
Airport Restroom Cleanliness Prediction Using Real Time User
Feedback Data and Classification Techniques

Kilian Ros
k.m.ros@student.utwente.nl

University of Twente
Enschede, Overijssel

ABSTRACT
Amsterdam Airport Schiphol aims to offer a maximized airport ex-
perience to its passengers. A main contributor to this is the cleaning
of restrooms, of which the cleanliness is rated by the users. This
paper reviews to what extent real-time feedback data and classifica-
tion techniques can be useful in practice to predict the cleanliness
of restrooms. Within this topic, different class definitions of clean
and unclean are studied and a distinction is made between a com-
bined prediction model that includes the entire environment and
restroom-specific prediction models that focus only on a single
restroom. The dataset is imbalanced and visualizations show that
there is class overlap. The combined prediction model outperforms
combined baselines but the precision is not high enough to be use-
ful in practice. Restroom-specific prediction models of the busier
restrooms outperform the combined prediction model but do not
outperform simple restroom-specific baselines. Restroom-specific
prediction models of the least busy restrooms perform very poor
and sometimes are not even capable of correctly classifying a single
unclean sample. Samplingmethods do not improve the performance
of the combined prediction model but do improve the performance
of some of the restroom-specific prediction models, especially those
with a high class imbalance. The major cause of the unsatisfying
performance is not class imbalance, but the data ambiguity that
leads to class overlap. To obtain prediction models that are useful
in practice, the dataset should be enriched with features that are
capable of distinguishing the two classes more clearly.
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1 INTRODUCTION
Amsterdam Airport Schiphol is the largest airport of The Nether-
lands and the third busiest airport in Europe in terms of passenger
volume [4]. Being an important international airport, Schiphol is
always looking for ways to improve their services and offer a maxi-
mized airport experience to its passengers.

One of the main contributors to the overall passenger satisfac-
tion is the cleaning of restrooms located all over the airport. To
monitor the user satisfaction of restrooms, most restrooms are
equipped with so-called smiley boxes. These devices have three
buttons which allow the user to rate the cleanliness of the restroom
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using a green, orange or red smiley, corresponding to good, average
and bad respectively.

With this technology in place, real time user feedback data is
obtained and Schiphol requires their cleaning contractors to utilize
this data to improve on the current situation. The main objective
that the airport has given them is to increase the overall percentage
of green votes by a certain percentage.

In order to increase the overall percentage of green votes, the
number of non-green votes, orange and red, has to be reduced.
The assumption is that cleaning activities at the right moments
will improve the cleanliness and prevent users from rating the
cleanliness with a non-green vote.

Preliminary analysis of the data already identified two weak
spots in the scheduling of cleaners. The first one is that the earliest
shift of cleaners start their workday at six in the morning while
there is an observed peak of bad votes between five and six. The
second one is that all cleaners take their lunch break at the same
time. During this lunch break, there is also an observed peak in
the number of bad votes. These flaws can easily be exploited to
increase the overall percentage of green votes. Minor changes to
the way of organizing cleaners and cleaning tasks can quickly yield
benefits with very little effort. Although manual analysis of the
data can certainly contribute to the increase of user satisfaction, it
is non-adaptive to the dynamic environment of the airport and it is
a very tedious exercise.

Because of this, we aim for a more automated solution that is
capable of anticipating to changes in the dynamic environment,
through accurate prediction of non-green votes. This can contribute
greatly to increasing the percentage of green votes because it allows
cleaning contractors to prevent non-green votes by cleaning the
restrooms at the right time. An accurate prediction model could be
implemented to dynamically adjust current cleaning schedules and
redirect cleaners to restrooms where cleanliness is most likely to
become poor.

With the number of bad votes being a continuous number, a log-
ical first step would be to approach this problem using regression
techniques. The preliminary regression analysis has shown that
the results, presented in appendix A, are not very promising. Addi-
tionally, for application relevance the call to action, which redirects
a cleaner, is more important than predicting the exact number of
bad votes. Because of this, we decided to approach the problem
as a binary classification problem. This means that the decision of
when to redirect a cleaner depends on how the two classes, clean
and unclean, are defined.

The purpose of this paper is to study the potential of real time
feedback data and classification methods to develop a model that is
useful in practice and contributes to the increase of user satisfaction
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at Amsterdam Airport Schiphol. To achieve this goal, the dataset is
analyzed and several useful features are extracted. Multiple classifi-
cation algorithms are applied to find the best solutions for different
settings of the problem. The practical usefulness of these settings
is then evaluated using the expertise of senior personnel.

The contribution of this paper is the exploration of using classi-
fication techniques in combination with a novel, real-world dataset
that represents a very dynamic and subjective environment. This
paper reviews to what extent real-time feedback data and classifica-
tion techniques can be useful in practice to predict the cleanliness
of restrooms. Within this topic, different class definitions of clean
and unclean are be studied and a distinction is made between a
combined prediction model that includes the entire environment
and restroom-specific prediction models that focus only on a single
restroom.

The remainder of this paper is organized as follows: Section 2
discusses related work that is connected to this particular dataset.
Section 3 analyses the dataset by exploring the contents and fea-
tures and describing the preparation process. Section 4 outlines
the research method and all steps taken towards producing the
actual results. Section 5 presents the data visualizations and the
results of the studied classification methods for different settings
of the problem at hand. Section 6 discusses limitations as well as
opportunities and recommendations, and finally, section 7 draws
the conclusions from the results.

2 RELATEDWORK
The dataset used in this study appears to be quite novel in the
research area of machine learning. To our best knowledge, there
is no other work that uses real time user feedback data, or other
subjective data generated by humans, to predict the cleanliness of
rooms.

Despite the fact that this kind of data is rather uncommon in
literature, it does have characteristics that are widely studied in the
field of machine learning, such as the imbalanced learning problem,
class overlap and dimensionality reduction.

2.1 Real-time Customer Feedback Processing
The dataset used in this study is generated by smiley boxes that
are located in the restrooms. Restroom users press a red, orange
or green smiley to express their satisfaction about the cleanliness
of a restroom. Where our data is generated on a three-point scale,
there are other customer satisfaction systems that collect feedback
in different ways or on different scales. The patent of Canora de-
scribes a feedback system that uses a five-point scale to measure
customer satisfaction regarding a certain question [7]. Another
patent of Bossemeyer and Connolly describes a feedback system
where users can provide feedback using their voice [16]. Although
this way of collecting feedback is qualitative instead of quantitative,
they suggest a data mining tool to identify trends in the collected
feedback.

2.2 Class Imbalance
Imbalanced datasets are very common in real-world domains and
applications such as healthcare, network intrusion detection and
creditcard fraud detection [14, 17, 18]. According to Garcia and

He [9], the fundamental issue of imbalanced data is that most stan-
dard learning algorithms expect a balanced class distribution or
equal misclassification cost, leading to compromised performance
when presented with imbalanced data.

Garcia andHe [9] divide the problem into two categories: between-
class imbalance and within-class imbalance. In a binary classifica-
tion problem, between-class imbalance means that one class occurs
more often than the other. Within-class imbalance is concerned
with the distribution of representative data for subconcepts that
exist within a certain class. In other words, samples belonging to
the same class without being similar to each other. Class imbalance
can exist in different orders, Garcia and He [9] state that imbalances
of 1:100, 1:1.000 and 1:10.000 are not uncommon.

According to Garcia and He [9], the effect of class imbalance
on learning performance can effectively be mitigated using several
approaches such as sampling methods, cost-sensitive methods and
learning methods designed specifically for imbalanced problems.

Sampling methods use data modification techniques to create
a balanced class distribution. There are many variations ranging
from rather simple to quite complex methods. The most simple
methods are probably random oversampling and undersampling,
which copies minority samples and deletes majority samples at
random in order to create an equal class balance. A more sophis-
ticated undersampling method is called informed undersampling,
to which for example EasyEnsemble [11] belongs. This method
samples several subsets from the majority class to train a learner on
every subset and then combines the outputs of those learners with
the objective to overcome the problem of information loss which is
introduced by random undersampling. Another method that has
shown promising results is sampling with synthetic data genera-
tion. One technique that implements this is SMOTE [13], which is
a combination of synthetic oversampling of the minority class and
undersampling the majority class. ADASYN [10] is also a technique
that uses synthetic sampling but in an adaptive manner. It uses
a weighted distribution for minority class examples according to
the level of difficulty in learning, creating more data for samples
that are harder to learn. SMOTE is also often used in combination
with data cleaning techniques such as Tomek links and the edited
nearest neighbor rule (ENN) [6]. The goal of these techniques is to
remove class overlap that is introduced when sampling methods
are applied. By removing some overlapping samples, clusters in the
training data can be separated more clearly, which might lead to
better defined rules and improved performance.

Studies have shown that a balanced dataset improves overall
classification performance compared to the original imbalanced
dataset [20]. Garcia and He [9] state that for most imbalanced
datasets, applying sampling methods indeed improves classifier
accuracy.

Where sampling methods try to obtain more balance between
classes, cost-sensitive learning methods try to counteract the nega-
tive effects of class imbalance by assigning different misclassifica-
tion costs, or weights, to the classes [8].

Basic implementations of cost-sensitive learning simply apply
misclassification costs to the dataset as weights that can be ini-
tialized when constructing a model. More advanced implementa-
tions apply cost-minimizing techniques to ensemble methods that
integrate standard learning algorithms to develop cost-sensitive
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Figure 1: Amsterdam Airport Schiphol E Pier Restrooms Floor Plan

classifiers. An example of this is AdaC1 which introduces cost items
into the weight updating strategy of the AdaBoost algorithm [9].

Although these methods can significantly improve the perfor-
mance, they require that the costs of misclassification for the classes
are known. Very often this is not the case and there is only an in-
tuition that one class should be more expensive than the other
class [12].

2.3 Class Overlap
Although many of the works mentioned above assume class imbal-
ance to be the cause of performance loss, Prati et al. [15] notice that
in some cases learning algorithms perform good on imbalanced
datasets and therefore class imbalance cannot directly be correlated
to the loss of performance. Their work suggests that the problem
is not directly caused by class imbalance, but is also related to the
degree of overlapping among the classes.

Class overlap occurs when two data samples are nearly or com-
pletely identical in terms of their features but belong to different
classes. Figure 2 depicts a simple example.

The dataset used in this paper contains both class imbalance as
well as class overlap. A possible solution is provided by Batista et
al. [6], who conclude that general oversampling and SMOTE-based
methods are very effective when dealing with highly imbalanced
and overlapping data. Results show that these methods are able
to achieve similar performance compared to a naturally balanced
distribution. Additionally, they state that the SMOTE technique
with ENN data cleaning seems to be especially suitable when there
is a high degree of class overlap. These suggested sampling methods
will be included in the grid search and the performance of these
methods is evaluated.

Figure 2: Simple Example of Class Overlap Between Two
Classes. Left: No Overlap, Middle: Minor Overlap, Right: Ma-
jor Overlap

2.4 Dimensionality Reduction
Very often real-world datasets have a large number of features
leading to a high dimensional data space that is hard to visual-
ize. Without clear visualizations of data, a problem can be very
hard to comprehend and eventually solve. A useful method to over-
come this problem is dimensionality reduction. As stated in the
dimensionality reduction techniques survey of Sorzano et al. [19],
Principal Component Analysis (PCA) is probably the best known
and most widely used technique.

According to Abdi and Williams [5], the main goal of PCA is to
extract the important information from the data and express this
as new features called principal components. These components
are obtained as linear combinations of the original features. The
first principal component is required to have the largest possible
variance, and therefore explain most of the variance within the
dataset. The second component is constraint to be orthogonal to
the first one and should also have the largest possible variance
without violating the constraint. Other components are computed
likewise.

3 DATA ANALYSIS
This section describes what the dataset looks like and how it is
acquired. It will also explain how new features are created from the
original data and how the numerical features are scaled for use in
certain prediction algorithms. Lastly, different class definitions of
classes clean and unclean are addressed.

3.1 Data Description
The dataset used in this study contains ten weeks of real time
user feedback data in the period ranging from Monday march 11th
till Sunday may 19th 2019. Schiphol consists of many areas with
restrooms such as boulevards, lounges, baggage reclaim halls and
piers. At every pier, there are multiple gates that are being used for
arrivals and departures of flights.

As stated in the introduction, the objective is to increase the
overall percentage of green votes. This means that a green vote is
considered good and a non-green vote is considered bad, which
results in a binary problem definition. Phrasing the problem as such
also means that we work with the assumption that a green vote
refers to a clean restroom and that a non-green vote refers to an
unclean restroom. This assumption is subject to debate, which will
further be discussed in section 6.
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3.2 Data Acquisition
To narrow the scope of this study and maintain focus, only the E
pier is included in this study. The E pier was chosen because it was
one of two piers that received the most votes during the specified
time period. Compared to the other pier with much votes, the E
pier had a lower overall percentage of green, which means that at
this pier there was more room for improvement. Next to that, the
E pier is the only pier where all the restrooms are equipped with
smiley boxes to collect data.

The E pier consists of thirty-four restrooms which are depicted
in figure 1. Every restroom number on the floor plan contains
one restroom dedicated to males and one restroom dedicated to
females. Every restroom itself consists of multiple toilets and in
male restrooms also urinals.

Together, these restrooms received a total of 88,517 votes, of
which roughly 65% is green, during the specified time period of
ten weeks. This means that on average every restroom receives
approximately thirty-seven votes per day.

When looking at figure 3, we observe a steady increase in the
number of votes until week 16 and then a decrease until week 20.
This is probably caused by the increase in passenger volume of
almost five hundred thousand (8%) comparing March (weeks 11, 12
and 13) and April (weeks 14, 15, 16 and 17) [1]. We also note that
week 18 is a holiday week in the Netherlands, but this week shows
no notable differences compared to other weeks.

11 12 13 14 15 16 17 18 19 20
2000

4000

6000

8000

10000 Total
Good
Bad

Figure 3: Number of Votes at E Pier per Week

3.3 Data Preparation
Because a vote can be cast arbitrarily in time, there is a need for a
certain aggregation strategy in order to group multiple datapoints
based on their timestamp. The airport is a very dynamic environ-
ment and selecting the right time interval is a trade-off between
the number of received votes per interval and practical usability.
When the interval is too small, most of the times there are no votes
at all. When the interval is too large, cleaners can not react accu-
rately to emerging situations and restrooms might be unclean for a
long period of time. With this trade-off in mind and based on the
experience of senior personnel, a time interval of thirty minutes
was chosen.

This results in a dataset that includes thirty-four toilets and
seventy days of forty-eight time intervals each, adding up to 114,240
datapoints. We split this dataset into 80% for training the models,
10% for validation and hyperparameter optimization to select the

best model and 10% for testing the selected model. The splitting is
done in chronological order, so week 19 is used for validation and
week 20 is used for testing. Figure 3 shows us that the validation
and test weeks show no significant differences in the number of
votes, which is good because otherwise, it might have a substantial
influence on the results.

0 2 3 1 4

tt-1t-2t-3 t+1

Figure 4: Example of Sliding Time Window Approach to In-
clude Values of Previous Time Intervals as Features for Cur-
rent Time Interval

3.4 Feature Generation
With time being an important aspect of the dataset, it is logical to
treat some of the available features such as the number of votes and
the number of bad votes as a time series. In order to take advantage
of this, we introduce a sliding time window parameter that can take
any value. Figure 4 shows an example of this with a value of three,
this means that we include the values of the previous three time
intervals as features for the datapoints at time interval t and t+1.
This sliding time window parameter is optimized in the grid search.

Another feature related to a previous time interval is the number
of bad votes exactly one day, or 48 time intervals, earlier. Next to
features that are related to previous time intervals, we also include
other time-related features such as the day number and the interval
number. The day number ranges from 0 to 6, where 0 is Monday
and 6 is Sunday. The interval number ranges from 0 to 47 where
0 is the time interval between 00:00 and 00:30 and 47 is the time
interval between 23:30 and 00:00.

In order to distinguish between restrooms, two different encoders
were used to encode the restroom number: Rank-based encoding
and one-hot encoding. The rank of a restroom is based on the num-
ber of bad votes in the training set, which is the first eight weeks.
The restroomwhich has received the highest number of bad votes is
ranked 33 and the restroom with the lowest number of bad votes is
ranked 0. One-hot encoding creates a binary feature for all restroom
numbers and sets all values to 0 except for the corresponding re-
stroom number, which is set to 1. Next to the restroom encoding,
other restroom related features that are included are the surface of
a restroom, the number of toilets in a restroom and the gender of a
restroom. Table 1 lists all the features.

Figure 5 shows the Pearson correlation heatmap of all avail-
able features. To construct this heatmap, a time window of 3 was
chosen and the restrooms are distinguished using the rank-based
method. Most important is the first rowwhich shows the correlation
coefficients between the number of bad votes and all of the above-
mentioned features. We observe the strongest correlations with the
number of votes received in previous time intervals, followed by
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Table 1: Feature Names, Descriptions and Categories for a
Time Window of Three

# Name Description Category
Target Feature

1 Bad Number of bad votes at
current time interval Numerical

Number of Bad Votes
2 Badt-1 One time interval earlier Numerical
3 Badt-2 Two time intervals earlier Numerical
4 Badt-3 Three time intervals earlier Numerical
5 Badd-1 One day earlier Numerical

Number of Votes
6 Votet-1 One time interval earlier Numerical
7 Votet-2 Two time intervals earlier Numerical
8 Votet-3 Three time intervals earlier Numerical

Time Related Features

9 Day [#] Number of the day
ranging from 0 to 6 Ordinal

10 Interval [#] Number of the time interval
ranging from 0 to 47 Ordinal

Restroom Related Features
11 Surface Surface of the entire restroom Numerical
12 Toilet [#] Number of toilets in restroom Numerical
13 Gender Male or female restroom Categorical
14 Rank Rank of the restroom Ordinal

the number of bad votes received in previous time intervals. For
both the number of votes and the number of bad votes received
in previous time intervals we see that the correlation coefficient
decreases as the time difference increases. It stands out that the
number of bad votes received exactly one day earlier, Badd-1, has
a stronger correlation than the number of bad votes received two
time intervals earlier, Badt-2. This suggests that looking at the pre-
vious day would be better than increasing the time window larger
than one. It is also remarkable that the day of the week, the interval
of the day and the gender of a restroom are not correlated at all
to the number of bad votes. Furthermore the surface, the number
of toilets and the rank of a restroom show only low correlation
coefficients.

The dataset is not particularly high dimensional, ranging from 9
dimensions to 103 for time windows 1 and 48 respectively, with 48
being the largest used time window in this study. The dimensional-
ity can be increased by 33 if the one-hot encoding method is used
instead of rank-based restroom encoding. Because of this number
of dimensions, model training times are expected to be reasonable
and all features are included.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1
2
3
4
5
6
7
8
9

10
11
12
13
14

1.0 0.4 0.3 0.3 0.4 0.5 0.4 0.4 0.0 0.0 0.2 0.2 0.0 0.3
0.4 1.0 0.4 0.3 0.3 0.8 0.5 0.4 0.0 0.1 0.2 0.2 0.0 0.3
0.3 0.4 1.0 0.4 0.3 0.5 0.8 0.5 0.0 0.1 0.2 0.2 0.0 0.3
0.3 0.3 0.4 1.0 0.3 0.4 0.5 0.8 0.0 0.1 0.2 0.2 0.0 0.3
0.4 0.3 0.3 0.3 1.0 0.4 0.4 0.3 0.0 0.0 0.2 0.2 0.0 0.3
0.5 0.8 0.5 0.4 0.4 1.0 0.6 0.5 0.0 0.1 0.3 0.3 0.0 0.3
0.4 0.5 0.8 0.5 0.4 0.6 1.0 0.6 0.0 0.1 0.3 0.3 0.0 0.3
0.4 0.4 0.5 0.8 0.3 0.5 0.6 1.0 0.0 0.1 0.3 0.3 0.0 0.3
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 -0.0 0.0 0.0
0.0 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.0 1.0 0.0 -0.0 0.0 0.0
0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.0 0.0 1.0 0.5 0.3 0.2
0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.3 -0.0 -0.0 0.5 1.0 -0.3 0.2
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 -0.3 1.0 0.1
0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.0 0.0 0.2 0.2 0.1 1.0

0.25 0.00 0.25 0.50 0.75 1.00

Figure 5: Pearson Correlation Heatmap Using Rank-based
RestroomEncodingwith TimeWindow Size 3. Feature Num-
bers Correspond to Table 1

3.5 Numerical Feature Scaling
Because some machine learning models, like for example a multi-
layer perceptron [2], are sensitive to feature scaling, we use two
basic functions to scale numerical features: Normalization and stan-
dardization. Normalization scales each value in a feature vector
within the range [0, 1] and standardization scales each value in a
feature vector such that the mean is zero and the variance is one.

3.6 Class Definition
The two defined classes for the binary classification problem at
hand are: clean and unclean, which refers to the state of a restroom
as observed by the users. We acknowledge the fact that user ob-
servations are subjective and sometimes do not correspond to the
actual state of a restroom, this will further be discussed in section
6.

0 10 20 30 40 50 60 70 80 90 100

81% 11%
4%

4%

Zero
One
Two
Three or more

Figure 6: Distribution of the Number of Bad Votes
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Table 2: Summary of the Dataset for Different Sliding Window Sizes and Class Definitions

Class Definition Sliding Window Size Number of
Features Classes Number of

Datapoints
Clean:Unclean
Balance Ratio

Strict 1 9 2 (Clean, Unclean) 114.240 6:1
Lenient 1 9 2 (Clean, Unclean) 114.240 16:1
Strict 24 55 2 (Clean, Unclean) 114.240 6:1
Lenient 24 55 2 (Clean, Unclean) 114.240 16:1
Strict 48 103 2 (Clean, Unclean) 114.240 6:1
Lenient 48 103 2 (Clean, Unclean) 114.240 16:1

Figure 6 shows the distribution of the number of bad votes per
time interval of thirty minutes. It immediately becomes clear that
we are dealing with an imbalanced dataset, regardless of how we
define the two classes. The reason that more than 81% of the time
intervals receive no bad votes at all is twofold. First of all, during
the night there are much fewer passengers at the airport than
during the day. This results in considerably fewer votes during the
night, and most of the time no votes at all. Secondly, there are large
differences between the number of visitors per restroom, which in
turn influences the probability of receiving votes. Smaller restrooms
that are not often visited have many intervals at which there are
no votes at all.

3.6.1 Strict Class Definition. The most obvious class definition
would be to define zero bad votes received as clean, and one or more
bad votes received as unclean. This would result in a clean:unclean
balance ratio of around 6:1. When discussing this class definition
with senior personnel and decision makers, it became clear that this
would not be ideal because it would mean that in practice cleaners
could be redirected to another restroom for only a single bad vote.
This is considered too costly for the benefit that it could yield.

3.6.2 Lenient Class Definition. A logically following and slightly
different class definition would be to define zero or one bad vote
received as clean, and two or more bad votes received as unclean.
Resulting in a clean:unclean balance ratio of around 16:1. According
to senior personnel and decision makers, this would make more
sense because it doubles the possible benefit compared to the other
class definition. Also, it is more unlikely that an observation of the
class unclean is noise since multiple bad votes are received instead
of a single bad vote.

We expect a certain trade-off between classification model per-
formance and practical usability when defining the two classes.
Therefore we include both above-mentioned class definitions in
the research and compare the results to study the effect of differ-
ent class definitions on classifier performance. A summary of the
dataset for different class definitions and sliding window sizes is
presented in table 2

3.7 Model Definition
Next to the distinction between two class definitions, there is also a
distinction in the type of prediction model. The first type is a com-
bined prediction model that includes features of all the restrooms
and makes predictions for all the restrooms. The second type is a

restroom-specific prediction model that focuses only on a single
restroom. The choice to also study restroom-specific prediction
models is based on the fact that there is a lot of variation between
the restrooms and we assume that this will lead to differences in
model performance. Figure 7 shows the occurrences of unclean
samples per restroom in the case of a lenient class definition. The
red lines indicate how often an unclean sample occurs on average
per day, on two different levels. We observe that restrooms 60 Male
and 60 Female are responsible for many of the unclean occurrences,
roughly twice as much as the runner-up, restrooms 43. Next to
that, we see that almost half of the restrooms do not even have
one unclean sample per day on average. If the number of unclean
occurrences decreases, the class imbalance logically increases. This
raises the question of whether restrooms to the far right of the plot
are even worth considering when the objective is to improve user
satisfaction.

Figure 7: Number of Unclean Samples per Restroom

4 RESEARCH METHOD
In order to study the usefulness of real time feedback data and clas-
sification techniques to distinguish and predict clean and unclean
restrooms in practice, we are searching for the best performing clas-
sifiers on different settings of the problem. This section explains the
experimental setup and metrics used for performance evaluation.

4.1 Classifiers
Classifiers have been constructed for the combined prediction
model type as well as for the restroom-specific prediction model
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type. This is also done for the two different class definitions, strict
and lenient. For the restroom-specific prediction models, Random
Forrest (RF), Support Vector Machine (SVM), AdaBoost (AB) and
K-Nearest Neighbors (KNN) algorithms have been applied. For the
combined prediction models RF, AB and KNN were applied. SVM
was not included here because the dataset is too large to have a
reasonable model fit time. The fit time scales at least quadratically
with the number of samples [3]. The selection of algorithms was
based on the results obtained during a preliminary classification
experiment. Algorithms that were also included in this preliminary
experiment but not selected were: Decision Tree, EasyEnsemble,
RUSBoost, Complement Naive Bayes and Multilayer Perceptron.
The results of this preliminary experiment are presented in ta-
bles 15, 16, 17, 18, 19, 20, 21, 22 of appendix B.

To identify the best model settings for each classification algo-
rithm, exhaustive grid search is performed. The grid search method
uses the validation set for hyperparameter optimization. All op-
tions that were included in the search can be found in table 25 in
appendix B.

4.2 Baselines
To evaluate the performance of the best classifier models, they
are compared to three baselines. The first baseline is the prior
probability (PP) baseline that uses the prior probabilities to make
a prediction. In other words, in case of a strict class definition, it
predicts clean in 81% of the observations. The second one is the
average bad vote (ABV) baseline that uses the average number
of bad votes for a given time interval to make a prediction. If for
example the time interval to predict is 9:00-9:30, then the average
number of bad votes for all intervals 9:00-9:30 is calculated from
the training set. If the calculated average is smaller than 1, clean
is the predicted class in case of a strict class definition. The third
one is the daily average bad vote (DABV) baseline which is nearly
the same as the ABV baseline but next to time interval it also takes
the day of the week into account. So if the time interval to predict
is 9:00-9:30 on a Monday, then the average number of bad votes
for all the intervals 9:00-9:30 on a Monday is calculated from the
training set. If the calculated average is again smaller than 1, clean
is the predicted class in case of a strict class definition.

4.3 Sampling Techniques
Related work has pointed out that sampling techniques might of-
fer a solution when working with an imbalanced dataset or class
overlap. To evaluate whether these techniques indeed improve the
performance on this particular dataset, we include them in the ex-
haustive grid search. The included sampling techniques are Random
Undersampling (RUS), Random Oversampling (ROS), Adaptive Syn-
thetic Oversampling (ADASYN), Synthetic Minority Over-sampling
Technique (SMOTE), SMOTE with data cleaning using Tomek links
(SMOTE + Tomek) and SMOTE with data cleaning using Edited
Nearest Neighbours (SMOTE + ENN)

4.4 Evaluation Metrics
In an imbalanced learning scenario, the traditional accuracy metric
turns out to be quite ineffective for evaluating the performance
of a classifier [9]. Therefore there is a need for a different kind of

evaluation metric. Reasoning from a practical point of view, we
want to predict unclean as accurately as possible and after that as
many as possible. This means that for the class unclean, precision
is more important than recall. High precision is important because
redirecting a cleaner is a costly intervention, so the model needs
a high degree of certainty about the prediction. A high recall is
less important because there are only a few cleaners to respond to
an alert that is caused by an unclean prediction. If there are too
many alerts in a short time period, the cleaners will not be able
to adequately respond to all of them. Because of this, the main
metric that we focus on is the F-Beta score of the class unclean
with a beta of 0.5. This F0.5-score means that precision is twice as
important as recall in calculating the weighted harmonic mean of
both. Next to the F0.5-score of the class unclean, we also present
the corresponding precision and recall scores.

4.5 Visualization
In order to visualize the data, PCA is performed to obtain the first
two principal components and plot them in a two-dimensional
space. Visualization of the dataset is important because different
time windows, rescaling methods and sampling methods lead to
different projections of the data. By visualizing the problem at hand,
it becomes clear what task the prediction models are actually trying
to perform and what the difficulties will be to correctly predict the
datapoints. To evaluate classifier performances it is also important
to look at the decision regions of a model, these are plotted on
the same two-dimensional space to show how the datapoints are
being classified. Looking at the decision regions makes it easier to
interpret the numeric results of the evaluation metrics.

5 RESULTS
5.1 Visualization
Figures 8 and 9 show how different time windows, data rescaling
methods and restroom encodings lead to different 2D PCA visu-
alizations of the data. The visualizations are obtained using all
restrooms and a strict class definition. We observe clear visualiza-
tion differences between the different rescaling methods and also
between the different time windows. Between the one-hot encoded
restrooms in figure 8 and rank-based encoded restrooms in figure 9
we only see very small, negligible, differences when looking at the
normalization and standardization plots. Only the plots without
data rescaling, indicated by none, show noticeable but no significant
differences. From this, we conclude that the different time windows
and rescaling methods will probably lead to different classifier per-
formance, where different restroom encodings will probably not.
Although we see some concentrated unclean (blue) datapoints in
some of the plots, they are still intertwined with many clean (red)
datapoints, which indicates major class overlap. By looking at the
visualizations, one would say that the cases without data rescaling
and time windows 24 and 48 and standardization with time win-
dow 24 would be best separable, but the results of section 5.2 will
show that they are not. This confirms that even those, by eye quite
separable, cases have a large degree of class overlap.

Figure 10 shows the effect of the different class definitions using
2D PCA visualization. Logically we see less unclean (blue) points in
the right plot because for this class definition one bad vote is also
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Figure 8: 2D PCA Visualization for Different Time Windows and Rescaling for OHE Restrooms with Strict Class Definition

Figure 9: 2D PCA Visualization for Different Time Windows and Rescaling for Rank-based Restrooms with Strict Class Defi-
nition
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Strict Class Definition Lenient Class Definition

Figure 10: 2D PCA Visualization Differences Between Class
Definitions Strict and Lenient for One-hot Encoded Re-
strooms Without Data Rescaling and Time Window 1

considered as clean (red). The lenient class definition is basically a
subset of the strict class definition. The hypothesis is that lenient
class definition reduces class overlap compared to a strict class
definition. This could be the case if for example lower located
unclean (blue) points would turn into clean (red) points while upper
located unclean (blue) points would remain when switching from a
strict class definition to a lenient class definition. From this figure,
we conclude that a different class definition does not significantly
reduce class overlap, but that classifier performance is likely to be
different because of different balance ratios.

5.2 Combined Prediction Model
5.2.1 Strict Class Definition. Table 3 lists the performance results
for a combined prediction model that includes all restrooms. In this
table, we see that the two more informed baseline classifiers, ABV
and DABV, perform much better than the naive baseline, PP. When
comparing the F0.5 scores of the RF, AB and KNN algorithms, we
see that all three perform slightly better than the baselines and that
AB and KNN perform roughly the same. The main difference is
that KNN has better precision, where AB has better recall. Because
precision is deemed more important than recall, we select KNN
as the best model. The best performance was found with ranked
restroom encoding, no data rescaling and a time window of one,
settings for all algorithms in the table can be found in Table 23
of appendix B. We observe approximately the same results when
using the first two principal components as input features and can
therefore give a representative visualization of the performance
using decision regions of the model. Figure 11 shows the 2D PCA
visualization of the whole dataset as well as the decision regions as
used by the KNN model. Visual inspection shows that the model is
capable of classifying many of the unclean datapoints in the upper
part of the plot, but not capable of classifying unclean datapoints
that are located more towards the center of the plot, leading to a
low recall. Although the model correctly classifies many unclean
datapoints in the upper part, it also misclassifies a lot of clean
datapoints within this region, leading to an unsatisfying precision.

A remarkable result is that despite the findings of Batista et
al. [6], who conclude that SMOTE-based methods are very effective
when dealing with highly imbalanced and overlapping data, we

Table 3: Performance Metrics for Class Unclean for Com-
bined Prediction Model with Strict Class Definition

Train Test
F0.5 Prec Rec F0.5 Prec Rec

PP 0.14 0.14 0.14 0.14 0.14 0.14
ABV 0.47 0.74 0.19 0.45 0.70 0.19
DABV 0.51 0.75 0.22 0.44 0.64 0.20
RF 0.91 1.00 0.68 0.47 0.58 0.27
AB 0.56 0.63 0.39 0.50 0.56 0.35
KNN 0.57 0.72 0.31 0.49 0.62 0.27
KNN PCA 0.54 0.70 0.28 0.49 0.64 0.26
KNN SMOTE+ENN 0.92 0.92 0.92 0.38 0.34 0.79

PP: Prior Probability Baseline, ABV: Average Bad Vote Baseline,
DABV: Daily Average Bad Vote Baseline

Table 4: Performance Metrics for Class Unclean for Com-
bined Prediction Model with Lenient Class Definition

Train Test
F0.5 Prec Rec F0.5 Prec Rec

PP 0.06 0.06 0.06 0.05 0.05 0.06
ABV 0.49 0.55 0.34 0.41 0.44 0.33
DABV 0.52 0.56 0.39 0.37 0.38 0.33
RF 0.60 0.77 0.31 0.41 0.51 0.22
AB 0.52 0.67 0.28 0.42 0.52 0.23
AB PCA 0.48 0.66 0.23 0.41 0.51 0.22
KNN 0.47 0.71 0.20 0.42 0.56 0.21
KNN PCA 0.10 0.56 0.02 0.01 0.08 0.00
AB SMOTE+Tomek 0.93 0.93 0.93 0.23 0.19 0.77

PP: Prior Probability Baseline, ABV: Average Bad Vote Baseline,
DABV: Daily Average Bad Vote Baseline

observe severe performance decrease when implementing sampling
methods. The best performing sampling method is SMOTE + ENN,
which decreases the F0.5 score of the KNN model from 0.49 to 0.38
and precision from 0.62 to 0.34. We do observe a large increase in
recall, which means that the sampling caused an expansion of the
unclean decision region.

5.2.2 Lenient Class Definition. Table 4 lists the performance re-
sults for the lenient class definition. With this class definition, we
see that the classification algorithms are hardly capable of outper-
forming the ABV baseline in terms of F0.5 score. They do perform
better on precision but do this at the expense of a lower recall
score. When comparing the three classification algorithms, we see
a similar performance and would select KNN as the best algorithm
based on the precision score. But when using the first two princi-
pal components as input features, we obtain completely different
results. This is caused by the fact that the best KNN performance
was found with OHE restroom encoding, data normalization and
a time window of 24. The plot in the center of Figure 8 shows us
that this configuration leads to a situation where there is almost no
difference between the two classes. In combination with more clean
than unclean datapoints, caused by class imbalance, this leads to
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Figure 11: K-Nearest Neighbors PCAVisualizationwith Strict Class Definition, Ranked RestroomEncoding, NoData Rescaling
and Time Window One. Left: All Datapoints. Right: Test Set Datapoints and KNN PCA Model Decision Regions

Figure 12: AdaBoost PCA Visualization with Lenient Class Definition, Ranked Restroom Encoding, No Data Rescaling and
Time Window One. Left: All Datapoints. Right: Test Set Datapoints and AB PCA Model Decision Regions

poor performance when using the first two principal components as
input features. Therefore we select the AdaBoost algorithm, which
performed best with ranked restroom encoding, no data rescaling
and a time window of one, to visualize the classifier decision re-
gions. Figure 12 shows this visualization. Inspection of the decision
regions clarifies the low precision and even lower recall, the model

can only classify a minority of the unclean datapoints while simul-
taneously misclassifying clean datapoints. Table 23 of appendix B
reports the optimal hyperparameters for all algorithms for both
class definitions as mentioned in tables 3 and 4.
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5.3 Restroom-specific Prediction Model
To train and evaluate restroom-specific prediction models, six differ-
ent restrooms were selected. This selection is based on the number
of unclean sample occurrences as shown in figure 7. Restrooms 60
male and female have a high number of unclean samples, restrooms
57 male and female have a low number of unclean samples and
restrooms 46 male and female are somewhere in the middle. Using a
single restroom to train a model means that the size of the dataset is
reduced to 3.360 datapoints, obtained by 70 days times 48 intervals.

5.3.1 Strict Class Definition. Table 5 shows the best baseline and
the best classification algorithm for every selected restroom. The
results show that the best models of restrooms 60 male and female
perform equal to the best performing baselines whereas the other
restrooms best models outperform their best baselines. Next to that,
we observe that except for restrooms 60, the exhaustive grid search
designated a model using a sampling method to be the best model.
This is in contrast to the results of the combined prediction model,
where sampling methods decrease performance. We believe that
the reason for improved performance using sampling methods with
some restroom-specific prediction models is the greater class imbal-
ance of the corresponding datasets. For example, the unclean:clean
balance ratio of restroom 57 male is 1:37. It is also worth mentioning
that, when comparing the results on train and test data, the models
with sampling methods seem to be overfitting on the training data.
This results in poor performance on the unseen data of the test set,
of which restroom 57 female is an example. The dataset and deci-
sion regions of this restroom SVM model are plotted in figure 13.
On the left side of the figure, we see that the Adasyn sampling
method has created a lot of synthetic unclean (blue) datapoints, to
which the model has overfitted. This is visualized by the decision
regions depicted on the right side of the figure, which show that
the model is hardly capable of classifying the new unclean samples
of the test set. Figure 14 shows data and decision regions of the best
performing restroom-specific prediction model, 60 female KNN.
This figure shows that in some parts the classes can be reasonably
separated and that the model does quite a good job in classifying
new, unseen datapoints.

5.3.2 Lenient Class Definition. Table 6 again shows the best base-
line and the best classification algorithm for every selected restroom,
but for the lenient class definition. We see that for restrooms 60
and 46, the best models outperform the best baselines, if only by
a little. Next to that, we again observe that for the restrooms with
less unclean samples, the best model is one that uses a sampling
technique, which is again overfitting the training data. The result of
restroom 57 female is suspicious because the best model performs
very different from the best baseline result. Inspection of the model
shows that there are only four unclean samples in the test set of
which one is classified as unclean. Every other sample is classified
as clean, resulting in a recall of 0.25 and a precision of 1.00. From the
visual inspection of the model decision regions, we conclude that
this correct classification was a coincidence and that the numerical
results give a distorted view of reality. Table 24 reports the optimal
hyperparameters for both class definitions.

Table 5: Performance Metrics for Class Unclean for
Restroom-specific Prediction Models with Strict Class
Definition

Train Test
Restroom Model F0.5 Pre Rec F0.5 Pre Rec
60 Male ABV 0.73 0.76 0.63 0.73 0.75 0.65
60 Male AB 0.78 0.77 0.84 0.73 0.70 0.89
60 Female ABV 0.75 0.75 0.74 0.76 0.75 0.78
60 Female KNN 0.82 0.83 0.79 0.74 0.79 0.61
46 Male PP 0.12 0.11 0.12 0.14 0.15 0.13

46 Male RF
ROS 0.97 0.97 0.99 0.34 0.35 0.31

46 Female PP 0.10 0.10 0.09 0.00 0.00 0.00

46 Female
AB
SMOTE
+Tomek

0.90 0.92 0.81 0.31 0.31 0.33

57 Male PP 0.00 0.00 0.00 0.00 0.00 0.00

57 Male
AB
SMOTE
+Tomek

0.95 0.97 0.91 0.00 0.00 0.00

57 Female PP 0.01 0.01 0.01 0.00 0.00 0.00

57 Female SVM
Adasyn 0.90 0.98 0.66 0.12 0.14 0.08

PP: Prior Probability Baseline, ABV: Average Bad Vote Baseline,
DABV: Daily Average Bad Vote Baseline

Table 6: Performance Metrics for Class Unclean for
Restroom-specific Prediction Models with Lenient Class
Definition

Train Test
Restroom Model F0.5 Pre Rec F0.5 Pre Rec
60 Male ABV 0.61 0.59 0.72 0.56 0.53 0.73
60 Male AB 0.68 0.69 0.68 0.58 0.58 0.56
60 Female ABV 0.63 0.60 0.81 0.54 0.49 0.84
60 Female KNN 0.73 0.76 0.61 0.58 0.59 0.57
46 Male PP 0.03 0.03 0.03 0.00 0.00 0.00
46 Male SVM 0.53 1.00 0.18 0.31 0.33 0.23
46 Female DABV 0.06 0.12 0.02 0.00 0.00 0.00

46 Female KNN
RUS 0.69 0.69 0.67 0.10 0.09 0.14

57 Male PP 0.00 0.00 0.00 0.00 0.00 0.00

57 Male RF
SMOTE 1.00 1.00 1.00 0.00 0.00 0.00

57 Female PP 0.00 0.00 0.00 0.00 0.00 0.00

57 Female RF
ROS 1.00 1.00 1.00 0.62 1.00 0.25

PP: Prior Probability Baseline, ABV: Average Bad Vote Baseline,
DABV: Daily Average Bad Vote Baseline
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Figure 13: Restroom 57 Female Support Vector Machine PCA Visualization with Strict Class Definition, No Data Rescaling and
Time Window 24. Left: All Datapoints. Right: Test Set Datapoints and SVM PCA Model Decision Regions

Figure 14: Restroom 60 Female K-Nearest Neighbors PCA Visualization with Strict Class Definition, Data Standardization and
Time Window 48. Left: All Datapoints. Right: Test Set Datapoints and KNN PCA Model Decision Regions

6 DISCUSSION AND RECOMMENDATIONS
In the case of users voting for the cleanliness of a restroom, class
overlap means that under similar circumstances people tend to vote
differently. We think that this has three main causes. Firstly, people
have a different perception of cleanliness. A toilet that one person

reviews as clean, might be considered unclean by another person.
This is the subjective nature of the data that we are working with
and it will always be present. Secondly, a restroom has multiple
toilets and not every person that casts a vote visits the same toilet.
One person might visit a clean toilet while another visits an unclean
toilet in the same restroom, resulting in two contradicting votes. A



Airport Restroom Cleanliness Prediction Computer Science: Data Science and Technology Master Thesis, August 21, 2019, Enschede

solution to this would be to place a smiley box in every separate
toilet, asking people to rate the cleanliness of that particular toilet
instead of the whole restroom. This will definitely improve the
practical usability because it will reduce the number of contradict-
ing votes per time interval. Especially for restrooms that do not
receive a large number of votes, it will be advantageous because it
will point out an unclean toilet faster. The third cause is the lack of
representative data. The overlapping classes mean that the current
data is not capable of separating the unclean samples from the
clean samples. This can be improved by creating or searching for
more meaningful features that are capable of distinguishing the
two classes. Two possible meaningful features that directly come
to mind are the actual number of visitors per restroom and the
exact cleaning time of a restroom. The number of visitors could
prove useful because not every visitor casts a vote and therefore at
this moment we do not exactly know how busy a restroom is. The
exact cleaning time of a restroom could improve the performance
because at this moment we do not exactly know when a restroom
was cleaned, while it certainly has an impact on the cleanliness of
a restroom.

An attempt was made to obtain the exact cleaning time of a
restroom but the result of this did not yield any benefit. During one
week, cleaners reported during which thirty-minute time interval a
restroomwas cleaned. Afterward, the number of good and bad votes
before and after the cleaning was observed, but we were unable to
detect any positive or negative trend. A possible cause for this is the
fact that many of the restrooms do not receive many votes during
a thirty-minute time interval, resulting in only small differences
before and after cleaning. Another cause could be that cleaners only
reported when they visited a specific restroom, without any details.
Whenever a cleaner visits a restroom, he or she inspects what has
to be cleaned or whether there has to be cleaned at all. Sometimes
only a single toilet is cleaned or only the floor is mopped. These
details were not included in the attempt to obtain the restroom
cleaning times and might influence the detection of trends.

7 CONCLUSIONS
Data visualizations of the combined prediction model with all re-
strooms show that there is a certain amount of class overlap present
in the data. It turns out that the class imbalance is not a major prob-
lem because the decision regions of the best models show that
datapoints of the class unclean are correctly classified. The problem
is that within this region there are also many datapoints of the
class clean that are being misclassified, which negatively affects the
precision of the class unclean. The combined prediction models are
capable of outperforming their baselines, but still they are not good
enough to be useful in practice because of unsatisfying precision.
Using a lenient class definition instead of the strict class definition
only reduces the performance. The best performing combined pre-
diction model is the k-nearest neighbor algorithm with a strict class
definition, rank-based restroom encoding, no data rescaling and
a time window of one. With these settings, a F0.5 score of 0.49 is
obtained with a corresponding precision of 0.62 and a recall of 0.27,
all with respect to the class unclean.

When we treat every restroom separately, we see that the re-
strooms with the most unclean samples perform way better than

the combined prediction model. However, this performance is not
due to the classification algorithms, since they do not outperform
the informed baselines. We conclude that only the restrooms with
most unclean samples show decent results, restrooms with less
unclean samples perform very poor and sometimes are not even
capable of correctly classifying a single unclean sample. For the
combined prediction model we concluded that sampling methods
do not improve the classifier performance. For the restroom-specific
prediction models we conclude that for the restrooms with a lower
number of unclean samples, sampling methods do improve the
classifier performance. Using a lenient class definition instead of
the strict class definition again reduces the performance. The best
performing restroom-specific prediction model is the average num-
ber of bad votes baseline for restroom 60 Female. With this baseline,
a F0.5 score of 0.76 is obtained with a corresponding precision of
0.75 and a recall of 0.78, all with respect to the class unclean.

To conclude, the performance of combined prediction models is
not good enough to be useful in practice and from the restroom-
specific prediction models only restrooms 60 male and female per-
form decently. But since these are the busiest restrooms and clean-
ing personnel already visits these restrooms often, it is questionable
whether using the best performing baseline or algorithm will actu-
ally improve the current situation. The major cause of the unsatis-
fying performance is not class imbalance, but the data ambiguity
that leads to class overlap.
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A APPENDIX: REGRESSION
As mentioned in the introduction of the paper, the first approach to
find a solution to the problem was the use of regression techniques.
In contrast to the exhaustive grid search that was performed for the
classification problem in the paper, the search for the best regression
model was done manually and without a validation set. Next to
this, there are some other key differences. First of all the dataset
used for the regression analysis consisted of only the first eight
weeks of the original dataset as used in the paper. Secondly, the
problem is phrased as multi-target, meaning that all 34 restrooms
target values are predicted at once. Another difference is that for
the regression analysis only the time window related features are
included, concerning the number of total and bad votes of previous
time intervals.

To evaluate the performance of the different regression models,
the Root Mean Squared Error (RMSE) andMean Average Percentage
Error (MAPE)metrics are reported. In order to compare themachine
learning models to some naive and informed baselines, we use the
same three baselines that were used in the paper. Baseline PP uses
prior probabilities to predict a value, baseline ABV uses the average
amount for a given time interval to predict a value and baseline
DABV uses the average amount for a given time interval at a given
day to predict a value. Additionally, we add one baseline, zero
predictor (ZP), that only predicts the value of zero. Table 7 shows
the results of those baselines.

Tables 8, 9, 10, 11, 12 and 13 present the results for different types
of regression algorithms. Table 14 presents the results for different
dataset lengths for the best selected algorithms. The dataset with a
length of 30 weeks was obtained in the period from October 8th till
May 5th and consists of only 12 of the original 34 restrooms, it was
studied to see whether the relatively small size of the dataset had
a negative effect on the results. Below we enumerate some of the
key findings.

(1) In terms of RMSE on the test set, RF6 and LSTM14 perform
best with a score of 0.81.

(2) The simplest regression model, LR1 comes very close with a
score of 0.83.

(3) In terms of MAPE on the test set, baseline ZP performs best
together with several machine learning models. This means
that those models also predict only zeros. The best model in
terms of MAPE that does not predict only zeros is MLP25
with a MAPE score of 15.69.

(4) When looking at both RMSE and MAPE, MLP20 is selected
as the best regression model.

(5) For the MLP algorithm in general, normalization outper-
forms standardization.

(6) Machine learning algorithms outperform baselines in most
cases.

(7) LSTM models seem to perform better than MLP models on
input where the actual target value is greater than 0. A model
with a low RMSE and a high MAPE gives performs better
when the actual target value is greater than 0.

(8) Decision Trees with a max depth of ’None’ seem to heavily
overfit to the training set.

(9) Using the longer dataset of 30 weeks decreases performance.

Figure 15 shows the RMSE and MAPE per actual value for best
performing model MLP20, note that actual value ten does not exist
in the dataset. From this figure, we clearly observe that the RMSE
linearly increases, which indicates that the model performs poorly
and seems to be predicting the same values for every actual value.
When looking at the differences between the RMSE and the actual
value itself, we see that the model nearly always predicts a value
that is close to 0. Next to that, we see that the MAPE is very high,
except for when the actual value is 0. When looking at every other
actual value above 0, we observe a MAPE of somewhere around
80%. This means that the MAPE value is not representative for the
actual performance of the model. The imbalance of the dataset, in
which the actual value of 0 occurs much more often than any other
value, has a very strong bias on the results.

By looking at the key findings and analyzing the best performing
model, we concluded that regression is not very promising and that
it is unlikely to yield results that will be useful in practice.
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Table 7: Regression Baseline Results

Train Test
Time window RMSE MAPE RMSE MAPE

PP 1 1.26 37.22 1.36 39.27
ABV 1 1.01 35.42 1.06 35.51
DABV 1 1.04 35.38 0.83 24.10
ZP 1 0.93 14.32 1.00 15.56

PP: Prior Probability Baseline, ABV: Average Bad Vote Baseline, DABV: Daily Average Bad Vote Baseline, ZP: Zero Predictor Baseline

Table 8: Linear Regression Model Tweaking

Train Test
Time window RMSE MAPE RMSE MAPE

LR1 1 0.74 24.79 0.83 27.34
LR2 3 0.71 24.88 0.85 29.05
LR3 5 0.69 25.27 0.88 30.80
LR4 48 0.38 21.61 1.56 86.58

Table 9: Decision Tree Regression Model Tweaking

Train Test
Criterion Splitter Max_depth Rescale Time window RMSE MAPE RMSE MAPE

DT 1 mse best None Normalize 1 0.14 1.54 1.08 29.49
DT 2 mse best None Normalize 2 0.08 0.56 1.14 30.52
DT 3 mse best None Normalize 5 0.07 0.37 1.08 30.06
DT 4 mse best None Normalize 48 0.00 0.00 1.17 31.53
DT 5 mse best 2 Normalize 1 0.76 26.53 0.83 29.06
DT 6 mse best 5 Normalize 1 0.72 24.71 0.83 27.54
DT 7 mse best 10 Normalize 1 0.59 19.76 0.94 28.52
DT 8 mse random 5 Normalize 1 0.74 25.40 0.83 28.16

Table 10: Random Forrest Regression Model Tweaking

Train Test
N_estimators Max_depth Rescale Time window RMSE MAPE RMSE MAPE

RF 1 20 None Normalize 1 0.34 10.21 0.85 27.51
RF 2 20 None Normalize 3 0.31 9.58 0.83 26.99
RF 3 20 None Normalize 12 0.31 9.60 0.83 27.00
RF 4 20 None Normalize 24 0.30 9.35 0.83 26.60
RF 5 20 None Normalize 48 0.30 9.27 0.83 27.58
RF 6 50 None Normalize 24 0.29 9.14 0.81 26.42
RF 7 100 None Normalize 24 0.28 9.07 0.81 26.43
RF 8 200 None Normalize 24 0.28 9.08 0.81 26.49
RF 9 50 2 Normalize 24 0.76 26.47 0.83 28.74
RF 10 50 5 Normalize 24 0.71 24.82 0.83 27.28
RF 11 50 10 Normalize 24 0.61 21.84 0.81 26.46
RF 12 50 15 Normalize 24 0.50 18.25 0.81 26.47
RF 13 50 20 Normalize 24 0.41 14.95 0.81 26.32
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Figure 15: RMSE and MAPE per Actual Value for MLP20. Actual Value 10 Does not Exist

Table 11: Gradient Boosting Regression Model Tweaking

Train Test
N_estimators Max_depth Rescale Time window RMSE MAPE RMSE MAPE

GB 1 25 3 Normalize 1 0.67 23.64 0.83 27.29
GB 2 50 3 Normalize 1 0.64 22.37 0.83 27.14
GB 3 100 3 Normalize 1 0.61 21.11 0.85 27.37
GB 4 150 3 Normalize 1 0.59 20.23 0.85 27.62
GB 5 250 3 Normalize 1 0.56 18.94 0.86 28.06
GB 6 50 5 Normalize 1 0.53 18.73 0.85 27.31
GB 7 50 10 Normalize 1 0.25 7.27 0.90 29.30
GB 8 50 20 Normalize 1 0.14 2.05 1.04 32.15
GB 9 50 3 Normalize 2 0.62 22.03 0.83 27.46
GB 10 50 3 Normalize 4 0.61 21.89 0.83 27.40
GB 11 50 3 Normalize 12 0.59 21.88 0.83 27.48
GB 12 50 3 Normalize 24 0.58 21.91 0.83 27.54
GB 13 50 3 Normalize 48 0.55 21.01 0.85 28.53
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Table 12: MLP Regression Model Tweaking

Train Test
Hidden [#]
[L1, L2]

Drop out
L1-L2, L2-L3

Batch
size Epochs Opt.

Alg.
Act.
Func. Rescale Time

window RMSE MAPE RMSE MAPE

MLP1 100,100 - 2 200 ADAM RELU Normalize 48 0.37 7.80 0.92 21.28
MLP2 100,100 0.5, 0.5 2 200 ADAM RELU Normalize 48 0.67 14.45 0.86 18.20
MLP3 1000 - 2 100 ADAM RELU Normalize 48 0.94 14.32 1.00 15.56
MLP4 1000 0.5 2 10 ADAM RELU Normalize 48 0.94 14.32 1.00 15.56
MLP5 1000,1000 - 2 10 ADAM RELU Normalize 48 0.94 14.32 1.00 15.56
MLP6 1000,1000 0.5,0.5 2 10 ADAM RELU Normalize 48 0.94 14.32 1.00 15.56
MLP7 100,100 - 2 200 SGD RELU Normalize 48 0.76 20.85 0.85 23.56
MLP8 100,100 0.5,0.5 2 200 SGD RELU Normalize 48 0.81 21.90 0.88 22.43
MLP9 100,100 - 2 200 RMSprop RELU Normalize 48 0.56 9.28 0.90 18.67
MLP10 100,100 0.5,0.5 2 200 RMSprop RELU Normalize 48 0.74 13.64 0.86 16.44
MLP11 100,100 0.5,0.5 2 200 RMSprop Sigmoid Normalize 48 0.67 20.89 0.85 25.05
MLP12 100,100 0.5,0.5 2 200 RMSprop Tanh Normalize 48 0.66 24.72 0.94 35.71
MLP13 100 - 2 200 RMSprop RELU Normalize 48 0.48 9.11 0.96 21.63
MLP14 100 0.5 2 200 RMSprop RELU Normalize 48 0.64 12.44 0.88 17.09
MLP15 200 0.5 2 200 RMSprop RELU Normalize 48 0.61 11.94 0.86 17.17
MLP16 500 0.5 2 200 RMSprop RELU Normalize 48 0.58 11.59 0.85 18.21
MLP17 1000 0.5 2 100 RMSprop RELU Normalize 48 0.59 11.64 0.86 19.18
MLP18 1500 0.5 2 100 RMSprop RELU Normalize 48 0.92 14.31 1.00 15.56
MLP19 100,100 0.25,0.25 2 200 RMSprop RELU Normalize 48 0.58 11.92 0.88 18.44
MLP20 100,100 0.75,0.75 2 200 RMSprop RELU Normalize 48 0.81 14.14 0.86 16.01
MLP21 100,100 0.75,0.75 2 200 RMSprop RELU Normalize 24 0.83 14.21 0.88 15.83
MLP22 100,100 0.75,0.75 2 200 RMSprop RELU Normalize 12 0.79 15.20 0.86 17.22
MLP22 100,100 0.75,0.75 2 200 RMSprop RELU Normalize 2 0.81 15.03 0.88 16.84
MLP23 100,100 0.75,0.75 2 200 RMSprop RELU Normalize 1 0.81 14.90 0.86 16.63
MLP24 100,100 0.75,0.75 2 200 RMSprop RELU Logarithmic 48 0.79 14.46 0.86 16.45
MLP25 100,100 0.75,0.75 2 200 RMSprop RELU Cube root 48 0.83 13.95 0.9 15.69
MLP26 100,100 0.75,0.75 5 200 RMSprop RELU Normalize 48 0.79 14.21 0.86 16.13
MLP27 100,100 0.75,0.75 10 200 RMSprop RELU Normalize 48 0.76 14.24 0.86 16.60
MLP28 100,100 0.75,0.75 25 200 RMSprop RELU Normalize 48 0.74 20.09 0.86 21.59
MLP29 100,100 0.75,0.75 1 200 RMSprop RELU Normalize 48 0.81 13.93 0.88 15.76
MLP30 100,100 0.75,0.75 2 200 adagrad RELU Normalize 48 0.76 14.09 0.88 16.26
MLP31 100,100 0.75,0.75 2 200 adadelta RELU Normalize 48 0.77 14.74 0.86 16.88
MLP32 100,100 0.75,0.75 2 200 adamax RELU Normalize 48 0.74 18.89 0.86 20.65
MLP33 100,100 0.75,0.75 2 200 nadam RELU Normalize 48 0.94 14.32 1.00 15.56
MLP34 50,50 0.75,0.75 2 200 RMSprop RELU Normalize 48 0.81 13.99 0.88 15.81
MLP35 75, 75 0.75,0.75 2 200 RMSprop RELU Normalize 48 0.79 14.38 0.86 16.71
MLP36 125,125 0.75,0.75 2 200 RMSprop RELU Normalize 48 0.79 14.22 0.86 16.35
MLP37 150,150 0.75,0.75 2 200 RMSprop RELU Normalize 48 0.79 14.89 0.86 16.99
MLP38 200,200 0.75,0.75 2 200 RMSprop RELU Normalize 48 0.81 14.69 0.88 16.68
MLP39 250,250 0.75,0.75 2 200 RMSprop RELU Normalize 48 0.79 15.03 0.88 17.32
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Table 13: LSTM Regression Model Tweaking

Train Test
Hidden [#]
[L1, L2]

Drop out
L1-L2, L2-L3

Batch
size Epochs Opt.

Alg.
Act.
Func. Rescale Time

window RMSE MAPE RMSE MAPE

LSTM1 50 - 2 200 RMSprop RELU Normalize 3 0.71 26.22 0.98 34.59
LSTM2 100 - 2 200 RMSprop RELU Normalize 3 0.69 25.70 0.96 33.71
LSTM3 100 - 2 200 ADAM RELU Normalize 3 0.42 20.10 1.11 38.93
LSTM4 100,100 - 2 200 RMSprop RELU Normalize 3 1.65 35.20 8.69 81.53
LSTM5 100 - 2 200 RMSprop RELU Normalize 12 0.70 33.65 1.35 53.28
LSTM6 100 - 2 200 RMSprop RELU Normalize 24 0.72 34.55 2.45 77.02
LSTM7 100 - 2 200 RMSprop RELU Normalize 48 0.67 26.63 1.70 64.27
LSTM8 25 - 2 200 RMSprop RELU Normalize 1 0.74 32.91 0.95 38.80
LSTM9 50 - 2 200 RMSprop RELU Normalize 1 0.73 29.86 0.95 36.68
LSTM10 100 - 2 200 RMSprop RELU Normalize 1 0.74 29.46 1.04 38.19
LSTM11 50 - 2 200 RMSprop RELU Normalize 2 0.69 26.42 0.91 34.17
LSTM12 75 - 2 200 RMSprop RELU Normalize 2 0.69 24.04 0.93 32.38
LSTM13 100 - 2 200 RMSprop RELU Normalize 2 0.68 29.93 0.95 39.96
LSTM14 500 - 2 200 RMSprop RELU Normalize 2 0.74 24.28 0.81 27.50
LSTM15 50 0.5 2 200 RMSprop RELU Normalize 2 0.75 24.22 0.83 26.89
LSTM16 50 0.75 2 200 RMSprop RELU Normalize 2 0.77 24.22 0.84 25.88
LSTM17 50,50 0.5, 0.5 2 200 RMSprop RELU Normalize 2 0.74 26.08 0.83 29.21
LSTM18 50 0.5* 2 200 RMSprop RELU Normalize 2 0.75 30.80 0.83 33.17
LSTM19 50 0.5** 2 200 RMSprop RELU Normalize 2 0.71 27.65 0.90 35.18
LSTM20 50 0.5*, 0.5** 2 200 RMSprop RELU Normalize 2 0.74 27.77 0.81 30.35
LSTM21 50 0.5*, 0.5 2 200 RMSprop RELU Normalize 2 0.76 27.86 0.83 29.50
LSTM22 50 0.5*,0.5**,0.5 2 200 RMSprop RELU Normalize 2 0.77 26.25 0.82 27.83

Table 14: Comparison of Best Regression Models for Different Dataset Lengths

Train Test
Data set length RMSE MAPE RMSE MAPE

LR1 8 weeks 0.74 24.79 0.83 27.34
LR1 30 weeks 1.18 46.10 1.21 44.66
RF6 8 weeks 0.29 9.14 0.81 26.42
RF6 30 weeks 0.44 16.46 1.18 41.55
DT6 8 weeks 0.72 24.71 0.83 27.54
DT6 30 weeks 1.17 45.02 1.22 42.35
GB2 8 weeks 0.64 22.37 0.83 27.14
GB2 30 weeks 1.13 43.31 1.19 42.13
MLP21 8 weeks 0.81 14.14 0.86 16.01
MLP21 30 weeks 1.30 31.42 1.29 28.52
LSTM20 8 weeks 0.74 27.77 0.81 30.35
LSTM20 30 weeks 1.19 43.29 1.23 42.21
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B CLASSIFICATION
As mentioned in section 4 of the paper, experiments with several
machine learning algorithms have been carried out to select those
that are most likely to perform best. The dataset is exactly the same
as the one in the paper, the only difference is that not all features
are used in these experiments. Only the features related to previ-
ous time intervals such as the number of votes and the number
of bad votes have been used. All experiments were conducted us-
ing a lenient class definition and the performance evaluation was
done on the validation set, results for the test set are not reported.
Tables 15, 16, 17, 18, 19, 20, 21 and 22 present the results for all
the different types of classification algorithms that have been tried.
All metrics are related to the class unclean, just as in the paper.
Whenever the F0.5 score did not significantly improve compared to

the best model at that time, the other metrics are not reported and
only the F0.5 score is listed in the table.

Table 25 shows the parameter values that were included in the
exhaustive grid search to find the best performing models. For
restroom-specific prediction models, the restroom encoding was
not included as a parameter. In the case of a restroom-specific
prediction model for a restroom with a low number of unclean
samples, the larger values for the N_neighbors parameter could not
always be included.

Table 23 shows the optimal hyperparameters that were used for
the best performing combined prediction models of tables 3 and 4 in
the paper. Table 24 shows the optimal hyperparameters that were
used for the best performing restroom-specific prediction models
of tables 5 and 6 in the paper.
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Table 15: Evaluation Metrics for Class Unclean for Decision Tree Classification Tweaking, Lenient Class Definition

Train Validation

Features Time
window Sampling Weights Criterion, Splitter, Max_depth F0.5 Pre Rec F0.5 Pre Rec

DT1 0,2,3,4 1 - - Entropy, best, 7 0.51 0.66 0.27 0.44 0.55 0.25
DT2 1,2,3,4 1 - - Entropy, best, 9 0.51 0.67 0.26 0.45 0.56 0.24
DT3 1,2,3,4 2 - - Entropy, random, 8 0.50 0.63 0.27 0.45 0.55 0.27
DT4 1,2,3,4 6 - - Gini, random, 8 0.51 0.63 0.29 0.43 0.53 0.25
DT5 1,2,3,4 48 - - Entropy, random, 7 0.51 0.63 0.29 0.44 0.53 0.27
DT6 2,3,4 1 - - Gini, random, 10 - - - 0.41 - -
DT7 1,2,3 1 - - Gini, best, 4 - - - 0.44 - -
DT8 1,4 1 - - Gini, random, 9 - - - 0.44 - -
DT9 1,2,3,4,5 1 - - Gini, random, 10 - - - 0.45 - -
DT10 1,2,3,4,5,6 1 - - Gini, best, 9 - - - 0.46 - -
DT11 1,2,3,4,5,6,7 1 - - Gini, best, 8 - - - 0.46 - -
DT12 1,2,3,4,5,6,7,8 1 - - Gini, best, 8 - - - 0.46 - -
DT13 1,2,3,4,5,6,7,8,9 1 - - Gini, best, 8 0.54 0.68 0.30 0.46 0.56 0.27
DT14 1,2,3,4,5,6,7,8,9 1 - 1, 1.1 Entropy, random, 9 0.51 0.63 0.30 0.47 0.56 0.28
DT15 1,2,3,4,5,6,7,8,9 1 - 1, 1.5 Gini, random, 8 - - - 0.46 - -
DT16 1,2,3,4,5,6,7,8,9 1 - 1, 2 Gini, best, 5 - - - 0.46 - -
DT17 1,2,3,4,5,6,7,8,9 1 - 1, 3 Gini, random, 4 - - - 0.40 - -
DT18 1,2,3,4,5,6,7,8,9 1 - 1, 5 Gini, best, 2 0.47 0.49 0.41 0.39 0.40 0.37
DT19 1,2,3,4,5,6,7,8,9 1 rus - Gini, best, 8 0.84 0.84 0.84 0.21 0.18 0.79
DT20 1,2,3,4,5,6,7,8,9 1 ros - Gini, best, 8 0.82 0.82 0.85 0.22 0.18 0.80
DT21 1,2,3,4,5,6,7,8,9 1 adasyn - Gini, best, 8 0.89 0.90 0.86 0.28 0.24 0.60
DT22 1,2,3,4,5,6,7,8,9 1 smote - Gini, best, 8 0.90 0.91 0.88 0.28 0.25 0.58
DT23 1,2,3,4,5,6,7,8,9 1 smoteenn - Gini, best, 8 0.94 0.94 0.94 0.25 0.22 0.68
DT24 1,2,3,4,5,6,7,8,9 1 smotetomek - Gini, best, 8 0.90 0.91 0.88 0.28 0.25 0.58
DT25 1,2,3,4,5,6,7,8,9 1 smote - Gini, best, 21 0.98 0.99 0.97 0.33 0.32 0.39
DT26 1,2,3,4,5,6,7,8,9 1 smote(0.9) - Gini, best, 16 - - - 0.33 - -
DT27 1,2,3,4,5,6,7,8,9 1 smote(0.8) - Gini, best , 17 - - - 0.34 - -
DT28 1,2,3,4,5,6,7,8,9 1 smote(0.7) - Gini, best, 13 - - - 0.35 - -
DT29 1,2,3,4,5,6,7,8,9 1 smote(0.6) - Gini, best, 11 - - - 0.36 - -
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Table 16: Evaluation Metrics for Class Unclean for Random Forrest Classification Tweaking, Lenient Class Definition

Train Validation

Features Time
window Sampling Weights Criterion, Splitter, Max_depth F0.5 Pre Rec F0.5 Pre Rec

RF1 0,2,3,4,5,6,7,8,9 1 - - Gini, 10, 10, True - - - 0.46 - -
RF2 1,2,3,4,5,6,7,8,9 1 - - Gini, 50, 10, True 0.60 0.77 0.31 0.47 0.60 0.26
RF3 1,2,3,4,5,6,7,8,9 1 - - Gini, 55, 10, True 0.59 0.77 0.31 0.48 0.60 0.26
RF4 1,2,3,4,5,6 1 - - Gini, 120, 10, True - - - 0.47 - -
RF5 1,2,3,4 1 - - Gini, 10, 5, True 0.50 0.66 0.25 0.44 0.55 0.24
RF6 1,2,3,4,5,6,7,8,9 2 - - Gini, 175, 10, True 0.61 0.80 0.32 0.47 0.59 0.26
RF7 1,2,3,4,5,6,7,8,9 6 - - Gini, 140, 10, True - - - 0.46 - -
RF8 1,2,3,4,5,6,7,8,9 1 - 1, 1.1 Gini, 60, 10, True - - - 0.47 - -
RF9 1,2,3,4,5,6,7,8,9 1 - 1, 1.5 Gini, 60, 10, True - - - 0.47 - -
RF10 1,2,3,4,5,6,7,8,9 1 - 1, 2 Gini, 60, 10, True - - - 0.46 - -
RF11 1,2,3,4,5,6,7,8,9 1 - 1, 3 Gini, 40, 5, True 0.49 0.52 0.41 0.43 0.44 0.38
RF12 1,2,3,4,5,6,7,8,9 1 rus - Gini, 50, 10, True 0.86 0.86 0.87 0.21 0.18 0.81
RF13 1,2,3,4,5,6,7,8,9 1 ros - Gini, 50, 10, True 0.85 0.84 0.86 0.24 0.20 0.79
RF14 1,2,3,4,5,6,7,8,9 1 adasyn - Gini, 50, 10, True 0.91 0.91 0.89 0.29 0.26 0.60
RF15 1,2,3,4,5,6,7,8,9 1 smote - Gini, 50, 10, True 0.92 0.93 0.90 0.31 0.28 0.56
RF16 1,2,3,4,5,6,7,8,9 1 smoteenn - Gini, 50, 10, True 0.96 0.96 0.95 0.27 0.23 0.68
RF17 1,2,3,4,5,6,7,8,9 1 smotetomek - Gini, 50, 10, True 0.92 0.92 0.90 0.30 0.27 0.57
RF18 1,2,3,4,5,6,7,8,9 1 smote - Gini, 30, 15, True 0.96 0.37 0.95 0.37 0.36 0.45
BRF1 1,2,3,4,5,6,7,8,9 1 BRF - Gini, 50, 10, True 0.27 0.23 0.86 0.22 0.18 0.81
RF19 1,2,3,4,5,6,7,8,9 1 - 1, 95 Gini, 60, 20, True - - - 0.26 - -
RF20 1,2,3,4,5,6,7,8,9 1 - 95, 1 Gini, 80, 20, True - - - 0.40 - -
RF21 1,2,3,4,5,6,7,8,9 1 - 1, 1000 Gini, 20, 25, True - - - 0.26 - -
RF22 1,2,3,4,5,6,7,8,9 1 - 1000, 1 Gini, 40, 20, True - - - 0.40 - -
RF23 1,2,3,4,5,6,7,8,9 1 - balanced Gini, 80, 15, True - - - 0.30 - -

Table 17: Evaluation Metrics for Class Unclean for AdaBoost Classification Tweaking, Lenient Class Definition

Train Validation

Features Time
window Sampling n_estimators,

learning_rate F0.5 Pre Rec F0.5 Pre Rec

AB1 1,2,3,4,5,6,7,8,9 1 - 100, 1.0 0.53 0.67 0.28 0.49 0.60 0.28
AB2 1,2,3,4,5,6,7,8,9 2 - 100, 1.0 - - - 0.49 - -
AB3 1,2,3,4,5,6,7,8,9 6 - 100, 1.0 - - - 0.49 - -
AB4 1,2,3,4,5,6,7,8,9 1 rus 100, 1.0 - - - 0.22 - -
AB5 1,2,3,4,5,6,7,8,9 1 ros 100, 1.0 - - - 0.23 - -
AB6 1,2,3,4,5,6,7,8,9 1 adasyn 1000, 0.9 - - - 0.42 - -
AB8 1,2,3,4,5,6,7,8,9 1 smote 1000, 1.0 - - - 0.43 - -
AB9 1,2,3,4,5,6,7,8,9 1 smote 2200, 1.8 - - - 0.48 - -
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Table 18: Evaluation Metrics for Class Unclean for EasyEnsemble and RUSBoost Classification Tweaking, Lenient Class Defi-
nition

Train Validation

Features Time
window Sampling

n_estimators,
inner n_estimators,
inner learning_rate

F0.5 Pre Rec F0.5 Pre Rec

EE1 1,2,3,4,5,6,7,8,9 1 - 10, 100, 0.7 0.26 0.22 0.83 0.22 0.19 0.79
EE2 1,2,3,4,5,6,7,8,9 1 - 100, 100, 0.7 0.26 0.22 0.83 0.22 0.19 0.80
EE3 1,2,3,4,5,6,7,8,9 1 - 5, 100, 0.7 0.26 0.22 0.82 0.22 0.19 0.79
RB1 1,2,3,4,5,6,7,8,9 1 - 50, 100, 0.7 0.26 0.22 0.83 0.22 0.19 0.80

Table 19: EvaluationMetrics for ClassUnclean for Complement Naive Bayes Classification Tweaking, Lenient Class Definition

Train Validation

Features Time
window Sampling Alpha F0.5 Pre Rec F0.5 Pre Rec

CNB1 1,2,3,4,5,6,7,8,9 1 - 2500 0.37 0.44 0.23 0.34 0.40 0.21
CNB2 1,2,3,4,5,6,7,8,9 1 rus 100 - - - 0.20 - -
CNB3 1,2,3,4,5,6,7,8,9 1 ros 0 - - - 0.14 - -
CNB4 1,2,3,4,5,6,7,8,9 1 adasyn 200 - - - 0.14 - -
CNB5 1,2,3,4,5,6,7,8,9 1 smote 10 - - - 0.14 - -
CNB6 1,2,3,4,5,6,7,8,9 1 smoteenn 30 - - - 0.15 - -
CNB7 1,2,3,4,5,6,7,8,9 1 smotetomek 10 - - - 0.14 - -

Table 20: Evaluation Metrics for Class Unclean for Support Vector Machine Classification Tweaking, Lenient Class Definition

Train Validation

Features Time
window Sampling C, kernel, degree, gamma F0.5 Pre Rec F0.5 Pre Rec

SVM1 1,2,3,4,5,6,7,8,9 1 - 100, rbf, 3, 1 0.49 0.67 0.24 0.46 0.59 0.24

Table 21: Evaluation Metrics for Class Unclean for K-Nearest Neighbors Classification Tweaking, Lenient Class Definition

Train Validation

Features Time
window Sampling n, leaf size, p F0.5 Pre Rec F0.5 Pre Rec

KNN1 1,2,3,4,5,6,7,8,9 1 - 76, 30, 2 0.45
KNN2 1,2,3,4,5,6,7,8,9 1 - 80, 30, 1.5 0.48 0.70 0.21 0.46 0.62 0.22
KNN3 1,2,3,4,5,6,7,8,9 1 - 83, 30, 1.4 0.46
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Table 22: Evaluation Metrics for Class Unclean for Multi Layer Perceptron Classification Tweaking, Lenient Class Definition

Train Validation
Hidden[#]
[L1, L2, L3]

Drop out
L1-L2, L2-L3

Batch
size # Epochs Opt. Alg. Act. Func. Time

window F0.5 Pre Rec F0.5 Pre Rec

MLP1 64, 64 0.5, 0.5 2 100 RMSprop RELU 1 0.14 0.52 0.75 0.03 0.11 0.51
MLP2 25 - 2 100 RMSprop RELU 1 0.03 0.50 0.82 0.01 0.02 0.50
MLP3 50 - 2 100 RMSprop RELU 1 0.14 0.52 0.80 0.03 0.11 0.51
MLP4 100 - 2 100 RMSprop RELU 1 0.03 0.50 0.86 0.01 0.02 0.50
MLP5 50 - 2 100 ADAM RELU 1 0.00 0.50 0.00 0.00 0.00 0.50
MLP6 250 - 2 100 RMSprop RELU 1 0.08 0.51 0.83 0.02 0.05 0.51
MLP7 500 - 2 100 RMSprop RELU 1 0.03 0.50 0.85 0.01 0.02 0.50
MLP8 500 0.5 2 100 RMSprop RELU 1 0.41 0.58 0.70 0.15 0.35 0.56
MLP9 250,250 - 2 100 RMSprop RELU 1 0.21 0.53 0.75 0.05 0.14 0.52
MLP10 1000 - 2 100 RMSprop RELU 1 0.00 0.50 0.00 0.00 0.00 0.50
MLP11 500 0.1 2 100 RMSprop RELU 1 0.06 0.51 0.78 0.01 0.02 0.50
MLP12 500 0.25 2 100 RMSprop RELU 1 0.40 0.57 0.71 0.15 0.37 0.57

Table 23: Optimal Hyperparameter Settings for Best Models of Combined Prediction Model Definitions A and B

General RF AB KNN
Class
definition

Restroom
encoding Rescaling Time

window Sampling N_estimators Max
depth N_estimators Learning

rate N_neighbors

RF Strict Rank-based Normalization 24 None 25 20 - - -
AB Strict Rank-based None 1 None - - 125 1.9 -
KNN Strict Rank-based None 1 None - - - - 50
RF Lenient Rank-based None 1 None 50 10 - - -
AB Lenient Rank-based None 1 None - - 75 0.5 -
KNN Lenient OHE Normalization 24 None - - - - 50
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Table 24: Optimal Hyperparameter Settings for Best Models of Restroom-specific Prediction Model Definitions A and B

General RF AB KNN SVM
Class
def Rescaling Time

window Sampling N_estimators Max
depth N_estimators Learning

rate N_neighbors C Gamma

60 Male
AB Strict None 1 - - - 25 1.9 - - -

60 Female
KNN Strict Standar-

dization 48 - - - - - 20 - -

46 Male
RF Strict Normali-

zation 48 ROS 10 15 - - - - -

46 Female
AB Strict None 24 SMOTE

+Tomek - - 75 1.9 - - -

57 Male
AB Strict None 1 SMOTE

+Tomek - - 150 1.5 - - -

57 Female
SVM Strict None 24 Adasyn - - - - - 0.1 1

60 Male
AB Lenient Standar-

dization 1 - - - 150 1.5 - - -

60 Female
KNN Lenient Normali-

zation 48 - - - - - 30 - -

46 Male
SVM Lenient Standar-

dization 1 - - - - - - 1000 0.1

46 Female
KNN Lenient Normali-

zation 1 RUS - - - - 10 - -

57 Male
RF Lenient None 1 SMOTE 3 None - - - - -

57 Female
RF Lenient Standar-

dization 24 ROS 3 15 - - - - -

Table 25: Classification Grid Search Parameters

General Restroom encoding OHE, Rank-based
Rescaling None, Normalization, Standardization
Time window 1, 24, 48
Sampling None, RUS, ROS, Adasyn, SMOTE, SMOTE + TOMEK, SMOTE + ENN

RF N_estimators 3, 5, 10, 25, 50, 75, 100
Max_depth None, 2, 3, 4, 5, 10, 15, 20, 25

SVM C 0.01, 0.1, 1, 10, 100, 1000
Kernel RBF
Gamma 0.001, 0.01, 0.1, 1, 10, 100
Degree 3

AB N_estimators 5, 10, 25, 50, 75, 100, 125, 150
Learning_rate 0.1, 0.5, 0.9, 1, 1.5, 1.9
Algorithm SAMME.R

KNN N_neighbors 3, 5, 10, 20, 30, 40, 50, 75, 100, 150, 250
Algorithm Auto
Leaf_size 30
P 2
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