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SUMMARY

Modelling of the glucose metabolism in people with type 1 diabetes mellitus (T1DM)
is relevant for the in silico testing of artificial pancreas (AP) systems and can be ap-
plied to predictive control in such systems. Problems with existing models arise when
these models need to be identified based on limited available data. In this thesis, sim-
plification of existing model structures was applied to solve this problem. Models of
subcutaneous insulin and glucagon kinetics were identified for simulating insulin and
glucagon plasma concentrations in an average patient with T1DM. For modelling of the
glucose concentration in response to these hormonal concentrations, model structures
of varying complexity were proposed and identified. Performance of these models to
predict glucose levels in patients with T1DM up to three hours forward was determined.
Results showed that prediction performance was best for a simple nonlinear model struc-
ture with only two subject-specific parameters. 3 hours forward, the median absolute
error was smaller than 1 mmol/L. This study shows that parameters in simplified model
structures can be estimated with the applied methods. Main limitations were the es-
timation methods applied combined with the limited data availability and accuracy.
Also, the effect of meal intake was not yet considered. In spite of these limitations, the
study demonstrates the potential of a simple compartmental model to be applied for
improvement of glucose control in T1DM patients.
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SAMENVATTING

Het modelleren van het glucosemetabolisme in patiënten met type 1 diabetes mellitus
(T1DM) is belangrijk voor het testen van kunstmatige alvleesklier (AP) systemen in
silico. Deze modellen kunnen ook worden toegepast in een systeem dat glucoseniveaus
controleert met behulp van modelvoorspellingen. Bij bestaande modellen ontstaan er
problemen wanneer model parameters gëıdentificeerd moeten worden op een beperkte
hoeveelheid data. Om dit op te lossen zijn deze model structuren versimpeld. Modellen
van de subcutane absorptie en kinetiek van insuline en glucagon zijn gëıdentificeerd voor
een gemiddelde T1DM patiënt. Voor het modelleren van de glucoseconcentratie in re-
actie op deze hormonale concentraties, werden model structuren van verschillende com-
plexiteit voorgesteld en gëıdentificeerd. Daarna is vastgesteld hoe goed deze modellen
presteren in het voorspellen van de glucoseconcentraties in T1DM patiënten in drie uur
durende simulaties. Uit de resultaten is gebleken dat de voorspellingen het beste waren
voor een simpel non-lineair model met slechts twee patiënt-specifieke model parameters.
De mediaan van de absolute error was kleiner dan 1 mmol/L na een voorspelling van
drie uur. Deze studie laat zien dat de toegepaste methodes gebruikt kunnen worden
om parameters in versimpelde glucose model structuren te schatten. De voornaamste
beperkingen waren de methode die is gebruikt voor het schatten van de parameters en
de beperke beschikbaarheid en nauwkeurigheid van data. Daarnaast is het effect van
maaltijdinname nog niet meegenomen. Ondanks deze beperkingen, laat deze studie de
potentie zien van een simpel compartimentenmodel voor toepassing op het verbeteren
van glucose controle in T1DM patiënten
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Chapter 1

Introduction

Over 1.1 million people suffer from diabetes in the Netherlands [1]. Diabetes is a chronic disease that
affects the glucose metabolism in the body. For people with diabetes, managing their glucose levels can
be a daily struggle. Not keeping glucose levels within safe limits often results in complications both on
short- and long-term. These complications can affect various parts of the body, like the cardiovascular
system, eyes, kidneys and nervous system [1]. Complications can be prevented by proper management
of diabetes, which is focused on maintaining glucose levels stable and within safe ranges.

There has been a 50 percent increase in diabetes prevalence over the last two decades [1]. Diabetes
results in elevated glucose levels in the blood, which is called hyperglycaemia. Most diabetic patients
can be classified as having type 1 diabetes mellitus (T1DM) or type 2 diabetes mellitus (T2DM) [2]. 9%
of Dutch patients diagnosed with diabetes suffer from type 1 diabetes [1]. In T1DM, hyperglycaemia is
caused by a lack of insulin production. This is the result of destruction of the insulin producing beta
cells in the pancreas [2]. In T2DM, glucose levels are high as a result of an insulin secretory defect on the
background of insulin resistance [2]. Prevalence of T2DM is strongly related to age, weight and ethnicity
[1].

In healthy people, glucose metabolism is regulated by complex physiological control mechanisms. Plasma
glucose levels roughly depend on the balance between endogenous glucose production, glucose utilization
by the various tissue types and the glucose rate of appearance resulting from intestinal absorption [3].
The endogenous glucose flux from the liver is mostly affected by the hormones insulin and glucagon [4].
Insulin is produced by the beta cells in the pancreas. This hormone stimulates the conversion of glucose
into glycogen in the liver. Furthermore, it stimulates the uptake of glucose by adipose tissues. Glucagon
is the counter-regulating hormone that is produced by the alpha cells in the pancreas. This hormone
stimulates the release of glucose from the liver into the blood by conversion of stored glycogen into glucose.

In people with T1DM, glucose metabolism cannot be controlled without administration of insulin [2].
Episodes of hypoglycaemia and hyperglycaemia will occur if glucose control is not managed properly.
Euglycaemia is the normal range of blood glucose concentrations that is defined in this study as being in
between 3.9 and 10.0 mmol/L [5]. Hyperglycaemia occurs when blood glucose levels are elevated above
the euglycaemic range and hypoglycaemia occurs when blood glucose levels drop below the euglycaemic
range. Repeated periods of hypoglycaemia can result in hypoglycaemia unawareness, impaired glucose
counter-regulation and severe hypoglycaemia episodes [6, 7]. Hypoglycaemia causes many neurogenic
symptoms and eventually results in brain dysfunction [7]. Prolonged, severe hypoglycaemia episodes can
lead to cognitive impairment and recurrent seizure activity [7]. On short-term, hyperglycaemia results
in less severe symptoms, although it can lead to diabetic ketoacidosis (accumulation of ketones) when
left untreated. Long-term complications include cardiovascular disease, nerve damage, kidney damage,
eye problems, etc. [8].

It is known that risk of complications that are associated with diabetes can be reduced by early treat-
ment and glucose control [9]. The HbA1c is applied as a measure for the mean glucose level over three
months. According to guidelines, its value needs to be kept below 7%, reflecting that glucose levels were
well within the euglycaemic range on average in this period [2]. Current treatment of a diabetes patient
starts with an individualized treatment plan in order to reduce the short- and long-term effects [2].
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This involves glucose monitoring in combination with insulin therapy by insulin injections, continuous
subcutaneous insulin infusion or insulin pump therapy. Meal intake and physical exercise need to be
considered to establish proper glycaemic control. In case of hypoglycaemia, glucagon can be applied to
raise glucose levels [2]. Glucose levels are measured either by self-monitoring of blood gluocse (SMBG)
or by continuous glucose monitoring (CGM). SMBG requires the patient to apply a blood drop to a
SMBG device. CGM uses a sensor that measures the glucose level in the interstitial fluid continuously.

Current treatment methods cannot prevent regular episodes of hypoglycaemia or hyperglycaemia in peo-
ple with T1DM. Research has been performed to improve current treatment methods. Transplantation
of islets has shown to be a promising technique in T1DM treatment. Islets contain the endocrine cells
in the pancreas. Studies are ongoing to find techniques suitable for islet transplantation. Islet cell death
and poor perfusion of transplanted islet areas are the issues that are currently encountered. Another
problem is the limited availability of islets. Application of stem cells may help to accomplish successful
islet transplantations. [9]

Next to research into the treatment of diabetes on cellular level, studies have also been performed in order
to improve treatment by exogenous intervention. Artificial pancreas (AP) systems have been developed
that are either insulin delivery systems [10, 11] or bi-hormonal systems [12, 13] that apply infusions of
both insulin and glucagon to stabilize glucose levels. These devices are closed loop systems, meaning that
these systems receive feedback and adjust the output, i.e. hormonal infusions, based on this feedback.
CGM is applied to provide feedback to the system. An advantage of ”closing the loop” is that no human
decisions are required to regulate glucose levels, which could diminish patient burden.

Insulin-delivery AP systems have shown to get closer to optimal insulin administration compared to nor-
mal insulin pumps, but due to variable pharmacokinetics and absorption rates of insulin analogues it is
still a challenge to prevent hypoglycaemic events. One such system has been approved by the FDA [14].
This system has the disadvantage that it still requires meal announcement by the patient. Bi-hormonal
AP systems use the counter-regulating effect of glucagon to prevent hypoglycaemia. It has been shown
that bi-hormonal AP systems can reduce hypoglycaemia after exercise and improve nocturnal glycaemic
control [9]. A small clinical study on the bi-hormonal AP system as developed by Inreda Diabetic BV has
indicated that this AP system performs better at maintaining euglycaemia than regular insulin pump
therapy [13].

Many mathematical models of glucose metabolism in the body have been developed over the years. The
aim of these models was initially to provide insight into parameters related to glucose metabolism, such
as insulin sensitivity [4]. Later on, models have been developed with the goal of performing simulations.
These models can be applied for in silico testing of diabetic treatments. Mathematical models of glucose
metabolism are either data-driven (black box) or they are based on the processes that occur physiologi-
cally [4]. This last type of model can be very complex, which has the advantage that complex dynamics
can be represented by such a model. Problems occur when parameter values for these systems need to be
determined [5]. Direct measurement of the model variables either requires extensive tracer experiments
or is not possible at all. Estimation of all model parameters based on limited available data is often not
possible.

A proprietary model of glucose metabolism has been developed. This model is suitable for in silico
testing of the AP system developed by Inreda Diabetic BV [5] on T1DM patients. Although a working
model was provided, it has not been possible to set up an in silico population based on the limited
available data. Thereby, the model is yet to be identified and validated [5]. The current study is aimed
at performing parameter estimations for this model based on data acquired in a study on the Inreda AP
[13]. Model structure of the various submodels of the Inreda model is reviewed and structural simplifica-
tions are applied when this is required to find unique parameter estimations. Consequently, the research
question for this thesis is defined as: how can critical model parameters be identified and what is glucose
prediction performance for identified models of varying structures and complexity?

An overview of existing models of glucose metabolism is given in the next chapter and their limitations
are discussed. Some physiological background on the processes involved in glucose metabolism is also
provided. Chapter 3 will then explain the methods that were applied for answering the research question.
The last two chapters of this report contain the results and a discussion of these results respectively.
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Chapter 2

Literature Study

In this chapter, the state of the art in glucose modelling methods is discussed. Most of these models
are built up from differential equations, with each variable describing the mass or concentration of a
certain molecule or hormone in a compartment. Such a compartment often has a physiological meaning,
for example the blood plasma or peripheral tissues in the body. Parameters describe the rates at which
masses flow in and out of the compartments. [4]

This literature study starts with some background information on the kinetics and existing model de-
scriptions of the hormones insulin and glucagon. Such models are required to establish a valid model of
the glucose system when these hormones are applied to regulate blood glucose concentrations. In the
second part of this literature study, the glucose dynamics and kinetics including the effects of insulin and
glucagon on glucose levels are discussed. A conclusion is formulated at the end of this chapter.

2.1 Insulin and glucagon systems

As mentioned in the introduction, insulin and glucagon are hormones that influence blood glucose (BG)
levels in the body. The dynamics of insulin and glucagon determine how these hormones affect the
glucose system [15], which is called insulin and glucagon action throughout this report. Before insulin
and glucagon action can be described, kinetics of insulin and glucagon need to be identified. These
kinetics determine the hormonal concentrations at the site(s) of action. In healthy people, insulin and
glucagon kinetics involve the entry of secreted hormone into the blood stream, distribution through other
body pools, and elimination [15]. When applying bi-hormonal control of BG levels, insulin and glucagon
kinetics also involve the pharmacokinetics in case of subcutaneous delivery of insulin and glucagon
[16, 13, 17].

2.1.1 Insulin kinetics

Early models of glucose metabolism were identified for healthy people. In order to describe insulin ac-
tion on glucose kinetics for these people, it was necessary to first describe the insulin production by
the pancreatic beta cells and the insulin kinetics after release. A well known model of insulin kinetics
in healthy people was developed by Hovorka et al. [18]. The model structure consisted of five com-
partments reflecting the insulin distribution over the systemic plasma, hepatic plasma, interstitial fluid,
and the binding of insulin to either liver or peripheral receptors that mediate insulin degradation. This
physiological approach was implemented with even more detail by Koschorreck et al. [19] and Ohashi
et al. [20]. Although these models can provide insight into the processing of insulin by the body, the
complexity may not be required for the modelling of insulin kinetics solely to determine insulin action
on glucose metabolism.

A more simple model was described by Ferrannini et al. [21]. Insulin was modelled to be transferred
between the blood plasma compartment and either highly or poorly perfused tissue compartments in
which insulin degradation takes place. This model was implemented into the glucose model that was
developed by Dalla Man et al. [3], in which the plasma compartment was merged with the highly perfused
tissue compartment. The result was a two-compartmental model of insulin kinetics, representing the flows
of insulin between the blood plasma and the liver including the insulin degradation that occurs in both of
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these compartments [3]. This model was updated for modelling in a T1DM patient by removal of insulin
secretion by the beta cells from the equation and addition of a submodel of the rate of appearance of
injected insulin in the plasma [22]. Parameters were estimated based on measurements of the plasma
insulin concentration in healthy subjects after meal intake. The Inreda model [5] uses the same model
structure to model insulin kinetics, which is shown in Figure 2.1.

Figure 2.1: Box scheme of insulin kinetics as applied in the Inreda model [5]. Beta cell insulin secretion is set
to zero for modelling in a T1DM patient. Rate of appearance of subcutaneously injected insulin into the blood
plasma results from insulin transfer through one or two subcutaneous (subc.) compartments. Insulin is cleared
from the liver and blood plasma.

Much research has been performed on the development of a model describing the appearance of subcu-
taneously administered insulin in the blood plasma [23, 24]. Most of these studies applied subcutaneous
bolus injection of insulin, after which blood samples were taken multiple times from which insulin concen-
trations could be determined. An example of such a dataset is shown in Figure 2.2. A study performed
by Kraegen et al. [25] showed that a three-compartmental model is capable of reasonably describing
experimental data. The model assumed that insulin was injected into a first subcutaneous compart-
ment and could be transferred towards the blood plasma compartment through a second subcutaneous
compartment. Another assumption determined that insulin could be cleared from both subcutaneous
compartments and from the blood plasma.

Figure 2.2: Example of a dataset with plasma insulin concentrations measured in venous blood samples after
insulin bolus injection in T1DM patients. The dotted line represents the mean of the measured plasma insulin
concentrations and the area between the mean ± standard deviation is marked grey. [26]
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The model developed by Shimoda et al. [27] was similar, with the difference that it assumed that insulin
could only be cleared from the second subcutaneous compartment and the blood plasma. More recently,
the models implemented by Herrero et al. [28] and Dalla Man et al. [29] assumed that insulin injected
into the first subcutaneous compartment could enter the plasma both directly and through a second
compartment [29], and was only cleared once it reached the blood plasma [29, 28]. This is the approach
that is shown on the left side of Figure 2.1.

The review published by Schiavon et al. [26] validated these models for a short-acting insulin (lispro).
It was shown that the subcutaneous insulin model implemented in the Dalla Man model [29] resulted in
the best fit for the data, with a delay added to the administration of insulin for several subjects [26]. A
study performed by Lv et al. [30] agreed with this result and also showed that intradermal delivery of
insulin could be modelled with a similar model structure.

Except from Dalla Man, none of these studies of subcutaneous insulin absorption applied an additional
mathematical description of insulin kinetics once it had reached the blood plasma. It was indicated that
plasma insulin kinetics could be described by assuming a constant clearance rate of insulin from the
plasma, without including an additional liver compartment [26]. A study by Li et al. [31] also indicated
that the complex model that was implemented in the Dalla Man model that combines a compartmental
model of insulin kinetics in healthy people [3] with a model of subcutaneous insulin absorption [29], is
not required for simulation of insulin concentrations in T1DM patients. The study [31] showed that Padé
approximants can be applied to develop a model of even lower order and with less parameters that is
still able to accurately simulate of insulin concentrations [31].

2.1.2 Glucagon kinetics

In order to determine the glucagon action on the glucose system, the glucagon concentration in the
blood plasma needs to be modelled. A study by Dobbins et al. [32] has shown that glucagon rapidly
reaches an equilibrium state in the blood plasma after venous infusion, which can be modelled by a
one-compartmental model. Compartmental analysis was applied to identify important parameters of
glucagon kinetics and was based on measurements on conscious dogs. Studies investigating the subcu-
taneous absorption of glucagon [33, 16] have indicated that glucagon kinetics are quick in humans as well.

A study performed by Lv et al. [34] structurally identified the absorption of subcutaneously adminis-
tered glucagon to the blood plasma. In this study, various models were fit to a data set provided by
a bi-hormonal closed loop clinical trial study [12]. Best model fit was found for a two-compartmental
model of subcutaneous glucagon absorption and an additional plasma compartment. Other studies ap-
plied two-compartmental models with the second compartment already representing the blood plasma
[33, 35]. These were also successful in describing measurements with sufficient accuracy. A limitation of
these studies are that glucagon secretion may not have been completely absent during the experiments.
Furthermore, due to different study designs in terms of participants and types of insulin and glucagon
perturbations, it is hard to determine whether presence of insulin and frequency of glucagon injections
have an effect on model fit and parameter estimations.

The one-compartmental model of glucagon kinetics and the two-compartmental model of subcutaneous
glucagon absorption as found by Dobbins et al. [32] and Lv et al. [34] were implemented into the
update of the Dalla Man model in 2014 [36]. Next to subcutaneous injection of glucagon, glucagon can
also appear in the blood plasma after secretion by the pancreatic alpha cells. A model describing this
secretion was also included in the Dalla Man model [36]. The same model structure was adopted for the
Inreda model [5], which is shown in Figure 2.3.
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Figure 2.3: Box scheme of glucagon kinetics as applied in the Inreda model [5]. Rate of appearance of sub-
cutaneously injected glucagon into the blood plasma results from glucagon transfer through two subcutaneous
(subc.) compartments. Glucagon that is secreted by the alpha cells also enters the blood plasma. Glucagon is
cleared from the first subc. compartment and from the plasma compartment.

2.1.3 Alpha cell glucagon secretion

Although the response of alpha cells to hypoglycaemia can be impaired in T1DM patients, the cells do
not lose the ability to produce glucagon [37]. The response to hypoglycaemia decreases progressively
with diabetes duration. Studies have conflicting results about the period of time in which this occurs
[37, 6]. More recent studies have shown that in T1DM patients, in contrast to healthy alpha cell func-
tion, glucagon secretion suppression during hyperglycaemia can be dysfunctional [38, 39]. Also, glucagon
secretion stimulation during hypoglycaemia is impaired [40, 41, 42]. A study performed by Hinshaw et
al. [43] showed that glucagon secretion is not negligible in T1DM patients. Detailed models have been
developed to get more information about the dynamics underlying glucagon secretion in healthy people
and T1DM patients [44, 45, 46].

Another glucagon secretion model [47] was implemented into the update of the Dalla Man glucose model
[36]. In this model, based on the physiological situation, glucagon secretion is assumed to consist of
a static component and a dynamic component. The dynamic component is dependent on the glucose
rate of change, meaning that dynamic secretion increases when glucose levels start to drop. The static
component is dependent on glucose concentrations. Static secretion would be inhibited for high glucose
levels. Stimulation of static secretion occurs when glucose levels are lower. As soon as glucose levels
drop even further, stimulation of static secretion becomes dependent on the insulin level as well: the
stimulation is stronger for lower insulin levels. Glucagon secretion parameters were adjusted to diabetes
disease duration in order to account for the loss of alpha cell responsivity [36]. Parameter estimations
were not performed for data acquired in T1DM patients.

The Inreda model [5] applies a similar model of alpha cell secretion, with the difference that switching
between different states of inhibition and stimulation of alpha cell secretion is slightly simplified, as is
presented by Carson and Cobelli [4]. Secreted glucagon is transferred from the alpha cells to the blood
plasma, as shown in Figure 2.3. A study performed by C. Braem [48] attempted to perform parameter
estimations for a linearisation of the alpha cell secretion model of Inreda. This proved to be difficult
both due to the limited availability of suitable data and due to the complexity of the model structure.
Results indicated that secretion dynamics change dependent on glucose concentrations. Dependency on
insulin concentrations was not studied.

2.2 Glucose system

Two main types of glucose models have been developed over the years: models to measure and models to
simulate [4]. Typically, models to measure are so-called minimal models that are structurally simple and
have the goal to describe system functions and quantify metabolic relationships in the system. Models
to simulate are typically maximal in the sense that these models are higher-order models that contain
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nonlinearities and many model parameters. Next, the first minimal models are described (subsection
2.2.1). Then, modelling developments in various parts of the glucose metabolism chain are discussed
(subsections 2.2.2-2.2.5). Lastly, an overview of the state of the art glucose models is provided (subsection
2.2.6).

2.2.1 Glucose minimal models

The glucose minimal model (MM) was originally described by Bergman et al. [49] and is shown in Figure
2.4. In this minimal model, one compartment is used to describe glucose kinetics after a venous glucose
injection D. The description consists of insulin-independent (Gb, k1 and k5) and insulin-dependent (k4
and k6) components. Gb is the basal net glucose production at zero glucose. There is balance between
hepatic glucose production and utilization (k5) and extra-hepatic glucose utilization (k1). Insulin action is
both on the hepatic glucose balance (k6) and extra-hepatic glucose utilization (k4). The model description
is shown in Equation 2.1. The input variable is the plasma insulin concentration Cip and the output
variables are the delayed insulin signal Cid and the glucose mass qgp in the blood plasma. Plasma glucose
concentration Cgp is related to the glucose mass qgp through the volume of distribution Vg. Equation
2.2 shows an equivalent description of the model with the insulin action X(t) that is proportional to
Cid. Insulin action is a first order transfer of the insulin concentration Cip relative to the basal insulin
concentration Cip,b.

Glucose minimal model:
q̇gp(t) = −(k1 + k5) · qgp(t) − (k4 + k6) · Cid(t) · qgp(t) +Gb

Ċid(t) = k2 · (Cip(t) − Cip,b) − k3 · Cid(t)

Cgp(t) =
qgp(t)
Vg

(2.1)

Substitute (k4 + k6) · Cid(t) = X(t):
q̇gp(t) = −(k1 + k5) · qgp(t) −X(t) · qgp(t) +Gb

Ẋ(t) = k2 · (k4 + k6) · (Cip(t) − Cip,b) − k3 ·X(t)

Cgp(t) =
qgp(t)
Vg

(2.2)

Figure 2.4: One-compartmental Bergman minimal model [49, 50] describing the glucose mass in the blood
plasma qgp after venous infusion of glucose (D). The model considers flow of glucose and insulin (solid lines), as
well as insulin action (dotted lines) affecting the glucose flows.

Data that was applied to identify the Bergman MM [49] was obtained in cold intravenous glucose tolerance
test (IVGTT) experiments, in which peripheral plasma was frequently sampled after an intravenous
glucose injection. Although this cold IVGTT data could not be used to determine the hepatic glucose
production and utilization separately, it did allow for a description of the hepatic glucose balance. After
re-parametrization, model parameters as shown in Equation 2.3 were uniquely a priori identifiable from
cold IVGTT data. This model has been used to estimate the insulin sensitivity SI (Equation 2.4),
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that measures the rate at which insulin stimulates the glucose-dependent glucose disappearance. It also
has been used to estimate the glucose effectiveness SG (Equation 2.5), i.e. the enhancement of glucose
disappearance as glucose concentration increases.

Re-parameterize equation 2.2 by applying kg = k1 + k5,m = k2 · (k4 + k6), n = k3:
q̇gp(t) = −kg · qgp(t) −X(t) · qgp(t) +Gb

Ẋ(t) = m · (Cip(t) − Cip,b) − n ·X(t)

Cgp(t) =
qgp(t)
Vg

(2.3)

SI = −m
n

(2.4)

SG = kg (2.5)

Later on, it was shown that simultaneous injection of cold and labelled (hot) glucose could provide more
information about glucose kinetics than injection of cold glucose alone [51]. The same one-compartmental
model was applied, with the difference that parameters were considered to only contribute to the hot
glucose levels. As a consequence, these system parameters were a reflection of the glucose utilization
only, instead of the balance between utilization and production. By comparison of cold and hot glucose
parameter estimates, the rate of liver glucose production could also be obtained.

More recent studies [52, 53] showed that the one-compartmental glucose minimal model was not able to
model glucose kinetics in non-steady-state. The minimal model was adjusted by considering two glu-
cose compartments [53], one with slowly-equilibrating glucose kinetics (qgt) and the other with quickly-
equilibrating glucose kinetics (qgp), as shown in Figure 2.5. Insulin action was assumed to take place on
the slowly-equilibrating glucose compartment. The model was identifiable from hot IVGTT data.

Figure 2.5: Two-compartmental minimal model [54, 50] describing the glucose masses in the slowly equilibrating
tissues (qgt) and in the quickly equilibrating tissues and blood plasma (qgp) after venous glucose infusion. The
model considers flow of glucose and insulin (solid lines), as well as insulin action (dotted lines) affecting glucose
levels.

The system of differential equations of the compartmental hot glucose masses are shown in Equation 2.6.
Plasma glucose concentration Cgp is related to the glucose mass in the slowly-equilibrating compartment
qgp through the volume of distribution Vg. Rate of glucose disappearance is constant (kgt) for the slowly-
equilibrating compartment and is time-variant for the quickly-equilibrating compartment (kgp + F/(Vg ·
G(t))). Here, G(t) is the measured cold glucose concentration. k21 and k12 represent the rates of glucose
transfer between the compartments. Glucose action X is again a first order transfer of the plasma
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insulin concentration. This model was also applied to estimate the indexes of glucose effectiveness and
insulin sensitivity [54]. These two-compartmental models have the disadvantage that unique parameter
estimation was now only possible by using a tracer glucose bolus and physiological constraints [53, 54]
or by Bayesian estimation [50].


q̇gp(t) = −k21 · qgp(t) + k12 · qgt(t) − kgp · qgp(t) − F/(Vg ·G(t)) · qgp(t)

q̇gt(t) = k21 · qgp(t) − k12 · qgt(t) − kgt · qgt(t) −X(t) · qgt
Ẋ(t) = m · (Cip(t) − Cip,b) − n ·X(t)

Cgp(t) =
qgp(t)
Vg

(2.6)

2.2.2 Insulin action

Separating between the effect of insulin on glucose transport and disposal was first attempted by Fer-
rannini et al. [55]. Shortly after, tracer experiments were applied to develop labelled minimal models
that could separate between the effect of insulin and glucose on glucose disposal and endogenous glucose
production (EGP) by the liver [51, 56]. Another model that was developed by Hovorka et al. [57] was
made to separate between the effects of insulin not only on glucose disposal and endogenous glucose
production, but also on glucose transfer. Application of dual tracer technology in combination with a
(minimal) model allowed for measurement of the suppression of the EGP after insulin bolus administra-
tion. It was indicated that the main effect of insulin after meal intake is to suppress the EGP and that
stimulation of glucose disposal is less strong.

Availability of data acquired in model-independent triple-tracer methods [58] (Figure 2.6) allowed for the
development of models that could not only describe EGP and glucose utilization after meal intake, but
also the glucose rate of appearance after carbohydrate ingestion. A model describing the endogenous
glucose production (EGP) during a meal in the liver was developed by Dalla Man et al. [59]. In
contrast to the original glucose minimal model [49], the insulin action on the EGP was assumed to
be independent of the glucose concentration and dependent on the insulin concentration through an
additional compartment, adding an extra delay to the effect of insulin. The value of this EGP model for
modelling of glucose concentrations in people with T1DM is limited due to the data being acquired on
healthy people after meal intake.

Figure 2.6: Data acquired in a triple-tracer experiment [58, 3] in healthy subjects with on the left the EGP,
in the middle the glucose rate of apperance (Ra) and on the right the glucose utilization. These were measured
during the first 480 minutes after ingestion of a mixed meal. As meal glucose appeared in the blood, EGP was
suppressed and glucose utilization increased.

2.2.3 Glucose intestinal absorption

The oral minimal model (OMM) was developed as an extension of the glucose minimal model by Dalla
Man et al. [60]. A model was assumed for the rate of intestinal glucose absorption after meal intake,
such that the insulin sensitivity during meal perturbation could be estimated. Triple-tracer experiments
[58] allowed for application of a labeled oral minimal model (OMM*) for the estimation of the glucose
disposal’s insulin sensitivity individually (S∗

I) next to the net insulin sensitivity (SI) that also included
glucose production [61]. A physiologically detailed model meant for simulation of glucose absorption in
the gastrointestinal tract was firstly developed in another study performed by Dalla Man et al. [62].

9



Model validation was based on data gathered in mixed-meal (Figure 2.6) [58] and oral glucose [61]
multiple tracer experiments. The model consisted of three compartments and was nonlinear.

2.2.4 Glucose utilization

Glucose disposal (U) has been characterized as being dependent on the glucose concentration Cgp through
a Michaelis-Menten relationship [63]: U(t) = (Vmax ·Cgp(t))/(Km +Cgp(t)). This relationship originates
from modelling enzyme kinetics. The parameter Vmax in the numerator of the equation represents the
maximum utilization rate possible. The Michaelis-Menten constant Km in the denominator of the equa-
tions is the glucose concentration at which the utilization rate is half of the maximum utilization rate.
The effect of the equation is that utilization rate becomes saturated as the glucose concentration in-
creases, which can be seen in Figure 2.7.

Figure 2.7: Example of Michaelis-Menten relationship for modelling of glucose utilization.

Implementation of this relationship in the glucose model of Dalla Man suggested that the parameter
Vmax in this relationship is not constant, but dependent on the insulin concentration in a remote insulin
compartment [3]. This means that the maximum utilization rate increases when the insulin concentration
rises. Fitting the model to the available data (Figure 2.6 [58]) also indicated that a basal rate of glucose
utilization was always present independent of the insulin concentration [3].

A study that also applied the Michaelis-Menten relationship in a glucose model was performed by Wong
et al. [64]. In contrast, glucose utilization was now characterized as being dependent on the remote
insulin concentration through a Michaelis-Menten relationship with the saturation parameter dependent
on the glucose concentration [64]. The effect of this equation is that utilization rate becomes saturated
as the insulin concentration increases. The maximum utilization rate is proportional to the glucose
concentration. The model showed to be successful in glucose level prediction in people receiving critical
care. It has not been validated on healthy people or people suffering from diabetes.

Dynamics of glucose utilization differ between people with T1DM and healthy people. It has been shown
that glucose utilization in long-standing T1DM subjects is reduced compared to healthy subjects in eu-
glycemia and hyperglycaemia, even when insulin levels are elevated excessively [65, 66]. This is not the
case in newly diagnosed cases [67]. Other studies indicated in hyperinsulemic clamp experiments that in-
sulin action increases for low glucose values in people with T1DM [68, 69]. Therefore, counter-regulation
of both hypoglycaemia and hyperglycaemia through the decrease and increase of glucose utilization re-
spectively is impaired in people with T1DM.

The utilization submodel of Dalla Man was adjusted to a T1DM subject by addition of a risk function
to the insulin parameter in the Michaelis-Menten relationship [36]. This risk function represents the
impaired hypoglycaemia counter-regulation by assuming that glucose utilization increases when glucose
decreases below a certain threshold. In the Inreda model [5] the same model of glucose utilization is
applied, but the risk function is not included.
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2.2.5 Glucagon action

A clinical trial that was performed by Hinshaw et al. [70] showed that in people with T1DM, there is
glucagon action on the EGP both in euglycaemia and hypoglycaemia. Sensitivity of the liver to glucagon
did not change between euglycaemic and hypoglycaemic glucose levels. Clearance rate of glucagon from
the plasma did not change for increasing glucagon concentrations. A later study by Emami et al. [71]
attempted to model insulin action and glucagon action on the EGP. Results suggested that EGP always
has a basal rate independent of insulin and glucagon as a result of gluconeogenesis. EGP was modelled
to depend linearly on the delayed insulin signal similar to what was done earlier by the EGP model of
Dalla Man [59]. Best model fit was found for EGP depending linearly on the glucagon concentration as
well as on a delayed glucagon signal proportional to the glucagon rate of change [71]. The update of
Dalla Man [36] applied a different model for which EGP depended linearly on a delayed glucagon signal
that stimulates EGP as soon as glucagon concentration is above basal.

2.2.6 Complete glucose simulation models

Many glucose simulation models have been developed over the years. In this subsection, an overview of
some existing models is presented. This overview is summarized in Table 2.1. The considered models
have been applied as basic structures in research into T1DM treatment and control [4]. Many variations
to these models exist and are currently mainly applied to study closed loop glucose control systems.
These systems can be either insulin delivery systems or bi-hormonal control systems that apply infusions
of both insulin and glucagon.

Table 2.1: Overview of glucose models found in literature

Parameter values Purpose Glucagon
model

Intrasubject
variability

Intersubject
variability

Notes

Sorensen
[72]

Based on literature Simulation for
average T1DM
subject

Included in
detail

Not considered None Contains errors
[73]

Hovorka
[74]

Based on literature
or estimated from
data acquired in
T1DM subjects

In silico testing of
nonlinear preditive
controller of
glucose levels

Excluded Oscillatory
variability for part
of parameters
(Bayesian
estimation)

10 virtual
patients (based
on clinical
data)

Physical
activity model
is included.
Model is
validated on
data 12 young
T1DM patients
[75].

Fabietti
[76]

Estimated based
on clinical data or
taken from
literature.

Simulation model
simple enough for
real time
parameter
estimation

Excluded Sinusoidal
representation of
carcadian
variability of
insulin sensitivity
that are estimated
off-line

None Extension of
Bergman

Medtronic
[77]

Estimated based
on clinical data

Simulation
environment for in
silico testing of
closed loop delivery
systems in T1DM
subjects

Excluded Parameter values
adjusted in
real-time based on
RMS

10 virtual
patients based
on 10 T1DM
subjects

Extension of
Bergman

Herrero
[28]

Parameters were
fixed based on
literature or
estimated from
clinical data in 3
T1DM subjects
(closed loop study)

Simulation
environment for in
silico testing of
closed loop delivery
systems, build
cohort of virtual
T1DM subjects

Glucagon
action through
remote
compartment.
Subc. kinetics
similar to
insulin

Parameter
estimations
performed
separately for three
time windows
during day

Identification
performed for
three subjects

Extension of
Bergman

Dalla Man
[3, 36, 78,
79]

Based on
triple-tracer
experiment in
healthy people and
additional
databases for
T1DM pateints

In silico testing of
closed loop control

Model of
absorption and
kinetics
included

Diurnal variability
is added for several
parameters

300 virtual
patients
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One of the first complex models of glucose metabolism was developed by Sorensen et al. [72]. This model
consists of six compartments that are based on body physiology. Glucose uptake was assumed to take
place in the (1) brain, (2) heart and lungs, (3) periphery, (4) gut, and (5) liver. Glucose is excreted from
the kidney compartment (6). The liver was considered the only source of glucose. In addition, insulin
kinetics and action were considered. Parker et al. [80] altered the Sorensen model to include absorption
of glucose in the gut [81]. The main disadvantage of this model is that parameter estimations were taken
from literature such that the model can only be applied to simulate glucose levels in an average subject
with T1DM.

Hovorka et al. [74] combined two-compartmental models of subcutaneous insulin and glucose kinetics
with the Hovorka model of insulin action [57]. Intestinal glucose absorption was included by a simple
two-compartmental transfer. Model parameters were either estimated from measurements on T1DM
subjects or taken from probability distribution databases. Oscillatory intra-subject variability was im-
plemented for a selection of the parameters by Bayesian parameter estimation. The disadvantage of this
model is that intestinal glucose absorption and intra-subject variability may not be implemented with
enough refinement. Advantages are that the in silico patients are validated with a clinical study and
that a submodel of physical exercise is included. The model has been applied for design of a nonlinear
predictive controller for juveniles. Only the averages of the parameter values have been made public.

A study by Fabietti et al. [76] altered the Bergman minimal model [49] to represent a T1DM patient: a
compartment was added to describe subcutaneous absorption of insulin. The insulin secretion submodel
was removed and renal clearance was added. Also, an additional glucose compartment and intestinal
glucose absorption were included. Part of the parameters were estimated based on the acquired clinical
data and the remaining parameters were adopted from literature. Clinical data was also applied to
estimate the circadian variation of the insulin sensitivity. The disadvantage of this model as well, is that
it only represents an average subject with T1DM.

Medtronic [77] also adapted the Bergman minimal model [49]: two-compartmental models of subcuta-
neous insulin absorption and intestinal glucose absorption were added. Intra-subject variations of insulin
sensitivity, glucose effectiveness and endogenous glucose production were introduced based on ten glucose
profiles and a virtual population was created. Model structure and parameter estimations have not been
published. The model results in overestimation of the glucose effectiveness and underestimation of the
duration of insulin action [82]. Despite this result, a first validation study on 10 T1DM subjects during
routine insulin treatment showed that simulated glucose values did not differ significantly from clinical
measurements. Therefore, the model could be suitable for in silico studies of insulin delivery systems [83].

A model that did include glucagon dynamics into a glucose simulation model was composed by Herrero et
al. [28]. The Bergman minimal model [49] (Figure 2.4, Equation 2.3) was extended with a compartment
that incorporates glucagon action on the endogenous glucose production, which is shown in Figure 2.8
and Equation 2.7. Insulin action X acts on liver glucose uptake (k6) and extrahepatic glucose utilization
(k4). Glucagon action Y acts on the endogenous glucose production (k9). Both X and Y are first order
transfers of the insulin and glucagon concentrations relative to the basal levels respectively. Submodels
of subcutaneous insulin kinetics and intestinal glucose absorption were taken from the Hovorka model
[74]. Subcutaneous glucagon kinetics were modelled with the same model structure as subcutaneous
insulin kinetics. The model was identified based on a closed loop bi-hormonal control study with three
subjects of 26-hour duration (Figure 2.9). Parameters were estimated in three different time windows
during the day in order to account for diurnal variations of the parameters.


q̇gp(t) = −kg · qgp(t) −X(t) · qgp(t) + Y (t) · qgp(t) +Gb

Ẋ(t) = mi · (Cip(t) − Cip,b) − ni ·X(t)

Ẏ (t) = mh · (Chp(t) − Chp,b) − nh · Y (t)

Cgp(t) =
qgp(t)
Vg

(2.7)
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Figure 2.8: Model structure of extended minimal model [49] (Figure 2.4) as applied by Herrero et al. [28] that
incorporates both insulin and glucagon action on glucose metabolism (dotted lines). Solid lines represent transfer
of glucose/insulin/glucagon.

Figure 2.9: Model fit of simulation to data acquired in bi-hormonal closed loop control study is shown in upper
graph. Data was applied to perform parameter identification for the glucose model of Herrero et al. [28]. Lower
graph shows applied infusions of glucagon and insulin.

A model that is approved by the FDA for in silico testing of glucose control systems was developed by
Dalla Man et al. [3, 36, 78]. Complex submodels of insulin and glucose fluxes were identified based
on clinical data acquired on 204 healthy subjects in a triple-tracer experiment after meal intake [58].
A database of virtual T1DM patients was computed [22] and submodels of (subcutaneous) glucagon
kinetics and action have been added [36].

The Dalla Man model was validated based on 24-hour duration measurements on people with T1DM
during controlled conditions: three predetermined mixed meals were consumed, no physical activity was
undertaken and no subcutaneous infusion of glucagon was applied [79]. The limitation of the model
to account for diurnal variations of glucose dynamics becomes clear from the fact that different virtual
subject parameter sets were matched to fit the measurements after breakfast and dinner in the same real
subject. Diurnal parameter variations were added in a later model update [78], but this has not been
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validated on data yet. The effect of these variations is shown in Figure 2.10. Other studies [84, 85] have
shown that submodels of this simulation model can be simplified to lower order systems with similar
simulation accuracy by application of methods like Padé approximants.

Figure 2.10: Simulation performed with Dalla Man model. Three identical meals were used as input. The lines
represent simulations without (red dashed line) and with (green line) diurnal parameter variations. [78]

2.3 Conclusion

It can be concluded that many simulation models have been developed for which research has indicated
that these models are feasible for in silico testing of glucose control systems. Limitations of all models
are that the change of glucose kinetics diurnally and over a longer period of time have not been fully
identified. Both oscillatory patterns and stepwise adjustments have been applied to parameter values.
Only recently, glucagon kinetics have become relevant in these simulation models, so a limited amount
of studies into glucagon kinetics and action has been performed. Part of the available glucose models
has not considered the effect of glucagon at all. Moreover, the influence of external factors like varying
meals, physical activity and stress is largely unknown and has not been incorporated into the simulation
models. Due to the complexity of the discussed models, it may not be possible to determine the effects
of these external factors on all model parameters.

From the literature overview, it can be seen that in most models a large part of the model parameters
are fixed and only several parameters are estimated to fit the data. The disadvantage of this strategy
is that assumptions need to be made about the origin of inter- and intra-subject variations. Estimation
of the complete set of parameters in a model enables researchers to identify the effect of inter- and
intra-subject variations on all parts of the model. This can be accomplished either by doing extensive
tracer experiments for identification of variations in the physiological processes or by application of less
complex model structures. The current study applies the second option. Model structure of the Inreda
model [5] that is largely based on the Dalla Man model [36] was adapted. Several model structures were
proposed and identified based on clinical data for the insulin, glucagon and glucose subsystems. For each
model, precision of the parameters and performance of the models to predict glucose levels in a T1DM
patient were determined.
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Chapter 3

Methods

From the literature study, it has become clear that complete identification of the parameters of a complex
model of glucose metabolism is not possible when the only data available are measurements of glucose,
insulin and glucagon concentrations in the blood plasma. For that reason, the available data was applied
for the identification of newly proposed model structures. The studies from which data is available and
criteria of inclusion and exclusion of sections of data are discussed in section 3.1. Then, in section 3.2,
explanation on calculations to acquire model inputs is provided. In section 3.3, models of varying com-
plexity are proposed to describe the glucose metabolism, which includes models of insulin and glucagon
kinetics. This is followed by section 3.4 on the methods that were applied for parameter identification.
The chapter is concluded with section 3.5 in which it is explained how results of the identification of
proposed models were quantified and validated.

3.1 Available data

For parameter estimations in the three subsystems, different data was applied. The insulin subsystem
was identified on data taken from the study performed by Schiavon et al. [26]. In this study, three
different datasets were applied for parameter estimations in various proposed models of subcutaneous
insulin absorption. Each dataset contains measurements of the plasma insulin concentration in subjects
with T1DM after a subcutaneous bolus injection of insulin lispro. Measurement sampling times and
insulin dosages varied slightly between the three datasets. Experimental procedures were similar. The
average response of the plasma insulin concentration was published [26] for each of these datasets. Data
was not available to the current study, so the published averaged responses were applied here for the
parameter estimations in the insulin subsystem.

Data acquired in two different experiments was available to the current study. For identification of the
glucagon subsystem, data acquired in the first experiment was applied. This experiment was part of
the study performed by Blauw et al. (2015) [16]. The aim was to determine the influence of glucagon
on blood glucose (BG) levels. The experiments were performed twelve times for each of the six T1DM
patients. Three different glucagon dose sizes were given at each of the four different initial BG levels.
These initial BG levels were established before the glucagon bolus injection by variable manual venous
infusion of either glucose or insulin. Insulin levels were as low as possible before the start of the glucagon
injections. Blood samples were taken before the glucagon injections and every 10 minutes after until
60-160 minutes. Glucagon and glucose concentrations were measured for each sample. In Figure 3.1,
measurement data of glucagon concentrations after a bolus injection is shown [16]. Seven experiments
with unrealistic progress of glucagon concentrations over time were excluded, leaving 65 measurement
periods for the identification of glucagon kinetics. The measurements of glucose concentrations were not
applied in the current study, since the time window of sampling was shortly after the bolus injection and
therefore not valuable for model identification.
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Figure 3.1: Example of measured glucagon concentrations [16]. Glucagon concentrations are shown for six
subjects to which a subcutaneous bolus injection of 0.22 mg glucagon was applied at an initial BG of 4 mmol/L.

For the identification and validation of the glucose subsystem the data acquired in the second experiment
was applied. This experiment was part of the study performed by Blauw et al. (2016) [13]. Ten patients
completed the study. The aim was to determine the performance and safety of an artificial pancreas
system. The influence of subcutaneous insulin and glucagon infusions combined with normal meal in-
take on the BG levels was determined over a four-day period. The crossover experiment consisted of a
closed loop (CL) and open loop (OL) part. In the CL part, bolus insulin and glucagon infusions were
controlled by an artificial pancreas system that was developed by Inreda Diabetic BV. In the OL control
period, no glucagon was infused and insulin infusion was controlled by the patients themselves using
their own insulin pump. Such pumps apply continuous insulin infusion at various rates during the day
and additional bolus injections before meal intake. Continuous glucose monitoring (CGM) was applied
in order to measure the glucose concentrations subcutaneously, with a frequency of 6 min−1. Regular
self monitoring of blood glucose (SMBG) measurements are available without a predetermined frequency.

Periods in which glucose levels were influenced by glucagon and meals were identified from the OL and
CL CGM data. For glucagon, this was defined as a period of 80 minutes after infusion was applied, since
glucagon concentrations were mostly levelled off after this period (Figure 3.1) [16]. For meal intake, this
was defined as a period of 180 minutes after meal intake, since studies have shown that most ingested
glucose is absorbed after this period [86, 3]. The regular anti-occlusion shots of glucagon in the CL data
were neglected. An example of available CGM data in the CL part is shown in Figure 3.2. Periods
in which glucose levels were influenced by meal intake are marked red and periods in which glucose
levels were influenced by glucagon infusions are marked green. OL data looks similar to CL data, but
without any infusion of glucagon. To begin with, the sections of data that were only perturbed by insulin
were applied for model identification of glucose dynamics and insulin action on glucose dynamics only.
These are the white areas in the figure. Then, data sections of closed loop data that were influenced by
glucagon and insulin infusions, but not by meal intake, were selected to identify the influence of glucagon
on glucose dynamics. These are the white and green areas in the figure.

Figure 3.2: Example of closed loop glucose data [13]. Meal ingestion and digestion in the 180 minutes after meal
intake is represented by the areas that are marked red. Subcutaneous glucagon infusion and processing in the 80
minutes after infusion is represented by the areas that are marked green. Subcutaneous insulin infusions affect
glucose levels during the entire measurement period, including the unmarked (white) areas in the plot.
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Not all available data sections that were selected based on the above criteria could be applied for model
identification or validation. The first exclusion criterion was that data inspection showed a positive
slope in the measured glucose concentrations, while the insulin concentration was above the average that
was simulated for the considered subject and no glucagon infusions were applied. This criterion was in-
cluded, because its occurrence suggests that this increase is related to meal intake and the effect of meal
ingestion is currently not considered in the model. Data sections were also excluded when deviations of
over 2 mmol/L were found between the SMBG and CGM measurements or when physical activity was
performed during the period.

Furthermore, when during a data section the glucose levels showed a stepwise increase or decrease of
over 2 mmol/L, this period was shortened until after this step in the measured BG. The data section was
excluded when the remaining period was shorter than 60 minutes. Such steps in CGM measurements
can occur when adjustments to the calibration factor between the electric current and measured glucose
concentration are made. The same procedure of shortening or exclusion of the data section was also
followed when data was missing for prolonged periods of time (> 30 minutes) during the interval. Lastly,
data sections were excluded when showing instability of the CGM measurements, meaning that there
were fluctuations related to sensor variability rather than physiological change. This event occurred
in two situations. The first situation was characterized by periods with sudden increases/decreases in
glucose concentrations that were reversed within the next three hours and that occupied less than a
quarter of the duration of the entire interval. The second situation was characterized by an increase or
decrease in the measured SMBG in a certain period of time, while the measured CGM showed a decrease
or increase of the glucose concentration respectively.

A number of 57 data sections with insulin input only were included, of which 36 were taken from the CL
study period and 21 from the OL study period. One to nine data sections were included for each of the
ten subjects. Length of these varied from 75 minutes to 11 hours, with a mean of about 6 hours. 49 out
of 54 data sections were taken from the night, starting between 21 pm and 6 am. A number of 24 data
sections with insulin and glucagon input only were included. Length of these varied from 97 minutes to
almost 13 hours, with a mean of about 7.5 hours. For these sections, 16 out of 24 data sections were
taken from the night.

3.2 Model inputs

The model inputs that were considered in the current study are insulin infusion rate (IIR) and glucagon
infusion rate (HIR). It was assumed that the amounts of insulin and glucagon infused during the study
period were known without error. Dosed quantities of insulin and glucagon were measured in units (U)
as defined in column three of Table 3.1. Insulin was infused in steps of 0.25 units per second. Maxi-
mum insulin infusion was 15 units (60 s). Glucagon was infused in steps of 0.5 units per second with
a maximum infusion of 10 units (20 s). Meal input was neglected in the current study, since only data
uninfluenced by meal glucose absorption were considered (section 3.1)

The remaining time-dependent model inputs, IIR and HIR, were set to be equal to zero when no dosages
were given. By performing all simulations at a sampling frequency of 60 min−1, bolus infusions were
modelled by setting a number of samples (seconds) corresponding to the applied dosage equal to the
infusion rate of either insulin or glucagon. The infusion rates of insulin and glucagon each had a fixed
size. Calculations of these infusion rates for both hormones is shown in Table 3.1. Since the amounts of
insulin and glucagon in the compartments were measured in pmol/kg, the infusion rates (IR) of insulin
and glucagon should be expressed in pmol/kg/min. Mi and Mh are the molar masses of insulin and
glucagon respectively. Values used were Mi = 5813.677 g/mol and Mh = 3482.75 g/mol [5]. Since
dosages were distributed over the entire body, these were divided by the body weight (BW) in kg of the
subject considered.
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Table 3.1: Conversion of insulin and glucagon dosages to infusion rates (IR) of both hormones

Hormone Maximum
dosage (U)

mg in 1 U pmol in 1 U IR (U/s) IR (pmol/kg/min)

Insulin 15 0.0347 0.0347 · 109

Mi
0.25 0.25 · 60 · 0.0347 · 109

Mi ·BW
Glucagon 10 0.01 0.01 · 109

Mh
0.5 0.5 · 60 · 0.01 · 109

Mh ·BW

3.3 Models

The general model structure is shown in Figure 3.3. The system consists of three subsystems. The insulin
subsystem has as input the insulin infusion rate (IIR) and as output the amount of insulin per kg of
body weight (qip) or insulin concentration (Cip) in the blood plasma. Likewise, the glucagon subsystem
has as input the glucagon infusion rate (HIR) and as output the amount of glucagon per kg of body
weight (qhp) or glucagon concentration (Chp). The glucose subsystem in turn has these glucagon/insulin
subsystem outputs as input and the output is the glucose mass (qgp) or glucose concentration (Cgp).
Intestinal glucose absorption was assumed to be absent for the data sections selected for glucose subsys-
tem identification. Since the hormonal subsystems could not be identified based on the same data [13]
as the glucose subsystem, the insulin and glucagon subsystems were identified with the aim of obtaining
parameter estimates for a patient with T1DM. Model structure of the insulin and glucagon subsystems
was proposed based on the literature study. Linear and nonlinear model structures with varying com-
plexity were proposed for the glucose subsystem.

Figure 3.3: Box scheme of general model structure of the glucose model in this study. Insulin and glucagon
subsystems are aimed at modelling insulin and glucagon concentrations in the blood plasma in response to infusion
of insulin (IIR) and glucagon (HIR). The glucose subsystem is aimed at modelling plasma glucose concentrations
depending on levels of insulin and glucagon in the blood.

3.3.1 Insulin subsystem

The insulin that was administered during the crossover experiment [13] was fact-acting insulin lispro.
The insulin model as applied originally by Inreda Diabetic BV [5] was not used as a basis for the new
insulin submodel, since parameter estimations [22] were based on unknown data, possibly applicable to
another type of insulin. Schiavon et al. [26] has developed a model of subcutaneous insulin absorption
for insulin lispro. Attempts at simulating plasma insulin concentrations after an insulin bolus injection
with the Inreda model applying the same input as in the study by Schiavon et al. [26], resulted in much
weaker output insulin concentrations than in the averaged measured insulin responses that were found
by Schiavon et al. This was an additional reason for dropping the insulin submodel in the Inreda model.
An assumption made in the Inreda model that was also applied in the current study, was that beta cell
secretion of insulin is absent in people with T1DM [5].

A study performed by Schiavon et al. [26] assessed three different models of subcutaneous insulin lispro
absorption and insulin kinetics on the ability to describe the insulin concentration in T1DM subjects
after single bolus injections. In the results, precision of parameter estimations and their physiological
interpretation were considered. The model best capable of describing the subcutaneous insulin absorp-
tion with a meaningful physiological interpretation of the parameters was a three-compartment model
that is shown in Equation 3.1 and Figure 3.4. Parameters and variables with their meaning and unit are
presented in Table 3.2.
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As mentioned in Section 3.1, the insulin subsystem parameters were identified based on three different
average plasma insulin concentration responses. Starting from the model in Figure 3.4, attempts were
made to simplify the model structure that was found to be required for modelling the response in indi-
vidual patients [26]. Four different versions of the model with increasing complexity were applied to find
a description of the plasma insulin concentration for an average T1DM patient. No estimation of the
delay τIsc on the model input was performed for any of these versions, since this parameter could not be
estimated reliably with the applied estimation method. Although this is less than ideal, it was expected
that this delay was not critical in obtaining a good fit for the data.

Four versions of the model in Equation 3.1 were estimated. Version 1 was of 2nd order with estimation
of m and ap1. Version 2 was similar to version 1, but with additional clearance from qIsc1 represented
by parameter msc. This parameter reflects the degradation of insulin at the injection site [87]. Version 3
was of 3rd order without the direct flow from qIsc1 to qip and with estimation of m, di and ap2. Version 4
differed from version 3 by including the parameter ap1 representing this direct flow. Resulting parameter
values were the mean value of the estimations found for the averaged responses. These parameter values
were applied to simulate plasma insulin concentrations for the identification and validation of the glucose
subsystem. Parameter Vi was assumed to be constant and was fixed to the average of 0.126 L/kg found
by Schiavon et al. [26]. 

q̇Isc1(t) = −(ap1 + di) · qIsc1(t) + IIR(t− τIsc)

q̇Isc2(t) = −ap2 · qIsc2(t) + di · qIsc1(t)

q̇ip(t) = −m · qip(t) + ap1 · qIsc1(t) + ap2 · qIsc2(t)

Cip(t) =
qip(t)
Vi

(3.1)

Figure 3.4: Model structure of insulin model as found by Schiavon et al. [26]. Flow of subcutaneously infused
insulin to the blood plasma is either directly through the first subcutaneous compartment (ap1) or indirectly
through both the first and second subcutaneous compartment (di and ap2).

Table 3.2: Overview of variables and parameters in insulin subsystem model

Parameter Description Unit

Insulin subsystem variables

IIR Rate of insulin infusion pmol/kg/min
qIsc1 Amount of insulin in first subcutaneous insulin compartment pmol/kg
qIsc2 Amount of insulin in second subcutaneous insulin compartment pmol/kg
qip Amount of insulin in blood plasma pmol/kg
Cip Insulin concentration in blood plasma pmol/L

Insulin subsystem parameters

Vi Distribution volume of insulin in blood plasma L/kg
ap1 Rate of insulin transport from first subcutaneous compartment to blood plasma 1/min
ap2 Rate of insulin transport from second subcutaneous compartment to blood plasma 1/min
di Rate of insulin transport from first to second subcutaneous compartment 1/min
m Clearance rate of insulin from blood plasma 1/min
msc Clearance rate of insulin from the first subcutaneous compartment 1/min
τIsc Transport delay in transfer of injected insulin to first subcutaneous compartment min
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3.3.2 Glucagon subsystem

The glucagon model in the Inreda Model [5] was based on the Dalla Man S2013 simulator [36]. It consists
of submodels for subcutaneous glucagon absorption, alpha cell secretion and glucagon kinetics. Alpha
cell secretion in the subjects that participated in the crossover study of Blauw et al. [13] is expected
to be severely compromised [37, 6], since the diabetes duration was well over 10 years in most of the
subjects: median duration was 18.0 years with an interquartile range of 18.0 (14.8-29.5) years [16]. Es-
timation of the parameters of the alpha cell model in the Inreda model has been attempted [48], but
proved to be difficult due to limited data availability and model complexity. For both of these reasons,
the assumption was made here that glucagon secretion by the alpha cells was negligible in the studied
subjects. Although diabetes duration of the subjects participating in the glucagon study of Blauw et
al. [16] is unknown, the same assumption was made for the identification of the glucagon subsystem.
Initial glucagon concentrations at the start of each measurements were subtracted from the complete
glucagon measurement. Parameters and variables with their meaning and unit are presented in Table 3.3.

Glucagon pharmacokinetics were left to be modelled. In the Inreda model [5], a three-compartmental
model is applied to model subcutaneous absorption and kinetics of glucagon. However, since it has been
suggested that glucagon concentrations can be modelled by a two-compartmental model as well [33, 35],
it was attempted to fit de glucagon data to a two-compartmental to begin with, as shown in Figure 3.5
and Equation 3.2. This way, the parameters would be uniquely identifiable and parameter variations
between the various dosages, initial glucose levels and subjects could be determined. The distribution
parameter Vh (L/kg) was fixed at 0.25 L/kg, which was found by the manufacturer for the distribution
volume of glucagon [88] applied in both the glucagon and crossover study. If parameter estimations
showed this 2nd order model was not able to provide a fit to the data, the model structure would be
extended to a model versions similar to what was proposed for the insulin subsystem.


q̇Hsc(t) = HIR(t) − bp · qHsc(t)

q̇hp(t) = bp · qHsc(t) − nh · qhp(t)

Chp(t) =
qhp(t)
Vh

(3.2)

Figure 3.5: Model structure of glucagon model similar to what was done by Haidar et al. [33]. Flow of
subcutaneously infused glucagon to the blood plasma is through a subcutaneous compartment (bp).

Table 3.3: Overview of variables and parameters in glucagon subsystem model

Parameter Description Unit

Glucagon subsystem variables

HIR Rate of glucagon infusion pmol/kg/min
qHsc Amount of glucagon in subcutaneous glucagon compartment pmol/kg
qhp Amount of glucagon in blood plasma pmol/kg
Chp Glucagon concentration in blood plasma pmol/L

Glucagon subsystem parameters

Vh Distribution volume of glucagon in blood plasma L/kg
bp Rate of insulin transport from subcutaneous compartment to blood plasma 1/min
nh Clearance rate of glucagon from blood plasma 1/min
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3.3.3 Glucose subsystem

Various models were proposed in order to describe the glucose metabolism. The CL and OL datasets
from the cross-over study [13] were applied to perform parameter estimations for the proposed models.
Since the assumption was made that alpha cell glucagon secretion could be neglected in the participating
subjects, it was possible to start with identification of a glucose model with the only input being the
amount of insulin per kg of body weight. Identification and validation of four types of proposed glucose
models with varying complexity was compared: a linear MM, a nonlinear MM, a model that applies the
Michaelis-Menten relationship, and a two-compartmental linear model. Knowledge of physiology and
existing glucose models (section 2.2) was applied to propose certain model structures, but assessment of
the proposed models was largely data-driven. Modelling the glucagon action was attempted afterwards
on CL data sections in which infusions of both glucagon and insulin were applied. In all models, the
ratio between the glucose mass and glucose concentration was fixed. This ratio depended on the molar
mass of glucose Mg, which was fixed at 180.156 g/mol, and on the distribution volume of glucose in the
plasma Vg, which was fixed at 0.17683 L/kg [22]. This is the same as in the Inreda model [5].

Linear minimal model

For the first proposed model, the change of glucose mass in the blood plasma depends linearly on the
various variables. The model equations are shown in Equation 3.3 and variables and parameters are
explained in Table 3.4. It is a simplification of the Bergman minimal model [49]. The nonlinearity in
the equations is removed and the effect of insulin is not delayed through an additional compartment but
simply by the delay τI . There is a basal rate of appearance of glucose in the blood Gb, that is a the
difference between a basal production and utilization rate of glucose. Glucose is cleared from the blood
proportionally to the parameter kg as its mass in the blood increases. Moreover, glucose is removed
from the blood at an increasing rate, proportional to the rate parameter ki, as the insulin concentration
increases.

q̇gp(t) = Gb − kg · qgp(t) − ki · qip(t− τI)

Cgp(t) =
qgp(t)
Mg · Vg

(3.3)

Table 3.4: Variables and parameters in the linear MM with description of meaning and unit.

Parameter Description Unit

Linear MM glucose subsystem variables

qgp Glucose mass in blood plasma mg/kg
Cgp Glucose concentration in blood plasma mmol/L

Linear MM glucose subsystem parameters

Vg Distribution volume of glucose in blood plasma L/kg
Mg Molar mass of glucose mg/mmol
Gb Basal rate of appearance of glucose in blood plasma mg/kg/min
kg Glucose clearance rate from blood plasma 1/min
ki Glucose mass disappearance rate from blood plasma per unit of insulin mg/pmol/min
τI Delay in effect of insulin on glucose mass in blood plasma min

Nonlinear minimal model

A nonlinear model was also proposed. The model equations are shown in Equation 3.4 and variables
and parameters are explained in Table 3.5. This model is similar to the linear MM, with the difference
that the effect of insulin on the glucose concentration is nonlinear. This is closer to the model that was
implemented by Bergman [49]: the nonlinearity in the effect of insulin was not removed. The effect of
insulin is stronger when the glucose mass in the blood is higher, which is represented by a multiplication
of the insulin concentration with the glucose concentration in the differential equation. The parameter
ki still determines the sensitivity to insulin.
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q̇gp(t) = Gb − kg · qgp(t) − ki · qgp(t) · qip(t− τI)

Cgp(t) =
qgp(t)
Mg · Vg

(3.4)

Table 3.5: Variables and parameters in the nonlinear MM with description of meaning and unit.

Parameter Description Unit

Nonlinear MM glucose subsystem variables

qgp Glucose mass in blood plasma mg/kg
Cgp Glucose concentration in blood plasma mmol/L

Nonlinear MM glucose subsystem parameters

Vg Distribution volume of glucose in blood plasma L/kg
Mg Molar mass of glucose mg/mmol
Gb Basal rate of appearance of glucose in blood plasma mg/kg/min
kg Glucose clearance rate from blood plasma 1/min
ki Glucose disappearance rate from blood plasma per unit of insulin (pmol/kg)−1/min
τI Delay in effect of insulin on glucose mass in blood plasma min

Michaelis-Menten model

The third glucose submodel that was proposed is based on what was found by Wong et al. [4]. Two
versions of this model were applied. For version 1, there were three main differences to the nonlinear
MM: (1) the effect of insulin on the glucose concentration is considered through a Michaelis-Menten
relationship (see section 2.2.4), (2) the variable qgd describes the deviation of the glucose mass from the
equilibrium value (qgp,eq), instead of the glucose mass itself, and (3) a threshold qipb was applied to the
insulin variable in the numerator of the relationship. This threshold was added to in order to increase
the effect of low levels of insulin. The parameter ag represents the saturation of the effect of insulin in
the Michaelis-Menten relationship. No delay was added to the effect of insulin. The differential equation
is shown in Equation 3.5 and explanation on the variables and the parameters can be found in Table 3.6.


q̇gd(t) = Gb − kg · qgd(t) − ki(qgd(t) + qgp,eq)

qip(t) − qipb
1 + ag · qip(t)

Cgp(t) =
qgd(t) + qgp,eq

Mg · Vg

(3.5)

Another version (version 2) of this model was also considered (Equation 3.6, Table 3.6). This version
was similar to the linear MM, with the difference that the effect of insulin was considered through the
Michaelis-Menten relationship. Similarly as for the version 1 Michaelis-Menten model, a threshold was
added to the effect of insulin. This version 2 model was considered, because for version 1 parameter
estimations were difficult and often not unique, which is discussed further in chapter 5. In contrast to
version 1, the effect of the Michaelis-Menten parameter ki was independent of the glucose concentration
in the version 2 Michaelis-Menten model.


q̇gp(t) = Gb − kg · qgp(t) − ki

qip(t) − qipb
1 + ag · qip(t)

Cgp(t) =
qgp(t)
Mg · Vg

(3.6)
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Table 3.6: Variables and parameters in the Michaelis-Menten model with description of meaning and unit.

Parameter Description Unit

Michaelis-Menten glucose subsystem variables

qgd Deviation of glucose mass from equilibrium value in blood plasma mg/kg
qgp Glucose mass in blood plasma mg/kg
Cgp Glucose concentration in blood plasma mmol/L

Michaelis-Menten subsystem parameters (version 1)

Vg Distribution volume of glucose in blood plasma L/kg
Mg Molar mass of glucose mg/mmol
qgp,eq Equilibrium glucose mass in blood plasma mg/kg
Gb Basal rate of appearance of glucose in blood plasma mg/kg/min
kg Glucose (dis)appearance rate from blood plasma 1/min
ki Glucose disappearance rate from blood plasma per unit of insulin (pmol/kg)−1/min
ag Saturation parameter of insulin effect on glucose kg/pmol
qipb Threshold of insulin action pmol/kg

Michaelis-Menten subsystem parameters (version 2)

Vg Distribution volume of glucose in blood plasma L/kg
Mg Molar mass of glucose mg/mmol
Gb Basal rate of appearance of glucose in blood plasma mg/kg/min
kg Glucose clearance rate from blood plasma 1/min
ki Glucose mass disappearance rate from blood plasma per unit of insulin mg/pmol/min
ag Saturation parameter of insulin effect on glucose kg/pmol
qipb Threshold of insulin action pmol/kg

Two-compartmental model

A two-compartmental (2COM) model of the glucose concentration was also included. Parameters and
variables are explained in Table 3.7. The first compartment qgp represents the glucose mass in the blood
plasma and quickly equilibrating tissues. The second compartment qgt represents the glucose mass in
other tissues. Parameter estimations were attempted for two versions of the model. The first version,
presented in Equation 3.7, was the most extensive. This model contains many of the components of
glucose kinetics and dynamics that occur physiologically: transfer of glucose between both quickly and
slowly equilibrating tissues (k1 and k2), glucose utilization in both of these tissues types (kg1 and kg2),
a basal endogenous glucose production into the blood stream (Gb) and an insulin-dependent transfer
of glucose (ki) away from the quickly equilibrating tissues for stimulation of glucose utilization and
glycogenesis in slowly equilibrating tissues [4]. This is similar to what was applied by one of the first
two-compartmental versions of the Bergman minimal model (Vicini et al. [54]) with the difference that
the influence of insulin is modelled to be an insulin-dependent transfer away from the first compartment.
Initial mass in the tissue compartment was determined by estimation of ig.


q̇gp(t) = −kg1 · qgp(t) − k1 · qgp(t) + k2 · qgt(t) − ki · qip(t) +Gb

q̇gt(t) = −kg2 · qgt(t) + k1 · qgp(t) − k2 · qgt(t) + ki · qip(t)

Cgp(t) =
qgp(t)
Mg · Vg

qgt(0) = ig · qgp(0)

(3.7)

The second version of the model is presented in Equation 3.8. Initial mass in the tissue compartment (qgt)
was calculated from the parameter values in the same way as in the Dalla Man model [3]. In contrast
to Dalla Man et al. [3], there was no glucose-dependent clearance from the compartments included.
Insulin-dependent clearance occurs in the remote tissue compartment, which is similar to what was done
by Vicini et al. [54]. Physiological interpretation of this model version is slightly different from that
of version 1. In this model, it was assumed that insulin-dependent uptake of glucose occurred directly
in the slowly equilibrating compartment as opposed to indirectly through the transfer of glucose to the
slowly equilibrating compartment in version 1. Moreover, removal of the glucose-dependent clearance
from the compartments means that the model version 2 assumed that all glucose utilization and storage
above the basal level was insulin-dependent.
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

q̇gp(t) = −k1 · qgp(t) + k2 · qgt(t) +Gb

q̇gt(t) = k1 · qgp(t) − k2 · qgt(t) − ki · qip(t− τI)

Cgp(t) =
qgp(t)
Mg · Vg

qgt(0) = k1
k2

· qgp(0)

(3.8)

Table 3.7: Variables and parameters in version 1 of the 2COM model with description of meaning and unit.

Parameter Description Unit

Two-compartmental glucose subsystem variables

qgp Glucose mass in blood plasma mg/kg
qgt Glucose mass in other tissues mg/kg
Cgp Glucose concentration in blood plasma mmol/L

Two-compartmental glucose subsystem parameters (version 1)

Vg Distribution volume of glucose in blood plasma L/kg
Mg Molar mass of glucose mg/mmol
Gb Basal rate of appearance of glucose in blood plasma mg/kg/min
kg1 Glucose clearance rate from blood plasma 1/min
kg2 Glucose clearance rate from tissue compartment 1/min
k1 Glucose transfer rate from blood plasma to tissue compartment 1/min
k2 Glucose transfer rate from tissue compartment to blood plasma 1/min
ki Glucose mass disappearance rate from blood plasma to tissue compartment per

unit of insulin
mg/pmol/min

ig Ratio parameter of initial mass in tissue compartment compared to initial mass
in plasma compartment

-

Two-compartmental glucose subsystem parameters (version 2)

Vg Distribution volume of glucose in blood plasma L/kg
Mg Molar mass of glucose mg/mmol
Gb Basal rate of appearance of glucose in blood plasma mg/kg/min
k1 Glucose transfer rate from blood plasma to tissue compartment 1/min
k2 Glucose transfer rate from tissue compartment to blood plasma 1/min
ki Glucose mass disappearance rate from tissue compartment per unit of insulin mg/pmol/min

3.3.4 Addition of glucagon action

After identification of the parameters affecting the glucose concentration independently of glucagon con-
centrations, the glucose submodels were extended to modelling of the glucagon action. As described
earlier, glucagon stimulates the EGP by the liver. In the current study, glucagon action was imple-
mented similarly for all proposed glucose subsystem models. For the two-compartmental model, the
glucagon action would only influence the glucose mass in the plasma compartment. This choice was
made, because in existing models the EGP generally directly influences the glucose mass in this plasma
compartment reflecting the release of glucose from the liver into the blood stream [36, 35]. Since the
glucagon action would be modelled similarly for all proposed model structures, the identification was
only performed on two of the proposed glucose models that could provide best model fit for parameter
estimations for insulin input alone.

Two variations of glucagon action on glucose concentrations were proposed. The first option is that
the rate of change of the glucose mass is linearly dependent on the amount of glucagon in the blood,
depending on the rate of glucose mass appearance parameter kh (mg/pmol/min). The second option
is that the increase in the glucose mass is directly proportional to qhp and the rate parameter khp
(mg/pmol).

3.4 Parameter identification method

Parameter estimations were performed in order to be able to assess performance of the proposed models
for the three different subsystems. Initial values of the insulin and glucagon concentration variables were

24



assumed to be zero for the insulin and glucagon submodel identification respectively. Initial values of the
glucose concentration variable in the glucose model identification were based on the CGM measurements
in the crossover study [13]. Initial values for the amounts of insulin per kg of bodyweight were based
on simulations for the complete four-day period of the study. This could be done, since the insulin sub-
system was identified before the glucose subsystem and the input IIR was known. As explained earlier,
it was assumed that basal levels amount of glucagon in the blood plasma could be neglected due to a
lack of alpha cell secretion in T1DM patients. After the initial estimations, parameter estimations were
grouped based on the outcomes of the estimations. Parameter estimations were repeated in conditions
for which certain parameters were fixed or set to zero if the initial estimations indicated that this could
improve model identifiability without loss of accuracy.

Parameter estimations were performed by Matlab [89]. The ‘lsqnonlin’ function [90] was applied to deter-
mine the parameter values that resulted in the best fit to the selected data. The function has the ability
to solve nonlinear least-squares problems. The least-squares method relies on to assumptions: (1) there
exists no error in the model input and (2) errors in the measured output are normally distributed with
zero mean and constant variance. The input function of ‘lsqnonlin’ was set to be an anonymous function
that loaded the Simulink model for which parameters were to be estimated. The algorithms that were
available were a trust-region-reflective method and Levenberg-Marquardt. In general, the least squares
method attempts to find parameter estimations (x) corresponding to the optimum in the function f(x)
that defines the residual error. An important factor in this method is determining the direction in which
the solution is searched [91].

The trust-region-reflective method [92] functions by only considering the neighbourhood N around the
point x, which contains the solution s. N is defined based on an approximate Gauss-Newton direction.
The function f(x) is approximated in this neighbourhood by the function q(s). This function is mini-
mized and the resulting solution s is applied to define a new point x. This procedure is repeated until
one of the stopping criteria is met. The Levenberg-Marquardt method [92] tries to minimize the function
f(x) without simplifications. The Gauss-Newton method with an additional second order term is applied
to determine the direction in which the solution is searched. This second order term is beneficial when
the optimal function value is not equal to zero, which makes the function more robust.

Use of the trust-region-reflective method was advised in Matlab documentation [93]. In the current
study, the Levenberg-Marquardt method was applied to find parameter estimations for the insulin and
glucagon subsystems. This was done because the residual errors for this algorithm were smaller than
those obtained when the trust-region-reflective algorithm was applied. For the glucose subsystem, the
trust-region-reflective algorithm was used, since this method allowed for constraining the parameters
within physiologically feasible ranges and as a result increased the efficiency of the estimation process.
Both estimation methods attempt to find a local minimum in the residual error function, it is not certain
that this local minimum is also a global minimum of the function.

3.5 Model validation & analysis

The measures that were used to assess model fit were root mean squared error (RMSe) and variance
accounted for (VAF). RMSe is the root of the mean of all squared residuals, so it is a measure of the error
between the output time-series concentrations and the measured concentrations. RMSe is measured in
pmol/L for the insulin and glucagon subsystem models and in mmol/L for the glucose subsystem model.
VAF is a percentage that measures the variance in the measured concentrations that is accounted for by
the model, i.e. the variance in the measurement that is not seen in the residuals [94]. For the glucose
subsystem, estimations were set to be successful if the model output could provide a reasonable fit for
the glucose data. A reasonable fit was defined as a RMSe smaller than 0.35 mmol/L or a VAF larger
than 75%. These boundaries were set based on visual inspection of the estimation results.

If neither with the Levenberg-Marquardt method nor with the trust-region-reflective algorithm success-
ful parameter estimations for a certain model structure could be performed, the reason for this was
determined. Adaptations to the parameter boundaries were made if this could solve the problem [95].
If necessary, it was attempted to solve the problem by relaxing the default solver tolerances [95]. The
model structure was dropped when for several data sections consecutively, no parameter estimations
could be performed. Results of parameter estimations were also not considered if the average of the VAF
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value was below 50% in combination with outcome variables implying that results are physiologically
impossible. Such parameter estimations would not have any value apart from showing that the model
could not be fitted to the data or that the estimation method was unsuitable to find the solution for the
considered model.

Precision of the parameter estimates was measured by the coefficient of variation (CV) over all estimated
parameter values per subject, which shows the ratio between standard deviation and mean. The CVs are
dimensionless and are valued >1 when the standard deviation is larger than the mean; it is a measure
of the spread of a set of parameter values and a way of normalizing the standard deviation. For the
glucagon subsystem, paired t-tests were applied to determine whether estimations for the experimental
condition (initial BG and glucagon dosage) differed between subjects. Also, correlations of the initial BG
levels and dosages with the parameter values, RMSe and VAF values and with the glucagon peak con-
centrations were determined. For the glucose subsystem, correlations between the identified parameters
were determined. In addition, correlations of the identified parameters with the mean of the output vari-
ables, i.e. the glucose and insulin concentrations, were determined. This was done in order to determine
whether relations existed that were not accounted for by the proposed models. Only moderate to strong
correlations above 0.4 were considered for the glucose subsystem. Autocorrelations of the residuals were
also determined. In case that the measurement errors are normally distributed with zero mean and
constant variance, the model can be considered a good fit to the data if the autocorrelation between the
residuals time series and all its time shifted copies is within the confidence interval [96]. This indicates
that the residuals have the same white noise characteristics as the measurement errors.

For the glucose subsystem, the assumption of the least-squares method that the measurement errors of
the output were normally distributed with zero mean and constant variance was tested. Accuracy of
the CGM measurements from the open loop and closed loop study was determined by comparing the
measurements to results of SMBG measurements that were performed during the study period. The
mean and standard deviation of the error and absolute error between the CGM and SMBG measure-
ments were calculated. In addition, correlations between the SMBG measurements and (absolute) errors
was investigated. Mean absolute relative difference (MARD) values were also determined. This value
represents the mean of the absolute errors between the SMBG and CGM measurements relative to the
SMBG measurements themselves [97].

Proposed glucose subsystem model structures were also assessed by measuring how well these performed
at predicting the blood glucose values. This was only done for the the glucose subsystem models for
which glucagon input was not identified, since not enough data sections (only 24) were available to find
valid estimates of glucagon action parameters. In order to determine prediction performance, a division
was made between the 57 available data sections with insulin input only. The identification results were
separated between the 10 subjects. When for a certain subject, three data sections were available, one
data section was applied as a test interval and two sections as the estimations intervals. The total number
of available data sections per subject was rounded to multiples of three to determine the number of test
intervals. For each subject, parameter values were determined by taking the average of the parameter
estimations resulting from identification of the estimation intervals of that subject. These parameter
values were applied to determine prediction performance for the test intervals: it was measured by tak-
ing a simulation starting point at every 30 minutes after the interval start time for the duration of the
interval. For each starting point, a simulation of 180 minute duration was performed. The difference
with plasma glucose measurements were determined for 15, 30, 60, 90, 120, 150, and 180 minutes after
the starting point. For each test interval, the residuals over time were determined by taking the average
of each of these differences. Overall RMSe and VAF values were also determined for these test intervals
and were defined as the average of the RMSe and VAF values over all 180-minute simulations performed
for that test interval.

Transfer functions were determined to provide insight into the dynamics of the systems of differential
equations that were applied. This was only done for the linear systems. Methods applied are discussed
extensively by Franklin et al. [98]. Matlab [89] functions ‘tf’, ‘fft’, ‘bode’ and ‘impulse’ were applied
to determine frequency content of the model inputs and outputs and study the Bode plot and impulse
response of the identified models.
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Chapter 4

Results

The aim of this research was to perform parameter identification and determine prediction performance
for the identified glucose models of varying structures and complexity. This was accomplished by dividing
the model of glucose metabolism into three subsystems that were identified separately. First, results of the
parameter estimations of the three subsystems are presented (Section 4.1). Then, prediction performance
for the various proposed glucose subsystem models is discussed (Section 4.2). The chapter concludes with
the results of the model analysis (Section 4.3).

4.1 Parameter estimations

Parameter estimations were performed separately for the three subsystems in the model of glucose
metabolism. As hormonal subsystems could not be identified based on the same data [13] as the glucose
subsystem, the identification of the insulin and glucagon subsystems was aimed at obtaining parameter
values for an average patient with T1DM. Next, these parameter values were applied to simulate insulin
and glucagon concentrations that were used as input for the identification of various proposed structures
for the glucose subsystem.

4.1.1 Insulin subsystem

As mentioned in Section 3.1, the parameters of the insulin subsystem were identified on three averaged
plasma insulin concentration responses to subcutaneous bolus injections. In Table 4.1, the results of the
identification of the insulin subsystem are presented. The parameter values in this table are the mean of
the estimation results as performed for each of the three available averaged responses. RMSe and VAF
values, the measures of model fit compared to the measured data, are also presented in this table. On
the bottom of the table, averages of the parameter estimates for individual T1DM patients found by
Schiavon et al. [26] are presented. Model fit of the four identified model versions to measurements of the
three datasets is shown in Figure 4.1.

From Table 4.1, it can be seen that the RMSe value for the 2nd order model versions was higher than
for the 3rd order model versions. For the VAF values the reverse was true. Addition of the subcuta-
neous insulin clearance term in model version 2 did result in better model fit compared to model version
1, which is reflected by lower RMSe and higher VAF values for version 2. Furthermore, it stands out
that the value estimated for the parameter ap1 in model version 4 was low compared to the other rate
parameters. The estimated values for the other parameters of model versions 3 and 4 were similar, as
well as the RMSe and VAF values that were found. RMSe and VAF values were better for the 3rd order
models (versions 3 and 4) than for the 2nd order models (version 1 and 2).
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Table 4.1: Parameter estimations of proposed model versions of subcutaneous insulin kinetics

Model version m
(1/min)

di
(1/min)

ap1
(1/min)

ap2
(1/min)

msc
(1/min)

τIsc
(min)

RMSe
(pmol/L)

VAF
(%)

1: 2nd order 0.0661 - 0.0041 - - - 93.4429 76.45
2: 2nd order (additional clearance) 0.0159 - 0.0026 - 0.0133 - 49.9044 93.05
3: 3rd order (indirect flow) 0.1061 0.0260 - 0.0155 - - 18.7008 98.95
4: 3rd order (flow both directions) 0.1061 0.0223 1.61·10−11 0.0192 - - 18.7008 98.95

Literature: Schiavon et al. 0.124 0.028 0.0034 0.014 - 7.6 - -

Figure 4.1: Model fit for dataset 2 [26] as accomplished by the four proposed models: the 2nd order model
(version 1), the 2nd order model with additional clearance from the first compartment (version 2), the 3rd order
model that discards direct flow from first subcutaneous compartment to plasma compartment (version 3) and
the 3rd order model with estimations of all parameters (version 4).

These results are in line with what can be observed in Figure 4.1. Although the model version 1 resulted
in a shape similar to that of the measured response to the insulin bolus injection, the peak height was
lower and the decay was slower than in the measurements. For model version 2, the decay was more
similar to what was measured on average, but the peak height was still slightly lower. Model fit of
versions 3 and 4 seem similar and account for both the peak height and decay of the averaged insulin
concentration responses.

In summary, the results indicate that model version 3 is the best model choice for modelling the insulin
concentration response to a subcutaneous insulin bolus injection in an average T1DM patient. This
model version with the average parameter estimates was applied for the identification and validation of
the glucose subsystem models. This choice will be discussed further in Chapter 5.
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4.1.2 Glucagon subsystem

For the glucagon subsystem, parameter estimations were performed on measurements of plasma glucagon
concentrations in twelve different conditions for each of the six T1DM subjects. In Table 4.2, parameter
estimations for the glucagon system are shown. The mean over all parameter estimations and the
measured glucagon peak concentrations for the various conditions in all subjects are presented along
with CV values. Mean and standard deviations (std.) of RMSe and VAF values of model fit are also
shown. Correlations of these entities with the applied glucagon dosages and initial BG levels can also
be found in this table. In Figure 4.2, the mean and range of parameter estimations for the various
experimental conditions are shown. In Figure 4.3, model fit that was accomplished with the proposed
model is shown. These graphs are typical of the fit that was accomplished in the identification.

Table 4.2: Parameter estimations of two-compartmental model of subcutaneous glucagon kinetics with RMSe
and VAF as measures of model fit and glucagon peak concentrations.

bp
(1/min)

nh
(1/min)

RMSe
(pmol/L)

VAF
(%)

Peak concentration
(pmol/L)

Mean overall (N=65) 0.0291 0.1678 31.3635 ± 97.60 ± 585
with (CV) or ± std. (0.3336) (0.3402) 23.3412 1.56 (0.6185)

Correlation with dosage -0.9345 0.0965 0.8776 -0.5269 0.9712

Correlation with BG 0.5151 0.0351 -0.6902 0.5787 -0.6105

Figure 4.2: Result of parameter estimations of second order glucagon model in six patients. Minima and
maxima of the parameter estimates are indicated by the bars, with the circle representing the mean. Coloured
lines represent the estimations for each subject separately.

From Table 4.2, it is apparent that CV values for both parameters were similar. Glucagon transfer
rate from the subcutaneous compartment (bp) was found to be small compared to the clearance rate of
glucagon from the blood plasma (nh). It stands out that there was a strong negative correlation between
the parameter bp and the applied glucagon dosage. Since a strong correlation was found between the
glucagon dosage and resulting glucagon peak concentration, it is suggested that the value for bp is neg-
atively correlated to the glucagon peak concentration and that there may be a relationship between the
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Figure 4.3: Model fit as accomplished with the two-compartmental glucose model for various dosages and initial
BG levels in subject 5 on the left and subject 3 on the right. Smallest and largest RMSe values accomplished
over all estimations were 4.06 pmol/L and 87.71 pmol/L. Corresponding fit is shown in the upper left and lower
right sides of the figure respectively.

glucagon concentration and the parameter bp that is not accounted for by the model. For the parameter
nh, no indicators for this were found. RMSe values were relatively small compared to the measured peak
concentrations (5.3% on average). Correlations indicate that RMSe values increased with the applied
glucagon dosage and decreased with the initial glucose level before application of a glucagon dosage. It
appears that VAF values were high for all estimations.

In Figure 4.2, it can be seen that estimated parameter values varied between the six subjects. The
parameter bp appears to decrease as the glucagon dosage increases, which is in line with the result that
there exists a negative correlation between these entities. It seems that mainly the parameter nh was
subject-dependent, which is suggested by the spread between the coloured lines in the graphs on the
right side of the figure. From Figure 4.3, it can be observed that the model can be fit to a variety of
glucagon concentration responses measured in various conditions and subjects. The experiments with
the best and worst RMSe values obtained after identification are shown in the upper left en lower right
corners of the figure respectively. Although the simulated glucagon concentrations deviate somewhat
from the measurements, glucagon peak concentrations were approached and the decay of the response
was also simulated with reasonable accuracy. Paired t-tests showed that nh was subject-specific in 9 out
of 15 cases en that bp was subject-specific in 1 out of 15 cases.

To summarize, it appears that the 2nd order model that was proposed for modelling of subcutaneous
glucagon kinetics provided a model fit to the data with relatively low RMSe en high VAF values. Also,
estimated glucagon concentrations have a shape similar to the measured glucagon concentrations in
response to the subcutaneous glucagon bolus injection. Averages of the parameter estimates for bp and
nh as shown in Table 4.2 were applied for modelling of the plasma glucagon concentrations for the
identification and validation of the glucose subsystem.
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4.1.3 Glucose subsystem

For the glucose subsystem, four models were proposed. For the available data, input infusion rates of
insulin and glucagon during the selected intervals were known. Glucose subsystem inputs, the insulin
and glucagon plasma concentrations, were determined with the identified models from Sections 4.1.1 and
4.1.2. First part of the identification results were based on data sections for which glucagon input could be
neglected. Then, models were extended to describe the effect of glucagon on the glucose concentrations.

Insulin input only

Parameters were estimated for the linear MM, nonlinear MM and the version 1 and 2 Michaelis-Menten
models. For the 2COM model, parameter estimations are not considered here. For 2COM version 1,
no solutions were found. For 2COM version 2, resulting model fit had an average VAF value smaller
than 50% and qgt was often very large compared to qgp or even got negative and was therefore not
considered to be physiologically possible. In Tables 4.3-4.6, results of the parameter estimations can be
found. Correlations between these parameter estimates and also with the mean of the modelled glucose
and insulin levels during the estimation intervals were calculated and are presented in Table 4.7.

When looking at the parameter estimations in Tables 4.3-4.6, it can be seen that the rate of glucose
clearance kg was often estimated to be virtually zero (Group 1A), indicating that the glucose dependent
decay of the glucose concentration was negligible. For the linear and nonlinear MMs (Tables 4.3 and 4.4),
this result became more frequent when the delay τI was removed from the models (Group 2A). In cases
that estimation of kg resulted in values well above zero (Group 1B and 2B), repeating the estimations
for kg = 0 resulted in a major decrease in the value found for the basal net glucose production Gb in all
models.

Model fit after identification was determined by comparing CGM measurements to the simulation for the
estimation interval. Measures of model fit are shown on the right side of the Tables 4.3-4.6. Precision of
the parameter estimates was measured by the CVs which are in between brackets in these tables. The
fit of the model to the data was better for the linear than for the nonlinear MM, which can be concluded
from the lower RMSe, higher VAF and a higher succes rates (X) for the linear MM compared to the
nonlinear MM. Likewise, both versions of the Michaelis-Menten models performed worse than the linear
and nonlinear MMs. Closer inspection of the CVs of the overall parameter estimates shows that CVs of
parameters kg and Gb of the linear MM were smaller than those of the nonlinear MM. In contrast, for
the CVs of the insulin sensitivity ki the reverse was true. For the Michaelis-Menten model versions, CVs
were relatively large in all cases, except CVs for the estimations of Gb and qgp,eq.

Now consider quantitative comparison of the parameter estimates, it is important to recognize which
parameters have the same effect on model behaviour. We know that the parameters kg and Gb had the
same effect on the plasma glucose mass in all proposed models and therefore can be compared directly
for all models. In addition, τI and ag also play the same role in all model structures for which these
are considered. The parameter kg in the Michaelis-Menten version 1 model was the only exception since
kg influences the glucose mass relative to the basal level instead of the absolute glucose mass in the
blood plasma. When comparing the parameter estimation results for the linear MM, nonlinear MM and
Michaelis-Menten version 2 model in Tables 4.3, 4.4 and 4.6, it can be seen that the average estimated
value for kg was highest for the linear MM and lowest for the Michaelis-Menten version 2 model without
an insulin threshold. Estimations of kg were virtually zero for the Michaelis-Menten version 2 model
more often than for the linear MM. This occurred even less for the nonlinear MM. Values found for Gb

on average were lowest for the nonlinear MM, and highest for the Michaelis-Menten version 2 model.
τI was found to be similar for both MMs. This delay was often estimated to be equal to zero or 90
min, which was the maximum allowed delay. This suggests that with the method that was applied, the
estimation of this delay was not valid under all conditions.

The insulin sensitivity parameter ki did not have the same effect on the plasma glucose mass in all
proposed models. When the nonlinear MM ki is multiplied with a certain glucose mass, its effect cor-
responds to ki in the linear MM. At a basal plasma glucose concentration of 8.2 mmol/L [22], overall
average of ki · qgp was valued 0.0521 mg/pmol/min for the nonlinear MM, which is lower than the value
0.1237 mg/pmol/min found for ki in the linear MM. For the Michaelis-Menten models, model structure
was such that ki in the version 1 and 2 Michaelis-Menten models had similar effects as ki in the non-
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linear and linear MMs respectively. Results showed that the estimated values for ki in the version 1
and 2 Michaelis-Menten models were over a factor 10 larger than ki in the nonlinear and linear MMs
respectively.

As explained in Section 3.3.3, the Michaelis-Menten version 1 model was most similar to a model as
developed by Wong et al. [64]. The parameter ag determines the saturation on the effect of insulin.
From Table 4.5, it becomes clear that the parameter ag received a very high value in all estimations. As
a result, the effect of insulin on the clearance of glucose became negligible. Values well below 1 kg/pmol
were expected from searching for the value of ag in literature [64]. Another effect of the high values
found for ag, was that the value of ki divided by ag determined the glucose clearance rate dependent
on the absolute level of glucose in the blood. As explained earlier in this section, this was different
from the parameter kg in this model version, which was a glucose clearance rate affecting the plasma
glucose mass relative to the equilibrium level qgp,eq. In an attempt to recover the effect of insulin on the
glucose dynamics in the version 1 Michaelis-Menten model, a threshold qipb was added to the effect of
insulin in the numerator of the fraction in the model equation. This resulted in a major improvement
of the model fit to the data in the estimation intervals, which can be seen from the RMSe and VAF val-
ues in Table 4.5. It stands out that the values found for Gb decreased a lot after addition of this threshold.

Version 2 of the Michaelis-Menten model was set up with the goal of obtaining a model more similar to
the linear MM, without losing the saturation of the insulin dependent glucose clearance. For ag = 0,
structure of this model was equivalent to that of the linear MM. From Table 4.6, it can be seen that esti-
mated values for ag were again higher than expected, but less excessively than for the Michaelis-Menten
version 1 model. The high CV for the estimated values of ag suggests that the effect of insulin was not
negligible in all estimations. Addition of a threshold to the effect of insulin in the version 2 Michaelis-
Menten model was not beneficial for the model fit, as can be concluded from the measures of model
fit in the lower half of Table 4.6. The main difference between the version 2 model with and without
the insulin threshold was that dropping the parameter kg was less problematic when the threshold was
included in the model structure and parameter estimations.

In the correlation analysis (Table 4.7) of the linear MM and nonlinear MM parameters, strong correlations
were found between the insulin sensitivity ki and the net basal glucose production Gb. This correlation
became stronger when the parameter kg was removed from the model structure. Strong correlations were
also found between the estimated parameters kg and Gb in the linear and nonlinear MMs. For both ver-
sions of the Michaelis-Menten model, mostly moderate correlations were found between parameters and
of parameters with average glucose or insulin concentrations. These varied quite a lot depending on the
inclusion or exclusion of an insulin threshold qipb and the parameter kg. Strong correlations that stand
out were between the parameters kg and Gb and between ag and qipb, for Michaelis-Menten version 2
with inclusion of kg and qipb. A strong negative correlation was found between Gb and ag for the version
2 model with exclusion of kg and qipb. These results suggest that the more complex Michaelis-Menten
models still show relations between the parameters that are unaccounted for by the model. Moreover,
for the linear and nonlinear MMs, it is indicated that the negative and positive contributors to the rate
of change of the glucose concentrations were related to each other.
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Table 4.3: Linear model of glucose dynamics: parameter estimations. Parameter values presented as mean (CV). RMSe and VAF values presented as mean ± std. For group 1,
τI was estimated. For group 2, τI = 0 was applied. X column contains percentage of successful estimations with RMSe < 0.35 mmol/L or VAF > 75%.

Condition Group kg (1/min) ki (mg/pmol/min) Gb (mg/kg/min) τI (min) RMSe (mmol/L) VAF (%) X(%)

All parameters
estimated

1: overall (N=57) 0.0049 (1.50) 0.1237 (1.41) 2.5339 (1.11) 28.88 (1.19) 0.2784 ± 0.1746 84.88 ± 17.98 85.96

1A: kg negligible (N=23) - 0.1005 (0.95) 1.5843 (1.02) 27.83 (1.14) 0.3167 ± 0.1808 83.46 ± 19.53 86.96

1B: kg not negligible (N=34) 0.0082 (0.97) 0.1394 (1.52) 3.1762 (1.03) 29.59 (1.23) 0.2525 ± 0.1680 85.84 ± 17.09 85.29

Estimation with
kg = 0

1B: kg set to zero (N=34) - 0.1075 (1.32) 0.8543 (0.94) 24.10 (1.33) 0.2849 ± 0.1827 81.84 ± 23.28 85.29

All parameters
estimated but τI

2: overall (N=57) 0.0039 (1.65) 0.1412 (1.84) 2.3320 (1.28) - 0.3249 ± 0.2362 80.58 ± 21.21 80.70

2A: kg negligible (N=28) - 0.1268 (1.88) 1.3264 (1.57) - 0.4050 ± 0.2641 81.51 ± 17.16 78.57

2B: kg not negligible (N=29) 0.0076 (0.95) 0.1552 (1.82) 3.3029 (1.03) - 0.2475 ± 0.1780 79.68 ± 24.78 82.76

Estimation with
kg = 0

2B: kg set to zero (N=29) - 0.1310 (1.50) 1.3315 (1.48) - 0.2928 ± 0.1995 73.70 ± 30.93 79.31

Table 4.4: Nonlinear model of glucose dynamics: parameter estimations. Parameter values presented as mean (CV). RMS and VAF values presented as mean ± std. For group
1, τI was estimated. For group 2, τI = 0 was applied. X column contains percentage of successful estimations with RMSe < 0.35 mmol/L or VAF > 75%.

Condition Group kg (1/min) ki (kg/pmol/min) Gb (mg/kg/min) τI (min) RMSe (mmol/L) VAF (%) X (%)

All parameters
estimated

1: overall (N=57) 0.0041 (1.65) 2.96·10−4 (1.09) 1.7224 (1.23) 28.06 (1.07) 0.3214 ± 0.1927 81.48 ± 19.09 78.9

1A: kg negligible (N=18) - 4.72·10−4 (0.73) 1.3770 (1.21) 36.56 (0.87) 0.4001 ± 0.2378 82.94 ± 14.29 72.2

1B: kg not negligible (N=39) 0.0060 (1.25) 2.15·10−4 (1.30) 1.8819 (1.22) 24.13 (1.19) 0.2851 ± 0.1586 80.81 ± 21.07 82.1

Estimation with
kg = 0

1B: kg set to zero (N=39) - 3.69·10−4 (1.53) 0.8538 (1.48) 37.31 (1.03) 0.2777 ± 0.1746 80.02 ± 25.36 79.5

All parameters
estimated but τI

2: overall (N=57) 0.0035 (1.78) 2.00·10−4 (1.26) 1.2309 (1.32) - 0.3836 ± 0.2836 75.93 ± 22.99 71.9

2A: kg negligible (N=26) - 2.49·10−4 (0.65) 0.7735 (0.89) - 0.4805 ± 0.3490 75.10 ± 22.22 65.4

2B: kg not negligible (N=31) 0.0064 (1.13) 1.58·10−4 (1.93) 1.6145 (1.27) - 0.3023 ± 0.1833 76.62 ± 23.96 77.4

Estimation with
kg = 0

2B: kg set to zero (N=31) - 2.48·10−4 (1.24) 0.4879 (1.36) - 0.3164 ± 0.2047 74.26 ± 29.58 74.2
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Table 4.5: Michaelis-Menten model (version 1) of glucose dynamics: parameter estimations. Parameter values presented as mean (CV). RMSe and VAF values presented as
mean ± std. For group 1, τI was estimated. For group 2, τI = 0 was applied. X column contains percentage of successful estimations with RMSe < 0.35 mmol/L or VAF > 75%.

Condition kg (1/min) ki (kg/pmol/min) ag (kg/pmol) Gb (mg/kg/min) qipb (pmol/kg) qgp,eq (mg/kg) RMSe (mmol/L) VAF (%) X (%)

Without threshold
(N=57)

0.0193 (6.13) 0.3515 (1.26) 130.86 (1.35) 10.7572 (3.70) - 102.48 (0.14) 0.5144 ± 0.3505 56.93 ± 33.63 45.6

With threshold
(N=57)

0.0018 (1.97) 0.5393 (2.04) 111.89 (1.52) 0.5260 (1.17) 8.5582 (1.16) 86.12 (0.43) 0.3554 ± 0.2263 76.22 ± 26.35 75.4

Table 4.6: Michaelis-Menten model (version 2) of glucose dynamics: parameter estimations. Parameter values presented as mean (CV). RMSe and VAF values presented as
mean ± std. For group 1, τI was estimated. For group 2, τI = 0 was applied. X column contains percentage of successful estimations with RMSe < 0.35 mmol/L or VAF > 75%.

Condition Group kg (1/min) ki (mg/pmol/min) ag (kg/pmol) Gb (mg/kg/min) qipb (pmol/kg) RMSe (mmol/L) VAF (%) X (%)

All parameters
estimated, no
insulin threshold

1: overall (N=57) 0.0031 (1.69) 3.1254 (2.10) 5.71 (3.07) 3.9392 (0.96) - 0.3397 ± 0.2322 79.23 ± 21.37 77.2

1A: kg negligible (N=32) - 3.7457 (2.25) 7.61 (2.68) 3.6956 (1.12) - 0.4105 ± 0.2500 75.59 ± 21.95 71.9

1B: kg not negligible
(N=25)

0.0071 (0.85) 2.3314 (1.22) 3.28 (3.98) 4.2510 (0.78) - 0.2492 ± 0.1727 83.88 ± 20.07 84.0

Estimation
with kg = 0

1B: kg set to zero (N=25) - 31.4778 (0.88) 59.99 (0.42) 1.4778 (2.47) - 0.5996 ± 0.4700 24.96 ± 85.64 44.0

All parameters
estimated,
insulin threshold
included

2: overall (N=57) 0.0047 (3.49) 2.3664 (2.49) 6.71 (3.17) 3.1309 (1.37) 4.9594 (2.18) 0.3691 ± 0.2580 74.87 ± 26.88 70.2

2A: kg negligible (N=30) - 1.6387 (0.37) 6.39 (3.39) 2.4073 (0.48) 3.7233 (2.53) 0.4862 ± 0.2582 67.33 ± 27.08 56.7

2B: kg not negligible
(N=27)

0.0099 (2.32) 3.1750 (2.69) 7.07 (3.00) 3.9350 (1.54) 6.3329 (1.92) 0.2391 ± 0.1888 83.24 ± 24.49 85.2

Estimation
with kg = 0

2B: kg set to zero (N=27) - 11.7468 (2.36) 8.29 (2.35) 2.4490 (0.96) 3.0137 (1.19) 0.2620 ± 0.1864 79.92 ± 29.67 85.2
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Table 4.7: Correlations found between parameter estimates for the linear, nonlinear and Michaelis-Menten version 1 and 2 glucose subsystems. Correlations of parameter
estimates with mean glucose concentrations (Cgp) and mean insulin concentrations (Cip) during the estimation interval are also presented. Only correlations for which at
least one absolute value higher than 0.4 was found are shown. Areas not relevant to the considered model type are marked grey.

Correlated parameters and
variables

kg,Gb ki,Gb ki,ag Gb,ag Gb,qipb ag,qipb Gb,qgp,eq qipb,qgp,eq ki,Cgp(t) qipb,Cgp(t) kg,Cip(t) ki,Cip(t)

Linear model

All parameters estimated 0.7542 0.7469

All parameters estimated
but kg

- 0.7928

All parameters estimated
but τI

0.4910 0.7347

All parameters estimated
but kg and τI

- 0.8455

Nonlinear model

All parameters estimated 0.7935 0.4115

All parameters estimated
but kg

- 0.7249

All parameters estimated
but τI

0.8146 0.2784

All parameters estimated
but kg and τI

- 0.6307

Michaelis-Menten model version 1

Threshold included 0.2825 -0.0417 -0.4300 0.4101 0.4288 -0.5972 -0.1327

Threshold excluded 0.5222 0.5171 - - 0.1239 - 0.4759

Michaelis-Menten model version 2

All parameters estimated,
threshold included

0.9215 -0.0746 -0.2080 0.8617 0.1733 -0.4056 0.2283

All parameters estimated
but kg, threshold included

- 0.5280 -0.3629 0.6839 -0.4197 -0.1229 0.2247

All parameters estimated,
threshold excluded

0.3496 0.5031 -0.3047 - -0.3097 - 0.1467

All parameters estimated
but kg, threshold excluded

- 0.1445 -0.8484 - -0.3601 - 0.4854
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Table 4.8: Results of parameter estimations for the linear and nonlinear models of glucose dynamics including glucagon action. Estimations correspond to ‘Group 2’ results for
insulin input only in Tables 4.3 and 4.4. Parameter values presented as mean (CV). RMSe and VAF values presented as mean ± std. Unit x of ki is mg/pmol/min or kg/pmol/min
for the linear and nonlinear models respectively. X column contains percentage of successful estimations with RMSe < 0.35 mmol/L or VAF > 75%.

Condition
Glucagon
action

kg (1/min) ki (x) Gb (mg/kg/min) kh (mg/pmol/min) khp (mg/pmol) RMSe (mmol/L) VAF (%) X(%)

Linear model: all
parameters
estimated but τI

Linear 0.0022 (1.93) 0.0699 (0.67) 0.8798 (1.22) 0.0360 (1.40) - 0.4588 ± 0.2030 81.72 ± 15.01 79.2

Proportional 0.0068 (1.71) 0.0631 (0.83) 2.3468 (1.04) - 0.1959 (3.51) 0.5385 ± 0.2500 71.34 ± 27.71 62.5

Nonlinear model:
all parameters
estimated but τI

Linear 0.0033 (2.24) 2.58·10−4 (0.84) 0.5810 (1.09) 0.0323 (1.29) - 0.5288 ± 0.2336 76.89 ± 17.41 66.7

Proportional 0.0052 (2.12) 2.37·10−4 (0.72) 1.6135 (1.20) - 0.2556 (3.88) 0.6015 ± 0.2674 67.41 ± 27.18 50.0
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Insulin and glucagon input

Modelling of the glucagon action on glucose concentrations was only considered in the linear and non-
linear glucose MMs. This choice was made because the estimations of the Michaelis-Menten model were
relatively time consuming and the models did not perform better in the estimations than the linear and
nonlinear MMs. Furthermore, methodically it was not planned to model glucagon action differently in
the various proposed glucose models. As explained in Section 3.3.3, a first order transfer of the amount
of glucagon in the plasma to the plasma glucose rate of change, as well as a direct proportional transfer
of the amount of glucagon in the plasma to the plasma glucose mass were considered. The parameter
kg was not set to zero and delay τI was dropped, similar to the Group 2 estimations for the linear and
nonlinear MMs. Results of these estimations are presented in Table 4.8. No correlation coefficients with
absolute values higher than 0.4 were found of kh or khp with the other model parameters or with average
modelled glucose, insulin or glucose concentrations in the estimation intervals were found.

From Table 4.8, it is evident that both for the linear and nonlinear MMs, both kg and Gb were assigned
larger values for the proportional glucagon action than for the linear glucagon action. Average parameter
values were not very similar to the averages found when insulin was considered the only input as in
the Group 2 estimations in Tables 4.3 and 4.4. CV values of the proportional parameter of glucagon
action, khp were relatively high. Model fit was clearly better for the linear glucagon action than for the
proportional glucagon action, judging from the lower RMSe and higher VAF values. Model fit was worse
than for the situation that glucagon infusions were negligible.

4.2 Prediction performance

As explained in Section 3.5, prediction performance was determined for the various proposed model
structures for the glucose subsystem with insulin input only. Modelling of the glucagon kinetics and
action was not considered. Parameters of the insulin subsystem were fixed to the same average values as
in the identification of the glucose subsystem models with insulin input only. For each subject, parameter
values were based on estimation intervals and prediction performance was determined for the selected
test intervals.

An overview RMSe and VAF values of predictions performed with the linear MM, nonlinear MM and
Michaelis-Menten models is presented in Table 4.9. The residual errors of these 3-hour predictions com-
pared to the measured glucose concentrations are pictured in Figure 4.4. From Table 4.9, it is apparent
that for the linear model the RMSe increased and the VAF decreased when the same parameters were
removed from the model. This means that prediction performance became worse. In contrast, for the
nonlinear model, the performance became better when these parameters were removed. The table also
shows that the Michaelis-Menten models perform worse than de linear and nonlinear models.

The same observations can be made from Figure 4.4. For the linear MM (Figure 4.4a), the model version
that performed best included all four model parameters. For this model version, median of the residuals
was below 1 mmol/L for over 80 minutes and below 1.5 mmol/L for the entire 180 minutes. Prediction
errors of over 1.5 mmol/L within the first 60 minutes of the prediction were found in less than 25% of the
cases. The nonlinear MM (Figure 4.4b) showed even smaller residual errors. Overall, the best predictions
were made with the model version that only included two model parameters: Gb and ki. Median of the
residuals was below 1 mmol/L for the entire 180 minutes of the prediction. This median was even smaller
for the nonlinear MM version that included the delay τI . However, maximum prediction errors increased
when this delay was included. A selection of the predictions with the Michaelis-Menten model versions
are shown in Figure 4.4c. It is clear that the residual errors were much larger than for the linear and
nonlinear MMs. Version 1 of the Michaelis-Menten model with inclusion of the threshold showed the
smallest errors in this Figure, which is in line with what can be seen from the RMSe and VAF values in
Table 4.9.

In order to directly compare the best performing models with those that were applied in literature, RMSe
values were also determined over the first 30 minutes of the performed predictions for the linear MM
with inclusion of τI and kg and for the nonlinear MM with exclusion of these parameters. Resulting
RMSe values were 0.3625 mmol/L and 0.1747 mmol/L respectively.
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Table 4.9: Prediction performance of proposed models measured by RMSe and VAF values. Predictions were
performed with the parameter values being the mean of the parameters estimated on the estimation intervals
taken from the same subject. Each RMSe and VAF value was the mean of the RMSe and VAF values found for
all 3-hour predictions during 1 test interval. Mean ± standard deviation (std.) values are shown.

Prediction performance RMSe ± std. (mmol/L) VAF ± std. (%)

Linear model

All parameters estimated 1.2362 ± 0.7623 -228.81 ± 305.42

All parameters estimated but kg 1.2654 ± 0.9412 -300.13 ± 592.04

All parameters estimated but τI 1.3230 ± 0.9866 -332.62 ± 512.51

All parameters estimated but kg and τI 1.3728 ± 1.0326 -394.82 ± 674.90

Nonlinear model

All parameters estimated 0.9642 ± 0.6055 -142.81 ± 225.80

All parameters estimated but kg 0.9274 ± 0.8131 -131.17 ± 269.33

All parameters estimated but τI 0.8454 ± 0.4841 -114.21 ± 287.14

All parameters estimated but kg and τI 0.7525 ± 0.4602 -31.95 ± 115.13

Michaelis-Menten model version 1

Threshold included 1.7124 ± 1.7001 -4.28 ·104 ± 1.65 ·104

Threshold excluded 8.1820 ± 1.0847 -1.19 ·104 ± 1.08 ·104

Michaelis-Menten model version 2

All parameters estimated, threshold included 4.0392 ± 0.7632 -3.63·103 ± 2.44·103

All parameters estimated but kg, threshold included 4.0329 ± 2.0831 -5.60·103 ± 7.71·103

All parameters estimated, threshold excluded 3.4430 ± 0.2322 -3.78·103 ± 6.47·103

All parameters estimated but kg, threshold excluded 2.5919 ± 3.2990 -3.37·103 ± 8.22·103
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(c)

Figure 4.4: Prediction performance of (a) linear, (b) nonlinear and (c) Michaelis-Menten models. Predictions
were performed with the parameter values being the mean of the parameters estimated on the estimation intervals
taken from the same subject. One prediction error array was the mean error over all 3-hour predictions during
1 test interval. Median, interquartile range and spread of these prediction error arrays over all test intervals are
shown.
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4.3 Model analysis

As described in section 3.5, some additional analysis on the identified models was performed. Results of
this analysis are discussed next.

4.3.1 Analysis of residuals

Autocorrelations were determined for the residuals of the estimations of all three subsystems. For the
insulin subsystem, the autocorrelations were within the confidence bounds. For the glucagon subsystem,
autocorrelations were within the confidence bounds most of the time. The one-sample phase shift (10
minutes) autocorrelation was outside the confidence bounds in 23 out of 65 cases. The autocorrelation for
a two-sample phase shift (20 minutes) was outside the confidence bounds in only 3 out of 65 cases. This
suggests that for both the insulin and glucagon subsystems, the models were an accurate representation
of the data at the end of the identification process.

For the glucose subsystem, residuals analysis indicated that this was not the case. Autocorrelations of
the residuals were mostly outside of the confidence bounds. Differences between the CGM measurements
and SMBG measurements were analysed in order to determine whether the assumption that the CGM
measurement error was normally distributed with zero mean and constant variance was met. The results
of the CGM error analysis are presented in Table 4.10. First of all, it is apparent that the absolute
errors and MARD values of the CGM errors were relatively large. For the OL experiments, the average
absolute sensor error and MARD value was larger than for the CL experiments. It also stands out that
the CGM error in both experiments did not have a zero mean. Moreover, moderate correlations were
found between the errors and the SMBG measurements.

Table 4.10: Results analysis errors of CGM measurements compared to SMBG measurements in the crossover
study [13] for the closed loop and open loop experiments. Mean and standard deviations (std.) of the actual
error and absolute (abs.) errors are presented. Correlations of these errors with the SMBG measurements were
determined. MARD values are presented.

Error mean ±
std. (mmol/L)

Correlation error
with SMBG (-)

Abs. error mean ±
std. (mmol/L)

Correlation abs.
error with SMBG (-)

MARD (%)

CL 0.3056 ± 1.3484 0.5330 1.0162 ± 0.9356 0.3993 13.88

OL 0.2309 ± 2.6029 0.4852 1.7339 ± 1.9529 0.2037 26.40

4.3.2 Analysis of model dynamics

Laplace transforms were applied to find the transfer functions for the linear systems of differential equa-
tions that were considered in this study. Furthermore, frequency content of insulin and glucagon input,
the modelled insulin and glucagon output and the measured glucose output were determined. Elaborate
description of this analysis and the results can be found in Appendix A. Analysis showed that both
the glucagon and insulin subsystems have stable outputs. Both have a low-frequent output, with the
insulin subsystem showing an even lower cut-off frequency than the glucagon subsystem. Phase shift of
these low frequencies is zero and they are amplified depending on the gain of the transfer functions. The
linear MM glucose subsystem shifts low-frequent insulin signals with 180 degrees if kg is well above zero
and the shift is only 90 degrees for kg close to zero. The input delay τI introduces a phase delay. The
magnitude of the output frequencies of the linear glucose MM is also affected by kg. For kg = 0, the
amplification of low-frequent signals does not level off but becomes stronger as frequency decreases with
20 dB/decade. Exact meaning of these findings for the behaviour of the system is discussed further in
the next chapter.
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Chapter 5

Discussion

In the current study, models of the insulin and glucagon subsystems were identified with the aim of
modelling the plasma insulin and glucagon concentrations in response to subcutaneous hormonal infusions
in an average patient with T1DM. Parameter estimations were performed for both subsystems. Results
of these parameter estimations were applied to simulate the insulin and glucagon plasma concentrations
as input for the glucose subsystem. For the glucose subsystem, linear and nonlinear models of varying
complexity were proposed. These models were identified and validated.

5.1 Insulin subsystem

For the insulin subsystem, the only data available were averages of three datasets that contained measure-
ments of insulin concentration responses to subcutaneous bolus injections. Model parameters correspond
to what is shown in Figure 3.4 in section 3.3.1. Results of the parameter estimations showed that model
version 3 was able to provide best model fit to the three average insulin responses. This 3rd order model
with estimation of three parameters was able to provide a fit both to the peak insulin concentration and
the decay afterwards. Results indicated that, compared to Schiavon et al. [26] that applied individual
subject data, a less complex model can be fitted to averaged insulin responses. In model version 3, the
input delay τIsc was not considered and addition of the parameter ap1 as in model version 4 resulted
in it being estimated virtually zero. This was not surprising, since results of the study by Schiavon et
al. [26] estimated ap1 in the same model structure to be valued above zero in only 23% of the cases.
Model versions 1 and 2 as proposed in the current study were dropped because model fit was worse than
for model version 3, which was concluded from the higher RMSe and lower VAF values. Note that the
transfer rate parameters di and ap2 in the version 3 insulin subsystem model are exchangeable without
resulting in a change in model behaviour. This can be seen clearly when looking at the corresponding
transfer function in Equation A.3 in the Appendix. The selected model is also less complex than the
Inreda model of insulin kinetics [5], which was a 4th order model with 8 parameters.

This study indicated that insulin kinetics can be modelled with a third order system, which is in agree-
ment with what was found by Hovorka et al. [74], Lv et al. [30] and Schiavon et al. [26]. The study
of Schiavon et al. and the current study were in contradiction with the study by Lv et al. [30], in
which it was indicated that there is a need for inclusion of a delayed first order transfer from the first
subcutaneous compartment in order to accurately model insulin concentrations in the first 30 minutes
after injection. In contrast, other studies have also applied less complex models with either two or three
compartments. For the two-compartmental model structure, only parameters corresponding to VI , ap1
and m were estimated with the condition ap1 = m. In addition, a basal insulin concentration Ib was
identified [33, 99]. A basal insulin concentration parameter was not included in the current study since
this implies that there is still a background beta cell secretion of insulin [33], which is normally negligible
in T1DM patients [22]. It is possible that the addition of estimation of VI compared to the current
study’s model in the identification may compensate for the assumption that ap1 = m. However, it is in
line with expectations [26] and results presented here that, when both estimation of the parameters VI
and Ib are discarded, a two-compartmental model cannot account for the dynamics involved in subcuta-
neous insulin absorption.
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Less complex three-compartmental model structures involved estimation of parameters corresponding to
VI , ap2, di and m with the condition ap2 = di [74, 28]. This last condition was met in the study of
Schiavon et al. in only 25% of the cases [26]. Although it was not attempted in the current study, as-
suming equality of these parameters may be a simplification that can be applied without major decrease
in the model fit to the average insulin response data. This would be advantageous in the interpretation
of these parameters since they can be exchanged in the selected model without resulting in changes of
model behaviour, as was explained earlier.

Unlike the study by Schiavon et al. [26], no transport delay of the insulin input was considered in the
current study, since applied methods could not provide reproducible estimations. Addition of the delay
parameter would have definitely resulted in a better model fit for the lower order insulin subsystems,
but the early effect of insulin on the glucose concentration can then not be modelled and it is therefore
not desirable to apply this delay. Moreover, this delay is a worse reflection of the physiology than the
addition of a compartment representing an additional delay in the insulin response.

It is not certain that the insulin submodel is capable of accurately describing insulin concentrations after
subcutaneous infusions through the application of a bi-hormonal CL or insulin delivery system. The
model was identified on insulin responses to bolus injections, which is in contrast to multiple smaller
bolus injections or continuous infusion that were applied in the CL and OL parts of the crossover study
respectively [13]. Although it is expected that identification based on such data is still possible [33, 28],
it is possible that parameter estimations are affected by the type of dosage pattern that is applied.

Another major limitation to this study is that the identified model of insulin kinetics only gives a repre-
sentation of the average response to a bolus injection. Inter- and intra-subject variations in these kinetics
were not considered. It depends on the response of the glucose subsystem and degree of the variations
whether it is important to take these into consideration. In addition, the influence of insulin and glucagon
kinetics on each other is unknown. Haidar et al. [33] already suggested that subcutaneous absorption
rates of both hormones are related. It could also be worthwhile to determine whether parameters are
correlated to each other or to patient characteristics. Schiavon et al. [26] indicated that the value for
ap2 could be related to the body weight of the patient.

It is advisable to perform a clinical study in which the effect of administration of both hormones by the
Inreda AP is studied by taking regular blood samples during a treatment protocol. Insulin, glucagon
and glucose concentrations can be determined from these samples. Such a study can provide data to
determine influences of the factors mentioned above: the CL control situation, inter- and intra-subject
variations, as well as correlations between parameters and with patient characteristics. It can then be
determined whether the simplified model version of Schiavon et al. [26] that was applied here for an
average patient, can also describe insulin levels with sufficient accuracy in these conditions.

5.2 Glucagon subsystem

For the glucagon subsystem, responses to various glucagon dosages at various initial glucose concentra-
tions were available for six different subjects. Model parameters correspond to what is shown in Figure
3.5 in section 3.3.2. Results of the parameter estimations indicated that the proposed 2nd order model
with two parameters was able to provide a good model fit. This was concluded from the RMSe values
being small compared to the glucagon peak concentrations and the VAF values approaching 100%. This
glucagon kinetics model is a simplification of that applied in the Inreda model [5], that used a 3rd order
model with 5 parameters. Alpha cell glucagon production was also considered in this Inreda model, but
it was neglected in the current study. Results of the glucagon subsystem confirm earlier findings [33, 99]
that a two-compartmental model with estimation of two parameters can be applied to model glucagon
concentrations. More complex models like proposed by Lv et al. [34] and Dalla Man et al. [36] do not
seem to be required to obtain a model fit as reported in the results section.

N. Middelhuis [100] performed parameter identification for the glucagon kinetics submodel of Inreda [5].
The same assumption of absence of glucagon secretion was made and the same glucagon study [16] data
was applied as in the current study. In this study [100], no RMSe or VAF values of the model fit were
determined; autocorrelations of the residuals were found to be within the confidence bounds in 59 out of
65 estimations. Similar fit to the data was accomplished in the current study. Analysis indicated that
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parameter sets as a whole were dependent on patient characteristics and glucagon dosage, but not on
the initial BG level [100]. Results of paired t-tests and correlation analysis in the current study strongly
suggest existence of similar dependencies. These seem to exist in the transfer rate parameter bp for the
dosage-dependency and in the clearance rate parameter nh for the subject-dependency. Dependency of
glucagon kinetics on the initial BG level could not be ruled out. It is advantageous that each of these
dependencies turned out to exist in only one of the parameters. This might simplify the process of
implementation of these dependencies into the model. It is advisable to perform further studies in order
to confirm existence and quantify these relationships on a larger subject group.

Behaviour of the developed glucagon pharmacokinetics model was compared to the 2nd order glucagon
models applied by Haidar et al. [33] and Wendt et al. [99] that were identified on T1DM patients. Main
difference between these studies were that Haidar et al. applied one parameter for the transfer rate bp
and clearance rate nh, while Wendt et al. kept these parameters separated as in the current study. Both
models added a basal glucagon level to the output glucagon concentration, but as this was neglected
in the current study this was set to zero. Average parameter estimates were applied. The input was a
glucagon infusion rate pattern as applied in the CL part of the crossover study [13]. Output glucagon
concentrations turned out to be shaped similarly for all three models, but with proportional differences
between the outcomes. It is probable that conversion of dosed glucagon units was not performed in the
same way. The current model and that of Wendt et al. [99] reached peak glucagon concentrations more
quickly than that of Haidar et al. [33]. This confirms the finding in the current study that the transfer
rate and clearance rate parameters are clearly different, with the transfer rate being much smaller than
the clearance rate. Since these two-compartmental models [33, 99] were applied in a CL control situa-
tion, the outcome of the comparison supports the assumption that the model found in the current study
is not only applicable to isolated glucagon dosage inputs but also to repeated dosages as applied in a
CL system. Moreover, it indicates that the model structure applied can also account for inter-subject
variations that occur in such a CL control situation.

In the glucagon model, alpha cell secretion was neglected and absence of basal glucagon concentrations
was assumed. Studies have already indicated that this is not true, in people with T1DM there is still a
basal glucagon concentration [43, 16]. For the methods applied, this has multiple effects: firstly, initial
concentrations of glucagon being assumed zero cannot be true; secondly, glucose dynamics may always
be influenced by the basal glucagon concentrations, which was not considered in the identification of
the glucose model. The second effect may be negligible. The study performed by Dalla Man [36] has
indicated that there is a threshold glucagon concentration for glucagon action to occur. Extension of
the glucagon subsystem model simulate basal alpha cell secretion could be performed simply by addi-
tion of a constant to the simulated plasma glucagon concentration. This strategy was also applied to
model basal glucagon concentrations in the two-compartmental models of Haidar et al. [33] and Wendt
et al. [99] that were mentioned above. Value for this basal glucagon concentration constant might be
dependent on the diabetes duration [101, 6, 37]. It may be required to study whether decay of plasma
glucose concentrations and hypoglycaemia [36, 37] have a major influence on the glucagon concentration
in people with T1DM.

To summarize, a two-compartmental model of glucagon kinetics is able to describe glucagon concentra-
tions in T1DM patients. It is advisable to further study dependency of model parameters on the patient
characteristics, glucagon dosage size and BG levels. More research on alpha cell secretion may also be
necessary. As mentioned as well in the discussion of the insulin subsystem, a clinical study in which
regular blood samples are taken for a bi-hormonal CL control situation could gain insight into these
uncertainties. Inter- and intrasubject variations of the model parameters and influence of insulin and
glucagon on each other’s kinetics can also be studied from these measurements. Part of the data may be
applied to validate the models of insulin and glucagon kinetics for predicting plasma glucose levels in a
variety of conditions. It is questionable whether insulin and glucagon kinetics need to be simulated to a
high degree of accuracy, since the effects on the simulation of glucose levels may be limited. Therefore,
it is advisable to start with a sensitivity analysis to determine sensitivity of the glucose concentrations
to known variations in the insulin kinetics [26] and glucagon kinetics [16]. Methods for such a sensitivity
analysis are described in Appendix C.
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5.3 Glucose subsystem

The glucose subsystem was identified and validated based on data acquired in a crossover study on T1DM
patients with an OL period with regular insulin pump treatment and a CL period in which treatment
with the Inreda AP was applied [13]. Results of the parameter estimations indicated that the proposed
glucose subsystem models of varying complexity could be identified on CGM data. All of the proposed
model structures were much simpler than what was applied in the Inreda model [5] that was based on the
physiology of the glucose metabolism [3, 36]. For modelling of the glucose part of the metabolism with-
out submodels of meal intake or hormonal concentrations, the model already consisted of six differential
equations with over 16 model parameters. Glucose subsystem models proposed in the current study only
had one or two compartments with at most 8 model parameters. The glucose concentration was modelled
to be affected by plasma glucose, insulin and glucagon concentrations through the parameters kg, ki and
kh(p) respectively. There was also a parameter accounting for the basal net glucose production Gb. Other
parameters determined the delay on insulin action τI , the saturation on insulin action ag and the rates
of transfer between two compartments: k1 and k2. In addition, basal plasma glucose mass qgp,eq and
amount of insulin qipb were considered. The glucose distribution volume Vg and molar massMg were fixed.

5.3.1 Parameter estimations

Overall, results showed that when all parameters were considered, model fit in terms of RMSe and VAF
values was best for the linear MM, followed by the nonlinear MM, the Michaelis-Menten version 2 model
and the Michaelis-Menten version 1 model. All parameters showed relatively large variability between
the estimation intervals, which can be concluded from the CV values exceeding 1 in most cases. The
two-compartmental models were the only proposed glucose subsystem models that could be identified
on the data. This may be caused by a faulty model structure or by the estimation methods applied not
being suitable for finding the right parameter values. It is probable that the estimation method was at
least some part of the problem for both model versions. For the Michaelis-Menten models, the algorithm
did not find the right optimum in the residuals function either. For 2COM version 1, the model structure
may also have caused some problem, since there was no insulin-dependent clearance of glucose included.

Parameter estimations were performed for a linear MM, nonlinear MM and two versions of a Michaelis-
Menten model. As explained earlier, the linear and nonlinear MMs as well as the Michaelis-Menten
version 2 model in the current study are simplifications of the glucose minimal model that was devel-
oped by Bergman et al. [49]. Many studies have performed parameter estimations for this Bergman
MM. As becomes clear from section 2.2.1, the parameter kg corresponds to the glucose effectiveness SG

in the Bergman MM. The Bergman MM also contains a parameter that corresponds to the basal net
glucose production Gb in the proposed models. The insulin sensitivity SI in the Bergman MM does
not correspond directly to the parameter ki in the linear and nonlinear MMs or the Michaelis-Menten
models. However, both parameters express the rate at which a certain amount of insulin affects the
plasma glucose concentration and therefore the values can be compared.

According to literature [61], there is little variability in the parameter kg. Therefore, its value was fixed
in several studies [28, 102]. The estimates found in these studies are slightly larger than the estimations
for kg that were found in the current study. CVs corresponding to the estimation results indicate that
there was a relatively large variability of the parameter kg, which is not in agreement with earlier studies
[61]. Results also showed that in the proposed models, kg was often estimated to be virtually zero. For
the linear MM and Michaelis-Menten version 2 models, this results in the glucose concentration not being
affected by its own value in any way. For the other proposed models it means that the glucose dynamics
become completely nonlinear. No reports of kg being estimated or valued virtually zero were found in
other Bergman MM studies. It is logical that estimations of kg are higher for the linear MM than for
the nonlinear MM, since the nonlinear MM includes part of glucose dynamics in the nonlinear term of
the differential equation.
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The basal net glucose production called Gb in the current study, is often defined as the glucose effec-
tiveness SG multiplied by a constant basal glucose level in other studies [28, 102]. The parameter values
found here for Gb were in the same range as applied in other studies [22, 103, 28]. Coefficients of varia-
tion were smaller than those found for the parameter kg. However, variations were still large compared
to other studies [22]. Values for Gb were relatively large in the Michaelis-Menten version 2, which is
probably caused by the strong effect that insulin has for the identified parameter values. The basal net
glucose production being lower in the nonlinear MM than in the linear MM suggests that the effect of
kg and ki together is stronger for the linear MM.

The nonlinear MM ki can be compared by unit conversion to SI in the Bergman MM. Values found in
literature [28, 102] were approximately a factor 10 larger than what was found in the current study. For
the linear MM and Michaelis-Menten version 2 model, ki needs to be divided by a certain glucose mass
qgp before a similar comparison can be performed. Dividing by a relatively low glucose mass correspond-
ing to 5 mmol/L will result in overestimation of the insulin sensitivity that is comparable to SI in the
Bergman MM. Even then, similar as for the nonlinear MM, the Bergman MM study’s insulin sensitivity
[28, 102] was found to be about five times stronger than the overestimated SI calculated here. These
differences may be explained by the higher complexity model applied in the MMs in literature (section
2.2.1) that considered insulin action through an additional compartment that accounts for the delayed
effect of insulin. The effect of this delayed action may be smaller than when the actual plasma insulin
level is considered directly in the differential equation. Earlier studies [28, 104] and the current study
were in agreement on the large inter-subject and diurnal variations for the insulin sensitivity.

Results of the estimations of τI suggest that insulin action is delayed compared to the excursion of
plasma insulin concentrations resulting from subcutaneous infusion, since the delay was often estimated
to be larger than zero. Large spread of the estimations of this delay with estimates often being at the
allowed boundaries, indicates that this delay was not estimated correctly in all cases. In order for valid
estimation of this delay, a certain variation in the plasma insulin concentration is required within the
considered time period. If there is not enough variation, value assigned to τI becomes random because
its value does not influence model output. In the original Bergman MM, the delayed effect of the insulin
concentration was modelled by addition of transfer to a remote insulin compartment. For the current
study, it may be determined whether such a structure improves model fit. It is however expected that
such a delay is more complex than required for modelling of the insulin action.

As explained in the results section 4.1.3, the parameter ag in the Michaelis-Menten models was expected
to be valued very small. This way, the effect of a higher amount of insulin would not be linear but
it would level off depending on the value of ag. When ag � 0, the effect of insulin becomes negligible
already for low levels of insulin in the blood plasma. Since the approach taken was data-driven, it was at-
tempted whether addition of a threshold to the effect of insulin in the numerator of the Michaelis-Menten
relation could improve model fit. This threshold has the effect of allowing small excursions of the insulin
concentration away from the threshold to have a larger effect on the eventual glucose concentration. For
model version 1, this had the desired effect of improving the model fit for the estimations. For model
version 2, this was not the case. It is unknown why the parameter ag was given such high values. It
is clear that for ag = 0, the fit of the Michaelis-Menten version 2 model could be improved simply by
conversion to the linear MM. It is possible that the nonlinear least-squares method converged to optimal
error for very large values of ag and did not search for solutions in the values near zero.

Then, turning back to the results of the estimations of the insulin threshold in the Michaelis-Menten
models, it was found that this threshold was estimated to be valued in the lower range of insulin con-
centrations that were found in the model. This was expected, since larger values would have resulted in
insulin action having the effect of increasing glucose concentrations instead of decreasing them, which of
course is not expected behaviour. Correlation analysis showed that ag was strongly correlated to qipb for
the version 2 Michaelis-Menten model, which confirms the statement made above about qipb functioning
as a counteracting factor for the overestimation of ag. For qgp,eq in the version 1 Michaelis-Menten model,
estimations were valued in the lower range of glucose masses that were measured. This means that qgd
describes the glucose concentration above hypoglycaemic values.
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It is interesting that for the linear and nonlinear MMs, strong correlations were found to exist between
Gb and kg as well as between Gb and ki. This means that the parameter that contributes positively
to the glucose rate of change is related to the parameters contributing negatively to the glucose rate of
change. It is not surprising that when kg is set to zero, the relation between the remaining parameters,
Gb and ki became stronger. It is apparent that for the nonlinear MM, the relation of Gb with kg was
dominant over that with ki. This implies that allowing values above zero for kg, increases independency
of the estimate found for ki. In contrast, for the linear MM, the relation between Gb and ki seemed
to depend less on the value for kg. This was not surprising as well, since in the linear MM the glucose
mass affected only the role of kg and not of ki in the glucose rate of change. For the nonlinear MM, the
relation of Gb with ki became less strong when the delay τI was set to zero. Linear MM correlations
were also affected by inclusion of the delay τI . If further studies confirm existence of these parameter
correlations, knowledge of these correlations may be applied to improve identifiability of the parameters
such that parameter estimations can be performed quicker and more accurate.

System analysis indicated that the parameter kg in the linear MM has a stabilizing influence for the
system output, since it constrains the system gain for lower frequencies. As a result, for basal insulin
and glucagon levels, there will be an equilibrium value that the output glucose level converges to. If
kg = 0, glucose levels will start to increase linearly unless the insulin levels start to rise. It is more
critical that the parameter values applied for Gb and ki are balanced. The Michaelis-Menten model
version 2 is expected to show similar behaviour, since it is equivalent to the linear MM, except from the
saturation on the effect of insulin. It is advisable to fix the value of ag to a value close to 0 [64], in case
that parameter estimations are performed again for the Michaelis-Menten version 2 model. Then, the
system will have the effect of damping the model sensitivity to high insulin concentrations, which may be
desirable but was not tested in this study. For the nonlinear MM, removing the parameter kg still leaves
a glucose-dependent term in the differential equation. As a result, there will still be an equilibrium value
of the output glucose level when the insulin concentration is basal. This may explain why setting kg = 0
worsens prediction performance for the linear MM, while prediction performance for the nonlinear MM
improves for this condition.

Glucagon action was estimated for the linear and nonlinear MM with estimation of the parameter kg, but
without the delay τI . Glucagon action modelled as a linear component of the differential equation per-
formed better than adding the glucagon level directly onto the modelled glucose mass. This means that
apparently, there is some delay to the effect of glucagon on the plasma glucose concentration. System
analysis showed that, as could be expected from the lower cut-off frequency of the glucagon subsystem,
the response of the plasma glucose concentration to glucagon is slightly quicker than the response to
insulin. Model fit as measured by the RMSe and VAF values was worse than what was accomplished for
the linear MM and nonlinear MM with insulin input only. Furthermore, precision of the estimation of
the parameter kh(p) was relatively low. Inaccuracy of estimations of the glucagon action may be caused
by a lack of sufficient glucagon infusion input.

From what was found in EGP submodel studies [59, 71], it can be seen that including a term that makes
glucose concentration dependent on the rate of change of the amount of plasma glucagon instead of only
on the amount of plasma glucagon itself, the model fit may be improved. Estimation of glucagon action
may also be improved by adding either a (transport) delay to the effect of glucagon or by adding a
compartment accounting for the delayed effect of glucagon [28], similarly as was done for insulin action
in the Bergman MM [49]. It is expected that addition of a simple transport delay should be sufficient,
since glucagon kinetics and dynamics are quicker than that of insulin [16]. Estimation of this delay could
not be performed accurately for the available crossover study data in the current study, since little data
sections were available and measurement error was often large compared to the effect of infused glucagon.
Absence of correlation between kh(p) and other parameters or output variables suggests that the effect
of glucagon is not linearly related to the glucose, insulin or the glucagon concentration itself.
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5.3.2 Prediction performance

Results showed that models that obtained the best model fit after parameter estimations, did not nec-
essarily perform best at predicting the plasma glucose concentrations in the different subjects. When
seeing the large CV values for the parameter estimates, it may be concluded that setting parameter
values for each subject individually was a good choice, since this at least allows for accounting for inter-
subject variability of the dynamics for the predictions. The disadvantage of this choice is that parameter
values are based on very little estimations intervals and therefore do not have high validity and accuracy.
Intra-subject or diurnal variations of the parameter values were also not accounted for. Although results
showed that the nonlinear model without the parameters kg and τI had best overall prediction perfor-
mance, it may be true that addition of the right variability of the model parameters results in better
predictions for other proposed model versions.

There are two types of models that can be found in literature for predicting of glucose levels. The first
type applies compartmental modelling of plasma glucose concentrations that is some sort of simplifica-
tion of what occurs in physiology. These models have been developed with varying complexity, as is
explained in Chapter 2. For multiple of these compartmental models, a population of virtual subjects
has been set up for which certain parameters vary between subjects. One study that has quantified the
performance of such a compartmental model was performed by Wendt et al. [99]. A similar approach for
identification and validation was taken as in the current study: three datasets were applied for training
and one for testing the model for an individual patient. Data sets were acquired in a more controlled
setting than in the current study. After a fasting period, an insulin dosage was given. This was followed
by subcutaneous injection of a glucagon dosage as soon as glucose concentrations became hypoglycaemic.
For the duration of this controlled 7-hour experiment, mean absolute prediction errors (MAPEs) were
found to vary from 4.5 to 174.1% with a mean of 26.84%. For fairly low glucose levels of 4 mmol/L,
these percentages correspond to mean glucose errors of 0.18 mmol/L to 6.96 mmol/L with a mean of 1.07
mmol/L. The mean absolute error of 1.07 mmol/L was larger than mean RMSe of 0.7525 mmol/L, but
they were calculated of measurements during a 7-hour and 3-hour period respectively. Comparing the
results, it may be concluded that the nonlinear MM with exclusion of kg and τI performs relatively good
at predicting the glucose concentrations. Especially when considering that predictions were performed
for uncontrolled experimental conditions.

A study by Wilinksa et al. [75] validated a similar compartmental simulation model based on measures
like ’time in euglycaemia’, but no actual errors were determined. For this reason, comparison to predic-
tion performance in the current study could not be performed. The Dalla Man model [36] is another
compartmental model that was validated for its prediction performance [79]. The FIT was applied to
measure the prediction error relative to the variation in the measurement. Outcome was good, but
testing data was applied to find the optimal combination of parameter estimations in the population of
virtual subjects. Therefore, results can not be compared with the current study, in which the parameter
estimates for predictions were identified and fixed before the actual validation.

The second type of glucose prediction model is completely data-driven and attempts to predict glucose
levels (test data) by taking into account earlier glucose measurements (training data) [94]. These pre-
diction models can be a linear time series model, a type of regression model, or another model that is
based on more complex nonlinear algorithms. Now, recall from the results that the nonlinear model with
exclusion of kg and τI had the best overall prediction performance. RMSe for this model was on average
0.7525 mmol/L for a 180-minute prediction period and 0.1747 mmol/L for a 30 minute prediction period.
This prediction was performed without any time delay with the initial BG concentration based on the
CGM measured at that time. When comparing this to the literature overview of this type of prediction
model by Georga et al. [94], it is found that known linear time series prediction models have similar
performance for a 30-minute period (RMSe of 0.1 - 0.21 mmol/L). 90-minute predictions have and error
of 1.6 mmol/L on average for these types of models and thus performs much worse than the model ap-
plied in the current study for long-term glucose predictions. Predictions of these data-driven models was
improved by addition of extra inputs, but was not better than for the predictions in the current study.
Applying more complex nonlinear models did result in better results for the 30 minute prediction, but
for over 120 minutes forward the current study’s nonlinear MM was more accurate [94]. To conclude,
the approach as applied in the second type of glucose prediction model can result in better short-term
predictions of the glucose level but mostly result in worse long-term predictions when compared to the
nonlinear MM identified in the current study.
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Although the results discussed here may not seem conclusive, considering that parameter estimates were
determined for only several data sections in each subject, no accurate predictions were expected. In
addition, due to diurnal variations in the glucose dynamics and kinetics, there is a need for identification
of the extend of these variations and how these can be represented by the parameters in the models that
are proposed. The relatively good prediction performance that was measured shows the feasibility of a
simple glucose model for performing short-term predictions of glucose levels. The nonlinear MM with
two parameters seems the most feasible for such application based on the prediction errors. Moreover,
in adaptive prediction models, a simple glucose model is beneficial, since finding optimal parameter es-
timations becomes less costly in terms of time and computational strength.

No similar studies were found in literature. Studies of simpler models were mostly developed with the
goal of measuring physiological parameters instead of simulating glucose concentrations [49, 53, 54]. The
model structures and study design applied in the current study were most similar to the minimal model
extensions studied by Herrero et al. [28] and Wendt et al. [99]. Although direct comparison with these
models was not possible, performance seemed similar. The main difference of these models with the
developed glucose model was that these models also contained models of meal absorption and could be
applied to perform predictions during the day as a result. This is not yet possible with the models
proposed in the current study.

5.3.3 Limitations & recommendations

There are several limitations to the results of the current study. First of all, the lack of variation in the
insulin concentrations during many of the periods taken from the crossover study made identification
of the glucose subsystem difficult. Validity and accuracy of the values estimates is limited as a result.
Especially for the estimation of the delay in the insulin signal, sufficient variation in the insulin signal is
required. This is the main reason why identification was repeated without this delay. Higher perturbed
signals could show whether this delay is actually required. Another disadvantage of using data from the
crossover study [13] was that data was acquired during daily life and that perturbations to the process
were not completely known as a result. Moreover, it is unknown whether the treatment type (OL and
CL) influences the glucose dynamics and kinetics in the patients. The limited availability of participants
and stable CGM data was also a problem.

Results showed that CGM errors did not have zero mean with a fixed standard deviation. Errors were
large compared to the measured signals. It was shown that there was a moderate correlation between
the CGM errors and the SMBG measurements. This suggests that CGM measurements are an overes-
timation of the true value at low glucose levels. Also, it suggests that at high glucose levels, the CGM
measurements were an underestimation of the true value. These results indicate that the assumption
made by the estimation algorithm on the CGM errors being white and Gaussian was not met. This is
important, since a direct method of parameter estimations is susceptible to noise, which is explained in
Appendix B. Violation of this assumption may be an explanation for the autocorrelations of the resid-
uals in the glucose subsystem identification not being within the confidence bounds. It is advisable to
include a model of the CGM error for the sensors applied in the crossover study [13]. Such models do not
yet exist for the applied sensors, but they have been developed for other sensor types in the past [105, 106].

Furthermore, the estimation method did not perform very well when model complexity increased in
terms of number of compartments and number of parameters to be estimated. This became clear in the
parameter estimation of the two-compartmental model. The algorithm was not able to find convergence
of the parameter values. This could be caused by a faulty model structure, but it is expected that
especially for 2COM version 2 the estimation method is the limiting factor, since similar models have
been successfully identified in the past [54, 3]. Although parameter estimations of the Michaelis-Menten
models could be performed, these were very time-consuming (over three hours for the 57 data sections).
Moreover, as mentioned earlier, solutions found for the Michaelis-Menten model parameters were clearly
not optimal. Using shorter intervals and applying a lower sampling frequency may improve these issues.
It is also possible to fix certain parameters before the estimation. Problems may have occurred because
the assumption on the CGM error being white and Gaussian made by the algorithm was not met. The
algorithm also assumed absence of an error on the model input, which was not verified in this study.
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Another limitation to the value of the identified models is that the meal intake and intestinal glucose
absorption were not yet considered. A problem for identifying such a model is that the effect of various
types of meals in a situation with unknown perturbations as in the crossover study data [13] varies a
lot. For in silico testing of CL control systems as the Inreda AP, meal intake is an important factor tot
consider. If the glucose can be modelled accurately for unperturbed situations, it becomes possible to
determine what the effect is of a meal. This may need to be combined with the effect of the increased
insulin dosages that will be applied in the period influenced by meal absorption. Earlier studies applied
tracers in different kinds of experiments to model EGP and utilization. This was used to determine what
part of the glucose level increase was caused by a labelled meal and this was applied to model rate of
appearance of meal glucose into the blood plasma. Such a model or a simplification of such a model may
be applied to identify the influence of meal intake during bi-hormonal CL control by the Inreda AP in
daily life.

The last limitation to this study is that parameter identification was applied without taking into account
that the control algorithm imposes a relation between the noise in the measured output and the IIR
and HIR input signals. As explained in Appendix B, application of closed loop identification in which
the influence of external perturbations on the output can be determined, may improve the identifiability
of the parameters. A possibility to implement such perturbations would be to make slight changes in
the applied insulin and glucagon dosages compared to what is determined by the control system. Other
perturbations that may be applied without harming the patient are meal intake or a combination of meal
intake with an additional subcutaneous bolus injection. Meal intake in the crossover study [13] can al-
ready be applied for closed loop identification if the transfer of the control system is known. Application
of a model of the CGM error would improve this identification. It needs to be taken into consideration
that glucose dynamics were shown to be very slow, meaning that the effect of perturbations may last for
many hours. The effect of perturbations can already be tested on short term in silico with the glucose
model proposed in the current study. The nonlinear minimal model with the parameters ki and Gb is
probably the best choice for this.

A final recommendation follows from the advise given on closed loop identification in combination with
the finding that variability of the parameter estimates between estimation intervals showed to be quite
large. When closed loop identification is applied, for example by simply measuring the effect of ingestion
of three meals during the day, parameter estimations may be performed separately for each of these
meals. This way, diurnal variations in the parameters can be identified. Ideally, this would be performed
multiple times for a patient during treatment with a system such as the Inreda AP. Changes in glucose
dynamics and kinetics for a patient over a longer period of time can then be identified. When such
data is used to determine parameter variability for individual patients over time, this knowledge can be
applied to set up a database of virtual patients. These virtual patients can be used for in silico testing
of a control system in a variety of virtual patients with variability in the glucose metabolism that could
also occur in a clinical situation. The regulation by the control system could even be adapted based on
the results of continuous closed loop identification.

5.4 Conclusion

It was shown that the combination of models of subcutaneous glucagon and insulin kinetics in an average
T1DM patient with a patient-specific model of glucose dynamics and kinetics, can describe glucose levels
in different patients. A nonlinear glucose model with only two parameters and one compartment was
promising for short-term (<180 min) predictions of glucose levels, since the prediction error was less
than 1 mmol/L for over 80 minutes in advance for 75% of the predictions. This work shows the potential
of one-compartmental linear and nonlinear models of glucose dynamics and kinetics to be applied for in
silico testing of bi-hormonal glucose control systems and to the development of adaptive control systems.
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Appendix A

System analysis

In this appendix, analysis are performed to gain insight into the behaviour of the identified model struc-
tures. All three subsystems of the model of glucose metabolism are considered. These model subsystems
describe the concentrations of insulin, glucagon and glucose in the blood plasma in people with T1DM.
The system analysis includes applying Laplace transforms to linear systems to find the system transfer
functions. Bode plots were determined to study the frequency response. Frequency content of the input
and output signals were determined to verify the interpretation of the Bode plots. Impulse responses
were determined in order to study the effect of the system characteristics from the response to a signal
containing all frequencies. Methods applied were described in [98] and Matlab functions ‘tf’, ‘fft’, ‘bode’
and ‘impulse’ were used [89].

For the insulin subsystem, the transfer function determines the frequency transfer of the insulin infusion
rate IIR to the output amount of insulin in the blood plasma qip that is proportional to the insulin plasma
concentration Cip. Equations A.1-A.4 are the transfer functions for model versions 1-4 respectively. The
Bode plot of the frequency response of these identified model versions are shown on the left side of Figure
A.1. Similarly, for the glucagon subsystem, the transfer function determines transfer from HIR to the
output amount of glucagon qhp proportional to the glucagon plasma concentration Chp. Equation A.5
is the transfer function for the glucagon subsystem model. The Bode plot of the frequency response of
the identified glucagon subsystem model is shown on the right side of Figure A.1. Then, considering
the identified model version 3 insulin subsystem and glucagon subsystem models, frequency contents of
input signals and corresponding output signals for these systems are shown in Figure A.2. Also, the
impulse responses are shown in Figure A.3.

HI1(s) =
qip(s)

IIR(s)
=

ap1
(s+m)(s+ ap1)

(A.1)

HI2(s) =
qip(s)

IIR(s)
=

ap1
(s+m)(s+ ap1 +msc)

(A.2)

HI3(s) =
qip(s)

IIR(s)
=

ap2 · di
(s+m)(s+ ap2)(s+ di)

(A.3)

HI4(s) =
qip(s)

IIR(s)
=

ap1 · s+ ap2(di + ap1)

(s+m)(s+ ap2)(s+ di)
(A.4)

HH(s) =
qhp(s)

HIR(s)
=

bp
(s+ nh)(s+ bp)

(A.5)

From the insulin transfer functions in Equations A.1-A.4, it can be seen that the poles are real and have
negative values for positive parameter values [98]. This means that all these systems are stable. Model
versions 1 and 2 are second order transfer functions with slightly different characteristics. Both have a
natural frequency that is rounded to 0.00025 min−1. However, damping ratio of model version 1 is high
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Figure A.1: Bode plot for the four identified model versions of insulin kinetics on the left side and for the
glucagon subsystem model on the right side. Note that lines for insulin subsystem models version 3 and 4 overlap
the left Bode plot.

with a value of 2.13 and is overdamped, while model version 2 has a damping ratio of 1.00 and is therefore
critically damped. This difference can be seen as well from the Bode plot (Figure A.1) of the transfer
of both model functions, that shows a clear difference in the phase delay between both model versions.
Typical for the 2nd order transfer are the effect of a lowpass filter in which for higher frequencies, the
decay in the magnitude plot is 40 dB/decade and the phase delay is -180 degrees. Model versions 3 and
4 are of third order and do not have a clear natural frequency as the 2nd order systems. Characteristics
of a 3rd order system can be recognized in the Bode plot, since the phase delay for higher frequencies is
-270 degrees and the magnitude decay is 60 dB/decade. Cut-off frequency of the model version 3 and 4
transfer is determined by the poles. From the Bode plot, it can be seen that decay in the magnitude plot
occurs near the same frequency range as for the 2nd order systems. If for model version 4, ap1 would
be valued well above zero, the effect of the zero in the transfer function would visible in the Bode plot:
phase delay and signal attenuation become less strong for higher frequencies. The value of the zero of
this system determines the frequency range for which this occurs.

From Equation A.5, it can be seen that poles of the glucagon subsystem are equal to −bp and −nh,
which means that the poles are real and have negative values for positive parameter values. Therefore,
the system is always stable. The damping ratio of the system is 1.41, indicating that the 2nd order
system is overdamped. Natural frequency of the 2nd order transfer is 0.011 min−1. From the Bode plot
of the transfer function of the identified glucagon model, it can be seen the model acts as a lowpass
filter on the input with a cut-off frequency equal to the natural frequency of the system. For higher
frequencies, a 180-degree phase delay is present and decay of the magnitude is 40 dB/decade.

From Figure A.2, the same low-pass filter characteristics as in the Bode plots can be seen for both
the insulin subsystem model version 3 and the glucagon subsystem. The input infusion rates of both
insulin and glucagon have a strong power for frequencies below 5 min−1, both for a single bolus input
as well as repeated bolus infusions. The outputs however, consists of much lower frequencies with
most power being below 0.04 min−1. Frequency content of the qip output is even lower than of the qhp
output. This was expected, since Bode plots showed that higher frequencies were passed for the glucagon
subsystem. The impulse responses in Figure A.3 confirm that the glucagon subsystem passes through
higher frequencies by showing that the impulse response of this system is much quicker than for the
insulin subsystem. The impulse responses of both systems do have similar shapes, which is due to the
low-pass filter characteristics and negative real poles that both systems have.
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Figure A.2: Frequency contents determined with ‘fft’ of infusion rate inputs on the left side and the ‘fft’ of the
corresponding output amount of hormone in the plasma on the right side. Output was determined for average
parameter estimates. Upper four plots are input-output plots of the insulin model version 3 subsystem. Lower
four plots are input-output plots of the glucagon subsystem. Bolus input consists of a single subcutaneous bolus
injection and CL input consists of repeated subcutaneous infusion as in a CL control situation [13].

Figure A.3: Impulse response of insulin model version 3 subsystem and glucagon subsystem for averages of the
parameter estimates.

61



The transfer function of the various proposed glucose subsystems in this study cannot be determined as
a whole, since the differential equation for qgp depends on multiple variables and contains nonlinearities
in all proposed models except from the linear minimal model (MM). For this model, transfer functions
can then be determined by setting all model inputs to zero, except the input considered. The transfer
function of the amount of insulin qip to the glucose mass qgp is shown in Equation A.6. In addition,
the transfer function of the amount of glucagon qhp to the glucose mass qgp is shown in Equation A.7.
Since glucagon action was estimated with most accuracy by adding a linear component to the differential
equation, this is considered in the analysis.

HG,I(s) =
qgp(s)

qip(s)
=

−ki · exp(−τI · s)
s+ kg

(A.6)

HG,H(s) =
qgp(s)

qhp(s)
=

kh
s+ kg

(A.7)

In Figure A.4, the frequency content of CGM measurements is shown. In Figure A.5, transfer HG,I is
considered for kg = 0 and also τI = 0. The Bode plot is shown on the left side and the impulse response
on the right side. The same is shown in Figure A.6, but now for the transfer HG,I with kg > 0 and
τI = 0. In Figure A.7, transfer HG,H is considered, this case combined with the glucagon subsystem
model.

Figure A.4: Frequency content of glucose mass levels derived from CGM measurements. Content was determined
with fft.

Figure A.5: Bode plot (left) and impulse responses (right) of insulin subsystem (blue), glucose linear MM with
kg = 0 and τI = 0. (red) and that of both systems combined (yellow).
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Figure A.6: Bode plot (left) and impulse responses (right) of insulin subsystem (blue), glucose linear MM with
kg > 0 and τI = 0. (red) and that of both systems combined (yellow).

Figure A.7: Bode plot (left) and impulse responses (right) of glucagon subsystem (blue), glucose linear MM
with kg > 0 and τI = 0. (red) and that of both systems combined (yellow).

Bode plot and impulse responses of the transfer of the amount of insulin to the glucose mass in the linear
MM is represented by the red lines in Figures A.5 and A.6. Parameter values applied to these figures
were taken to be the Group 2A and 2B estimations in Table 4.3 respectively. It can be seen that for
kg > 0 (Figure A.6), the transfer is of first order and acts as a lowpass filter with a cut-off frequency
of 0.0012 min−1. The pole −kg determines the filter cut-ff frequency. Lower frequency phase is shifted
+180 degrees due to the system gain being negative. For higher frequencies, phase is shifted 90 degrees
less than for the lower frequencies, so the phase shift becomes +90 degrees. For kg = 0 (Figure A.5), the
transfer acts as an integral instead of a first order transfer. As a result, the transfer HG,I does not have
one pole with a negative real value, but a pole equal to zero. This means that for kg = 0, frequencies
are amplified more when they are lower and the phase shift is 90 degrees for all frequencies. It was
found that addition of the delay τI to the input does not affect the magnitude plot. However, the plot
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of the phase shift is massively influenced. This additional phase delay can be seen clearly in the im-
pulse response of the τI > 0 linear MM by a delayed appearance of the response, which is not shown here.

The combined effect of the insulin and glucose kinetics and dynamics in the linear MM is represented
by the yellow lines in Figures A.5 and A.6. Magnitude and phase plots in the Bode plot are obtained
by calculation of the complete system transfer function by multiplication of the individual insulin and
glucose subsystem transfer functions. When looking at the frequency content of the measured glucose
concentration in Figure A.4, it can be seen that power is largest for frequencies below 0.001 min−1 and
that it is not completely lost for frequencies in between 0.01 and 0.001 min−1. This is in agreement
with the effect that the linear MM has on its input when looking at the frequency response. Therefore,
frequency content analysis indicates that the insulin subsystem and linear MM are designed correctly in
terms of passing through the right frequencies.

The effect of combining these systems on the impulse responses can be seen on the right side of Figures
A.5 and A.6. For kg > 0, the 180 degree phase shift is reflected by the negative deflection in the complete
system’s impulse response, while the insulin subsystem’s impulse response has a similar shape but in
positive direction. For kg = 0, the 90 degree phase shift is reflected by the decrease in the complete sys-
tem’s impulse response that is steepest at the peak of the insulin subsystem’s impulse response. Increase
of the glucose mass in this system can still occur, but will result from the balance with other components
in the transfer function.

Lastly, the effect of glucagon on the glucose mass in the linear MM with kg > 0 and τI = 0 is shown in
Figure A.7. Only the value for kh was taken from the results of glucagon action identification in Table 4.8.
The other parameters were taken from the Group 2B parameter values found for the linear MM in order
to allow for comparison of insulin action (Figure A.6) and glucagon action (Figure A.7) on the glucose
level. Comparing these figures, it can be seen that due to the glucagon subsystem’s natural frequency
being higher than cut-off for the insulin subsystem, the combined effect with the glucose subsystem is
that cut-off of higher frequencies occurs less abrupt for glucagon. This can also be seen from the impulse
response on the right side of these figures: the impulse response reaches its peak slightly quicker for the
transfer from HIR than that of IIR. Phase shift for the combined transfer of the glucagon and glucose
subsystems is zero for lower frequencies, which results in glucagon resulting in an increase of the glucose
level in the impulse response similar to the increase that occurs in the amount of plasma glucagon.
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Appendix B

Perturbations in system
identification

In the current study, parameter estimations have been performed by a direct method: inputs and outputs
were known and have been generated in a closed-loop control system. Control by the artificial pancreas
system that was developed by Inreda Diabetic BV [13] is based on the difference between the current
and target glucose level and the rate of change of the glucose level. Additional mechanisms in the control
system are included that are not discussed here. In Figure B.1, a scheme is shown with the components
that are involved in a closed loop process such as in an artificial pancreas system. Variables s and us
and transfer GS can be ignored for now.

Figure B.1: Scheme of closed loop control with process GP , process noise transfer GPv, controller GR and
disturbance transfer GS . Procces input is u, process output is y, r is the reference.

The process to be estimated consists of two parts [108]: the process itself, that is represented by the
transfer function GP , and the noise that arises in the process, which is determined by the transfer func-
tion GPv. The controller transfer function is GR. The input of the controller is the error between the
output y and the reference r. If the controller is known, the input of the process can be determined from
this error. The output y is the sum of yu en n. yu is the output of the plant in response to the input
u given by the system. n represents the effect that the noise v has on the output. The total output y
provides feedback to the controller.

The method of direct process identification, that was applied in the current study, requires that the noise
transfer GPv needs to be known. This way, when both u and y are measured, the process output yu
can be determined. In contrast, for indirect process identification, the process can be identified based
on knowledge of the output only, since the input can be determined by the controller GR. For proper
identification, it is required that the input u is not correlated with the noise n. However, the feedback
loop imposes such a relation. A proper way of identifying a process which is part of a closed loop system
is to apply closed loop identification. In closed loop identification, an independent disturbance signal
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should be provided at a well-chosen point in the closed-loop and to analyse the responses to this inde-
pendent disturbance at the input and output from cross-correlation of these signals with the independent
external output. In Figure B.1, this disturbance us is added to the controller output uR. An additional
advantage may be that the independent disturbance input may excite the process more extensively than
the closed loop system itself.

For a glucose model, perturbations can be additions to the insulin or glucagon input as provided by an
artificial pancreas system. Other perturbations that can be applied are meal intake or physical activity
[17]. These can be used to identify additional submodels for such perturbations as well. Furthermore,
perturbed system inputs can be applied to study the effect of such perturbations in silico [5].
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Appendix C

Sensitivity analysis

As pointed out in section ‘5 Discussion’, sensitivity analysis is a useful tool to determine the sensitivity
of the model to certain parameters. This can provide information about the influence of uncertainties
or variability in parameter estimates on model output. Sensitivity analysis can be performed either
locally or globally. Global sensitivity analysis focuses on the identification of important parameters, in
case of a fully identified model structure and unknown parameter values [109]. Local sensitivity anal-
ysis shows how small perturbations of certain (known) parameters influence the value of the output [110].

In this study, parameter estimations were performed for an average T1DM patient for both the insulin
and glucagon subsystems. Suppose that these are described by differential equations ẏ, that vary with
time t and depend on a certain parameter vector p, as is expressed in Equation C.1. When the sensitivity
of the combination of all subsystems is of interest, the differential equations for the glucose subsystem
should also be included in the vector y. It is possible to perform local sensitivity analysis for the con-
sidered parameter values. One local sensitivity coefficient is the partial derivative of the output y with
respect to a certain parameter. A sensitivity matrix is a matrix containing the sensitivity of each variable
in the output vector with respect to each parameter value considered (Equation C.2). Sensitivity coef-
ficients can be determined by finite difference approximation or more analytically by solving differential
equations for the sensitivity coefficients [109]. The latter case will be described first.

Since the output y is not known before a solution to the system of differential equations is found, it is
not possible to determine the sensitivities by directly calculating the partial derivatives in Equation C.2.
It is however, possible to calculate them by solving Equation C.3. This can be done either by solving the
partial derivatives by a coupled method [111], simultaneously with the model equations (Equation C.1),
or by a decoupled method [112], separately from the model equations. The Green’s function method
[110] can also be applied.

ẏ = f(y, t,p) (C.1)

S =
∂y

∂p
(C.2)

Ṡ =
∂y

∂p∂t
=

(
∂f(y, t,p)

∂y

)
S +

(
∂f(y, t,p)

∂p

)
(C.3)

Next to this analytical approach, sensitivities can also calculated by a finite difference approach [110],
by computing the blood glucose levels for two different parameter values. These parameter values are
preferably chosen based on the known mean parameter value and the variance of this value: for example,
mean - std. and mean + std. are applied. The sensitivity coefficient for a certain parameter (pj) and
output combination (yi) is then calculated as follows shown in Equation C.4.

sij =
yi(pj + ∆pj) − yi(pj − ∆pj)

2∆pj
(C.4)
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