classification performance,
however, for reconstruction purposes, the modified loss func-
tion is able to get better performance on non-missing data.
That said, overal both types of models show to learn more
about the distribution of the data than its structure The usage
of KL-annealing does not have any benefit for classification.

The classification performance of the SGAN was not an
improvement over the performance of the boosted tree or the
random forest. It is possible that the data simply does not
contain highly complex relations that can normally only be
modeled by a deep neural network.

IX. FUTURE WORK

An interesting topic for future work would be exploring
the benefits of having the generator of the SGAN also
generate data labels. This was also proposed in the paper
of Odena. In this setup the discriminator could do a 2 sided
classification where it would classify Fake/Real and the class
label at the same time.

As an added benefit data will be anonymous after dimen-
sionality reduction. This could be explored more in future
work. For example, by giving data scientist with lower
security levels access to confidential data by giving them
the encoded version only. These scientists could then exper-
iment with different algorithms and techniques. It would be
interesting to research if algorithms trained on the encoded
data could be transferred or adapted to the original data, in
order to get optimal performance after the experimentation
phase.

An interesting approach to explaining the classification
models that will be trained in this research by using the lo-
cal interpretable model-agnostic explanations (LIME) model
provided by Ribeiro et al. [35]. The biggest advantage of
LIME is it is not model dependent. Furthermore, LIME
results are easily interpreted by humans.

Future work should verify these conclusions by rerunning
the experiment multiple times with shuffled sets for training,
validation and testing between each run. Future work should
also validate the classification abilities of the VAE by eval-
uating the systems of this paper on different classification
tasks than the single task evaluated in this paper. Lastly, the
VAE configurations should be trained with a fixed epoch
length.

The decoder part of the VAE’s was not separately eval-
uated in this research for reasons explained in the related
work. However, a decoder could be used in multiple ways,
for example, data generation. Furthermore, the decoder has
an impact on the reconstruction loss, researching the decoder
separately could give insights on why the VAE performs in
a certain way when reconstructing data or how to improve
the learning of the VAE.

Continuing with improving the learning of the VAE, it
would also be useful to explore the performance of the
VAE loss function when the MSE is replaced with the error
function described in section VI-D.

This research focused on the VAE. However, in some
cases, a lower beta value was beneficial compared to a higher
beta. It would be therefore also worthwhile to look into using
a beta value of zero. Effectively a VAE into an autoencoder.
As an alternative to the VAE, an Adversarial Autoencoder
(AEE) [36] could be implemented and evaluated. The AEE
uses techniques first proposed by the GAN framework to
train an autoencoder in an adversarial manner. Like the VAE
this network can also be used for dimensionality reduction
and semi-supervised learning.

REFERENCES

[1] David Silver et al. “Mastering the game of Go with
deep neural networks and tree search”. In: nature
529.7587 (2016), p. 484.

[2] Pedro J Garcı́a-Laencina, José-Luis Sancho-Gómez,
and Anı́bal R Figueiras-Vidal. “Pattern classification
with missing data: a review”. In: Neural Computing
and Applications 19.2 (2010), pp. 263–282.

[3] John W Graham. “Missing data analysis: Making
it work in the real world”. In: Annual review of
psychology 60 (2009), pp. 549–576.

[4] Gerard V Trunk. “A problem of dimensionality: A
simple example”. In: IEEE Transactions on Pattern
Analysis & Machine Intelligence 3 (1979), pp. 306–
307.

[5] Colleen M Ennett, Monique Frize, and C Robin
Walker. “Influence of missing values on artificial neu-
ral network performance”. In: Medinfo. 2001, pp. 449–
453.

[6] Hervé Abdi and Lynne J. Williams. “Principal com-
ponent analysis”. In: Wiley Interdisciplinary Reviews:
Computational Statistics 2.4 (June 2010), pp. 433–
459. DOI: 10.1002/wics.101. URL: https:
//doi.org/10.1002/wics.101.

[7] Charles X Ling and Victor S Sheng. “Cost-Sensitive
Learning and the Class Imbalance Problem”. In: ().

[8] Diederik P Kingma and Max Welling. Auto-Encoding
Variational Bayes. 2013. arXiv: 1312.6114.

[9] Augustus Odena. “Semi-supervised learning with
generative adversarial networks”. In: arXiv preprint
arXiv:1606.01583 (2016).

[10] Tim Salimans et al. “Improved techniques for training
gans”. In: Advances in Neural Information Processing
Systems. 2016, pp. 2234–2242.

[11] Tin Kam Ho. “The random subspace method for
constructing decision forests”. In: IEEE Transactions
on Pattern Analysis and Machine Intelligence 20.8
(1998), pp. 832–844. DOI: 10.1109/34.709601.
URL: https : / / doi . org / 10 . 1109 / 34 .
709601.



[12] Jerome H Friedman. “Stochastic gradient boosting”.
In: Computational statistics & data analysis 38.4
(2002), pp. 367–378.

[13] Dumitru Erhan et al. “Why does unsupervised pre-
training help deep learning?” In: Journal of Machine
Learning Research 11.Feb (2010), pp. 625–660.

[14] Cheng-Yuan Liou, Jau-Chi Huang, and Wen-Chie
Yang. “Modeling word perception using the Elman
network”. In: Neurocomputing 71.16-18 (Oct. 2008),
pp. 3150–3157. DOI: 10.1016/j.neucom.2008.
04.030. URL: https://doi.org/10.1016/
j.neucom.2008.04.030.

[15] Brett K Beaulieu-Jones and Jason H Moore. “Miss-
ing data imputation in the electronic health record
using deeply learned autoencoders”. In: Pacific Sym-
posium on Biocomputing 2017. World Scientific. 2017,
pp. 207–218.

[16] S. Kullback and R. A. Leibler. “On Information and
Sufficiency”. In: The Annals of Mathematical Statis-
tics 22.1 (Mar. 1951), pp. 79–86. DOI: 10.1214/
aoms/1177729694. URL: https://doi.org/
10.1214/aoms/1177729694.

[17] Irina Higgins et al. “beta-vae: Learning basic visual
concepts with a constrained variational framework”.
In: International Conference on Learning Representa-
tions. 2017.

[18] Samuel R. Bowman et al. “Generating Sentences
from a Continuous Space”. In: (2015). arXiv: 1511.
06349.

[19] Harri Valpola. From neural PCA to deep unsupervised
learning. 2014. arXiv: 1411.7783.

[20] Antti Rasmus et al. Semi-Supervised Learning with
Ladder Networks. 2015. arXiv: 1507.02672.

[21] Mohammad Pezeshki et al. “Deconstructing the ladder
network architecture”. In: International Conference on
Machine Learning. 2016, pp. 2368–2376.

[22] Ian J. Goodfellow et al. Generative Adversarial Net-
works. 2014. arXiv: 1406.2661.

[23] Lucas Theis, Aäron van den Oord, and Matthias
Bethge. “A note on the evaluation of generative mod-
els”. In: arXiv preprint arXiv:1511.01844 (2015).

[24] Kai Ming Ting. “Inducing cost-sensitive trees via
instance weighting”. In: European Symposium on
Principles of Data Mining and Knowledge Discovery.
Springer. 1998, pp. 139–147.

[25] Haibo He et al. “ADASYN: Adaptive synthetic sam-
pling approach for imbalanced learning”. In: Neural
Networks, 2008. IJCNN 2008.(IEEE World Congress
on Computational Intelligence). IEEE International
Joint Conference on. IEEE. 2008, pp. 1322–1328.

[26] Nitesh V Chawla et al. “SMOTE: synthetic minority
over-sampling technique”. In: Journal of artificial
intelligence research 16 (2002), pp. 321–357.

[27] Eric Jones, Travis Oliphant, Pearu Peterson, et al.
SciPy: Open source scientific tools for Python. [On-
line; accessed ¡today¿]. 2001–. URL: http://www.
scipy.org/.

[28] François Chollet et al. Keras. https://keras.io.
2015.

[29] Raoul Fasel. Repository for code used in adapting
the variational auto encoder for datasets with large
amounts of missing values. [Online; accessed ¡today¿].
2019. URL: https : / / gitlab . com / vae _
missing_values.

[30] J. Sola and J. Sevilla. “Importance of input data
normalization for the application of neural networks to
complex industrial problems”. In: IEEE Transactions
on Nuclear Science 44.3 (June 1997), pp. 1464–1468.
DOI: 10.1109/23.589532. URL: https://
doi.org/10.1109/23.589532.

[31] Lutz Roeder et al. Netron - Visualizer for deep
learning and machine learning models. https://
github.com/lutzroeder/netron. 2019.

[32] Timothy Dozat. “Incorporating nesterov momentum
into adam”. In: (2016).

[33] Yutaka Sasaki et al. “The truth of the F-measure”. In:
Teach Tutor mater 1.5 (2007), pp. 1–5.

[34] The HDF Group. Hierarchical Data Format, version
5. http://www.hdfgroup.org/HDF5/. 1997-NNNN.

[35] Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. “”Why Should I Trust You?”: Explaining
the Predictions of Any Classifier”. In: Proceedings of
the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, San Fran-
cisco, CA, USA, August 13-17, 2016. 2016, pp. 1135–
1144.

[36] Alireza Makhzani et al. “Adversarial autoencoders”.
In: arXiv preprint arXiv:1511.05644 (2015).


