
Behavioural Hybrid Process Calculus
Translation to Modelica

Ing. A.E. van Putten
January 14, 2007

University of Twente

Department of Electrical Engineering, Mathematics and Computer Science

(EEMCS)

Contents

1 Introduction 3
1.1 Problem description . 3
1.2 Related work . 4
1.3 Structure of the thesis . 4

2 Behavioural Hybrid Process Calculus 5
2.1 Introduction . 5
2.2 Trajectories . 5
2.3 Hybrid transition system . 7
2.4 Language and semantics . 7

2.4.1 Operators . 8
2.5 Examples . 11
2.6 Conclusions . 12

3 A parser for BHPC 14
3.1 Introduction . 14
3.2 ASCII BHPC . 15

3.2.1 Syntax . 15
3.2.2 Precedence and parsing specifics 20

3.3 Internal representation . 22
3.3.1 Introduction . 22
3.3.2 Structure . 22

3.4 Parser generation . 26
3.4.1 Encountered problems . 27

3.5 Examples . 27

4 Modelica and hybrid systems 29
4.1 Introduction . 29
4.2 Language . 29

4.2.1 Basic language elements 29
4.2.2 Inheritance . 31
4.2.3 Repetitions, algorithms and functions 32

1

4.2.4 Conditional models . 33
4.2.5 Annotations . 34

4.3 StateGraph library . 35
4.4 Simulating hybrid automata . 36

4.4.1 Basics . 37
4.4.2 Decorations . 38

4.5 Restrictions . 42
4.6 Conclusions . 42

5 The translator 43
5.1 Introduction . 43
5.2 Restrictions in simulation . 43
5.3 Subset of the BHPC language . 44
5.4 Algorithm . 44

5.4.1 Translating BHPC to a hybrid automaton 44
5.4.2 Translation mappings . 48

5.5 Translator tool . 53
5.6 Simulation . 53

5.6.1 Thermostat . 54
5.6.2 Bouncing ball . 56

5.7 Conclusions . 57

6 Conclusions 58
6.1 Parser and internal representation 58
6.2 Modelica . 58
6.3 Translation to Modelica . 59
6.4 Future work . 59

A ASCII BHPC definition 62
A.1 Global elements . 62
A.2 Expressions . 62
A.3 Model . 63
A.4 Action, qualifier and constant definitions 63
A.5 Process definitions . 63
A.6 Trajectory definitions . 64

B BHPC ASCII variant railroad diagram 65

C Internal representation XML schema 69

2

CHAPTER 1

Introduction

This chapter will describe the problem that is addressed in this thesis. Also
work related to the subject of this thesis, the structure of the document and
terminology will be described in this chapter.

1.1 Problem description

Simulation is a well-established technique for development and analysis of dy-
namical systems and is widely used in industry and academia. Simulation is
frequently used for development of models for designing existing systems. Of-
ten such systems exhibit discrete behaviour as well as continuous behaviour.

Hybrid systems combine discrete events and continuous behaviour. Discrete
events are caused by the evolution of continuous dynamics or external stimuli.
The continuous behaviour can change in response to the discrete events or the
flow of time. Often such systems behaviour can be observed in embedded sys-
tems. Such systems usually observe and react on a continuous time process but
the controller itself is of discrete nature.

Behavioural Hybrid Process Calculus (BHPC) is an extension of classical
process algebra, based on behavioural theory that is suitable for the modelling
and analysis of hybrid dynamical systems [BK05, BKU05]. It provides a natural
framework for the concurrent composition of such systems, and can deal with
non-determinism.

The language is recently developed and no simulation tools are currently
available for this language. One of the various ways to simulate a BHPC model
is to translate the model to the simulation language Modelica. This thesis
describes an algorithm which translates a BHPC specification into a hybrid
automaton. This hybrid automaton can be simulated by Modelica by using
Modelicas StateGraph library and some additional code.

3

1.2 Related work

Behavioural Hybrid Process Calculus is a relatively new process algebra. He-
len Schonenberg has developed a discrete simulator for this language which is
described in [Sch06, KS05].

HyPA is another hybrid formalism for which R.A. Schouten has developed
a simulator [Sch05]. Other hybrid simulators are CHARON [HL02], HyVi-
sual [BCL+05] and Hybrid χ[MS06].

CHARON is a hybrid process language that comes with a simulator and a
visual editor. The language has been developed to model and analyze interacting
hybrid systems as communicating agents.

HyVisual is a block-diagram editor and simulator for continuous-time dy-
namical systems and hybrid systems. The visual modeler supports construction
of hierarchical hybrid systems and uses a block-diagram representation of ordi-
nary differential equations to define the continuous behaviour.

Hybrid χ is a hybrid formalism that differs from other hybrid formalisms in
the sense of expressivity. This language tries to make the expressivity of the
language high while keeping it easy to use.

HyTech [AHS96] is an automatic tool for the analysis of embedded systems.
HyTech computes the condition under which a linear hybrid system satisfies
a temporal requirement. Hybrid systems are specified as collections of hybrid
automata with discrete and continuous components. Temporal requirements
are verified by symbolic model checking. On failure HyTech is able to generate
a diagnostic error trace.

The StateFlow and Simulink pair is a toolset for the modelling and design
of dynamical systems. It is based on the combination of Statecharts, finite state
machines and flow diagrams. The tool is a commercial product of Mathworks.

1.3 Structure of the thesis

This thesis describes the translation of a Behaviour Hybrid Process Caculus
(BHPC) process to a Modelica model that can be simulated. This translation
is realised in a number of steps. The structure of this document tries to follow
the order of these translations steps.

Chapter 2 introduces and describes the BHPC language. The first step is
the translation of the BHPC model into an internal representation. A parser is
developed for this purpose. This parser and the internal representation that it
generates are described in chapter 3.

The next step is to translate this BHPC model into a hybrid automaton that
can be simulated by Modelica. First, chapter 4 introduces the Modelica language
and the StateGraph library that is used for the simulation. This chapter also
describes how a hybrid automaton can be simulated with the StateGraph library
and some additional Modelica code.

Chapter 5 describes the actual translation from the BHPC model into Mod-
elica code. Finally chapter 6 describes the conclusion drawn from this thesis.

Appendixes A and B describe respectively the ASCII version of the BHPC
language and a railroad diagram of this language. Appendixes C shows an XML
schema of the internal representation.

4

CHAPTER 2

Behavioural Hybrid Process Calculus

2.1 Introduction

The growing interest in hybrid systems both in computer science and control
theory has generated a new interest in models and formalisms that can be used
to specify and analyse such systems.

Process algebra is a theoretical framework for the modelling and analysis of
concurrent discrete event systems that has been developed within the computer
science community during the last quarter century [Mil89, Hoa85, BK84, BB87].
This framework has provided more insight in concepts such as the observable
behaviour in the presence of non-determinism, system composition of concurrent
systems and notions of behavioural equivalence of such systems. It is believed
that the basic tenets of process algebra are highly compatible with the behav-
ioural approach to dynamical systems [Kri06, PW98].

Behavioural Hybrid Process Calculus (BHPC) is an extension of classical
process algebra, based on behavioural theory that is suitable for the modelling
and analysis of hybrid dynamical systems. It provides a natural framework for
the concurrent composition of such systems, and can deal with non-deterministic
behaviour that may arise from the occurrence of internal switching events.

2.2 Trajectories

In control theory the traditional presentation of dynamic behaviour is a number
of continuous-time input and output variables whose evolutions and influences
depend on the evolution of state variables. This evolution is typically defined
in terms of differential equations. In the behavioural approach on which BHPC
is inspired, system behaviour is characterised by a time-dependent relation be-
tween the observable or manifest variables of a system. Input and output be-
come derived notions that depend on the constraints that the overall relation
imposes on the individual variables. This means that behaviour can be simply

5

seen as the set of all allowed real-time evolutions, or trajectories, of the system
variables.

Trajectories are defined over bounded time intervals (0,t], and map to a signal
space to define the evolution of the system. Components of the signal space
correspond to the different aspects of the continuous-time behaviour. These
components are associated with trajectory qualifiers that identify them.

Definition 2.2.1 (Signal space) Let W be a set of signal domains (typically
⊆ R) and T be a set of trajectory qualifiers. A signal space is a pair

W = (W1 × · · · ×Wn, (t1, ..., tn))

with Wi ∈ W , ti ∈ T , where ti denotes the trajectory qualifier of Wi, and ti 6= tj
for i 6= j, i.e., all Wi have different trajectory qualifiers [Kri06]. 2

Definition 2.2.2 (Trajectory) Let W = (W1 × · · · × Wn, (t1, ..., tn)) be a
signal space. Then a trajectory in a signal space W is a function

ϕW : (0, t] → W1 × · · · ×Wn

where t ∈ R+ is the duration of the trajectory, also denoted as t(ϕ). We will
omit subscript W when a signal space is clear from the context [Kri06]. 2

Definition 2.2.3 (Empty trajectory) ε denotes an empty or completed tra-
jectory. 2

Definition 2.2.4 (Set of trajectory qualifiers) A function T : Φ → T ,
where Φ is a set of trajectories and T is a set of qualifiers, collects all trajectory
qualifiers of the trajectory:

T(ϕW) = {q | ϕW : (0, u] → W1 × · · · ×Wn ∧
W = (W1 × · · · ×Wn, (q1, ..., qn)) ∧ t ∈ {q1, ..., qn}}

Definition 2.2.5 (Projection) Let ϕ : (0, u] → W1×···×Wn be a trajectory,
such that W = (W1× · · ·×Wn, (q1, ..., qn)). Then a projection of the trajectory
w.r.t. a trajectory qualifier qi(i = 1, ..., n) is the trajectory

πqi(ϕ) : (0, u] → Wi

in signal space Wi = (Wi, qi). 2

Definition 2.2.6 (Composition of trajectories) Let H be a set of synchro-
nising trajectory qualifiers, and let ϕ : (0, t] → W ′′

1 × · · · × W ′′
n in W =

(W ′′
1 × · · ·W ′′

k , (t′′1 , ..., t′′k)) and ψ : (0, u] → W ′
1 × · · · ×W ′

m in W′ = (W ′
1 × · · · ×

W ′
m, (t′1, ..., t

′
m)) be trajectories such that T(ϕ)∩T(ψ) ⊆ H and πT(ϕ)∩T(ψ)(ϕ) =

πT(ϕ)∩T (ψ)(ψ). Then a composition of trajectories is a trajectory.

ϕ×H ψ : (0, u] → W1 × · · · ×Wn,

in W = (W1 × · · · ×Wn, (t1, ..., tn)) such that

T(ϕ×H ψ) = T(ϕ) ∪ T(ψ),

πT(ϕ)(ϕ×H ψ) = ϕ,

πT(ψ)(ϕ×H ψ) = ψ.

6

2.3 Hybrid transition system

Automata, state-transitions diagrams and other similar models are often used
to present the dynamic behaviour of modelled systems. These diagrams consist
of a set of states S and some construct defining the changes of the states, usually
transitions. These transitions are given as a relation over the Cartesian product
of the states (S × S). Labelled transition systems are diagrams which extend
state transition with actions which are related to the transitions. A hybrid
transition system is a labelled transition system with two types of transitions.

Definition 2.3.1 (HTS) A hybrid transition system [Kri06] is a tuple HTS =
〈S, A,→,W, Φ,→c〉, where

• S is a state space;

• A is a set of discrete action names;

• →⊆ S × A × S is a discrete transition relation;

• W is a signal space;

• Φ is a set of trajectories ϕ : (0, t] → W1 × ...×Wn for t ∈ R+;

• →c⊆ S × Φ× S is a continuous transition relation.

For clarity reasons we will write

s
c−→ s′ ⇔ (s, a, s′) ∈→

s
ϕ−→ s′ ⇔ (s, ϕ, s′) ∈→c

The set of discrete action names includes a silent action known as τ . It does
not represent a potential communication and is not directly observable. Silent
action may be used to specify non-deterministic behaviour like the internal
actions described in [Mil89]. 2

2.4 Language and semantics

The BHPC language [Kri06] is based on hybrid transition systems. The syntax
is defined as follows:

Definition 2.4.1 (BHPC syntax)

B ::= 0 | a.B | a(v : V).B(v) | [ϕ | Φ].B | 〈Pred〉.B |
∑

i∈I

Bi | B||HA B | new w.B | B[σ] | P

• 0 is a deadlock, the process that does not show any behaviour.

• a.B is an action-prefix, where a ∈ A is a discrete action name and B is a
process. It first performs a and then engages in B. Action-prefix denotes
discrete transitions in the hybrid transition system.

• a(v : V).B(v) ,
∑

v∈V a(v).B(v) is a parameterized action prefix.

7

• [f | Φ].B(f) is a trajectory prefix, where f is a trajectory variable and Φ
is a set of trajectories. It takes a trajectory or a prefix of a trajectory in
Φ. If a trajectory or a part of it was taken and there exists a continuation
of the trajectory, then the system can continue with a trajectory from the
trajectory continuations set. If a whole trajectory was taken, then the
system may continue with B, too.

• 〈Pred〉.B is a guarded prefix. Only when Pred is satisfied the behaviour
will continue as B. When Pred is not satisfied no further actions can be
taken resulting in a deadlock.

• ∑
i∈I Bi is a choice of processes. To generate the set they allow arbitrary

index sets I. It chooses before taking an action prefix or trajectory prefix.
The binary version of the choice operator is denoted B1 + B2

• B||HA B is a parallel composition of two processes with an interconnection
set H and a synchronisation set A. The interconnection set H ⊆ T is a set
of trajectory qualifiers for the synchronisation of trajectories and the syn-
chronisation set A ⊆ A is the set of action names for the synchronisation
of discrete transitions.

• new w.B is a hiding operator, where w is a set of discrete action names
and/or trajectory qualifiers to hide.

• B[σ] is a renaming operator, where σ is a renaming function.

• P , B is a recursive equation, where P is a process identifier. 2

2.4.1 Operators

This section explains the BHPC operators in more detail.

Action prefix a.B

The well known action prefix from discrete process algebra. Process a.B defines
a process which engages in the action a and then behaves as B. The invisible
action τ is also allowed, this action is not observable and cannot be used to
represent potential communication. Silent action(s) can be used to specify non-
deterministic behaviour.

a.B
a−→ B

Parameterised action prefix a(v : V).B(v)

This is a parameterised version of the action prefix. The parameterised version
of the action prefix is typically used to pass information while synchronizing
with a parallel process.

a(v : V).B(v) ,
∑

v∈V

a(v).B(v)

8

Trajectory prefix [ϕ | Φ].B(f)

A trajectory prefix defines the behaviour that starts with a trajectory denoted
by f and is followed by the trajectory continuation or behaviour specified by B.

[f | Φ].B(f)
ϕ−→ [f ′ | Φ\\ϕ].B(ϕ; f ′) for all ϕ ∈

−+

Φ

where Φ is a set of trajectories such that ∀ϕ, ψ ∈ ΦT(ϕ) = T(ψ), f, f ′ are
trajectory variables and ϕ; ψ ∈ Φ or ϕ ∈ Φ such that t(ϕ) 6= ∞ and ϕ 6= ε. If a
trajectory or part of it was taken and there exists a continuation of the trajec-
tory, then the system can continue with a trajectory from the continuations set.
However, if a whole trajectory was taken, then the system may continue with
the consecutive process with the substituted trajectories. (ϕ; f ′) defines substi-
tution of the taken trajectories in the following processes, i.e., all instances of f
in B are substituted by the taken trajectory ϕ concatenated with its follow-up
f ′, or if it is finished, by the whole taken trajectory ϕ.

The bahaviour for empty trajectories ε will be defined later, after the defin-
ition for cancatenation is given.

The following natation for trajectory prefix can be convenient to express
restrictions and exit conditions.

[q1, ..., qm | Φ ↓ Pred ⇓ Predexit]

where

• q1, ..., qm are trajectory qualifiers, which can be used to access correspond-
ing parts of trajectories.

• Pred are restrictions for the trajectory set.

• Predexit are exit conditions for the trajectory set.

Concatenation

Concatenation extends the definition of the trajectory prefix. It formalises be-
haviour after taking a complete trajectory. The process can choose to continue
with another trajectory or an action prefix, depending on the successive process.
Concatenation is formalised by the following SOS rules.

B(ϕ)
ψ−→ B′

[f | Φ].B(ϕ)
ϕ;ψ−−→ B′

ϕ ∈ Φ

B(ε) a−→ B′

[f | Φ].B(f) a−→ B′ ε ∈ Φ

The first rule shows how to concatenate two trajectories. While the sec-
ond rule defines a situation, where after taking a whole trajectory the process
continues with an action prefix.

The following rule is derived from concatenation and trajectory prefix rules.
If ε ∈ Φ then

[f | Φ].B(f) = [f | Φ\ε].B(f) + B(ε)

9

Guard 〈Pred〉.B
The guard operator can be used to check certain conditions explicitly. If they
are satisfied the process is allowed to progress, if the conditions are not satisfied
the process will deadlock since no transition can be taken. Its behaviour is
described by the following SOS rules.

B
a−→ B′

〈Pred〉.B a−→ B′ |= Pred

B
ϕ−→ B′

〈Pred〉.B ϕ−→ B′
|= Pred

Choice
∑

i∈I Bi

Choice is a generalised operator on sets of behaviour expressions. To generate
the set they allow arbitrary index sets I. It can the thought of as a generalisation
of ordinary process algebra choice. The choice operator behaviour is defined by
the following SOS rules.

B(w) a−→ B′
∑

v∈I B(v) a−→ B′w ∈ I

B(w)
ϕ−→ B′

∑
v∈I B(v)

ϕ−→ B′
w ∈ I

The first rule defines the choice for action prefixes which is the same as in
usual process algebras. The second rule defines that the choice for trajectories
is made before taking the trajectory.

Parallel composition B1 ||HA B2

Parallel compositions is used to model concurrent evolutions of several processes.
During this evolution they can interact through discrete and continuous-time
transitions. The set of trajectory qualifiers H contains the trajectory qualifiers
which are subject to synchronisation. The synchronisation semantics are defined
by the following SOS rules:

The set of discrete actions A contains the discrete actions which are subject
to synchronisation.

B1
a−→ B′

1, B2
a−→ B′

2

B1 ||HA B2
a−→ B′

1 ||HA B′
2

a ∈ A

B1
a−→ B′

1

B1 ||HA B2
a−→ B′

1 ||HA B2

B2 ||HA B1
a−→ B2 ||HA B′

1

a /∈ A

B1
ϕ−→ B′

1, B2
ψ−→ B′

2

B1 ||HA B2
ϕ×Hψ−−−−→ B′

1 ||HA B′
2

T ′ = T (ϕ) ∩ T (ψ)
and T ′ ⊆ H

where ϕ×H ψ is a composition of trajectories as defined in definition 2.2.6.

10

Hiding new w.B

The hiding operator is a scope restriction operator. new w.B restricts the
use of the names w to B. The hiding of discrete actions is the same as for
ordinary process calculus. The hiding of trajectories however should be used
with care since two different trajectories can become observably equivalent if
only observable parts of the behaviour are visible. Hiding can influence the
outcome of parallel composition. The following SOS rules define the behaviour
in the case of hiding:

B
a−→ B′

new w.B
τ−→ new w.B′ a ∈ w

B
a−→ B′

new w.B
a−→ new w.B′ a /∈ w

B
ϕ−→ B′

new w.B
π

T (ϕ)\w(ϕ)−−−−−−−→ new w.B′

Renaming B[σ]

The renaming operator B[σ] where σ is a renaming function, makes the new
name for the discrete action or trajectory qualifier available in B and restricts
the use of the old name in B. The renaming function does not change trajectory
types. The behaviour of the renaming operator is defined by the following SOS
rules:

B
a−→ B′

B[σ]
σ(a)−−−→ B′[σ]

B
ϕ−→ B′

B[σ]
σ(ϕ)−−−→ B′[σ]

Recursion

Recursion allows defining processes in terms of each other, like in the equation
P , B, where P is a process identifier. Actions and signal types of B are the
only allowed actions and signal types in P . Recursion can be applied with the
following SOS rules.

B
a−→ B′

P
a−→ B′ P , B

B
ϕ−→ B′

P
ϕ−→ B′

P , B

2.5 Examples

This paragraph will show two examples of BHPC models, namely the thermostat
and the bouncing ball.

11

Example 2.5.1 (Thermostat) A thermostat monitors and controls the tem-
perature in a room. The temperature can be controlled by switching the heating
on and off. This switching can occur at any time when l ∈ [tempOn, tempMin]
or l ∈ [tempOff, tempMax], however when the temperature is greater or equal
to tempMax is must switch off and when the temperature is lower or equal to
tempMin is must switch on. This behaviour is modelled in the following BHPC
specification:

ThOff(l0) , [l | Φoff (l0) ⇓ tempOn > l > tempMin].on.ThOn(l)

ThOn(l0) , [l | Φon(l0) ⇓ tempOff 6 l 6 tempMax].off.ThOn(l)

ΦOff (l0) = {l : (0, t] → R | l(0) = l0, l̇ = −Kl}
ΦOn(l0) = {l : (0, t] → R | l(0) = l0, l̇ = K(h− l)}

The first two lines define the two processes ThOff and ThOn, for the behaviour
when the heater is respectively turned off and on. Each process starts with
a trajectory prefix in which the temperature changes according to the state
of the heater. When the exit conditions, tempOn > l > tempMin for the off
state or tempOff 6 l 6 tempMax for the on state, are satisfied the processes can
continue with a discrete action which turns the heater on or off. After the action
the process will continue with recursion into the other process and thus creating
an infinite loop which keeps the temperature of the room between tempMin and
tempMax . A hybrid automaton of this example is shown in figure 4.1. 2

Example 2.5.2 (Bouncing ball) A bouncing ball bounces up and down, loos-
ing a fraction of its energy on every bounce. This behaviour is modelled by the
following BHPC specification:

BB(h0, v0) , [h, v | Φ(h0, v0) ⇓ h = 0].BB(0,−c ∗ v)

Φ(h0, v0) = {h, v : (0, t] → R | h(0) = h0, v(0) = v0, ḣ = v, v̇ = −g, h > 0}
The trajectory prefix describes the dynamics of the ball until the bounce. When
the ball reaches the ground, the exit conditions h = 0 is satisfied and the
behaviour will continue at the beginning of the process through the recursion
operator. The recursion step updates the trajectory qualifiers. The qualifier
for the height is set to 0 since the ball is on the ground and the velocity is
negated as the ball needs to travel up because of the bounce, the loss of energy
is handled by a multiplication with c which defines what amount of the energy
remains after each bounce. 2

2.6 Conclusions

BHPC is an extension of classical process algebra, based on behavioural the-
ory that is suitable for modelling and analysis of hybrid dynamical systems.
Trajectories are used to describe the continuous evolution of the models. This
evolution is typically defined in terms of differential equations. In the behav-
ioural approach, on which BHPC is inspired, input and output become derived
notions that depend on the constraints that the overall relation imposes on the
individual variables. This means behaviour can be seen as the set of allowed

12

evolutions or trajectories of the system variables. These trajectories map to a
signal space to define the evolution of the system.

Hybrid transition systems are a popular way to model hybrid systems. A
hybrid transition systems is a labelled transition system with two types of tran-
sitions, namely discrete and continuous ones.

The BHPC language features a set of operators consisting of the deadlock,
action prefix, trajectory prefix, predicate prefix, choice, parallel, renaming, hid-
ing and recursion. These operators can be used to define a discrete process
for the model. Additionally trajectories can be defined that define describe the
continuous evolution of the model.

13

CHAPTER 3

A parser for BHPC

3.1 Introduction

Parsing is usually defined as the process of analysing an input sequence in order
to determine its grammatical structure with respect to a given formal grammar.
A parser is a computer program that automates this process. In the context of
this project the parser analyses a given BHPC specification, checks its integrity
and generates output in the form of an internal representation.

The BHPC language was developed as a mathematical formalism, it’s nota-
tion includes symbols from various alphabets which are not present in the widely
used ASCII character set [Wika]. Therefore creating the BHPC models could
cause some difficulty. We summarize a number of options to simplify model
creation using a computer.

• LaTeX - LaTeX has extensive mathematical support. Control strings (like
e.g. \varphi for ϕ) are used to denote mathematical and other symbols.
These control strings are composed of characters from the ASCII character
set. This makes it relatively easy to design a BHPC specification using
any text editor. The control strings however are often relative large and
thus can ”cloud” the specification making it harder to read.

• Custom designer - A custom made application which provides the user
with means to develop a BHPC specification in its mathematical form.
This application can write the specification in the Unicode character set or
even translate it to the LaTeX style. However such a custom tool requires
time to develop and therefore lies beyond the scope of this project.

• Unicode [uni] - Using a third party application which provides facilities
to utilize mathematical symbols and can output these to a Unicode file. A
search on the internet shows that many Unicode editors often use rather
slow input systems as virtual keyboards for an extended character set.

14

Moreover these applications rely on installed character sets to display the
characters. Therefore this alternative is far from optimal.

• ASCII [Wika] variant of the language A variant of the mathematical
notation designed to make it easy to input using a default keyboard and
editor of choice, easy to read while keeping it as close as possible to the
original notation. This option does not rely on any third party software
and keeps the specifications more readable than the LaTeX alternative.

With usability and available time in mind it is decided to proceed with
the ASCII variant option. The next paragraph will describe the syntax and
semantics of this language which will be referred to as ASCII BHPC.

3.2 ASCII BHPC

The ASCII BHPC language is designed to match the original, mathematical,
BHPC language as much as possible while making sure the models can be easily
created by means of a text editor and characters present on commonly used
keyboards. This chapter will describe the syntax and semantics for this lan-
guage. For a complete definition of the language we refer to appendix A. This
definition is conform the ANTLR syntax which is a variant of the Extended
Backus Naur Form (EBNF) [iso].

Please note that this chapter contains the BHPC operator superposition. This op-

erator is currently not included in the BHPC language, however it is supported by the

parser for future use.

3.2.1 Syntax

The ASCII BHPC definition allows one to define actions, qualifiers, constants,
processes and/or trajectories within a model. First we will describe the global
elements and expressions used throughout the entire specification. Next we
will describe how actions, qualifiers and constants can be defined followed by
descriptions for the processes and trajectories.

Global elements

ASCII BHPC defines a number of global elements which are used throughout
the specification.

• IDENTIFIER - A sequence of Latin characters and/or numeric characters,
however the first characters must be a Latin one.

• NUMBER - A sequence of numeric characters optionally followed by a dot
and one or more numeric characters.

• qualifier - A synonym for IDENTIFIER.

• action - A synonym for IDENTIFIER.

• constant - A synonym for IDENTIFIER.

15

• parameterdefs - A sequence of IDENTIFIER separated by commas. Used
for defining parameters for a process or trajectory.

• parameters - A sequence of expression separated by commas. Used by
symbolic trajectory prefixes, parameterized action prefixes and recursions.

• qualifiers - A sequence of qualifier separated by commas.

• actions - A sequence of action separated by commas.

• mixedlist - A sequence of actions and/or qualifiers separated by commas.

Expressions

Expressions are defined according to the usual mathematical sense. The sup-
ported operators and their semantics can be found in table 3.2.

The model

A model consists of any number of action-, qualifier-, or constant definitions.
These definitions can be placed in order. After these definitions a single initial
process has to be defined. Finally the last part of the model consists of one
or more process- and/or trajectory definitions. The makeup of the model is
visualized in the following railroad diagram.

Actions, qualifiers and constants

Actions, qualifiers and constants have to be defined separately in the model.
This allows the parser to easily check for syntactic and semantic errors in the
model. Actions and qualifiers can be defined by respectively the keywords ac-
tions and qualifiers followed by a colon and a list of names.

Constants can be defined by the keyword constants followed by a colon and
a list of tuples. Each of these tuples consists of a name for the constant followed
by an assignment sign (:=) and a value for the constant. The list of tuples is
separated by commas.

Processes

A process can be defined by the keyword process followed by a name for the
process, optional parameter definitions, a define symbol (^=) and the definition
for the process itself. The optional parameters are defined as the parameterdefs
structure encapsulated by parenthesis.

The process definition itself can consist of the following operators with the
corresponding syntax. The following descriptions show railroad diagrams to

16

visualize the syntax of the operators1. In the railroad diagrams, besides the
global elements, certain keywords are used to denote characters or strings of
characters. Tables 3.1 shows these keywords and the character(s) they represent.
The rounded rectangles represent a character or string of characters. The normal
rectangles are used to represent another part of the hole railroad diagram.

Keyword Character(s)
LBLOCK [

RBLOCK]

DOT .

PIPE |

PLUS +

PLUSPLUS ++

LPAREN (

RPAREN)

BACKSLASH \

KW_DEADLOCK stop

KW_NEW new

KW_IN in

LCURLY {

RCURLY }

Table 3.1: ASCII BHPC keywords

• (Parameterized) action prefix An IDENTIFIER followed by optional
parameters as defined by parameters, a dot (.) and a process. The IDEN-
TIFIER represents the name for the action. This action name should be
defined in the model. The syntax for this operator is visualized in the
following railroad diagram.

Example non parameterized: a.B
Example parameterized: a(5).B

• Symbolic trajectory prefix A left block character ([) followed by a
list of qualifiers a pipe character (|) a trajectory name, optionally syn-
chronizing prefixes and/or exit conditions. The operator is completed a
closing right block character (]), a dot character (.) and a process. The
synchronizing prefixes and exit conditions are a list of expressions pre-
ceded by respectively the keywords conds and the keyword exits. Signal is
the name of the trajectory and should be defined within the model. The
syntax for this operator is visualized in the following railroad diagram.

1More information on railroad diagrams can be found on the website
http://www.epcedit.com/UserManual/x1176.html

17

Example: [h,v | phi exits h > 0 conds v > 0].B

• Binary choice operator A process followed by the choice operator (+)
and another process. The syntax for this operator is visualized in the
following railroad diagram.

Example: a.A + b.B

• Binary superposition operator A process followed by the superposi-
tion operator (++) and another process. The syntax for this operator is
visualized in the following railroad diagram.

Example: [h | phi1 exits h > 0].A ++ [h | phi2 exits h > 5].B

• Binary parallel operator A process followed by the parallel operator
and another process. The parallel operator consists of a pipe character
(|), optional syncronizing parameters and a second pipe character. The
sychronizing parameters are a list consisting of qualifiers and/or actions
as defined by mixedlist which should be defined within the model.

Example: a.b.A |(c)| c.b.B

• Renaming operator The renaming operator can optionally be placed
behind a process. The renaming operator consists of a left block character
([) followed by the qualifier or action to be renamed, a backslash character
(\) and a qualifier or action which holds the new name. The last backslash
and qualifier/action can be repeated any number of times according to
denote a renaming stack. Finally there is a right block character (]) to
close the structure. The first qualifier or action representing the original
qualifier or action should be defined within the model. The syntax for this
operator is visualized in the following railroad diagram.

18

Example: a.B[a\c]

• Hiding operator The hiding operator can optionally placed before a
process. The hiding operator consists of the keyword new followed by a
list of actions and/or qualifiers as defined by mixedlist, the keyword in
and a process. The qualifiers are the qualifiers or actions to be hidden in
the process, these qualifiers and/or actions should be defined within the
model. The syntax for this operator is visualized in the following railroad
diagram.

Example: new a in a.B

• Deadlock The deadlock is simply denoted by the keyword stop. The
syntax for this operator is visualized in the following railroad diagram.

Example: a.stop

• Recursion The recursion is an IDENTIFIER optionally followed by pa-
rameters encapsulated by parenthesis. The identifier should be the name
of a process defined in the same model. The syntax for this operator is
visualized in the following railroad diagram.

Example: a.ThOn

• Guard operator The guard operator is an expression encapsulated by
curly brackets followed by a dot character (.) and a process. The syn-
tax for this operator is visualized in the following railroad diagram. In
contrast to the mathematical version of BHPC, which uses chevrons for
the guard operator, ASCII BHPC uses braces to encapsulate the pred-
icate expression. Chevrons increased the complexity of the design and
decreased readability due to the fact that the predicate expression also
contains chevrons for equations.

19

Example: {h > 50}.B

These operators can be combined in the manor defined in definition 2.4.1.
However the syntax for a number of operators has changed. The exact syntax
for the operators is as follows.

Initial process

The initial process denotes the starting point for execution/simulation of the
model. An initial process is defined by the keywords initial and process followed
by an IDENTIFIER and optional parameters. The identifier resembles the name
of the process where the execution/simulation should begin, this process should
be defined within the model.

Trajectories

A trajectory can be defined by the keyword signal followed by a name for the
trajectory, optional parameter definitions, a define symbol (^=) and the def-
inition for the trajectory itself. The optional parameters are defined as the
parameterdefs structure encapsulated by parenthesis.

The trajectory definition itself consists of a number of elements. It starts
with a list of qualifiers followed by a colon, a time interval. The definition
is closed by assignments, differential equations and/or expressions which model
the evolution of the trajectory. When assignments are used they must be placed
before the differential equations which in turn must be placed before the expres-
sions.

A time interval is denoted as follows

(0, expression] => numbersys

where

• Expression denotes the duration of the trajectory.

• Numbersys is a mathematical number system N, Z or R denoted as re-
spectively \N, \Z and \R.

Assignments are used to give initial values to the qualifiers of the trajectory.
Assignments are denoted as qualifier(0) := expression where qualifier is
the qualifier which needs to be initialized and expression is the value to assign
to the qualifier.

Differential equations are used to model the evolution of the trajectory. Dif-
ferential equations are denoted as der(q) = expression where q is a qualifier.
This structure is equivalent to the mathematical form q̇ = expression.

3.2.2 Precedence and parsing specifics

Tables 3.2 and 3.3 show the precedences and associativity for respectively the
expression operators and the BHPC operators. The precedences are represented
by means of numbers. The lower the number the higher the precedence.

20

Operator Precedence Associativity
-expr 1 Left to right associative
expr * expr 2 Left to right associative
expr / expr 3 Left to right associative
expr + expr 4 Left to right associative
expr - expr 5 Left to right associative
expr = expr 6 Left to right associative
expr != expr 7 Left to right associative
expr > expr 8 Left to right associative
expr >= expr 9 Left to right associative
expr < expr 10 Left to right associative
expr <= expr 11 Left to right associative

Table 3.2: Expression operators

Operator Precedence Associativity
a.B 1 Left to right associative
[ϕ].B
P
〈Pred〉
B[σ] 2 Left to right associative

B||HA B 3 Left to right associative
⊕

i∈I Bi 4 Left to right associative∑
i∈I Bi 5 Left to right associative

Table 3.3: BHPC operators

Example 3.2.1 (Mixed BHPC operator precedence) The process

process T ^= a.stop ++ b.stop + c.stop

combines the superposition and choice operator without the use op parenthesis
to explicitly define the meaning of the process. Due to the precedences defined
for Basic BHPC we can conclude that the example process is equal to the
process (a.stop ++ b.stop) + c.stop meaning that a.stop and b.stop will
be superposed to each other. The entire construct of the superposed a.stop
and b.stop will be the first choice of the choice operator and c.stop will be
the second choice of the operator. When this process would be simulated the
system would first make a choice between (a.stop ++ b.stop) and c.stop.
Only when the first case is chosen the superposition would be executed. 2

Example 3.2.2 (BHPC operator precedence) The process

process T ^= a.stop + b.stop + c.stop

describes a process with two choice operators. Because the choice operator is
implemented in left to right binary form this process is equivalent to the process
(a.stop + b.stop) + c.stop. During simulation the system will first make

21

a choice between (a.stop + b.stop) and c.stop. Only when the first case is
chosen it will make the choice between a.stop and b.stop. 2

3.3 Internal representation

3.3.1 Introduction

The internal representation is used to provide the BHPC model in a structured
way to other developers who wish to use a BHPC model. Representing the
BHPC model in an easy to use, structured format might reduce any ambiguity
and decrease development time.

The internal representation is structured conforming the W3 Consortium
Extended Markup Language (XML) 1.0 standard [W3X04]. XML is a widely
used standard for representing data in a platform independent way. It is well
documented and easy to use.

XML schema’s are a way to define the structure of an XML document. With
an XML schema documents can be checked for compliance to the structure. An
XML schema for the BHPC internal representation can be found in appen-
dix C. The remainder of this paragraph describes the format in a textual way
complemented with several illustrations. It is assumed that the reader has basic
knowledge about the XML standard.

3.3.2 Structure

Each document contains exactly one BHPC model. The model always starts
with a <BHPC> tag. This tag has several children. It’s first child is the <version>
tag. The version of the internal representation used for the document is placed
between an opening and closing version tag. The other children of the BHPC
tag are definitions for qualifiers, actions, constants, processes and trajectories.
Figure 3.1 shows a schematic overview of the upper level structure of a BHPC
model.

Figure 3.1: Internal representation overview

22

Primitive declarations

The global qualifiers and actions used in the model are listed by children of the
top node. Qualifiers and actions are represented by respectively the <qualifier>
and <action> nodes. The data between the opening and closing tag is the name
for the qualifier or action.

Constants can be declared with the Constant tag <constant> which has two
child nodes. The <name> and <value> nodes are respectively for the name and
value of the constant.

Example 3.3.1 (Internal representation: Primative declarations) The fol-
lowing fragment is taken from the Thermostat example and shows some primi-
tive declarations from the internal representation.

<action>on</action>

<action>off</action>

<qualifier>l</qualifier>

<constant>

<name>K</name>

<value>0.8</value>

</constant>

<constant>

<name>h</name>

<value>50</value>

</constant>

Initial process

The initial process is represented by the <initialprocess> node. This node
has one or more child nodes. The first child is the name node that holds the
name of the initial process. The other child nodes are optional <parameter>
nodes that hold parameter expressions to be passed to the initial process. The
number of initial processes is restricted to one.

Example 3.3.2 (Internal representation: Initial process) The following
fragment is taken from the Thermostat example and shows the initial process
node from the internal representation.

<initialprocess>

<name>ThOff</name>

<parameter>10</parameter>

</initialprocess>

Process definition

A BHPC process is represented by the <processdefinition> node. The first
child node of the process definition is the <name> node that holds the name of
the process. This node is followed by optional <parameter> nodes that hold
any parameters the process might have. The rest of the child nodes depend on
the construction of the process and can be one or more of the nodes explained
in the section Process nodes.

23

Process nodes

Each of the process nodes represent a BHPC operator. Since several of these
operators allow multiple processes to continue these nodes can have on or more
child nodes that again contain one or more process nodes. The nodes that are
member of this group are the following.

• Deadlock This node consists of a single tag <deadlock/> and represents
the deadlock operator.

• (Parameterized) action prefix This node has several child nodes that are
represented in the following diagram.

The process that follows the action prefix is represented by the sister node
of the action prefix node.

• Symbolic trajectory prefix The child nodes for this node are represented in
the following diagram.

The process that follows the action prefix is represented by the sister node
of the action prefix node.

• Choice The binary choice operator provides a choice between two processes.
Each of these processes are grouped in a <case> node. Both case nodes
are children of the parent node <choice>. The make up of the choice node
is displayed in the following diagram.

• Superposition Like the binary choice operator, the binary superposition
has two <case> nodes that represent the two processes that the operator
operates on. Both case nodes have one or more child nodes from the group
of process nodes. The make up of the <superposition> node is displayed
in the following diagram.

24

• Parallel The binary parallel operator provides a parallel composition be-
tween two processes. Like the choice and superposition operator the
<parallel> node has two <case> child nodes that each hold one of these
processes. Between these two case nodes there can be optional <qualifier>
nodes that represent the qualifiers involved in the synchronizing of the two
processes. The make up the the parallel node is displayed in the following
diagram.

• Renaming The <rename> node has a child node that holds the original
name and one or more child nodes that hold the new names. The make
up of this node is displayed in the following diagram.

• Hiding The hiding operator has one or more <qualifier> nodes that hold
the names of the qualifiers and/or actions that are to be hidden. These
qualifier nodes are followed by one or more process nodes that form the
process in which the qualifiers are hidden. All these nodes are children of
the <hide> node that represents the entire operator. The make up of the
hiding operator is displayed in the following diagram.

• Recursion The recursion operator is represented by the <recursion> node.
This node has a <name> child node that holds the name of the process that
is called. This child node can be followed by the optional <parameter>

25

nodes that hold any parameters that are passed to the recurring process.
The make up of the recursion node is displayed in the following diagram.

• Predicate prefix The predicate prefix holds its expression between its start-
ing <guard> node and accompanying closing tag.

Note that restrictions on the possible combinations of the BHPC operators
are enforced by the parser and/or checker.

Trajectory definition

The trajectory definition node <trajectorydefinition> represents continuous
behaviour of the model. This node has several child nodes that represent the
various properties of the trajectory definition. Several child nodes of the tra-
jectory definition have child nodes of their own. The complete structure of the
trajectory definition node is displayed in the following diagram. These nodes
have a simple structure and are therefore considered trivial and need no further
explanation.

3.4 Parser generation

The parser is created using the tool ANTLR [ant]. This tool can generate Java
or C++ code for lexographical analysers, parsers and tree walkers. For each

26

one of these objects the tool needs an EBNF specification defining the keywords
and syntactic structure of the target language.

These objects can be used sequentially to create an application which can
parse a given language and perform certain actions such as checking for semantic
errors and generating output.

3.4.1 Encountered problems

This paragraph will describe which problems where encountered during the
development of the parser and how these problems where solved.

Parenthesis

The use of parenthesis in the language introduces different meanings of content
between the parenthesis. Take for example the following two processes:

(a + b).stop
(A + B)

The content in the first process is clearly meant to be used as action prefixes
and unfolding the process would lead to a.stop + b.stop. The other process
however is meant to be used as a choice between two recursions and would lead
to A + B. The difference between these two meanings can be deducted from
the dot directly after the closing parenthesis. If this dot is present the content
should end with a prefix. And of course in the case of branching between the
parenthesis all branches should end with a prefix. When the dot is not present
all branches between the parenthesis should be complete processes.

This difference in meaning caused problems with the parsing since this be-
haviour would lead to branching inside the parser which would lead to quite
some redundancy in the parser specification. The current implementation al-
ready has troubles with distinction between recursion and an action prefix since
both start with an IDENTIFIER. To determine the difference the parser checks
for a leading dot after the IDENTIFIER. When this dot is present it is an action
prefix and otherwise recursion.

The parenthesis problem is solved in the checker and generator classes. These
classes are fit with a boolean variable which tells whether a complete process
is expected or not. From the initial iteration from the process definition is
variable is initialized to the value true. When, during the parsing of the AST,
parenthesis are found it is checked whether these parenthesis are followed by a
dot. In the case of a dot the variable for the further recursion is changed to
false. In the other case, when the dot is present, the variable for the further
recursion is changed to true. The only place where the variable is used is in the
recursion rules. When the variable is true the recursion is handled as recursion
and when the variable is set to false the recursion is handled as an action prefix.

3.5 Examples

This section will show ASCII BHPC models for the thermostat and bouncing
ball examples from examples 2.5.1 and 2.5.2.

27

Example 3.5.1 (Thermostat) When the thermostat BHPC model shown in
example 2.5.1 is rewritten to ASCII BHPC the output will be the following:
actions : on , o f f
qual i f i ers : l
constants : K := 0 . 8 , h := 50 , tempMin := 10 , tempMax := 20 ,

tempOff := 18 , tempOn := 12

i n i t i a l process ThOn(10)
process ThOff (l 0) ˆ=

[l | phiOf f (l 0) e x i t s l >= tempMin , l < tempOn] . on .ThOn(l)
process ThOn(l 0) ˆ=

[l | phiOn (l 0) e x i t s l >= tempOff , l < tempMax] . o f f . ThOff (l)
signal phiOf f (l 0) ˆ=

{ l : (0 , t] −> R | l (0) := l0 , der (l) = −K ∗ l }
signal phiOn (l 0) ˆ=

{ l : (0 , t] −> R | l (0) := l0 , der (l) = K ∗ (h − l)}

Example 3.5.2 (Bouncing ball) When the bouncing ball BHPC model shown
in example 2.5.2 is rewritten to ASCII BHPC the output will be the following:
qual i f i ers : h , v
constants : c := 0 . 9 , g := 9 .8
actions : bounce

i n i t i a l process BB(10 , 0)
process BB(h0 , v0) ˆ=

[h , v | phi (h0 , v0) e x i t s h <= 0 , v < 0] . bounce .BB(0 , −c ∗ v)
signal phi (h0 , v0) ˆ=

{h , v : (0 , t] −> R | h (0) := h0 , v (0) := v0 ,
der (h) = v , der (v) = −g , h >= 0}

28

CHAPTER 4

Modelica and hybrid systems

4.1 Introduction

Modelica is an object-oriented modelling language for complex physical systems
developed by the Modelica Association [modb]. The Modelica Association is a
non-profit organisation founded for this purpose. Its aim is to facilitate simula-
tions for complex multi-domain applications.

This chapter will describe the basics of Modelica. After the basics we will
continue with a description of the StateGraph library followed by a description
of how the StateGraph library, together with some additional Modelica code
can be used to simulate hybrid automata.

4.2 Language

This paragraph will describe the language details of the Modelica language.
Since the language is extensive in size we will focus on the basics of the language
and the parts used for the BHPC translator.

4.2.1 Basic language elements

Physical system can be described by a system of equations; differential equa-
tions, algebraic or discrete ones1. Modelica supports these equation systems
directly taking away the need to convert these systems to an algorithm. When
this functionality is used these equations will be placed in the equation section
of the model. Typically a model starts with the keyword model followed by the
name for the model. After the model name variables can be declared followed
by an equation and/or algorithm section.

1A differential equation is an equation in which the derivatives of a function appear as
variables [Wikb].

29

In the declaration section components can be declared by an optional spec-
ifier, the component type, the name for the component, an optional modifica-
tion and finally the delimiter ;. Modelicas basic component types include the
Boolean, Integer, Real and String. These basic types can be used to create
models of more complex types such as a electrical resistor which can then be
used by other models. A component declaration can be preceded by a specifier
like constant or parameter. The constant specifier indicates that the compo-
nent is constant and cannot be changes. The parameter specifier indicates that
the value of the quantity is constant during simulation runs. It can be modi-
fied when a component is reused and between simulation runs. The component
can be followed by a modification to change the value of the component or its
attributes.

A few basic declarations:

Real u, y(start=1);

parameter Real T=1;

The first line shows the declaration of two components u and y with the type
real. The component y is followed by a modification which sets the initial value
to 1; The second line shows the declaration of a parameter T with the type Real
and another form of modification setting the default value of the component to
1.

Example 4.2.1 (Basic Modelica Model) The following model describes the
behaviour of an electrical resistor.

model Resistor

Pin p, n;

parameter Real R "Resistance";

equation

R*p.i = p.v - n.v;

n.i = p.i;

end Resistor;

Equations are composed of expressions on both the left and right hand side
of an equality statement. The simulation will, in most cases, manipulate the
equations symbolically to determine their order of execution and which com-
ponents in the equation are inputs and which are outputs. Time derivative is
denoted by the operator der().

In order to facilitate reuse Modelica offers a class concept similar to that of
programming languages. It is used for many purposes such as model compo-
nents, connection mechanisms, parameter sets, input-output blocks and func-
tions. In order to make Modelica classes easier to read and to maintain special
keywords have been introduced for such special uses. The keywords model,
connector, record, block, function, type and package apply certain restric-
tions to the classes like records are not allowed to contain equations.

The Pin types in example 4.2.1 are of the special type connector. This type
can be used with the connect operator which specifies the interaction between
two components. The connect operator generates equations taking into account
what kind of quantities that are involved. The connector class can be used to
define these quantities.

30

Example 4.2.2 (Electrical pin) An electrical component often has two pins
to connect to other components. Such a pin is described by the following con-
nector class.

connector Pin

Voltage v;

flow Current i;

end Pin;

A connection connect (Pin1, Pin2) connect the two pins such that they
form one node. This implies two equations, namely Pin1.v = Pin2.v and
Pin1.i + Pin2.i = 0. The first equation indicates that the voltages on both
branches connected together are the same. The second equation corresponds to
Kirchhoff’s current law stating that the currents sum to zero at a node. The
sum-to-zero equations can be generated with the prefix flow. 2

4.2.2 Inheritance

Just like in any other object oriented programming language Modelica offers a
way to inherit the properties from another class and extends its behaviour. This
can be done by writing the keyword extends followed by the name of the parent
class and the delimeter ; as the first line in the declaration block. The new class
will then inherit all properties of the parent class. Multiple inheritance is also
supported and can be achieved by placing several extends statements.

Example 4.2.3 (Modelica inheritance) The following example shows an In-
ductor model which has the OnePort class as parent.

model Inductor

extends OnePort;

parameter Real L(unit="H")

equation

L*der(i) = v;

end Inductor;

It is also possible to denote a class for reuse only. Such a class can not
be instantiated and can only be used in an extends statement. This notion
is similar to abstract classes in many programming languages. By placing the
keyword partial in front of the class keyword (or the model, connector, etc
keyword) a class is declared for reuse only.

Example 4.2.4 (Modelica partial model) The following example shows the
model OnePort which is defined as a partial model and can only be used in an
inheritance structure.

partial model OnePort

Pin p, n;

Voltage v;

equation

v = p.v - n.v;

p.i + n.i = 0;

end OnePort;

31

4.2.3 Repetitions, algorithms and functions

Modelica also offers support for loop constructions using the for and while
constructs commonly present in ordinary programming languages. We assume
the reader is familiar with the concepts of these constructs and will not go into
detail on these operators. Examples 4.2.5 and 4.2.6 show the syntax for these
operators and how they can be used.

Example 4.2.5 (Modelica for loop) This example shows a Modelica code
fragment running a for loop from 1 to n.

for i in 1:n loop

xpowers[i+1] = xpowers[i]*x;

end for;

Example 4.2.6 (Modelica while loop) This example shows a Modelica code
fragment running a while loop until the condition i < 10 is not longer satisfied.

while i < 10 loop

i = i + 1;

end while;

The for operator as well as the while operator can be used in the equa-
tion section as the algorithm section. This last section is used when it is more
convenient to use assignment statements in stead of the equation mechanism.
Especially for digital controllers it is more natural to model with ordered as-
signment statements since the actual controller will be implemented in such a
way.

A Modelica algorithm is a function in the mathematical sense. That is,
whenever such an algorithm is used with the same inputs, the result will be
exactly the same. If a function is called during continuous integration this is an
absolute prerequisite. Otherwise the mathematical assumptions on which the
integration algorithms are based on, would be violated.

One of the class specializations is a function. A function has input values
and output values. The components for the input and output can be marked
with the keywords input and output. A function has the restriction that no
internal states are allowed.

Example 4.2.7 (Function with algorithm section) This example shows a
Modelica function with multiple inputs and outputs. The calculations are done
in an algorithm section.

function Circle

input Real angle;

input Real radius;

output Real x;

output Real y;

algorithm

x := radius*Modelica.Math.cos(phi);

y := radius*Modelica.Math.sin(phi);

end Circle;

Modelica also allows external functions which are defined outside the Mod-
elica language. The function itself can be defined in any language supported by
the simulator like e.g. C code. The body of an external function is marked with
the keyword external as shown in example 4.2.8

32

Example 4.2.8 (External function) This example shows an external func-
tion.

function log

input Real x;

output Real y;

external

end log;

4.2.4 Conditional models

Modelica has a number of language constructs to create conditional models.
The if-then-else statement can be used to change the behaviour of a modal
according to certain conditions. The if-then-else statement can be used with two
different syntax styles. One is the syntax style used by almost all imperative
programming languages and written as

"if" condition "then"

statement(s)

"else"

statement(s)

"end if"

The other syntax is much like the conditional expression operator in the
language C/C++. This operator is typically used on the right hand side of an
assignment statement to

Example 4.2.9 (Modelica if-then-else statement) This example shows the
use of the if-then-else statement.

block Controller

input Boolean simple=true;

input Real e;

output Real y;

protected

Controller1 c1(u=e, enabled=simple);

Controller2 c2(u=e, enalbed=not simple);

equation

y = if simple then c1.y else c2.y;

end Controller;

The output of the model is determined by the input parameter simple. 2

The actions to be performed at events are specified by a when statement.
The statements in the body of the when statement are activated once every
time instantaneously when the condition is satisfied. These statements will not
be executed again until, after a period during which the condition is no longer
satisfied, the condition is again satisfied. A special operator can be used in com-
bination with the when statement. In certain conditions it is necessary to change
the value of component during integration. However when the value is changed
in the ordinary fashion integration will fail. The reinit operator effectively
removes the previous equation defining statevariable and adds a new equation
statevariable with the value provided to the operator. Neither the number of

33

variables nor the number of equations are changed during this process. Mod-
elica’s single assignment rule is therefore not violated. The single assignment
rule dictates that the number of equations is the same as the number of assign-
ments. Anything else would create ambiguity and the solver would not be able
to determine what value a variable should have at a certain point in time.

Example 4.2.10 (Modelica when statement) This example shows the use
of the when statement.

equation

when x < 5 then

reinit(x, 0);

end when;

When the condition x < 5 is satisfied the statement y = 7 - 2 * x is exec-
tuted. 2

When statements in equations sections are allowed to have only one branch.
However, in algorithm sections, elsewhen branches can be added. This is usefull
to order priorities between discrete actions. When multiple conditions become
true as the same event instant only the condition with the highest priority will
be executed.

Example 4.2.11 (Modelica elsewhen statement) This example shows the
use of the elsewhen statement.

algorithm

when h1 < hmax then

open := true;

elsewhen pushbutton then

open := false;

end when;

The condition h1 < hmax has a higher priority as the condition pushbutton.
When both conditions become true at the same event instant only the statement
open := true will be executed. 2

4.2.5 Annotations

In addition to the mathematical model with variables and equations Modelica
offers language constructs to represent the model graphically. The language
constructs are called annotations and are typically used in three separate con-
texts:

• Annotations associated with a component typically specify the position
and size of the component.

• Annotations of a class specify the graphical representation of its icon,
diagram and common properties such as the local coordinate system.

• Annotations associated with connections typically specify route and colour
of the connection line.

34

Annotations are usually used by various modelling tools to represent the
model in a graphical manor. Typically components can be easily dragged and
dropped in the model and connections can be easily made by visually connecting
the pins of one component to that of another. This approach makes modelling
much easier and faster.

Example 4.2.12 (Modelica annotations) This example shows a simple elec-
trical circuit consisting of a power source and a resistor. The components and
connections have annotations specifying the place of the components and the
route of the connections within the model.

model Unnamed

annotation (uses(Modelica(version="1.6")), Diagram);

Modelica.Electrical.Analog.Sources.SineVoltage

SineVoltage1(V=220, freqHz=50)

annotation (extent=[-74,8; -54,28]);

Modelica.Electrical.Analog.Basic.Resistor

Resistor1(R=1000)

annotation (extent=[-76,48; -56,68]);

equation

connect(SineVoltage1.p, Resistor1.p) annotation

(points=[-74,18; -90,18;

-90,58; -76,58],

style(color=3, rgbcolor={0,0,255}));

connect(Resistor1.n, SineVoltage1.n) annotation

(points=[-56,58; -40,58;

-40,18; -54,18],

style(color=3, rgbcolor={0,0,255}));

end Unnamed;

[moda]

4.3 StateGraph library

Since Modelica version 2.1 the StateGraph library is part of the standard Mod-
elica package and can be used to model discrete and reactive systems in a
convenient way. A StateGraph is defined as an enhanced finite state machine.
Together with some additional Modelica code this library can be used to simu-
late hybrid automata. However since neither the StateGraph library or Modelica
has been formally defined it is not clear to what extent this combination imple-
ments hybrid automata. This paragraph will describe the StateGraph library
and its components. The next paragraph will describe how the library can be
used to simulate hybrid automaton with additional Modelica code.

Steps

A step represents a state within the finite state machine. When a step is active
the Boolean variable active is true, and false otherwise. InitialStep objects
are used to denote the starting point for the system. At the initial time all
regular steps are deactivated. The InitialStep objects are activated at the initial
time. InitialStep objects are represented by a double box while regular steps
are represented by a single box.

35

Transition

A step can have multiple incoming and outgoing transitions. Transitions are
used to change the state of the finite state machine. When the transition is
active the previous state will be deactivated and the next state will be activated.
Transitions have a Boolean expression condition which acts as a guard on the
transition. Whenever this condition is true the transition can fire. Transitions
also have a timer which is disabled by default, when this timer is activated
the firing of the transition is delayed by the amount of time indicated by the
waitTime variable. This property can be used to counteract problems arising
under certain conditions. This is explained later in chapter 4.5.

In the case when multiple transitions can be fired the transitions with the
highest priority is chosen from the set of active transitions. The priority is
determined by its place in the array of outgoing transitions.

Parallel

The Parallel components can fire multiple transitions in parallel. Although it
would seem that this component can be easily used to simulate the parallel
BHPC operator it comes with quite some restrictions. Since Modelica does
not support dynamic allocation of objects recursion can not be supported. A
process with two parallel recursive calls to the same process will result in an
untranslatable situation. The parallel component also requires the multiple
paths that it starts to come together at some point. The last transitions of these
paths can only be fired simultaneously. Due to these restrictions the parallel
BHPC operator is not implemented during this project, although it might be
subject for future work.

4.4 Simulating hybrid automata

This paragraph will describe how the StateGraph library together with some
additional Modelica code can be used to simulate a hybrid automaton. This is
done by relating the elements of the hybrid automaton to components of the
StateGraph and/or additional Modelica code.

A hybrid automaton [Hen96] is a formal model for a mixed discrete-continuous
system. Hybrid automata are popular ways to model and analyse hybrid sys-
tems. A hybrid automaton combines discrete and continuous behaviour. Dis-
crete changes are described by transitions which are decorated with action
names, guards and assignments. The guards define when a transition is ac-
tive and can be taken, assignments define changes of the continuous state made
by the transition. The action names are used as references in synchronization.
Continuous behaviour is described by locations, flow conditions define contin-
uous changes of the continuous state and are usually provided in the form of
differential equations and invariants. The invariants restrict evolution in the
location.

Definition 4.4.1 (Hybrid Automaton) A hybrid automaton is a collection
H = (X, L, Init, Inv, f, E, Guard,Assign, Σ) where:

• X ⊆ Rn is the continuous state space and x = (x1, x2, ..., xn), where
xi ∈ R, i = 1, n, represents the continuous dynamics.

36

• L is a finite set of locations.

• Init ⊆ L× Rn is a set of initial location state pairs.

• Inv : L → 2X assigns to each location l an invariant to be satisfied by the
state x while in the location l.

• f : L → (X → Rn) assigns to each location l a continuous vector field f1

such that the state x ∈ X should satisfy d
dtx = f1(x).

• E ∈ L× L is the set of transitions, also called switches.

• Guard : E → 2X assigns to each transition a guard that has to be satisfied
by the state x if the transition is taken.

• Assign : E → (X → X) assigns to each transition an assignment that
may alter the state x when the transition is taken.

• Σ is a set of transition labels. We assume labelling function lab : E → Σ
and refer to transitions by their labels (assuming uniqueness). 2

Figure 4.1: Thermostat hybrid automaton

Example 4.4.1 (Thermostat) A hybrid automaton of the thermostat from
example 2.5.1 is shown in figure 4.1. The off location of the automaton resembles
the states in which the heating is turned off. In this location the temperature
evolves according to the equation d

dt l = K(h−l). When the temperature is below
tempOn the transition leading to the On location will become active. From this
point the system non-deterministically chooses to take the transition or remain
in the Off location. However when the system repeatedly does not take the
transition ultimately the invariant l > tempMin will become true forcing the
system to take the transition.

When the transition is taken the action on will occur and the automaton
will jump to the On location where the temperature evolves according to the
equation d

dt l = −Kl. The transition to the Off state is essentially the same as
the transition to the On location and is not explained further. 2

4.4.1 Basics

The basic structure of the hybrid automaton is a directional graph (V,E) where
the node v ∈ V represents a location and the edge e ∈ E represents a transition.

37

This structure can be easily represented by the StateGraphs step en transition
components where every v ∈ V is represented by a step and every e ∈ E
is represented by a transition. The set of initial locations Init ⊆ V can be
represented by using the StateGraphs initial step component instead of the
regular step.

4.4.2 Decorations

The hybrid automaton decorations are, with the exception of the guard, not
present in the StateGraph library and therefore need to be simulated by addi-
tional Modelica code. The following subsections describe for each decoration
how this can be achieved.

Guards

The guard statements g ∈ Guard can be represented by the condition property
of the StateGraphs transition component. When a guard statement is absent
the default value true is used which will have the same behaviour namely that
the transition is always enabled.

Transition labels

Transition labels are used for synchronization between parallel automata. As
described in chapter 5.3 simulation of parallel composition is not feasible in the
Modelica language.

Since the discrete actions, other then synchronization, have no real execution
during simulation it is sufficient to show the firing of the actions. Since the
output of Modelica is in the form of a plot we have chosen to assign an Integer
variable for each action which will be incremented on each firing of the action.
Then the plot will show when and how many times the action was fired. The
StateGraph library provides no support for discrete actions. However the library
has the property that the automaton will always leave a location as soon as an
active transition is available. By checking if a transition is enabled and if the
location preceding the transition is currently active we can detect whether a
transition is taken or not. When such a transition is taken and an action is
present on the transition the variable assigned to the action can be increased.
This functionality is represented by the following Modelica code.

when(previousLocation.active and transition.Condition)

actionVariable = actionVariable + 1;

end when;

In the case when multiple transitions are enabled the StateGraph library uses
a priority system to determine which transition to take. In contrast to the
StateGraph library the above code will fire the transitions on all active transi-
tions. However this will not be a problem since the hybrid automaton will be
constructed such that only a single transition will be active at all times. This
concept is explained in the section Non-determinism.

Invariants

Invariants in combination with guards provide a time window in which a tran-
sition can be taken in a non-deterministic manor. Since Modelica does not

38

support non-determinism an alternative has been devised. This alternative is
described in the section Non-determinism.

Example 4.4.2 (Thermostat) Take the off location from the hybrid automa-
ton shown in figure 4.1. The invariant l > tempMin will force taking the tran-
sition at the point when this condition is met. However the guard l < tempOn
on the transition to the On state will become active when the guard condi-
tion is met. When tempMin 6= tempOn these conditions are met at different
points in time creating a window in which the transition can be taken non-
deterministically. The simulation of the invariant, when entering the location,
will determine a condition l = k such that tempMin < k < tempOn and replace
the guard on the transition with the guard l = k. 2

Continuous vector fields

Continuous vector fields can be simulated by creating an if-then-else branching
structure for each qualifiers. The conditions in the branch are made up from
the locations in the automaton. When a qualifier is influenced by some state
this location is placed as a condition in the branching. In all other cases, where
the current state does not influence the qualifier the value of the qualifier will
remain the same. Such a branching structure looks like the following pseudo
code:

der(qualifierX) =

if state1.active then

expression for state1;

else if state3.active then

expression for state3;

else

0;

The branches are placed in the equations section of the model.

Assigns

Assignments can be placed as a decoration on a transition. When the transition
fires the assignment is to be executed. The firing of this transition can be
easily detected by checking if the previous location is active and the transition
is enabled. Due to the lack of non-determinism in Modelica and the semantics of
the StateGraph library it is guaranteed the transition will be taken when those
conditions are satisfied. In order to avoid any consistencies in the integration
process the assignments are to be executed using Modelica’s reinit operator.

Example 4.4.3 (Assignment simulation) The following Modelica code de-
tects when the transition ThOn_Transition1 fires and reinitializes the qualifier
l to the value stored in the variable phiOn__l0.

when ThOn__Step1.localActive and ThOn__Transition1.condition then

reinit(l, phiOn__l0);

end when;

These detections are placed in the algorithm section of the model.

39

Non-determinism

Modelica’s single assignments rule does not allow the construction of any non-
determinism in the code. The non-deterministic behaviour of BHPC is there-
fore quite hard to simulate. One way to achieve a crude simulation of non-
determinism is to use a random function to create variation on the placed where
non-determinism is required.

The random function can be obtained by creating an external function which
uses the C/C++ random function. This external function looks as follows:

function random

output Real r;

external "C";

annotation(

Include="#include <stdlib.h> \n

double random(void) \n

{ \n

srand(time(NULL)); \n

return (double)rand() / (double)RAND_MAX; \n

}"

);

end random;

The function above defines a variable r of the type Real which receives the
output of the function. The function itself is defined directly in an annotation
rather than an external file. The code initializes the random generator and
returns a value between 0 and 1.

The above code is not enough to obtain a random function in Modelica. The
modelica simulator, Dymola, that is used for this project optimizes the code and
makes the result of the function constant over time. In order to counter this
optimization a variable rnd is introduced which receives a value influenced by
the output of the random function.

The function to determine the value for this variable has been set to the
following

rnd = (sin(time/(random()/100) + random()) + 1)/2)

Due to time constraints this simple function is used to simulate non-determinism.
However to obtain more reliable results this function should be replaced by an-
other with better random results.

There are two BHPC operators that exhibit non-deterministic behaviour,
namely the choice and trajectory prefix operators. The method of simulation
for these two operators are described in the following chapters.

Multiple outgoing transitions
Non determinism for multiple outgoing transitions is obtained by making the
conditions for the transitions dependent on the rnd variable. Since the value
of this rnd variable changes over time the transitions are continuously disabled
and enabled during the simulation. The situation when more than one transi-
tions is enabled is avoided by making the conditions mutually exclusive. For
two transitions the exact conditions will be ”rnd >= 0 and rnd < 0.5” and
”rnd >= 0.5 and rnd < 1” for respectively transitions 1 and 2. Since the range

40

of possible values is evenly distributed among the transitions, every transition
will have an equal change of being enabled.

Invariants with guards
Invariants in combination with guards provide a time window in which a tran-
sition can be taken in a non-deterministic manner. This behaviour will have to
be simulated with custom Modelica code since the StateGraph library will take
a transition as soon as it becomes enabled.

The only way to let the transition fire some time after it is enabled is to
delay the point where the transition will be enabled. This can be achieved by
changing the guard to a random value that lies within the regions of values
determined by the expression of the guard and the expression of the invariant.

Example 4.4.4 (Non-determinism in a thermostat) The thermostat from
example 2.5.1 has a non-deterministic exit from its two trajectory prefixes.
When the temperature in the room is between the minimum and on temper-
atures the heating can be turned on. When the temperature is between the
maximum and off temperatures the heating can be turned off. This example
will show the code that handles the first situation where the thermostat is turned
on.

The following code shows the declaration of the transition that follows the
location where the thermostat is in the off state.
Modelica . StateGraph . Trans i t i on ThOf f Trans i t ion3 (

cond i t i on=l > NonDetermin i s t i c 0 − 0.0001 and
l < NonDetermin i s t i c 0 + 0 . 0 0 01) ;

The guard for the transition has been set to the condition that the temper-
ature is more or less equal to the temperature defined by the variable
NonDeterministic__0. Modelica does not allow the equal operators on variable
of the type Real, therefore a small range for the variables value is used.

The value of the variable NonDeterministic__0 is set by the following code
that is placed in the equation section of the model.
NonDetermin i s t i c 0 = getvaluebetween (tempMin , tempOn , rnd) ;

The value is set to a value between the minimum temperature and the on
temperature. The exact value is determined by the function getvaluebetween.
The contents of this function is the following.
f unc t i on getvaluebetween

input Real min ;
input Real max ;
input Real rnd ;
output Real r e s u l t ;

a lgor i thm
r e s u l t := min + ((max − min)∗ rnd) ;

end getvaluebetween ;

The function chooses a random value by using the rnd variable that holds a
random value. 2

41

4.5 Restrictions

At some point in every model with a recursion loop time must advance. The
only operator during which time expires is the symbolic trajectory prefix. When
all the symbolic trajectory prefixes in the model contain exit conditions which
allow the system to exit the trajectory no time will advance in the entire model.
When no time expires during simulation, the simulation cannot end. When such
a situation occurs the Dymola simualtor will output the following message:

ERROR: Finding consistent restart conditions failed at time: 0

This problem can probably be corrected by changing the exit conditions.
This restriction is actually quite useful since BHPC does not allow trajectories
in which time does not advance. However when the model contains multiple
symbolic trajectory prefixes and time does advance in one of them the system
is able to simulate it and might produce unwanted results.

An alternative for fixing this problem is to active the timer of one of the
transitions and set the delay at a value greater then 0.

4.6 Conclusions

Modelica is a rich language for modelling complex physical systems. There
are a large amount of libraries available for Modelica of which one contains
the StateGraph library. This library is designed for modelling and simulation
of discrete and reactive systems. With the addition of some auxiliary Modelica
code this StateGraph library can be used to simulate hybrid automata. However
there are some restrictions to the hybrid automata that can be simulated using
this construction.

42

CHAPTER 5

The translator

5.1 Introduction

This chapter will describe the translator in detail. First we define a feasible sub-
set of BHPC which on which the algorithm will operate. After this definition we
will go into detail about the algorithm. The algorithm takes a BHPC specifica-
tion and iterates through its operators. Each operator is translated into hybrid
automaton fragments by means of mappings. When combined these fragments
form a hybrid automaton. This hybrid automaton is then modelled in Modelica
by using the StateGraph library and some additional Modelica code. Finally
we will show some examples followed by conclusions.

5.2 Restrictions in simulation

Unlike other object oriented programming languages Modelica does not sup-
port dynamic instantiation of objects. This makes it hard or even infeasible to
simulate a parallel composition. Take for example the following BHPC process

P , P || P

During simulation the process P will be instantiated. Next the parallel
operator will be executed resulting in a total of two P processes. When the
parallel operator of these two processes are executed the system will have a
total of 4 P processes. Every iteration the number of processes will double. In
order to simulate this behaviour dynamic instantiation of objects is required.

Apart from the restrictions mentioned before the StateGraphs parallel com-
ponent has the property that every branch of a parallel execution will have to be
finished before it can continue making it hard to even simulate simple parallel
composition.

43

5.3 Subset of the BHPC language

Due to the restrictions mentioned in section 5.2 a feasible subset of the BHPC
language is chosen. Although the parallel operator is not implemented the
chosen subset suffices for an interesting set of operators. This subset is defined
as follows and will be referred to as Basic BHPC.

Definition 5.3.1 (Basic BHPC) The subset of the BHPC operators sub-
jected to translation to Dymola specifications are defined in the following Backus
Naur form notation.

B ::= 0 | a.B | [t1, ..., tm | Φ ↓ Pred ⇓ Predexit].B |

〈Pred〉.B | B1 + B2 | P

• 0 is a deadlock.

• a.B is an action prefix where a ∈ A is a discrete action name and B is a
process. It denotes discrete transitions in the hybrid automaton.

• a(v : V).B(v) is a parameterized action prefix where a ∈ A is a discrete
action name, v ∈ V is a parameter and B is a process. It denotes discrete
transitions in the hybrid automaton.

• [t1, ..., tm | Φ ↓ Pred ⇓ Predexit].B is a symbolic trajectory prefix where
t1, ..., tm are trajectory qualifiers, Φ is the set of trajectories, Pred and
Predexit are sets of predicates and B is a process.

• 〈Pred〉.B is a guard statement where Pred is the predicate to be evaluated
and B is a process.

• B1 + B2 is a choice where B1 and B2 are processes.

• B , P is a recursive equation. 2

5.4 Algorithm

The translation algorithm converts a BHPC model into Modelica code which
makes use of the StateGraph library as described in chapter 4.3. First we will
show how the algorithm constructs a hybrid automaton from a BHPC specifi-
cation. After that we will show how the hybrid automaton can be translated to
Modelica by using the StateGraph library and additional Modelica.

5.4.1 Translating BHPC to a hybrid automaton

The algorithm converts a BHPC model with mappings of a hybrid automaton
fragment on the BHPC operators. The used notion of a mapping is a fragment
of a hybrid automaton which exhibits the same behaviour as the BHPC operator
it corresponds with.

The algorithm is recursive and follows the order of the internal representation
it is provided as input. In turn the internal representation has the same structure
as the abstract syntax tree constructed from the BHPC specification.

44

Algorithm 5.4.1 (Abstract translation) The following abstract algorithm
creates a hybrid automaton from a BHPC specification. The algorithm makes
use of a number of dummy cases. Under some conditions these dummy steps
can be removed, however for readability these optimisations are not included in
the abstract algorithm.

translateBHPC (Process B)
{

Add Locat ion L to Hybrid Automaton ;
Add Trans i t i on T to Hybrid Automaton ;
doProcess (B, T) ;

}

doProcess (Process B, Trans i t i on s T)
{

case Action p r e f i x AP :
Add ac t i on to t r a j e c t o r y T;
doProcess (B\AP, T) ;

case Tra jec tory p r e f i x TP :
Add Locat ion L to Hybrid Automaton ;
Connect a l l t r a n s i t i o n s in T to L ;
Set t r a j e c t o r y evo l u t i on s o f TP to L ;
Add outgoing t r a n s i t i o n T1 to L ;
Set e x i t c o nd i t i o n s o f TP as guard to T;
doProcess (B\TP, T1) ;

case Guard p r e f i x GP :
Add dummy Locat ion L to Hybrid Automaton ;
Connect a l l t r a n s i t i o n s in T to L ;
Add outgoing Trans i t i on T1 to L ;
Set p r ed i c a t e o f GP as guard to T1 ;
Add outgoing Trans i t i on T2 to L ;
Set negated p r ed i c a t e o f GP as guard to T2 ;
Connect T2 to Deadlock l o c a t i o n ;
doProcess (B\GP, T1) ;

case Choice C :
Add dummy Locat ion L to Hybrid Automaton ;
Connect a l l t r a n s i t i o n s in T to L ;
Add outgoing Trans i t i on T1 to L ;
doProcess (C. Al te rnat ive1 , T1) ;
Add outgoing Trans i t i on T2 to L ;
doProcess (C. Al te rnat ive2 , T2) ;
i f (B\C not empty) doProcess (B\C, {T1 , T2 }) ;

case Recurs ion R :
Connect a l l t r a n s i t i o n s in T to F i r s t Locat ion o f

t a r g e t p roce s s ;
case Deadlock D :

Connect a l l t r a n s i t i o n s in T to Deadlock l o c a t i o n ;
}
The algorithm processes a BHPC specification operator by operator and expands
the Hybrid Automaton when necessary. The operators which are followed by

45

another operator always leave a dangling transition. A dangling transition is a
transition for which the destination is not defined yet. The destination for the
dangling transition will be determined during the next iteration. The opera-
tors which are not followed by another operator will connect the last dangling
transition to a location. 2

Figure 5.1: Internal representation for example 5.4.1

Example 5.4.1 Let B be the following BHPC specification

Example , [x | Φ1 ⇓ l > 10].action.stop + [x | Φ2 ⇓ l 6 10].〈l 6 10〉.Example

46

During the translation step the Internal Representation will be built as shown
in figure 5.1.

• Step 1: First the algorithm will create a dummy state and dangling tran-
sition which the operators can use to expand the hybrid automaton.

• Step 2: The first iterator of the doProcess function will process the choice
operator. It will add another dummy location to the automaton and will
execute two recursive calls, one for each alternative.

• Step 3: The first alternative from the choice operator in step 2 is the
trajectory prefix [x | Φ1 ⇓ l > 10]. The algorithm will create a location
for the trajectory prefix and will set the evolutions to those defined in
Phi1. It will also add an outgoing transition to this location with the exit
conditions l > 10 as guard on the transition. It will then do a recursive
call for the operator which follows this trajectory prefix.

• Step 4: The next operator to be processes is the action prefix action.
The algorithm will put the action on the dangling transition it received as
input. Next it will do a recursive call for the operator which follows the
action prefix.

• Step 5: The last operator of the first alternative of the choice operator
is the deadlock operator. It will connect the dangling transition to the
deadlock location of the hybrid automaton.

• Step 6: The first alternative of the choice operator is completed. The
algorithm will continue by adding a second outgoing transition to the
dummy location which was added for the choice operator. This transition
will be used to connect the second alternative of the choice operator.

• Step 7: The first operator of the second alternative is the trajectory prefix
[x | Φ2 ⇓ l 6 10]. The algorithm will create a location for the trajectory
prefix and will set the evolutions to those defined in Φ2. It will also add
an outgoing transition to this location with the exit conditions l 6 10 as
guard on the transition. It will then do a recursive call for the operator
which follows this trajectory prefix.

• Step 8: The next operator to be processed is the guard operator 〈1 6 10〉.
The algorithm will add a dummy location to the automaton and will
connect the last dangling transition to this location. It will then add two
outgoing transitions to this dummy location. One will have the guard
〈1 6 10〉 and the other will have the negation of this guard. The last
location with the negated guard will be connected to the deadlock location.
The other will be provided to the next operator through the recursive call
that follows.

• Step 9: The last operator to be processed is the recursive call Example.
This will connect the last dangling transition to the first location of the
process Example.

47

• Step 10: All alternatives of the choice operator are processed. The choice
operator is not followed by other operators and therefore the algorithm
will terminate with a hybrid automaton as result. 2

In the algorithm there is specific code for each operator, these code fragments
can be considered mappings of hybrid automaton fragments on the BHPC oper-
ators. When these fragments are combined they will form the hybrid automaton
for the BHPC specification.

5.4.2 Translation mappings

The operators of Basic BHPC can be separated into two groups, namely those
operators that are followed by another operator and the operators which are not
followed by another operator. Both groups are places in sets by the following
definitions.

Definition 5.4.1 (Intermediate operators) The set of operators which are
recursive of nature and thus are always followed by another operator consist of
the operators

BHPCintermediate = {a.B, [ϕ].B,B1 + B2, 〈Pred〉.B}

Definition 5.4.2 (Ending operators) The set of operators which are not re-
cursive of nature and thus cannot be followed by another operator and as a
result mark the end of a specification consists of the following consists of the
operators

BHPCending = {0, P}

Definition 5.4.3 (Dummy location) A dummy location is a location in which
time does not pass. This condition is obtained by providing this location with
a single outgoing transition which is always enabled. 2

Process mapping

The process mapping is related to the very first part of the BHPC specification
of a model.

Definition 5.4.4 (Process mapping) The mapping creates a dummy loca-
tion. The outgoing transition of the dummy location is used by the BHPC
operators as input to expand the model.
Preconditions BHPC process definition: processname , B, no dangling tran-
sitions.
Postconditions BHPC process: B, one dangling transition. 2

Action prefix mapping

An action prefix takes a discrete transition in the system. Discrete changes,
in hybrid automata, are described by transitions from one location to another.
The action will be a decoration on the transition. Since the pre condition of
this mapping requires a dangling transition, a transition is already taken. This
transition however needs to be decorated with the action under evaluation.

48

Mapping 5.4.1 (Action prefix mapping) The action prefix operator will
take a discrete transition in the system by applying the following SOS rule.

a.B
a−→ B

The dangling transition already present in the hybrid automaton will be deco-
rated with the action a. The algorithm will continue to evaluate process B.
Preconditions The hybrid automaton under construction has a single dangling
transition, the BHPC process under evaluation is in the form a.B.
Postconditions The hybrid automaton under construction has a single dan-
gling transition, the next process for evaluation is B. 2

Symbolic trajectory prefix mapping

The trajectory prefix operator will take a set of trajectory Φ until Predexit is
satisfied and the trajectory can be completed. As long as Predexit and Pred
are both satisfied the trajectory can be ended non-deterministically. However
when Pred is violated the trajectory is forced to end. When the trajectory has
ended it will behave as process B. Continuous behaviour in a hybrid automaton
is described by a location. The algorithm will add a location to the hybrid au-
tomaton under construction, the continuous behaviour defined by the trajectory
under evaluation will be assigned to this new location. This location will also
receive the invariant Pred which determines whether the system can choose to
remain in the location or is forced to leave. The exit conditions Predexit deter-
mine whether the trajectory can be ended or not. An outgoing transition will
be added to the new location. This transition will be decorated with a guard
equal to the exit conditions. When the trajectory is complete the process can
continue through this transition.

Mapping 5.4.2 (Trajectory prefix mapping) Let transition tprev be the
dangling transition and let location lprev be the location tprev originates from.
Let the BHPC input be in the form [f | Φ ↓ Pred ⇓ Predexit].B.

In the two conditions when

• Predexit is not satisfied

• Predexit and Pred are both satisfied but the system chooses not to end
the trajectory

the system must continue the trajectories in Φ by applying the SOS rule

[ϕ].B
ϕ−→ B ϕ ∈ Φ

When the other cases then those appointed by the conditions above the
system will end the trajectory and continue as process B by taking an SOS rule
which is determined by process B.

The algorithm will add a location l ∈ L to the hybrid automaton and con-
nect the dangling transition to this location. Location l will be assigned the
continuous dynamics x1, ..., xn where xi ∈ R, i = 1, n and where xi ≡ t ∈ ϕW.
A single outgoing transition e ∈ E will be added to location l. Transition e
will be decorated with the guard g ∈ E → 2X , where g ≡ exitconditons After
completion of the trajectory the algorithm will continue to evaluate process B.

49

Preconditions The hybrid automaton under construction has a single dangling
transition, the BHPC process under evaluation is in the form [ϕ].B.
Postconditions The hybrid automaton under construction has a single dan-
gling transition, the next BHPC process for evaluation is B. 2

Choice operator mapping

The choice operator corresponds with a choice of outgoing transitions in a cer-
tain location. Due to the syntax of the Basic BHPC language this operator is
restricted to its binary form. This leads to the choice of two outgoing transi-
tions. This behaviour is simulated by introducing a dummy location with two
outgoing transitions.

Mapping 5.4.3 Let transition tprev be the dangling transition and let location
lprev be the location tprev originates from. Let the BHPC input be in the form
B1 + B2. By applying the following SOS rule the system will make a choice
between B1 and B2.

B1
a−→ B′

1

B1 + B2
a−→ B′

1

B2 + B1
a−→ B′

2

Let transitions tprev be the dangling transition and let location lprev be the
location tprev originates from. An equivalent behaviour to that as described by
the choice operator can be obtained by adding the following elements to the
hybrid automaton under construction.

• A location l ∈ L such that lprev
tprev−−→ l.

• A transition t1 such that l
t1−→ B1

• A transition t2 such that l
t2−→ B1

Preconditions The hybrid automaton under construction has a single dangling
transition tprev , the BHPC process under evaluation is in the form B1 + B2.
Postconditions The hybrid automaton under construction has two dangling
transitions t1 and t2, the processes B1 and B2 will be processed in parallel where
B1 will connect to t1 and B2 will connect to t2. 2

Guard prefix mapping

The guard operator checks whether the system satisfies a predicate. When this
predicate is satisfied the system will continue. When the predicate is not satis-
fied no SOS rules can be applied resulting in a deadlock state. For simulation
purposes it is decided to model a pre-determined deadlock as a separate state.
Therefore, in this case, the system will take a transition to a global deadlock
state.

Mapping 5.4.4 (Guard prefix mapping) Let transition tprev be the dan-
gling transition and let location lprev be the location tprev originates from. Let
the BHPC input be in the form 〈Pred〉.B. When the predicate Pred is satisfied
the following SOS rule can be applied, the system then will continue to evaluate

50

B. When the predicate is not satisfied no SOS rules can be applied resulting in
a deadlock.

B
a−→ B′

〈Pred〉.B a−→ B′ |= Pred

The following elements will be added to the hybrid automaton under con-
struction.

• A location l ∈ L such that lprev
tprev−−→ l.

• A transition t1 such that l
t1−→ B and guard Pred

• A transition t2 such that l
t2−→ ldeadlock and guard ¬Pred

Preconditions The hybrid automaton under construction has a single dangling
transition tprev , the BHPC process under evaluation is in the form 〈Pred〉.B
Postconditions The hybrid automaton under construction has a single dan-
gling transition, the next BHPC process for evaluation is B. 2

Deadlock

A deadlock state is defined as a state in which no further actions can be taken.
Typically such a state is modeled in automata by a state with no outgoing
transitions.

Mapping 5.4.5 (Deadlock mapping) The deadlock operator will place the
process in a state in which no further actions are possible. It will do this by
connecting the dangling transition of the hybrid automaton to a global deadlock
location.
Preconditions The hybrid automaton under construction has a single dangling
transition, the BHPC process under evaluation is in the form 0.
Postconditions The hybrid automaton under construction has no dangling
transitions, there is no more process to evaluate. 2

Recursion mapping

The recursion operator will let the system continue with the behaviour as defined
for the process that is assigned to the recursion operator. This operator can be
modeled in an automaton by creating a transition to the first state of the target
process.

Mapping 5.4.6 (Recursion mapping) The recursion mapping will connect
the dangling transition left by the previous operator to the first location of the
target process.
Preconditions The process that has led to this operator has left a dangling
transition in the automaton under construction.
Postconditions The dangling transition has been connected to the first loca-
tion of the target process. There is no preceding process to translate. 2

All the mappings described in this section are visualized in Figure 5.2.

Example 5.4.2 (Thermostat) When the mappings described in this chapter
are applied to the thermostat example from example 3.5.1 the following hybrid
automaton is constructed.

51

Figure 5.2: Translation mappings

The model clearly shows how the initial process is constructed into a dummy

52

node with a single outgoing transition. This transition leads to the first location
of the process defined by the initial process. When processing the ThOff process
a dummy start location is constructed with a single outgoing transition. This
transition leads to the next location that is constructed by the mapping for
the trajectory prefix. The location for the trajectory prefix shows the flow
conditions and invariant derived from the trajectory and the exit conditions.
Next the outgoing transition left by the trajectory prefix mapping receives the
label on from the action prefix mapping. Finally before the ThOn process is
translated the recursion mapping connect the transition left by the action prefix
mapping to the first location of the process defined by the recursion operator.
Next the ThOn process is processed in the same manor as the ThOff process.2

Example 5.4.3 (Bouncing ball) When the mappings described in this chap-
ter are applied to the thermostat example from example 3.5.2 the following
hybrid automaton is constructed.

The processing is done in analogously to the thermostat example and needs no
further explanation. 2

5.5 Translator tool

The above algorithm has been implemented into a translator application. This
application can be used to construct and translate BHPC models. The appli-
cation has two modules. The first module translates the model to its original
mathematical notation. The output is in the LaTeX format. The second module
can translate the model to Modelica code for simulation.

The translations are performed in several steps. First the model is parsed by
the BHPC parser that translates the BHPC model to the XML based internal
format described in section 3.3. This internal format is then passed to the actual
translator module that will translate the model to the requested output. The
Modelica translator applies the mappings, described in this chapter, to construct
a hybrid automaton in Modelica code using components from the StateGraph
library.

5.6 Simulation

This section will show simulation results for the thermostat and bouncing ball
examples.

53

5.6.1 Thermostat

The original thermostat example from example 2.5.1 can be rewritten to the
ASCII version of BHPC as shown in example 3.5.1. When this code is translated
using the Translation tool constructed for this project the following Modelica
code is generated.
model thermostat

annotation (uses (Modelica (v e r s i on =”2.1”)) , Diagram) ;
function random

output Real r ;
external ”C” ;
annotation (Inc lude=”#inc lude <s t d l i b . h>\n double random(void)
{ srand (time (NULL)) ; re turn (double) rand () / (double)RANDMAX; } ”) ;

end random ;

Real rnd (s t a r t = random ()) ;

function getvaluebetween
input Real min ;
input Real max ;
input Real rnd ;
output Real r e s u l t ;

algorithm
r e s u l t := min + ((max − min)∗ rnd) ;

end getvaluebetween ;

parameter Real K = 0 . 8 ;
parameter Real h = 50 ;
parameter Real tempMin = 10 ;
parameter Real tempMax = 20 ;
parameter Real tempOff = 18 ;
parameter Real tempOn = 12 ;
Real l ;
Real NonDetermin i s t i c 0 ;
Real NonDetermin i s t i c 1 ;
Integer on (s t a r t = 0) ;
Integer o f f (s t a r t = 0) ;
Real ph iO f f l 0 ;
Real phiOn l0 ;
Real ThOf f l0 ;
Modelica . StateGraph . Step ThOff Step0 (nIn=1, nOut=1);
Modelica . StateGraph . Step ThOff Step3 (nIn=1, nOut=1);
Modelica . StateGraph . Transition ThOf f Trans i t ion0 (cond i t i on=true) ;
Modelica . StateGraph . Transition ThOf f Trans i t ion3 (

cond i t i on=l > NonDetermin i s t i c 0 − 0.0001 and
l < NonDetermin i s t i c 0 + 0 . 0 0 0 1) ;

Real ThOn l0 ;
Modelica . StateGraph . Step ThOn Step1 (nIn=2, nOut=1);
Modelica . StateGraph . Step ThOn Step4 (nIn=1, nOut=1);
Modelica . StateGraph . Transition ThOn Transit ion1 (cond i t i on=true) ;
Modelica . StateGraph . Transition ThOn Transit ion4 (

cond i t i on=l > NonDetermin i s t i c 1 − 0.0001 and
l < NonDetermin i s t i c 1 + 0 . 0 0 0 1) ;

Modelica . StateGraph . Init ialStep I n i t i a l S t e p 2 (nIn=1, nOut=1);
Modelica . StateGraph . Transition I n i t i a l T r a n s i t i o n 2 (cond i t i on=true) ;

algorithm
when ThOf f Trans i t ion3 . cond i t i on and ThOff Step3 . l o c a lAc t i v e then

on :=on + 1 ;
end when ;
when ThOn Transit ion4 . cond i t i on and ThOn Step4 . l o c a lAc t i v e then

o f f := o f f + 1 ;
end when ;
when ThOff Step0 . l o c a lAc t i v e and ThOf f Trans i t ion0 . cond i t i on then

ph iO f f l 0 := ThOf f l0 ;
end when ;
when ThOff Step0 . l o c a lAc t i v e and ThOf f Trans i t ion0 . cond i t i on then

re in it (l , p h iO f f l 0) ;
end when ;
when ThOn Step1 . l o c a lAc t i v e and ThOn Transit ion1 . cond i t i on then

phiOn l0 := ThOn l0 ;
end when ;
when ThOn Step1 . l o c a lAc t i v e and ThOn Transit ion1 . cond i t i on then

54

re in it (l , ph iOn l0) ;
end when ;
when ThOn Step4 . l o c a lAc t i v e and ThOn Transit ion4 . cond i t i on then

ThOf f l0 := l ;
end when ;
when I n i t i a l S t e p 2 . l o c a lAc t i v e and I n i t i a l T r a n s i t i o n 2 . cond i t i on then

ThOn l0 := 10 ;
end when ;
when ThOff Step3 . l o c a lAc t i v e and ThOf f Trans i t ion3 . cond i t i on then

ThOn l0 := l ;
end when ;

equation
connect (ThOff Step0 . outPort [1] , ThOf f Trans i t ion0 . inPort) ;
connect (ThOff Step3 . outPort [1] , ThOf f Trans i t ion3 . inPort) ;
connect (ThOff Step3 . inPort [1] , ThOf f Trans i t ion0 . outPort) ;
connect (ThOn Step1 . inPort [2] , ThOf f Trans i t ion3 . outPort) ;
connect (ThOn Step1 . outPort [1] , ThOn Transit ion1 . inPort) ;
connect (ThOn Step4 . outPort [1] , ThOn Transit ion4 . inPort) ;
connect (ThOn Step4 . inPort [1] , ThOn Transit ion1 . outPort) ;
connect (ThOff Step0 . inPort [1] , ThOn Transit ion4 . outPort) ;
connect (I n i t i a l S t e p 2 . outPort [1] , I n i t i a l T r a n s i t i o n 2 . inPort) ;
connect (ThOn Step1 . inPort [1] , I n i t i a l T r a n s i t i o n 2 . outPort) ;

i f ThOff Step3 . l o c a lAc t i v e then
der (l) = −K ∗ l ;

e l s e i f ThOn Step4 . l o c a lAc t i v e then
der (l) = K ∗ (h − l) ;

e l s e
der (l) = 0 ;

end i f ;

rnd = (s i n (time / (random ()/100) + random ()) + 1)/2 ;
NonDetermin i s t i c 0 = getvaluebetween (tempMin , tempOn , rnd) ;
NonDetermin i s t i c 1 = getvaluebetween (tempOff , tempMax , rnd) ;

end thermostat ;

The following plot shows the simulations results from a run of this model.
The plot shows that the model is able to switch the thermostat on and off in a
non-deterministically.

55

5.6.2 Bouncing ball

The original bouncing ball example from example 2.5.2 can be rewritten to the
ASCII version of BHPC as shown in exampler̃efex:ASCII BHPC Bouncing ball
model. When this code is translated using the Translation tool constructed for
this project the following Modelica code is generated.
model bounc ingba l l

annotation (uses (Modelica (v e r s i on =”2.1”)) , Diagram) ;
function random

”Do not use t h i s function ! ! Use the rnd va r i ab l e to get a random number”
output Real r ;
external ”C” ;
annotation (Inc lude=”#inc lude <s t d l i b . h>\n double random(void)
{ srand (time (NULL)) ; re turn (double) rand () / (double)RANDMAX; } ”) ;

end random ;

Real rnd (s t a r t = random ()) ;

function getvaluebetween
input Real min ;
input Real max ;
input Real rnd ;
output Real r e s u l t ;

algorithm
r e s u l t := min + ((max − min)∗ rnd) ;

end getvaluebetween ;

parameter Real c = 0 . 9 ;
parameter Real g = 9 . 8 ;
Real h ;
Real v ;
Integer bounce (s t a r t = 0) ;
Real ph i h0 ;
Real ph i v0 ;
Real BB h0 ;
Real BB v0 ;
Modelica . StateGraph . Step BB Step0 (nIn=2, nOut=1);
Modelica . StateGraph . Step BB Step2 (nIn=1, nOut=1);
Modelica . StateGraph . Transition BB Transit ion0 (cond i t i on=true) ;
Modelica . StateGraph . Transition BB Transit ion2 (

cond i t i on=h <= 0 and v < 0) ;
Modelica . StateGraph . Init ialStep I n i t i a l S t e p 1 (nIn=1, nOut=1);
Modelica . StateGraph . Transition I n i t i a l T r a n s i t i o n 1 (cond i t i on=true) ;

algorithm
when BB Transit ion2 . cond i t i on and BB Step2 . l o c a lAc t i v e then

bounce :=bounce + 1 ;
end when ;
when BB Step0 . l o c a lAc t i v e and BB Transit ion0 . cond i t i on then

ph i h0 := BB h0 ;
end when ;
when BB Step0 . l o c a lAc t i v e and BB Transit ion0 . cond i t i on then

ph i v0 := BB v0 ;
end when ;
when BB Step0 . l o c a lAc t i v e and BB Transit ion0 . cond i t i on then

re in it (h , ph i h0) ;
re in it (v , ph i v0) ;

end when ;
when I n i t i a l S t e p 1 . l o c a lAc t i v e and I n i t i a l T r a n s i t i o n 1 . cond i t i on then

BB h0 := 10 ;
end when ;
when BB Step2 . l o c a lAc t i v e and BB Transit ion2 . cond i t i on then

BB h0 := 0 ;
end when ;
when I n i t i a l S t e p 1 . l o c a lAc t i v e and I n i t i a l T r a n s i t i o n 1 . cond i t i on then

BB v0 := 0 ;
end when ;
when BB Step2 . l o c a lAc t i v e and BB Transit ion2 . cond i t i on then

BB v0 := −c ∗ v ;
end when ;

equation
connect (BB Step0 . outPort [1] , BB Trans it ion0 . inPort) ;
connect (BB Step2 . outPort [1] , BB Trans it ion2 . inPort) ;

56

connect (BB Step2 . inPort [1] , BB Transit ion0 . outPort) ;
connect (BB Step0 . inPort [2] , BB Transit ion2 . outPort) ;
connect (I n i t i a l S t e p 1 . outPort [1] , I n i t i a l T r a n s i t i o n 1 . inPort) ;
connect (BB Step0 . inPort [1] , I n i t i a l T r a n s i t i o n 1 . outPort) ;

i f BB Step2 . l o c a lAc t i v e then
der (h) = v ;

e l s e
der (h) = 0 ;

end i f ;

i f BB Step2 . l o c a lAc t i v e then
der (v) = −g ;

e l s e
der (v) = 0 ;

end i f ;

rnd = (s i n (time / (random ()/100) + random ()) + 1)/2 ;

end bounc ingba l l ;

The following plot shows the simulations results from a run of this model.
The plot shows the height of the ball. It is dropped from a predefined height
and looses energy on every bounce.

5.7 Conclusions

For the initial version we have decided to define a basic calculus that would be
feasible with respect to the available time and restrictions from Modelica and
the StateGraph library. This basic calculus is named Basic BHPC. A translation
algorithm is defined that can translate Basic BHPC models to hybrid automata.
The translation algorithm is based on a number of mappings that relate each
BHPC operator to a fragment of a hybrid automaton. When put together the
total hybrid automaton will show the same behaviour as the BHPC process that
was translated. This hybrid automaton can then be simulated using Modelicas
StateGraph library with some additional Modelica code as shown in chapter 4.4.

57

CHAPTER 6

Conclusions

With this thesis we have taken a step forward in the simulation of hybrid sys-
tems using Behavioural Hybrid Process Calculus (BHPC). In addition to the
discrete simulator developed by M.H. Schonenberg we now have the ability to
simulate both discrete as continuous transitions within the BHPC model. BHPC
is an extension of classical process algebra, based on behavioural theory that is
suitable for modelling and analysis of hybrid systems.

6.1 Parser and internal representation

With the development of the BHPC parser we have created an easy way for
future research project to work with the BHPC language. Applications that
make use of this parser can be developed more efficiently since the XML based
internal representation is much easier to parse than the language itself.

BHPC models can be easily designed with the use of the ASCII based version
of BHPC. This language does not contain any mathematical symbols that are
hard to input using a common keyboard. Using the prototype of the parser
and translator the ASCII version of the language can easily be translated to its
original notation using LaTeX output.

6.2 Translation to Modelica

A subset of the BHPC language is taken for the translation to Modelica. The
complete language would prove to be to difficult due to the parallel operator.
The parallel operator of the StateGraph shows different behaviour than needed.
In addition to this, Modelica does not support dynamic allocation of memory
making implementation of the parallel operator in combination with the recur-
sion operator impossible.

For the development of the translator a set of mappings is defined that
translate a single BHPC operator into a fragment of a hybrid automaton. The

58

combination of the individual fragments form a hybrid automaton that exhibits
the same behaviour as the original BHPC model.

This hybrid model is translated to the Modelica language such that it can
be executed during a simulation run. The simulations for the thermostat and
bouncing ball examples show good results. The plots obtained from the Dymola
simulator show the same results as described in [Kri06].

6.3 Future work

In this document we have shown how a subset of the BHPC language can be
translated into a hybrid automaton and simulated using the Modelica language.
Some operators were not implemented because their implementation was infea-
sible in a technical sense or by restriction of time.

When the superposition operator becomes available in the BHPC language
a translation scheme can be developed for it. This operator might make it
possible to implement the parallel operator as well. There are ideas on how a
parallel composition can be expressed as a superposition of processes using an
expansion law.

Other improvements involve modifying the choice and superposition in the
parser program such that they can work on sets in stead of the fixed binary
form that they are in now.

Since the BHPC parser uses a XML based intermediate format other appli-
cations can easily use this output. Therefore other projects may want to use
the parser to work on the BHPC language. The parser should be up-to-date
and made available to other groups that want to use it.

59

Bibliography

[AHS96] R. Alur, T.A. Henzinger, and E.D. Sontag, editors. Proceedings of
the DIMACS/SYCON workshop on Hybrid systems III: verification
and control, volume 1066, 1996.

[ant] Antlr parser generator. http://www.antlr.org.

[BB87] T. Bolognesi and E. Brinksma. Introduction to the iso specification
language lotos. Computer Networks, 14:25–59, 1987.

[BCL+05] C. Brooks, A. Cataldo, E. A. Lee, J. Liu, X. Liu, S. Neuendorffer,
and H. Zheng. Hyvisual: A hybrid system visual modeler.
Technical report, University of California, 2005.

[BK84] J.A. Bergstra and J.W. Klop. Process algebra for synchronous
communication. Information and Computation, 60(1/3):109–137,
1984.

[BK05] E. Brinksma and T. Krilavičius. Behavioural hybrid process
calculus. Technical Report TR-CTIT-05.45, CTIT, UT, 2005.

[BKU05] E. Brinksma, T. Krilavičius, and Y.S. Usenko. Process algebraic
approach to hybrid systems. In Proc. of 16th IFAC World
Congress, Prague, Czech Republic, juli 2005.

[Hen96] T.A. Henzinger. The theory of hybrid automata. In Proceedings of
the 11th Annual Symposium on Logic in Computer Science (LICS),
pages 278–292, 1996.

[HL02] Yerang Hur and Insup Lee. Distributed simulation of multi-agent
hybrid systems. In IEEE International Symposium on
Object-Oriented Real-time distributed Computing (ISORC), 2002.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall,
Inc., 1985.

[iso] Iso/iec 14977, international organization for standardization, 1996.
http://www.cl.cam.ac.uk/ mgk25/iso-14977.pdf.

60

[Kri06] T. Krilavičius. Behavioural hybrid process calculus. Draft, 2006.

[KS05] T. Krilavičius and H. Schonenberg. Discrete simulation of
behavioural hybrid process calculus. In P.M.E. Bra and J.J. van
Wijk, editors, IFM2005 Doctoral Symposium on Integrated Formal
Methods, pages 33–38, Eindhoven, Netherlands, November 2005.
DMCs, TUe.

[Mil89] R. Milner. Communication and concurrency. Prentice-Hall, 1989.
ISBN 0-13-115007-3.

[moda] Modelica a unified object-oriented language for physical systems
modeling.
http://www.modelica.org/documents/ModelicaTutorial14.pdf.

[modb] Modelica association. http://www.modelica.org.

[MS06] Ka Lok Man and Ramon Robert Hubert Schiffelers. Formal
Specication and Analysis of Hybrid Systems. PhD thesis,
Technische Universiteit Eindhoven, 2006.

[PW98] J.W. Polderman and J. C. Willems. Introduction to Mathematical
Systems Theory: a behavioral approach. SPRINGER, 1998.

[Sch05] R.A. Schouten. Simulation of hybrid processes. Master’s thesis,
Technische Universiteit Eindhoven, 2005.

[Sch06] M.H. Schonenberg. Discrete simulation of behavioural hybrid
process algebra. Technical report, University of Twente, 2006.
Masters thesis.

[uni] The unicode standard, version 4.0, unicode consortium, 2003.
http://www.unicode.org/versions/Unicode4.0.0/ch14.pdf.

[W3X04] Extensible markup language (xml) 1.0 (third edition), 2004.

[Wika] Ascii - wikipedia, the free encyclopedia.
http://en.wikipedia.org/wiki/Ascii.

[Wikb] Differential equation - wikipedia, the free encyclopedia.
http://en.wikipedia.org/wiki/Differential equations.

61

APPENDIX A

ASCII BHPC definition

This appendix shows the complete EBNF definition for the ASCII variant of
the BHPC language.

A.1 Global elements
IDENTIFIER:

(’a’..’z’ | ’A’..’Z’)
(’a’..’z’ | ’A’..’Z’ | ’0’..’9’)*

NUMBER:
(’0’..’9’)+
(’.’ (’0’..’9’)+)?

qualifier : IDENTIFIER
action : IDENTIFIER
constant : IDENTIFIER
processname : IDENTIFIER
trajectoryname : IDENTIFIER

parameterdefs:
IDENTIFIER (’,’ IDENTIFIER)*

parameters:
expression (’,’ expression)*

qualifiers:
qualifier (’,’ qualifier)*

actions:
action (’,’ action)*

A.2 Expressions
expression:
equalityexpr ("=" equalityexpr)*

equalityexpr:
additiveexpr (
("="

62

| "!="
| ’>’
| ">="
| ’<’
| "<="
) additiveexpr)*

additiveexpr:
multiplicexpr (
(’+’
| ’-’
) multipricexpr)*

multipricexpr:
unaryexpr (
(’*’
| ’/’
) unaryexpr)*

unaryexpr:
(’-’)? (qualifier | constant | NUMBER)

| ’(’ expression ’)’

expressions:
expression (’,’ expression)*

A.3 Model
bhpcmodel:

(actiondefinitions | qualifierdefinitions | constantdefinitions)*
initialprocess
(processdefinition | trajectorydefinition)+

A.4 Action, qualifier and constant definitions
actiondefinitions : "actions" ’:’ action (’,’ action)*
qualifierdefinitions : "qualifiers" ’:’ qualifier (’,’ qualifier)*
constantdefinitions : "constants" ’:’ constantdefinition

(’,’ constantdefinition)*
constantdefintion : IDENTIFIER ":=" expression

A.5 Process definitions
initialprocess: "initial" processname (parameters)?
processdefinition: process (parameters)? "^=" processops

processops:
deadlock | actionprefix | trajectoryprefix | choice |
superposition | parallel | hiding | renaming |
recursion

deadlock : "stop"
actionprefix : action ’.’ processops
trajectoryprefix : ’[’ qualifiers

’|’ (trajectory (expressions)?
| trajectorydefinition)

(syncprefixes)? (exitconditions)?
’]’ ’.’ processops

choice : processops ’+’ processops
superposition : processops "++" processops
parallel : processops ’|’ (synchronizers)? ’|’ processops
hiding : "new" (actions (’,’ qualifiers)? | qualifiers)

"in" processops
renaming : processops ’[’ renamingfunc ’]’

63

recursion : process (expressions)?

syncprefixes : "conds" expressions
exitconditions : "exits" expressions
synchronizers : (qualifiers (’,’ actions)?) | actions
renamingfunc : (action | qualifier) (’\’ IDENTIFIER)*

A.6 Trajectory definitions
trajectorydefinition:

"signal" trajectoryname (parameters)? "^="
qualifiers ":" timeinterval
((assignments (’,’ differentialequations)? (’,’ expressions)?)
| (differentialequations (’,’ expressions)?)
| expressions
)

timeinterval : ’(’ NUMBER ’,’ (expression | ’t’) ’]’ "=>" domain
domain : "\N" | "\Z" | "\R"
assignments : assignment (’,’ assignment)
assignment : qualifier (’(’ expression ’)’)? ":=" expression
differentialequations : "der" ’(’ qualifier ’)’ ’=’ expression

64

APPENDIX B

BHPC ASCII variant railroad diagram

65

66

67

68

APPENDIX C

Internal representation XML schema

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.utwente.nl"
elementFormDefault="qualified">

<xs:element name="bhpc">
<xs:complexType>
<xs:element name="action" type="xs:string">

<xs:complexType>
<xs:element ref="name" minOccurs="0" maxOccurs="unbounded"/>

</xs:complexType>
</xs:element> <!-- action tag -->

<xs:element name="qualifier" type="xs:string">
<xs:complexType>

<xs:element ref="name" minOccurs="0" maxOccurs="unbounded"/>
</xs:complexType>

</xs:element> <!-- qualifier tag -->

<xs:element name="constant" type="xs:string">
<xs:complexType>

<xs:element ref="name" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="value" minOccurs="0" maxOccurs="unbounded"/>

</xs:complexType>
</xs:element> <!-- constant tag -->

<xs:element name="processdefinition" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>

<xs:element ref="name" minOccurs="1" maxOccurs="1"/>
<xs:element name="process" minOccurs="0" maxOccurs="unbounded">

<xs:complexType>
<xs:element ref="deadlock " minOccurs="0" maxOccurs="1"/>

<!-- deadlock can only occur once -->
<xs:element ref="recursion " minOccurs="0" maxOccurs="1"/>

<!-- recursion can only occur once -->
<xs:element ref="actionprefix " minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="trajectoryprefix" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="renaming " minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="alternative " minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="superposition " minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="parallel " minOccurs="0" maxOccurs="unbounded"/>

</xs:complexType>
</xs:element> <!-- process tag -->

</xs:complexType>
</xs:element> <!-- processdefinition -->

69

<xs:element name="trajectory" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>

<xs:element ref="name"/>
<xs:element ref="variables"/>
<xs:element name="timeperiod" minOccurs="1" maxOccurs="1"/>
<xs:element name="demain" minOccurs="1" maxOccurs="1"/>
<xs:element name="definition" minOccurs="1" maxOccurs="1"/>

</xs:complexType>
</xs:element> <!-- signal tag -->

</xs:complexType> <!-- bhpc tag -->
</xs:element>

<!-- base elements -->
<xs:element name="name" type="xs:string"/>

<xs:element name="value" type="xs:string"/>

<xs:element name="variables" minOccurs="1" maxOccurs="1">
<xs:complexType>
<xs:element name="variable" minOccurs="0" maxOccurs="unbounded" type="xs:string"/>

</xs:complexType>
</xs:element>

<xs:element name="deadlock"></xs:element>
<!-- need to create all other operators here -->

</xs:schema>

70

