
Using mobile sensing to detect indicators of
alcohol intoxication

Boris Das

July 21, 2018

Abstract

Alcohol abuse is being one of the biggest causes of preventable deaths, there-
fore development of a tool that can help prevent alcohol abuse and aid in
reducing alcohol abuse, can be beneficial to the global heath of the worlds
population. In this thesis, a project is described that is aimed at collecting
data, that could be indicators of alcohol intoxication. The project consists
of an application that can be installed on a smartphone, which when used
will unobtrusively collect data. The project makes extensive use of the data
that is typed on the smartphone keyboard. It is designed to respect the
user’s privacy, and only extracts meta data from typed characters. Besides
typing sensors, acceleration is also tracked to see if this can indicate alcohol
intoxication.

Contents

1 Introduction 3
1.1 Background . 3
1.2 Smart phones as a tool . 4
1.3 Motivation . 5
1.4 Problem Statement . 5
1.5 Research Questions . 6
1.6 Structure of the Report . 7

2 State of the art 8
2.1 Tapsense . 8
2.2 Deployment of keystroke analysis on a smart phone 9
2.3 Mobile phone based drunk driving detection 9
2.4 Summary . 10

3 Method 11
3.1 Design . 11

3.1.1 Requirements . 12
3.2 Design choices . 14

3.2.1 Keystroke logging . 14
3.2.2 Acceleration and Rotation logging 17
3.2.3 Sessions . 17

3.3 Implementation . 18
3.3.1 The AWARE framework 19

3.4 Developing the plug-in . 30
3.4.1 plug-in application flow 30
3.4.2 KeyboardListener . 31
3.4.3 ApplicationSwitchListener 32
3.4.4 ESMAnsweredListener & ESMDismissedListener 33
3.4.5 Summary . 34

3.5 Code implementations . 34
3.5.1 The Java classes . 34

1

3.5.2 Summary . 36

4 Evaluation 44
4.1 Experimental setup . 44
4.2 Evaluation . 46
4.3 Results . 48

4.3.1 Usability evaluation . 48
4.3.2 Data collection evaluation 55

5 Conclusions and future work 58
5.1 Summary . 58
5.2 Discussion . 58
5.3 Future work . 61

5.3.1 Practical applications 62

2

Chapter 1

Introduction

This chapter briefly tries to state the problem and scope of this project. The
project will try to identify the use and misuse of alcohol in order to either
prevent long or short term problems. The findings in this project should
be able to be used in research towards alcohol use disorder and to support
projects that would need a way of non-intrusively identifying if a user is
intoxicated. Since mobile phones are more and more accessible we can try
to use these as a tool to identify patterns and indications of alcohol use.
The research in this thesis tries to find these patterns of phone use to help
identifying the use and misuse of alcohol. When we successfully do we can
use this data to help people with an alcohol use disorder (AUD) to guide
them to a more healthy lifestyle.

1.1 Background
Alcohol consumption has been identified as an important risk factor for illness
disability and mortality. Even though alcohol has been proved to help with
cardiovascular diseases in lower amounts of use, most of the burden in getting
diseases seems to stem from regular heavier drinking. This is defined as more
than 40 grams of pure alcohol for men and 20 gram for a day for women.
In addition to regular drinking, irregular patterns of heavy binge drinking
defined as more than 60 grams of pure alcohol are also significantly associated
with the burden of the diseases associated with alcohol use[10]. Overall the
following diseases and injuries are impacted by the use and misuse of alcohol:

• Infectious Disease

• Cancer

• Diabetes

3

• Neuropsychiatric disease

• Cardiovascular disease

• Liver and pancreas disease

• Unintentional and intentional injury

About 35% of the United States population abstains from the use of alco-
hol, about 60% are occasional to moderate drinkers, and about 5 to 7 % are
diagnosable with alcohol abuse or dependence. Out of 16 million users that
meet the diagnostic criteria for alcohol abuse or dependence, only 1.5 million
seek and receive treatment[1]. Alcohol abuse is a big concern in the world,
and in America alcohol misuse is the third biggest cause of preventable death
causes [7]. This is of course a big health concern, which with some help could
be easily prevented. Lancet states that around 2 billion people worldwide
consume alcoholic beverages, and that over 76 million people have an alco-
hol use disorder (AUD)[11]. WHO estimated that about 2.3 million people
die a premature death worldwide, and is responsible for 4.4% of the global
burden of disease[11]. People with an alcohol use disorder can often prevent
getting alcohol related diseases when taking the necessary precautions when
drinking[12].

Besides the physical diseases and problems, there is also the mental state
that can be influenced by alcohol use. In a study that combined several other
studies, strong relationships between alcohol abuse and depression could be
concluded. This relationship was either the alcohol use triggering the de-
pression, or the alcohol was used as a "self-medication" kind of role [2]. The
direction of which way the two are related is not always clear, but one could
conclude alcohol use disorder could be used as an indicator for a depressive
state. The problem with alcohol and the abuse is that often people do not
dare to admit the problem, or do not want to do anything about it.

1.2 Smart phones as a tool
With the rise of access to smart phones and other technologies, new method-
ologies and approaches to problems can be developed. According to Google,
Android had about 2 billion active users in 2017 and according to the CIA
1 about 7.1 billion active cellular phones exist in the world, and in nearly a
third of the countries, the number of cell phones in use is greater than the

1https://www.cia.gov/library/publications/the-world-factbook/geos/xx.html

4

number of people living in those countries [4]. Ways of researching a prob-
lem that previously might have had a hard time to gather enough data, could
now be approached in a way where a mobile phone can become a research
tool. Since a lot of people use a smart phone on a daily basis, data could
continuously be gathered in a non-intrusive way. This way participating in a
research is less time consuming for the participants and the research is more
likely to have more participants and data. Many tests will have the user
answer prompts to check if a certain state of mind is present. But often in
such tests a user could not always be answering the questions true. If after
the research phase these prompts can be eliminated because sufficient data
has been collected and analyzed, we can develop a more non-intrusive way
to spot behavioral changes ahead of time. If we succeed in developing such
a tool we can better understand what role a mobile phone is playing when it
comes to the use and abuse of alcohol.

1.3 Motivation
Seeing the effects and impact of alcohol use and the availability lead me to
believe there is a gap that can be filled by combining the technology with the
problem of alcohol use disorder. Since it is the third biggest cause of most
preventable diseases, I see there is a huge impact to be made in solving even
the slightest part of the problem.

1.4 Problem Statement
Since AUDs are a huge factor when it comes to global disease around the
world it would be desirable to identify the abuse before it actually becomes
a problem. If we succeed in doing so we can get treatment in the places
they are needed and in this way we can prevent alcohol use from becoming
a health risk and in this way increase the overall worldwide health. While
some people do get treatment for alcohol abuse, rehabilitation facilities do
not always have the right checkup methods to see if a patient is really still
sober. Sometimes people will lie about the relapse because the feel ashamed.

5

1.5 Research Questions
To investigate if we can collect any data that is relevant to finding out if
someone is intoxicated or getting intoxicated the following research question
has been defined.

Can we identify in a non-intrusive way if a person is intoxicated, with the
use of smart phone technology?

The important part is that we want to make it as non-intrusive as possible
as we don’t want it to feel like a thing that take effort to do since this might
harm the effectiveness of the research and overall goal. By collecting the
data of a user we hope to be able to spot changes in data, of which we
can conclude alcohol intoxication. This will mainly be focused on the use
of typing messages and how many type corrections are done in the process.
We expect users that are intoxicated to have different typing processes, than
those that are not. To be able to use the smart phone technology as much
as possible, we want to see if other sensor data might also give an indication
of alcohol intoxication.

Supporting questions To backup the main research question one of the
subquestions is:

Which tools and sensors on a mobile phone can be used to indicate alcohol
use?

The purpose of this question is to focus not only on keystroke analysis, but
also explore if other data can indicate the use of alcohol. Since most phones
nowadays have a gps and accelerometer this data can also be used to analyze.
During the research we might think of other methods we can exploit to further
back up data that has already been gathered.

To conclude the research we want to try to formulate a metric that will
give a quick indication whether a user is index intoxicated or not. Therefore
we formulate another question as following:

Can we formulate a metric to indicate a certain level of intoxication?

This can either be a certain scale that either points to an exact level of
alcohol, or to put a user in a certain "range" of likeliness to be intoxicated.
The first one would probably be most unlikely because most people seems to
react quite different at certain level of intoxication.

6

1.6 Structure of the Report
In the next few chapters the process of developing an application that can
help identify intoxication will be described. Chapter 2 will clarify which ap-
proaches have already been done in a scientific field, and how we can combine
several techniques to come to an application that can be used in the field of
alcohol use detection. Chapter 3 describes how we designed our approach and
how we implement the actual application. The software architecture shall be
discussed and explained. In chapter 4 we try to formulate a test that will
be conducted to get the first training data. When we have conducted these
tests we will review the data and discuss it per test and see where significant
data has been found. We will also test the usability of the application in
the for of a questionnaire. In chapter 5 we discuss our final findings and
try to formulate a conclusion based on the several test that have been done.
We hope to find a certain metric that will tell us whether a user is being or
getting intoxicated so we can start using the methods to actually help the
user. The final chapter shall discuss how this application could be used to
help or could be improved to better suit specific needs. After reading this
thesis one can expect to have read about an application that can successfully
collect data that can indicate alcohol intoxication, in a non-intrusive way, by
using smartphone technology.

7

Chapter 2

State of the art

In this section an overview of several projects that have tried a similar ap-
proach to other or similar problems. The projects discussed shall mainly in-
clude projects that have also used mobile phones as a tool to identify states
or help a user with similar problems as this project encounters. Not all cases
are related to alcohol use, but can be used as an inspiration source for our
research.

2.1 Tapsense
In the tapsense project researchers have conducted a study where they devel-
oped an Android application that would collect data about the user’s texts
input. The goal was to be able to identify at least 4 emotional states. The 4
states they identified were relaxed, happy, stressed, and sad. In this project
the relaxed state seemed to be reported the most. The projected used an
own implementation of the android keyboard in order to track the data. Af-
ter certain amounts of typing and switching applications, the users would
get a prompt to ask how a user was feeling at that moment. Short text
messages were filtered out to make sure the actual typing data was relevant
enough to be analyzed. Then by using machine learning they were able to
connect certain ways of typing with emotions. With 22 participants to test
and collect data they managed to obtain an average accuracy of 84% in clas-
sification. The precision of predicting a relaxed state was close to 80% and
the other 3 states could be predicted with 60% and above. [6] This project
seems promising when it comes to detecting emotional states with the use
of a smart phone. Other papers have also claimed to be successful with
identifying emotional states and stress levels [9, 8].

8

2.2 Deployment of keystroke analysis on a smart
phone

Another paper [3] suggests that keystroke analysis can be used for user iden-
tification on a phone. This means that besides having a pin to unlock a
phone, a continuous process could identify and authenticate a user based on
typing. They suggest a possibility in identifying user by these biometrics. It
is something the person is and not something that the person knows (e.g. a
pincode). In their approach they used a method where a user would have to
enter a password 20 times and then authenticate 10 times. Of course for a lot
of user this would be to much repetitiveness. And while this project doesn’t
yet succeed that well in the implementation yet, it does clarify the impor-
tance of non-intrusiveness. Also in the paper they state that computational
power was one of the biggest struggles since phone were not too capable at
that time. With modern day technology we hope to further support the use
of keystroke analysis.

2.3 Mobile phone based drunk driving detec-
tion

In a paper called mobile phone based drunk driving detection [5] researchers
approached being intoxicated in another way than using key logging. While
this project specifies being intoxicated while driving, this study can prove
to be effective on a smaller scale as well. They researched the accelerations
of a phone in a car to measure the jittering of speed, and being unable to
maintain a steady speed, and also the ability to drive normal in a sense that
the driver doesn’t swerve. Which the latter they called abnormal curvilinear
behavior. They state that with the method they used the never had any
false negatives on both criteria of driving. And the curvilinear criteria they
had only 0.49% false positives, and with the speed maintenance a percentage
of 2.39%. Also some of the error they suggest, might come from turns that
sway the phone to much, and thus bump it a against something. The paper
suggest that using GPS in combination with this accelerometer technology
could further support the errors in confirming whether or not is was a corner,
in which the system could more likely expect false data.

9

2.4 Summary
Many of these approaches use a smartphone or other devices that can track
a users way of interacting and identifying a certain state or uniqueness of
interacting. In the tapsense project we see that they used prompts alongside
data to learn the application how to interpret certain data. This seems like
a very good lead into what we can and should do in our area of research.
If emotional states can be concluded from typing data it can probably also
be done with others states of mind. Depressive states have also be linked to
alcohol use and vice versa [2]. We could use this to help analyzing the data.

If we can use an approach similar to the drunk driving project, but on
a smaller scale, we can quite possibly back our other data findings up with
additional data to support them. Assumptions for now can be made that
when walking while intoxicated, some accelerating data is going to change in
contrast to sober movements.

While each project discussed uses a different approach the combined data
might help us to declare a more detailed metric to define intoxication levels.
Since a phone hosts so many different ways of measuring data about a user
we should look into the multiple options and combine these. If we look at
the numbers the projects claim to have it seems that a combination of the
approaches should give us a pretty clear indication of the intoxication levels
of a user.

10

Chapter 3

Method

The goal of this project is to gather information about a user, in a way that is
as unobtrusive as possible, in order find indicators that might suggest intox-
ication. In this project we specifically focus on the identification of alcohol
intoxication. This includes the collection of the user’s phone usage and gath-
ering as much data as possible, within the regulations. What is relevant for
identifying the intoxication can be very elusive, so the data gathered would
be kept as broad as possible. This means nothing should be considered ir-
relevant until research might suggest otherwise. Doing so allows for a more
accurate model for deciding whether a user is intoxicated. When deciding,
based on the data that is available, it should be able to at least detect a slight
difference in data, but also there should be caution in claiming the user to be
intoxicated. The paper about TapSense suggests that a technology approach
like theirs, might as well be effective in another field of cognitive problems [6].
Therefore the base of our approach is in the most fundamental part inspired
on it. Since most people nowadays own a smartphone, this technology shall
be used to track data of the user. While the TapSense was mainly focused on
typing data, this project is also considering other factors that could possibly
give a more detailed insight in what the user might do in different states of
mind.

3.1 Design
This section will describe the requirements of the system and the design
choices that were made.

11

3.1.1 Requirements

The project goal is to gather as much information as possible in order to come
to a conclusion which factors are relevant for determining. Since there are a
lot of factors and sensors are available, a MoSCoW analysis was done to de-
fine what the project has to do, and what it should be considered out of scope.
In the MoSCoW analysis the following aspects are considered. Must have:
The must haves are the minimum components and things the project should
have or do. Without these aspects and components the project could be con-
sidered undeliverable. Should have: These are the components that would be
described as desirable but the application should be able to achieve its goal.
These components will be left out when the project runs out of time and
will not be able to implement these.Could have: The requirements that are
labeled as could have, are desirable for the project but are merely to improve
the project in the sense of user experience or usability. The Won’t haves :
These are the components that are valued as the least important and will for
this project be left out of the scope. These can later, or in another iteration
still be implemented to further supplement the previously developed project.

Must have: This project focuses on the use of mobile equipment for
data tracking. Therefore the application that is developed must run on at
the most common devices. This includes the latest smartphones and smart
watches. The application must at least be able to analyze the text a user
is typing, but must not be too obtrusive while doing so. This means that
the data collection should be done in the background while the user is able
to use the phone in a way he or she wants to. While this application is
mainly aimed at a research perspective, the data that is collected should
be as anonymous as possible, and must not disclose too much information
about the user. This means that, while typing data is gathered, the actual
characters that are entered should not be visible to the researchers, as this
will probably make a user feel uncomfortable. When the data has been col-
lected on the phone locally, the data is not easily accessible to researchers.
Therefore the data must be synchronized to a server, on which a researcher
can access the data that is needed for analysis. The data should be in a clear
and easy structure and will not need much explanation for it to be under-
stood by a researcher. Once the application is running on a system, no addi-
tional steps should be taken in order for the application to keep doing its job.

Should have: The application in this project should have a solid frame
of collecting data. This means that while a user might type more at one mo-

12

ment, he or she might type less in another. Therefore a user should have a
clear incentive to make data available to be collected. This could be a simple
question to answer or just a random text box every once in a while. Besides
typing data the application should also include other data. This data can
be accelerometer data, GPS data, and screen touch data. When it’s possible
to link this to the typing data, that data is suspected to help identify intoxica-
tion.

Could have: The system could have the possibility to also check word
correctness. This would mean that if a word is spelled wrong, it could detect
the fact that it was. Also when a user taps a word suggestion, it could make
sense to see if a user typed a word using a suggested word. Also a feature
like a game could eventually be implemented, so the user has more incentive
to generate more data to be analyzed.

Will not have: While this project is aimed to be a setup towards machine
learning applications, this project will not implement a way to do this. The
project will collect the data that could make a machine learn, but it will not
actually do it. The application will not include voice commands and speech
recognition as it feels like that would hurt privacy way more than the data
can ever satisfy, even if it perfectly would do its intended job.

13

3.2 Design choices
When designing the project the factors mentioned in section 3.1.1 were taken
in consideration. The application will track a user’s typing habits and keep
data that could be relevant for researchers in developing a tool that can
potentially identify alcohol intoxication. The user will only have to give a
rating about how relevant the data is to the subject that will be studied. In
this case that would be a question asking how intoxicated the user felt when
the data was recorded. The data collection will be fully unobtrusive and will
not necessarily involve any further user interaction or configuration on the
researchers’ side. This will also ensure data consistency because data will
not be influenced by bad configurations. The tracked data will for now exist
of

• Keystroke logging and analysis

• Acceleration and rotation logging

• Application sessions and connected data

The next section will describe in more detail what data will be used and how
it will be used. A way to access data in a more usable way will be described
in the sessions section 3.2.3.

3.2.1 Keystroke logging

When logging a users keystrokes there are different ways to approach the
data tracking and to evaluate it. For example when a user types data into
a textbox using the keyboard this is done by pressing several keys on the
keyboard. The meaning of the individual characters typed into the field by
themselves might hold very little data, besides the time they were typed and
the specific character it was. When analysis on a character per character
basis this will most likely fail to produce any useful data. Therefore this
approach is considered useless for this project.

When we start looking at two characters at a time we can already extract
more data since there will be a difference between the two of them. Where
before we could only consider the character and its time, we can now compare
the two times of typing and calculate how much time has elapsed between
the two of them. This will define a type speed between the two of them,
which could be a factor that is influenced by alcohol intoxication. Also by
comparing the previous and current character a conclusion can be made of
what character is entered. This is useful in the case of having pressed a

14

backspace or a space, since a backspace is not an actual character itself but
a modification to the text that has already been typed. Because the data
framework that will be used 3.3.1, does not support direct key logging, we
will have to use this approach for finding out if a backspace has been used. In
this project we expect that based on the TapSense results the backspaces are
a strong indicator of mood [6] and will probably also be affected by alcohol
intoxication. This approach will be the main starting point for our analysis.

When comparing two characters more data becomes available to collect,
but that still isn’t covering all the data that can be collected from typing
data. When we start collecting data over multiple characters we can also see
the data that can be connected to words. When analyzing words, we can
now also try to provide more context as to what is being typed how. This
means we can go for a word per word analysis, which can include the typing
speed per word and the correctness of the word. For example when typing
a word, a person can correct the word by using a backspace and correcting
it. This word will then be marked as a corrected/fixed word. If we can get
access to the user’s suggested words that are stored in the user’s phone, we
can check if the word was actually spelled correctly.

The context in which these words are used can provide data about the
sentences and stories a user might have typed. This would be a sentence
analysis which is most likely more privacy invading than the data needed has
to be. Analysis of context like this will not be part of the scope. We probably
also do not need it, because a per word analysis should already give a lot of
data that is relevant.

What is a word

When defining what a word is based on characters it should be considered
what for this project we define as a word. And in this project we consider a
word a series of characters encapsulated by 2 spaces or line end or starts. This
is because several cases will arise when looking at 2 character at a time and
when a word is finished. In the case there has only be typed one character
we will not consider this a word because very few data can be extracted from
this. The possible scenarios for a word in our way of tracking key data are
the following

• A new word in an empty text box

• A word after another word

• A word that is finished because the application was closed

• A deleted word

15

• A fixed word

New word: A new word is a case where no previous data was present in a
text box. This means the first character that was entered should in almost
every case be a word, but does not yet say anything about the typing data.
The word is formed when a space is detected and no other space was recorded
before that space.

Another word: When the first word has been recorded as being a word,
other words can still be entered. These words will be identified in the same
way as the new words. This word will again only be a word after the previous
character was not a space.

Application closed word: When a user is typing a word and sends a
message for example, it will not yet be registered as a word, because no space
would have been detected. Therefore when the user closes the application it
is currently typing in, the last registered key data should be saying that it
was a word ending. Unless the last character typed was a space.

Deleted word: A deleted word should also be tracked, otherwise we would
get a much bigger word count than an actual message might contain. Also
the amount of deleted words can be a factor in determining when a user
was intoxicated. Therefore when a word is deleted the currently inserted
backspace character gets flagged as -1 word. This is because it is complicated
to change the character that had previously made a word, to be flagged as
not a word anymore. When the words for a session get calculated at the
end of a typing session will still add up to the actual amount of words that
were typed in the session. Also by checking which characters were flagged
as -1 we can see how many words were deleted in a session. The conditions
for a word to be flagged as deleted are when: the current entered character
is flagged as being a backspace, has the value of space, and the previously
entered character was not a space. Or when the current character is flagged
as a backspace and the current text that was found in a text box is 0, and
the previous text was larger than zero but not a space. This sounds a bit
vague for now but will become clear when reading the code implementation.
In which we look at what data is tracked and how it is saved.

Fixed word: A fixed word has the same conditions as a deleted word. The
check for a fixed word is different from a deleted word in the sense that it does
not have to be checked if the current text box is empty, because that would

16

mean its already a deleted word, and that the previously entered character
has to be a non space character instead of being a space.

Smiley: A smiley in this project also considered as a word. When a word
is formed the application has to check if the word was in a predefined list
of smileys. Each smiley is put in a category that could related to a certain
mood. For this project the smileys have been divided into 5 categories, which
are:

1. Happy smileys: ":)", ":-)", "=)"

2. Super happy smileys: ":D", ":-D", "=D"

3. Silly smileys: ":P", ":-P", "=P", "xD"

4. Sad smileys: ":(", ":-(", "=(", ":’(", ":’-(", "=’("

5. Love smileys: "<3"

Summary: While the process of making words out of single characters is
a relatively complicated process. It will likely be relevant, as the data of
how many words are typed, fixed, and deleted gives more context to why a
backspace or a space was used.

3.2.2 Acceleration and Rotation logging

In order to see if movements of the phone are relevant in defining if a user
is intoxicated, acceleration and rotation of the phone are also used in the
data collection. On a mobile device usually several sensors are available to
track the phone’s movements, and thus how a user is using his or her phone.
The collection of data will be done on the background and will not impact
the user at all. Although the application is constantly tracking the data,
it is quite hard to know what happened when changes in data are present,
therefore we for now only use the acceleration/rotation data that is collected
during typing. This data will be coupled and simplified in a session. When
we have defined what a session is we will know what is happening during the
data changes, and we can then rate the data to a certain level of intoxication.

3.2.3 Sessions

In order for the application and researchers to make sense of the amount of
data that is accessible, we will define a frame in which data is relevant to

17

a certain level of intoxication. This frame is the data that is collected in
each typing session. The sessions we will create, will be the main connecting
component between a time frame and the collected data in it. Because the
collected data individually is not connected to anything related to intoxica-
tion, the session will be rated by the user, based on how intoxicated he or
she feels at that moment. This might be subjective for a user, but against
the user’s own 0 rated data, the changes can still be detected. This means
that we are looking for changes in data between sessions that were rated 0,
and sessions that had a higher rating.

Session definition: The sessions we define for our application are, when
a user switches from one application to another, in which the user has also
provided the application with enough typing data. This is to prevent the
session data clogging with data that probably will not help the research, and
to prevent the user from having to rate too many sessions.

Session data: The data the session holds, will be the typing data and ac-
celeration/rotation data. The amount of words and the individual character
data will be used to save data about average typing speed, and average typ-
ing speed per word. The session will also be tracking in what application the
typing and movement will be done, and how long the application/session has
been opened. Smiley count, and a smiley string will also be tracked. The
smiley string will describe what smileys are present in a session, and how
many. This will be in the format:

• {smileytype}:{smileytypeamount};

After each semicolon another part will be added in the same format, for each
smiley type present.

Rating a session: When a new session is created the user will get a prompt
with a slider, to give the session a rating about his or her intoxication level.
When a session has not been rated it will either be rated based the previous
rating the user gave, or with a flag indicating that the session has not been
rated.

3.3 Implementation
For developing the application, the Android 1 platform was used. Android
is a popular operating system primarily developed to run on mobile devices

1see: https://www.android.com

18

including smartphones and tablets. Applications that are developed for an-
droid make use of the Android Software Development Kit or short SDK.
Nowadays at least two languages can be used that are supported by Google
who is the main developer of Android. A newer language Kotlin 2 is sup-
ported natively, but for this project has been decided on the use of Java.
Android Studio 3.1.2 has been used to develop the application. The collec-
tion of sensor data on the smartphone and synchronizing the collected data
to a server/dashboard will be done using AWARE3.

3.3.1 The AWARE framework

AWARE framework is a framework that makes sensors on a phone easy to use,
and to easily collect the data from them. AWARE is available to everyone
under the Apache Software License 2.0. The framework uses a client/server
approach in which researchers can run their own data servers, and users can
then join a study with the AWARE application. The framework can log data
of several sensors and components which include

• Accelerometers

• Application data

• Keyboard data

• Rotation data

• Experience Sampling Methods (ESM)

Only the sensors and components used in this project are listed in this list
but it has many more to be used.

The framework is available on android and on iOS but has limitations
on the iOS systems. This is one of the main reason the application has
been developed for an Android system. Especially because the keyboard
sensor is only available for Android. The AWARE framework can either be
used as an application that runs plug-ins or be used as a foundation for an
standalone application. In this project is chosen to develop a plug-in instead
of a standalone application. The two reasons for this are the simplicity of
how a plug-in can be installed, and because the user has more control over
what happens on his or her phone.

2see: https://kotlinlang.org/
3see: http://www.awareframework.com/

19

When the user joins a study, the data that is collected on the phone is
periodically synchronized to a server environment. On this server environ-
ment researchers can easily access the collected data and make visualizations
of the data with charts and diagrams. The way the AWARE framework
works is illustrated in figure 3.3.1. To summarize the workings of the frame-
work, these are the steps of the AWARE process. Step 1) In the first step
researchers will create a new study on the server dashboard, where they can
add the sensors and custom plug-ins they would like to use for their study.
They will have to give a title and description for the study, so the users will
be able see what kind of study they are participating in. Step 2) The next
step is for the users to install the AWARE core application and join a study
by scanning a QR code. When joining a study the AWARE application will
ask the user to install the plug-ins needed for the study. When installed the
plug-in will ask for the permissions it needs in order for the plug-in to be able
to do it’s job. When this is done the user will have to tap the "SIGN UP"
button, that will now be enabled. The user will now be joined in the study.
Step 3) As soon as the user has joined the study data collection has started
and the data will be stored on the phone. Step 4) The AWARE application
will periodically synchronize the collected data to the corresponding study
on the server where the data will be stored in a MySQL database. Step 5)
The researchers can now use the data for analysis and research. The core
functionality of AWARE allows researchers to send broadcasts to the appli-
cation on the users’ phones. These can either trigger a force sync, or other
messages. It is also possible to send ESM’s or configurations to the AWARE
application. The AWARE application on the users phone can then react to
these messages, in order to execute parts of code, or sending back answers
to ESMs. The ESMs will be further discussed in the ESM section 3.3.1.

The AWARE application

To give some more context this section will explain a bit more about what the
actual application does and looks like. And what the relevant components
to our project are doing.

The core application screens The core application that will be install
on the users’ phone will has several screens that will interface the application.
The first screen the user will see is the sensor screen which is show in figure
3.2. This screen contains the core sensors that AWARE has available for data
collection. In this screen, the sensors can be selected, which will then open
the corresponding sensor’s settings. In the settings screen you will be given
the options for the sensor.

20

Figure 3.1: AWARE framework workflow

In the setting screen shown in figure 3.3 the settings for the application
screen are show. This sensor also hosts the keyboard setting which we need
to develop our plug-in.

Figure 3.2: Sensor screen Figure 3.3: Sensor settings

In the top navigation of the AWARE application there is a combination
of icons possible, which are shown in figure 3.4. The options marked as 1

21

and 2 are not available when no study has been joined yet. When pressing
the 3rd option android will open AWARE’s QR scanning screen which is
shown in figure 3.5. When scanning a QR code that is available on the
AWARE dashboard, the application will open the "join study" screen of the
corresponding study, of which an example is shown in figure 3.6. This screen
will show a list of all additional plug-ins needed to join the study. These will
then ask for the needed permissions in screen 3.7, after which the user will
be able to press the "SIGN UP" button on the bottom of the screen, to join
the study.

When the study has been joined action buttons 1 and 2 will be shown in
the top bar of the AWARE application. Option 1 will bring the user back to
the join study screen again, which will now show the option to leave the study
when the user wants to. When conducting a study participants should feel
they are in control of their privacy. Option 2 forces the data that has locally
been collected on the phone, to be synchronized with the server. This can
be useful when data from a certain phone needs to be updated to the server.
On the dashboard a researcher can also force the data to be synchronized be
sending a broadcast message to the system.

The final screen discussed in this section is the stream tab. The stream
tab hosts an overview of all added plug-ins that are currently running. In this
case, it will be a view in which our plug-in will display some data to the user,
so he or she can check if data is collected or not. The stream screen is shown
in figure 3.8. To provide some more information about several components
that are used in the plug-in, a description of them will be given in the next
few sections.

Figure 3.4: Available icons

22

Figure 3.5: Joining a study Figure 3.6: Install plug-ins

Figure 3.7: Permission check Figure 3.8: Context card

23

Keyboard sensor The keyboard sensor is one of the main components
that is used in the development of this project. When the sensor is turned
on, it collects data about what a users have been typing into text boxes.
A user needs to have given permission for this to the android system, and
has to enable androids accessibility services for the AWARE application.
This is because with standard settings, android does not allow other appli-
cations to access what is typed into these boxes. However android made it
possible for developers and users to make text in these boxes bigger, and
develop applications that can help a user to make reading easier, or other
applications that can help a user to make certain features more accessible
for them. Since this is implemented this way by android, AWARE can use
this data to track the keyboard data. Passwords will not be shown by the
android system, which also helps us make a more privacy safe application.
The way data is stored on the phone by AWARE is shown in figure 3.9. Some
example data is shown in figure 3.10. Note that the current text column has
the current text surrounded by brackets. Later on in developing the appli-
cation we have to take care of how the data is saved. Whenever a new entry
is added to the data table on the phone, AWARE sends out a broadcast
message with the flag

Keyboard.ACTION_AWARE_KEYBOARD.

We can then listen to this broadcast message, to see that new data was added
to the keyboard data. More about how we use this data to get the relevant
data will be discussed in the code implementation section 3.4

Figure 3.9: SQL table for keyboard data

24

Figure 3.10: Data from keyboard data

Application sensor The application sensor is the sensor that allows us
to see what applications are opened on the system. The plug-in needs this
information to create the sessions discussed earlier in section 3.2.3. When
the Android system brings forward a new application, a new row of data
will be added to the application foreground data table. The structure of
the application foreground data table is show in figure 3.11 and example
data is provided in figure 3.12. When new data is added to the application
foreground table a broadcast with the flag

Applications.ACTION_AWARE_APPLICATIONS_FOREGROUND

will be sent to the system. We will need to listen to this broadcast to start
our data processing.

Figure 3.11: SQL table for application data

Figure 3.12: Data from application data

25

Acceleration and rotation sensors The acceleration and rotation sen-
sors track data of the accelerations and rotations that are made with the
phone. While the interpretation of this data might be a little bit more tricky,
for this project we are merely interested in the changes of data when compar-
ing sober measurements to intoxicated measurements for each session. Again
a structure of the data is show in figure 3.13 and figure 3.14 for the rota-
tion. The columns with the name "double_values_0", "double_values_1",
"double_values_2", correspond to the X,Y and Z axis of their corresponding
measurement. The double_values_3 column on the rotation data table is
an optional value that some Android systems have, which will not be used
in the development of our plug-in. In figure 3.17 the orientation axis of the
accelerometer and rotation meter are displayed.

Figure 3.13: SQL table for accelerometer data

Figure 3.14: SQL table for rotation data

Figure 3.15: Data from rotation data

26

Figure 3.16: Data from rotation data

Figure 3.17: Rotation and acceleration axis on the android device

ESMs To connect the data of the application to a certain level of intoxica-
tion, the AWARE framework lets the application make use of the Experience
Sampling method in short ESM. This allows the application and researchers
ask the user questions in several ways. The AWARE framework standard
allows the following types of ESMs

• Free text ESM, used for asking open question like personal opinions.

• Radio box ESM, used to ask to select one option out of a list of options.

• Check box ESM, used to ask the user to select multiple options.

• Likert ESM, used to ask a user to rate some thing with a 0 to 5 or 7
star rating.

• Quick ESM, typically used to ask for a simple yes/no answer.

• Numeric ESM, used to ask for numeric input.

27

• Scale ESM, used to ask for a rating based on a scale slider.

In this project the application will use a Scale ESM to ask the user to
rate his or her level of intoxication, in order to rate the typing sessions. The
begin, end and increment values of the ESM can easily be set and labeled.
The data table of the scale ESMs is shown in figure 3.18 and example data
is shown in figure 3.19.

28

The creation of a table in the JAVA code is.

try {
ESMFactory factory = new ESMFactory();
//define ESM question
ESM_Scale esmScale = new ESM_Scale();
esmScale.setScaleMax(10)
.setScaleMin(0)
.setScaleStart(0)
.setScaleMaxLabel("Sober")
.setScaleMinLabel("Drunk")
.setScaleStep(1)
.setTitle("Intoxication rating")
.setInstructions("Please rate your intoxication level")
.setExpirationThreshold(15)
.setSubmitButton("OK");

//add them to the factory
factory.addESM(esmScale);

ESM.queueESM(context, factory.build());
} catch (JSONException e) {

e.printStackTrace();
}

Figure 3.18: SQL table for scale ESM data

Summary These are the components from the AWARE framework that
are used in the project development. The next section is about the actual
use of these components in the application that has been developed along
side the code itself.

29

Figure 3.19: SQL table for scale ESM data

3.4 Developing the plug-in
Based on the requirements and the design of the application, and the restric-
tions the AWARE framework has on developing the project, a certain way
of creating new context data has been imposed. This means that for the
development specific patterns and data flows have been used to create the
plug-in.

As mentioned before in section 3.3.1 the AWARE framework and its com-
ponents send broadcasts to the Android system. When developing the appli-
cation, it can listen to these broadcasts and then execute bits of code. The
Android documentation states that operations should not be more than 10
seconds 4 in the onRecieve of these BroadcastRecievers, but the code this
plug-in will need to use, is relatively simple so this does not impact our way
of handling new data.

3.4.1 plug-in application flow

The way the developed plug-in works, is relying on Android broadcasts.
Changes in collected data of the AWARE framework is communicated through
these broadcasts. This gives us an application that is described in figure 3.20.
A larger version of this diagram can be found in figure 3.29 at the end of this
chapter. The databases in the diagram, are the databases that are collected
on the phone.

4see: https://developer.android.com/reference/android/content/BroadcastReceiver

30

Figure 3.20: Dataflow of the AWARE plug-in

The plug-in can be split into two parts, the first part is the part where
AWARE collects and saves data to device’s local database, and then sends a
broadcast message to the android system. This process has been described
in the previous section.

The second part is where the plug-in analyzes and creates new data, from
the data that AWARE has collected. This part can again be split into 3
processes that operate separate from each other, but will together put the
collected data in the intended data tables. These parts are the individual
listeners to the broadcasts that have been sent by AWARE when inserting
the collected data. The three groups of listeners are the following:

• The KeyboardListener, which listens to changes in keyboard data.

• The ApplicationSwitchListener, which listens to when an application
has been opened.

• The ESMListeners, there are two listeners, one that responds to an-
swered ESM and one that listens to dismissed/canceled ESM responses.

For each listener group, a description will be given about what they do when
they receive the message that they are listening to.

3.4.2 KeyboardListener

The keyboard listener listens to changes in keyboard data. It saves new data
in a new table called plug-in_intoxication_data_table, the data in the table
is shown in figure 3.21. For each character that has been typed a new row is
added with the data. Several cases of what a word is have been discussed in
the what is a word section 3.2.1. The type speed is based on the timestamp
of the currently inserted character and the previous one. The table holds a

31

character column to debug data in the first few phases of test the plug-in, it
is removed when a full scale research is conducted.

Figure 3.21: Character meta data

3.4.3 ApplicationSwitchListener

The application switch listener listens to the broadcast that is emitted when
AWARE saves new data about an application that has been opened on
the Android system. When a new application is opened, the listener will
ask for the timestamps of the current and the previously opened applica-
tion. This will be the time frame of a new session. When a new time
frame is found the application listener will request all entries of the plug-
in_intoxication_data_table between these times. When no more than 0 or
1 rows have been found, it means that no data has been typed in the time
frame, and thus in the application that was opened at that time. Therefore
nothing will be done with these sessions. When the data returned does re-
turn more than 1 character of data, the listener will calculate relevant data
for insertion into the session. This session data will be saved in a table called
plug-in_session_data_table. The data contained in this table is shown in
figure 3.22. Most columns in this table are named after the data it holds but
some need more explanation.

The session_hash is a unique has that is created when inserting the data.
This hash will also be used to query the session table data when inserting
the rating that a user entered when answering the scale ESM. The rating
will then be inserted in the session_intoxication_rating column.

When a new row has been entered in the session table, a scale ESM
will be created, that will be prompted to the user. This ESM will have the
session_hash value of the session as the trigger for the ESM.

32

Figure 3.22: Session data

3.4.4 ESMAnsweredListener & ESMDismissedListener

When a new session has been inserted the SessionListener also created an
ESM for the user to be answered. When the ESM has either been answered or
dismissed/canceled the AWARE broadcasts a corresponding message across
the Android platform.

ESMAnsweredListener This listener is triggered when the user answered
the ESM and pressed the submit button on the prompt. The listener then re-
quests ESM’s data and the session that was associated with the ESM via the
esm_trigger field in the ESM’s data table that AWARE manages. This ses-
sion’s session_intoxication_rating is then updated with the esm_user_answer
field of the ESM’s data.

ESMDismissedListener This listener listens to the ESMs that are either
dismissed or expired. When this happens the listener will query the ESM
data table to find the first answered ESM and uses that answer to update
the associated session in the same way the ESMAnsweredLister does.

33

3.4.5 Summary

When putting all this data together researchers can start analyzing the data
that has been made available through the individual character analysis and
the session data.

3.5 Code implementations
This section will explain the plug-in’s actual implementations discussed in
the previous section, with small code snippets. If a full working of the system
is desired, it is advised took look at the available code and the comments in
it, alongside this report.

3.5.1 The Java classes

The main Java classes used in this development of this plug-in are the fol-
lowing.

• Plugin.java: this is the main class that AWARE uses as a basis of the
plug-in.

• IntoxicationProvider.java: This class manages the saving and querying
the data related to this plug-in.

• ContextCard.java: This is the class that manages the data that is
shown in the stream view of the AWARE application, it is mainly used
to show that the plug-in is actually running and working.

• TypeSession.java: This is a utility class that allows for easier session
saving.

• MyUtils.java: This class contains a few convenience methods that make
it easier to write consisted and cleaner code.

Plugin.java The Plugin class is the core starting point of an AWARE plug-
in. It hosts the lifecycle callbacks of the plug-in in the Android environment.
It contains the command:

public int onStartCommand(Intent intent, int flags, int startId);

This command is run every 5 minutes by AWARE to ensure the plug-in is still
running. When the permission that are needed for the plug-in are flagged as
PERMISSIONS_OK the application can start enabling the several sensors

34

that are needed for the plug-in. The sensors and the corresponding listeners
are initialize with the code snippet shown in 3.23

In the onDestroy method of this class listeners are removed again to avoid
memory leaks. This is shown in snippet 3.24

The plug-in class also contains the definitions of the listeners that are
used in the plug-in as inner classes. These listeners are described in section
3.4 and should be understood by reading the .java files of these classes.

The IntoxicationProvider.java This class manages the saving and query-
ing data the plug-in creates. It creates the database tables and holds all the
information of the table data columns. It also defines what columns should
be returned and saved when querying and inserting data. To avoid having
too much code in this document only smaller snippets of the most critical
parts are shown.

In this class the table names are defined as a public final string, so they
can consistently be used across the multiple classes in this project. This is
also done for the column names of the tables, they are defined in an inner
class of the IntoxicationProvider class. These inner classes also hold content
uri that android uses to request the data via the ContentResolver. The
constants are defined as can be seen in snippet 3.25.

In the onCreate of the provider class certain uris are matched with an id
and datamaps are created to be used when querying data, so the database
knows what columns to request. When querying the data through Android’s
ContentResolver a uri has to be provided so it knows what data to get.
These uris have to match with the uris that are listened to in the Intox-
icationProvider class. When a uri matches a switch block is triggered to
see what data is requested, and then either a projection map is assigned for
querying the data or a custom query is executed to get the sum and averages
of columns. This is shown in code snippet 3.26 Most of the other code in
the IntoxicationProvider is done according to Android’s standards in Con-
tentProviders, so for more information on that it’s easier to look up in the
source files.

The ContextCard class and the TypeSession class are not very compli-
cated and are explained in the source files.

MyUtils.java This class contains a few functions that make clean and
consistent code more easy to write. Because of the importance of some
of these functions, they will briefly be discussed. The first function is the
getIntoxicationTypeSpeedDataForSession, which is defined in snippet 3.27.
This will query the IntoxicationProvider for the sum, average and row count,

35

of the plug-in_intoxication_data_table 3.21 between the start and end time.
This is used for getting the right data when inserting a new session. Some
similar functions are defined to query other data like backspaces word data
and acceleration/rotation as well.

The utility class also contains a function for creating a hash, which now
only uses a timestamp, but for better uniqueness could also be used with
more than just the timestamp. This is the function that creates the hash for
querying back sessions that have their corresponding ESMs answered. The
createIntoxicationESM function is to more quickly and consistently create a
session feedback ESM. This is shown in snippet 3.28

3.5.2 Summary

The code implementation as described above describes the plug-in as it was
made only partly. Reading the code inside a popular code environment is
highly recommended to fully understand what is happening. In combination
with chapter 3 of this report everything will be made clear. Full under-
standing of what is happening inside the plug-in is not needed for the use in
research project as it is developed as an "as is" plug-in for AWARE.

36

Figure 3.23: Plugin.java listener initialization
//Initialize our plug-in’s settings
Aware.setSetting(this, Settings.STATUS_plug-in_TEMPLATE, true);
//Initialize the accelerometer.
Aware.setSetting(this, Aware_Preferences.STATUS_ACCELEROMETER,

true);
Aware.startAccelerometer(this);
//Send broadcasts so the data can be read to be displayed at the

context card/stream view.
Accelerometer.setSensorObserver(new

Accelerometer.AWARESensorObserver() {
@Override
public void onAccelerometerChanged(ContentValues contentValues) {

sendBroadcast(new
Intent("ACCELERATION_DATA").putExtra("data",
contentValues));

}
});
Aware.setSetting(this, Aware_Preferences.STATUS_ROTATION, true);
Aware.startRotation(this);
Rotation.setSensorObserver(new Rotation.AWARESensorObserver() {

@Override
public void onRotationChanged(ContentValues contentValues) {

sendBroadcast(new Intent("ROTATION_DATA").putExtra("data",
contentValues));

}
});
//Start the keyboard data logging and Keyboard listener.
Aware.startKeyboard(this);
Aware.setSetting(this, Aware_Preferences.STATUS_KEYBOARD, true);
IntentFilter filter = new IntentFilter();
filter.addAction(Keyboard.ACTION_AWARE_KEYBOARD);
registerReceiver(keyboardListener, filter);
//Start and register ESM listeners
Aware.setSetting(this, Aware_Preferences.STATUS_ESM, true);
IntentFilter esmFilter = new IntentFilter();
esmFilter.addAction(ESM.ACTION_AWARE_ESM_ANSWERED);
registerReceiver(esmAnsweredListener, esmFilter);
IntentFilter esmDismissFilter = new IntentFilter();
esmDismissFilter.addAction(ESM.ACTION_AWARE_ESM_DISMISSED);
esmDismissFilter.addAction(ESM.ACTION_AWARE_ESM_EXPIRED);
registerReceiver(esmDismissedListener, esmDismissFilter);
//Start application logging and set listener.
Aware.setSetting(this, Aware_Preferences.STATUS_APPLICATIONS, true);
IntentFilter applicationFilter = new IntentFilter();
applicationFilter.addAction(Applications.ACTION_AWARE_APPLICATIONS_FOREGROUND);
registerReceiver(applicationSwitchListener, applicationFilter);

37

Figure 3.24: Plugin.java onDestroy method
super.onDestroy();
//Turn off the sync-adapter if part of a study
if (Aware.isStudy(this) &&

(getApplicationContext().getPackageName().equalsIgnoreCase("com.aware.phone")
||
getApplicationContext().getResources().getBoolean(R.bool.standalone)))
{
ContentResolver.removePeriodicSync(

Aware.getAWAREAccount(this),
Provider.getAuthority(this),
Bundle.EMPTY

);
}
//Unregister the keyboard listener to prevent memory leaks.
if (keyboardListener != null)

unregisterReceiver(keyboardListener);
if (applicationSwitchListener != null)

unregisterReceiver(applicationSwitchListener);
if (esmAnsweredListener != null)

unregisterReceiver(esmAnsweredListener);
if (esmDismissedListener != null) {

unregisterReceiver(esmDismissedListener);
}
Aware.setSetting(this, Settings.STATUS_plug-in_TEMPLATE, false);
//Stop AWARE instance in plug-in
Aware.stopAWARE(this);

38

Figure 3.25: The intoxication provider constants
public static String INTOXICATION_TABLE_NAME =

"plug-in_intoxication_data_table";
public static String SESSION_TABLE_NAME =

"plug-in_session_data_table";
public static String DATABASE_NAME = "plug-in_intoxication_data.db";
public static final String[] DATABASE_TABLES =

{INTOXICATION_TABLE_NAME, SESSION_TABLE_NAME};

public static final class Session_Data implements AWAREColumns {
public static final Uri CONTENT_URI = Uri.parse("content://" +

AUTHORITY + "/" + SESSION_TABLE_NAME);
public static final String APPLICATION_NAME = "application_name";
public static final String SESSION_HASH = "session_hash";
public static final String AVERAGE_TYPE_SPEED =

"double_average_type_speed";
}

39

Figure 3.26: IntoxicationProvider onCreate and onQuery methods
//Added in the onCreate
sUriMatcher.addURI(AUTHORITY, DATABASE_TABLES[0] + "/calculated/" +

Intoxication_Keyboard_Data.TYPE_SPEED, CALCULATED_SPEED_DATA);

//Called in onQuery
switch (sUriMatcher.match(uri)) {

case INTOXICATION_KEYBOARD_DATA:
//Here a projection map is set to the query builder.

qb.setTables(DATABASE_TABLES[0]);
qb.setProjectionMap(intoxicationTypeDataMap);
break;

case SESSION_DATA:
qb.setTables(DATABASE_TABLES[1]);
qb.setProjectionMap(sessionDataMap);
break;

/*This query selects speed data from the
plug-in_intoxication_data_table

* between two timestamps. In this particular case speed above
a certain threshold are ignored.

* This is because the first character typed after a long wait
time is most likely a wait that was not inbetween word,
and there is no type speed for each first character of a
message.

*/
case CALCULATED_SPEED_DATA:

cursor = databaseHelper.getReadableDatabase().rawQuery("" +
"SELECT SUM(" + Intoxication_Keyboard_Data.TYPE_SPEED

+ "), " +
"AVG(" + Intoxication_Keyboard_Data.TYPE_SPEED + "),"

+
"COUNT(" + AWAREColumns._ID + ") " +
"FROM " +

IntoxicationProvider.INTOXICATION_TABLE_NAME +
" WHERE (" + AWAREColumns.TIMESTAMP + " BETWEEN ? AND

?) AND " + Intoxication_Keyboard_Data.TYPE_SPEED
+ " < 3000", selectionArgs);

break;
}

40

Figure 3.27: MyUtils getIntoxicationTypeSpeedDataForSession method
public static Cursor getIntoxicationTypeSpeedDataForSession(Context

context, long start, long end) {
return context.getContentResolver().query(
Uri.parse(IntoxicationProvider.Intoxication_Keyboard_Data.CONTENT_URI

+ "/calculated/" +
IntoxicationProvider.Intoxication_Keyboard_Data.TYPE_SPEED),

null,
null,
new String[]{String.valueOf(start), String.valueOf(end)},
null

);
}

41

Figure 3.28: MyUtils createIntoxicationESM method
public static void createIntoxicationESM(Context context, String

sessionHook) throws JSONException {
//currenttime is initialized high so if there is no previous ESM

record the check for the ESM interval time will always fail
and thus never show an ESM.

long currentEsmTime = 999999999;
long previousEsmTime = 0;
Cursor lastEsm =

context.getContentResolver().query(ESM_Provider.ESM_Data.CONTENT_URI,
null,
null, null,
"timestamp DESC LIMIT 1");

if (lastEsm != null && lastEsm.moveToFirst()) {
previousEsmTime =

lastEsm.getLong(lastEsm.getColumnIndex("timestamp"));
currentEsmTime = System.currentTimeMillis();

}
//break if last esm was to close to previous one.
if ((currentEsmTime - previousEsmTime) < 2000) {

return;
}
ESMFactory factory = new ESMFactory();
ESM_Scale scaleESM = new ESM_Scale();
scaleESM.setTitle(context.getString(R.string.intoxication_slider_title));
scaleESM.setInstructions(context.getString(R.string.intoxication_slider_instructions));
scaleESM.setScaleMax(10);
scaleESM.setScaleStep(1);
scaleESM.setScaleMin(0);
scaleESM.setScaleStart(0);
scaleESM.setExpirationThreshold(15);
scaleESM.setScaleMinLabel(context.getString(R.string.scale_min_label));
scaleESM.setScaleMaxLabel(context.getString(R.string.scale_max_label));
scaleESM.setTrigger(sessionHook);
scaleESM.setSubmitButton(context.getString(android.R.string.ok));
factory.addESM(scaleESM);
ESM.queueESM(context, factory.build());

}

42

F
ig
ur
e
3.
29

:
D
at
afl

ow
of

th
e
AW

A
R
E

pl
ug

-in

43

Chapter 4

Evaluation

When testing the application users were asked to install the aware application
on their phones. Since google does not allow applications anymore that might
have malicious use intentions, the AWARE application could not anymore
be installed through the Google Play store. This is because the application
is allowed track the user’s input of text through the accessibility services of
the Android system, as is mentioned before in section 3.3.1. While these
features should not be seen as a security issue in this case, the general use of
the accessibility features in an application has to be defended and explained
when uploading to the Play store. Therefore the developers at the time had
decided to distribute the AWARE application through a different platform
that they maintained themselves. From this platform the application was
downloaded to our own devices and installed.

4.1 Experimental setup
When the plug-in was tested and used by our test users the same version of
the AWARE application was used. In this case that was version

• AWARE version : 4.0.708.master

For convenience of our test users 2 methods of distribution were used that
are commonly used by people with smartphones. The application was either
installed by downloading the AWARE application with a Dropbox 1 down-
load link, or by downloading it as an attachment through Email. When users
installed the application they were asked to allow all permissions that appli-
cation was asking for. In addition to this, the application needs accessibility
services to be enabled, in order for the aware application to work. These

1https://www.dropbox.com/

44

features have been discussed in section 3.3.1. A study using the intoxication
plug-in was then joined using the QR code scanner of the application. If
the plug-in needed for this application had not been installed yet, it was be
downloaded and installed through the study joining screen.

When all of this had been done a check was made to be sure the right
sensors were enabled on the application. Sometimes because the application
didn’t have accessibility features on, the keyboard sensor of the application
would not be enabled and thus had to be enabled manually. A check was
done to see if all needed sensors were enabled. Checking the sensors would
include turning on the, acceleration sensor, linear acceleration sensor, the
application sensor, and in this menu also the keyboard sensor. When these
sensors are selected on the dashboard on the server, they should be turned
on automatically, but it helps to check if the sensors are actually turned on
in the application. In figure 4.1 is shown what the dashboard should look like
when the study is set up. When the application is running as it is supposed
to, on the stream screen, it will display a value showing the last recorded
type speed (if any data was typed since the plug-in was running) and the live
values of the accelerometer.

Figure 4.1: Enabled sensors on the dashboard

The test group The group of people used to test the application and
gather data with consists of 5 people aged between 18 and 30 years. The
group consisted of 3 male users and 2 female. All of the users were students
at the time of conducting the test. All of the users had prior experience with

45

drinking, and smart phones. When analyzing the collected data, gender and
age should not matter because different people might already have different
typing patterns than others. Therefore it is mostly relevant to know how each
user individually types sober, as opposed to how he or she types intoxicated.
However when testing the application and how it is perceived by different
age groups, it might make a difference to include age and gender.

The setup When testing the application, an environment was used that
might feel familiar to most of the users. This means that the tests were
not conducted in an environment where a user would not normally drink.
These locations where either at home, a bar or another social event. When
testing the plug-in, beers or other alcoholic beverages were consumed, but
they were never motivated or forced to drink anything. Users were voluntary
cooperating in drinking, and had their own decision of the speed in which
they would like to drink. The duration of a session was never defined, as in
real use cases of the plug-in, a duration is usually irrelevant as well.

Besides the sessions that were planned with people, the application has
also been running for longer times on each phone it was installed. This is
because this way we could collect more data and thus have a better insight
of what the application was doing. Because a rating of intoxication is always
added to a type session, not knowing when a person was drinking should not
influence data collection. Of course when people deliberately try to ruin the
data this can not be said, but in a serious study we can assume this would
not be an issue.

4.2 Evaluation
In this section an evaluation is given based on how users perceived the plug-
in when using it on their own phones. The questions that were asked in the
questionnaire were the following:

• Do you think you type different when you are intoxicated by alcohol?

• Do you think an application that uses typing analysis would be able to
track intoxication signs?

• Do you feel like this application respects your privacy?

These questions were answered with the options, yes, no, and maybe.
In addition to these questions a SUS 2 usability questionnaire was added

as well. This questionnaire aims to identify the usability of the developed
2https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html

46

plug-in, and can be used for other systems too. The full name of the test
is System Usability Scale. It gives a global view of subjective assessments
of usability. The users are given 10 questions that have to be rated 1 to
5, where 1 is strongly disagree with the statement, and 5 strongly agree
with the statement. A score is then calculated as following. First sum the
score contributions from each item. Each item’s score contribution will range
from 0 to 4. For items 1, 3, 5, 7,and 9 the score contribution is the scale
position minus 1. For items 2, 4, 6, 8 and 10, the contribution is 5 minus the
scale position. Multiply the sum of the scores by 2.5 to obtain the overall
value of SU. SUS scores have a range of 0 to 100. Scores above 68 can be
considered above average, and anything below can be seen as below average.
It is suggested that scores are normalized and then looked at percentiles, to
make sure the scoring makes sense as to what it is trying to explain. In
this case that would be the usability of the plug-in. The SUS questionnaire
consists of the following questions:

1. I think that I would like to use this system frequently

2. I found the system unnecessarily complex

3. I thought the system was easy to use

4. I think that I would need the support of a technical person to be able
to use this system

5. I found the various functions in this system were well integrated

6. I thought there was too much inconsistency in this system

7. I would imagine that most people would learn to use this system very
quickly

8. I found the system very cumbersome to use

9. I felt very confident using the system

10. I needed to learn a lot of things before I could get going with this
system

Because sometimes it is hard to predict where users might have problem
with in an application that runs in the background an open question was
added to ask the users for any feedback they might have with the application.
The question was formulated as following:

47

• What would you like to say about the system that could be relevant to
evaluating the system?

The questionnaire was conducted through an online platform, so users could
do it anytime they liked.

4.3 Results
In this section we show some of the results that came out of the tests that
were conducted. Two aspects are covered in the tests. In the first part we
discuss the usability of the application, and the other part we show the results
of the data that is collected, and if the data complies with what we wanted
to achieve.

4.3.1 Usability evaluation

The usability questionnaire explains us more about how the application was
perceived by the users. This is a subjective measure of each user’s experi-
ence with the application, its intended use. Results of the first part of the
questionnaire are shown in figure 4.2

As can be seen in the first chart 4.3, most people feel like they type
differently when they are intoxicated. This is an important factor when
assessing if the approach we used to collect data to alcohol intoxication, is
an appropriate one. It indicates that most people feel like they will type
different based on the level of intoxication. The second chart shown in figure
4.4 seems to support this claim as well. As we suspected, in this project other
people feel that data about typing could possibly be used to detect alcohol
intoxication indicators.

The third chart shown in figure 4.5, gives us an insight about the user’s
sense of privacy invasion. Due to the low amount of testing users, it should
be suggested that 40% of the users saying maybe, might be a possible indi-
cation that users are not clear about what exactly is being tracked. When
assessing the issue of privacy, this data should be taken in consideration with
importance. In the answers to the open question that was added to the ques-
tionnaire was mentioned: I didn’t really know what happened with messages
and how my privacy wouldn’t be infiltrated. I would like to know more about
that in the future. This should definitely be taken into consideration, be-
cause it suggests unclarity of how data is processed by the application. This
is likely not because the data is not respected, but it seems that users need
some feedback in order to trust that the system is doing what is says it is
doing.

48

Figure 4.2: Questionnaire pie charts

Yes

80%

Maybe

20%

No 0%

Figure 4.3: Do you think you type different when you are intoxicated
by alcohol?

Yes100%No 0%

Figure 4.4: Do you think an application that uses typing analysis
would be able to track intoxication signs?

Yes

60%

Maybe

40%

No 0%

Figure 4.5: Do you feel like this application respects your privacy?

49

The open question asking

What would you like to say about the system that could be relevant to evalu-
ating the system?

was only answered by 3 of the 5 people interviewed about the tested appli-
cation. Some of the users had also been involved in testing earlier versions
in testing so some of the comments could refer to an earlier test version of
the application. The answers are the following:

• "Firstly, sometimes I would get a double amount of notifications, so I
had to answer the question multiple times for just 1 session, which was
annoying/cumbersome. Secondly, I had to rate whenever I closed the
keyboard to be able to see the whole screen. So I got a notification
before I ended my session, which resulted in multiple notifications in a
short amount of time. That also was cumbersome. Lastly, I didn’t re-
ally know what happened with messages and how my privacy wouldn’t
be infiltrated. I would like to know more about that in the future."

• "It’s a work in progress"

• "My phone ran out of memory after installing the application"

Some of the comments made were not foreseen in developing the application,
but they will be mentioned in our discussion to make our conclusions about
the developed plug-in.

The results of the SUS questionnaire gave us an average score of 81,5.
This should mean that our application was usable for the tested group of
people. We expect others in this demographic, to be also able to use the
application. This does mean that, as mentioned before in the section 4.1,
people should know how to use a smartphone in the first place. The results
of the SUS questionnaire are shown in figure 4.6

50

Figure 4.6: SUS questionnaire answers

51

52

53

Based on these answers the scores were calculated as mentioned before.
The descriptives of the scores can be found in figure 4.7 and a corresponding
box plot in figure 4.8. For the small dataset that there is, the data does not
seem to suggest a lot of deviation in what users think about the usability of
the application. No outliers can be seen in the box plot, and score values are
quite close to each other.

Figure 4.7: Descriptives for the SUS scores

54

Figure 4.8: Box plot for the SUS scores

4.3.2 Data collection evaluation

When evaluating the plug-in we should also look at the data that is collected
during the sessions. As the data in this study is merely first step into de-
veloping a machine learning model, we are more interested in what data is
collected and if it looks consistent enough to do data analysis with. As dis-
cussed in chapter 3, data is collected in sessions. The session data that was
collected during the testing moments is shown in figure 4.9. In the table we

Figure 4.9: Example data

see that some values are still shown as being (null), this means these values
are from earlier sessions that did not implement the data field yet. When
the missing field was added to the plug-in, the fields that were not using the
field yet would be given the value of (null). When the field was used, but just
did not contain any data, it would be empty instead. In the 10th column,
one of the accelerometer values is displayed. Some of the acceleration data
fields are 0 while some are not, this is because the sensor data unfortunately

55

is not as accurate all the time, or not tracked at all. This could mean that
the sensor is not always active when the phone is in use. Other than that
the data looks usable at first sight.

Example typing example: As an example of the data that is coming
trough in the session data table, we now show what data was extracted when
typing the sentence:

• Hey everyone, this is a message Thatt_t_ will be recorded :p

A smiley is included as well, to show that the smiley data is also collected.
The _ characters indicate that a backspace was used while typing. The
actual result of typing this character sequence would be:

• Hey everyone, this is a message That will be recorded :p

When the application analyzes this character sequence, the data shown in
figure 4.10 can be found in the session data table. In the table only the
important data is shown, not all data for each axis is shown because they are
not all relevant for the purpose of the example. The most important fields
to notice are the backspace count, total character count, the word count,
and the smiley count, as these can easily be related to the typed character
sequence. As we expect 2 backspaces are tracked, 60 characters including
spaces and backspaces, 11 words including the smiley, and the smiley count
of 1. A rating is also present, which for the purposed of the example was
given the value of 1. As there is one smiley of type 3, the smiley string is
defined as "3:1;". Other data was tracked as we wanted it to be. However
without actually showing how fast was typed, or how the phone was held,
we can only conclude that data for these measures are present, as just the
character sequence in the example does not show the times the characters
were typed. We can assume that the sentence was typed in application were
we spent 31656 milliseconds, and that on average each character was typed
376 milliseconds after each other. Note that the average type speed ignores
long pauses, and is thus has a lower value than the session time divided over
the character count.

56

Figure 4.10: Example analyzed data

57

Chapter 5

Conclusions and future work

5.1 Summary
In this thesis the development of a tool is described, that collects data, that
can lead to the indicators of alcohol intoxication. The project mainly focuses
on smartphones, and how their users are typing on the keyboard. While the
focus is on keyboard data, other sensors have also been tracked, to see if those
could also be an indicator of alcohol intoxication. The main requirement was
to have the data be collected in a way that would not be intrusive to the
users, and that their privacy was respected.

The project was developed as a plug-in for use with the AWARE ap-
plication, using the AWARE framework and its sensors. Installation of the
plug-in on a smartphone is therefore simple and easy to do. No additional
explanation steps are needed when the plug-in is installed and connected to
a study. Researchers will have data on their server-side database when users
are using their phones to collect data, and analysis can then be carried out
on it.

The development of the application was loosely based on the Tapsense[6]
paper, in which researchers were able to detect several emotions with typing
data. The way this plug-in is developed should help in developing a machine
learning model that can conclude similar things as the Tapsense project.

5.2 Discussion
A plug-in to be used with a smartphone was developed for use with the
AWARE application, that allows for data collection that will allow researchers
to identify indicators of alcohol intoxication. The user’s privacy is respected
and only meta-data will be collected. This complies with the must haves

58

we defined in our MoSCoW analysis we did when designing the system. As
for the should haves, it has been found hard to implement all the features
that seemed to be useful. Partly this is because some of the limitations in
the AWARE framework, and the complexity of some features. However the
acceleration data that was mentioned in the should haves, is implemented
and can be used for analysis.

An attempt has been made to also include the could haves. For the could
haves, was mentioned that checking on word correctness would be good to
have. This feature was partly implemented, but it has been found to be
difficult to access Androids device specific dictionaries.

The application has been tested several times, and most of the users found
that the latest version of the application is usable. Before the plug-in was
in its current state, the ESMs would often pop up too many times, and the
users felt interrupted. In the final version this is not the case which makes
the tool much more usable. Users did not need any additional information
to understand what was going on, as much of the process is done by the
application in the background. The average SUS score that was measured
was 81,5 which is above average when it comes to the SUS usability scale.
Further changes would take a more in depth research of what could be better,
instead of just looking at whether the application is usable or not.

As seen in the previous chapter, some people are worried about the pri-
vacy the application promises. People were concerned that their data was
not hidden enough to be considered private. This is most likely since testing
users do not get to see the data that is collected, unless researchers would
share this data. Therefore it should be considered to give the user some clear
feedback of what data is collected, and which data will go to the researchers.

Another aspect is that some users experienced some performance issues.
Especially memory space of the smartphone was mentioned. This is because
the application has to track a lot of data from the accelerometer sensors,
in order to be able to do something with the data. When using this data,
more should be done to prevent data from clogging up to much space on the
phones. This would also benefit performance in the sense of speed, because
less data will be synced to the server.

The collected data that was stored on the server side is easy to understand
for researchers, as the columns of the data are labeled intuitively. The data
seems to be consistent enough to conduct analysis on, and data that might
be useless is easy to filter out.

Unfortunately for the intended goal of finding indicators of alcohol intox-
ication, a lot more data needs to be collected. A machine learning model

59

would probably require much more data to conclude anything. And since
gathering data about alcohol intoxication requires the users to drink alcohol,
it can prove to be hard to do a data collection in a short amount of time.
This is because most people would not drink a lot everyday, and people need
to be willing to participate for a longer period of time because of it.

The research questions Concluding our research we try to answer the
research questions. We discuss what we think the answers to these questions
should be. Since we had two questions in support of our primary question,
we will discuss those first.

Which tools and sensors on a mobile phone can be used to indicate alcohol
use?

When answering this question, we must also question the relevance of the
sensors. In this project we focused on keyboard usage, but we also tracked
acceleration sensors. Since our data set is relatively limited, and the changes
are relatively small, it is really hard to see if data was useful or not. To re-
ally conclude this question, more data, and machine learning models should
be used to find the subtle differences. To add to this, most users felt that
detecting intoxication through data collection like this application does, it
should be possible to find indicators through typing. However, the accelera-
tion data does not seem to add anything extra on top of this data yet, and
the collection of this data could potentially even hurt user experience and
usability. So to conclude we can state that keyboard analysis will most likely
be the first sensor that should be looked at when finding indicators. Other
sensors might still be useful, but we can not confirm or reject these yet.

The second question was:

Can we formulate a metric to indicate a certain level of intoxication?

At the time of formulating our project, we were confident that we could
much more easily define a metric for alcohol intoxication. Unfortunately in
the time dedicated to this project, we have not found a clear metric for it.
Again machine learning should take over from this project to know more
about the possibilities in finding this metric.

This brings us to the primary research question:

Can we identify in a non-intrusive way if a person is intoxicated by alcohol,
with the use of smart phone technology?

Combining the supporting questions and the conducted researches into an
answer to this question, we should break the question down into 3 parts.

60

The first part being can we identify if a person is intoxicated by alcohol. The
second part being if we can use smartphones for it. And the third part, if we
can do this in a non-intrusive way.

The developed plug-in is able to collect data, that might be an indicator
of alcohol intoxication. Although we can not confirm the data to indicate
alcohol intoxication yet, we can confirm that the smart phone can be used as
a tool for data collection for this purpose. We also showed that most users
found the application usable, and in the latest developed version was not
intensely intrusive. So looking at this question as a whole, we have to answer
it with maybe. If we look at the individual parts we can say that the only
part we did not succeed in, was to identify alcohol intoxication.

To conclude this discussion we can say that this project lays a founda-
tion for detecting alcohol intoxication using smartphones. Hopefully other
researchers will be inspired by this approach as well and take it one step
beyond.

5.3 Future work
As for future work we hope other people will pick up on this relatively new
approach of detecting certain states of the mind and its emotions. When
taking up a challenge in how data can be collected, this thesis should give
some insights in the possibilities and the usability. When given a longer
amount of time, more data can easily be collected. Future projects should
include more incentive to use the application, and provide more insight in the
use and collection of data. Feedback of the latest added data entries should
be displayed to the user, so they can judge whether or not they feel good
about the data that is collected. Also when data can eventually well if a user
is intoxicated, it would be nice to have the user see if they are intoxicated or
not.

As mentioned before, on a bigger dataset, a machine learning model
should be implemented to have data interpreted by the system. When the
system is able to do this, it can be used for multiple applications that can
benefit from detection of alcohol intoxication. When we mention the feed-
back ESMs that were used in the development of this project, we can also
state that with a slight change of the question that will be asked, it should
also be possible to investigate other areas besides alcohol intoxication. When
a user has to answer other questions with a scale, the data will most likely
tell more about the specific thing mentioned in the feedback question.

When it has become more clear what data is relevant for determining
certain states, optimizations should be made to prevent the smartphones

61

having to hold too much data. The system can still improve in efficiency, so
when developing further on this application, people should try to optimize
data collection and its speed.

5.3.1 Practical applications

When it comes to the practical use of a system that can identify alcohol
intoxication, we can see it used in several applications. In which some of
the more impact full could be, rehabilitation reflection and DUI prevention.
With the rehabilitation reflection we mean to aid the problem stated in the
background section 1.1. There we mention that when people come from
rehabilitation facilities for alcohol intoxication, the checkups preformed are
usually not very effective. When the application can notify the facility, based
on what it unobtrusively noticed about the patient, the facility can undertake
actions more effectively to get their ex patient rehabilitated again.

For drunk driving a similar thing can be done. Some people are often
convinced they are still capable of driving while in reality they still can not.
When an application can notify people when he or she is about to drive while
being intoxicated, actions can be taken to make sure the person is not going
to drive. This could even mean that the car automatically will not start
when the driver is drunk.

Besides these applications probably dozens of applications can be thought
of when this technology is in existence. Of course when thinking of the
applications for an application like that, we should always be weary of the
ethical and moral aspects of it. Technology should in my opinion never be
used in a way that, can hurt or damage other people in any way. With this I
would like to conclude the thesis, and we would like to thank you for reading
it.

62

Bibliography

[1] moderatedrinking-03 @ pubs.niaaa.nih.gov.

[2] Joseph M. Boden and David M. Fergusson. Alcohol and depression.
Addiction, 106(5):906–914, 5 2011.

[3] a Buchoux and N L Clarke. Deployment of keystroke analysis on a
Smartphone. Proceedings of 6th Australian Information Security Man-
agement Conference, (December 2006):29–39, 2008.

[4] Heather Cole-Lewis and Trace Kershaw. Text Messaging as a Tool for
Behavior Change in Disease Prevention and Management. Epidemiol
Reviews, 32(1):56–69, 2010.

[5] J Dai, J Teng, and X Bai. Mobile phone based drunk driving detection.
. . .), 2010 4th International . . . , page 1–8, 2010.

[6] Surjya Ghosh, Niloy Ganguly, Bivas Mitra, and Pradipta De. TapSense:
Combining Self-Report Patterns and Typing Characteristics for Smart-
phone based Emotion Detection. Proceedings of the 19th International
Conference on Human-Computer Interaction with Mobile Devices and
Services - MobileHCI ’17, pages 1–12, 2017.

[7] National Institute on Alcohol Abuse. Alcohol Facts and Statistics Fact
Sheet. 2017.

[8] A. Kolakowska. A review of emotion recognition methods based on
keystroke dynamics and mouse movements. 2013 6th International Con-
ference on Human System Interactions, HSI 2013, pages 548–555, 2013.

[9] Hosub Lee, Young Sang Choi, Sunjae Lee, and I. P. Park. Towards
unobtrusive emotion recognition for affective social communication.
2012 IEEE Consumer Communications and Networking Conference,
CCNC’2012, pages 260–264, 2012.

63

[10] Sachin Moonat, Subhash C Pandey, and D Ph. and Alcoholism.
34(4):495–505, 2009.

[11] The Lancet. Alcohol misuse needs a global response. The Lancet,
373(9662):433, 2009.

[12] Rachel Wittenauer, Lily Smith, and Kamal Aden. Priority Medicines for
Europe and the World " A Public Health Approach to Innovation " Up-
date on 2004 Background Paper Background Paper 6 . 12 Osteoarthritis.
(June):1–31, 2013.

64

	Introduction
	Background
	Smart phones as a tool
	Motivation
	Problem Statement
	Research Questions
	Structure of the Report

	State of the art
	Tapsense
	Deployment of keystroke analysis on a smart phone
	Mobile phone based drunk driving detection
	Summary

	Method
	Design
	Requirements

	Design choices
	Keystroke logging
	Acceleration and Rotation logging
	Sessions

	Implementation
	The AWARE framework

	Developing the plug-in
	plug-in application flow
	KeyboardListener
	ApplicationSwitchListener
	ESMAnsweredListener & ESMDismissedListener
	Summary

	Code implementations
	The Java classes
	Summary

	Evaluation
	Experimental setup
	Evaluation
	Results
	Usability evaluation
	Data collection evaluation

	Conclusions and future work
	Summary
	Discussion
	Future work
	Practical applications

